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Abstract

As a complement to the mandatory structural full-scale test for wind turbine blades, the method

of subcomponent testing has recently been proposed by international standards and guidelines

for the experimental investigation of design-critical full-scale parts. This work investigated

different subcomponent test (SCT) concepts for a trailing edge of an outboard segment from a

34-m blade. Detailed analytical models to design the SCT concepts with regard to the boundary

conditions were derived. Finite element analyses of the SCT's linear response were benchmarked

against each other and against the full blade model in terms of displacements, rotations, in-plane

strains, and energy consumption. All SCT concepts were in good agreement with the full-scale

test with respect to the longitudinal strain response but showed deviations in the transverse

and shear strain, as well as in the rotational and displacement response.
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1 INTRODUCTION

Recent years have witnessed remarkable progress in wind energy technology. In particular, rotor blades have become longer and more slender

to capture more power from the wind while reducing the loads on the turbine. Developing a new type of large rotor blade is a challenging

task. Detailed design, high-quality manufacturing, and rigorous testing are required before the prototype can be mass produced. One of the key

elements in this development process is the full-scale structural testing required for the certification of the blade type.1,2 The purpose of the

tests is to confirm to an acceptable level of probability that the whole population of a blade type fulfills the design assumptions.1 Owing to the

high cost of both the specimen and the test, only one prototype blade is typically tested at full scale in the following sequence: under static load,

fatigue load, and post-fatigue static load. This testing method has been widely used to certify a new blade design.

Some major concerns still exist regarding the current full-scale testing method:

• The limited coverage of realistic loading conditions. The basis for establishing the test loads is the entire envelope of blade design loads.

The full-scale testing does not necessarily cover all critical loading conditions along the blade length as they would occur in the field,3 for

example, in a trailing edge bond line under combined flap-wise and lead-lag loading. Moreover, some transient loads such as impact during

transportation and installation cannot be simulated in the full-scale test, but they may cause local damage in the blade. More suitable test

methods and setups are required to examine these critical loading conditions.

• The large effort associated with correcting problems. The development procedure of a new blade type follows a path from design through

manufacturing to testing. The effort of correcting design problems increases significantly with each phase in the blade development. Although

Abbreviations: AM, analytical model; BJ, ball joint; BJ-SCT, ball joint SCT concept; CF-SCT, C-frame SCT concept; FEM, finite element model; FST, full-scale blade test; LTT,
leading-to-trailing edge load case; SC, subcomponent; SCT, subcomponent test.
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it is possible to identify design problems during the testing program, a method that allows problem detection earlier in the design phase can

reduce the uncertainty in the blade development.

• The lack of representativeness. Testing one or two prototypes does not provide a statistical distribution of the structural performance of the

whole population of blades. In particular, the blade used for the certification test is usually one of the first blades from series production,

which is still subject to developmental modifications. How the performance of the prototype blade represents other blades is still unclear.

More tests are necessary to obtain statistically meaningful results to increase structural reliability.

Solutions to overcome the above shortcomings of certification tests are not straightforward, especially taking into account practical constraints

stemming from technical and economic aspects. One possible way of improving the current design process is to use a subcomponent test (SCT).

A subcomponent (SC) is considered to be a structural part cut directly out of a wind turbine rotor blade4; it therefore corresponds to the full

blade's scale. The approach is to test blade SCs using specific test methods and in particular test setups to complement the full-scale testing.

Several studies focusing on an SCT of blade segments have been carried out.5-8 Recently, Branner et al,9 Lahuerta et al,10 and Rosemeier et al11

have proposed SCTs for segments of 3-m length to investigate the structural performance of trailing edge bond lines in particular. This study

focuses on these three SCT concepts and compares them with each other.

