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Abstract—This paper applies Multidimensional scaling tech-
niques for visualizing possible time-varying correlations between
twenty five stock market values. The method is useful for
observing stable or emerging clusters of stock markets with
similar behavior. The graphs may also guide the construction
of multivariate econometric models.

I. INTRODUCTION

It seems that there are many distinct analogies between the

dynamics of complex physical and economical or even social

systems. The methods and algorithms that have been explored

for description of physical phenomena become an effective

background and inspiration for very productive methods used

in the analysis of economical data [1, 2, 3, 4].

Economical indices measure the performance of segments

of the stock market and are normally used to benchmark

the performance of stock portfolios. This paper proposes a

descriptive method which analyzes possible correlations in

international stock markets. The study of the correlation of

international stock markets may have different motivations.

Economic motivations to identify the main factors which affect

the behavior of stock markets across different exchanges and

countries. Statistical motivations to visualize correlations in

order to suggest some potentially plausible parameter relations

and restrictions. The understanding of such correlations would

be helpful to the design good portfolios [1, 2].

Bearing these ideas in mind the outline of our paper is

as follows. In Section 2 we give the fundamentals of the

multidimensional scaling (MDS) technique, which is the core

of our method, and we discuss the details that are relevant for

our specific application. In Section 3 we apply our method

for daily data on twenty five stock markets, including major

American, Asian/Pacific, and European stock markets. In

Section 4 we conclude the paper with some final remarks and

potential topics for further research.

II. FUNDAMENTAL CONCEPTS

MDS is a set of data analysis techniques for analysis

of similarity or dissimilarity data. It is used to represent

(dis)similarity data between objects by a variety of distance

models.

The term similarity is used to indicate the degree of

“likeness” between two objects, while dissimilarity indicates

the degree of “unlikeness”. MDS represents a set of objects

as points in a multidimensional space in such a way that

the points corresponding to similar objects are located close

together, while those corresponding to dissimilar objects are

located far apart. The researcher then attempts to “make sense”

of the derived object configuration by identifying meaningful

regions and/or directions in the space.

In this article, we introduce the basic concepts and methods

of MDS. We then discuss a variety of (dis)similarity measures

and the kinds of techniques to be used. The main objective of

MDS is to represent these dissimilarities as distances between

points in a low dimensional space such that the distances

correspond as closely as possible to the dissimilarities.

Let n be the number of different objects and let the dissim-

ilarity for objects i and j be given by δij . The coordinates are

gathered in an n×p matrix X, where p is the dimensionality of

the solution to be specified in advance by the user. Therefore,

row i from X gives the coordinates for object i. Let dij be the

Euclidean distance between rows i and j of X defined as

dij =

√√√√ p∑
s=1

(xis − xjs)2 (1)

that is, the length of the shortest line connecting points i and

j. The objective of MDS is to find a matrix X such that

dij matches δij as closely as possible. This objective can be

formulated in a variety of ways but here we use the definition

of raw-Stress σ2, that is,

σ2 =
n∑

i=2

i−1∑
j=1

wij (δij − dij)
2

(2)

by Kruskal [5] who was the first one to propose a formal

measure for doing MDS. This measure is also referred to as

the least-squares MDS model. Note that due to the symmetry

of the dissimilarities and the distances, the summation only

involves the pairs i, j where i > j. Here, wij is a user

defined weight that must be nonnegative. The minimization



of σ2 is a complex problem. Therefore, MDS programs use

iterative numerical algorithms to find a matrix X for which

σ2 is a minimum. In addition to the raw stress measure

there exist other measures for doing stress. One of them is

normalized raw stress, which is simply raw stress divided

by the sum of squared dissimilarities. The advantage of this

measure over raw stress is that its value is independent of the

scale and the number of dissimilarities. The second measure

is Kruskal’s stress-1 which is equal to the square root of raw

stress divided by the sum of squared distances. A third measure

is Kruskal’s stress-2, which is similar to stress-1 except that the

denominator is based on the variance of the distances instead

of the sum of squares. Another measure that seems reasonably

popular is called S-stress and it measures the sum of squared

error between squared distances and squared dissimilarities.

