
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: May 03, 2019

Aledb 1.0: A database of mutations from adaptive laboratory evolution experimentation

Phaneuf, Patrick V.; Gosting, Dennis; Palsson, Bernhard O.; Feist, Adam M.

Published in:
Nucleic acids research

Link to article, DOI:
10.1093/nar/gky983

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Phaneuf, P. V., Gosting, D., Palsson, B. O., & Feist, A. M. (2019). Aledb 1.0: A database of mutations from
adaptive laboratory evolution experimentation. Nucleic acids research, 47(D1), D1164-D1171. [gky983].
https://doi.org/10.1093/nar/gky983

https://doi.org/10.1093/nar/gky983
http://orbit.dtu.dk/en/publications/aledb-10-a-database-of-mutations-from-adaptive-laboratory-evolution-experimentation(9a4d93a8-e469-4a2e-9e99-94401c2f4639).html


D1164–D1171 Nucleic Acids Research, 2019, Vol. 47, Database issue Published online 24 October 2018
doi: 10.1093/nar/gky983

ALEdb 1.0: a database of mutations from adaptive
laboratory evolution experimentation
Patrick V. Phaneuf 1, Dennis Gosting2, Bernhard O. Palsson 1,2,3,4 and Adam M. Feist2,4,*

1Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA,
2Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA, 3Department of
Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA and 4Novo Nordisk
Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs.
Lyngby, Denmark

Received June 12, 2018; Revised September 20, 2018; Editorial Decision September 28, 2018; Accepted October 08, 2018

ABSTRACT

Adaptive Laboratory Evolution (ALE) has emerged
as an experimental approach to discover causal mu-
tations that confer desired phenotypic functions.
ALE not only represents a controllable experimen-
tal approach to systematically discover genotype-
phenotype relationships, but also allows for the rev-
elation of the series of genetic alterations required
to acquire the new phenotype. Numerous ALE stud-
ies have been published, providing a strong impetus
for developing databases to warehouse experimen-
tal evolution information and make it retrievable for
large-scale analysis. Here, the first step towards es-
tablishing this resource is presented: ALEdb (http:
//aledb.org). This initial release contains over 11 000
mutations that have been discovered from eleven
ALE publications. ALEdb (i) is a web-based platform
that comprehensively reports on ALE acquired mu-
tations and their conditions, (ii) reports key muta-
tions using previously established trends, (iii) en-
ables a search-driven workflow to enhance user mu-
tation functional analysis through mutation cross-
reference, (iv) allows exporting of mutation query re-
sults for custom analysis, (v) includes a bibliome de-
scribing the databased experiment publications and
(vi) contains experimental evolution mutations from
multiple model organisms. Thus, ALEdb is an infor-
mative platform which will become increasingly re-
vealing as the number of reported ALE experiments
and identified mutations continue to expand.

INTRODUCTION

Adaptive Laboratory Evolution (ALE) is a tool for the
study of microbial adaptation. The typical execution of
an ALE experiment involves cultivating a population of

microorganisms in defined conditions (i.e., in a labora-
tory) for a period of time that enables the selection of im-
proved phenotypes. Standard model organisms, such as Es-
cherichia coli, have proven well suited for ALE studies due
to their ease of cultivation and storage, fast reproduction,
well known genomes, and clear traceability of mutational
events (1). With the advent of accessible whole genome re-
sequencing, associations can be made between selected phe-
notypes and genotypic mutations (2).

Beginning with a starting strain, an ALE experiment can
be executed by serially passing a selected culture to a fresh
flask of media (Figure 1A), enabling the strain passed to
continue acquiring mutations under the experimental con-
ditions without dilution of resources. Strains propagated
during ALEs are assumed to be those that outcompeted
their competition due to adaptive mutations. Additional
methods to perform experimental evolutions have been re-
viewed (2,3). Whole genome comparative sequencing, or
resequencing, is used to identify mutations within evolved
strains relative to the evolution’s starting strain (Figure 1B).
ALE experiments can additionally involve replicate evolu-
tions: identical evolutions that are often executed in paral-
lel. Replicate ALEs can reveal the dynamics of adaptation
by enabling research into converging genotypes within an
experiment (4).

