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Chapter 1

Abstract

Diblock copolymers dissolved in a selective solvent self-assemble into micellar
aggregates. These aggregates consists of a di�use corona of the dissolved blocks
and a dense core of the insoluble blocks. The corona scattering has been investi-
gated using the Monte Carlo simulation technique. The corona was represented
as a number of chains tethered to a spherical core, chains interacted through
excluded volume interactions and they were excluded from the core region. The
corona scattering of a micelle contains information about single chain proper-
ties, such as the radius of gyration, as well as overall properties such as the
radial monomer pro�le. The corona scattering can be separated into two contri-
butions, one due to intra-chain and another due to inter-chain scattering. The
corona scattering can, furthermore, be regarded as being caused by an average
radial pro�le (as in a core-shell model) and a scattering contribution due to
density �uctuation correlations about this average radial density pro�le. These
�uctuations are caused by chain connectivity and chain-chain interaction e�ects
such as the "correlation hole". The �uctuation scattering carries information
about the compressibility of the corona.

Simulations were performed systematically varying the number of chains in
the corona, the chain length, and core radius corresponding to surface coverages
in the experimentally accessible regime for diblock copolymer micelles. During
simulations the partial scattering contributions due to intra-chain and inter-
chain scattering as well as the scattering due to the radial pro�le were sampled.
Properties such as the single-chain radius of gyration, chain center-of-mass dis-
tance to the core, and the radial monomer pro�le were also sampled.

The model of micelle scattering due to Pedersen and Gerstenberg [J.S. Ped-
ersen and M.C. Gerstenberg, Macromolecules (1996), 29, p. 1363] neglects the
e�ects of excluded volume interactions. The validity of this model, which can
estimate the chain radius of gyration and center-of-mass distance from the core,
was investigated using simulated scattering data. The conclusion was that the
model provides accurate estimates of for low surface coverages, but that the
estimates get progressively worse as the surface coverage is increased.

Using a self-consistent analysis of the simulation data it was shown that
the corona scattering can be very accurately represented by a weighted average
between a core-shell model and a Random Phase Approximation (RPA) expres-
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4 CHAPTER 1. ABSTRACT

sion, where the core-shell model represents the scattering contribution due to
the radial pro�le, and the RPA expression describes the �uctuation scattering
contribution. The RPA approximation depends on the intra-chain scattering
and an excluded volume parameter proportional to the apparent second virial
coe�cient. The resulting expression is denoted solution pro�le scattering as it
has the interpretation of being the scattering from a two dimensional layer of
dilute/semi-dilute polymer solution con�ned in a shell around the micelle sur-
face with some radial density pro�le. The polymer solution can be regarded as
being two dimensional since the width of corona is comparable to the radius of
gyration of the corona chains.

The forward scattering due to density �uctuations can easily be obtained
in this approach, and this provides the osmotic compressibility of the corona.
The compressibility obtained from the self-consistent analysis shows an univer-
sal dependence on the reduced surface coverage, since compressibilities obtained
from simulations varying number of chains, chain length, or core radius collapse
onto a common curve. The corresponding apparent second virial coe�cient fol-
lows an approximate power law as function of reduced surface coverage. The
corona compressibility shows a surface coverage dependence analogous to that
of a polymer solution as function of reduced concentration c=c�. This validates
that the micellar corona can be regarded as a quasi-two dimensional polymer
solution.

The solution pro�le scattering expression has also been used for �tting the
Monte Carlo simulation data. The expression depends on the single chain radius
of gyration, an excluded volume coe�cient, and a radial pro�le of the corona.
Excellent �ts were obtained within the entire range of experimentally available
surface coverages using a Maximum Entropy estimate for the corona pro�le.
The radius of gyration and the corona pro�le were estimated by the �ts, and
these were found to be in very good agreement with results obtained directly
from the Monte Carlo simulation.

A formalism for the form factor and structure factor of connected acyclic
polymer structures was developed based on a generalization of a diagrammatic
interpretation of the micelle scattering model due to Pedersen and Gerstenberg.
Some examples of structures described by this formalism includes micelles with
an arbitrary core geometry, branched polymers, and copolymer stars. The for-
malism include excluded volume e�ects on the level of a linear chain, and an
expression for the form factor of a copolymer with excluded volume interactions
is given. Expressions for the form factor of a triblock copolymer star with and
without excluded volume interactions have been derived using the formalism,
and �tted to Monte Carlo simulations results for the scattering without excluded
volume for f = 2; 3; and 6 arms. Scattering was sampled for the entire star as
well as the individual blocks yielding scattering for four di�erent contrasts in
total. The simulated scattering results with excluded volume interactions for tri-
block copolymer stars with f = 2 arms have also been �tted. These �ts show an
excellent agreement between the simulated scattering results and the theoretical
form factor.



Chapter 2

Resumé

Når diblokcopolymere opløses i et opløsningsmiddel, der er godt for den ene
blok og dårlig for den anden blok, danner copolymerene en micelle bestående
af en di�us korona af den opløste blok og en tæt kerne af den uopløselige blok.
Koronaspredningen er blevet undersøgt med Monte Carlo simulationsteknikker.
I simulationerne blev koronaen repræsenteret som et antal af kæder, der sidder
fast på en kugleformet kerne. Kæderne vekselvirkede med �excluded volume�
vekselvirkninger, og var udelukket fra kernen.

Koronaspredningen fra en micelle indeholder information om enkeltkæde
egenskaber så som kædernes gyrationsradius og radialfordelingen af monomerer.
Koronaspredningen har to bidrag, et fra intrakæde og et fra interkæde spred-
ning, dvs. spredning fra den enkelte kæde og spredning mellem kæder. Ko-
ronaspredningen kan også opfattes som værende summen af to bidrag fra spred-
ningen fra gennemsnits radialpro�len (en kerne-skal model) og fra korrelationer
af tætheds�uktuationer. Disse �uktuationer skyldes, at kæderne er sammen-
hængende og kæde-kæde vekselvirkninger som for eksempel �korrelations hullet�.
Fluktuationsspredningsbidraget indeholder information om koronaens kompres-
sibilitet.

Simulationer er blevet udført, hvor antallet af kæder, kædelængde og kerne-
radius systematisk er blevet varieret svarende til de over�adetætheder, der kan
opnås eksperimentelt for diblokcopolymer miceller. Under simulationerne blev
spredningsbidrag så som intrakæde- og interkædespredningen samt spredningen
fra radial pro�len indsamlet. Egenskaber som enkeltkæde gyrationsradius, den
gennemsnitlige afstand fra kædernes massemidtpunkt til kernen og radialpro�len
af monomere blev også indsamlet.

Modellen for micellespredningen, der er foreslået af Pedersen og Gersten-
berg [J.S. Pedersen and M.C. Gerstenberg, Macromolecules (1996), 29, p. 1363],
negligerer e�ekterne af excluded volume vekselvirkninger. Gyldigheden af denne
model er blevet undersøgt ved hjælp af data fra simulationer. Konklusionen var,
at for små over�adetætheder giver modellen præcise estimater for enkeltkæde
gyrationsradius og kædernes massemidtpunkts afstand til kernen, men at esti-
materne bliver dårligere, som over�adetætheden øges.

Ved hjælp af en selvkonsistent analyse af simulationsdata blev det vist, at
koronaspredningen kan repræsenteres meget præcist som et vægtet gennemsnit
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6 CHAPTER 2. RESUMÉ

mellem en kerne-skals model og et Random Phase Approximation (RPA) udtryk,
hvor kerne-skals modellen repræsenterer spredningsbidraget fra koronaens pro-
�l, mens RPA-udtrykket beskriver spredningsbidraget fra tætheds�uktuationer.
RPA-udtrykket afhænger af intrakæde spredningen og af en excluded volume
parameter, der kan vises at være proportional med den anden virial koe�cient.
Det resulterende udtryk kan fortolkes som spredningen fra et to-dimensionalt lag
af en �dilute/semi-dilute� polymeropløsning med en vis radialpro�l. Udtrykket
kaldes derfor opløsningspro�lspredning. Polymeropløsningen kan opfattes som
værende to-dimensional fordi koronaens tykkelse er sammenlignelig med korona-
kædernes gyrationsradius.

Den fremadrettede spredning fra tætheds�uktuationerne kan let udregnes
med opløsningspro�lsprednings udtrykket, og det giver den osmotiske kompres-
sibilitet af micellens korona. Kompressibiliteten fra den selvkonsistente analyse
har en universal afhængighed af den reducerede over�adetæthed fra simula-
tioner, hvor antallet af kæder, kædelængde og kerneradius falder på den samme
kurve. Korona kompressibiliteten har en over�adetæthedsafhængighed, der er
analog med koncentrationsafhængigheden af c=c� for en polymeropløsning. Dette
indikere at micelle koronaen kan opfattes som en kvasi-to-dimensional polymer-
opløsning.

Opløsningspro�ludtrykket er også blevet �ttet til Monte Carlo simulations-
data. Udtrykket afhænger af enkeltkæde gyrationsradius, en excluded volume
parameter og et udtryk for koronaens radialpro�l. Ved hjælp af et Maximum
Entropi estimat for koronaens radialpro�l er der opnået fortræ�elige �ts for alle
simulationer. Fra disse �ts blev enkeltkæde gyrationsradius og koronaens radial-
pro�l fundet, og disse er i meget god overensstemmelse med resultaterne, der
blev indsamlet under Monte Carlo simulationerne.

På basis af en diagrammatisk fortolkning af det af Pedersen og Gerstenberg
foreslået modeludtryk for micelle spredningen er en formalisme for udregnin-
gen af formfaktorer og strukturfaktorer af sammenhængende acykliske polymer
strukturerer blevet udviklet. Miceller med en arbitrær kernegeometri, forgrenede
polymere og copolymerstjerner er nogle af de strukturere, hvis spredning kan
udregnes med formalismen. Formalismen kan inkludere excluded volume veksel-
virkninger på samme niveau som for en lineær kæde, og et udtryk for form-
faktoren af copolymer med excluded volume vekselvirkninger gives. Ved hjælp
af denne formalisme er formfaktoren for en triblokcopolymerstjerne udregnet
med og uden excluded volume vekselvirkninger. Disse udtryk er blevet �ttet til
Monte Carlo simulationsresultater for spredningen uden excluded volume veksel-
virkninger for f = 2; 3 og 6 arme, og med excluded volume vekselvirkninger for
f = 2. Under simulationerne blev spredningen indsamlet for hele stjernen samt
for de tre blokke svarende til spredningsbidragene for �re forskellige kontraster,
og alle �re kontraster blev �ttet samtidigt. Disse �ts viser en fortræ�elig over-
ensstemmelse mellem simulerede spredningsresultater og de teoretiske udtryk.



Chapter 3

Introduction

Complex �uids exhibit many interesting phenomena. They have structures on
a mesoscopic scale, and the presence of these structures yield a surprising re-
sponse to the presence of external �elds such as shear, electrical, or magnetic
�elds. Some examples are for instance shear-induced birefringence of polymers
solutions, electrical �eld-induced birefringence of liquid crystals, and the order-
ing of ferro-liquids in external magnetic �elds [1, 2, 3]. Complex �uids can also
behave as solids on short time scales, and as �uids on long time scales. Examples
of complex �uids are mud, toothpaste, paint, shampoo, and liquid crystals as
well as many biological �uids such as cell cytoplasm and blood. Thus complex
�uids are quite common, but their behaviour are qualitatively di�erent from
�simple� �uids.

Complex �uids consisting of a colloid suspension of large particles or molecules
can self-assemble in numerous structures, depending on the shape of the colloidal
particles or molecules and their interactions. Solutions and melts of polymers
and copolymers o�er a system, where the architecture and chemical properties
of the polymers can be designed and numerous structures can be obtained as a
result [4].

A copolymer consists of a sequence of chemically di�erent blocks of poly-
mers joined end-to-end forming a long linear molecule. Copolymers are unable
to undergo macroscopic phase separations, but micro-phase separations are pos-
sible. The structure of the micro-phase separated domains are determined by a
minimisation of the surface energy between domains of di�erent blocks, how-
ever, the entropy of stretching polymers chains also a�ects the shape of these
domains[5]. Diblock copolymers can also self-assemble into micellar aggregates
in a solvent that is selective for one block [6]. Many possible core geometries
such as spherical, elliptical, and cylindrical cores are possible. Spherical mi-
celles can, furthermore, order in crystalline structures such as body-centered
or face-centered cubic crystals depending on the range of the micelle-micelle
interactions, and cylindrical micelles can order into hexagonal rod structures
[7, 8].

Polymers are also used for modifying the mechanical, chemical or biological
properties of solid or liquid surfaces [9, 10, 11]. Diblock copolymers, for instance,
provides a macromolecular analogy of amphiphilic molecules [12], and can be
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8 CHAPTER 3. INTRODUCTION

used to modify the properties of a liquid surface or by adsorbing at a solid
interface.

Grafting polymers onto the surface of a colloid aggregate introduces a re-
pulsive interaction between aggregates, which inhibit coagulation and/or coales-
cence behaviour. The repulsive interactions is due to the fact that the polymer
con�gurational degrees of freedom is reduced if it is squeezed between two col-
loidal aggregates. This leads to a decrease of the con�gurational entropy [13],
and is the cause of the repulsive interactions between the colloidal particles.
Tethering polymers to a surface can act as a lubricant or an adhesive between
surfaces [14, 15], and tethered polymers can increase biocompatibility and in-
hibit protein adsorption [10, 16]. Lipid vesicles (liposomes) protected by diblock
copolymers have also been suggested for drug delivery systems. Drug molecules,
dissolved in the lipid layer or the interior, are protected from enzymatic degra-
dation by the copolymers, and from being �ltered from the blood stream in the
liver or kidneys [17].

Advances in polymer synthesis allow good control over the polymerisation
process, and existing techniques can realize many polymer architectures such as
those shown in �gure 3.1. Structures can be mapped out in terms of structural
phase-diagrams by systematically varying the polymer architecture and exper-
imental parameters such as concentration, solvent quality, and temperature.
These can be used to formulate and test theories that relate polymer archi-
tecture and experimental parameters to structure, and test theories predicting
the macroscopic mechanical, rheological, electric or magnetic properties of the
complex �uids. This yields information about the basic physical processes that
leads to the emergence of structures in complex �uids, and an understanding
the physical processes allows the structure of complex �uids to be designed for
practical applications.

Various techniques exist for probing the structure of complex �uids [18], how-
ever, small-angle X-ray and neutron scattering techniques are ideally suited for
obtaining detailed structural information. Unfortunately scattering techniques
do not yield a picture of the structure such as real space methods like mi-
croscopy, nor is there in general an easy way of inverting the results from a
scattering experiment to obtain the structure. This is in a very real sense due to
a very complex and convoluted dependence of the measured scattering on the
structure of the complex �uid.

One way to infer structure from scattering data is to �t structural models
to the observed scattering. Each model represents the expected scattering from
an analytical model of a structure or is the result of a parametrisation of results
from simulations. This provides a �tool box� of models that can be �tted to the
experimental data, i.e. free the model parameters must be optimised in order
for the model scattering to agree with the experimentally observed scattering.
If a good agreement is obtained, it suggests that the structure present in the
sample is the same structure as that represented by the model, and that the
parameters estimated by the �t procedure are most likely to correspond to the
�real� values of those parameters [19].

The aim of the present thesis is to present and validate an expression for the
scattering from dilute solutions of diblock copolymer micelles with a spherical
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core. Monte Carlo simulations of a mesoscopic micelle model has been used to
obtain the scattering that would be obtained from an almost ideal scattering
experiment. Hence, any scattering expression can be compared to the scatter-
ing from a micelle in the ideal case, where in principle the scattering is exact
(except for statistics due to a �nite number of samples) and the real values of
all parameters are known in advance.

3.1 Polymers

Polymers are string-like objects consisting of a long sequence of monomers. The
most important property of a polymer is the conformational entropy associ-
ated with the many internal degrees of freedom of a chain [4]. The entropically
favoured con�guration of a polymer is that of a random walk, however, the
con�guration is also in�uenced by the di�erence between monomer-monomer
and monomer-solvent interactions. These are e�ectively the same in a �-solvent
and as a result monomers are approximately non-interacting, in which case the
con�guration is only determined by the entropy.

In a bad solvent monomer-solvent interactions are very unfavourable com-
pared to monomer-monomer interactions, and as a result compact �collapsed�
polymer con�gurations are energetically favourable. However, in a good solvent
monomer-solvent interactions are negligible compared to monomer-monomer in-
teractions in which case the each monomer will be surrounded by a volume from
which other monomers are excluded. Hence the name �excluded volume� inter-
actions. The preferred con�guration of a polymer in a good solvent will be that
of a self-avoiding random walk, and the chain will swell relative to an non-
interacting random walk. In the limit where the monomer-monomer potential
can be regarded as a hard-sphere potential, the enthalpy is either in�nite or zero,
and the free energy is independent of temperature i.e. an athermal solvent.

Varying the polymer concentration in a good solvent yield three qualitative
di�erent regimes [20, 21]: dilute solution, semi-dilute solution, and a melt. In
a dilute solution each polymer is far from other polymers and the solution can
be regarded as an ideal gas of hard spheres, where each hard sphere has a
characteristic size given by the radius of gyration of the polymer. The solution
enters the semi-dilute regime when the polymer density exceeds the overlap
density, which is de�ned by the inverse of the volume occupied by one polymer
chain in an unperturbed con�guration. Polymers will inter-penetrate each other
forming a transient network of intermeshed chains above the overlap density.
The characteristic chain size of dilute solutions is replaced by a characteristic
mesh size or correlation length in semi-dilute solutions, which de�nes a length
scale above which no correlations due to polymer connectivity persists, and
below which interactions between di�erent chains are negligible. If no solvent
is present, i.e. the volume fraction of polymer is unity, polymers will be in a
melt state. The preferred chain conformation will be that of a non-interacting
random walks as predicted by Flory [22]. This can be understood as follows: in
a good solvent the enthalpy contribution from monomer-monomer interactions
decreases as the chain swells, however, in a melt swelling would not decrease
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the number of the monomer-monomer contacts as there is no free space to
swell into. As a result the enthalpy is una�ected by swelling, and the preferred
con�gurations will be the non-interacting random walk con�gurations favoured
by the entropy .