Because Euclidean distances do not change under rotation,

translation, and reflection, these operations may be freely

applied to MDS solution without affecting the raw-stress.

Many MDS programs use this indeterminacy to center the

coordinates so that they sum to zero dimension wise. The

freedom of rotation is often exploited to put the solution in so-

called principal axis orientation. That is, the axis are rotated

in such a way that the variance of X is maximal along the first

dimension, the second dimension is uncorrelated to the first

and has again maximal variance, and so on.

In order to assess the quality of the MDS solution we

can study the differences between the MDS solution and the

data. One convenient way to do this is by inspecting the so-

called Shepard diagram. A Shepard diagram shows both the

transformation and the error. Let pij denote the proximity

between objects i and j. Then, a Shepard diagram plots simul-

taneously the pairs (pij , dij) and (pij , δij). By connecting the

(pij , δij) points a line is obtained representing the relation-

ship between the proximities and the disparities. The vertical

distances between the (pij , δij) points and (pij , dij) are equal

to δij − dij , that is, they give the errors of representation for

each pair of objects. Hence, the Shepard diagram can be used

to inspect both the residuals of the MDS solution and the

transformation. Outliers can be detected as well as possible

systematic deviations.

Measuring and predicting human judgment is an extremely

complex and problematic task. There have been many tech-

niques developed to deal with such type of problems. These

techniques fall under a generic category called Multidimen-

sional Scaling (MDS). Generally speaking MDS techniques

develop spatial representations of psychological stimuli or

other complex objects about which people make judgments

(e.g. preference, relatedness), that is they represent each object

as a point in a n-dimensional space. What distinguishes MDS

from other similar techniques (e.g. factor analysis) is that in

MDS there are no preconceptions about which factors might

drive each dimension. Therefore, the only data needed is

a measure for the similarity between each possible pair of

objects under study. The result is the transformation of the

data into similarity measures which can be represented by

Euclidean distances in a space of unknown dimensions [6].

The greater the similarity of two objects, the closer they

are in the n-dimensional space. After having the distances

between all the objects, the MDS techniques analyze how

well they can be fitted by spaces of different dimensions. The

analysis is normally made by gradually increasing the number

of dimensions until the quality of fit (measured for example

by the correlation between the data and the distance) is little

improved with the addition of a new dimension. In practice

a good result is normally reached well before the number of

dimensions theoretically needed to a perfectly fit is reached

(i.e. N − 1 dimensions for N objects) [7, 8, 9, 10].

In the MDS method a small distance between two points

corresponds to a high correlation between two stock markets

and a large distance corresponds to low or even negative

correlation [11, 12]. A correlation of one should lead to zero

distance between the points representing perfectly correlated

stock markets. MDS tries to estimate the distances for all

pairs of stock markets to match the correlations as close as

possible. MDS may thus be seen as an exploratory technique

without any distributional assumptions on the data. The dis-

tances between the points in the MDS maps are generally not

difficult to interpret and thus may be used to formulate more

specific models or hypotheses. Also, the distance between two

points should be interpreted as being the distance conditional

on all the other distances. One possibility to obtain such

an approximate solution is given by minimizing the stress

function. The obtained representation of points is not unique

in the sense that any rotation or translation of the points retains

the distances [13].

III. ANALYSIS OF FINANCIAL INDICES

In this section we study numerically the twenty five selected

stock markets, including seven American, eleven European and

seven Asian/Pacific markets.

Our data consist of the n daily close values of S = 25
stock markets,listed in Table I, from January 2, 2000, up to

December 31, 2009, to be denoted as xi(t), t = 1, · · ·n, i =
1, · · · , S.

The data are obtained from data provided by Yahoo Finance

web site [14] and [15] , and they measure indices in local

currencies.

Figure 1 depicts the time evolution, of daily, closing price of

the twenty five stock markets versus year with the well-know

noisy and ”chaotic-like” characteristics.

The section is organized in four subsections, each adopting

as “similarity measure” one correlation’s coefficient. The first

adopts an analysis based on a squared cosine coefficient correl-

ation (ξ), the second adopts an analysis based on the Pearson

coefficient correlation (ρ), the third adopts the Kendall-tau

coefficient of correlation (τ ) and the four adopts the Spearman

correlation’s coefficient (σ).