The successful implementation of an SCT into the certification process2 of a blade prototype still faces several challenges. To reproduce the

more realistic loading conditions experienced by the full-scale blade, special attention should be paid to the questions: How different loads are

transferred in the SCs and how an SCT can generate the same structural responses, such as deformation, load-carrying capacity, and failure

modes, which are expected in the blade during the full-scale testing? To answer these questions, specific test methods are developed in this work

for the test specimens and test setups. Ideally, specimens used in an SCT should represent the actual geometry and materials of the blade regions

that are potentially critical. One solution would be cutting the SCs from the blades or manufacturing them from the blade molds. Nevertheless,

the sampling locations and the sizes of the SCs to be tested still need more study. Moreover, one of the essential differences between SCs and

their parent structures are the boundary conditions. It is difficult to fully reproduce the boundary conditions in an SCT as the SCs are clamped

or simply supported in the test rig and the deformation at the blade segment edges is therefore constrained. Specific test setups should be

developed to reduce the effects of artificial boundary conditions.

Lead-lag fatigue loading is driving the design of today's and future rotor blades.12 Therefore, this work focuses on the most sensitive area for the

lead-lag load case, ie, on the trailing edge bond line in particular. Also, current research is also focusing on rotor blade trailing edge failures. 13-16

An outboard segment of the SSP34 blade17 was chosen as the use case for this study. The blade underwent several research tests focusing on

the ultimate static response, ie, its failure at the trailing edge, for example.16

Specific objectives of this paper are to compare different test concepts for trailing edge SCs with each other and to compare the concepts

with the full-scale test.

The paper is structured as follows: Section 2 introduces the SCT concepts considered. Section 3 presents analytical and finite element (FE)

models. Section 4 summarizes the comparison between the different concepts replicating the response of the full-scale test.

2 STRUCTURAL TEST CONCEPTS

2.1 Static full-scale blade test

One of the goals of this work is to mimic the traditional static full-scale blade test by means of an SCT. Therefore, the load and strain conditions

in a full-scale test are explained.

The leading-to-trailing edge (LTT) load direction where the trailing edge is under compression was selected as the benchmark load case

(Figure 1A). The target bending moment distribution of the full-scale test in the lead-lag direction is achieved via shear forces Fi, leading to a

multilinear test bending moment distribution. The loading condition at cross-sectional level depends on the angle 𝜃 between load axis and elastic

axis (Figure 1B) resulting in a combination of edge-wise and flat-wise bending. Thus, the neutral axis is angled with respect to the yzR-plane of

the reference coordinate system. The axial strain distribution can be idealized as a linear distribution about the axis perpendicular to the neutral

axis. In an SCT, it is essential to find a setup that replicates this strain distribution.

2.2 Subcomponent test concepts

Two basic SCT concepts are compared in this work. Both are explained in the following sections.

2.2.1 C-frame concept

A C-frame (CF)-SCT full wherein a blade segment with a full cross section is mounted in a test rig with two load frames (similar to full-scale

frames) and hinged beams that are connected to an actuator (Figure 2A). Alternatively, to reduce the test loads required, the cross section is cut

in the span-wise direction (CF-SCT concept) such that only the area of interest remains, in this case the trailing edge cell including one main shear
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(B)

(A)

FIGURE 1 Shear forces Fi applied in the static lead-lag leading-to-trailing-edge full-scale certification blade test A. A representative cross
section in the outboard blade region is extracted to show the local cross-sectional loading conditions B. The internal bending moment is split into
a flat-wise and an edge-wise component. The superposition of the axial strains 𝜀ax,edge and 𝜀ax,flat result in a lead-lag strain 𝜀ax,lead-lag [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 2 Side views of the replacement models for the trailing edge subcomponent testing concepts: full cross-section in hinged C-frame
subcomponent test A, cut cross-section in hinged C-frame subcomponent test B, and cut cross section simply supported by ball joints
subcomponent test C. Top views of the respective side views D, E, and F. The deformed shape is shown in gray [Colour figure can be viewed at
wileyonlinelibrary.com]

web (Figure 2B). The hinges are positioned along the neutral axis n of the full blade cross section. The two hinges can be rotated arbitrarily about

the zR-axis to introduce any load combination of lead-lag and flap-wise loading. Also, the cantilever arms creating the bending moments at both

edges can be chosen arbitrarily to define a bending moment distribution.

