
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 03, 2019

Heavy metal exposure causes changes in the metabolic health-associated gut
microbiome and metabolites

Li, Xuanji; Brejnrod, Asker Daniel; Ernst, Madeleine; Rykær, Martin; Herschend, Jakob; Olsen, Nanna
Mee Coops; Dorrestein, Pieter C.; Rensing, Christopher; Sørensen, Søren Johannes
Published in:
Environment International

Link to article, DOI:
10.1016/j.envint.2019.02.048

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Li, X., Brejnrod, A. D., Ernst, M., Rykær, M., Herschend, J., Olsen, N. M. C., ... Sørensen, S. J. (2019). Heavy
metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites.
Environment International, 126, 454-467. https://doi.org/10.1016/j.envint.2019.02.048

https://doi.org/10.1016/j.envint.2019.02.048
http://orbit.dtu.dk/en/publications/heavy-metal-exposure-causes-changes-in-the-metabolic-healthassociated-gut-microbiome-and-metabolites(b02218d7-8c98-441e-b372-7269ff1ca1da).html


Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Heavy metal exposure causes changes in the metabolic health-associated gut
microbiome and metabolites

Xuanji Lia,1, Asker Daniel Brejnrodb,1, Madeleine Ernstc,d, Martin Rykære,f, Jakob Herschenda,
Nanna Mee Coops Olsena, Pieter C. Dorresteinc,d,g, Christopher Rensingh,⁎,
Søren Johannes Sørensena,⁎⁎

a Department of Biology, University of Copenhagen, Copenhagen, Denmark
bNovo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark
c Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States of
America
d Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, United States of America
eNovo Nordisk Foundation Center for Protein Research, Copenhagen University, Copenhagen, Denmark
fDepartment of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
g Center for Microbiome Innovation, University of California, San Diego, United States of America
h Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University,
Fuzhou, China

A R T I C L E I N F O

Handling Editor: Yong-Guan Zhu

Keywords:
Arsenic
Cadmium
T2DM
16S rRNA microbiome
LC-MS/MS metabolomics

A B S T R A C T

Background: Exposure to arsenic and cadmium is common. Epidemiological and animal studies have suggested
that exposure to these two heavy metals can cause metabolic health problems, including type 2 diabetes (T2DM).
It has been hypothesized that T2DM could be mediated through the gut microbiome and the metabolites it
produces. Although many studies have investigated the association between the gut microbiome and T2DM, few
have focused on the connection to arsenic and cadmium.
Results: We applied 16S rRNA gene amplicon sequencing and untargeted LC-MS/MS metabolomics to examine
the changes in the gut microbiome and metabolite profiles of exposed mice to relevant levels of cadmium and
arsenic in the drinking water over two weeks. Cadmium chloride (Cd) exposure significantly changed the mice
gut microbiome and resulted in a significantly lower microbial diversity whereas sodium arsenite (As) caused a
non-significant decrease in microbial diversity. For Cd and As treatment respectively, we identified 5 and 2 phyla
with significant changes and 42 and 24 genera. Bacterial genera that were observed to decline upon both
treatments, included several butyrate-producers. Both As and Cd treatment perturbed the metabolome sig-
nificantly, with 50 ppm Cd compound exposure having the greatest effect when compared to 50 ppm As com-
pound exposure. Two unidentified features were differentially abundant in the As group, while 33 features
changed in the Cd group. Differential abundance analysis of all bile acid associated molecular components
showed differences under both treatments. Finally, integrative network analysis via bipartite correlation net-
works suggested that several genera, including the metabolically important Blautia, Eisenbergiella,
Clostridium_XlVa, etc. declined in numbers of metabolite interactions.
Conclusions: These results demonstrated that As and Cd exposure caused significant changes to the gut micro-
biome and metabolome by affecting bile acids, amino acids and taxa associated with metabolic health.

1. Introduction

Diabetes mellitus is a worldwide metabolic syndrome, which is
characterized by fasting hyperglycemia, insulin secretory dysfunction

or insulin resistance (Kim et al., 2001). According to a report from the
International Diabetes Federation, the diabetic population now stands
at about 382 million (8.3% of adults) globally and is estimated to rise to
592 million people (10% of adults) by 2035 (Guariguata et al., 2014).
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Among the different types of diabetes, type 2 diabetes (T2DM) is the
most prevalent, accounting for 90–95% of all cases (Wild et al., 2004).
Traditional T2DM risk factors include age, obesity, lifestyle and, in
some rare instances, genetic predisposition (Jääskeläinen et al., 2013).
However, these factors seem insufficient to explain the mounting
worldwide T2DM epidemic. Some epidemiological studies have shown
that environmental chemicals may play an etiological role in the pro-
gression of T2DM (Jeon et al., 2015). As exposure has been linked to the
impairment of glucose metabolism (Jeon et al., 2015). Hundreds of
millions of people around the world live in regions where natural As
concentration in drinking water far exceeds the safety standard of
10 μg/L accepted by the World Health Organization and the U.S. En-
vironmental Protection Agency (EPA) (Chen et al., 2009; Hughes et al.,
2011). The occurrence of As contamination in soil and ground water
caused by human activities is also very common (Jeon et al., 2015).
Cadmium (Cd) is also known as a highly toxic heavy metal that poses
increasing risk to populations in many parts of the world (Diawara
et al., 2006; Edwards and Prozialeck, 2009). Studies suggest that low
but chronic levels of Cd exposure can impair the function of insulin-
producing β-cells and may be associated with T2DM (El Muayed et al.,
2012). Cigarette smoke and diet are among the main routes of Cd for
nonoccupational Cd exposure (Madeddu et al., 2009; El Muayed et al.,
2012). Despite high toxicity and easy accessibility, so far, only a
handful of studies mainly from epidemic and animal physiological re-
search provide proofs for the adverse effects of the two metals on
health.