3.2 Tethered chains

Polymers can be tethered to a surface by one end, thus forming a di�use layer
on the surface [9]. Some tethered chain structures are shown in �gure 3.2. The
equilibrium properties of a tethered polymer layer at an impenetrable surface
in a good solvent follow from the balance between entropic forces and excluded
volume interactions. The latter favour a state with a minimum of monomer-
monomer contacts, e.g. a state with a low density of monomers. Such a state
can be achieved by increasing the available volume per chain, i.e. by the chain
stretching away from the surface. Entropic forces, however, will tend to maximise
the number of available chain con�gurations by opposing the chain stretching
and by shifting the corona away from the surface to some extent. If the inter-
face is convex a chain can get a relative larger available volume by stretching
compared to �at interfaces. As a result, surface curvature has a large impact on
the monomer density distribution away from the surface, and tends to reduce
chain stretching for convex surfaces.

At low surface coverage, polymers will have a mushroom like shape due
to surface expulsion, however, at very high surface coverage excluded volume
interactions dominate and chains will be strongly stretched forming a polymeric
brush. A broad crossover region of intermediate surface coverages exists between
these limits and experiments are typically carried out in this regime.

Many theoretical techniques have been applied to the problem of tethered
chains on a planar or curved surfaces. Scaling theories treat polymers as close
packed blobs with a size given by the local correlation length. It is implicitly
assumed that the local polymer concentration throughout the polymer layer is
in the semi-dilute regime. From the blob description, density pro�les can be
obtained as well as predictions of the dependence of the width of the tethered
chain layer as function of chain length and surface coverage. Daoud and Cotton
[23] made a model for the pro�le of star polymers using a blob description, which
was modi�ed by Halperin to describe small �nite size cores [24].

Self-consistent �eld (SCF) methods [25, 26, 27, 28, 29] can be derived from
the statistical physics of chain molecules [30]. From SCF methods the pro�les
can be obtained for moderately high surface coverages and weakly interacting
chains. SCF methods break down in the presense of large density �uctuations,
for instance at lower surface coverages. In the limit of extreme stretching lateral
�uctuations are weak and the path of a polymer chain can be mapped onto
a classical mechanical problem of a falling particle in a potential as originally
shown by Semenov [31].

The thermodynamics of polymers layers at �at interfaces has been inves-
tigated by Carignano and Szleifer [10, 32, 33] using a single-chain mean �eld
theory. This approach includes all the intra-chain interactions within the cho-
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sen chain model, and a mean �eld approach is used for solvent molecules and
other chains. This approach provides the osmotic pressure pro�le away from the
surface and pressure-area isotherms.

Tethered polymers at �at and curved interfaces have been investigated by
Molecular Dynamics and Monte Carlo methods [34, 35, 36]. Computer simu-
lations have primarily been used for obtaining density pro�les as function of
various parameters. Common for all these approaches, at least as they are cur-
rently applied, are that none of them produce expressions that can be used for
analysing experimental scattering data. However, Monte Carlo and Molecular
Dynamics simulations can easily be modi�ed to sample scattering corresponding
to an ideal scattering experiment with contrast variation.
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Figure 3.1: Di�erent polymer structures (from [4]).
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Figure 3.2: An illustration of some tethered chain structures (from [9]).
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Chapter 4

Theory

This chapter introduces the theoretical background for the summary of arti-
cles, and the articles themselves. First basic scattering theory including contrast
variation techniques and the scattering from a solution of di�erent particles are
introduced. The relation between scattering, correlation functions, and ther-
modynamics is derived. Two sections derive expressions for the scattering from
dilute and semi-dilute polymer solutions. The main topic of the thesis is scatter-
ing from aggregates in solution especially micellar aggregates and models of the
micellar scattering, and this is introduced after a section on core-shell models.
The chapter is concluded with a brief remark on the interpretation of scattering
data, and a heuristic introduction to Maximum Entropy methods. For further
information the reader is referred to the literature on scattering theory and
applications to �uids and soft condensed matter, see e.g. [18, 37, 38, 39].

4.1 Basic scattering theory

In a general scattering experiment a beam of incident radiation illuminates a
volume of matter, and the scattered radiation is detected at a certain angle
relative to the transmitted beam. The observed scattering depends on the in-
teraction between the beam and matter within the scattering volume. Typical
beams consist of laser light, X-rays from a synchrotron or conventional source,
or neutrons from a reactor or spallation source.

The incident radiation is represented as a plane wave with a wave vector ki
and the scattered radiation is approximated by a plane wave with wave vector
ks, which is de�ned by the position of the detector relative to the transmitted
beam. Assuming that the scattering process is elastic i.e. k = jkij = jksj, and
that the scattering is weak such that multiple scattering events can be neglected,
it follows from quantum mechanics using the �rst Born approximation [37, 40]
that the detected intensity is given by the di�erential cross section

d�

d

/ jhksjU(r)jkiij2 :

Here U(r) is the interaction potential between radiation and matter. Assum-
ing that the potential is caused by many di�erent scatterers located at positions

15
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rj. Then the potential can be expressed as the sum U(r) =
P

j Uj(r � rj),
where Uj is the interaction potential between the j'th scatterer and the incident
radiation. This yields a matrix element

hksjU jkii =
X
j

Uj(q)e
�iq�rj ;

where the scattering vector q is de�ned as q = ki�ks. The momentum transfer
of the scattering process is given by �hq. The length of the q vector is directly
related to the angle 2� between the transmitted beam and the scattered beam
measured at the detector position as jqj = 2k sin(�), and the wavelength of the
incident radiation is � = 2�=k. The scattering due to structures with a longer
length scale than the incident radiation is located very close to the transmitted
beam. Accordingly, scattering techniques of measuring structures longer length
scale than the incident radiation are known as small-angle scattering techniques.

Neutrons are scattered from the atom nuclei, and it is a good approximation
to assume that the spatial extension of the potentials is small compared to the
wavelength of the incident radiation, in which case the scatterers can be regarded
as point-like, and the neutron interaction potential can be approximated by a
delta function

Uj(r) =
2��h2

m
bjÆ(r);

where bj is the scattering length. This potential is also known as the Fermi
pseudo-potential. The scattering length of neutrons has a complicated depen-
dence on the atom number, isotope and spin state, and can even be negative.
The scattering from a number of point-like scatterers becomes

d�

d

(q) /

������
X
j

bje
�iq�rj

������
2

:

By de�ning the scattering length density �(r), the sum is replaced by an
integral over the scattering volume and the result is

d�

d

(q) /

����Z dr�(r)e�iq�r
����2 :

The discrete expression can easily be retrieved from the continuum descrip-
tion using a density de�ned as �(r) =

P
j bjÆ(r� rj).

The observed scattering is the square of the Fourier transform of the scatter-
ing length density distribution. Any periodic structure, such as crystal, will have
a large Fourier component for the corresponding q vector, and this will give rise
to a strong scattering. As a result a very important application for scattering
techniques has been the determination of crystal structures. A crystal can be
rigidly mounted in a scattering experiment, however, if the scatterers are poly-
mers or aggregates suspended in a solvent then many di�erent con�gurations
of scatterers are possible. Let ��(r) denote the scattering length density when
the system is in the �'th state, where the state is used to collectively denote
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the con�guration of molecules or aggregates. hX�(r)i� denotes a con�gurational
average over all the possible states � of the quantity X�. Translational or ori-
entational averages, will be denoted by subscript �t� and �o�, respectively. Thus
hX�(r1; r2)i�to is the con�gurational, translational, and orientational average
of the function X�(r1; r2), while a translational and orientational average is
denoted hX�(r)ito.

For particles, molecules or aggregates suspended in a solvent the con�gura-
tional, orientational, and translational average of the of the scattering is

d�

d

/
*����Z dr��(r)e

�iq�r
����2
+
�to

:

For convenience the scattering length density is replaced by ��(r) = ���(r)+
�solvent where ���(r) is the excess scattering length density of the scatterers
relative to that of the solvent �solvent. The excess scattering length density is

given by ���(r) =
P

i�bi�
(i)
� (r), where �

(i)
� (r) is the number density of the i'th

species of scatterer and �bi the excess scattering length of that species, where a
scatterer could be an atom, a molecule or an aggregate of molecules. Separating
the contributions due to species and solvent the scattering is

d�

d

(q) /

*�����X
i

�bi

Z
dr�(i)� (r)e�iq�r + �solvent

Z
dre�iq�r

�����
2+

�to

:

De�ning the Fourier transform of the density distribution as

�(i)� (q) =

Z
dr�(i)� (r)e�iq�r;

where integrals are restricted to the scattering volume V , and using the de�ni-
tion of the delta function the di�erential scattering cross section becomes

/
*�����X

i

�bi�
(i)
� (q) + �solventV Æ(q)

�����
2+

�to

:

Hence, the scattering due to the solvent will be con�ned to the forward
direction q = 0, where it is indistinguishable from the transmitted part of the
incident beam, and as a result the Æ(q) term can be ignored. In the rest of
this chapter the argument of a function is used to distinguish between functions
and their Fourier transforms, such that f(q) denotes the Fourier transform of a
function f(r).

Using neutron scattering techniques it is possible to selectively cancel scat-
tering contributions from certain species by matching the solvent scattering
length density to the scattering length density of that species. Scattering con-
trast can be enhanced by changing the isotope composition of a species, for
instance by substituting hydrogen atoms with deuterium as often done for poly-
mers or biomolecules. This can be used for investigating the structure of an ob-
ject, that consists of di�erent types of scatterers for instance di�erent species of
polymer molecules, such as a star polymer or a micelle consisting of block copoly-
mers [41], a complex biological structure such as a virus [42] or a biomolecule
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such as a ribosome, which can consist of both RNA, DNA, and proteins. This
is the basis for neutron contrast variation studies [18, 43, 44], which yield more
information about the structural arrangements of constituent species compared
to what can be obtained by, for instance, X-ray techniques.

4.2 Form and Structure factor

Neglecting the forward scattering contribution due to the solvent the di�erential
cross section for neutron scattering is given by

d�

d

/
*�����X

i

�bi�
(i)
� (q)

�����
2+

�to

:

If the sample consists of a number M objects suspended in a liquid, such
that they located at R�

i , in the con�guration denoted by �, the scattering length
density distribution is

��(r) =
MX
i=1

�i�
(i)
� (r�R�

i );

where �(i)(r) is the density distribution and �i = �bi
R
dr�(i)(r) is the total

excess scattering length of the i'th object, in which case it is easy to derive

d�

d

(q) =

1

M

*�����
MX
i=1

�i�
(i)
� (q)e�iq�R

�

i

�����
2+

�to

(4.1)

=
1

M

*
MX
i=1

�2i �
(i)
� (q)�(i)� (�q) + 2

MX
i>j

�i�j�
(i)
� (q)�(j)� (�q)e�iq�(R

�

i �R
�

j )

+
�to

:

Assuming that the position of an object is not correlated with its orientation,
and that the orientation of di�erent objects is uncorrelated, the average can be
rewritten as

1

M

MX
i=1

D
�2i �

(i)
� (q)�(i)� (�q)

E
�o
+

2

M

MX
i>j

h�i�(i)� (q)i�oh�j�(j)� (q)i�o
D
e�iq�(R

�

i �R
�

j )
E
�to

:

The form factor of the i'th object is de�ned as Fi(q) =
D
�
(i)
� (q)�

(i)
� (�q)

E
�o
,

the form factor amplitude as Ai(q) = h�(i)� (q)i�o, and the center-to-center struc-

ture factor as Hij(q) =
D
exp[�iq � (R�

i �R�
j )]
E
�to

. Using these abbreviations

the scattering function can be stated as

d�

d

(q) =

1

M

MX
i=1

�2i Fi(q) +
2

M

MX
i>j

�i�jAi(q)Hij(q)Aj(q): (4.2)

The form factor describes the scattering from two sites within the same
object, while the second term describes the interference scattering from sites
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belonging to di�erent objects. If the positions of the di�erent objects are un-
correlated as it will be in a very dilute solution, then Hij(q) = 0 and only the
scattering due to the form factor is observed. The second term is a product
of Fourier transforms, and by virtue of the Fourier convolution theorem this
corresponds to a convolution of distributions. Thus the second term can be in-
terpreted in real space as the convolution of three distance distributions: Ai(r),
which is the distribution of distances between sites in object i and its center,
and Hij(r) is the distribution of distances between the center of object i and
j, and a distribution of distances between the center and sites within object j.
The generalisation of this interpretation is presented in article IV.

In the special case where only one type of object is present, eq. (4.2) yields

d�

d

(q) = F (q)Sapp(q);

where the apparent structure factor is Sapp(q) = A2(q)H(q)=F (q) + 1. H(q)
is the center-to-center structure factor, i.e. the Fourier transform of center-to-
center distances between di�erent objects. In the special case where the objects
are spherically symmetric F (q) = A2(q) (see section 4.9) and the apparent
structure factor is Sapp(q) = H(q)+1. The form factor carries information about
distances within a object and thus indirectly interactions within that object,
whereas the structure factor carries information about the distances between
di�erent objects, and thus carries information about object-object interactions.
Using the Ornstein-Zernike relation the structure factor can be calculated for a
known pair-potential between objects given a suitable closure relation [39].

In general the scattering length density depends on the interaction between
the incident radiation and the atoms in the sample volume [18, 43]. Light and
X-ray photons are scattered from electrons, while neutrons, on the other hand,
interact with the atomic nuclei via weak short-ranged nuclear forces. It is also
possible to de�ne scattering length densities in the case of light and X-ray scat-
tering, and the result is that an equation exactly as that of neutron scattering is
obtained, except with di�erent expressions for the scattering lengths. For X-rays
the scattering length bi is the atomic form factor of the i'th atom and depends on
q, while �(r) is proportional to the electron density distribution in the sample.
The interpretation of the scattering length for light scattering is more complex,
but it is related to the polarizability of the scatterers, and this can be expressed
using the derivative of the index of refraction with respect to concentration.

In order to simplify the notation it will be assumed that only one species of
scatterer is present, in which case a scattering function S(q) can be de�ned as

S(q) =
1

N

*����Z dr��(r)e
�iq�r

����2
+
�to

; (4.3)

where N is the number of scatterers given by N =
R
dr��(r). The number of

scatterers is assumed to be �xed and independent of state �. The scattering
function is independent of the type of radiation that is used. The di�erential
cross section is related to the scattering function by the excess scattering length,
which depends on the type of radiation, as
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d�

d

/ N�b2S(q)

At this level no assumptions have been made about the nature of the scat-
terers. They could be aggregates, polymers molecules, or individual atoms. Nor
has any assumptions been made about the structural arrangements of objects.

4.3 Correlation functions

This section introduces correlation functions of densities corresponding to a sin-
gle species of scatterer, and no assumptions are made regarding the nature of
the scatterers. They could be atoms, molecules, or aggregates. The correlation
functions will be related to the scattering function and later to a general statis-
tical physical property. Results presented in the following sections are correct
even in the absence of orientational and translational averages, and as a result
the these averages are described in a separate section.

Expanding the norm square in the scattering expression eq. (4.3) the scat-
tering function can be rewritten as

NS(q) =

�Z
dr1��(r1)e

iq�r1 �
Z

dr2��(r2)e
�iq�r2

�
�
= h��(q)��(�q)i� ;

here ��(q) is the Fourier transform of the number density distribution in the �'th
state. Using the fact that the con�gurational average and Fourier transformation
are both linear operations and can be interchanged, the scattering function can
be rewritten as

NS(q) =

Z
dr1dr2 h��(r1)��(r2)i� eiq�(r1�r2)

�
Z
dr1dr2C(r1; r2)e

iq�(r1�r2) = C(q);

where C(r1; r2) � h��(r1)��(r2)i� de�nes the density-density correlation func-
tion, and C(q) = h��(q)��(�q)i� its Fourier transform. The scattering function
S(q) is given by the Fourier transformed density-density correlation function
C(q). The correlation function contains information about to what extend the
density at one point r1 is �related to� the density at another point r2. In the
absense of interactions, either direct or indirect, between particles at the two po-
sitions, they will be statistically independent. Thus correlations can be regarded
as a measure of the structures imposed by interactions between particles. The
correlation function becomes C(r1; r2)! h��(r1)i� h��(r2)i� for jr1 � r2j ! 1
as interactions are assumed to be of a short range. This assumption is not correct
for crystalline materials, where there is long ranged order.

The density distribution of the �'th state ��(r) can be expressed in terms of
the con�gurationally averaged density �(r) = h��(r)i� and a density �uctuation

Æ��(r) de�ned as ��(r) = �(r) + Æ��(r). Inserting this in the de�nition of the
correlation function and expanding using hÆ��(r)i� = 0 yields
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C(r1; r2) � h��(r1)��(r2)i� = �(r1)�(r2) + hÆ��(r1)Æ��(r2)i� :

The density correlation function is the sum of two contributions, one origi-
nating from the product of average densities, and another originating from the
�uctuations of individual con�gurations about the average density. The den-
sity �uctuation correlation function (also known as the Ursell function) is here
de�ned as

D(r1; r2) � hÆ��(r1)Æ��(r2)i� = C(r1; r2)� �(r1)�(r2);

for large distances the �uctuation correlation function converges to zero. Insert-
ing the correlation function in the expression for the scattering function yields

NS(q) =

Z
dr1dr2C(r1; r2)e

iq�(r1�r2);

=

����Z dr�(r)eiq�r
����2 + Z dr1dr2 hÆ��(r1)Æ��(r2)i� eiq�(r1�r2);

= �(q)�(�q) +ND(q):

The scattering function has two contributions, one is the con�gurationally
averaged density distribution j�(q)j2, and another due to density �uctuations
about the average density, this latter contribution is given by

D(q) =
1

N
hÆ��(q)Æ��(�q)i� :

The density �uctuation correlations are typically short ranged, and the
Fourier integral can be regarded as an integral over a number of cells with
some characteristic size. The Fourier integral will be proportional to the num-
ber of cells, and the de�nition of the �uctuation scattering includes an inverse
factor N , such that it is independent of number of scatteres in the large volume
limit, i.e. D(q) becomes an intensive quantity.