2.2.2 Ball joint concept

A blade segment is mounted in a simply supported test rig (ball joint [BJ]-SCT) with two load frames connected to two BJs (Figure 2C). An

eccentric axial load is introduced at one joint, thereby introducing a normal force superposed by a bending moment. The position of the two

joints within the cross-sectional plane can be chosen arbitrarily, which enhances the introduction of any load combination and the distribution of

lead-lag and flap-wise loading.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Inclination angles, load vectors, elastic, and neutral axes of full cross section in full-scale blade test A, cut cross section in C-frame
subcomponent test concept B, and in ball joints subcomponent test concept C [Colour figure can be viewed at wileyonlinelibrary.com]

3 METHODS

3.1 Analytical cross-sectional models

The blade cross sections were modeled on the basis of Euler–Bernoulli beam theory.18 The analytical cross-sectional models (AMs) were used

to investigate the effect of the boundary conditions on the structural performance of several SCT concepts. To this end, the cross-sectional

properties, ie, axial and bending stiffnesses, location of the elastic center (also called centroid), the structural twist of the full blade cross section,

and the cut cross section were determined using the Beam Cross Section Analysis Software (BECAS).19-22 The blade parametrization and input

generation was conducted using workflows based on the FUSED-Wind framework,23 allowing the fast generation and analysis of full and cut

cross-sectional models.

To enhance the comparison between FST and SCT, the strain distribution along the cross sections was modeled with respect to the

cross-sectional elastic and neutral axes.

3.1.1 Full-scale test model

Given the cross-sectional properties of the full blade and the full-scale test (FST) load case direction vector at the target cross section, the

longitudinal strain perpendicular to the blade cross-sectional plane can be determined within the coordinate system of the elastic axes:

𝜀zFST

(
x′

f, y′
f

)
=

Mx′FST

EfIx′f
y′ +

My′FST

EfIy′f
x′, (1)

where Mx′FST and My′FST represent the bending moment transformed from the blade root coordinate system (Figure 3A) into the coordinate

system of the elastic axes xf
′, yf

′ of the full cross section. EfIx′f and EfIy′f denote the bending stiffnesses about the elastic axes.

The inclination angle* 𝛼f between the elastic y′
f
-axis and the neutral axis nf (Figure 3A) can be determined using the relation24:

𝛼f = arctan

(
Iy′f

Ix′f
· tan 𝜃f

)
, (2)

where 𝜃f denotes the inclination angle between the elastic y′
f

and the load axis of the local bending moment vector MLTT in an FST. The angle

between the neutral axis nf and the reference y-axis (cross section coordinate system as shown in Figure 3) is defined as follows:

𝛾f = 𝛼f + 𝜈f, (3)

where 𝜈f is defined as the angle between the reference x-axis and the elastic x′-axis.

3.1.2 C-frame subcomponent test model

For the CF-SCT, the cross-sectional area is trimmed to the area of interest (Figure 3C). The aim is to subject the cut cross section to the same

strain distribution as in the full-scale blade test (Equation 1). Therefore, the required inclination angle of the load axis 𝜃c is determined with

* Angles are defined as being positive when they lie between the first and second axes in the sequence mentioned, eg, 𝛼f is negative when the constellation of the y′
f
-axis and the neutral axis nf

is as shown in Figure 3A.

http://wileyonlinelibrary.com
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Equation 2 aiming for a neutral axis nc and an inclination 𝛼c parallel to the neutral axis of the full cross section nf:

𝜃c = arctan

(
Ix′c

Iy′c
· tan 𝛼c

)
, (4)

where 𝛼c is determined using the following:

𝛼c = 𝛾f − 𝜈c, (5)

where 𝜈c is the angle between the reference x-axis and the elastic x′
c-axis of the cut cross section.

Now, the area moment of inertia about the neutral axis of the full cross section is calculated using the following24:

Ix′′c =
Ix′c + Iy′c

2
+

Ix′c − Iy′c

2
· cos 2𝛼c + Ac d2

y′′e, (6)

where dy′′e denotes the distance between the elastic center of the full and the cut cross-section within the hinge x′′y′′-coordinate system

(Figure 3C). Ac denotes the area of the cut cross section.