ALE methods have become important scientific tools in
the study of evolutionary phenomena and have contributed
to research in basic discovery and applied fields. Evolution-
ary biologists seek to examine the dynamics and repeatabil-
ity of evolution and to better understand the relationship
between genotypic and phenotypic changes (5). ALE meth-
ods, along with the plummeting cost of sequencing, have
greatly enabled their efforts, resulting in a variety of insights
into adaptive evolution. ALE has often demonstrated that
(i) increases in fitness diminish with each new adaptive mu-
tation (6), (ii) genotypic convergence through mutations can
occur on the level of functional complexes (7) and (iii) in-
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Figure 1. (A) An illustration of an ALE experiment where both a clonal and population sample are isolated from an intermediate (i.e., midpoint) flask.
The Petri dish represents the streaking methodology for isolating a clonal colony from a population. (B) An illustration of how the resequencing process
leverages a reference genome sequence and DNA-seq reads to identify mutations in an ALE sample.

teractions between mutations may cause nonlinear fitness
effects (8).

ALE methods have also been leveraged in applications
of synthetic biology to engineer microbes for commod-
ity, industrial, and biopharmaceutical chemical synthesis
(2). Comprehensive whole genome rational design is rarely
achievable due to the complexity of biological systems
(4,9). The inability to provide for comprehensive solutions
in genome engineering can result in strains which cannot
maintain homeostasis, such as strains which cannot tolerate
the concentrations of products they were designed to pro-
duce. ALE has been used to produce adaptive mutations
that provide solutions for the gaps left by current rational
genome engineering methods (10). ALE can therefore com-
plement rational genome engineering in the work to provide
for a comprehensive whole genome solution to an applica-
tion (2,9).

Accurately interpreting the results of an ALE requires
the identification of causal mutations within the given ob-
served adaptations. Identifying causal mutations requires
a clear understanding of the mechanistic effects of muta-
tions on cellular components and systems. Due to the com-
plexity of cellular systems, interpreting the effects of muta-
tions has proven to be a primary challenge in ALE (4,9).
A common approach to mutation functional analysis is a
literature search on the mutation target (e.g. a given anno-
tated ORF). Functional studies of genetic targets have tra-
ditionally served as primary resources for interpreting mu-
tation effects, providing information on a sequence’s biolog-
ical function. Published ALE results can be used to enhance
efforts to identify and understand new adaptive mutations.
Researchers can work to understand their ALE mutations
by considering published adaptive mutations in conditions
similar to their own ALEs.

A review of ALE methods (2) lists 34 separate ALE stud-
ies. Each study reports on novel combinations of selection
conditions and the resulting microbial adaptive strategies.
Large scale analysis of ALE results from such consolidation
efforts could be a powerful tool for identifying and under-
standing novel adaptive mutations.

A web platform named ALEdb (aledb.org) has been cre-
ated to meet the need for accessible consolidated ALE mu-
tations, conditions, and publication reporting. ALEdb ad-
ditionally includes features to search for specific mutations,
report key mutations, and export mutation data for custom
analysis. With these features, ALEdb works to fill the gap in
the field of experimental evolution for an accessible resource
of consolidated experimental evolution mutations.

RESULTS

A web platform to accelerate the work of ALE data to knowl-
edge

The need for consolidated and accessible ALE experiment
reporting has resulted in the generation of the web plat-
form ALEdb (aledb.org). Eleven published ALE experi-
ments, with a total of four distinct strains, 528 samples, and
11 792 observed mutations, serve as an initial data set (Fig-
ure 2).

Experimental evolution studies explore the solution
space of a genome optimization problem through muta-
tional events. This element of exploration has lead to a
rich diversity of published ALE experimental conditions
(2). Those experimental conditions currently represented in
ALEdb are genetic perturbations (11), stress inducing en-
vironments (12), different carbon sources (13–15), and evo-
lution duration (5). Strains can often adapt to these condi-
tions with a variety of different evolutionary strategies, lead-
ing to different beneficial mutations. This leads to a diversity
in the mutations across ALE experiments. This rich variety
of databased conditions and mutations have made ALEdb
an attractive research resource, and further implementation
has now made this information accessible through the web.

