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Abstract — Pareto and Zipf distributions have been used in the modeling of distinct

phenomena, namely in biology, demography, computer science, economics, amongst

others. In this paper, it is presented a short review of applications of these distribu-

tions in city sizes.

1 Introduction

Pareto distribution was introduced in 1896 [17], to describe income distribution. It was

shown that the relative number of individuals with an annual income larger than a cer-

tain value x was proportional to a power of x. Nowadays, a large amount of studies of
income and wealth distribution, and expenditure in distinct economic communities, is

available [13, 10, 6]. Zipf [24, 25] applied Pareto laws to words frequencies. The first

study concerning city size distribution was due to Auerbach [1], in 1913. He found that

the product of the population size of a city by its rank in the distribution appeared to be

roughly constant for a given territory. This study brought a new interest to the study of

city size distribution [25, 18, 12, 23, 7, 16, 20, 19]. Power laws (PLs) of various forms

also appear in computer science [5], in the distribution of biological species [22], war and

terrorists attacks [11, 3], books sales [15], music recordings and other commodities [4].
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The probability function of a discrete random variableX following a Pareto distribution

is given by:

P (X = x) = Cx−α

where C > 0. The corresponding cumulative distribution function is of the form:

F (x) = P (X ≥ x) =
C

α − 1
x−(α−1)

We let α̃ = α − 1. Zipf’s law [24, 25] (aka rank-size rule) is a special case of the Pareto

law, with α = 2. Considering cities ordered by population size, with the one with more
population being ranked as 1, then the rank-frequency chart is the plot of F (x) versus
the rank r, in logarithmic scales. In log-log scales, the Zipf distribution gives a straight
line with slope equal to α̃ = 1. More generally, for a random variable following a Pareto

distribution the rank-frequency plot, in log-log scales, is asymptotically a straight line,

given by:

ln(P [X ≥ x]) = lnC − ln α̃ − α̃ ln x

2 Pareto and Zipf laws for cities

Cities are complex systems that differ in many distinct ways such as size, shape, and

scale. The later have been a major research theme in a variety of scientific areas, from

geography up to economy. The one that got more attention was the city size distribution.

Pareto distribution, which includes the usual Zipf distribution, as a particular case, has

become a major contribution for the distribution of city sizes.

Auerbach [1] (followed by Zipf [25]) proposed that the city size followed a Pareto

distribution. In 1980, Rosen and Resnick [18] did a cross-country investigation of city

sizes in 44 countries and found that Pareto exponent was in the interval α̃ ∈ [0.81, 1.96],
with sample mean of ¯̃α = 1.14 with standard deviation 0.196. These values indicated that
population was more evenly distributed than expected by Zipf’s law, since the higher the

value of the exponent, more even city sizes became. Moreover, Rosen et al [18] found

that the mean value of α was ¯̃α = 1.136. Only in 12 of the 44 countries studied, obtained
α̃ ≤ 1. These authors concluded that cities of wealthier and more populous countries,
with a better railway system, grew more evenly, i.e., Pareto coefficient was bigger than

for poorest countries.

In 1991, Krugman [12] studied 135 USA metropolitan areas and calculated values of

α̃ close to one. Using the same data set, Gabaix [7] derived a statistical explanation of

Zipf’s law for cities. He showed that if cities followed similar growth processes, i.e., if

they evolved randomly with the same growth mean and variance, for a certain range of

(normalized) sizes, then, in steady state, the distribution of city sizes would follow a Zipf

law. Similar growth processes were often referred as Gibrat’s law [8] (aka, Gibrat’s law

of proportional effects). Thus, Zipf law was considered a steady state distribution arising

from Gibrat’s law, that is to say, Zipf’s law was the limit of a stochastic process.