The longitudinal strain along the blade cross section surface coordinates
(

x′′
c , y′′

c

)
can be determined using the following:

𝜀zCF-SCT

(
x′′

c , y′′
c

)
= M

EcIx′′c
y′′

c . (7)

Given the target strain distribution at the specimen's trailing edge 𝜀zTE, the required moment M can be found by rearranging Equation 7:

M =
𝜀zTE EcIx′′c

y′′
cTE

. (8)

Given the optimum bending moment M for each cross-section along the specimen, the cantilever arm length, the hinge position, and the hinge

rotation angle at the specimen edges are used as design variables to optimize the strain field of the specimen with respect to the target FST

load case.

If the specimen is not cut and remains as a full cross section, 𝛼f is determined from Equation 2. Using the area moments of inertia of the full

cross section, Equation 6 can be reduced by the stiffness fraction because of the parallel axis theorem:

Ix′′f =
Ix′f + Iy′f

2
+

Ix′f − Iy′f

2
· cos 2𝛼f (9)

Equations 7 and 8 are then applied analogously replacing index c by index f.

3.1.3 Ball joint subcomponent test model

For the BJ-SCT concept, the cross section area is trimmed to the area of interest as in the CF-SCT concept (Figure 3C). The aim, as also described

in the previous section, is to subject the cut cross section to the same strain distribution as in the FST. Therefore, the angle 𝜃c is determined

using Equation 4. The longitudinal strain along the blade cross section surface coordinates can be determined by superposing axial contraction

and bending due to eccentric load introduction using the following:

𝜀zBJ-SCT

(
x′

c, y′
c

)
= F

AcEc
+

F ly′cF

EcIx′c
y′ +

F lx′cF

EcIy′c
x′. (10)

The load F introduced eccentrically at the load introduction point
(

lx′cF,ly′cF

)
generates a bending moment about the neutral axis nc. Thus, the

cantilever arm for introducing load F is perpendicular to 𝜃c (Figure 3C):

cot 𝜃c =
ly′f

lx′f
. (11)

The load introduction point is determined using Equation 11 and by setting Equation 10 equal to 0 for the strain in the elastic center of the

full cross section (x′
ef
, y′

ef
):

lx′f = −
Ix′c Iy′c

Ac

(
cot 𝜃c Iy′c y′

ef
+ Ix′c x′

ef

) . (12)

Given the target strain distribution at the specimen's trailing edge 𝜀zTE, the required force F can be found by rearranging Equation 10:

F =
AcEc Ix′c Iy′c 𝜀zTE

Ac

(
x′

cTE
lx′f Ix′c + Iy′c y′

cTE
ly′f

)
+ Ix′c Iy′c

. (13)

Subsequently, F, lx′f and ly′f can be calculated for each cross-section along the specimen. This results in the corresponding bending moment

distributions

Mx (z) = F (z) · lx′f (z) and My (z) = F (z) · ly′f (z) . (14)
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FIGURE 4 Axis through the centroids of full and cut cross section [Colour figure can be viewed at wileyonlinelibrary.com]

Since only a constant force can be applied along the specimen, the optimum load Fappl is applied, which induces the cross-sectional strain in the

target area plus the desired strain along the trailing edge. Furthermore, there are only two positions at the two specimen edges where the load

introduction points can be positioned. Therefore, the bending moment distributions are divided by Fappl to determine the length of the cantilever

arms required to produce the constant force applied at each cross section:

lx′Fappl (z) =
My (z)
Fappl

and ly′Fappl (z) =
Mx (z)
Fappl

. (15)

A best fit axis through the points
(

lx′Fappl, ly′Fappl

)
is derived along the specimen, which can be used to determine the BJ positions at root and

tip end.

Alternatively, the optimum load introduction point with a constant force can be found by using Equation 11 and rearranging Equation 10:

lx′Fappl = −
Ix′c Iy′c (F − AcEc 𝜀zTE)

F Ac

(
Ix′c x′

cTE
+ Iy′c cot 𝜃c y′

cTE

) (16)

A theoretical limit exists for the applicable load direction. The limit is reached when the neutral axes nc and nf are congruent (Figure 4), or in

other words if the inclination angle 𝛼c is within the range between

𝛿 < 𝛼c < 𝛿 + 180◦, (17)

where

𝛿 = 90◦ + 𝛾f + tan

(
yCf − yCc

xCf − xCc

)
. (18)