A. MDS analysis based on squared cosine correlation

In this subsection we apply the MDS method using as

“similarity measure” the values of squared cosine correlation,

ξ(i, j), of all the stock markets with the daily close values.



Table I
TWENTY FIVE STOCK MARKETS

i Stock market index Abbrev. Country
1 Dutch Euronext Amsterdam aex Netherlands
2 Index of the Vienna Bourse atx Austria
3 EURONEXT BEL-20 bfx Belgium
4 Bombay Stock Exchange Index bse India

5 SÃ£o Paulo (Brazil) Stock bvsp Brazil
6 Budapest Stock Exchange bux Hungary
7 Dow Jones Industrial dji USA

8 Cotation AssistÃ c©e en Continu cac France
9 Footsie ftse United Kingdom
10 Deutscher Aktien Index dax Germany
11 Standard & Poor’s sp500 USA
12 Toronto Stock Exchange tsx Canada
13 Stock market index in Hong Kong hsi Hong Kong
14 Iberia Index ibex Spain
15 Jakarta Stock Exchange jkse Indonesia
16 Stock Market index of South Korea ks11 South Korea
17 Italian Bourse mibtel Italy
18 Bolsa Mexicana de Valores mxx Mexico
19 Tokyo Stock Exchange nikkei Japan
20 NASDAQ ndx USA
21 New York Stock Exchange nya USA
22 Stock exchange of Portugal psi20 Portugal
23 Shanghai Stock Exchange ssec China
24 Swiss Market Index ssmi Switzerland
25 Straits Times Index sti Singapore
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Figure 1. Time series for the twenty five indices from January 2000, up to
December 2009.

We first compute the correlations among the twenty five stock

markets obtained a S×S matrix and then apply MDS. In this

representation, points represent the stock markets.

In order to reveal possible relationships between the market

stocks index the MDS technique is used. In this perspect-

ive several MDS criteria are tested. The Sammon criterion

revealed good results and is adopted in this work [16]. For

this purpose we calculate 25 × 25 matrix M1 based on the

squared cosine coefficient ξ(i, j), that provides a measurement

of the similarity between two indices and is defined in equation

(3). In matrix M1 each cell represents the squared cosine

correlation between a pair of indices, i, j = 1, · · · , S.
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Figure 2. Two dimensional MDS graph for the twenty five indices using
squared cosine correlation correlation, according (3).
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Figure 3. Three dimensional MDS graph for the twenty five indices using
squared cosine correlation correlation, according (3).

ξ(i, j) =

⎛
⎜⎜⎜⎜⎝

n∑
t=1

xi(t) · xj(t)√
n∑

t=1
(xi(t))2 ·

n∑
t=1

(xj(t))2

⎞
⎟⎟⎟⎟⎠

2

(3)

Figures 2 and 3, show the 2D and 3D locus of each index

positioning in the perspective of expression (3), respectively.

Figure 4 depicts the stress as function of the dimension of

the representation space, revealing that a three dimensional

space describes with reasonable accuracy the ”map” of the

twenty five signal indices. Moreover, the resulting Sheppard

plot, represented in figure 5, shows that a good distribution of

points around the 45 degree line is obtained [17].

There are several empirical conclusions one can draw from

the graphs in figures 2 and 5, and we will mention just a

few here. We can clearly observe that there seem to emerge
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Figure 4. Stress plot of MDS representation of the twenty five indices vs
number of dimension using squared cosine correlation correlation, according
(3).
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Figure 5. Shepard plot for MDS with a three dimensional representation of
the twenty five indices using squared cosine correlation correlation, according
(3).

clusters, which show similar behavior [18]. Hence, there does

not seem to be a single world market, but perhaps there

are several important regional markets. This last observation

would match with standard financial theory which tells us

that higher (lower) volatility corresponds with higher (lower)

returns. Indeed, if this would be the case, one would expect

to see similar patterns over time across returns and volatility.

B. MDS analysis based on Pearson correlation

In this subsection we apply the MDS method using as “sim-

ilarity measure” the values of Pearson correlation’s coefficient

correlation ρ(i, j) defined in equation (4).
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Figure 6. Two dimensional MDS graph for the twenty five indices using
Pearson correlation, according (4).
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Figure 7. Three dimensional MDS graph for the twenty five indices using
Pearson correlation, according (4).