Accumulating evidence from animal and human studies suggest that
alteration of the gut microbiome through dietary manipulation and the
presence of environmental pollutants may disturb physiological and
metabolic homeostasis, contributing in part to the development of
various diseases (Everard and Cani, 2013; He et al., 2015; Larsen et al.,
2010). As and Cd exposure have been reported to result in changes of
gut microbiota and metabolic profiles in some exploratory mice studies
(Liu et al., 2014; Lu et al., 2014), however T2DM was not the study
target. T2DM has also been reported to be closely associated with the
gut microbiome (He et al., 2015; Larsen et al., 2010; Qin et al., 2012).
For example, gram-negative bacteria in the gut have received much
attention for their role in the development of diabetes (Amar et al.,
2011; Cani et al., 2007). A major compound in the outer membrane of
gram-negative bacteria are lipopolysaccharides (LPS), which are potent
stimulators of the immune system causing inflammations and en-
dotoxemia (Nielsen et al., 2003). Consequently, the continuous LPS
production within the gut might trigger an inflammatory response and
further promote the development of diabetes. Furthermore, some spe-
cific groups of gram-negative bacteria have received more attention
recently, as they have been linked to gut microbiome dysbiosis. Ak-
kermansia muciniphila, an important intestinal mucus-degrading gram-
negative bacterium that accounts for densities of up to 3% of the total
number of bacteria in adult feces, was linked to diabetes and obesity
(Everard et al., 2013; Plovier et al., 2017). In this study, we specifically
focused on gram-negative bacteria by treatment with vancomycin to
enrich for this type of bacteria in a murine model. This treatment is
known to induce a dysbiotic state in both humans (Vrieze et al., 2014;
Zarrinpar et al., 2018) and mice (Hansen et al., 2012). The result of this
treatment impacts a wide range of metabolic outputs from the micro-
biome such as bile acids and short chain fatty acids. To observe the
effect of the intervention, control mice were also treated with vanco-
mycin. We used a combination of 16S rRNA gene sequencing and liquid
chromatography coupled to tandem mass spectrometry (LC-MS/MS)
based metabolomics to analyze the alterations in the murine gut mi-
crobiome and its metabolic profile induced by exposure to As and Cd.

2. Material and methods

2.1. Chemicals, animals, and experimental protocol

Five-week-old C57BL/6 mice were purchased from the China
National Laboratory Animal Resource Center. All the operations in the
animal experiment were followed by the 3R principle (Russell and
Burch, 1959). A total of 48 mice (body weight= 20 ± 3 g) were
housed in static microisolator cages (4 mice/cage) under environmental
conditions of 22 °C, 40–70% humidity, and a 12:12 h light:dark cycle.
Water and food was available ad libitum during the whole experiment.
Mice were treated with 500mg/L vancomycin in the drinking water for
one week after one-week initial adaption to cage-food and laboratory
conditions. Afterwards, the mice were randomly divided into 3 ex-
perimental groups containing 16 animals each (4 mice/cage). One
group, serving as a control drank water free of contaminants, and the
other two groups were separately treated with 50 ppm cadmium
chloride (Cd) (equals to 0.273mmol/L Cd2+) or 50 ppm sodium ar-
senite (As) (equals to 0.385mmol/L As3+) supplied in the drinking
water for 2 weeks. Mice were assessed every day for signs of diarrhea,
dehydration, mortality and deteriorating body conditions. Body weight,
food and water intake were assessed twice per week during the Cd/As
treatment. All mice were sacrificed after anesthetization with ether on
the last day of the treatment. Colon and caecum content were collected
and stored at −80 °C before use. During the experiment, three animals
in the As group died from fight trauma.

2.2. 16S rRNA gene sequencing and analysis

Genomic DNA was extracted from colonic content with the QIAamp
PowerFecal DNA Kit (Qiagen, Hilden, Germany) according to the
manufacturer's instruction. All operations were performed under
aseptic conditions. The NanoDrop spectrophotometer (Thermo
Scientific NanoDrop Products) was used to check DNA concentration
and a 1% agarose gel was used to test DNA quality. The 16S rRNA gene
hypervariable V3-V4 region was amplified with 1 μL template DNA
(10–50 ng/μL), using 12.5 μL KAPA HiFi HotStart Ready Mix (Anachem,
Dublin, Ireland), 0.25 μL 25 μM of each primer were PCR amplified
using 25 cycles with the primers Bakt_341F (CCTACGGGNGGCWGCAG)
and Bakt_805R (GACTACHVGGGTATCTAATCC) (Klindworth et al.,
2013) in a 25 μL PCR reaction volume. The first PCR program included
3min at 95 °C, 25 cycles of 30 s at 95 °C, 30 s at 55 °C, and 72 °C for 30 s,
and then 5min at 72 °C. In the second PCR, the sequencing primers and
adaptors were attached to the amplicon library following the first PCR
conditions with only 8 cycles. The size of the PCR product was eval-
uated using gel electrophoresis. The amplicon products were purified
by use of Agencourt AMPure XP Beads (Beckman Coulter Genomics,
MA, USA) and were quantified by densitometry using Quantity one
software (Bio-Rad, Hercules, CA, USA), then pooled in equimolar con-
centrations. The purification of DNA library was done by gel extraction
with the Qiagen gel extraction kit (Qiagen, Hilden, Germany). The
concentration and length distribution of DNA library was checked by
Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) and Qseq100
(BiOptic Inc., Taiwan, China). Sequencing of V4 region of bacterial 16S
rRNA genes was performed with Miseq PE300 platform as previously
described (Lu et al., 2015). The obtained paired-end raw data was as-
sembled by Flash (Magoč and Salzberg, 2011). Quality filtered, Length
trimming, Homopolymer truncation were processed by mothur (Schloss
et al., 2009). OTU clustering and Taxonomy classification was carried
out by UPARSE, v9.0.2132 (Edgar, 2013), sorting 1,937,439 reads into
662 OTUs at 97% sequence homology. The open source statistical
program “R” was used for data treatment and analysis (R Development
Core Team, 2011), predominantly the R-package “phyloseq”
(McMurdie and Holmes, 2013). Alpha diversity between the groups was
tested by analysis of variance, using the R function “aov”. UniFrac
distance (Lozupone and Knight, 2005), ordinated by principal
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coordinates analysis (PCoA, R function “ordination”, R-package “phy-
loseq”), was examined by permutational multivariate analysis (PERM-
ANOVA, R function “adonis”, R-package “vegan”) (Oksanen et al.,
2008). Identification of features differentially abundant between sam-
ples was performed by random forest classifier and differential ex-
pression analysis based on the Negative Binomial (a.k.a. Gamma-
Poisson) distribution (R function “differential_abundance” in R-package
“MicrobiomeSeq”, https://github.com/umerijaz/microbiomeSeq).
Mean decrease in accuracy (the decrease of accuracy due to the ex-
clusion of a specific feature) was used to evaluate the importance of the
feature.

