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Summary. In this paper it is considered a complex order forced van der Pol oscillator. The complex derivativeDα±jβ , with α, β ∈ R+

is a generalization of the concept of integer derivative, where α = 1, β = 0. We compute amplitude and period values of the periodic

solutions of the complex order forced van der Pol oscillator, for variation of distinct parameters such as forcing frequency, forcing

amplitude and parameters α and β. We find interesting quasi-periodic motion for certain values of the forcing frequency. This type of

behaviour is seen in the continuous forced van der Pol oscillator. Keywords — forced van der Pol oscillator, complex order derivative,
dynamical behavior

1 Introduction

The van der Pol (VDP) oscillator is a well-known model for the variation of voltage and current intensity of electrical circuits containing

vacuum tubes [8]. The forced van der Pol system is given by the following second order differential equation:

ẍ+ μ
(
x2 − 1

)
ẋ+ x− b cos(ω0t) = 0 (1.1)

This forced equation has brought major developments for the nonlinear dynamical systems theory, due to the richness of it dynamical

behavior [2, 7]. For small values of μ, the fundamental frequency ω is close to one. As μ increases, ω decreases to values away

from one. For values of b �= 0, the forced van der Pol system exhibits a variety of dynamical behavior, from periodic motion, to

quasi-periodic states, depending on the values of μ, ω and b.
Fractional calculus (FC) has been an important research issue in the last few decades. FC is a generalization of the ordinary integer

differentiation and integration to an arbitrary, real or complex, order [5, 6, 4].

The Grünwald - Letnikov definition of a fractional derivative of order α ∈ R given by:

Dα
t f(t) = lim

h→0

1

hα

[ t−a
h ]∑
h=0

(−1)k
(
α
k

)
f(t− kh) (1.2)

inspires the numerical calculation of the fractional derivative based on the approximation of the time increment h through the sampling

period T and the series truncation at the rth term. This method is often denoted as Power Series Expansion (PSE) yielding the equation

in the z - domain:

Z{Dαx(t)} ≈
[
1

Tα

r∑
k=0

(−1)kΓ(α+ 1)

k!Γ(α− k + 1)
z−k

]
X(z) (1.3)

where X(z) = Z{x(t)} and z and Z represent the z-transform variable and operator, respectively. In fact, expression (1.2) represents

the Euler (or first backward difference) approximation in the s → z discretization scheme, being the Tustin approximation another

possibility. The most often adopted generalization of the generalized derivative operator consists in α ∈ R. The case of having

fractional derivative of complex-order α ± jβ ∈ C leads to complex output valued results and imposes some restrictions before a

practical application. To overcome this problem, it was proposed recently [1] the association of two complex-order derivatives. For

example, with the real part of two complex conjugate derivatives Dα±jβ we get:

Z
{

1
2

[
Dα−jβx(t) +Dα+jβx(t)

] } ≈ 1
Tα

{
sin

[
β ln( 1

T
)
] [
βz−1 + 1

2
β(1− 2α)z−2 + · · · ]+

+cos
[
β ln( 1

T
)
] [−1 + αz−1 − 1

2
β(α2 − α− β2 + · · · )] }

X(z)
(1.4)

2 Complex order forced van der Pol oscillator

In this paper, we consider the following complex order state-space models of the VDP oscillator (CVDP):

1
2

(
Dα+jβ +Dα−jβ)x1 = x2

ẋ2 = −x1 − μ(x21 − 1)x2 + b cos (ω0t)
(2.5)

where Dα±jβ , α, β ∈ R+, is a generalization of the concept of the integer derivative, that corresponds to α = 1 and β = 0, b is the

forcing amplitude and ω0 is the forcing frequency.

We adopt the PSE method for the approximation of the complex-order derivative in the discrete time numerical integration.

The discretisation of the CVDP oscillator (2.5) leads to:

x1(k + 1) = 1
ψ(β,Δt)

{
H[x1(k)] + (Δt)αx2(k)

}
x2(k + 1) = x2(k) + Δt

{ −x1(k)− μ[x21(k)− 1]x2(k) + b cos(ωx3(k))
}

x3(k + 1) = x3(k) + δt

(2.6)

where Δt = 0.0005 is the time increment, δt = 0.001, ψ(β,Δt) = cos
[
b log

(
1
Δt

)]
, function H(xi), i = 1, 2, results from the

Taylor series expansion truncation.
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We now simulate the ordinary differential systems given by expression (2.6) for β = 0.8, α ∈ {0.0, 0.1, . . . , 1.0}, μ = {5.0},
b = 10.0, and we measure the amplitude and the period of the solutions for two values of ω0, ω0 = 0.5 and ω0 = 2.46. We adopted

the initial conditions x1(1) = 0.0, x1(2) = 0.005, x1(3) = 0.010, x1(4) = 0.015, x1(5) = 0.02, x2(1) = 1.0, x2(2) =
1.005, x2(3) = 1.010, x2(4) = 1.015, x2(5) = 1.02. Each simulation is executed until a stable periodic solution is found. The

amplitude and the period of the solutions versus α are depicted in Figures 1-2. We find that for ω0 = 0.5, the period is constant and the

amplitude decreases with α. For ω0 = 2.46, the amplitude decreases with α but the period is increasing with α in the following way:

(i) for α ≤ 0.6 the period is held constant, (ii) for α = 0.7, the period of solutions is 3 times the former value, (iii) for α = 0.8 the

period is 5 times the former value, (iv) for α = 0.9 the period is 7 times the previous value, and (v) for α = 1.0 the period is 9 times

the value at α = 0.6. It appears that we have here a period-doubling cascade for the bifurcation parameter α (see Figure 3).
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Figure 1: Amplitude of the periodic solutions x1(t) produced by the CVDP oscillator (2.6) for β = 0.8, α ∈ {0.0, 0.1, . . . , 1.0},
μ = 0.5, b = 10.0, and ω0 = 0.5 (left) and ω0 = 2.46 (right).
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Figure 2: Log of the period of the solutions x1(t) produced by the CVDP oscillator (2.6) for β = 0.8, α ∈ {0.0, 0.1, . . . , 1.0},
μ = 5.0, b = 10.0, and ω0 = 0.5 (left) and ω0 = 2.46 (right).
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Figure 3: Phase space solution of system (2.6) for β = 0.8, μ = 5.0, b = 10.0, ω0 = 2.46, and α = 0.6 (left) and α = 1 (right).

3 Conclusions

In this paper we study a complex-order fractional approximation the well-known forced van der Pol oscillator. The amplitude and the

period of solutions produced by these two approximations were then measured. The imaginary part was fixed while the real component

was varied, for μ = 5.0, b = 10.0 and for two distinct values of ω0. It was observed that the amplitude decreases for increasing values

of α, for the two values of ω0. The period is held constant for ω0 = 0.5 and shows what appears to be duplicating phenomena for

ω0 = 2.46, for α ≥ 0.7. Future work will focus on the behavior of the complex-order forced system for other values of μ and ω0.
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