ρ(i, j) =

n∑
t=1

(xi(t)− xi) · (xj(t)− xj)√
n∑

t=1
(xi(t)− xi)

2 ·
√

n∑
t=1

(xj(t)− xj)
2

(4)

Figures 6 and 7, show the 2D and 3D locus of each index

positioning in the perspective of expression (4), respectively.

Figure 8 depicts the stress as function of the dimension of

the representation space, revealing that a three dimensional

space describes with reasonable accuracy the ”map” of the

twenty five signal indices. Moreover, the resulting Sheppard

plot, represented in figure 9, shows that a good distribution of

points around the 45 degree line is obtained [17].

C. MDS analysis based on Kendall-tau correlation

In this subsection we apply the MDS method using as

“similarity measure” the values of Kendall-tau correlation
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Figure 8. Stress plot of MDS representation of the twenty five indices vs
number of dimension using Pearson correlation, according (4).
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Figure 9. Shepard plot for MDS with a three dimensional representation of
the twenty five indices using Pearson correlation, according (4).

τ(i, j) defined in equation (5). Each pair of data points (xi, xj)
is classified as concordant (C), discordant (D) or tied (T). The

pair is concordant if both variables increase or both variables

decrease. The pair is discordant if one variable increases while

the other one decreases. The pair says tied when one or both

variables stays constant.

Writing C, D and T for the number of concordant, discord-

ant and tied pairs, Kendall’s coefficient is given by:

τ(i, j) =
C −D

N
2 (N − 1)

(5)

where N = C +D + T is the total number of pairs.

The idea is that concordant pairs suggest an increasing

relationship, while discordant pairs suggest a decreasing rela-

tionship. Kendall’s τ is just the proportion of concordant pairs

minus the proportion of discordant pairs.
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Figure 10. Two dimensional MDS graph for the twenty five indices using
Kendall-tau correlation, according (5).
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Figure 11. Three dimensional MDS graph for the twenty five indices using
Kendall-tau correlation, according (5).

Figures 10 and 11, show the 2D and 3D locus of each index

positioning in the perspective of expression (5), respectively.

Figure 12 depicts the stress as function of the dimension of

the representation space, revealing that a three dimensional

space describes with reasonable accuracy the ”map” of the

twenty five signal indices. Moreover, the resulting Sheppard

plot, represented in figure 13, shows that a good distribution

of points around the 45 degree line is obtained [17].

D. MDS analysis based on Spearman correlation

In this subsection we apply the MDS method using as “sim-

ilarity measure” the values of Spearman correlation σ(i, j)
defined in equation (6).

The Spearman correlation coefficient is defined as the

Pearson correlation coefficient between the ranked variables.

Ranking both sets of data xi and xj , from the highest to

the lowest we have the correspondent ranks xri and xrj .
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Figure 12. Stress plot of MDS representation of the twenty five indices vs
number of dimension using Kendall-tau correlation, according (5).
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Figure 13. Shepard plot for MDS with a three dimensional representation
of the twenty five indices using Kendall-tau correlation, according (5).

Tied values are assigned a rank equal to the average of their

positions in the ascending order of the values.

The Spearman correlation σ is computed from these:

σ(i, j) =

n∑
k=1

(xri(k)− xri) · (xrj(k)− xrj)√
n∑

k=1

(xri(k)− xri)
2 ·

n∑
k=1

(xrj(k)− xrj)
2

(6)

Figures 14 and 15, show the 2D and 3D locus of each index

positioning in the perspective of expression (6), respectively.

Figure 16 depicts the stress as function of the dimension of

the representation space, showing that a three dimensional

space “maps” adequately describes with reasonable accuracy

the “map” of the twenty five signal indices. Moreover, the

resulting Sheppard plot, represented in figure 17, shows good

distribution of points around the 45 degree line.
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Figure 14. Two dimensional MDS graph for the twenty five indices using
Spearman correlation, according (6).
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Figure 15. Three dimensional MDS graph for the twenty five indices using
Spearman correlation, according (6).
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Figure 16. Stress plot of MDS representation of the twenty five indices vs
number of dimension using Spearman correlation, according (6).
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Figure 17. Shepard plot for MDS with a three dimensional representation
of the twenty five indices using Spearman correlation, according (6).