2.3. Sample preparation and mass spectrometric analysis

Approximately 180mg fecal samples were suspended in water, a
subsample of each was mixed with acetonitrile to a final concentration
of 1% and acidified with formic acid to a final concentration of 0.5% to
counteract the buffer capacity of the samples. Samples were filtered on
3000 Da Amicon Spinfilters to remove debris. The samples were ana-
lyzed by liquid chromatography tandem mass spectrometry (LC-MS/
MS) and data was recorded in a data dependent manner, on a Q-
Exactive (Thermo Scientific, Bremen, Germany). An EASY nLC-1000
liquid chromatography system (Thermo scientific, Odense, Denmark)
was coupled to the mass spectrometer through a 2 cm C18 pre-column
(300 μm inner diameter, 1.9 μm particle size) and a self-packed 15 cm
C18 column (Pico Frit columns from New Objective) with a 75 μm inner
diameter, packed with (1.9 μm C18 Dr. Maisch Mat. No. r119.a).
Metabolites were eluted with a mobile phase consisting of solvent A
(0.1% formic acid) and B (80% acetonitrile in 0.1% formic acid). The
concentration of solvent B was linearly increased from 2 to 10% over
3min and from 10 to 95% solution B over 15min. Solvent B was
maintained at 95% for 2min. Full scans were acquired in the Orbitrap
with a resolution of 70,000, maximum injection time of 20ms and a
scan range of 80–1200 m/z using a Top 10 method with an isolation
window of 1.6 Da and a dynamic exclusion time of 15 s. For the MS/MS
scans the resolution was adjusted to 17,500 and maximum injection
time of 60ms. Ions were fragmented with a normalised collision energy
(NCE) of 30%.

2.4. Metabolomics processing and analysis

LC-MS/MS raw data files were converted to .mzXML using mscon-
vert from ProteoWizard (v. 3.0) and preprocessed using MZmine 2.3
(Pluskal et al., 2010) with parameters set to Peak detection, Mass de-
tection, Mass detector: Centroid, MS1 noise level 2.0E5, MS2 noise level
100; Chromatogram builder: MS1 level, Min time span (min) 0.01, Min
height 6.0E5, m/z tolerance 0.01 Da or 10 ppm; Chromatogram de-
convolution: Algorithm Local minimum search, Chromatographic
threshold 90%, Search minimum in RT range (min) 0.01, Minimum
relative height 10%, Minimum absolute height 1000, Min ratio of peak
top/edge 1.3, Peak duration range (min) 0.01–10.00, m/z range for
MS2 scan pairing (Da) Off, RT range for MS2 scan pairing (min) Off;
Isotopic peak grouper: m/z tolerance 0.01 Da or 10 ppm, Retention time
tolerance 0.5 (min), Maximum charge 4, Representative isotopes Most
intense; Feature alignment: m/z tolerance 0.01 Da or 10 ppm, Weight
for m/z 75, Retention time tolerance 0.5, Weight for RT 25; Gap filling:
Intensity tolerance 10%, m/z tolerance 0.01 m/z or 10 ppm, Retention
time tolerance 0.5 (min), RT correction Off. Mass spectral molecular
networks (Watrous et al., 2012) were created by uploading the MZmine
preprocessed .mgf file to the Global Natural Products Social Molecular
Newtorking platform (GNPS) (Wang et al., 2016) with parameters de-
scribed at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
806fa2cdc63b41f59b17b59e2a5da0ee.

Before statistical analysis, features not found in a minimum of 20
samples were filtered out, reducing dimensions from 8562 to 2130.
Upon visual inspection of a PCA plot of all samples, Sample36 (Cd

group) were discarded as an outlier. The best performing univariate
statistical test were determined using the R-package “DAtest” (https://
github.com/Russel88/DAtest) with default settings. The t-test per-
formed the best in terms of controlling the false positive rate at 0.05,
while having the best ROC of the methods tested. The tests were then
performed using the R function “DAtest.tte”, and evaluated by the FDR
corrected p-values, with 0.05 deemed significant. PCA analysis was
done using the R function “prcomp” on square root transformed fea-
tures. Multivariate hypothesis testing was performed using the R
function “adonis” in R-package “vegan” (2.4-4) (Oksanen et al., 2016)
with the Euclidian distances of square root transformed features.