Using Equations 2 to 5 the inclination angle of the load axis limits can be determined:

𝜃f = arctan

(
Ix′f

Iy′f
· tan

(
arctan

(
Iy′c

Ix′c
· tan 𝜃c

)
+ 𝜈c − 𝜈f

))
. (19)

3.2 Finite element models

A 3D full blade finite element model (FEM) with 119 499 shell and 2900 solid elements (362 705 nodes) was generated in the FE Mechanical

Analysis System Parametric Design Language (MAPDL)25 based on the SSP34 blade laminate plan and geometry26 (Figure 5). The model has

been verified with two existing FE models of other software packages,16,27 and validated with full-scale experiments.28 Furthermore, three FE

models representing the SCT concepts were generated (Figure 6): A model of the full cross section in the CF-SCT with 8284 shell and 288 solid

elements (25 524 nodes), and models of the cut cross section in the CF-SCT and BJ-SCT with 5238 shell and 288 solid elements (16 588 nodes).

3.2.1 Model layout

The FE models were assembled with eight-noded quadratic shell elements of type SHELL281. The trailing edge bond line was modeled using

20-noded quadratic solid elements of type SOLID186, which share their nodes with the shell elements at the interfaces. This technique

is commonly used in the modeling of wind turbine blades.7,29 Other approaches using shell-solid modeling with kinematic couplings were

investigated by Haselbach.30

The full blade model was subjected to the LTT certification load case according to IEC1 via five shear forces representing ropes that were

connected to a strong wall. The ropes were implemented as LINK11 type elements. The ends of the rope were simply supported on the wall and

on a master node on the blade's pitch axis, respectively. The latter was connected to the blade structure through multipoint constraint elements

of type RBE3.

For the SCT models a specimen length of 2.75 m was chosen, since it represented the length of the available specimens of the 34-m blade

investigated for future experimental validation.

http://wileyonlinelibrary.com
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FIGURE 5 Deformed finite element model of the full blade model and boundary conditions of leading-to-trailing edge load case. The color scale
shows the longitudinal strain 𝜀zR [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Deformed finite element models of the full cross-section within C-frame subcomponent test A, and cut cross section within C-frame
subcomponent test B, and ball joint subcomponent test C. The boundary conditions are shown for the replication of the full-scale
leading-to-trailing edge load case. The color scale shows the longitudinal strain 𝜀zR [Colour figure can be viewed at wileyonlinelibrary.com]

In the C-frame models the edges of the SC were clamped with CERIG type rigid elements representing the load frame. A load frame width

of 30 cm was chosen to ensure a potentially glued connection had reasonable integrity. A master node was positioned at the hinge axis, which

represents the rotational degree of freedom of the load frame. Rigid beams of type MPC184 were dimensioned in length such that they introduce

the required bending moments at the root and tip frame. An actuator (LINK11) was positioned between the two beams.

For the model of the BJ concept, the two master nodes of the CERIG elements representing the BJs were positioned at the root and tip ends.

A torsional spring of type COMBIN14 was connected to the BJ at the root end so as to be congruent to the axis through both BJs (BJ-axis). The

torsion spring constant was chosen to be as flexible as required such that the rigid body motion along the BJ-axis was suppressed, in this case

c = 1 · 10−3 N m rad−1. While the BJ displacements at the root end were fully constrained, BJ displacement at the tip end was allowed along the

BJ-axis.

3.2.2 Determination of boundary conditions

The SC structure under investigation was cut out of the full blade FEM. The SC was then sliced into 25 cross sections whose properties were

determined by BECAS. This was also done for 41 cross sections of the full blade. The boundary conditions at the tip and root frame, ie, the

hinge positions and angles, and the bending moments required for the CF-SCT, and the BJ positions for the BJ-SCT, were determined using the

analytical full and cross sectional models of the SCTs as described in section 3.1. These boundaries were applied in the respective FE model as

shown in Figure 6. All FE simulations were conducted as a linear static analysis.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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3.3 Actuator work

