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Abstract −−−− In this paper the application of “uniform 
structures” formerly introduced for the Hamiltonian 
description of robots is investigated in the case of a 
SCARA within the frames of the Lagrangian model. 
This model does not suffer from measurability 
problems of the Hamiltonian one. Via simulation it was 
found that this simple method can improve the control 
of an imperfectly modeled system under unmodeled 
environmental interaction. It uses the Lie parameters 
of the Orthogonal Group and the "Sliding Simplex 
Algorithm" for on-line tuning the parameters in the 
uniform structures. This method is very similar to the 
learning process of Artificial neural Networks. To 
evade the problem of local optima tuning starts from 
the estimated vicinity of the Global Optimum at the 
beginning. It is shown that a fast enough tuning can 
"stick" in this optimum and it propagates together 
with it in time as the local dynamics of the system is 
changes in time.

1. INTRODUCTION 

To gain an appropriate analytical model for controlling 
an approximately known non-linear, strongly coupled mul-
tivariable system still is a difficult task. A special case of 
this class are mechanical systems fault tolerant control of 
which gained particular attention even in these years e.g. 
[1-2]. For robot arms, even in the case of "rigid body 
approximation" there are open problems: during the 
motion of the system no satisfactory information can be 
gained to identify its parameters in real time [3]. For 
solving such problems classical methods like adaptive and 
robust solutions as Model Reference Adaptive Control or 
Variable Structure Controllers still offer ample 
possibilities (e.g. [4-5]). 

As an alternative approach the use of modern, highly 
parallel Soft Computing methods completely abandoning 
the mathematical description of the system's dynamic 
model can be regarded. They use simple and uniform 
structures not tailored to the particular properties of the 
task to be solved. Instead, they contain a huge number of 
free via tuning of which certain adaptivity can be 
achieved. This process is often called "learning". A new 
approach aiming at the systematic utilization of 
mathematical advantages of Hamiltonian Mechanics (HM) 
in the case of conventional manipulator arms was recently 
investigated e.g. in [6]. Its was to find a compromise 
between exact, problem-tailored modeling and the 

uniformity of Soft Computing: uniformity of HM was 
regarded as a mathematical tool tailored to a wide class of 
conservative mechanical systems. The only specific infor-
mation on the system to be controlled was its degrees of 
freedom. The role of the analytically non-determined, 
tunable parameters as well as possibilities for parameter 
tuning were considered in details e.g. in [7]. Via computer 
simulation it was established that though this method may 
have considerable adaptivity, its limitations caused by 
non- measurability of the conecpts in HM also became 
evident in certain cases. In the case of a vertical SCARA 
e.g. the technique formerly used for evading this problem 
was proved to be less efficient. It used a primitive and 
"rough" "initial robot model" containing constant inertia 
matrix. This model was later "step by step" so "deformed" 
by the use of the Lie parameters of the Symplectic Group 
that this constant matrix was still maintained in the 
construction of the deformations. 

In order to supersede this limitations the Canonical 
Formalism was temporarily put aside and it was 
investigated what kind of similarly "uniformed" adaptive 
or robust improvement can be done within the Lagrangian 
model. The results of this analysis illustrated with 
numerical simulations for a 3 DOF SCARA arm are 
presented in details in this paper.  

II. TUNABLE PARAMETERS OF UNIFORM 
STRUCTURE WITHIN THE LAGRANGIAN MODEL 

As is well known in the Lagrangian model of a robot 
arm the equations of motion for a robot of open kinematic 
chain has the form of the Euler-Lagrange equations.
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in which q denotes the generalized coordinates, ( )qq &,L  is 

the Lagrangian representing the robot as a conservative 
mechanical system, while Q represents the sum of the 
effects of the torques/forces exerted by the drives on the 
appropriate pivots of the joints, the projection of the 
external and the friction-caused forces on the joint shafts. 
In the most cases L has the form of 
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with a symmetric inertia matrix M depending only on the 
generalized coordinates ad a gravitational term derived 



from the potential V(q). For such systems (1) has the 
particular form of 
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In the traditional Computed Torque control M is built 
up by the use of a detailed mechanical model of the robot 
expressed by the Denavit-Hartenberg Conventions. For a 
rather complicated robot arm construction of M and its 
necessary derivatives is a complicated and time 
consuming work. Furthermore, the "fruits" of such 
calculations are degraded by the presence of the unknown 
external or environmental interactions so influencing the 
motion of the robot that they cannot easily be taken into 
account in Q.  