4.4 Statistical Physics

In order to understand the physical information contained in the �uctuation cor-
relation function, a relation between correlation functions and statistical physics
has to be established (the following derivation is inspired by [38]). An average
over possible states can be expressed as

hX�i� =

P
�X�e

��H�P
� �e��H�

; (4.4)

where H� is the Hamiltonian of system when it is in the �'th state and � =
1=(kbT ), where kb is the Boltzmann constant, and T is the absolute temperature.
We are interested in ensemble averages of densities and correlation functions
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between densities, the grand canonical ensemble which depend on the volume
V , temperature T , and an external chemical potential �eld �(r) is a good choice.
The grand canonical partition function is given by

�[�(r)] =
X
�

exp

�
��H� + �

Z
dr��(r)�(r)

�
:

How this sum is evaluated, and how the Hamiltonian and the number density
of a state �� for an actual polymer or polymer aggregate is expressed is outside
the scope of this thesis (see e.g. [45, 46, 47, 48]). Variational calculus [49] can
be used to calculate the response of the grand canonical partition function to
in�nitesimal variations of the external chemical potential, which shows it can
be used as a generating function for correlation functions. For example

Æ

�Æ�(r1)
ln�[�(r)] =

1

��

Æ

Æ�(r1)
�[�(r)]

=
1

�

X
�

exp

�
��H� + �

Z
dr��(r)�(r)

�
Æ

Æ�(r1)

Z
dr��(r)�(r):

Using the de�nition Æ�(r)=Æ�(r1) = Æ(r � r1) [39, 38] in the integral, the
following result is obtained

1

�[�(r)]

X
�

��(r1) exp

�
��H� + �

Z
dr��(r)�(r)

�
;

which for �(r) = 0 reduces toP
� ��(r1) exp (��H�)P

� exp (��H�)
= h��(r1)i� :

The linear response of ln�, i.e. the grand potential, to a variation in the
external chemical potential, is the con�gurational average of the density. The
following relations can be deduced with relative ease in a similar manner

Æ

�Æ�(r1)
ln�[�(r)]

����
�=0

= h��(r1)i� = �(r1); (4.5)

1

�[�(r)]

Æ

�Æ�(r1)

Æ

�Æ�(r2)
�[�(r)]

����
�=0

= h��(r1)��(r2)i� = C(r1; r2);

and

Æ

�Æ�(r1)

Æ

�Æ�(r2)
ln�[�(r)]

����
�=0

= hÆ��(r1)Æ��(r2)i� = D(r1; r2): (4.6)

The derivation shows that the average density, the density correlation func-
tion, and the density �uctuation correlation functions can all be regarded as
functionals of the external chemical potentials, which in the � = 0 limit corre-
sponds to the previously de�ned correlation functions. In particular a compari-
son of eq. (4.5) and eq. (4.6) shows that the following relation is valid
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�(r1; r2) � Æ�(r1)

�Æ�(r2)
= D(r1; r2): (4.7)

�(r1; r2) is a generalised susceptibility as it relates response of the average
density at r1 to a change in the external chemical potential at r2, and this is
identical to the density �uctuation correlation function. This follows directly
from the de�nition of the grand canonical partition function, and in general
the linear response of the density of an extensive parameter with respect to its
conjugate �eld is given by the �uctuation correlations of that extensive density.
This type of relation is known as a �uctuation-dissipation theorem [38, 39, 50].

A connection to the isothermal compressibility follows when Taylor expand-
ing the density in the external chemical potential �eld as

�[r1;�(r)] = �[r1;� = 0] +

Z
dr2

Æ

Æ�(r2)
�[r1;�(r)]

����
�(r)=0

Æ�(r2) + � � �

= �[r1;� = 0] + �

Z
dr2D(r1; r2)Æ�(r2) + � � � :

In the special case where the chemical potential is a small constant Æ�(r2) =
Æ�, this becomes

@�(r1)

@�
=

�(r1; Æ�) � �(r1;� = 0)

Æ�
= �

Z
dr2D(r1; r2) + � � � ;

using the de�nition for D(q) and the mean density � = N=V = V �1
R
dr1�(r1)

the equation can be rewritten as

@�

@�
=

1

V

Z
dr1

@�(r1)

@�
=

�

V

Z
dr1dr2D(r1; r2) = ��D(q = 0):

The response of the average density to a change in a constant external chem-
ical potential is given by the q = 0 limit of the density �uctuation correlation
function. This result can can be related to the isothermal compressibility �T ,
which is de�ned as

�T � � 1

V

@V

@p

����
T;N

= ��2 @�

@�

����
T

:

Here the Gibbs-Duhem relation V dp = Nd�+ SdT and � = N=V was used
to rewrite the expression. The isothermal compressibility can be related to the
Fourier transform of the density �uctuation correlation function as

�T = ���1D(q = 0):

The osmotic pressure � can be expanded in the density in a virial expansion

�� = �+A2�
2 +A3�

3 + � � � ;
where the virial coe�cients A2; A3; : : : contains information about interactions.
If the particles are non-interacting, e.g. as they are in an ideal gas, then A2 =
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A3 = : : : = 0 and the expansion reduces to the ideal gas law. The isothermal
compressibility can be expressed using the virial expansion as follows

�T =

�
�
@�

@�

��1

=
�

�

�
1 + 2A2�+ 3A3�

2 + : : :
��1

:

Hence, by obtaining the forward scattering due to density �uctuation corre-
lations, the virial coe�cients can be obtained as

1

D(q = 0)
= 1 + 2A2�+ 3A3�

2 + : : : = 1 + 2A2(�)�: (4.8)

Here the apparent second virial coe�cient A2(�) = A2 +
3
2A3� + � � � was

used to absorb all higher order terms. By doing series of scattering experiments
at increasing densities, and extrapolating to obtain the forward scattering, the
virial coe�cients can in principle be obtained [51, 52]. In practice multiple scat-
tering sets an upper limit for the densities that can be probed in particular for
light scattering.

The con�gurational average of a polymer solution is a homogeneous density
distribution, as a result the scattering due to the average density is in the forward
direction, and all the observed scattering will be due to the density �uctuation
correlation function, and as a result the observed scattering can extrapolated to
q = 0 to yield the osmotic compressibility @�=@� [51, 20].

4.5 Positional and orientational averages

Objects suspended in a liquid medium are not �xed, and as a result of this
translationally invariance, the correlation function C(r1; r2) can only depend
on the relative vector C(r2 � r1) = hC(r1; r2)it. Nor is there a �xed orienta-
tion, as a result of this rotational invariance the correlation function can only
depend on the length of the relative vector as C(jr2 � r1j) = hC(r2 � r1)io =
hC(r1; r2)ito. Thus positional and orientational average can be performed by
inserting V �1Æ(r � jr2 � r1j) in any

R
dr1dr2 � � � integral, where the factor V �1

is due to the translational invariance. For instance

hC(r1; r2)ito � V �1
Z
dr1dr2C(r1; r2)Æ(r � jr2 � r1j);

= V �1
Z
dr1d(r2 � r1)C(r2 � r1)Æ(r � jr2 � r1j):

The integrand is independent of r1, and the r1 integral yields a factor of
volume, that is cancelled by the prefactor. Expressing the relative vector r2�r1
in spherical representation yields

=

Z
d(cos �)d�r2C(r) = 4�r2P (r):

4�r2P (r) is the pair-distance distribution between the objects, e.g. it gives
the number of particles in a spherical shell between r and r + dr around any
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object. The scattering function of a �xed radial shell can be derived using the
same procedure as

S(q; r) / V �1
Z
dr1dr2C(r1; r2)Æ(r � jr2 � r1j)e�iq�(r2�r1)

=

Z
d(cos �)d� r2P (r)e�iqr cos � = 4�r2

sin(qr)

qr
P (r):

The scattering is only a function of q, and performing the radial integral of
the pair-distance distribution yields the normalised scattering function as

S(q) =

R
dr4�r2 sin(qr)qr P (r)

N
R
dr4�r2P (r)

:

This expression can be used for calculating the scattering from a polymer
chain when an expression for the pair-distance distribution is available.

4.6 Polymer models

Polymers are connected string-like objects, which gives rise to connectivity cor-
relations between di�erent sites on the same chain. Polymers also consist of
monomers, which interact with neighbouring monomers, this interaction gives
rise to rigidity of the polymer back bone, due to the torsional potential of
the bonds and possible steric interactions from side groups on the monomers.
Monomers far from each other along the chain, can be spatially close due to
the conformation of the polymer chain, and this leads to excluded volume in-
teractions. Finally, monomers interact with the solvent molecules, which means
that the preferred polymer conformations show a strong dependence on solvent
quality and temperature [4].

A chain with contour length L from end-to-end or correspondingly n seg-
ments, can be regarded as a polymer conformation given by a vectors Ri which
denote the position of a i'th site/segment along the chain. One parameter that
describes a polymer is the mean square site-site distance which is de�ned asD

R2
ij

E
=

����R�
i �R�

j

���2�
�
;

where the average is over all conformations of the polymer, andR�
i �R�

j denotes
the separation vector from site j to site i when the chain is in the �'th con�g-
uration. From this expression the Hausdor� dimension dH [53] can be de�ned
as q

hR2
iji / ji� jj

1
dH :

The �true� Hausdor� dimension is obtained for ji � jj ! 1. For chains of
�nite length there will be corrections to the Hausdor� dimension. A special case
of the site-to-site distance is the end-to-end distance, which is de�ned as
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D
R2
ee

E
=
D
jR�

0 �R�
nj2
E
�
;

Another quantity is the radius of gyration, which is de�ned by

D
R2
g

E
=

*
1

n

nX
i

jR�
i �R�

cmj2
+
�

where R�
cm =

1

n

nX
i

R�
i :

The radius of gyration is the mean square distance from a site on the chain
to the chain center of mass, and it is a measure of the spatial extension of the
chain. The radius of gyration can also be shown to be [54]

D
R2
g

E
=

1

n2

*
nX
i;j

���R�
i �R�

j

���2+
�

:

The most simple model of a polymer is a �exible chain model, i.e. a random
walk. In this model the step length l0 of the random walk must be longer than the
length scale over which chain orientation information persists in a real polymer,
and hence the �exible chain model only captures large scale properties of a real
polymer. The model includes e�ects due to connectivity, however, e�ects due to
chain-chain and chain-solute interactions are neglected, and thus it corresponds
to the physical case of a polymer in a �-solvent, where polymer interactions
can approximately be neglected. From basic random walk theory it follows that
the mean square site-to-site distance hR2

iji = ji � jjl20, where l0 is the segment
length. In particular hR2

eei = l0L, and from this equation it follows that dH = 2.
The radius of gyration can be shown to be hR2

gi = l0L=6 in the limit of many
segments [54]. From basic random walk theory it can further more be shown
that the pair-distance distribution between sites on a random walk is Gaussian
distribution in the large n limit.

The angle � between successive segments is free for the �exible chain model,
�xing this angle introduces semi-�exibility in the chain, hence known as the
semi-�exible chain model, this model also neglects interactions between di�erent
segments. Flory [54] has shown that the expressions for the average end-to-end
distance and radius of gyration for a �exible chain (in the large n limit) are also
valid for a semi-�exible chain, however, with the segment length replaced by the
Kuhn Length b as D

R2
ee

E
= Lb; and

D
R2
g

E
=

Lb

6
:

The Kuhn length b is given by

b =
1 + cos(�)

1� cos(�)
l0:

The Kuhn length is the length scale on which the orientation of subsequent
segments is uncorrelated. e.g. it is the step length of the equivalent �exible chain.
An approximate expression for the pair-distance distribution of a semi-�exible
chain has been derived by Daniels [55, 56].
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The Kratky-Porod chain model is obtained from the semi-�exible chain
model in the limit where nb !1, l0 ! 0, and � ! 0 such that the number of
statistical independent segments nb = L=b is �xed, in that case [54, 57, 58]D

R2
ee

E
= Lb

�
1� 1

2nb

�
1� e�2nb

��
;

and D
R2
g

E
=

 
1� 3

2nb
+

3

2n2b
� 3

4n3b

�
1� e�2nb

�! Lb

6
:

These expressions reduce to the semi-�exible chain result in the limit of
large nb. The previous models were analytically tractable, however, including
excluded volume e�ects for both a �exible and semi-�exible chain model leads
to a model, that is very di�cult to handle analytically. The excluded volume
interaction is a very strong and long-ranged interaction for polymers in three
dimensions. There are three approaches which can yield results for chains with
excluded volume: one is simulation techniques such as Molecular Dynamics or
Monte Carlo simulations, see e.g. [59, 60, 61, 62], another approach is functional
integrals [30], and a third method is renormalization group techniques, see e.g.
[46, 48, 63, 64].

Simulation techniques are limited by the computer time it takes to perform
a simulation, at present, however, it is possible to perform simulations on very
complex chain models. It is also possible to simulate chains con�ned to pores
[65], or chains tethered to surfaces. The disadvantage of simulation techniques
are that results are obtained for a particular set of parameters, and repeated
simulation runs sweeping the parameter space are necessary before general con-
clusions can be made just like performing a series of experiments.

Functional integrals provide a statistical physical description of polymer
chains. Polymers are represented as a continuous curve R(l), with an energy
functional given by an Edwards Hamiltonian HE[R(l)] [66]. The chain partition
function can be obtained by integrating over all continuous curves (hence the
name functional integrals) where each curve is weighted by the Boltzmann fac-
tor exp(�HE[R(l)]=kbT ). Functional integrals of both �exible and semi-�exible
chains can be formulated. A functional integral can be reexpressed in terms of a
di�usion equation, and the problem of excluded volume chains can be expressed
as a self-consistent solution of a di�usion equation i.e. a SCF theory [66, 67].

Renormalization group techniques (RGT) attack the problem of excluded
volume by expanding the functional integral in powers of the site-site interaction
parameter. This expansion is divergent in three dimensions, however, in four
dimensions the excluded volume interaction can be regarded as a perturbation.
Heuristically this can be explained by the fact that the Hausdor� dimension of a
excluded volume chain is less than two (it is dH � 1:7 [68]), two planes (dH = 2)
will almost always cross each other in a four dimensional space, while they will
almost never cross each other in a �ve dimensional space. Similarly two self-
avoiding chains will rarely overlap if the dimension is four [21]. The expansion
can furthermore be expanded in � given by the dimensionality d = 4��. Through
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the renormalization procedure singular terms around d = 4 are absorbed in a
series of relations relating microscopic (bare) quantities to e�ective macroscopic
quantities. Hence the ill-behaved microscopic model is reformulated into a well-
behaved e�ective model that depends only on macroscopic quantities, and these
can then be evaluated for � = 1 i.e. in three dimensions.

Using a simple mean �eld argument Flory predicted a simple scaling relation

R2
ee

�
= b2n2� between mean-end-to-end distance and the number of statistical

segments for a �exible chain with excluded volume interactions [21]. Here b is the
Kuhn length, n is the number of segments which is assumed to be large. Flory
also gave an expression for the critical exponent � = 3=(d+ 2). This expression
gives the correct value for one and two dimensions. In three dimensions Flory
predicted v = 0:6, while RGT predicts a value of � = 0:588 [63, 68]. For 4
four dimensions or more � = 0:5. RGT also provides an expression for the
pair-distance distribution [60, 64, 69] from which the radius of gyration can be
calculated [70] as

D
R2
g

E
=

b2n2�

2(1 + �)(1 + 2�)
:

Later studies have shown that di�erent exponents exist for end-to-end, end-
to-internal point and internal-to-internal point distributions [60, 64]. The result
for a �exible random walk is retrieved in the limit of � ! 0:5. The Hausdor�
or fractal dimension of a chain is given by dH = ��1, and this is related to the
volume occupied by a chain in the long chain limit.

4.7 Scattering from a dilute solution of �exible poly-

mers

In a dilute polymer solution we can neglect the correlations between positions,
orientation, and con�guration of individual chains, and as a result the scattering
can be calculated from the pair-distance distribution of a single chain (H(q) =
0). For a long �exible polymer without interactions between any sites the pair-
distance distribution is given by a Gaussian distribution as

P (r; l)4�r2dr =

�
3

2�hR2
ee(l)i

� 3
2

exp

 
� 3r2

2hR2
ee(l)i

!
4�r2dr:

This results follows from the fact that the problem of a non-interacting
�exible polymer can be mapped onto the problem of a random walker, where
the time in the random walk problem corresponds to contour length for the
polymer. P (r; l) is the distance distribution for two arbitrary sites on the chain
separated by a distance l along the contour. The scattering contribution from
two �xed sites separated by a �xed contour length l is sin(qr)=(qr) averaged
over all possible separations r as

	(q; l) =

Z 1

0
dr4�r2

sin(qr)

qr
P (r; l) = exp

 
�blq

2

6

!
:
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	(q; l) is a con�gurational averaged phase factor for �xed contour length.
The full scattering is obtained by averaging the phase factor over all possible
sites (l1 and l2) on the chain as

FDebye(q) =

Z L

0

dl1dl2
L2

	(q; jl1 � l2j) =
Z L

0
dl
2(L� l)

L2
exp

 
�blq

2

6

!

=
2 (e�x � 1 + x)

x2
;

where the abbreviation x = bLq2=6 = (qRg)
2 was introduced. This result was

�rst derived by Debye in 1947 [71]. In a similar manner the form factor of
any polymer chain with a given pair-distance distribution can in principle be
derived. Results for the Daniels and des Cloizeaux distributions [55, 60] are
given in article IV and shown in �gure 4.1.
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Figure 4.1: Form factors for di�erent pair-distance distributions for Rg = 3:11b
and L=b = 38 corresponding to the simulation.

The form factor of �exible chains with and without interactions, semi-�exible
chains without interactions, and simulation results with excluded volume inter-
actions and semi-�exibility are shown in �gure 4.1. The Daniels approximation
breaks down around qb ' 3 values, but the remaining three form factors shows
power law behaviour at high q values. This is caused by the di�erent chain
statistics
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Figure 4.2: Scale dependent Hausdor� dimension corresponding to form factors
shown in �gure 4.1.