ALEdb’s feature set was developed in response to the
challenge of accessible ALE mutation reporting for an ALE
experiment pipeline (16). ALEdb’s features enable intuitive
navigation through consolidated ALE experiment data by
providing two categories of features: those that describe in-
dividual ALE experiments, and those that describe all con-
solidated experiment data. To describe individual ALE ex-
periments, ALEdb generates reports that detail the ALE
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Figure 2. (A) A plot of the accumulated sequenced samples and mutations in ALEdb by publication year. (B) Each publication’s sample and mutation
contribution to ALEdb along with their citation count at the time of ALEdb’s initial release. Citation counts were acquired from Google Scholar (scholar.
google.com).

mutation lineages, key mutations, and experimental condi-
tions per ALE sample. Each experiment is additionally de-
scribed by a summary page which references the data’s pub-
lished work, includes summary visualizations, and anno-
tates important details about the experiment dataset being
hosted. To describe all consolidated ALE experiment data,
ALEdb provides a mutation search feature, the ability to ex-
port the mutation data from one or more ALE experiments
as spreadsheets, and an itemization of all publications that
describe the databased mutations (Figure 3). ALEdb thus
provides for a need in the experimental evolution commu-
nity: a platform to search and explore consolidated experi-
mental evolution mutation data.

Mutation functional analysis is a major challenge in ex-
perimental evolution. Besides systems biology modeling
methods, this task often involves searching the literature for
similar results. The ALE mutations, conditions, and publi-
cations being consolidated into ALEdb can be leveraged in
this work. ALEdb can enhance a user’s mutation functional
analysis by using a search-driven workflow to report if mu-
tations similar to theirs have occurred in published ALE
experiments. Through ALEdb’s Search feature, users can
query for mutations of interest using multiple descriptive
parameters and become aware of any databased ALE exper-
iments that manifest similar mutations. Knowing these ex-
periments, users can review the conditions and key mutation

reports which characterize their results and refer to their
associated publications through ALEdb’s Bibliome page.
These publications ultimately describe adaptive mutations
and their functional analysis, which could be leveraged by
users to better understand similar mutations in their own
studies. ALEdb additionally includes the ability to Export
mutation data for users interested in leveraging ALE data
in applications beyond this platform (Figure 4). ALEdb’s
features are described in the following sections.

Mutation search and reporting

ALEdb implements a mutation Search to enable users to
quickly find mutations of interest. Search returns a report
of mutations for all databased samples according to the fol-
lowing mutation descriptors: gene, genome position range,
mutation type, sequence change, protein change, and exper-
iment.

Mutation search, along with most other mutation report-
ing mechanisms on ALEdb, present their results in the form
of mutation tables (Figure 5A). Each ALE experiment can
be described as a series of mutation sets relative to an ALE’s
starting strain. Columns represent an ALE sample and are
described with the experiment name, ALE (A#), flask (F#),
isolate (I#) and technical replicate (R#) value to serialize
samples (Figure 5B). Rows describe the specific mutation
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Figure 3. An illustration of the flow of ALE data from an experimental evolution to the generation of reports.

Figure 4. An illustration of the workflow for mutation functional analysis using ALEdb. Each step within the ALEdb group is the name of a user feature
on the ALEdb platform.

Figure 5. (A) An example mutation lineage report where samples are represented as columns, ordered from left to right as earliest to latest in an ALE.
(B) An illustration of the information annotated by the sample column labels within mutation tables. In the case of the first sample column in this figure’s
mutation table, the label describes mutations from the first technical replicate, from the first isolate, from the sixty-sixth flask, from the fourth ALE, of the
GLU experiment. (C) An ALE experiment metadata report.
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details that manifested within the samples, and values con-
tained within cells represent the allele frequency. Ordering
sample columns from the earliest to latest sample in an ALE
serves to render intuitive visualizations of temporal muta-
tion trends. This format enables researchers to intuitively
identify important mutational patterns, such as the fixed
mutations within the corA gene and hns/tdk intergenic re-
gion (Figure 5A). Population samples will always be de-
scribed by an isolate number (I#) of 0 and is the only sample
type to carry allele frequencies less than 1.0. The informa-
tion describing each mutation is generated by the mutation
finding stage (Figure 2) and details a mutation’s type, ge-
netic target, and potential product effects. Mutation tables
therefore describe the lineage of an ALE’s final sample, or
endpoint, according to the mutations that manifest during
an evolution.

