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Abstract—In many applications we are interested in the fre-
quency content of a signal at a given period of time. The win-
dowed Fourier transform is one of the most widely used time-
frequency representations. To use this technique several para-
meters must be defined according to the signal analyzed. A new 
method based on the mutual information between frequency 
and time is proposed.  The tests developed with robotic signal 
show the capability of the presented method. 

I.  INTRODUCTION 

When the signals parameters evolve during the time they 
are called non-stationary. Very often real-world processes 
are non-stationary containing a time-varying frequency 
content. In many applications we are interested in the fre-
quency content of a signal at a given period of time. In the 
case of a non-stationary signal, the classical Fourier trans-
form (FT) is not suitable for its analysis. In fact, information 
localized in time, such as spikes, impacts, seismic events, 
and high frequency bursts, are not easily detected by the FT. 
Therefore, a time frequency analysis is used in many fields 
for studying signals with a time-varying spectral content. 

There are several approaches to achieve the time frequen-
cy analysis of non stationary signals. Among others, the 
most popular are the Wigner distribution, the Gabor trans-
form, the windowed Fourier transform (WFT) and the 
wavelet transform. The comparison between the different 
approaches, for achieving the time frequency analysis, was 
developed by several authors [1, 2] and it was verified that 
the choice of the best representation depends on the applica-
tion. 

The WFT, also known as short time (or term) Fourier 
transform (STFT) or time-varying Fourier transform 
(TVFT), is one of the most widely used time-frequency 
representations. In fact, this technique is adopted in many 
fields of engineering, such as in audio (speech and musical) 
signal processing, vibration signal processing, seismic sig-
nal processing, electromagnetic radiation and robotics. The 
WFT is an extension of the classical FT, where the trans-
form is evaluated repeatedly for a running windowed ver-
sion of the time domain signal. Each FT gives a frequency 
domain ‘slice’ associated with the time instant at the win-
dow center. 

One important aspect of the WFT is the window length 
that is related with the time–frequency resolution. The fre-
quency-resolution of the WFT is proportional to the effec-
tive bandwidth window. Consequently, for the WFT we 
have a trade-off between the time and the frequency resolu-
tions: on one hand, a good time resolution requires a short 
window, while, on the other hand, a good frequency resolu-
tion requires a long window. In order to adjust the desired 
resolution, the window length can be adjusted adaptively 
based on an instantaneous quality measurement of the time 
frequency content.  

Another aspect of the WFT is the type of window 
adopted. Several authors studied the effect of the WFT win-
dow [3, 4] and verified that the best choice depends on the 
type of signal. 

In summary, there are distinct parameters that must be de-
fined to use the WFT. In this line of thought the need of 
indices for tuning adequately the WFT motivated the work 
presented here. In fact the authors developed several expe-
riments and indices that were tested for tuning the WFT. 
The indices included statistical, entropy and information 
theory approaches. In this field several authors investigated 
the connections between the information theory (entropies 
and mutual information) and the time-frequency representa-
tions [5–7]. A method based on the information theory is 
presented in this work, revealing to be a promising strategy. 

To show the behavior of the information theory approach, 
the WFT is applied to a set of signals captured in a robotic 
manipulator, which is briefly described in the following 
section. In the section 3 are presented the fundamental con-
cepts. Section 4 presents the results based on experimental 
signals and, finally, the section 5 outlines the main conclu-
sions. 

II. APPARATUS AND EXPERIMENTAL SIGNALS 

In order to analyze signals that occur in a robotic manipu-
lator an experimental platform was developed. The platform 
has two main parts: the hardware and the software compo-
nents. The hardware architecture is shown in figure 1. Es-
sentially it is made up of a mechanical manipulator, a com-
puter and an interface electronic system. The interface box 
is inserted between the arm and the robot controller, in order 
to acquire the internal robot signals; nevertheless, the inter-
face  captures  also  external  signals,  such  as those arising 
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Fig. 1. Block diagram of the hardware architecture 

 
from accelerometers and force/torque sensors. The modules 
are made up of electronic cards specifically designed for this 
work. The function of the modules is to adapt the signals 
and to isolate galvanically the robot’s electronic equipment 
from the rest of the hardware required by the experiments. 

The software package runs in a Pentium 4, 3.0 GHz PC 
and, from the user’s point of view, consists of two applica-
tions: (i) the acquisition application is a real time program 
responsible for acquiring and recording the robot signals; 
(ii) the analysis package runs off-line and handles the rec-
orded data. This program allows several signal processing 
algorithms such as, FT, WFT, correlation, time synchroniza-
tion, etc. 