For getting rid of such complicated calculations our 
present proposition is to use the singular value 
decomposition of the positive definite inertia matrix as 

( ) ( ) ( ) ( )qOqDqOqM T= leading to the time-derivative 
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in which, in the case of a three degree of freedom system, 
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corresponds to the generators of simple Lie groups and 
they are built up from simple linearly independent 
generators and the joint coordinate velocities as follows. If 
O is the product of three independent orthogonal matrices 
combining the elements only the (1,2), (2,3), (3,1) as 
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in which the ξkl, arguments explicitly depend on the 
generalized coordinates q, and the appropriate generators 
pertaining to the above matrices are  
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then G as a generator of a Lie group can be expressed as 
the linear combination of the linearly independent "basis 
generators" as  
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and in a similar way 
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describes the derivative in the diagonal matrix. It is clear 
that according to the above representation the diagonal 
matrix D is an exponential function of its arguments as  
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in which D(0)  corresponds to some "initial" diagonal 
matrix. From the above formulas it can be seen that for the 
arguments of the above expression it holds that 
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trivially can be concluded that the use of the above 
representation for the inertia matrix of the robot in the 
Lagrangian model and its partial derivatives a) provides us 
with a simple, analytically closed form uniform structure 
quite independent of the particular construction of the 
robot arm and its Denavit-Hartenberg parameters, b) for a 
positive definite initial estimation D(0)  it never leads to a 
physically non-interpretable non-definite estimation; c) 
and finally, it can simply be extended for an arbitrary 
degree of freedom robot arm of open kinematic chain. 
The basic idea of the control now can be defined as 
follows: a) let us have an estimation for the inertia matrix 
for the robot in a particular initial position; by the use of 
the singular value decomposition it is easy to find an 
initial estimation for D(0)  and O(0)  for M, and let us 
neglect the potential term in the Lagrangian; b) at this 
initial point the equation ξkl=0 holds for the Lie 
parameters, that is the further stretches/shrinks and 
rotations start from the identity transformation; d) instead 
of trying to find closed-form analytical expressions for 
describing the dependence of the ξkl arguments on the 
generalized coordinates let us try to tune the gkls factors 
starting from the zero value in a way which guarantees an 
improvement in the calculation of the expected joint 
coordinate accelerations in comparison with the measured 
(experimental) values; e) for tuning these parameters the 
"Sliding Simplex Algorithm" can be used as we id it in the 
case of certain former investigations; f) since the tuning is 
started from an almost "exact" model, it is reasonable to 
suppose that if the tuning is fast enough the representation 
is "stuck on" or at least remains in the vicinity of the 
"absolute optimum" achievable by such kind of 
description.  

In connection with this representation the following 
remarks are to be done, too: a) by the application of the 
factors gkls a representation quite similar to that used in the 
feed-forward ANNs is gained; however, our position in 
the case of this representation is more convenient than if 
we would use an ANN: the number of the tunable free 
parameters now is known in advance, and instead of the 
non-linear transition functions in the neurons of unknown 
parameters and shape Group Theory provides us with 
simple sine, cosine, and exponential functions of known 
parameters; while in the case of an ANN using he standard 
sigmoid functions the problem of "paralysis" cannot be 
completely evaded, in our case it may not appear since the 
effect of an infinite "stretch" in one direction cannot be 