Researchers investigating ALE experiments require re-
porting that enables them to quickly understand which mu-
tations are likely causal for adaptations; the mutation tables
built by ALEdb are designed to meet this need. Among the
many mutations that manifest within an ALE experiment,
mutation rows that describe multiple alleles of a gene will
cluster together according to their positions on the genome.
This is illustrated with the corA mutation within Figure 5A.
Due to the chronological sorting of the sample columns per
ALE, a mutation that fixes across samples will manifest as
an unbroken sequence of cells in a mutation row annotated
with an allele frequency. This is illustrated with both the
hns/tdk and corA mutations in Figure 5A. These two pat-
terns are obvious to an observer and serve well to describe
the adaptive mutational trends in ALE experiments.

ALE experiment mutations cannot be completely un-
derstood without considering the experiment’s conditions.
ALEdb includes reports that describe an experiment sam-
ple’s strain, substrate, and environment (Figure 5C). These
experiment Metadata reports can additionally be exported
as spreadsheets for analysis external to ALEdb.

Consolidated ALE knowledge

A key component in the utility of ALEdb is the per exper-
iment knowledge built from the databased mutations. The
Bibliome feature itemizes the publications that studied the
ALE mutations databased within ALEdb. Users can lever-
age the mutation functional analysis within these publica-
tions toward understanding any similar mutations in their
experimental evolutions.

ALE experiment mutation export

ALEdb implements an Export feature to give users the free-
dom to perform any analysis of interest on the hosted data.
This feature enables users to extract one or more experi-
ment mutation sets into comma separated value files. Users
can then leverage custom analysis pipelines on the ALEdb’s
data towards generating novel results.

Automated ALE experiment key mutation reporting

ALEdb includes features that automate the reporting of
known ALE adaptive mutation trends. These trends are

termed fixed and converged key mutations, where each trend
describes a unique pattern of mutations occurring within or
across multiple ALEs in an experiment. These patterns have
been used in published ALE studies to identify adaptive mu-
tations (11–14). The manual consolidation of adaptive mu-
tation evidence can be prone to human error, inconsistent
between researchers, and time consuming. The automation
of these common analyses contributes to more consistent
analysis and more accurate results.

A fixed mutation is one in which first manifests in any
ALE sample other than the endpoint, and is propagated
to all following samples in the ALE. The propagation of a
mutation from their emergence to an ALE’s endpoint may
describe the selection of a mutation due to its fitness ben-
efits (13). This analysis is only possible if an ALE experi-
ment includes midpoint samples, providing the possibility
of more than one data point per ALE mutation. The iden-
tification of fixed mutations is accomplished by organizing
mutations according to the ALE’s sample chronology and
identifying mutations that emerge in a midpoint and mani-
fest in all following samples of the same ALE (Figure 6A).
ALEdb’s fixed mutation reporting automates this analysis
and reports results in the format described in Figure 5A.

A converged mutation is one in which manifests in a ge-
netic region seen to be mutated in multiple replicate ALEs
(Figure 6B). This phenomenon describes evidence of a po-
tential common adaptive trajectory between microbes ex-
posed to the same conditions and has been leveraged in
ALE analysis methods to more quickly identify mutations
causal for adaptive phenotypes (13). ALEdb’s converged
mutation reporting automates this analysis and reports re-
sults in the format described in Figure 5A.

Design and implementation

ALEdb is implemented and deployed using a stan-
dard web application technology stack and a combi-
nation of user interface technologies. ALEdb’s server-
side hosts a MySQL database (https://www.mysql.com/),
uses the Python based Django web framework (https://
www.djangoproject.com/), and serves the content using
Gunicorn (http://gunicorn.org/) and Nginx (https://www.
nginx.com/). ALEdb implements its user-interface with
HTML, CSS, and JavaScript, along with a combina-
tion of Javascript libraries including Bootstrap (https://
getbootstrap.com/), jQuery (https://jquery.com/), DataT-
ables (https://datatables.net/), mutation-needle-plot (http:
//dx.doi.org/10.5281/zenodo.14561) and D3 (https://d3js.
org/).

ALEdb mutation data usage case study

To demonstrate the potential for ALEdb as an experimental
evolution mutation data resource, mutations from experi-
ments databased within ALEdb were compared to mutation
data published externally. Escherichia coli experimental evo-
lution mutation data was gathered from three sources for
comparison: (i) experiments executed by or with the Sys-
tems Biology Research Group (SBRG) (10–15,17), (ii) the
Long Term Experimental Evolution (LTEE) (5) and (iii) the
experimental evolution mutation set from the Dettman and
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Figure 6. An illustration on the intuition utilized for fixed and converged mutation reports. (A) An illustration of fixed mutations. SNP A and DEL B
occur in separate ALE replicates and persist through all subsequent flasks. (B) An illustration of converged mutations. Genetic targets A and B are seen to
mutate across ALE replicates.