To putatively identify molecular features, we used both GNPS li-
brary matching as well as in silico structure annotation by the Network
Annotation Propagation (NAP) tool (da Silva et al., 2018). Due to the
aforementioned interest in bile acids, we submitted a user provided
database to NAP. This database was compiled by downloading all me-
tabolites in the “Bile acids and derivatives [ST04]” category of LIPID-
MAPS and is publically accessible at Additional file C. NAP parameters
are described and can be accessed at: https://proteomics2.ucsd.edu/
ProteoSAFe/status.jsp?task=a1c0ebb9ec2943ddbf0ff242c622f35e

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
4844738f1edb4c4d9a836abdc9cd5820

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
232cf5a822864a31aeb0603b957c11c2

2.5. Concordance analysis

Correlations between OTUs and metabolites were calculated using
the R function “protest” in the R-package “vegan” (2.4-4) (Oksanen
et al., 2016).

2.6. Integrative network analysis

Integrative network analyses were performed in R. Pearson corre-
lations were calculated for a bipartite network of OTUs and metabolites
using a Fisher transformation, and correlations at the 0.05 FDR level
were included (Kolaczyk et al., 2014). Both OTU and metabolite tables
were pruned for near zero variance features, using the NearZeroVar-
iance function from the “caret” package (Kuhn, 2008). Networks were
managed and visualized in the R-package “igraph” (1.2-2) (Csardi,
2015). Differential networks were calculated using fishers transforma-
tion of correlation coeffecients as shown in the R-package “Diffcorr”
(Fukushima, 2013). Briefly, a network of Pearson correlations was
calculated for each condition (control, As and Cd treatment), where
links were defined by significant correlations after FDR adjustment. The
difference in correlations (r) between samples A and B are then calcu-
lated by transforming each coefficient into a Z-score (Z) by

= ∗
+

−( )Z 0.5 logA
r A
r A

1 _
1 _ And calculate the differential score as

=
−

+
− −

Z Z Z B_A

nA nA
1

3
1

3

, p-values were calculated assuming a normal dis-

tribution. Taxa enriched in differential links were identified by per-
muting the taxa label 100 times and performing a one-sided evaluation.
Adjustment for permutation p-value misestimation was applied
(Phipson and Smyth, 2010). To further avoid false positives all taxa
with prevalence lower than 1/3 presence in the condition were set to 0.

3. Results

3.1. Sequencing summary and phenotype assessment

The experimental workflow combining 16S rRNA gene sequencing
and metabolite profiling to test the impact of As and Cd exposure on the
gut microbiome and its metabolism, is shown in Fig. 1. The V3-V4 re-
gion of 16S rRNA gene amplicons from fecal samples from a total 31
subjects (control group (n=13), As group (n=7), Cd group (n=11))
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(14 samples missing because of no amplification) were sequenced using
the Miseq PE300 platform. The average sequencing depth obtained for
the 31 subjects was 142,807 reads per sample, which was reduced to
62,498 (SD=24,455) high quality sequences after QC. Body weight,
food and water consumption during the experiment for all the groups
did not differ significantly, as shown by Wilcoxon Rank Sum test (see
Tables S1 and S2).

3.2. Exposure to cadmium significantly altered the gut microbial diversity

In order to investigate the changes in gut microbial community
triggered by the different treatments, we compared the microbial di-
versity of the different treatment groups. As shown in Fig. 2A, we found
that both treatments caused a decrease in diversity of the gut micro-
biome, but only to a significant degree in the Cd treated mice
(p=0.028). A clear distinction was also observed between the

microbial communities of the control group and the Cd group, as shown
in the PCoA plot (Fig. 2B). The control and treated mice were sig-
nificantly separated, with 42.6% and 22% variation explained by
principle component PC1 and PC2, respectively. The Cd treatment ex-
plained 25% of the variance (p=0.003), while the As treatment ex-
plained 2% of the variance (p=0.8). No significant differences in mi-
crobial diversity were observed between the As group and the control
group (Fig. 2B).

3.3. Heavy metals induced significant changes in the gut microbiome

The four major phyla composing the microbial community are listed
in Fig. 3A. The phylum Verrucomicrobia mostly composed of the genus
Akkermansia, was the second most abundant phylum, verifying the
enrichment effect of vancomycin on gram-negative bacteria.

A random forest classifier approach was used to explore the specific

week 1 week 2 week 3 week 4

H�O

H2O+50ppm As3+

16S rRNA gene sequencing

Colonic content

Caecal content

Metabolomics

antibiotic treatment different treatmentacclimatization

Control group

Cd group

As group

H2O+50ppm Cd2+

H2O+ 500 mg/L Vancomycin

Euthanasia

Fig. 1. Flow chart of this study. A total of 48 mice were included in this study. Water and food was available ad libitum during the whole experimental period. Mice
were treated with 500mg/L vancomycin in the drinking water during the second week after the initial adaption to cage-food and laboratory conditions during the
first week. Then, the mice were randomly divided into 3 experimental groups. One group, serving as the control drank water free of contaminants, and the other two
groups were separately treated with 50 ppm CdCl2 or 50 ppm NaAsO2 supplied in the drinking water for two weeks. All mice were euthanized after anesthetization
with ether on the last day of the treatment. Colon and caecum contents were collected for 16S rRNA gene sequencing and metabolomics respectively.
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changes in the gut microbiome caused by the different treatments. Two
phyla in the As group and five phyla in the Cd group were differentially
abundant compared to the control group (Fig. 3B and C). In both
groups, Bacteroidetes rank first in importance by the random forest
classifier analysis. The abundance of Bacteroidetes was significantly
higher in the control group as compared to both As (p=0.002**) and
Cd (p=1.6e-16***). Proteobacteria in the Cd group and Tenericutes in
the As group were less abundant than in the control group (p=2.03e-
06*** and p=0.006** respectively). In addition, the abundance of
Deferribacteres, Cynaobacteria and Candidatus_Saccharibacteria in the Cd