The actuator work required for the static loading in the SCT concepts is determined by evaluating the strain energy that the actuator introduces

into the specimen.24 Assuming linearly elastic material behavior and a rigid connection between the actuator and the SC specimen, the actuator

work is calculated as follows:

WBJ = ∫
𝛿

0
F d𝛿 = 1

2
F𝛿, (20)

where F denotes the external loading in terms of forces and 𝛿 denotes the displacement of the actuator (CF-SCT) or specimen (BJ-SCT). For the

CF-SCT concept, the work can alternatively be calculated as follows:

WCF = ∫
𝜃

0
M d𝜃 = 1

2
(Mr𝜃r + Mt𝜃t) , (21)

where the external loading in terms of the bending moments at the root and tip hinge of the specimen edge is denoted by Mr and Mt, and the

rotations by 𝜃r and 𝜃t, respectively.

4 RESULTS AND DISCUSSION

4.1 Replication of full-scale test response

4.1.1 Displacement response

The overall deformation and rotation of the trailing edge (at s = 0.0 as shown in Figure 9A) is used as an indicator to compare the performance

of the SCT with the FST; see Figure 7A-C. For comparative reasons the displacements and rotations of the specimen in all SCT concepts and the

FST are transformed into the same coordinate system at the root end of the specimen. The coordinate system for the span-wise position zR and

FIGURE 7 Trailing edge displacements along the span of full blade and subcomponent in the xR-direction A, and yR-direction B. Trailing edge
rotations along the span are shown in C. The relative out-of-plane displacements in the yR-direction between suction and pressure side at the
target cross section are shown in D. Displacements and rotations were post-processed on the pressure side at s = 0.0 as shown in Figure 9A
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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the chord-wise position xR is illustrated in Figure 1. Moreover, the relative displacement 𝛿y between suction and pressure side panel along the

chord of the target cross section in the middle of the specimen, ie, at a blade length of 24 m, is shown (Figure 7D).

The BJ-SCT displacement response is in good agreement with the FST, clearly followed by the CF-SCT with full and cut cross section, which

are close to each other. In the latter two concepts, the rotation of the specimen is constrained at both edges. Therefore, the out-of-plane

displacement uy (Figure 7B) and rotation about the span 𝜃z (Figure 7C) are both zero at the tip end. In the BJ-SCT concept, in contrast, this

rotation at the tip end is free. All SCT concepts show a wavy distribution of 𝜃z, which indicates a varying torsional moment along the specimen.

The suction and pressure side panels approach each other in all simulations, meaning that the trailing edge cell is closing. The BJ-SCT is in better

agreement with FST since it can freely rotate at both ends. This rotational degree of freedom has a substantial impact on the out-of-plane

displacement, too.

4.1.2 Strain response along trailing edge

Besides the displacement response, the longitudinal strain 𝜀z and shear strain 𝛾zs along the trailing edge (at s = 0.0 as shown in Figure 9A) are

used as comparison parameters, see Figure 8A,B. The coordinate system of the shear strain is shown in Figure 9A.

The longitudinal strain distribution of all SCT concepts follows the slope of the strain distribution from FST simulations. At the edges, strain

peaks are observed, which are a consequence of the constraints of the load frames. The match of the strain shape along the span depends on the

fitting procedure of the longitudinal strain, as described in section 3.1. For the concepts using a cut cross section, the shape of the strain slope

can be influenced by the span-wise cutting. To fully reproduce the strain distribution along the blade length, the position of the elastic center of

the cut cross sections along the span needs to be tailored with respect to the elastic center of the full cross section.

The shear strain shows a wavy distribution as also observed in the rotation response (Figure 7C). Towards the tip region the shear strain of the

BJ-SCT is close to the FST.

4.1.3 Strain response at target cross section

The longitudinal strain 𝜀z, transverse strain 𝜀s and shear strain 𝛾zs along the surface coordinate of the target cross section are used as an indicator

to compare the performance of an SCT with the FST; see Figure 9A,C, and E. The respective strain deviations of the SCT FE models and the

analytical model with respect to the FST are highlighted in Figure 9B,D, and F.