Kassen consolidation studies (KEE) (18). Both the SBRG
and LTEE datasets were found within ALEdb while the
KEE dataset was annotated within its publication. The fol-
lowing results were generated external to ALEdb, where
ALEdb data was extracted using the Export feature. The
LTEE hypermutator strains were not included in this case
study.

Mutation type distributions were calculated across ex-
periment sets to compare their endpoint proportions. The
mutation finding software used by the SBRG and LTEE
(19,20) describes mutations as single nucleotide polymor-
phisms (SNP), deletions (DEL), mobile element (MOB),
and insertions (INS). The KEE set describes its mutations
as SNPs or structural variants (SV), where SVs describe the
combination of DEL, MOB and INS mutations. SNPs were
the most common mutation across all datasets, with DELs,
MOBs, and INS being the most common structural variants
across SBRG and LTEE, in that order (Figure 7A). All ex-
periment sets produced the same mutation type abundance
and demonstrated similar distributions (Figure 7A, Supple-
mentary Table S1).

The frequent manifestation of SNPs in experimental evo-
lution endpoints has suggested that they play a role in
adaptation. Previous work has investigated the selectivity
of SNPs relative to the density of coding sequences within
bacterial genomes (18). It was proposed that if coding SNPs
were more causal for adaptation than non-coding SNPs,
their endpoint proportions would be significantly larger
than the proportion of coding nucleotides within the E. coli
bacterial genome (i.e. larger than 0.86) (18). All of the cod-
ing SNP distributions for each of the three data sets overlap
this average and do not provide evidence of being statisti-
cally different from each other (Figure 7B, Supplementary
Table S2).

This case study serves as an example of the broad, multi-
experiment analysis that can be readily performed with con-
solidated experimental evolution data. A goal of ALEdb is

to provide for this need through consolidating and report-
ing on experimental evolution mutation data.

CONCLUSION

ALEdb works to serve the current need for a mutation
database in the field of experimental evolution. It is a plat-
form designed for the integration and reporting of ALE
mutation datasets and currently integrates the mutation
data and published materials of eleven published ALE ex-
periments. Additionally, multiple features are implemented
within ALEdb to enable intuitive navigation and analysis.
Finally, the case study included in this work demonstrates
the potential for ALEdb as a mutation data resource for
broad, multi-experiment analysis.

ALEdb will continue to be developed to meet the needs
of consolidating, reporting, and navigating ALE experi-
ment data. This initial release of ALEdb considers previ-
ously generated mutation datasets. ALEdb will continue to
grow with future inclusion of published ALE experiment
results from currently contributing and new research orga-
nizations.

METHODS

Mutation finding pipeline

Mutation data currently hosted on ALEdb are generated
by the breseq mutation finding pipeline (19,20). Being that
these samples come from different projects, various ver-
sion of breseq were used in their mutation data gener-
ation. The sequencing reads used to generate the muta-
tion data were subjected to quality control through ei-
ther FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and the FastX-toolkit (http://hannonlab.
cshl.edu/fastx toolkit/) or AfterQC (21).
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Figure 7. An example of multi-experiment analysis enabled by ALEdb’s consolidated data. (A) Mutation type proportion distributions across endpoints
for different sets of experiments. (B) Coding SNP proportion distributions across endpoints for different sets of experiments. The gold line represents the
proportion of coding nucleotides within the E. coli bacterial genome (0.86) (18).

Experimental evolution normalization for case study

In comparing endpoint mutations between different exper-
iments, strategies are necessary to normalize experiments
which have different replicate evolution counts and lengths.
For very long evolution, such as the Long-term Experimen-
tal Evolution, samples at 2000 generations were considered
endpoints. To normalize for differing amounts of replicate
evolutions between experiments, the average proportion of
each mutation type of interest is found across an experi-
ment’s replicates to represent the experiment. Additionally,
no samples containing hypermutator strains were included
in the case study described in the final section.

DATA AVAILABILITY

ALEdb is freely available online at http://aledb.org and can
be accessed with a JavaScript-enabled browser.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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