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Multi-Criteria Manipulator Trajectory
Optimization Based on Evolutionary Algorithms

E. J. Solteiro Pires, P. B. de Moura Oliveira, J. A. Tenreiradiado

Abstract This paper proposes a method, based on a genetic algordhgenerate
smoth manipulator trajectories in a multi-objective pexgive. The method uses
terms proportional to the integral of the squared displaa@siin order to eliminate
the jerk movement. In this work, the algorithm, based on NSG&nd maximin
sorting schemes, considers manipulators of two, three @mndrétational axis (R,
3R, 4R). The efficiency of the algorithm is evaluated, namely theeegion of the
front and the dispersion along the front. The effectiversegscapacity of the pro-
posed approach are shown through simulations tests.

1 Introduction

Genetic algorithms (GAs) are one of the most popular evahaiy inspired search
and optimization technique. This popularity is shown by ldrge number of suc-
cessful applications in many scientific areas [1]. One otitieantages of GAs over
classical techiques is that it can be adopted in optiminatjuplications without re-
quiring specific knowledge about the working problem. hijtj it was mainly used
in single-objective problems. However, in few years becatear that GAs could
be applied in multi-objective optimization. Taking advage of using a population,
GA can determine a set of non-dominated solutions in justexeeution of the al-
gorithm [2, 3, 4, 5]. Moreover, GAs are less susceptible toRareto front shape
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or continuity than classical optimization techniques. Doghese factors, multi-
objective evolutionary algorithms (MOEAs) have becomeeéasingly popular in
a vast number of areas. For example in electrical engingdnydraulics, robotics,
control scheduling, physics, medicine and computer sei¢fic

In robotics, the problems of trajectory planning, collisiavoidance and manip-
ulator structure design considering a single criteria hesenbsolved using several
techniques [7, 8, 9, 10]. However, trajectory planning dthgpmultiple objectives
was somewhat overlooked and only a few articles analyziisgalpic can be found.
Pireset al. [11] proposed a MOEA to optimize a manipulator trajectorpsider-
ing multiple objectives, namely: space and joint arm dispiaents and the energy
required to perform the route without coliding with the @adés. Ramabalaet al.
[12] proposed two MOEAs to generate a manipulator trajgctath multiple ob-
jectives. In their work, they compare the results obtaingdlifferent algorithms.
Liu et al. [13] considers the planning of a space manipulator takimgiatthe joint
angle, joint velocity and torque constraints. They use agtteid fitness function
where the weights are ramdomly selected. They decomposeajbetory consider-
ing several segments. In each segment a suitable polin@miséd. The inter-knots
parameters (angle, velocity and torque) of each trajecegynent are optimized by
the proposed MOEA.

In this line of thought, this paper proposes the use of a rolijiective method to
optimize the trajectory of manipulators with 2, 3 and 4 riotadl degrees of freedom
(dof). The method is based on the NSGA-II and the maximinirsgicheme [14]
adopting the direct kinematics. The non-dominated trajges are those that mini-
mize the joint and gripper displacement. In a second phasedominated solutions
are analyzed in order to measure the solution spread alerfgaht.

The paper is organized as follows. Section 2 introducesttbiele¢m and the GA
based scheme for its resolution. Sections 3 describes titteothéo measure the
solution spread along the Pareto front. Based on this faatiau, section 4 presents
the results for several simulations involving 2, 3, and 4 lmanipulators. Finally,
section 5 outlines the main conclusions.

2 Problem formulation

This work considers robotic manipulators with 2, 3 and 4dimkhich are required
to move between two coordinates (Figure 1) in the operaltispace. The work
considers two objectives, namely the joint displacem@g) @nd the gripper dis-
placement@p). It is intended to determine a representative set of nanidated
solutions belonging to the Pareto optimal front. To meagheeyuality of the algo-
rithm, the solutions spread along the front is analyzed.ddwsion maker chooses
the solution taking into account the compromise betweenljectives that he finds
more appropriate.

The experiments consist on movingRrobotic armj = {2, 3,4}, between con-
figurations defined by the poings= {1.2,—0.3} andB = {—0.5,1.4}. To find out
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the initial and final R manipulator configurations the inverse kinematics is used.
For the R and &R manipulators, the initial joint values are determined ttagba
configuration close to the one observed for tRer@bot. In the work, the rotational
joints are free to rotater2rad.

The GA parameters are: population sig@pgim, = 300, number of generations
T; = 1500; crossover and mutation probabilitigs= 0.6 and py, = 0.05, respec-
tively, link lengthl = 2/i [m] and mass ofn = 2/i [Kg].

The two indices{Oq, Op} presented in (1) quantify the quality of the evolving
trajectories of the robotic manipulators. The indices espnt the joint displace-
ment,Oq (1a), and the Cartesian gripper displacem@gn{1b):

Og=3 5 Gl (1a)

Op=S d(pj, Py 1)’ (1b)
p JZZ (J Jl)

The path for dR manipulatori{= 2, 3,4), at generatioil, is directly encoded as
a string in the joint space to be used by the GA. This stringjpsesented by expres-
sion (2), wherd represents the number of dof add the sampling time between
two consecutive configurations. Therefore, one poternialti®n is encoded as:

[{q(lAt,T)’ N qi(At,T)}7 . {q(lZAt,T)7 ”7qi(2At,T)}7 L {q(l(an)At,T)’ N qi((n72)At,T)}]

_ 2)
where the joints valueq,“m’o), ji=1,....,n=2;1=1,...,i, are randomly initialized
in the rangg — 1T, + 1] [rad]. The robot movement is describedy- 8 configura-
tions. However, the initial and final configurations are not¢@ded into the string,
because they remain unchanged throughout the trajectargtseWithout losing
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generality, for simplicity, it is adopted a normalized timEAt = 0.1 s, but it is
always possible to perform a time re-scaling.

