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Abstract This paper proposes a method, based on a genetic algorithm, to generate
smoth manipulator trajectories in a multi-objective perspective. The method uses
terms proportional to the integral of the squared displacements in order to eliminate
the jerk movement. In this work, the algorithm, based on NSGA-II and maximin
sorting schemes, considers manipulators of two, three and four rotational axis (2R,
3R, 4R). The efficiency of the algorithm is evaluated, namely the extension of the
front and the dispersion along the front. The effectivenessand capacity of the pro-
posed approach are shown through simulations tests.

1 Introduction

Genetic algorithms (GAs) are one of the most popular evolutionary inspired search
and optimization technique. This popularity is shown by thelarge number of suc-
cessful applications in many scientific areas [1]. One of theadvantages of GAs over
classical techiques is that it can be adopted in optimization applications without re-
quiring specific knowledge about the working problem. Initialy, it was mainly used
in single-objective problems. However, in few years becameclear that GAs could
be applied in multi-objective optimization. Taking advantage of using a population,
GA can determine a set of non-dominated solutions in just oneexecution of the al-
gorithm [2, 3, 4, 5]. Moreover, GAs are less susceptible to the Pareto front shape
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or continuity than classical optimization techniques. Dueto these factors, multi-
objective evolutionary algorithms (MOEAs) have become increasingly popular in
a vast number of areas. For example in electrical engineering, hydraulics, robotics,
control scheduling, physics, medicine and computer science [6].

In robotics, the problems of trajectory planning, collision avoidance and manip-
ulator structure design considering a single criteria has been solved using several
techniques [7, 8, 9, 10]. However, trajectory planning adopting multiple objectives
was somewhat overlooked and only a few articles analyzing this topic can be found.
Pireset al. [11] proposed a MOEA to optimize a manipulator trajectory consider-
ing multiple objectives, namely: space and joint arm displacements and the energy
required to perform the route without coliding with the obstacles. Ramabalanet al.
[12] proposed two MOEAs to generate a manipulator trajectory with multiple ob-
jectives. In their work, they compare the results obtained by different algorithms.
Liu et al. [13] considers the planning of a space manipulator taking acount the joint
angle, joint velocity and torque constraints. They use a weighted fitness function
where the weights are ramdomly selected. They decompose thetrajectory consider-
ing several segments. In each segment a suitable polinomialis used. The inter-knots
parameters (angle, velocity and torque) of each trajectorysegment are optimized by
the proposed MOEA.

In this line of thought, this paper proposes the use of a multi-objective method to
optimize the trajectory of manipulators with 2, 3 and 4 rotational degrees of freedom
(dof). The method is based on the NSGA-II and the maximin sorting scheme [14]
adopting the direct kinematics. The non-dominated trajectories are those that mini-
mize the joint and gripper displacement. In a second phase, non-dominated solutions
are analyzed in order to measure the solution spread along the front.

The paper is organized as follows. Section 2 introduces the problem and the GA
based scheme for its resolution. Sections 3 describes the method to measure the
solution spread along the Pareto front. Based on this formulation, section 4 presents
the results for several simulations involving 2, 3, and 4 link manipulators. Finally,
section 5 outlines the main conclusions.

2 Problem formulation

This work considers robotic manipulators with 2, 3 and 4 links which are required
to move between two coordinates (Figure 1) in the operational space. The work
considers two objectives, namely the joint displacement (Oq) and the gripper dis-
placement (Op). It is intended to determine a representative set of non-dominated
solutions belonging to the Pareto optimal front. To measurethe quality of the algo-
rithm, the solutions spread along the front is analyzed. Thedecision maker chooses
the solution taking into account the compromise between theobjectives that he finds
more appropriate.

The experiments consist on moving aiR robotic arm,i = {2,3,4}, between con-
figurations defined by the pointsA ≡ {1.2,−0.3} andB ≡ {−0.5,1.4}. To find out
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the initial and final 2R manipulator configurations the inverse kinematics is used.
For the 3R and 4R manipulators, the initial joint values are determined to obtain a
configuration close to the one observed for the 2R robot. In the work, the rotational
joints are free to rotate 2π rad.