Zanette et al [23] developed an intermittency model to large-scale city size distribu-

tions. The model predicted a PL distribution with a coefficient α̃ that was close to 1, the
coefficient for large city sizes known in the literature.
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Overman and Ioannides [16], implemented a test to check validity of Zipf’s law for

cities. Their results confirmed the validity of Zipf’s law for the US cities, though it was

observed a variation in the estimates of the Zipf coefficient α̃ across city sizes. They also

proved that Gibrat’s law hold generically for city growth processes.

Soo [20] tested the validity of Zipf’s law for cities of 73 countries using two estimation

methods, ordinary least squares (OLS) and Hill estimator. He found that Zipf’s law was

rejected in 73% of the countries using OLS estimator, and 41% of the countries using Hill

estimator. Soo updated α̃ values for the interval [0.73, 1.72]. Soo also obtained a Pareto
value for urban agglomerations less than 1, contradicting Rosen and Resnick [18], that

stated that Zipfs law hold for urban agglomerations. Soo also tried to explain variations

in the Pareto exponent. Unlike Rosen and Resnick [18], he argued that political economy

might be the main factor influencing city size distribution.

Moura et al [14] studied Brazilian cities with more than 30,000 inhabitants. They

showed that Pareto distribution was not valid for smaller cities. For these cases, the city

size cumulative distribution function did not follow a power-law behavior. The coeffi-

cient α̃ values were calculated with three methods: maximum likelihood estimator, least

squares fitting and average parameter estimator, and were in the interval [1.3, 1.4].
Other distributions to model city sizes have been proposed in the literature. In 2001,

Bi et al [2], proposed the Discrete Gaussian Exponential (DGX) distribution for mining,

massive skewed data. The Pareto law was included as a special case of the DGX. These

authors applied DGX to distinct data sets, a text from the Bible, clickstream data, sales

data and telecommunication data. In all cases, the DGX fitted well the data. Sarabia et

al [19] introduced the Pareto-positive stable (PPS) distribution as a new model for city

size distribution. Pareto and Zipf distributions were included as particular cases. PPS

distribution could be obtained by a monotonic transformation of the classical Weibull

distribution or by mixing the shape parameter α̃ of the classical Pareto distribution with

a positive stable law. Sarabia and co-workers [19] compared their results on data from

population of Spanish cities from 1998 up to 2007, with Pareto, lognormal and Tsallis [21]

distributions, and PPS provided better fits than the three previous distributions.

Giesen, Zimmermann, and Suedekum [9] introduced the Double Pareto lognormal dis-

tribution (DPLN) to model city sizes. They used data from eight countries and their results

showed that DPLN was a good fit for cities of all sizes. It was compatible with Zipf’s law

among large cities.

2.1 A case study

We collected data from the website of Thomas Brinkhoff: City Population, http://

www.citypopulation.de. This website supplies data about city populations for all

countries and, for each country, there is data from several censuses of the last 40 years.

In this study, we adopt the concept of administratively defined cities and consider, due to

the limited number of pages, only the case of turkish cities.

The data used here corresponds to the last available census of city size population in

Turkey. We have built a rank-frequency plot. The procedure followed consisted in col-

lecting, sorting and ranking the data. Before plotting the results, a normalization of the

values was carried out. Namely, the data (x-axis) was divided by the value corresponding

to the population of the largest city, and the rank (y-axis) was divided by the rank of the
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smallest city. Finally, the data was fitted by a PL, using a least squares algorithm (see

Fig 1). We obtained a PL with parameters α̃ = 1.021, yielding a squared correlation
coefficient of R2 = 0.9955. The value of α̃ close to 1 suggested that city size distribution
in Turkey followed a Zipf law.
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Figure 1: Rank-frequency of the size of populations of the Turkish cities.

3 Conclusions

In this paper we reviewed some applications of Pareto and Zipf laws to city size distri-

bution. We considered city size distribution of turkish cities as a case study. We found

a value close to 1 to the α̃ coefficient, suggesting that city size distribution in Turkey

followed a Zipf law.
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