The proposed algorithm is based on the NSGA-I1 [3]. The irtligl solution fit-
ness takes into account all the neighboring solutions iedéently of their rank
(sharing parameters ame = 0.01 anda = 2). Moreover, the maximin sorting
scheme is adopted [14], replacing the crowding distancd wsthin NSGA-II, at
the end of each iteration, to determine the progenitorshwvit be part of the next
population.

3 Method to measure the solution distribution and the extension
of thefront

In this section a method to determine the distribution ofisohs along the Pareto
optimal front and the extension of the front are described.

The method begins by finding a function that models the Pamational front in
the appropriate range. This function should be valid betvibe extreme solutions
obtained by the MOEA. Next, the function adopted to reprediem Pareto front
is divided through normal straight lines (figure 2). Betwesth two consecutive
normal straight linesr( andr;, 1) a rangd; is defined. Finally, all solutions located
in a specific range are counted. The dispertion is given bsdtihaion number of
the ranges.

The extension of the front is measured through the curvetteofgthe modeled
function taking into account the two closest points to the axtreme solutions of
the Pareto front found by the MOEA.

4 Resaults

This section develops several tests. For each type of teléipileltexperiments are
performed to achieveex, = 21 valid simulations. This means that many distinct
experiments are executed until 21 successful converggadbe optimal Pareto
front are obtained, for theR2 3R and /R manipulators. Figure 3 depicts one optimal
Pareto front for each manipulator type. The convergenes naere 95%, 57% and
38% for the R, 3R and &R manipulators, respectively. It can be observed that as
the number of links increases the convergence rates decréas is due to the
exponential increase of the number of local fronts, withrtheber of robot links.

In all cases, the fronts can be modeled by equation (3) wighptirameter set
{k,a,B} € R. For each front obtained in a valid simulation,the paranseiee esti-
mated. Next, the median, mean and standard deviation otttaereters, a andf
are calculated (Table 1). The front modelling proceduraigiiroequation 3 is only
valid between the non-dominated extreme soluteasadb.
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Fig. 3 Pareto optimal fronts.

Table 1 Statistical parameters for the modeled fronts

2Rrobot front 3Rrobot front 4R robot front
K a B K a B K a B
Median | 7790 —-66.83 —7121|7868 —-7136 —7512|8028 -7182 -7444
Mean 7799 -6674 —-7113|7876 —7133 -7519(8015 7149 -7434
Std Dev.| 0.44 071 042| 0.58 167 122 | 0.60 221 162
Og+a
Op(Og) = K = 3
o(00) = K5 g @)

From Table 1 it can be seen that the mean and the median vakiakreost sim-
ilar. Additionally, the values of the standard deviatioe aglatively small, leading
to the conclusion that the algorithm always converges tostimee front, which is
likely to be the Pareto optimal front. Moreover, with theneasing of the manipula-
tor number of links the standard deviation increases. Bgrotiords, as the number
of links increases the problem complexity becomes highdrtha algorithm has
more difficulty to converge to the same non-dominated front.

The extensioni(e., the length) of the front for théR robot manipulators, =
{2,3,4}, has an averaggex: = {86.57,105.61,20049} and a standard deviation
Oext = {2.00,17.48,48.94}. It can be concluded that, with the increasing problem
complexity, the algorithm has more difficulty in obtaininigvays the same front
extension.

The solution diversity along the non-dominated front isserged in figures 4-6.
The final percentage average of solution number belonginbeaon-dominated
front is upy = {96.15% 92.53% 88.25%} and the standard deviation &y =
{1.26,5.21,4.28}. The figures reveal that the solutions are distributed oltén-a
tervals. However, this distribution is not uniform and th&farmity decreases as
the number the manipulator links increases. This phenomenas because the so-
lutions percentage of the non-dominated front decreastbstiaé number of links.
This is due to the fact that the algorithm favors non-domadatolutions, and only
then enters into account with diversity. Consequently,gtaposed algorithm re-
veals its potential only when all population elements ardwithe non-dominated
front. Figures 4-6 also show that regions with less non-aaieid solutions are com-
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Fig. 4 The ZRrobot solution distribution along the Pareto front
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Fig. 5 The Rrobot solution distribution along the Pareto front
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Fig. 6 The 4&Rrobot solution distribution along the Pareto front

pensated by the algorithm with more dominated solutionsyiter to keep a good
solution distribution in all intervals.

Figure 7 depicts the extreme solutiomsandb, corresponding to the optimal
fronts Pareto illustrated in Figure 3. The figure includes shiccessive configura-
tions and the angular displacements for the ZR and /R manipulators.
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Fig. 7 Pareto optimal trajectories. Successive configuratiorsohiftiona (Figures 3(a)-3(c)) for
robot: (a) R, (b) 3R, (c) 4R. Successive configurations of solutibrior robot: (g) R, (h) 3R, (i)
4R. Joint position trajectorys. time of solutiona for robot: (d) R, (e) &R, (f) 4R. Joint position
trajectoryvs. time of solutionb for robot: (j) 2R, (k) 3R, (I) 4R.

5 Conclusions

This paper solves the manipulator trajectory planning lemokin a multi-objective

perspective. This work considered manipulators with tlweeé and four rotational
joints with trajectories solved by an evolutionary algomitbased on NSGA-1l and
maximin sorting schemes. To study the efficiency of the atlyor the extension of
the front and the dispersion along the front were carried Do results show that
it is possible obtain different solutions according to theight of the objectives.
Moreover, with only one execution of the GA, it was possilol@btain a consider-
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able number of non-dominated solutions with good diveraibng the front. Each
solution represents a possible manipulator trajectorigligd by the weights of the
objectives envisaged by the decision maker.
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