The GA parameters are: population sizepopdim = 300, number of generations
Tt = 1500; crossover and mutation probabilitiespc = 0.6 andpm = 0.05, respec-
tively, link lengthl = 2/i [m] and mass ofm = 2/i [Kg].

The two indices{Oq,Op} presented in (1) quantify the quality of the evolving
trajectories of the robotic manipulators. The indices represent the joint displace-
ment,Oq (1a), and the Cartesian gripper displacementOp (1b):

Oq =
n

∑
j=1

i

∑
l=1

(

q̇( j∆ t,T )
l

)2
(1a)

Op =
n

∑
j=2

d
(

p j, p j−1
)2

(1b)

The path for aiR manipulator (i = 2,3,4), at generationT , is directly encoded as
a string in the joint space to be used by the GA. This string is represented by expres-
sion (2), wherei represents the number of dof and∆ t the sampling time between
two consecutive configurations. Therefore, one potential solution is encoded as:

[{q(∆ t,T)
1 , ..,q(∆ t,T )

i }, . . . ,{q(2∆ t,T)
1 , ..,q(2∆ t,T )

i }, . . . ,{q((n−2)∆ t,T)
1 , ..,q((n−2)∆ t,T)

i }]
(2)

where the joints valuesq( j∆ t,0)
l , j = 1, . . . ,n−2; l = 1, . . . , i, are randomly initialized

in the range]−π ,+π ] [rad]. The robot movement is described byn = 8 configura-
tions. However, the initial and final configurations are not encoded into the string,
because they remain unchanged throughout the trajectory search. Without losing
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generality, for simplicity, it is adopted a normalized timeof ∆ t = 0.1 s, but it is
always possible to perform a time re-scaling.

The proposed algorithm is based on the NSGA-II [3]. The individual solution fit-
ness takes into account all the neighboring solutions independently of their rank
(sharing parameters areσ = 0.01 andα = 2). Moreover, the maximin sorting
scheme is adopted [14], replacing the crowding distance used within NSGA-II, at
the end of each iteration, to determine the progenitors which will be part of the next
population.

3 Method to measure the solution distribution and the extension
of the front

In this section a method to determine the distribution of solutions along the Pareto
optimal front and the extension of the front are described.

The method begins by finding a function that models the Paretooptimal front in
the appropriate range. This function should be valid between the extreme solutions
obtained by the MOEA. Next, the function adopted to represent the Pareto front
is divided through normal straight lines (figure 2). Betweeneach two consecutive
normal straight lines (ri andri+1) a rangeIi is defined. Finally, all solutions located
in a specific range are counted. The dispertion is given by thesolution number of
the ranges.

The extension of the front is measured through the curve length of the modeled
function taking into account the two closest points to the two extreme solutions of
the Pareto front found by the MOEA.

4 Results

This section develops several tests. For each type of test multiple experiments are
performed to achievenexp = 21 valid simulations. This means that many distinct
experiments are executed until 21 successful convergencesto the optimal Pareto
front are obtained, for the 2R, 3R and 4R manipulators. Figure 3 depicts one optimal
Pareto front for each manipulator type. The convergence rates were 95%, 57% and
38% for the 2R, 3R and 4R manipulators, respectively. It can be observed that as
the number of links increases the convergence rates decrease. This is due to the
exponential increase of the number of local fronts, with thenumber of robot links.

In all cases, the fronts can be modeled by equation (3) with the parameter set
{κ ,α,β} ∈ R. For each front obtained in a valid simulation,the parameters are esti-
mated. Next, the median, mean and standard deviation of the parametersκ , α andβ
are calculated (Table 1). The front modelling procedure though equation 3 is only
valid between the non-dominated extreme solutionsa andb.
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Fig. 3 Pareto optimal fronts.