��
R�
i �R�

j

�2�
�
/ ji� jj

2
dh(ji�jj) ;

where dh(ji� jj) is the scale dependent Hausdor� dimension, which can also be
derived from the form factor as as dH(q) = �d(log10(Fc))=d(log10(q)), and this
is shown in �gure 4.2. For small qb values the chain is probed on very long length
scales compared to the radius of gyration, where chains are point-like objects
with Hausdor� dimension is zero. For large values of qb very short length scales
are probed, the Debye and des Cloizeaux distributions do not include semi-
�exibility, and they converge to the long chain limit of a random walk and a
self-avoiding random walk, which yields Hausdor� dimensions of two (� = 0:5)
and 1:7 (� = 0:588), respectively. The Hausdor� from the simulation has a peak
at the length scales where the random walk nature of the chain is probed, but
the simulations includes e�ects of semi-�exibility, which leads to dH = 1 at large
values of qb. An extended range of powerlaw behaviour is not observed because
of the �nite number of segments and few vertices per Kuhn length.
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4.8 Scattering from a semi-dilute solution of �exible

polymers

Assuming that N identical polymers each with n segments/scattering sites is
dissolved in a volume V . Assuming further that R�

ij is the position of the j'th
segment on the i'th chain when the collective con�gurations of all the chains is
denoted � (in the following the indices i; l range from 1; : : : ; N and j; k from
1; : : : ; n in order to simplify notation). This means that the instantaneous den-
sity distribution of the �'th state is given by

��(r) =
NX
i=1

nX
j=1

Æ(r�R�
ij);

while the mean density of scattering sites in the volume is � = nN=V . The solu-
tion will be in the semi-dilute regime if 4�R3

gN=(3V ) > 1, where Rg is the radius
of gyration of an unperturbed chain. The semi-dilute regime is characterized by
chain densities so large that there are more than one chain within the volume
occupied by an unperturbed chain.

The scattering function was shown to consist of two contributions due to
the con�gurationally averaged density and density �uctuation correlations. The
average density is constant, and as a result the scattering from the average
density is proportional to a delta function at q = 0, and it will be neglected.
The scattering function S(q) is the density �uctuation correlation function D(q),
and is given by

S(q) =
1

nN

*����Z dr��(r)e
�iq�r

����2
+
�

=

*
1

nN

������
NX
i

nX
j

e�iq�R
�

ij

������
2+

�

=
1

nN

NX
i

nX
j;k

D
e�iq�(R

�

ij�R
�

ik)
E
�
+

1

nN

NX
i 6= l

nX
j;k

D
e�iq�(R

�

ij�R
�

lk)
E
�
;

which can be written as

S(q) = !(q) + �h(q): (4.9)

We have thus written the total scattering function as the contribution from
intra-chain correlations, and inter-chain correlations. The intra-chain scattering
contribution is de�ned as

!(q) =
1

nN

NX
i

nX
j;k

D
e�iq�(R

�

ij�R
�

ik)
E
�
;

which is simply the Fourier transform of the distance distribution between sites
on the same chain. If chain-chain interactions are weak, for instance for suf-
�ciently low densities within the semi-dilute regime, and if we neglect semi-
�exibility and excluded volume interactions, then !(q) = nNFDebye(qRg). The
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inter-chain scattering contribution is the Fourier transform of the distance dis-
tribution between sites on di�erent chains

h(q) =
V

(nN)2

NX
i6=l

nX
j;k

D
e�iq(R

�

ij�R
�

lk)
E
�
:

Inter-chain correlations are long-ranged on the length scale of the character-
istic inter-chain length scale. This is caused by indirect interactions mediated
by neighbouring polymer chains. As a result an e�ective inter-chain correlation
function between sites on pairs of polymers can be introduced, which is called
the direct correlation function, and denoted c(q), this should not to be confused
by the Fourier transform of the average density distribution C(q). The direct
correlation function is introduced in an attempt to decompose the correlations
induced by indirect interactions, mediated by the medium consisting by all other
polymers, into an e�ective pair correlation that includes only direct interactions
between pairs of chains. The direct correlation function is expected to have a
characteristic length scale comparable to the inter-chain distances. In reality
each pair of sites on two chains have a direct correlation function, but an aver-
age is often performed over all sites producing a site-averaged direct correlation
function. This is the equivalent site approximation.

S(q)= + ρ

+

+

ρ

ρ2
+ ...

=
c

ω

Chain

h

Figure 4.3: Diagrammatic expansion of the PRISM equation in terms of intra-
chain correlations !(q), and direct correlation function c(q).

Following this approach, the scattering can be resolved into contributions
from the individual chain !, a contribution from the correlation between two
polymers �!c!. A diagrammatic expansion is shown in �gure 4.3, where the
scattering is interpreted as the correlation created by a jump from one site to
another site on the same chain (providing a factor !), a jump from that site
to another site on another chain (�c), and �nally a jump to another site on
the other chain (!). Taking higher order terms into account the result is an
expansion of the scattering function as

S(q) = ! + �!c! + �2!c!c! + �3!c!c!c! + � � � (4.10)

This equation can be regarded as the de�nition of the direct correlation
function. Comparing eq. (4.9) and (4.10) shows that the total inter-molecular
correlation function can be written
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h(q) = !c! + �!c!c! + �2!c!c!c! + � � � = !c (! + �h) ; (4.11)

which is the Polymer Reference Interaction Site Model (PRISM) equation [72,
73, 74, 75]. In PRISM theory an expression for !(q) is assumed, as well as a clo-
sure relation, which relates the direct correlation function c(r) to an interaction
potential. From the closure relation the total correlation function h(q) can then
be obtained via the PRISM equation. Solving eq. (4.9) and eq. (4.11) for the
intra-chain correlation function ! and the direct correlation function c(q) yields

S(q) =
!(q)

1� �c(q)!(q)
:

If the direct correlation function is short ranged, the Fourier transform
will essentially be constant, so we can introduce the approximation ��(�) =
�n�c(q = 0), where � is the excluded volume parameter. The assumption
that the excluded volume parameter is a function of the density was origi-
nally suggested by Daoud et al. [20] and rigorously shown by Benoit et al. [76].
A normalised intra-correlation function is de�ned as !(q) = !(q)=n such that
!(q = 0) = 1. This has the e�ect of turning the PRISM expression for the
scattering into the form of an Random Phase Approximation (RPA) [73, 76]

S(q) = n
!(q)

1 + ��(�)!(q)
:

Thus

n

S(q = 0)
= 1 + �(�)�:

The left hand side is the scattering per polymer molecule rather than per
scatterer. The excluded volume parameter �(�), which should not be confused
to the critical length exponent. A comparison of this expression with eq. (4.8)
shows that �(�) = 2A2(�). The excluded volume parameter can be shown to
depend only on the reduced polymer concentration c=c� [21, 73].

4.9 Core-shell models

Core-shell models describe the scattering as being caused by a number of concen-
tric shells, see e.g. [70, 77]. Assuming the shells to be of in�nitesimal width, the
core-shell model assumes knowledge of the �(s) area density of scatterers on the s
sized shell. The normalised core-shell form factor amplitude (Ashell(q = 0) = 1)
is given by

Ashell(q) = ��1
Z 1

0
dsA(s)	s(q; s)�(s) with � =

Z 1

0
dsA(s)�(s); (4.12)

where A(s) is the area and 	s(q; s) is the phase factor of a s sized shell given
by
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	s(q; s) = A(s)�1
Z

drÆ[f(r; s)]e�iq�r;

where f(r; s) is a shape-function. The shape function is zero if and only if
the point r is on the shell with size s. The area of the shell A(s) is given by
A(s) =

R
drÆ[f(r; s)]. The orientationally averaged form factor and form factor

amplitude of a shell structure is

Fshell(q) = hAshell(q)Ashell(�q)io and Ashell(q) = hAshell(q)io :

An example: For the special case of a spherical shell the shape function is
f(r; s) = jrj � s, in this case the phase factor is easy to calculate as

	sphere(q; s) = A(s)�1
Z
drÆ[jrj � s]e�iq�r

=
1

4�s2

Z
d�d(cos �)e�iqs cos � =

sin(qs)

qs
:

Assuming a homogeneous spherical object the radial density is �(s) = 1 for
s < r and 0 elsewhere. The radial integral becomes

Asphere(q) =
3

4�r3

Z r

0
ds4�s2

sin(qs)

qs

=
3[sin(qr)� qr cos(qr)]

(qr)3
= �(qr):

This result was �rst obtained by Lord Rayleigh [78]. The form factor ampli-
tude for a homogeneous sphere is the simplest possible core-shell structure and
will denoted �(qr) in the rest of this thesis. Since the form factor amplitude
only depends on the magnitude of the q vector the form factor of a sphere is
Fsphere(q) = �2(qr). The form factor will always be the square of the form factor
amplitude for any spherical symmetric distribution.

A core-shell model of a micelle with a spherical core assumes Fmicelle(q) =
(�corAcor(q) + �co�(qRco))

2, where the corona form factor amplitude Acor is
given by eq. (4.12) using some assumed corona pro�le �(r). Hence core-shell
models includes scattering due to an average shell densities (C(q)), but neglects
the scattering scattering due to density �uctuations (D(q)) caused by chain
connectivity, and chain interactions such as the correlation hole [20] are ne-
glected. The next section demonstrates how some of these e�ects can be taken
into account.
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Core

Corona

Figure 4.4: Illustration of a micelle consisting of a spherical core and a corona
of dissolved chains.

4.10 Scattering from a micellar aggregate

A micelle consists of a core with some geometrical shape such as spherical,
elliptical or cylindrical, and a corona of dissolved polymer chains. Assuming
that the core is homogeneous then it can be described by a core-shell model
As(q). The normalised (A�

cor(q = 0) = 1) corona form factor amplitude is

A�
cor(q) =

1

Nn

NX
i=1

nX
k=1

e�iq�R
�

ik ;

where R�
ik is the location of the k'th vertex on the i'th chain in the corona when

the corona is in the �'th state. N is the number of chains, and n is the number
of scattering sites per chain (in the rest of this section all i and j sums are
over chains, i.e. they range from 1; : : : ; N). The normalised [Fmicelle(q = 0) = 1]
scattering of a micelle can then be written as

Fmicelle(q) = (�ch + �co)
�2
D
j�chA�

cor(q) + �coAs(q)j2
E
�o
; (4.13)

where the average is over all con�gurations (���) of the chains in the corona and
orientations (�o�) of the micelle. The two terms describe the corona and core, re-
spectively. �ch and �co are the total excess scattering lengths of the whole corona
and core. These can be written �ch = NVch��ch and �co = NcoVco��co where
N ,Nco, Vch and Vco are the number of chains in the corona and core, respectively,
and the speci�c volume of a single corona and core chain, respectively. The ex-
cess scattering length densities of a corona chain is��ch = �corona;chain��solvent
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and for core chain ��co = �core;chain � �solvent, where �corona;chain,�core;chain,
and �solvent are the scattering length densities of a single chain in the corona,
of a single chain in the core, and of the solvent, respectively. Assuming that
the core form factor As(q) is real, which is the case if the core has a parity
(R! �R) symmetry, then the micellar scattering can be expressed as

Fmicelle(q) = (�ch + �co)
�2
D
�2chA

�
cor(q)A

�
cor(�q)

+�2coA
�
s (q)

2 + 2�ch�coAs(q)Re (A
�
cor(q))

E
�o
:

These three scattering terms correspond to the corona form factor, the core
form factor, and an corona-core interference scattering, respectively. A nor-
malised corona form factor is de�ned by

Fcor(q) =
D
jA�

cor(q)j2
E
�o
: (4.14)

The corona-core interference scattering can be de�ned as

Scs(q) = hAs(q)Re (A
�
cor(q))i�o :

In the special case of a spherical core Scs(q) = �(qr)Acor(q) and Acor(q) =
hA�

cor(q)i�o. Using these de�nitions, the micellar scattering for a spherical core
is

Fmicelle(q) = �2chFcor(q) + �2co�
2(qr) + 2�ch�co�(qr)Acor(q):

The physical interpretation of these three terms is that they, respectively,
correspond to the Fourier transform of the pair-distance distribution between
two scattering sites in the corona, two scattering sites in the core, or between two
scattering sites in the core and in the corona. In the special case of a spherical
core, the vector between a site in the corona and a site in the core can be written
as a sum of a vector from the corona site to the core center, and from the core
center to the core site. Due to the rotational symmetry these two vectors will
be statistically independent and independent on orientation. As a result the
pair-distance distribution factorises into the product of a corona-site-to-core-
center (Acor) and center-to-core-site (�) probability distributions, the Fourier
transform of which is Scs(q).

The corona scattering can separated into contributions using several choices
for the separation. One possibility is to separate the corona scattering in terms
of scattering from the con�gurationally average density, and scattering from
the density �uctuation about this average. Another approach is to separate the
scattering in terms of inter-chain scattering and of intra-chain scattering as

Fc(q) =

*
1

N

X
i

jA�
i (q)j2

+
�o

; and

H(q) =

*
1

N(N � 1)

X
i 6=j

A�
i (q)A

�
j (�q)

+
�o

; (4.15)
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where the phase sum A�
i of the i'th chain when the corona is in the �'th con-

�gurational state is de�ned as

A�
i (q) =

1

n

nX
k=1

e�iq�R
�

ik :

The corona form factor is the following weighted average

Fcor(q) =
1

N
F (q) +

N � 1

N
H(q): (4.16)

The physical interpretation of these two terms is as follows: F (q) is the
average single chain form factor, e.g. the Fourier transformed pair-distance dis-
tribution between sites within the same chain. This carries information about
the chain radius of gyration, chain length, chain sti�ness, and the number of
statistical independent segments. It also contains information about chain con-
nectivity such as the fractal dimension of the chain. The Fourier transform of
the pair-distance distributions between sites on di�erent chains H(q) contains
information about the radial pro�le of the corona, but also chain-chain interac-
tions such as the correlation hole, which is present in ordinary three dimensional
polymer solutions [20, 21].

4.11 Interpretation of scattering

Scattering techniques are very sensitive to the structural arrangements of the
scatterers, especially periodic structures. As a result scattering techniques are
ideally suited to probe structural arrangements. However, the basic problem of
scattering tehniques is the inverse problem of how to deduce structure from the
experimental data of the scattering S(q), since phase information is lost in the
measuring process only the pair-distance distribution can be reconstructed, and
from from which structure must be inferred.

Furthermore, the scattering is only known in a certain range of q vectors
due to instrumental limitations. Data are subject to instrumental smearing due
to �nite beam collimation (how well de�ned are directions of ks and ki ), wave-
length spread (how narrow is the energy distribution e.g. jkij for instance from
a neutron source), and �nite detector resolution. Finally there are statistically
errors on the experimental scattering data. All these sources of error make a
direct inversion of S(q) very di�cult in general. Only in the special case of a
spherically symmetric arrangement of scatterers is it possible to analytically in-
vert the scattering, as in that case the Fourier transform is a real function, and
no phase information is lost due to the norm square except for an overall sign.

Two types of methods exist for inferring the physical structure producing the
observed scattering; these are model �tting and free-form analysis [19]. In free-
form analysis the pair distance distribution is obtained for example by the in-
direct Fourier transform method introduced by Glatter [79]. The method works
as follows: the pair distance distribution is represented as a linear combina-
tion of cubic splines, typically with some 50 spline functions. The coe�cients
are obtained by �tting the Fourier transformed basis functions to the observed
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scattering data. Finally, if the scattering objects are centro-symmetric the radial
excess scattering length density distribution can be obtained from square-root
deconvolution, also introduced by Glatter [80]. Instrumental e�ect can further-
more be incorporated in the �t. The �free form� name of the method follows
from the fact that the indirect Fourier transform method is independent on any
a-priori assumed model expressions, just like maximum entropy methods.

Model �ts using least-squares methods [81, 82, 83, 84] is another way of in-
ferring the structure [85]. A particular model is assumed, for instance a model
describing the scattering expected from a solution of micellar aggregates. The
model will depend on a number of parameters, and the most likely set of param-
eters are obtained from �tting the model scattering to the experimental data.
The goodness-of-�t is typically estimated by the reduced chi-square statistic
�2red, which is de�ned as

�2red(�1; : : : �M ) =
1

N �M

NX
i=1

�
Iexpi � Imod(qi;�1; : : : �M )

�2
�2i

;

where N is the number of experimental data points Iexpi , qi is a set of �xed
control parameters e.g. detector positions, and �i is the error of the experimen-
tal data, while Imod is the model prediction of the scattering at qi. The model
depends on the M parameters �1; : : : ; �M . The most likely set of control pa-
rameters assuming the model is true are determined by minimising �2red. If the
obtained reduced chi-square is close to unity it suggests that the model is a
good description, and that the estimated parameter values are reliable, as the
model curve will on average pass through a 2�i sized window about every data
point Iexpi . If the reduced chi-square is �large� the model is likely to be a wrong
description of the data, and parameters obtained by the �ts are meaningless. If,
on the other hand, the reduced chi-square is less than unity, it suggests that the
error bars are either systematically too large or that the model depends on too
many parameters given the quality of the experimental data.

4.12 Maximum Entropy methods

A good introduction to Bayesian statistics and Maximum entropy (ME) has
been written by Jaynes [86], while [87, 88] are reviews of scattering related
applications of ME. The following is a heuristic introduction.

Given an experiment that involves a measurement on a distribution, and
yields as experimental result for the mean a and variance �2 of the distribution,
which distribution was measured? Clearly the question is ill-posed as no unique
distribution can be speci�ed based on the knowledge of the mean and variance,
however, a unique distribution exists that assumes the least amount of extra
information compared to the information we have. This is the maximum entropy
distribution. From information theory [89] the relative entropy is de�ned as

H[P;Q] = �
X
i

Pi log2(Pi=Qi) = �
Z
dxP (x) log2

�
P (x)

Q(x)

�
:
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In the context of information theory, this expression has the following in-
terpretation: if a receiver has a prior information given by the frequency Qi of
symbols/letters received in earlier messages, and received a new message with
symbol frequencies Pi, the relative entropy that the receiver has obtained is
H[P;Q], i.e. this is the number of bits of knowledge the receiver has after re-
ceiving the message. This is almost always di�erent from the number of bits
in the message itself. The relative entropy can be interpreted as the average
of the information or �surprise�, when we observe the i'th symbol as given by
� log2(Pi=Qi). If Pi=Qi is one it means that we are observing a particular sym-
bol with the expected frequency, and this is not a surprise, nor will we receive
any new information. However, if Pi=Qi is large a particular symbol is observed
more frequently than expected, and we will be very surprised by its occurrence,
i.e. we have received a lot of new information.