All SCT concepts reproduce the FST longitudinal strain response at the trailing edge (s = 0.0 and s = 1.0) with reasonable accuracy, as already

indicated in Figure 8A. When considering longitudinal strains along the suction and pressure side panels, the results of the CF-SCT concept with

full cross section are in closest agreement with those of the FST with a maximum deviation of -3% to -4%. In the same case, the BJ-SCT concept

deviates by -5% to -6%. When considering transverse and shear strains along the suction and pressure side panels, the CF-SCT concept with the

full cross section shows the closest agreement to the FST. Comparing the shear strain response along the suction side (s = 0.05 … 0.33) and

pressure side panels (s = 0.71 … 0.95), the deviations are larger on the suction side for the SCT concepts with cut cross section, ie, up to 50%

on the PS and up to 260% on the SS for the BJ-SCT concept.

4.2 Actuator response

The external loads F and M, as well as the displacement 𝛿 and the rotation angle 𝜃 were extracted from the SCT FE models (Table 1). The actuator

work W was determined using Equations 20 and 21.

FIGURE 8 Longitudinal strain A, and shear strain B, at the trailing edge along the blade span. The strains were post-processed on the pressure
side at s = 0.0 as shown in Figure 9A [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 9 Longitudinal strain on the blade surface for a lead-lag full-scale blade test (FST) and its replication by subcomponent test (SCT)
concepts A, and the relative deviation with respect to the lead-lag FST in B. The transverse strain is shown in C, and its relative deviation with
respect to the FST in D. The shear strain is shown in E, and its relative deviation with respect to the FST in F. The strain is determined at the
target cross section (24 m) at 100 % LTT test load with the analytical model (AM) and the finite element model (FEM) [Colour figure can be
viewed at wileyonlinelibrary.com]

The actuator work is normalized to a longitudinal strain level of 𝜀z = 1000 μm m-1 at the trailing edge. Note that the actuator work neglects

the compliance of any load-introducing structures such as load frames, beams, and adaptor plates.

The BJ-SCT concept is the most energy efficient concept using 32% of the energy required for a CF-SCT with the full cross section,

whereas the CF-SCT with a cut cross- ection requires 55% of the energy required by the CF-SCT with a full cross section. In general, the

CF-SCT concept requires more energy than the BJ-SCT since the bending stiffness contribution is larger in accordance with the parallel

axis theorem (Equation 6).

http://wileyonlinelibrary.com
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TABLE 1 Actuator work

SCT concept Work
𝟏𝟎𝟎𝟎 μm m-1 Rel. work

CF-SCT full 171 J 100%

CF-SCT 94 J 55%

BJ-SCT 55 J 32%

Abbreviations: BJ-SCT, ball joint subcom-
ponent test; CF-SCT, C-frame subcom-
ponent test; SCT, subcomponent test.

5 CONCLUSIONS

Analytical models for simulating the structural performance of two different SCT concepts were derived and verified against FE results. Their

predictions were found to be in good agreement with the numerical simulations. Thus, they can be implemented during a blade development

phase to determine the optimal boundary conditions of an SCT, while simultaneously reducing the design and simulation effort. All SCTs show

good agreement with the FST within a maximum deviation of 4% to 6% for the longitudinal strains. The maximum deviations of the transverse

strains are in the range from 20% to 120% and the shear strains from 50% to 270%. All concepts are able to replicate the displacement field along

the trailing edge and the out-of-plane deformation of the panels. The BJ-concept is in closer agreement with the FST because of the boundary

conditions imposed. In contrast, the nodal rotations along the trailing edge can only be emulated by the BJ-SCT. The C-frame concepts constrain

the rotational degree of freedom at the tip and root ends and therefore exhibit a discrepancy with respect to the FST. It is expected that the

wavy shape of the rotational response is influenced by the specimen length, which will be investigated further.

When the method of subcomponent testing is projected onto a fatigue-loading scenario, the energy consumption is important. Taking the

CF-SCT with full cross section to have an energy consumption of 100%, the cut cross section could potentially save 45%. Moreover, the lower

bending stiffness with the BJ-SCT means the energy consumption could potentially be further reduced by up to 68% compared with those of the

full cross section concepts. It should be noted that the deformation energy entering the load frames is not included and can increase the energy

consumption depending on the load frame design.
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