Table 1 Statistical parameters for the modeled fronts

2R robot front 3R robot front 4R robot front
κ α β κ α β κ α β

Median 77.90 −66.83 −71.21 78.68 −71.36 −75.12 80.28 −71.82 −74.44
Mean 77.99 −66.74 −71.13 78.76 −71.33 −75.19 80.15 −71.49 −74.34
Std Dev. 0.44 0.71 0.42 0.58 1.67 1.22 0.60 2.21 1.62

Op(Oq) = κ
Oq + α
Oq + β

(3)

From Table 1 it can be seen that the mean and the median values are almost sim-
ilar. Additionally, the values of the standard deviation are relatively small, leading
to the conclusion that the algorithm always converges to thesame front, which is
likely to be the Pareto optimal front. Moreover, with the increasing of the manipula-
tor number of links the standard deviation increases. By other words, as the number
of links increases the problem complexity becomes higher and the algorithm has
more difficulty to converge to the same non-dominated front.

The extension (i.e., the length) of the front for theiR robot manipulators,i =
{2,3,4}, has an averageµExt = {86.57,105.61,200.49} and a standard deviation
σExt = {2.00,17.48,48.94}. It can be concluded that, with the increasing problem
complexity, the algorithm has more difficulty in obtaining always the same front
extension.

The solution diversity along the non-dominated front is presented in figures 4-6.
The final percentage average of solution number belonging tothe non-dominated
front is µDiv = {96.15%,92.53%,88.25%} and the standard deviation isσDiv =
{1.26,5.21,4.28}. The figures reveal that the solutions are distributed over all in-
tervals. However, this distribution is not uniform and the uniformity decreases as
the number the manipulator links increases. This phenomenaoccurs because the so-
lutions percentage of the non-dominated front decreases with the number of links.
This is due to the fact that the algorithm favors non-dominated solutions, and only
then enters into account with diversity. Consequently, theproposed algorithm re-
veals its potential only when all population elements are within the non-dominated
front. Figures 4-6 also show that regions with less non-dominated solutions are com-
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Fig. 4 The 2R robot solution distribution along the Pareto front

                                          

  

  

  

  

  

  

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20

0

5

10

15

20

25

Ranges

S
ol

ut
io

n
N

um
be

r

Non-dominated Sol.
Dominated Sol.
Std Desv.

Fig. 5 The 3R robot solution distribution along the Pareto front
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Fig. 6 The 4R robot solution distribution along the Pareto front

pensated by the algorithm with more dominated solutions, inorder to keep a good
solution distribution in all intervals.

Figure 7 depicts the extreme solutions,a andb, corresponding to the optimal
fronts Pareto illustrated in Figure 3. The figure includes the successive configura-
tions and the angular displacements for the 2R, 3R and 4R manipulators.
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Fig. 7 Pareto optimal trajectories. Successive configurations ofsolutiona (Figures 3(a)-3(c)) for
robot: (a) 2R, (b) 3R, (c) 4R. Successive configurations of solutionb for robot: (g) 2R, (h) 3R, (i)
4R. Joint position trajectoryvs. time of solutiona for robot: (d) 2R, (e) 3R, (f) 4R. Joint position
trajectoryvs. time of solutionb for robot: (j) 2R, (k) 3R, (l) 4R.

5 Conclusions

This paper solves the manipulator trajectory planning problem in a multi-objective
perspective. This work considered manipulators with two, three and four rotational
joints with trajectories solved by an evolutionary algorithm based on NSGA-II and
maximin sorting schemes. To study the efficiency of the algorithm the extension of
the front and the dispersion along the front were carried out. The results show that
it is possible obtain different solutions according to the weight of the objectives.
Moreover, with only one execution of the GA, it was possible to obtain a consider-
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able number of non-dominated solutions with good diversityalong the front. Each
solution represents a possible manipulator trajectory yieldied by the weights of the
objectives envisaged by the decision maker.
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ato, México, Springer. Lecture Notes in Computer Science Vol. 3410 (March 2005) 165–175