group showed significant differences from the control group. Further
information about these significantly changed phyla has been listed in
Tables S3 and S4. Fold changes for all phyla in both groups are shown
in Fig. S1. At the genus level, 24 genera in the As group and 42 genera
in the Cd group were differentially abundant as compared to the control
group (Figs. 4 and 5), with 15 and 24 being downregulated respectively
(Tables S3 and S4). Most of the significantly changed genera belonged
to the phyla Firmicutes, Bacteriodetes and Proteobacteria (Figs. 4 and 5).
Specifically the Clostridiales order within the Firmicutes phylum ac-
counted for 14 of the 24 different genera in the As group and 24 of the
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42 different genera in the Cd group. Further, 9 of the downregulated
genera (Clostridium_XlVb, Syntrophococcus, Cellulosilyticum, Blautia,
Anaeroplasma, Gemmiger, Anaerovibrio, Intestinimonas, Parasutterella)
and 2 of the upregulated genera in both groups (Alistipes and Alkali-
talea) showed overlap between the As and Cd groups. Additional in-
formation for the significantly changed genera has been listed in Tables
S3 and S4. Fold changes for all the genera in both groups have been
shown in Fig. S2.

Due to the vancomycin treatment, which resulted in accumulation
of gram-negative gut bacteria, Akkermansia was the most abundant
genus in both groups (Fig. S3). Despite detected high sensitivity to As
and Cd in vitro (Fig. S4), only the As group showed a decrease in
abundance of Akkermansia (1.8 fold) whereas the Cd treatment showed
a surprising 1.25 fold increase.

As_group
C

ontrol

-3

Clostridium_XlVb padj = 1.791e−05

Fastidiosipila padj = 0.0041229

Alistipes padj = 0.045492

Blautia padj = 0.00077698

Chryseobacterium padj = 0.0015325

Pelotomaculum padj = 0.019514

Anaeroplasma padj = 0.0014322

Anaerovorax padj = 0.037937

Acetivibrio padj = 0.023689

Oribacterium padj = 0.0071935

Escherichia.Shigella padj = 0.047169

Gemmiger padj = 0.037937

Butyricicoccus padj = 0.014551

Parasutterella padj = 0.023689

Syntrophococcus padj = 0.049792

Fusicatenibacter padj = 0.00023642

Alkalitalea padj = 1.2278e−07

Cellulosilyticum padj = 0.0071935

Geosporobacter padj = 0.004896

Anaerovibrio padj = 0.0013259

Intestinimonas padj = 0.0037542

Bosea padj = 0.023689

Curvibacter padj = 0.00035434

Anoxybacillus padj = 0.023145

Log-relative abundance Mean Decrease in AccuracyGenera with significant changes
-6-9-12 0 5 10

1

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Family

Lachnospiraceae

Rikenellaceae

Ruminococcaceae

Order

Closteridales

Phylum

Firmicutes

 BacteroidiaMarinilabiliaceae

Bacteroidales

Clostridiaceae_4

Flavobacteriaceae Flavobacteriales

Peptococcaceae_2

Anaeroplasmatales

Enterobacteriales

Veillonellaceae Selenomonadales

Bradyrhizobiaceae Rhizobiales

Comamonadaceae Burkholderiales

Sutterellaceae Burkholderiales

Bacillaceae_1 Bacillales

3

2

Bacteroidales

Tenericutes

 Proteobacteria

Clostridiales_Incertae_Sedis_XIII

Enterobacteriaceae

Anaeroplasmataceae

a b c d

Fig. 4. Significantly differentially abundant genera between As and control group: a. The log relative normalised abundances for the treatment groups. b. The genera
description and corresponding adjusted p-value. The arrows inside the second section of the plot indicate the upregulation (blue arrow) or downregulation (red
arrow) of the corresponding genus abundance (As vs Control). c. The importance of a corresponding feature based on mean decrease accuracy and on right of which
the ranks are indicated. d. The taxa information of the corresponding genus. (For interpretation of the references to colour in this figure legend, the reader is referred
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3.4. Heavy metals induced global changes in the gut metabolome

Metabolomic profiles of the fecal contents were generated using
liquid chromatography coupled to tandem mass spectrometry (LC–MS/
MS), including16 control samples, 13 As group samples and 15 Cd
group samples. Mass spectral molecular networks (Watrous et al., 2012)
were created using the online Global Natural Products Social Molecular
Networking platform (GNPS) (Wang et al., 2016). Processing of spectra
resulted in 26,978 features for all the samples. Rarefaction curves of

feature richness showed little difference between the As and control
groups, but there were fewer observed features in the Cd group (Fig. S5-
A). Multivariate differences between treatment and control were as-
sessed using PERMANOVA and PCA. The As treatment explained 5.1%
of the variance in the metabolome (p=0.0456*), while the Cd treat-
ment explained 7% of the variance (p < 0.001***). PCA analysis
(Fig. 6) visually separated the different groups. Both treatments in-
duced the presence of features not found in the controls. Cd treatment
showed 111 uniquely present features while As treatment showed 11.
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Closer inspection of the molecular network showed that many unique
features from the As treatment were associated with bile acid molecular
families (Fig. 7A). The recorded m/z values of the nodes within each
network was quite homogenous, providing additional evidence for the
molecular relatedness.