Thus given the experiment which provides prior knowledge of the mean and
variance, and assuming no prior knowledge about the shape of the distribution
e.g. Q(x) = 1, the entropy is given by

H[P ] = �
Z
dxP (x) log(P (x)) + �0 (1� h1i)

+�1 (a� hxi) + �2
�
� �

hD
x2
E
� hxi2

i�
;

where hf(x)i = R
dxP (x)f(x) is the expectation value of the function f(x). Here

base e is used instead of base 2 in the logarithm, which makes no di�erence,
as it corresponds to a rede�nition of the unit of information from a number of
bits (binary digits) to the number of base e digits. The three �'s are Lagrange
multipliers. The Lagrange multipliers represent the constraints that the distri-
bution should be normalised, and that the mean a and variance �2 correspond
to the known values. The distribution which maximizes the entropy functional
is given by the equation ÆH[P ]=ÆP = 0 from which, it is easy to show that the
solution is P (x) = N exp[�(x� a)2=(2�2)], i.e. a Gaussian distribution.
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Chapter 5

Monte Carlo Simulation

Computer simulation techniques can be graded on a scale from purely stochastic
to purely deterministic algorithms. Deterministic algorithms, such as Molecu-
lar Dynamics (MD) simulate the trajectory of a system in phase space. This is
done by solving the equations of motion numerically. MD simulations can be
performed on non-equilibrium systems and simulate transport properties. It is
possible to obtain time averages of all the properties of interests from a MD
simulation. Assuming that the sampling of the system is ergodic, then ensemble
averages are obtained. Typically MD simulations are done within the micro-
canonical ensemble, but simulation of other ensembles are possible by modifying
the MD algorithm. MD methods are limited by the small time steps required
to perform an accurate numerical integration of the equations of motion, and
objects with rigid constraints are computationally di�cult to simulate.

At the other end of simulation techniques are stochastic algorithms, which
are based on the application of (pseudo) random numbers. A Monte Carlo (MC)
simulation allows canonical ensemble averages to be obtained for interesting
properties. Whereas MD simulates the evolution of a system through the equa-
tions of motion, a MC simulation de�nes a purely �ctitious dynamic, where
each state of the system has a number of possible �neighbour states�. The MC
simulation is performed by allowing the active state to perform a random walk
from neighbour to neighbour state. A neighbouring state to the active state
is chosen randomly for each iteration of the MC algorithm. The energy of the
neighbour state is calculated, and compared to the active state. The step to the
neighbour state is accepted if the neighbour state has a lower energy, however,
if the energy of the neighbour state is higher than the active state it is accepted
with a probability exp[��E=(kbT )], where �E > 0 is the energy di�erence
between the two states, kb and T are the Boltzmann constant and the absolute
temperature. The acceptance criterion is known as the Metropolis criterion [90].
The MC algorithm will perform a random walk, that visits a state ! with a
frequency proportional to the Boltzmann probability associated with that state
exp[�E[!]=(kbT )]. This is known as importance sampling, and requires only
that the energy of an state can be calculated.

The choice of possible neighbour states of a particular state is to some extent
arbitrary, however, the choice has to ensure an ergodic sampling of all con�gu-

41
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rations, which is to say that any two states have to be connected by a number
of neighbour steps. The choice also has to ensure an asymptotic convergence
towards an unique equilibrium ensemble of states, and this requires a balance,
such that the transitions into any state exactly equals the transitions out of
that state, such that no state acts as an absorber. Detailed balance, i.e. the
probability of choosing neighbour state B from an active state A must equal the
probability of choosing neighbour state A from an active state B, is a su�cient
requirement to ensure asymptotic convergence.

The choice of neighbour states do not have any physical meaning, but a
clever design of neighbouring steps, for instance by taking rigid constraints into
account when designing the neighbour class, allows the MC algorithm to roam
the con�guration space in relative few iterations, which makes a good sampling
possible with a limited number of steps.

5.1 Overview of Simulations

We have performed MC simulations on a single diblock copolymer micelle, with
the purpose of sampling the form factor as a function of a the number of tethered
chains, the length of chains, and the radius of the core. The micelle was mod-
elled as a core with a number of semi-�exible chains tethered to the core surface.
Spherical cores and cylindrical cores with hemispherical end caps have been sim-
ulated. Chains were excluded from the core region, and chains interacted through
excluded volume interactions implemented by placing hard spheres along the
chains.

Because hard sphere interactions was used the energy of a particular state
is either zero or in�nite depending on whether chains overlap or not, as a result,
the energy is independent of the temperature, which corresponds to the idealised
case of an athermal solvent. To ensure ergodic sampling of the micellar corona,
three MC moves were used; pivoting moves were used to modify individual
chain con�gurations, while two surface moves were used to reorientate the chain
and move it on the core surface. During the simulation a number of physical
quantities was sampled such as the scattering contributions corresponding to
the inter-chain scattering F , the inter-chain scattering H, and the corona form
factor amplitude Acor. We also sampled the single chain radius of gyration,
the mean chain center-of-mass distance from the core, and the radial monomer
pro�le.

5.2 Models of Chains Molecules

Polymers are string-like molecules consisting of many identical monomers bound
by covalent bonds. The bonds between individual monomers have a certain
torsional potentials, and the monomers can have side groups, which gives rise
to local steric hindrance for rotations. These local interactions gives rise to a
certain sti�ness on length scales comparable to the monomer length scale [54].
We model a polymer chain by n+ 1 vertices linked by n segments of length l0.
The angle between subsequent segments is �xed at a constant value �, while the
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dihedral angle wi can take any value in the interval [��;�] for any segment,
where wi = 0 corresponds to a trans-con�guration. This semi-�exible model
provides a good meso-scopic description of polymers using an e�ective segment
length and angle [91, 92].

Θlo wi

i+1P

iP

i-1P

Figure 5.1: Illustration of a semi-�exible chain in trans-con�guration, the tail of
the chain has been pivoted 180Æ about the i'th segment.

A valence angle of � = 44:4153o was chosen, such that the Kuhn length
b = 6l0. In the long chain limit the radius of gyration of a �exible chain and
semi-�exible chain coincide. The freely rotation chain model can be regarded as
a discrete version of the continuous Kratky-Porod chain model, which is reached
in the limit L!1, l0 ! 0, � ! 0 for �xed L=b.

Excluded volume interactions was simulated by placing hard spheres with
radius � at each vertex. The radius was chosen such that �=b = 0:1, which is
known to reproduce the binary cluster integral of polystyrene in a good solvent
[93].

5.3 Creating a chain

De�ning the i'th segment vector by ri = Pi+1 � Pi where Pi is the position
of the i'th vertex. We assume that the foot vertex P1 is given, along with the
direction r1. To de�ne a coordinate system, we need two vectors. We choose a
random vector R not parallel to r1 is chosen. Then a vector orthogonal to r1 is
constructed by

r? = R�
�
R � r1
jRjjr1j

�
r1:

A �ctitious zeroth segment vector can constructed using the orthogonal vec-
tor by

r0 = �l0 cos � r1jr1j + l0 sin �
r?
jr?j : (5.1)

The zeroth and �rst segment vectors de�ne a coordinate system from which
all subsequent segments can be added, and the �ctitious zeroth segment makes
it possible to uniquely de�ne the dihedral angle of the �rst segment. In general
given the i � 2 and i � 1 segments the i'th segment can be constructed with
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a speci�ed segment length l0, segment angle �, and dihedral angle wi�1 of the
previous segment as follows: De�ne two auxiliary vectors

n1 = ri�2 � ri�1 and n2 = ri�1 � n1:

n1 is orthogonal to the plane spanned by the two segment vectors, while
n2 lies within the plane, and points in the direction of a trans con�guration.
The three vectors fri�1;n1;n2g de�nes an orthogonal coordinate system. In this
coordinate system the i'th segment can be constructed such that the previous
segment has a torsion angle !i�1 by

ri = �l0 cos � ri�1

jri�1j + l0 sin �

�
cos(!i�1)

n2

jn2j + sin(!i�1)
n1

jn1j
�
: (5.2)

Here the dihedral angle is zero in the trans state, and the sign of the dihedral
angle is de�ned in a right handed manner. Any chain con�guration is completely
speci�ed by the knowledge of r0, r1, the �xed segment length and angle, and
a table of dihedral angles wi for i 2 f1; : : : ; n� 1g, while the chain position in
space is given by the knowledge of any vertex for instance the foot vertex P1,
which is �xed on the micelle surface.

This representation in terms of generalised coordinates suggests that an MD
simulation based on propagating the system using the Euler-Lagrange equation
[94] would be more e�ective than using Newtons second law and enforcing the
constraints through a rattle or shake algorithm [95]. A hybrid MD/MC algo-
rithm has been proposed that uses a generalised coordinates representation of a
chain[96]. We have used a simple coordinate representation of all vertices as this
facilitates the overlap check between di�erent chains, and it is a natural choice
when sampling the micellar scattering.

5.4 Creating a micelle

A micelle consists of a core and a number of tethered chains. The tethered chains
are excluded from the core and are not allowed to overlap. Chains are grown
simultaneously rather than by adding a single chain at a time. First all chain
roots (P0;P1;P2) are generated until all chains have a root. During this phase
the P1 and P2 vertices are checked for overlap with other roots, and the second
vertex P2 is checked for overlap with the core. If an overlap is detected the root
is relocated. No checks are made for the zeroth segment as this is not a physical
segment.

Chain construction starts when all roots have been placed and does not
overlap. Chains are grown by adding a segment to the shortest chain until all
chains have the required number of segments. Everytime a segment is added the
end vertex is checked for overlap with all other chains. If an overlap is detected,
the last 20 segments are removed. If this includes the root, then the root is re-
located. During chain creation the dihedral angle is restricted to [�60Æ; 60Æ] as
this stretches the chains somewhat, and thus reduces the crowding at the sur-
face. Chains are �exible enough, that they can be regrown around other chains
after an overlap. While this procedure ensures that the initial micelle does not
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overlap, it produces a strongly biased initial con�guration. The con�guration is
equilibrated by performing MC steps until on average 200 moves per degree of
freedom have been accepted. The equilibration was monitored by sampling the
acceptance rate, which decays rapidly and stabilises when the corona reaches
equilibrium. The equilibration was also monitored by sampling the radius of gy-
ration and average chain center-of-mass distance from the core. These quantities
are also seen to stabilise at the equilibrium values before the actual sampling
starts. During the equilibration phase the acceptance and rejection frequency
of the three MC moves was monitored, and the excursion of the moves was
adjusted to obtain approximately 50% acceptance rate for the three moves.

The probability of choosing a move was chosen to be proportional to the
number of degrees of freedom that is changed by an accepted move, and the
number of degrees of freedom of the micellar corona. Thus an accepted surface
move will modify two degrees of freedom, either two surface coordinates or
two orientation angles. The pivot move (see next section) changes one degree
of freedom, a single dihedral angle. The probabilities for the di�erent types of
moves was chosen as P (Surface rotation) = P (Surface translation) / 2N
and P (Pivot) / (n � 1)N where n is the number of segments, and N is the
number of chains in the corona.

5.5 Pivot move

Numerous moves have previously been proposed for sampling the con�guration
space of an isolated chain both on a lattice and o�-lattice. Some examples are
reptation moves, concerted rotation moves, and biased moves such as chain
removal and regrowth of the Rosenbluth type [97, 98, 99]. However, pivots moves
used in the present work allows the semi-�exibility of the chains to be taken
directly into account.

Pivot moves was originally introduced for chains on a lattice [100, 101]. A
random site on the chain was chosen and the shortest half of the chain was
transformed with an element from of the lattice symmetry group. This leads
to a very large con�gurational change, however, the probability for overlap is
considerable, and as a result many attempted moves are rejected, on the other
hand when a move is accepted, it has a major e�ect on the chain con�guration.
Madras and Sokal have shown that the pivot algorithm is ergodic, and that it
is the most e�ective move known for sampling self-avoiding random walks on a
lattice [61, 101].

The idea of the lattice pivot move can easily be generalised to o�-lattice
semi-�exible chains [102]. For a chain in a micellar corona, a pivot move is
performed by pivoting the tail of a chain around randomly chosen segment, as
only the tail can be rotated due to the fact that the head of the chain is always
tethered to the core surface. The result is that while only a single dihedral angle
is changed, the chain con�guration is very di�erent, and after a few percent of
the segments have been pivoted an essentially new con�guration is reached.

Pivoting the chain about a segment i with an angle � is done by transforming
all vertices Pj for j 2 fi+ 2; : : : ; ng according to
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Pnew
j = eQ(�;Pi+1 �Pi)(Pj �Pi) +Pi:

The transformation matrix that performs a rotation � around a direction
given by the i'th segment is given by eQ(�; r) = U(r)�1Rx(�)U(r); where Rx(�)
is a rotation matrix about the x axis, and U(r) is the matrix of directional
cosines, that relates the coordinate system with the x axis along the i'th segment
to the lab frame. The directional cosines are given by

a11 =
r

jrj � ex a12 =
r

jrj � ey and a13 =
r

jrj � ez; (5.3)

where ex; ey ; and ez are the unit vectors de�ning the x; y and z axis in the
laboratory frame. The Matrix Q can be written [102]

eQ = S +A; (5.4)

where the symmetric term is (denoting  = cos�)

S =

0B@ a211 + (1� a211) a11a12(1� ) a11a13(1� )
a11a12(1� ) a212 + (1� a212) a12a13(1� )
a11a13(1� ) a12a13(1� ) a213 + (1� a213)

1CA ; (5.5)

and the antisymmetric term (denoting Æ = sin�)

A =

0B@ 0 a13Æ �a12Æ
�a13Æ 0 a11Æ
a12Æ �a11Æ 0

1CA : (5.6)

In a polar representation of the chain the rotation is equivalent to !i = !i+�.

5.6 Surface moves

Two moves are required to move a chain, one reorientates the chain and another
moves the chain foot point on the surface of core. The chain can be regarded as
a rigid object where the zeroth segment is transformed as the rest of the chain.
This ensures that the torsional angle of the �rst segment stays constant during
surface moves. The reorientation move is made by pivoting the chain an random
angle � about the foot vertex around a random direction r as

Pnew
j = eQ(�; r)(Pj �P1) +P1 for j 2 f0; : : : ; ng:

For the special case of a spherical core the surface moves can be performed
without the need for introducing a surface coordinate system. The surface move
is performed by pivoting the entire chain about the core center around a random
direction. Assuming that the center of the core is located at the origin, this move
is given by
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Pnew
j = eQ(�; r)Pj:

However, general moves on a non-spherical core surfaces requires the intro-
duction of a surface coordinate system and knowledge of the Jacobian, as moves
are required to produce an uniform sampling of the micellar core surface.

For a class of core geometries the surface move can be vastly simpli�ed
by noting that the mapping from core surface onto the inscribed cylinder is
area preserving. This is true for spherical cores and hemispherical end-capped
cylinders. Thus a surface move can be regarded as a projection onto the inscribed
cylinder, a move on the inscribed cylinder surface, and a projection back on the
core surface. This de�nes a chain translation that moves the foot point to another
position on the core surface. The problem of performing a surface move, that
performs an uniform sampling of a complex surface, has then been reduced to
the simple problem of making an uniform sampling from a cylinder surface.

A move on a cylinder surface can be composed of a rotation around the axis
of the cylinder, and a step along the axis cylinder. If the step ends up above or
below the cylinder it can be re�ected back on the opposite side of the cylinder.
The projection of such a move corresponds to a move that translates a chain to
the opposite side of the north or south pole on the core surface.

5.7 Overlap

After a MC move the con�guration must be checked for overlap. Three di�erent
types of overlap can occur; chain overlap with itself, chain overlap with another
chain, and chain overlap with the core. Core overlap of a vertex (x; y; z) for a
general rotationally summetric core shape can be checked by x2 + y2 < R2(z)
where R(z) a the core cross section at height z, which for a sphere is

Rsphere(z) =
q
R2
co � z2:

Chain-chain overlap is done using the �zippering� algorithm [103]. Consider
a situation where one vertex on one chain is being checked for overlap against
any vertex on another chain. If the direct distance between the two vertices is
d, and if the maximum direct distance between two vertices at the ends of an
n segment long segment is D(n), then the next vertex that has a possibility for
overlap is located maxfn > 0jd � D(n) � 2� > 0g segments along the chain,
where the direct end-to-end length of n chain segments is given by

D(n) =

(
l0 cos(

�
2)n semi-�exible

l0n �exible
:

A naive algorithm for checking for overlaps within the same chain requires
O(n2) checks, but the Zippering algorithm requires only about n1:2 [103], which
vastly reduces the number of distance comparisons necessary to check a number
of chains for overlap. When checking for overlap between two vertices on the
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same chain, a certain number of neighbour vertices are excluded from the com-
parison, to avoid introducing rigidity. When the hard-sphere radius � is larger
than the segment length, a number of neighbouring vertices will always be within
the hard sphere, and the volume available to vertices just outside an excluded
volume sphere is limited. The number of neighbours segments is chosen to allow
the chain to perform a 180Æ degree turn with radius � [91].

5.8 Sampling scattering

The scattering contributions could be sampled by sampling the con�gurationally
averaged pair-distance distribution 4�R2

kP (Rk) for the k'th bin at radius Rk.
Then calculating the scattering as

F (q) �
X
k

�Rk4�R
2
k

sin(qRk)

qRk
P (Rk);

where �Rk is the width of the k'th bin. However, this is not a very e�ective
method, as it requires O(N2) operations per sample, where N is the number of
chain vertices. A better option would be to sample the con�gurational average

of the scattering given by F (q) =
DP

i;j sin(qrij)=(qrij)
E
for all the distances

rij between vertices i and j. This procedure requires O(N2M) operations per
sample, where M is the number of q values that are sampled. The scattering
can also be obtained as

F (q) =

*������
NX
j

e�iq�R
�

j

������
2+

�o

;

here both an orientational and con�gurational average are to be performed. And
the orientational average has to be performed �by hand� i.e. by sampling the
scattering along D di�erent q directions. This requires O(NDM) evaluations
of a complex exponential function. The major di�cult is how to evaluate the
exponentials e�ciently.