To test the phenomenon of mechanical impacts, in the ex-
perimental setup it is used a flexible link that consists of a 
long, thin, round, flexible steel rod clamped to the end-
effector of the manipulator. The robot motion is pro-
grammed in a way such that the clamped rod collides with a 
surface and several signals are recorded with a sampling 
frequency of fs = 500 Hz. The signals come from different 
sensors, such as accelerometers, wrist force and torque sen-
sors, position encoders and joint actuator current sensors. 
Additionally, in another experiment, it is adopted a spherical 
container carrying a liquid that oscillates during the accele-
ration/desacceleration transients. To test the behavior of the 
variables in different situations, the container (figure 1) can 
remain empty or can be filled with a liquid or a solid. The 
robot motion is programmed in a way that the container 
moves from an initial to a final position following a linear 
trajectory. 

Figure 2 depicts a typical time evolution of a variable and 
the corresponding spectrum. Figure 2 a) shows the forces at 
the end-effector of the manipulator captured during a total 
period of tT = 8 s for the impact analysis. These signals 
present clearly a strong variation at the instant of the impact, 
that occurs approximately at t = 4 s. The Fourier spectrum 
of imp

zf  (force z component for the case of impact) is shown 
in figure 2 b).  

Figure 2 b) shows the spectrum of a signal that contains 
information which is localized in time, due to the rod im-
pact. Occasionally the signal spectra are scattered. In order 
to deal with these issues a multiwindow algorithm is used in 
the next sections. 

 
a) 

 
b) 

Fig. 2. a) Forces at the gripper sensor; b) imp
zf  spectrum 

 

III. MAIN CONCEPTS 

A. The windowed Fourier transform 

One way of obtaining the time-dependent frequency con-
tent of a signal is to take the FT of a function over an inter-
val around a time instant �. The WFT transform accomplish-
es this by using a general window function. The concept of 
this mathematical tool is straightforward. We multiply the 
signal to be analyzed x(t) by a moving window g(t��) and, 
then, we compute the Fourier transform of the windowed 
signal x(t) g(t��). Each FT gives a frequency domain ‘slice’ 
associated with the time value at the window centre. Actual-
ly, windowing the signal improves local spectral estimates 
[3]. The WFT for a window function centered at time �, is 
represented analytically by: 

�
��

��

��� dtetgtxF tj���� )()(),(             (1) 

where � = 2� f  is the frequency. 
Each window has a width tw and the distance between two 

consecutive windows can be defined in a way so that they 
become overlapped during a percentage of time � in relation 
to tw. Therefore, the frequencies of the analyzing signal 
f < 1/tw are rejected by the WFT. Diminishing tw reduces the 
frequency resolution and increases the time resolution. 
Augmenting tw has the opposite effect. Consequently, the 
choice of the WFT window entails a well-known duration-
bandwidth trade-off. 

The rectangular window can introduce an unwanted side 
effect in the frequency domain. As a result of having abrupt 
truncations at the ends caused by the window, the spectrum 
of the FT will include unwanted “side lobes”. This gives 
rise to an oscillatory behavior in the time domain called the 
Gibbs phenomenon [4]. In order to reduce this unwanted 
effect, usually is used a weighting window function that 
attenuates the signals at their discontinuities. For this reason 
there are several popular windows normally adopted in the 
WFT as, for example, the Hanning, Hamming, Gaussian and 
Blackman [4]. 
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If the windows do not overlap, then it is clear that some 
data are lost. Additionally, if the windows overlap in a short 
period of time a significant part of the time signal is ignored 
due to the fact that most windows exhibit small values near 
the boundaries. To avoid this loss of data, overlap analysis 
must be performed. 

In resume, in order to apply the WFT there are several pa-
rameters that must be defined, namely the window type, the 
window’s width tw and the overlapped time �. Some win-
dows have also a parameter � that affects its shape. In this 
study are adopted two types of windows: the Gaussian and 
the fractional window. 

The Gaussian window has the following expression: 
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where ���wt,�  are parameters. 
Expression (3) represents a window that we call fractional 

due to the fact that the parameter ���  can present any real 
value in the interval 0 < � < �max. The window is centered at 
time � and the parameters ( � , tw) affect its shape and width. 
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This window is interesting due to the fact that the varia-
tion of � modifies significantly its shape. If � = 1 it yields 
the well known Bartlett (or triangular) window.  

Many authors studied the windows applied to the WFT in 
the perspective of their own characteristics. As referred 
previously, the choice of the window for a particular signal 
depends of the signal itself. Therefore, the automatic tuning 
of the window parameters is also dependent from the signal. 
Bearing these facts in mind, this article considers the win-
dow together with the signal. 