To identify differentially abundant features, a t-test was performed
for every feature in each group and p-values were corrected for multiple
hypothesis testing. This resulted in 2 and 33 features identified as sig-
nificantly different in the As and Cd group, respectively (Table S5 and
Fig. S5-B). Neither of the two As features could be identified based on
MS2 fragmentation spectra. Several differentially abundant features in
the Cd exposure group were putatively identified through a GNPS li-
brary search. Among these were several amino acids such as valine,
aspartic acid, methionine, and tyrosine, as well as the non-standard
amino acid norleucine. Finally one feature matched to alpha-Cyano-4-

hydroxycinnamic acid, and manual inspection of the spectra confirmed
this. The latter being strongly decreased in the treated mice with a log
fold change of −15.

3.5. Heavy metals induced changes in the bile acid fraction of the
metabolome

Due to the bile acids associated molecular networks unique to As
treatment, we putatively annotated the bile acid fraction of the fecal
metabolome using in silico structure annotation through the recently
available Network Annotation Propagation algorithm (NAP). All me-
tabolites in the “Bile acids and derivatives [ST04]” category of LIPID-
MAPS were downloaded and fragmented in silico to compare with the
acquired fragmentation spectra. This identified 633 features as bile acid
related. In the previously constructed molecular network they were
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distributed in 181 different molecular families (two or more connected
molecular signatures). Aggregating the intensities of these components,
we created a boxplot to show differentially abundant (DA) molecular
families of putative bile acid molecules in the As group (Fig. 7B). We
identified 6 DA molecular families in the As treatment and 2 DA mo-
lecular families in the Cd treatment. The intensities of 5 DA bile acid
molecular families in the As group elevated but one DA bile acid mo-
lecular family decreased.

3.6. Bipartite interaction network identified bacteria-metabolite interactions
in Cd associated bacteria

We examined the concordance between metabolite and microbiome
data by Procrustes correlation which was significant (protest, correla-
tion=0.65, p=0.006), suggesting that a fraction of the fecal meta-
bolites are substrates or products of the microbiome.

To further investigate how this connection might change upon
heavy metal treatment, bipartite correlation networks were created
from the paired microbiome-metabolome tables. This resulted in three
networks (not listed), of which the control treatment had the fewest
interactions and the Cd treatment had by far the most interactions,
despite the Cd-treated mice metabolomes having the fewest detected
features. To identify the effects of the treatment on these networks,
differential networks in which the difference in correlations between
control and treatment were calculated. At the same time, a permutation
test was applied to compare the number of changed links to the null
hypothesis of random changes to identify genera with potential
changed metabolic output. Correspondingly, we identified a number of
significant metabolite interactions within each genera from these net-
works.

Several genera with significant changes in the number of metabolite
interactions were identified. We found 7 genera which presented sig-
nificant changes to their differential networks in the Cd treatment and 3
under the As treatment. Clostridium_XlVa had a large amount of changes
in both treatments. All differential correlation networks are presented
in Fig. 8. While the genera had overall significantly different interaction
patterns, there were clear within-genus differences at the OTU level.
Fig. 8 illustrates Blautia metabolic interaction changes, while OTU_7
primarily increased interactions, OTU_356 clearly decreased its inter-
action strengths with many metabolites. In other cases such as Ei-
senbergiella, several OTUs regulated their interaction with several me-
tabolites in both treatments, suggesting a shared response to the
treatment. The differential network for the two Anaerostipes OTUs
under cadmium treatment is entirely disconnected.

4. Discussion

The current experiment was set up to connect the associations from
the epidemiology literature concerning induction of type II diabetes
with the observations from the microbiome literature, and hopefully
narrow the role of the metabolome. In this study we hypothesized that
Cd and As treatment would change the gut microbiome in mice. The
hypothesis was tested using a combination of 16S rRNA gene sequen-
cing and liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) metabolomics. This was done on three groups of mice
which were administered either cadmium chloride or sodium arsenite
in their drinking water after treatment with vancomycin. We demon-
strated that the exposure to toxic metals such as Cd and As resulted in
different gut microbiomes and metabolomic profiles in mice. In the
present study, we added the same dose of 50 ppm CdCl2 and NaAsO2 in
the drinking water of treated mice. 50 ppm CdCl2 and NaAsO2 contain
0.273mmol/L Cd2+ and 0.385mmol/L As3+, respectively. During Cd/
As exposure period, the volume of drinking water for the three ex-
perimental groups did not show significant differences (Wilcox test,
p > 0.05), hence mice in the Cd group ingested less molarity of Cd2+

than mice in the As group within 2 weeks. Even so, overall, the changes

in composition of the gut microbiome and metabolome perturbation
were qualitatively and quantitatively greater in mice exposed to Cd
than in the mice exposed to As. The effect size (R-squared value) of the
PERMANOVA test suggested that the impact of Cd treatment was larger
on the gut microbiome and metabolome. Accordingly, 24 genera were
detected to be differentially abundant after the As exposure while 42
genera were significantly different in abundance in Cd treated mice.
Furthermore, 33 metabolic features were found to be significantly dif-
ferentially abundant after Cd treatment, and only two in the As group.
We speculate this is likely due to the differences in detoxification me-
chanisms of the host to the two compounds, ultimately reflected in the
feces metabolome. Under the long-term exposure, Cd ion is more dif-
ficult to be cleared in vivo due to high stability and the lack of sound
detoxification mechanism. In contrast, As is cleared from the body by
methylation to its mono or di-methylated forms and 70% of this water-
soluble form can be transported and excreted in the urine (Keil et al.,
2011). In addition, the biological half-life of inorganic arsenic is about
4 days (NRC, 1999). However, Cadmium is bound to albumin and
transported to the liver, bound to metallothioneins and finally trans-
ported to the kidney where its halflife could be decades (Suwazono
et al., 2009). The Cd accumulation the kidney from Cd exposure likely
mediates the downstream effects of the fecal metabolome more than
acute exposure of the microbiome to bioavailable Cd.