completely compensated for by a rotation: though in 
certain directions the rotation can keep finite the effect of 
the stretch, in other directions commencement of the 
divergence inevitably reveals itself and it necessarily will 
be curbed by the parameter tuning; b) in accordance with 
the simulation results, it is expected that this convenient 
self-containing property can be lost if we allow additional 
(gravitational or frictional) terms in the generalized forces; 
this is the reason for abandoning these terms in the present 
approach; c) in relation of this "abandoning" it is worth 
noting that with in the case of a fast tuning of the gkls
parameters gaining generally valid model of the system is 
not expected at all; it is expected only that in the vicinity 
of the given state of the robot and in the existence of the 
actual external perturbations the behavior (joint 
accelerations) of the model approaches that of the real 
system; from this point of view the given approach can be 
called as a "partial identification" of the system; d) from 
this aspect it must be noted that though the "starting point" 
of the approach is the Lagrangian model of the system, in 
its further "deformed" form this physical meaning can fade 
into "oblivion": for instance, if a damped spring is 
connected to the end-point of the robot arm as "external 
environmental perturbation", due to it such coupling 
between the joint accelerations will be brought about 
which do not occur in the Lagrangian of the system; within 
the frames of this approach the effects of this coupling will 
be compensated for by appearing non-zero matrix 
elements in the estimated inertia which otherwise should 
remain exactly zero; e) in the view of the idea of "partial 
identification" or "uniform structures" this "physical 
shortcoming" does not necessarily mean a real or practical 
insufficiency: eg., in the case of using an ANN for 
modeling a system no definite correspondence exists 
between a given neuron and a physical system-component. 

III. SIMULATION EXPERIMENTS 

In the simulation examples a 3 DOF SCARA robot arm 
was investigated to the end-effector of which a damped 
spring was connected to represent environmental 
interactions. It brought about dynamic coupling between 
the originally uncoupled joints of the robot. The viscous 
damping and the spring coefficient is denoted by "Vis", 
and "Spr" respectively. In Fig. 1 the effect of moderate 
external perturbations are described. Fig 2 pertains to the 
same desired motion with adaptive tracking. (The "noise" 
observable in the phase trajectory is the consequence of 
parameter tuning.) 
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Fig.1 Tracking error, desired and simulated trajectories for moderate 
external perturbation without adaptivity (time in 5 ms units) 
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Fig.2 The adaptive version for the same desired motion as given in Fig. 
1: the phase trajectory, tracking errors, the estimated inertia matrix 

elements  

Figs. 3-4 reveal that for extremely high viscous 
interaction the adaptive control can keep the process in 
bay. (In this case the non-adaptive one completely 
“decays”.) 
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Fig.3 Trajectory tracking, estimated main diagonals of the inertia matrix 
for the adaptive case for extremely high viscous external interaction 
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viscous external interaction 

Fig. 5 describes the effect of too large spring constant 
which is far less destructive for the non-adaptive version 
than the viscous influence is. 
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Fig.4. Trajectory tracking, estimated inertia matrix for extremely high 
elastic external interaction; in the last picture the control's behavior for 
the same desired motion and external perturbation without adaptivity 

IV. CONCLUSIONS 

It was proved via simulations that the adaptive version 
of the control is stable and efficiently keeps the system at 
bay when the non-adaptive version decays. There is a 
significant difference in the tracking errors of the adaptive 
and the non-adaptive control: the error peaks of the 
adaptive version are narrower than that of the non-
adaptive case. This means that the system spends less time 
in the significantly erroneous zone of the motion in the 
case of adaptivity. The maximum error does not seem to 
be reduced due to adaptivity. The significant difference 
between the actual and estimated inertia matrix reveals 
that the control tries to compensate for the external 

influences by considerably changing physical quantities of 
different nature in its model. Due to stability problems the 
improvement of the method by adding further generalized 
force terms requires further investigations. Tuning in the 
Lagrangian model seems to be a useful tool for improving 
the control based on the Hamiltonian mechanics and the 
rough rigid initial model. 
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