IV. CONCLUSION

In this paper, we proposed simple graphical tools to visual-

ize time-varying correlations between stock market behavior.

We illustrated our MDS-based method daily close values of

fifteen stock markets. There are several issues relevant for

further research. A first issue concerns applying our method to

alternative data sets, with perhaps different sampling frequen-

cies or returns and absolute returns, to see how informative

the method can be in other cases. A second issue concerns

taking the graphical evidence seriously and incorporating it

in an econometric time series model to see if it can improve

empirical specification strategies.

REFERENCES

[1] P. V., G. P. R. B., A. L.A.N., and S. H.E, “Econophysics:

financial time series from a statistical physics point of

view,” Physica A, vol. 279, pp. 443–456, 2000.

[2] R. Nigmatullin, “Universal distribution function for the

strongly-correlated fluctuations: General way for descrip-

tion of different random sequences,” Communications in
Nonlinear Science and Numerical Simulation, vol. 15,

no. 3, pp. 637–647, 2010.

[3] R. V. Mendes and M. J. Oliveira, “A data-

reconstructed fractional volatility model,” Eco-
nomics: The Open-Access, Open-Assessment E-
Journal, vol. 2, no. 2008-22, 2008. [On-

line]. Available: http://www.economics-ejournal.org/

economics/discussionpapers/2008-22

[4] R. V. Mendes, “A fractional calculus interpretation of the

fractional volatility model,” Nonlinear Dynamics, vol. 55,

no. 4, pp. 395–399, 2009.

[5] J. Kruskal, “Multidimensional scaling by optimizing

goodness of fit to a nonmetric hypothesis,”

Psychometrika, vol. 29, no. 1, pp. 1–27, 1964. [Online].

Available: http://dx.doi.org/10.1007/BF02289565

[6] I. Borg and P. Groenen, Modern Multidimensional Scal-
ing:Theory and Applications. New York: Springer, 2005.

[7] T. Cox and M. Cox. New York: Chapman & HallCrc,

2001.

[8] J. Kruskal and M. Wish, Multidimensional Scaling.

Newbury Park, CA: Sage Publications, Inc., 1978.

[9] J. Woelfel and G. A. Barnett, “Multidimensional scaling

in riemann space,” Quality and Quantity, vol. 16, no. 6,

pp. 469–491, 1982.

[10] J. O. Ramsay, “Some small sample results for maximum

likelihood estimation in multidimensional scaling,” Psy-
chometrika, vol. 45, no. 1, pp. 139–144, 1980.

[11] S. Nirenberg and P. E. Latham, “Decoding neuronal spike

trains: how important are correlations?” Proc. National
Academy of Sciences, vol. 100, no. 12, pp. 7348–7353,

2003.

[12] F. B. Duarte, J. T. Machado, and G. M. Duarte, “Dy-

namics of the dow jones and the nasdaq stock indexes,”

Nonlinear Dynamics, vol. 61, no. 4, pp. 691–705, 2010.

[13] A. Buja, D. Swayne, M. Littman, N. Dean, H.Hofmann,

and L.Chen, “Data visualization with multidimensional

scaling,” Journal of Computational and Graphical Stat-
istics, vol. 17, no. 85, pp. 444–472, 2008.

[14] “http://finance.yahoo.com.”

[15] “http://www.bse.hu.”

[16] B. Ahrens, “Distance in spatial interpolation of daily

rain gauge data,” Hydrology and Earth System Sciences,

no. 10, pp. 197–208, 2006.

[17] J. T. Machado, F. B. Duarte, and G. M. Duarte, “Mul-

tidimensional scaling analysis of stock market values,”

in Proceedings of 3rd Conference on Nonlinear Science
and Complexity, D. Baleanu, Ed. Cankaya University,

July 2010.

[18] J. T. Machado, G. M. Duarte, and F. B. Duarte,

“Identifying economic periods and crisis with the

multidimensional scaling,” Nonlinear Dynamics, DOI

10.1007/s11071-010-9823-2,ISSN: 0924-090X.