Lu et al. previously conducted a more general intervention study
with As (Lu et al., 2014), but we did not find much overlap between
results. The present study was focused primarily on gram-negative
bacteria with a pre-intervention vancomycin treatment. While this in-
duces a dysbiotic microbiome it nevertheless allows highlighting the
gram-negative fraction hypothesized to be relevant for the ethiology of
T2DM. Yet, there were still some overlapping findings for taxa in
Clostridiales, but overall this strategy did not induce a difference in the
microbiome as reflected by multivariate analysis. Similarly there was a
small overlap in the metabolome, and more fatty acids were detected in
Lu et al., possibly due to methanol extraction rather than water as in the
present study.

The tendency of significantly decreased microbial diversity in the
Cd group and reduced microbial diversity in the As group observed in
this study (Fig. 2), indicated that the response to toxic metals pose an
adverse challenge to many gut bacteria. The relative abundances of
Bacteroidetes in the Cd and As groups were significantly higher com-
pared to the control group (Fig. 3), and the relative abundance of
Proteobacteria in the Cd group was significantly lower. The trends re-
garding change in abundance for these two phyla are supported by
current studies relevant to Cd (Breton et al., 2013; Liu et al., 2014;
Zhang et al., 2015). At the genus level, bacterial groups that were
significantly different in the As and Cd group compared to the control
group included 24 and 42 genera, respectively (Figs. 4 and 5), of which
9 and 8 genera were positively correlated to As and Cd exposure, re-
spectively. Among these upregulated genera, the importance of Barne-
siella, Alistipes, Alkalitalea, Prevotella ranked at the top and especially
Alistipes and Alkalitalea were found in both groups. Literature is very
limited on the association of Alkalitalea and T2DM, but the change in
Alkalitalea abundances, a 53-fold decrease in the As group and a 137-
fold decrease in the Cd group, is noteworthy. Barnesiella and Alistipes
were previously shown to be reduced after treatment for T2DM (Hansen
et al., 2012; Xu et al., 2015). Further, a decrease in Parabacteroide and
Prevotella were reported after probiotic yeast treatment (Yu et al., 2017)
and therefore seemingly associated with T2DM (Wu et al., 2010; Xu
et al., 2015), which supports our results. Certain strains within the
other upregulated genus Chryseobacterium have been reported as rare
pathogens in humans and had also been found in diabetic children
(Cascio et al., 2005). Among the genera negatively correlated to As and
Cd exposure, the sulphate-reducing bacteria (SRB) Desulfovibrio were
identified as the most important genus in the Cd group by Random
forest classifier. New research has showed that SRB was accompanied
by enhanced glucagon-like peptide 1 and insulin secretion, which
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further improved oral glucose tolerance and reduced food consumption
(Pichette et al., 2017). We also found that a series of genera belonging
to the butyrate-producing superfamily Lachnospiraceae within the order
Clostridiales that were downregulated in both groups, which included
Fusicatenibacter, Eisenbergiella, Syntrophococcus, Blautia, Clos-
tridium_XIVb, Cellulosilyticum, Oribacterium, Coprococcu, Anaerostipes,
Hespellia, Cellulosilyticum and Lachnospiracea_incertae_sedis. Besides, the
relative abundances of some genera belonging to family Erysipelo-
trichaceae, which is distantly related to Lachnospiraceae, Clos-
tridium_XVIII, Kandleria and Erysipelotrichaceae_incertae_sedis, were de-
creased in the treatment group. Butyrate produced by gut bacteria is a
major energy source for the colonic epithelium (Roediger, 1980) and
could improve insulin sensitivity and increase energy expenditure (Gao
et al., 2010). Besides, genera within butyrate-producing families, the
other downregulated genera shared by the As and Cd groups, such as
Parasutterella and Gemmiger, have also been associated with alleviation
of T2DM (Xu et al., 2015).

Akkermansia was not as sensitive to Cd and As in vivo as in in vitro
experiments. Although the relative abundance of Akkermansia was
higher in the Cd group and lower in the As group, the changes were not
substantial and not statistically significant. We assumed that the in-
testinal microbial consortia tend to be cooperative (Bäckhed et al.,
2005) and this could further weaken the adverse effects from exogenous
metals on a single species, which may explain the different results in
vivo and in vitro. Some bacteria with probiotic properties such as Fae-
calibacterium and Bifidobacterium which have displayed beneficial ef-
fects on glucose metabolism in humans (Cani et al., 2009; Hill et al.,
2014; Miquel et al., 2014) were also detected in our study. In ac-
cordance with these outcomes, both Faecalibacterium and Bifido-
bacterium decreased slightly in the Cd and As groups.