Frenkel et al. [104] have suggested to use qlkm =
�
2�l
L ; 2�kL ; 2�mL

�
where L

is the longest length scale that is interesting. As all q vectors are located on a
cubic lattice, the exponentials can be calculated using Fast Fourier Transforms
(FFT), which is a very e�cient method for calculating exponentials on the form
exp(i�n) by exploiting recursive relations between di�erent integers n. However,
by virtue of the lattice the number of q vectors required by the FFT technique to
sample scattering from qmin to qmax is D = qmax=qmin. This shows that if four
decades of q values are to be sampled 104 FFT samples have to be performed,
and most of these will be at high q values.

Inspired by the FFT technique, we have chosen a hybrid approach to calcu-
lating a few of the complex exponentials directly, and using symmetry properties
to derive the rest. The goal is to locate qn n 2 f1; : : : ;Mg values approximately
equidistant on a logarithmic scale between qmin and qmax.

The ideal distribution is

qon = 10(log qmax�log qmin)
n
M

+log qmin : (5.7)
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By tweaking the choice of qn values slightly we can optimise the evaluation
of the scattering contribution from the j'th vertex to the qn'th scattering value
along the qe direction. Our goal is to evaluate

e�iqnqer
�
j = e�iqn where  = qe � rj ;

for all M values of qn for all vertices, and for D di�erent directions qe to obtain
the orientational average.

In the following we will concentrate on calculating the complex value of
exp (�iqn) in the case where exp(�iqm) has already been calculated for all
m < n. If qm exists such that qn = 2qm then exp(�iqn) = exp(�iqm)2
(the double angle formula). Since we have previously evaluated exp(�iqm),
we only need to square that number. If qm; qp exists such that qn = qm +
qp then exp(�i�qn) = exp(�iqm) exp(�iqp) (the addition formula). Since
both exponentials have previously been evaluated, we only need to calculate the
product of two known complex numbers. Thus by an advantageous choice of the
qn values, we can use symmetry properties of the exponentials to convert them
into simple products of known complex numbers. The higher order symmetry
properties require more algebraic operations, and do not provide a signi�cant
optimisation.

The actual distribution of qn's are chosen as to minimise

E[q1; : : : ; qM ] = k

�
M

ln(10) (log qmax � log qmin)

�2 MX
i=1

�
qi � q0i

�2
(q0i )

2
(5.8)

+�Ncalc + Nadd + ÆNdouble; (5.9)

where Ncalc,Nadd, and Ndouble is the number of exponentials that require direct
evaluation, or can be deduced using the addition formulae, or formulae for the
double angle, respectively. Thus M � Ncalc +Nadd +Ndouble. The weights �; ;
and Æ are chosen to represent the duration of the respective numerical operation,
and we have used � = 1 and  = Æ = 0:1. The �rst term is a harmonic term,
that determines how large deviations from a perfect logarithmic distribution
should be allowed in order to speed up the evaluation. Since the distribution
is on a logarithmic scale, we have to divide by the local length scale, which is
given by the parenthesis and the denominator. The constant k should be chosen
so small that the ordering qm < qn when m < n is ensured. We have used
k = 0:01. This penalty functional is easily minimised by a simulated annealing
quench with moves that shift qn's, which require trigonometric evaluations into
qn's, that can be evaluated by simple algebraic operations on known numbers.
If M is huge, care must be taken to avoid truncation errors in the evaluation.
In our implementation only about 10% of the complex exponentials need to be
evaluated directly.

5.9 Correction of positions

The repeated application of pivoting moves introduce numerical errors in the
vertex positions, and as a result chains are periodically reconstructed using
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the chain construction algorithm based on tabulated dihedral angles, which are
updated after each accepted pivot move. The entire chain is also translated so the
foot vertex is on the core surface, this avoids di�usive behaviour of chains away
from the code surface due to truncation errors due to the repeated application of
surface moves. The constructive chain correction algorithm is far more e�cient
than the iterative correction algorithm of Stellman and Gans[102]. While chain
construction requires few evaluations per segment, the correction algorithm of
Stellman and Gans requires the solution of a possible singular or ill-conditioned
3x3 matrix equation per segment.

After all the chains on a micelle have been corrected, the micellar corona is
checked for any correction induced overlaps, and equilibrated until these have
reached a state without overlap. However, this is very unlikely and has never
been observed in practice. The maximal deviations of segment length, valence
angle, and dihedral angle were monitored during the simulations, and found to
be below 10�12.

5.10 A practical remark

The simulator has been implemented in C++ [105]. C++ supports the Object
Oriented Programming paradigm, which emphases code reuse, and the isolation
of functionality in di�erent modules with well de�ned interfaces. The simulator
was implemented using a number of objects that provides di�erent types of
functionality.

Four objects was required for the micelle simulator. An object represented
a single chain, and functionality such as pivot moves and chain corrections,
another object represented the core, and implemented functionality for the core
geometry, checking for core overlap, and foot vertex generation. A micelle object
inherited the properties of an array of chain objects and a core object, and a MC
object inherits all the properties of a micelle, and adds functions for sampling
data and the basic MC algorithm.

The Monte Carlo algorithm only needs to know about the energy of con�gu-
ration and when to sample and save data. A micelle consists of a core and some
chains. But the micelle object does not need to know the core geometry nor how
chains con�gurations are represented. However, the micelle object has to supply
a neighbour move and a function that can calculate the energy to the Monte
Carlo algorithm, and supply some way of creating a micelle. The chain object
contains information about the chain con�guration, the pivoting algorithm, and
chain correction. The core object contains information about the core geometry,
and routines for performing surface moves, creating foot vertices, and checking
for vertex core overlaps. Thus when the Monte Carlo algorithm wants to select
a new neighbour state, it calls a neighbour function supplied by the micelle ob-
ject, this function selects if it should be a chain pivot move or a surface move.
Pivots moves are performed by selecting an angle and a chain, and calling the
pivot function supplied by that chain object. Surface moves are performed by
randomly selecting a chain and calling a function in the core object that supplies
a vector. This vector translates the foot vertex of the chain to another point on
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the core surface, and the actual translation is performed by a function in the
chain object.

Strict adherence to an object oriented approach allows a clean separation
of functionality into di�erent objects. This has an enormous advantage. If, for
instance, a new core geometry has to be implemented, only the core object needs
to be modi�ed. If the micelle corona consists of chains of di�erent length only
the micelle object needs to be modi�ed. Object Oriented Programming makes
it very easy to modify the simulation code.

5.11 Possible improvements

5.11.1 Overlap checks

The overlap check use the zippering algorithm when testing for overlap be-
tween two di�erent chains say chain A and B. Currently, this is implemented
by comparing all vertices on chain A by zippering along the vertices of chain
B. However, as the positions of each vertex, that is checked during the over-
lap check, is known, it is possible for a vertex on chain A and pair of vertices
on chain B to calculate the closest possible separation between the intervening
chain segment and the vertex on chain A. And the minimal separation distance
between any site on chain B can be used as the contour length of the step along
chain A. This double zippering algorithm would probably lead to a signi�cant
increase of e�ciency of the overlap check for many chain systems especially for
long chains.

5.11.2 Reptation

The pivoting algorithm would have a low acceptance rate for coronas with very
large surface coverages, if the maximum excursion of the pivot angle was not
dynamically adjusted during the equilibration phase to yield a 50% acceptance
rate, the reason being that a small rotation about a segment close to the core
can yield a very large excursion at the end of the chain. Reptation moves works
by cutting the head o� a chain and gluing it to the tail of the chain, that
way chains can �reptate� through the voids between other chains. Reptation
moves are very e�cient for sampling con�gurations in polymer solutions at high
concentrations. A naive reptation move in a micellar corona could be performed
by cutting the head/tail of a chain, gluing it to the tail/head, and translating
the new chain head such that it touched the micellar surface. Since the head
environment is di�erent from the tail environment the criterion of microscopic
reversibility will not be ful�lled as head to tail moves will be accepted with a
larger probability than tail to head moves. However, by cutting the tail of one
chain and the head of another chain, and cross transplanting the head to the tail
of the other chain, and tail to the head of the �rst chain, and then translating
the two chains such that they are still tethered to the chain a reptation move
is made that is probably microscopic reversible as the operation is completely
head/tail symmetric. However, it remains to be seen whether such a move can
be formulated for semi-�exible chains.
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Chapter 6

Summary of articles

Small-angle scattering is an ideal technique for obtaining information about
macro-molecular structures such as block copolymer micelles, however, expres-
sions for form factors and structure factors are required for a reliable interpre-
tation of the scattering data obtained from scattering experiments. The topic of
the �rst three articles is the formulation of an expression for the form factor of
a micelle with a spherical core. The main di�culty is howto include the e�ects
of excluded volume interactions on the corona form factor. The fourth paper
introduces a general formalism for the form and structure factors of general
polymer structures, such as star polymers with arms of block copolymers, and
micelles with arbitrary core geometries. In the formalism it is assumed that the
di�erent subunits do not interact with each other, however, a method of how to
include excluded volume e�ects at the level of a linear polymer is presented.

A diblock copolymer micelle consists of a dense core surrounded by the
dissolved chains forming a di�use corona. The structure of the micellar corona
depends on the contour length of the tethered chains L, the number of chains
N , and on the core radius Rco. From these three quantities three dimensionless
numbers can be derived that quantify the structure of the micellar corona: N
the number of chains, � = Rg=Rco the e�ect of surface curvature on the corona
structure, and � the reduced surface coverage. The reduced surface coverage is
de�ned as � = N�R2

go=[4�(Rco + Rgo)
2], here Rgo is the unperturbed radius

of gyration, as opposed to Rg, which is the actual radius of gyration. In the
expression it was assumed that the center-of-mass of a chain is displaced by
approximately a distance Rgo from the core surface. As a result, the e�ective
core area is 4�(Rco +Rgo)

2, and the cross sectional area of the chains is �R2
go .

The quantity � is expected to be the corona analog of the reduced con-
centration c=c� = 4�R3

go�m=3, where �m is the number density of polymers.
For a polymer solution c=c� � 1 signi�es a dilute solution. In which polymers
behave as a gas of hard spheres with radius Rg. The con�guration of chains
depend only on the chain entropy, which favours random-walk con�gurations,
and interactions within the same chain. Entanglement between di�erent poly-
mers are energetically unfavourable as it reduces the con�gurational degrees of
freedom, i.e. the entropy. For c=c� � 1 (and still not a melt) the solution is
in the semi-dilute regime, which is particular to chain molecules and is charac-

53
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terised by the entanglement of chains. Thus a semi-dilute solution of polymers
consists of a transient network of intermeshed chains. The characteristic size of
a dilute solution, the radius of gyration, is replaced by the correlation length
�. In a semi-dilute network a single chain can interact with many neighbour-
ing chains, and the correlation length is the length scale on which connectivity
information persists [21]. On length scales smaller than the correlation length
interactions are predominantly excluded volume interactions between sites on
the same chain, and above the correlation length no information about chain
connectivity persists.

The corona of a micelle consists of polymers, but these are tethered by one
end to the micellar core, and if the micellar core is crystalline or glassy the
tethering points will be �xed on the core surface. For � � 1 chains in the
corona are far from each other, and interactions between di�erent chains are
rare. As a result excluded volume interactions between sites on the same chain
and core expulsion in�uence the con�guration, and the corona will be in the
mushroom regime. This is similar to the situation of a dilute polymer solution
where c=c� � 1. For � � 1 the chains form a polymeric brush where chains are
strongly stretched away from the surface, i.e. the corona will be in the brush
regime. No analogy exists for an ordinary polymer solution, as the ordering is
induced by the presence of a surface. A broad crossover exists between dilute
and semi-dilute solute behaviour, and a similar broad crossover exists between
the mushroom and brush regimes.

It was shown in the theory chapter that the normalised scattering [Fmicelle(q =
0) = 1] for a micelle with a spherical core is given by

Fmicelle(q) = (�ch + �co)
�2
�
�2chFcor + �2co�

2 + 2�ch�coAcor�
�
: (6.1)

Fcor(q) is the corona form factor, �2(q) the core form factor, Acor(q)�(q) is a
corona-core interference function, and �ch and �co is the total excess scattering
lengths of the corona and core, respectively. As the core is assumed to be spher-
ical and homogeneous the form factor amplitude is �(qRco) = 3[sin(qRco) �
qRco cos(qRco)]=(qRco)

3 [78]. The core form factor contains information about
the core radius, however, this information is also present in the corona form fac-
tor amplitude Acor(q), and as a result the three �rst papers focus on the corona
form factor and form factor amplitude.

In the theory section it was shown that the correlations of a polymer solution
can be separated into intra-chain correlations and inter-chain correlations. An
analogous separation can be performed on the corona form factor, and as shown
in the theory section, this yields the corona form factor expressed through the
intra-chain scattering Fc and inter-chain scattering H weighted as

Fcor(q) =
1

N
Fc +

N � 1

N
H: (6.2)

The characteristic length scale of intra-chain correlations is comparable to
the radius of gyration, which is typically smaller than the inter-chain correla-
tions. The characteristic length scale of inter-chain correlations is comparable
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with the radius of the core. Typically the intra-chain scattering contribution
will dominate at large q values, while the inter chain scattering contribution
will dominate at low q values, due to the di�erent characteristic scales of the
correlations.

The corona form factor can also be separated into the contributions from
con�gurationally averaged density and from density �uctuation correlations.
The scattering contribution due to the average density is the corona form factor
amplitude Acor(q) =

R1
0 dr4�r2 sin(qr)qr �(r), where �(r) denotes the radial pro�le

of the corona. The scattering contribution due to density �uctuation correlations
is denoted Ffluc(q). Using this separation, the scattering corona scattering can
be expressed as

Fsol:prof(q) =
1

N
Ffluc +

N � Ffluc(q = 0)

N
A2
cor: (6.3)

Here the �rst term is denoted �uctuation scattering, while the second is de-
noted pro�le scattering as it only depends on the radial pro�le. The peculiar
weighting between the two terms is due to the fact that the �uctuation scat-
tering is not normalised in the forward direction. Provided an exact expression
for the scattering due to density �uctuations Fsol:prof(q) � Fcor(q). However, at
present no analytical expression is available for the �uctuation scattering contri-
bution in the case of micellar corona, and as a result it has been approximated
by an RPA expression Ffluc(q) = Fc(q)=[1 + �Fc(q)], which describe the �uctu-
ation scattering of a dilute/semi-dilute polymer solution. The excluded volume
parameter � is related to the apparent second virial coe�cient of the solution as
� = 2A2(�)�. The expression Fsol:prof(q) has the interpretation of the scatter-
ing one would expect from a dilute/semi-dilute polymer solution with a radial
monomer pro�le �(r), and it is denoted solution pro�le scattering.

The �uctuation scattering will dominate the scattering at large q values,
as density �uctuations correlations are expected to be short ranged, while the
pro�le scattering will dominate at small q values. All the contributions to the
corona scattering are shown in �gure 6.1. The pro�le scattering (/ A2

cor), and the
inter-chain scattering H(q) dominates at small q values, but they are rapidly
decaying functions. The intra-chain/�uctuation scattering contribution domi-
nates at high q values as expected. The inter-chain scattering oscillates about
zero, the absolute value is plotted and each sign change leads to an inverted
peak. The corona form factor is the sum of intra-chain and inter-chain scatter-
ing, and as a result the minima/maxima of the corona form factor correspond
to minima/maxima of the inter-chain scattering. The minima/maxima of the
corona form factor correspond to minima/maxima of the pro�le scattering, and
the height of the minima can be seen to be given by the �uctuation scattering

Single chain properties such as radius of gyration, the chain length, and the
Kuhn length can be obtained from the intra-chain scattering Fc(q). The Haus-
dor� dimension dH of the chains can also be determined, and carry information
about the chain connectivity statistics. The interpretation of the inter-chain
scattering H(q) is more di�cult, as it has a very complex q dependence, but it
depends on the corona pro�le, as well as interactions between di�erent chains
which introduce a �correlation hole� [20, 21]. The pro�le scattering contribution
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Figure 6.1: The contributions to the corona form factor appropriately scaled for
the standard micelle N = 44, L = 8:33b and Rco = 3:33b.

(/ Acor(q)
2) is simply the scattering one would obtain from a core-shell model

of the corona, and it only depends on the radial pro�le, hence the radial pro�le
can be obtained from this term. The �uctuation scattering is caused by chain
connectivity, chain-chain interactions, and core expulsion, and carries thermo-
dynamic information such as the osmotic compressibility and apparent second
virial coe�cient of the corona.

A comparison of eq. (6.2) and eq. (6.3) shows that the scattering due to
interaction-induced correlations between di�erent chains have been shifted from
the inter-chain scattering contribution into the intra-chain scattering, thus pro-
ducing the �uctuation scattering term, while leaving the pro�le scattering con-
tribution.

6.1 Article I

The intra-chain, inter-chain, and form factor amplitude (Fc;H; and Acor, respec-
tively) scattering contributions can be obtained directly from computer simu-
lations of the micellar corona as shown in the chapter on Monte Carlo (MC)
simulations. Computer simulations allow the partial scattering contributions,
as well as the single chain radius of gyration, and the radial pro�le �(r) to be
systematically investigated as function of the parameters chain length, number
of chains, and core radius denoted L;N; and Rco, respectively. Simulations can
also be performed with and without excluded volume interactions for di�erent
models of chains, such as �exible and semi-�exible chains. A standard micelle
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was chosen having N = 44; L = 8:33b; and Rco = 3:33b, where the Kuhn length
b is used as length scale. Each of these three parameters was varied in turn,
while keeping the remaining two �xed at their reference values. The range of
variation was chosen to correspond to a range of � values from 0:01 to about
�ve. The radius of gyration directly depends on the chain length, but it has only
an indirect dependence on the number of chains or the core radius due to the
e�ects of chain stretching. The surface curvature � = Rg(L)=Rco is essentially
�xed when the number of chains is varied, as chain stretching is negligible in
the simulated range.