B. Mutual information 

The WFT denoted by ),( ��F  can be interpreted as a bi-
dimensional probability density function with two variables 
�  and �  as long as we normalize it according with the 
expression: 

� �
� � � �
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(4a) 

The marginal probability distributions of the variables �  
and �  are � ��2F  and � ��3F , respectively, according with 
the expressions: 

� � � ���
�

���� dFF ,2                             (4b) 

� � � ���
�

���� dFF ,3                              (4c) 

The mutual information [8], is the index that measures the 
dependence of two variables in the viewpoint of the infor-

mation theory. The mutual information for the two values of 
variables �  and � is: 

� �
)()(

),(log,
32

1
2 ��

��
��

FF
FI �                          (5) 

The average mutual information ��avI  between the two 
variables is given by: 

� � ��
��

������
� �

dd
FF

FFIav � ��
)()(

),(log),(,
32

1
21       (6) 

One application of Iav is to obtain the time lag required to 
construct the pseudo phase space. The Iav connects two sets 
of measurements with each other and establishes a criterion 
for their mutual dependence based on the idea of informa-
tion connection. Additionally, Iav recognizes the non-linear 
properties of the variables [9]. By other words, the mutual 
information presents good results both for linear and nonli-
near relationships between the variables. In this line of 
thought, the mutual information will be tested for tuning the 
WFT. 

IV. RESULTS 

To evaluate the average mutual information � ���,avI  for 
WFT tuning, a set of signals captured in a robotic manipula-
tor is used. Due to space limitations we depict only the most 
relevant features. 

A. Tuning the windows’s width tw and the overlapped time � 
parameters 

Figure 3 depicts the average mutual information � ���,avI  

for the imp
xf signal (force x component at the gripper of the 

robot for the rod impact) for the Gaussian window acquired 
during tT = 8 s. The Gaussian window’s width tw and the 
overlapping time � vary in the ranges 0.25 < tw < 6 s and 
5 < � < 90 %, respectively, while adopting � = 2.5. There 
are three locus of peaks and several experiments demon-
strated that the best tuning is found in the first curve that 
occurs in the increasing direction of tw. Therefore, the best 
tuning parameters corresponds to the higher peak at (�, 
tw) = (36.7, 2.6).  

We can test also the fractional window (3). Figure 4 de-
picts the average mutual information � ���,avI  of the imp

xf  
signal for the fractional window, acquired during tT = 8 s. 
The range values of tw and � are those used in the previous 

  

Fig. 3. The index � ���,avI  vs (�, tw) of imp
xf  signal for the Gaussian 

window with � = 2.5, tT = 8 s 
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Fig. 4. The index � ���,avI  vs (�, tw) of the imp
xf  signal for the fraction-

al window with � = 1, tT = 8 s 

 
Fig. 5. The index � ���,avI  vs (�, tw) of the liqi2  signal for the Gaussian 

window with tT = 20 s 
 

example. If we choose the higher peak, located at the first 
curve in the increasing direction of tw, we get the tuning 
parameters (�, tw) = (31.7, 2.3). 

Previous examples show the applicability of the proposed 
method. Nevertheless, the practice reveals for some signals 
that it is difficult to choose the adequate tuning parameters 
(�, tw). Figure 5 shows � ���,avI  vs (�, tw) of the liqi2  signal 
(axis 2 motor current due to liquid container movement). 
There are several curves of peaks with identical values, and 
consequently it is difficult to select the most appropriate. 
Therefore, a deeper insight into the nature of this feature 
must be envisaged to better understand the behavior of 

� ���,avI . 

B. Tuning the windows’s � parameter 

As referred previously the Gaussian (2) and the fractional 
(3) windows include the parameter � that affects the shape. 
Therefore, � is also a parameter that must be tuned. Figure 6 
depicts the mutual information � ���,avI  for the imp

xf  sig-
nal. The sensor is situated at the gripper and the signal is 
acquired during tT = 8 s. The values of � and �, for both 
windows, vary in the ranges 0.5 < � < 6  and 5 < � < 90 %, 
respectively. In both cases the window’s width is tw = 2.5 s. 
The index � ���,avI  presents a peak at (�, �) = (35, 3.9) for 
the case of Gaussian window. Additionally there are a set of 
higher values at � = 35% approximately. These set of values 
begin near � = 2.5, which is the value usually adopted as 
default for the Gaussian window. In the case of the fraction-
al window the peak occurs for (�, �) = (34, 1). 

I. CONCLUSIONS 

The WFT is one of the most widely used time-frequency 
representations that is adopted in many fields of engineer-
ing. In order to use this technique several parameters must 

 
a) 

 
b) 

Fig. 6. The index � ���,avI  vs (�, �) of the imp
xf  signal for the a) Gaus-

sian window; b) Fractional window 
 

be defined according to the signal analyzed. 
This work presents the average mutual information as an 

index that can be used for tuning the WFT. The window 
settings obtained with the proposed index revealed to consti-
tute a good compromise between the time and the frequency 
resolutions for the signals under analysis. The results based 
on experimental signals are promising and demonstrate the 
applicability and the effectiveness of the new approach. 
Nevertheless, the practice reveals for some signals it is dif-
ficult to choose the adequate tuning parameters based on the 
proposed method. Therefore, a deeper insight into the nature 
of this feature must be envisaged to overcome this limita-
tion. 
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