Despite large improvements in LC-MS/MS library searching tech-
nology and expansion of the libraries, identifying features is still not
perfect, and overall in this study we could identify 3770 library hits out
of 26,978 features (13.9%) using the GNPS platform. Previous sum-
maries on the studies of metabolomics have estimated an average of 2%
identification rates of features (Aksenov et al., 2017). One advantage of
using the GNPS platform is that the data is continuously being updated
with improved annotations (Wang et al., 2016). Of the differentially
abundant features identified from the Cd group, several of them could
be annotated as amino acids through library matching. It is well-es-
tablished by serum metabolomics that the concentrations of amino
acids change in T2DM subjects. This applies to amino acids in general
(Guasch-Ferré et al., 2016), but branched chain amino acids (BCAAs)
have, in particular, been associated with insulin resistance, and the
microbiome has been demonstrated to contribute to the increased
concentrations of amino acids in serum (Pedersen et al., 2016). At
present, the causal path to insulin resistance remains unclear with
Mendelian randomization studies suggesting that insulin resistance
preceded increased BCAA levels (Mahendran et al., 2017). However,
this accounts only for the variation caused by genetics. Additionally, it
is unclear how amino acid levels in feces translate to amino acid levels
in serum. A previous study observed that the main site of murine amino
acid metabolism was higher in the gastro-intestinal tract, peaking in the
jejunum (Heinzmann and Schmitt-Kopplin, 2015), possibly blurring the
observations of caecal amino acids.

There are a limited number of feces metabolomic studies in T2DM
but high-fat diet fed mice are known to have higher levels of tyrosine in
fecal metabolomic phenotyping using an untargeted NMR investigation
(Lin et al., 2016), which are consistent with our observations in the
present study. In addition, in the present study, the abundance of 4-
hydroxycinnamic acid which is an intermediate of several pathways,
including the degradation of tyrosine deceased significantly by 15 fold
in the Cd group. Tyrosine in blood has previously been identified as
increasing the T2DM risk in a meta-analysis of 8000 metabolomic
samples (Guasch-Ferré et al., 2016). In the present study, there was an
increase in valine abundance after Cd exposure. Serum valine in

humans has been linked to the visceral deposition of fat which has
strongly been suggested to drive insulin resistance (Lebovitz and
Banerji, 2005; Schlecht et al., 2017). Previous studies on insulin re-
sistant rats using NMR showed consistent longitudinal increases in
isovalerate (Yang et al., 2015), a degradation product of valine (Zarling
and Ruchim, 1987). A metabolomics study of beta-cell function in in-
sulin secretion had previously identified intracellular norleucine levels
as statistically associated with insulin secretion (Huang and Joseph,
2014). However, connecting this finding to the fecal content would
require a further investigation of the norleucine homeostasis.

We specifically chose to focus on the fraction of the metabolome
that could be assigned to bile acids, as changes in this fraction has
previously been associated with metabolic problems in humans.
Additionally, it had been shown that microbes can actively manipulate
this fraction of the metabolome by making an array of chemical mod-
ifications that alter the potency of the impact of a bile acid. Bile acid
concentrations have been correlated with the microbiome in germ free
mice (Claus et al., 2008) and shown implications in obesity in feeding
studies (Lin et al., 2016; Walker et al., 2014). Our results displayed a
change in features of the bile acid fraction of the metabolome. These
findings should be followed up with more targeted metabolomics to
identify the exact molecular identities of the bile acids.

We built the integrative networks to identify exactly which OTUs
had altered interactions with the metabolites, as it has been hypothe-
sized that deteriorating metabolic health is mediated through micro-
biome interaction with the metabolites, either through production or
through consumption. We demonstrated that certain genera seem to
have enriched or lowered metabolic interactions. This is particular
noteworthy for the genera, Blautia, which had also been highlighted in
previous literature for their metabolic capabilities, that showed a large
number of interactions in the control network, but had a decreased
number of interactions in both treatments. Similarly, Anaerostipes spe-
cies had been shown to aggravate DSS induced colitis, presumably
through its metabolic output (Zhang et al., 2016). These genera have
been implicated in several types of metabolically related human health
issues, presumably because of their butyrate producing capacity. In
addition, the relative recently isolated genus Eisenbergiella displayed
significant interactions after both treatments. The interaction networks
at the OTU level made it clear that there were finer scales of interac-
tions, with certain OTUs losing many interactions and some showing no
difference under treatment conditions. This will be a starting point for a
more targeted investigation at the species/strain level and for the me-
tabolites that could reveal the exact interactions.

5. Conclusion

We have conducted an exploratory feeding study in mice to in-
vestigate the impact of heavy metals mainly on the fecal gram-negative
bacteria enriched by Vancomycin and its metabolome to validate the
hypothesis generated from epidemiology and cell culture studies that
heavy metals can impact host metabolic health. Heavy metals do indeed
impact both microbiome and metabolome, without substantially af-
fecting the phenotypes of the mice. Cadmium exposure significantly
changed the mice gut microbiome as well as resulting in a significantly
lower microbial diversity in the gut. Arsenic exposure resulted in a
lower microbial diversity, although not significant. By using untargeted
technologies for observing microbiome and metabolites, we observed
several metabolically health related microbes differentially abundant in
the As and Cd treatment groups. When examining the metabolites we
could see an impact of both Cd and As treatment on both amino acids
and bile acids. Further studies must elucidate how these results relate to
the serum metabolome and ultimately impact human health. Finally,
we studied microbiome-metabolite interactions based on the assump-
tion that the health impact of the microbiome is mediated by their
metabolites. We demonstrated substantial changes for genera that have
previously been implicated in disease outcomes specifically because of
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their metabolites. More research is needed to clarify the exact nature of
these metabolites and their impact.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.envint.2019.02.048.
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