Article I contains a qualitative discussion on how the corona form factor
and form factor amplitude depend on these three parameters with and without
excluded volume interactions. From the MC simulations it is seen that intra-
chain scattering is a slowly decaying non-oscillatory function, while both the
inter-chain scattering and corona form factor amplitude are rapidly decaying
and oscillating functions. Varying the number of chains has a large impact on the
corona form factor, as oscillations become apparent as the number of chains is
increased. This is caused by the number of chains dependent weighting between
the oscillatory intra-chain scattering contribution and the non-oscillating single
chain contribution. However, the phase of the oscillations of the corona form
factor and form factor amplitude is essentially unchanged, when varying the
number of chains. This is consistent with the observation that the corona width
is essentially unchanged, when the number of chains is varied.

Increasing the chain length simultaneously increases the width of the corona,
i.e. shifts the corona away from the core center, this results in a shift towards
smaller q values of the corona form factor amplitude oscillations. Decreasing
the core radius shifts the corona closer to the core, and a corresponding shift
of the form factor amplitude oscillations towards larger q values are observed.
This behaviour of the oscillations can be understood by the de�nition of the
corona form factor amplitude as the Fourier transform of the radial pro�le. It is
also apparent that the oscillations of the corona form factor are reduced as the
surface coverage is increased. This is a curvature e�ect that occurs when � ' 1.

Figure 6.2 shows the scaled contributions to the corona form factor from
the intra-chain and inter-chain scattering, and it is apparent that the oscilla-
tory behaviour is replace by a negative power law-like behaviour, while a single
secondary peak remains for simulations with a large number of chains. A broad-
ening of the second secondary peak of the form factor amplitude is observed for
micelles with a large number of chains attached, while a broadening of the �rst
secondary peak is observed for micelles with large core radius or long chains.
This broadening is probably due to the di�erent pro�le shapes obtained for a
large number of chains or a large curvature �.

Article I also compares the corona form factor and form factor amplitude
from simulation with and without excluded volume interactions but with core
expulsion. For simulations without interactions the inter-chain scattering is re-
lated to the corona form factor amplitude as H(q) = Acor(q)

2. For low surface
coverages no di�erence is observed between simulations with and without ex-
cluded volume interactions as expected, however, at high surface coverages a
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Figure 6.2: Scaled Fc and H contributions to Fcor for simulations varying chain
length L = 4b,13:67b and 38:17b (from top to bottom), the simulation with
N = 327 is shown for comparison. The inter-chain scattering H changes sign
and the absolute value is plotted, and each inverted peak corresponds to a sign
change, and the powerlaw tail has a negative sign.

clear decrease in the corona form factor can be seen for simulations with in-
teractions. A shift of the form factor amplitude oscillations towards smaller q
values is observed for simulations with excluded volume interactions compared
to simulations without excluded volume interactions for large surface coverages.
This is consistent with a stretching of the corona away from the core due to ex-
cluded interactions. As the chain length of the standard con�guration is short,
no excluded volume e�ects are observed on the intra-chain scattering except for
the longest chains where a di�erent power law behaviour are observed at high
q values for the corona form factor, where the intra-chain scattering dominates.
This is caused by the excluded volume interactions modifying the (qRg)

�dH be-
haviour from dH = 2 consistent with a random walk to dH = 1:70 consistent
with an excluded volume chain.

The model due to Pedersen and Gerstenberg [106, 107] provides expressions
for Fc; Scc; and Acor as

Fc(q;Rg) = FDebye(qRg);

Acor(q) =
sin[q(Rco + dRg)]

q(Rco + dRg)
Ac(qRg);

and
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H(q) = A2
cor(q):

Here the form factor amplitude of a �exible non-interacting chain isAc(qRg) =
[exp(�x) � 1]=x with the abbreviation x = (qRg)

2 [108]. This model includes
the e�ects of connectivity in the scattering, but neglects chain expulsion from
the core region, however, this can be emulated by arti�cially shifting the chains
away from the core surface. The shift is controlled by the d parameter. Com-
paring eq. (6.2) and eq. (6.3) with the Pedersen-Gerstenberg model expressions
shows that Ffluc(q) = Fc(qRg) and � = 0, as a result the A2(�) = 0, which
is consistent with the fact that chain-chain interactions are neglected in this
model.

A modi�cation to the model due to Pedersen and Gerstenberg is presented in
article I, where the chains are shifted away from the micellar core, but connected
to the core surface by a rigid radially pointing rod.

The main topic of article I is to explore to what extend the two models can be
used to analyse the scattering data from the MC simulations, which include both
the e�ects of excluded volume interactions as well as semi-�exibility. Comparing
the model due to Pedersen and Gerstenberg to the modi�ed model shows that
the modi�ed model provides more accurate estimates of the chain center-of-mass
distance from the core radius, while the Pedersen-Gerstenberg model provides
a more accurate estimate of the radius of gyration. The chain center-of-mass
distance is estimated by �tting the radial pro�le, and the addition of a rod
can be seen to provides better �ts of the corona form factor amplitude. This is
attributed to the improvement of the radial pro�le due to the addition of a rod
section.

The conclusion is that for � < 1 the Pedersen-Gerstenberg model and the
modi�ed model provide accurate estimates for the radius of gyration and core
radius, however, at larger surface coverages larger deviations becomes apparent
between parameter values estimated by �ts and the true values sampled during
the simulations. While large deviations exist for � > 1 the �ts still provides
reasonable results.

6.2 Article II

Article II presents a self-consistent analysis of the corona form factor Fcor(q)
and the solution pro�le scattering Fsol:prof (q). All terms in the corona form
factor and solution pro�le scattering are obtained from the MC simulations,
when the RPA expression is used for the �uctuation scattering Ffluc(q). Hence,
the corona form factor and solution pro�le scattering can be compared without
introducing any model expressions for intra-chain scattering and radial pro�le,
and this comparison provides a way of investigating the validity of the RPA
approximation for the �uctuation scattering.

The intra-chain, inter-chain and corona form factor amplitude Fc;H; and
Acor are known from simulations. The excluded volume parameter can be ob-
tained by letting Fcor(q) = Fsol:prof(q), and since Acor(q) oscillates about zero,
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a value q0 can be chosen, such that Acor(q0) = 0. Then the excluded volume
parameter is

� =
(N � 1)H(q0)

Fc(q0) [Fc(q0) + (N � 1)H(q0)]
: (6.4)

Data are sampled at discrete q values, and a linear interpolation was used
for �nding the smallest value q0 where Acor(q0) = 0, as well as estimating values
H(q0) and Fc(q0). Error bars on � was estimated by calculating the variance of
the ensemble of � values consistent with the error bars on the scattering data
[82]. The corona form factor amplitude has several minima in general, and the
smallest q0 value is chosen as the inter-chain scattering typically has the smallest
error bar at low q values.
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Figure 6.3: Comparison between Ffluc as obtained from simulations, and
FRPA = Fc=(1 + �Fc) using the intra-chain scattering Fc from computer
simulations. The excluded volume parameter � are obtained from eq. (6.4).
Curves are from top to bottom simulations varying number of chains N =
3; 66; 131; 327, varying core radius Rco = 27:78b; 9:44b; 2:53b; 1:48b (shifted down
one decades), and varying chain length L = 2b; 8:33b; 13:67b; 38:17b (shifted
down two decades).

Based on the excluded volume parameter, the �uctuation scattering con-
tribution Ffluc can be obtained from simulations and compared with the RPA
approximation using simulation data for the intra-chain scattering Fc. This is
shown in �gure 6.3, and there is an excellent agreement between the two ex-
pressions for the �uctuation scattering.

A similar excellent agreement is is obtained between the corona form factor
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and the solution pro�le scattering for the simulation scattering as shown in
�gures 6.4, 6.5, and 6.6. This validates our approximation of using an RPA
expression for the �uctuation scattering contribution. From the �gures 6.4, 6.5,
and 6.6 it can be seen that the �uctuation scattering Ffluc de�nes the depths
of the minima of the solution pro�le scattering, and it can also be seen that the
pro�le scattering dominates the forward scattering as expected. The forward
scattering due to density �uctuation decreases with increasing surface coverage
consistent with the concentration dependence of the scattering from an ordinary
polymer solution.
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Figure 6.4: Fcor (thick lines), Fsol:prof (symbols), and Ffluc (thin dashed line)
varying number of chains N = 3; 8; 22; 44; 87; and 131, corresponding to � =
0:05; 0:13; 0:36; 0:72; 1:43 and 2:15 (circle, box, diamond, star, plus and cross
from bottom to top). The curves are normalised to coincide at large q values.

This is the reason why the corona form factor was seen to decrease in ar-
ticle I, when comparing simulations with and without interactions. Without
excluded volume interactions Ffluc(q) = Fc(qRg) and H(q) = A2

cor(q), while in
the presence of excluded volume interactions the �uctuation scattering contri-
bution decreases and the inter-chain scattering is modi�ed due to the presense
of the �correlation hole�..

For an ordinary polymer solution it is predicted that the excluded volume
parameter has a universal dependence on the reduced concentration as � /
(c=c�)f(c=c�), where f(x) is some function, that is constant for small x [73].
Plotting the excluded volume parameter � against � as in �gure 6.7 shows
that the data points falls approximately on a power law relation �(�) = ���

with � = 1:35 � 0:02 and � = 0:95 � 0:02. That excluded volume parameters
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Figure 6.5: Fcor (thick lines), Fsol:prof (symbols), and Ffluc (thin dashed line)
varying core radius Rco = 1:48b; 2:53b; 4:94b; and 9:44b, corresponding to � =
0:13; 0:36; 1:07; and 2:10 (circle, box, diamond, and cross from bottom to top).

from simulations varying the number of chains, chain length and core radius
collapses on a common curve, shows that the reduced surface coverage � is
the characteristic reduced parameter which describes the corona interactions.
Note the grafting density N=(4�R2

co) is expected to be characteristic parameter
in the brush regime. The deviations observed at large and small coverages are
attributed to a weak dependency on the number of chains and surface curvature.
Deviations are also observed for simulations with only two and four statistically
independent segments.

As shown in the theory chapter a very simple relation exists between the
�uctuation scattering and the osmotic compressibility. The compressibility �
ful�ls � = F�1

fluc(q = 0) = 1 + �, and thus the deviations of � at low surface
coverages are dominated by one. The result is a universal behaviour of the
compressibility for surface coverages, except for large surface coverages where
deviations are apparent. These are attributed to the e�ects of the number of
chains and surface curvature on the corona structure.

The solution pro�le scattering expression Fsol:prof using the RPA expres-
sion for the �uctuation scattering contribution has the interpretation of being
the scattering from a dilute/semi-dilute solution with a radial pro�le. The self-
consistent analysis shows that the solution pro�le expression provides an excel-
lent description of the corona form factor. On the basis of the agreement between
the solution pro�le scattering and the simulated scattering is we conclude that
the corona of a micelle can be regarded as a polymer solution with a certain
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Figure 6.6: Fcor (thick lines), Fsol:prof (symbols), and Ffluc (thin dashed line)
varying chain length L = 2b; 4b; 13:67b; and 38:17b, corresponding to � =
0:16; 0:35; 1:11; and 2:35 using (circle, box, diamond, and cross from top to
bottom).

radial pro�le. As the corona width is comparable to the radius of gyration the
corona is quasi-two dimensional.

6.3 Article III

While the self-consistent analysis validates that the solution pro�le expression
reproducing the simulated scattering, it does not con�rm that the solution pro�le
expression can be used for estimating parameters for physical parameters of
interest when analysing experimental data. Hence, the aim of the article III is
to formulate expressions for Ffluc and Acor which can be used to extract physical
parameters, such as the radius of gyration, the excluded volume parameter �,
and the radial pro�le for a micelle by �tting experimental data. For Ffluc(q) the
following equations was used

Ffluc(qRg) =
FDaniels

�
q2R2

g

e(L=b)

�
1 + �FDebye(q2R2

g)
; (6.5)

FDaniels(x) = FDebye(x) +
b

15L

�
4 + 7x�1 � (11 + 7x�1)e�x

�
;
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Figure 6.7: The osmotic compressibility � plotted against reduced surface cov-
erage for simulations varying number of chains (circle), varying chain length
(box), and varying core radius (diamond). The inset shows the excluded volume
parameter � plotted against reduced surface coverage. The line in the inset is
the power law �(�) = 1:35�0:95 and the corresponding osmotic compressibility
is shown as the line on the �gure.

FDebye(x) =
2[x� 1 + exp(�x)]

x2
;

and

e(n) = 1� 3

2n
+

3

2n2
� 3

4n3

�
1� e�2n

�
:

The equation is based on the RPA expression, but uses a chain form factor
based on the Daniels distribution in the denominator, while using the Debye
form factor in the numerator. This expression has been shown to provide a quite
accurate description of the scattering from a semi-dilute solution of semi-�exible
polymers [92]. The radius of gyration in the Daniels form factor is corrected by
the Kratky-Porod expansion factor due to semi-�exibility, which was described
in the theory section. The parameters are Rg, the radius of gyration, and �.
The excluded volume parameter, the ratio b=L was �xed at the value of the
simulation, in order to reduce the number of �t parameters.

The corona form factor amplitude is the Fourier transform of the radial
pro�le, and three radial pro�les was used. The �rst is a Box with a Gaussian
tail (abbreviated BoxGauss) and given by
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'BoxGauss(r) =

8><>:
0 r < Rco

B Rco � r < Rch

B exp
��(r �Rch)

2=(2s2)
�

Rch � r
:

The last two pro�les are two Maximum Entropy pro�les where knowledge of
the �rst two (abbreviated the ME2 pro�le) or three momenta (abbreviated the
ME3 pro�le) was assumed, respectively. The radial pro�le is given by

'ME(r) =

(
0 r < Rco

B exp [�Pm
n=1 an(r �Rco)

n] r � Rco
;

where B is a normalisation constant. For both pro�les it is assumed that no
chains enter the core region. While the BoxGauss pro�le is an arbitrarily chosen
empirical pro�le, the maximum entropy pro�les are less arbitrary. As argued
in the theory section, a maximum entropy pro�le is the least biased pro�le
consistent with the requirements that chains do not enter the core region, that
the pro�le is normalised, and that we posess knowledge of �rst m moments.
Expressions for Acor(q) corresponding to the BoxGauss and ME2 pro�les (m =
2) are given in the third article, while the form factor amplitude corresponding
to the ME3 pro�le (m = 3) is obtained by numerical integration.

The simulation results for Fcor(q) and Acor(q) were simultaneously �tted
by the corresponding expressions for Fsol:prof (q) and Acor(q), where the corona
form factor amplitude were derived from the BoxGauss, ME2, and ME3 radial
pro�les. The radius of gyration, the excluded volume parameter, and the two
or three parameters required by the radial pro�le were �tted. For � < 1 all �ts
provides very similar estimates of the �t parameters for the three pro�les, and
the pro�les estimated by the �ts are in good agreement with each other and the
simulated data. For � > 1 the �ts using the ME3 pro�le provides signi�cantly
better �ts compared to the BoxGauss and ME2 pro�les. This improvement of
the corona scattering �ts is directly related to the improvement of the �ts of
the form factor amplitude. Excellent agreement was also obtained comparing
the radius of gyration and radial pro�les obtained from simulations to those
estimated by the �ts. The �(�) dependence obtained from �tting � is similar to
that obtained from the self-consistent analysis, however, with slightly modi�ed
constant and exponent: � = 1:42 � 0:03 and � = 1:04 � 0:02. This di�erence is
attributed to systematic e�ects caused by the expressions used for the �ts.

Article II and III demonstrate that the expression for the solution pro�le
scattering provides an accurate description of the micellar corona scattering,
and that the expression can be used to obtain reliable estimates of the physical
parameters: the single chain radius of gyration, the excluded volume parameter,
and the radial pro�le. From the excluded volume coe�cient thermodynamic
information about the corona can be obtained from scattering experiments, just
as for a polymer solution. The di�erence is that for a polymer solution all the
observed scattering is due to Ffluc. Tethering chains to the core has the e�ect of
creating an additional A2

cor(q) scattering contribution due to the radial pro�le
of the polymer layer as it is con�ned to the micellar surface, and this scattering
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dominates in the forward direction where the value Ffluc(q = 0) is of particular
interest.

6.4 Article IV

Article IV presents a formalism for calculating the form factor and inter-particle
structure factor of various structures, such as triblock copolymers stars, and
micelles with arbitrary core geometries. The article proves that the form factor
of a composite particle consisting of non-interacting subunits can be written as

F (q) =

 X
i

�i

!�2
8<:X

i

�2i Fi + 2
X
j<k

�j�kAj

 njkY
i=1

	i
jk

!
Ak

9=; :

The particle is considered as consisting of a number of non-interacting sub-
units referred to by the indices i,j and k. Each subunit has a reference point,
which could be the center of a micellar core, the end of a chain, or the bound-
ary between two adjacent blocks on a copolymer. �i denotes the total excess
scattering length of the i'th subunit, while Fi is the Fourier transform of the
site-site correlation function, i.e. the form factor of the i'th subunit. Ai is the
Fourier transform of the site-to-reference point distribution, i.e. the form factor
amplitude. For any subunit j and k it is assumed that there exists a unique
path of njk steps along reference points of other subunits connecting reference
points subunit j and k. This could for instance be the block boundaries along
a 5-block copolymer. The Fourier transform of the distance distribution of the
i'th step between the j and k subunits is denoted 	i

jk, i.e. it is a phase factor.
This expression has the following interpretation. The distance between two

sites on two di�erent subunits j and k can be written as the a sum of a number of
steps, corresponding to site-to-reference point step, and a numner of reference-
to-reference point steps until the second subunit is reached, and �nally a step
from the reference point of the second subunit to the second site.

Similarly the pair-distance distribution between two di�erent sites on two
di�erent subunits can be factorised into the convolution of distributions repre-
senting the site-to-reference point step (yielding form factor amplitude Aj), a
product of the distributions representing the reference-to-reference point steps
(yielding phase factors 	i

jk), and a step from the reference point to a site in
subunit k (yielding Ak). This is due to the fact that the Fourier transform of a
convolution is simply the product of the Fourier transforms. This is only true
if the con�gurational average of the pair-distance distribution can be regarded
as the product of con�gurational averages of the individual steps, which is only
true if the subunits are non-interacting. Hence, this expression is valid for any
acyclic structures of subunits, where the interactions between di�erent subunits
are negligible, while interactions within the subunit can be incorporated in the
expressions for Fi and Ai. Hence, all connectivity information about the struc-
ture is included, even though interactions between subunits are neglected. In
article IV it is shown how to include excluded volume interactions on the level
of a linear chains of polymer subunits, such as a block copolymer.
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Figure 6.8: Illustration of possible the site-site correlations of a micellar struc-
ture.

An example: assuming the particle is a micelle which consists of two subunits
chains in the corona (index �c�) and a core (index �s�). No assumptions are
made about the core geometry. Then the possible site-site correlation functions
are intra-chain correlations, inter-chain correlations, chain-core correlations and
core-core correlations, as shown in �gure 6.8.

The intra-chain scattering Fc can be calculated from the pair-distance distri-
bution within a chain, while the core form factor Fs can be calculated from the
pair-distance distribution between sites within the core. The distance between
two sites within the core can be written as two steps: a vector from one site
to the center, and a step from the center to the second site, as shown in �gure
6.8. Thus the pair-distance distribution can be written as the convolution of two
identical step probability distributions Ps(r) describing the probability for a site
at position r relative to the center being within the core for a �xed core orien-
tation. Denoting by As(q) the Fourier transformation of the distribution Ps(r);
the pair-distance distribution is simply for core form factor Fs(q) = A2

s(q) by
virtue of the Fourier theorem for convolutions.

The vector distance between a particular site on a chain and another site
in the core can be written as the sum of three steps: a vector from the site
to the tethering point of the chain, a vector from the tethering point to the
core center, and a vector from the core center to the site in the core. Thus the
pair-distance distribution can be written as the convolution of the probability
distributions of the three steps, and the Fourier transform of this convolution
yields the product of the Fourier transforms of the probability distributions. The
step from a site on a chain to the tethering point is the form factor amplitude
of the chain yields a factor Ac(q), the step from a site on the core surface to the
core center yields a factor 	s(q), and the step from the core center to the site in
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the core yields As(q). Thus the chain-core scattering contribution has the form
Ac(q)	s(q)As(q), where 	s(q) is the core surface phase factor.

The distance between two particular sites on two di�erent chains can be
written as the sum of four steps: a step from the site to the tethering point,
from tethering point to the core center, from the core center to another tethering
point, and from the tethering point to the site on that chain. Thus the inter-
chain scattering has the form Ac(q)	s(q)	s(q)Ac(q), as illustrated on �gure
6.8.

Weighting the contributions with the proper total scattering lengths and
taking care of the weighing between intra- and inter-chain correlations the form
factor of a micelle with an arbitrary core geometry and non-interacting chains
is

Fmic(q) = (�c + �s)
�2

*
�2sA

2
s(q) +

�2c
N
Fc(q)

+�2c
(N � 1)

N
A2
c(q)	

2
s(q) + 2�c�sAc(q)	s(q)As(q)

�
o
: (6.6)

The terms are the core form factor, the intra-chain scattering, the inter-chain
scattering, and the chain-core interference function. The intra-chain scattering
is proportional to the number of chains N , while the inter-chain scattering is
proportional to the number of pairs of chains N(N � 1), while the total is
N2. This explains the weighting between intra-chain and inter-chain scattering
contributions, an orientational average has to be performed on the product of
Fourier transforms as the core surface is rigidly attached to the core.

In the special case of a spherical core, the probability of a vector r is within
the core is Ps(r) = �(jrj � Rco)=(4�R

3
co=3), where �(x) is the step function

(�(x) = 1 for x � 0 and �(x) = 0 for x < 0 ). The probability for a vector r to
be located on the core surface is Psurf (r) = Æ(jrj � Rco)=(4�R

2
co). From these

simple distributions the surface phase factor and core form factor amplitude are
given by

	s(q) =

Z 1

0
dr4�r2 sin(qr)=(qr)Psurf (r) = sin(qRco)=(qRco)

and

As(q) =

Z 1

0
dr4�r2 sin(qr)=(qr)Ps(r) = �(qRco):

Thus the micellar form factor eq. (6.6) becomes

Fmic(q) = (�c + �s)
�2

 
�2s�

2(qRco) +
�2c
N
Fc(q)

+�2c
(N � 1)

N
A2
c(q)

�
sin(qRco)

qRco

�2

+ 2�c�sAc(q)
sin(qRco)

qRco
�(qRco)

!
:

This expression reduces to the expression for the micellar scattering pre-
sented at the start of this chapter (eq. 6.1) using the abbreviations of the
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Pedersen-Gerstenberg model with d = 0, and comparing eqs. (6.6, 6.2 and 6.3)
suggests that solution pro�le form factor for a micelle with an arbitrary core
geometry is

Fmic(q) = (�c + �s)
�2

*
�2sA

2
s(q) +

�2c
N
Ffluc(q)

+�2c
[N � Ffluc(q = 0)]

N
A2
cor(q) + 2�c�sAcor(q)As(q)

�
o
; (6.7)

The rationale behind the derivation of the form factor can be used to derive
an expression for the inter-particle structure factor. The vector between two sites
on two subunits on two di�erent aggregates can be regarded as consisting of a
number of steps from the site to the reference point of that subunit, steps along
a path from reference-to-reference points until the aggregate centre is reached.
Then a step from the center of one aggregate to the center of another aggregate,
followed by a path from that center along reference points of subunits until the
second subunit is reached, and a step to the �nal site on that subunit. The
intermolecular structure factor is

Hss(q) =

 X
i

�i

!�2(X
k

�kAk

 
nckY
i=1

	i
c;k

!)2

(Scc(q)� 1) ;

Here index �c� denotes the center of the aggregate, and Scc(q) is the center-
to-center structure factor. The term in the bracked is the form factor amplitude
A of the entire particle. The scattering from a solution of aggregates is the sum
of intra-molecular and inter-molecular scattering given by

P (q) = F (q) +Hss(q) = F (q)Sapp(q);

where the e�ective structure factor is given by

Sapp(q) =
Hss(q)

F (q)
+ 1:

In the special case, where aggregates consist of a spherical symmetric aggre-
gate with a form factor amplitude A(q) then Hss(q) = A(q)2(Scc(q) � 1) and
F (q) = A2(qr), which leads to Sapp(q) = Scc(q). Thus the apparent structure
factor corresponds to the center-to-center structure factor for spherically sym-
metric scatterers. This is a well known result for monodisperse suspension of
spherical scatterers [109].

The inter-molecular structure factor for a solution of non-interacting micelles
can easily be shown to be

Hmic(q) = (�c + �s)
�2 (h�sAs(q) + �cAcor(q)io)2 (Scc(q)� 1) :

The corona form factor amplitude is given by a generalised core-shell model
expression Acor(q) =

R1
Rco

drA(r)	s(q; r)�(r), where �(r) is the area density of
scatterers in the r sized shell, and A(r) is the area of that shell. It remains to
validate these generalisations of the micellar scattering.
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A Monte Carlo study on the effect of excluded volume interactions
on the scattering from block copolymer micelles

Carsten Svaneborg and Jan Skov Pedersen
Condensed Matter Physics and Chemistry Department, Riso” National Laboratory, DK-4000 Roskilde,
Denmark

�Received 26 January 2000; accepted 10 March 2000�

Effects of excluded volume interaction on the form factor of a block copolymer micelle model have
been investigated by performing Monte Carlo simulations. The micelles are modeled as a corona of
semi-flexible chains tethered to a spherical core. Simulated form factors are analyzed using the
model proposed by Pedersen and Gerstenberg. A slightly modified model is presented, in which
chains consists of a radially pointing rigid rod, onto which a Gaussian chain is attached. The straight
section emulates chain stretching near the micelle core. Both models are fitted to the simulation data
using two parameters, that describes the individual chains: the radius of gyration, and the average
center-of-mass distance to the micelle core. Based on a comparison between parameters obtained
from fits, and those obtained directly from the simulation, it is concluded that the models provide
good estimates for the radius of gyration and the chain center-of-mass distance for a low surface
coverage, while systematic deviations are observed for high surface coverage, where chains begin
to overlap, and excluded volume interactions becomes significant. © 2000 American Institute of
Physics. �S0021-9606�00�51321-X�

I. INTRODUCTION

When diblock copolymers are put into a selective sol-
vent, that is, a good solvent for one block, and a poor solvent
for the other, the copolymers spontaneously self-assemble
into aggregates. These micellar aggregates have a dense core
and a corona of solvated polymers chains. Different mor-
phologies will self-assemble upon variation of the concentra-
tion, solvent or the relative length of the two blocks. These
morphologies include micelles with spherical, elliptical or
cylindrical cores. At high volume fractions the aggregates
might order into structures such as: crystals structures of
spherical micelles, hexagonal rod structures of cylindrical
micelles, or the micellar aggregates can coalesce forming a
number of continuous structures as for instance a lamellae
structure.1,2 These colloidal polymer solutions are examples
of complex fluids, which exhibit novel and interesting physi-
cal phenomena.3–6

Light scattering, small angle neutron or x-ray scattering
�LS, SANS and SAXS, respectively� are powerful techniques
for obtaining structural information about colloidal
solutions.7 SANS combined with contrast variation tech-
niques is an especially powerful technique, as it allows for
the separation of the contributions from the various colloid
constituents. However, it is very difficult or even impossible
to invert the measured scattering intensities and deduce the
constituents structure directly, since all phase information is
lost in the measurement process. Instead, structures must be
inferred by fitting models to the experimental data.8 This
necessitates the development of analytical models, or semi-
analytical models as one obtains by parameterization of re-
sults from computer simulations, to allow for a detailed in-
terpretation of the experimental data. Furthermore computer
simulations allows ‘‘computer experiments’’ to be per-

formed, which emulates an experiment, but an experiment
carried out on a well-defined model system. The simulation
results can then be analyzed as real experimental data, and
from the analysis correlations between scattering data and
structural properties of the simulated model can be deduced,
and limits of validity can be established for particular mod-
els.

The aim of the present work is to investigate the effects
of inter-chain as well as intra-chain excluded volume inter-
actions on the scattering form factor of micelles with a
spherical core, and to examine to what extent the model pro-
posed by Pedersen and Gerstenberg9 can be applied. This
analytical model accurately describes the scattering from mi-
celles having chains that do not interact among themselves
and with the core. Core expulsion can be emulated in this
model by lifting the chains away from the core surface. We
present a modified model, which improves the Pedersen Ger-
stenberg model, when chains are excluded from the core. In
this model the chain section is joined to the core surface by
means of a rigid radially pointing rod. We also suggest im-
provements of the models that, to some extent, include ef-
fects of excluded volume interactions. We have used Monte
Carlo simulations as a tool to investigate the excluded vol-
ume effects, and modeled the micelle as a number of semi-
flexible chains tethered to a spherical core. These chains in-
teract among themselves and with the core via excluded
volume interactions. We have also made a number of simu-
lations with core expulsion, but without chain interactions.
This allows us to gauge the effects of excluded volume ef-
fects on the scattering from the polymer corona.

To our knowledge, no study has previously been made
that focuses on the form factor of micelles with chains with
excluded volume interactions. Previous studies of the struc-
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ture of chains tethered to micelles have predominantly fo-
cused on determining the radial density profile,10–12 or the
conformational properties of chains in the core.13 However,
the radial density profile contains insufficient information for
determining the full scattering function, because micelles are
not centro-symmetric objects, as is assumed for core-shell
models.14 Absent from these models are the correlations due
to the chain connectivity, and the lateral density fluctuations
arising from the interactions between different chains. Simi-
lar arguments hold true for self-consistent field theories,15

due to the large fluctuations about the most probable path at
low surface coverage fractions. Core-shell models are not
applicable to any of the simulations presented in this paper.

This paper is organized as follows: In Sec. II we present
the two analytical models; in Sec. III we describe the Monte
Carlo simulations, and define the parameters that we sample
during a simulation. In Sec. IV we report the results, com-
pare simulations with and without interactions, and discuss
the models in the context of the simulations, and Sec. V
contains a summary of our findings. An Appendix contains
some practical information on how the partial scattering
functions are sampled.

II. ANALYTICAL MODELS

Let q denote the length of the scattering vector, the nor-
malized form factor �letting Fmicelle(q�0)�1] of a block
copolymer micelle with a spherical core can be written

Fmicelle�q ��
1

��c��s�
2

��s
2�2�q ���c

2Fct�q �

�2�c�sScs�q ���q �� . �1�

The form factor is comprised of three partial scattering con-
tributions: a core–core contribution �2, a chain–chain con-
tribution Fct , and a chain–core contribution Scs� �for core-
shell models Fct(q)�Scs(q)2]. In this paper the partial
scattering contributions are normalized to unity in the q
→0 limit. The total chain and total core excess scattering
lengths are denoted �c and �s , respectively, and they are
defined as �c�NVc(�chain��solvent) and �s�NVs(�core

��solvent), where Vc and Vs are the volume of a dissolved
and core chain, respectively. A diblock copolymer micelle
have implicitly been assumed, such that N denotes the aggre-
gation number. Finally the scattering length density of a dis-
solved chain, a core chain, and the solvent is denoted �chain ,
�core and �solvent , respectively. The total chain scattering
function can be subdivided into two contributions: intra-
chain correlations denoted Fc , which arises from self-
correlations within each chain, and is strongly influenced by
chain connectivity, and inter-chain correlations denoted Scc ,
which is an interference term, that describe correlations be-
tween different chains. When these partial contributions are
normalized, the total chain scattering function becomes:

Fct�q ��
1

N
Fc�q ��

N�1

N
Scc�q �. �2�

The length scales of a single chain are: Rg the radius of
gyration, b the Kuhn length, L is the contour length of the

chain, and l0 the step length. The radius of gyration measures
the chain spatial extent. The Kuhn length measures the char-
acteristic contour length of a semi-flexible chain, on which
bond orientations are correlated; for a flexible chain the
Kuhn and step lengths are equal. Scattering techniques probe
correlations on various length scales, and we expect that the
single chain scattering can be divided into three qualitative
different regions: For qRg less than unity �the Guinier re-
gion� the chains appear to be pointlike objects �Hausdorff
dimension 0) and Fc�1. In the range where qRg are larger
than unity and qb is less than unity, the random walk nature
of the chains are probed. Since a random walk is a fractal
object with Hausdorff dimension 2, we expect a scattering
function that behaves as Fc�(qRg)�2. In the regime where
qb is larger than unity, chains are probed on distances, where
the bonds orientations are correlated and they exhibit rigid
rod like correlations with a Hausdorff dimension of 1, and
we expect a scattering function that behaves as Fc

�(qL)�1. The actual crossovers between these regions are
very broad, making it difficult to accurately estimate Rg and
b directly from location of the crossovers on a simulated
Fc(q) curve.

The characteristic scale of inter-chain correlations Rch is
comparable to the radius of the micelle. Because both the
contributions to the total chain scattering function are nor-
malized, inter-chain correlations will dominate the scattering
for low q values, since the core radius usually is larger than
the radius of gyration. Because the characteristic intra-chain
distances are small, intra-chain scattering will dominate the
total scattering at high q values.

If we assume the micelle core is a homogeneous sphere
with radius Rco , the normalized form factor amplitude for
the core is:16

��q ,Rco��
3�sin�qRco��qRco cos�qRco��

�qRco�3
. �3�

The remaining contributions to the micellar form factor
are given by:9

Fc�q ,Rg��Fchain�q ,Rg�, �4�

Scc�q ,Rg ,Rcm��	chain
2 �q ,Rg�� sin�qRcm�

qRcm
�2

, �5�

and

Scs�q ,Rg ,Rcm��	chain�q ,Rg�
sin�qRcm�

qRcm
. �6�

If we assume that excluded volume interactions are ab-
sent, and that chains are flexible, they are described by:

Fchain�q ,Rg��
2�e�x�1�x �

x2
, �7�

and

	chain�q ,Rg��
1�e�x

x
, �8�

where x�(qRg)2.
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Fchain is the form factor of a flexible chain given by
Debye,17 and 	chain is the form factor amplitude of a flexible
chain given by Hammouda.18 Rcm is the chain center-of-
mass �CM� radius, i.e., the distance from the core center to
the CM of the individual chains. Core expulsion is mimicked
by letting Rcm�Rco�dRg �with d�1), which lifts chains
away from the core surface. This has been shown by Monte
Carlo simulations9 to be a good approximation of core ex-
pulsion. We refer to this model as ‘‘model 1’’ in the remain-
der of this paper.

We have carried out a modification of model 1 by adding
a radially pointing rod, of length l�Rcm�Rco that joins the
chain originating at the chain CM to the core surface
�‘‘model 2’’�. The rod section attempts to mimic the effect of
chain stretching close to the micelle core surface. Let L be
the total contour length of the rod and chain sections, and

�l/L the fraction of polymer in the rod section. Then the
partial scattering contributions are given by �suppressing
function arguments for clarity�:

Fc�q ,Rg ,Rcm ,l ���1�
�2Fchain�
2F rod

�2
�
�1 �	chain

Si�ql �

ql
, �9�

Scc�q ,Rg ,Rcm ,l ���1�
�2	chain
2 � sin�qRcm�

qRcm
�2

�
2� rod
2

�2
�1�
�	chain� rod

sin�qRcm�

qRcm
,

�10�

Scs�q ,Rg ,Rcm ,l ���1�
�	chain

sin�qRcm�

qRcm
�
� rod .

�11�

The individual rods are described by the form factor of
an infinite thin rod,19 and the form factor amplitude of a rod,
respectively:

F rod�q ,l ��
2

lq
Si�ql ��

4

� lq �2
sin2� lq

2 � , �12�

and

� rod�q ,l ,Rcm ,Rco��
1

ql
�Si�qRcm��Si�qRco�� , �13�

with Si(x)��0
x (t�1 sin t) dt.

The rod section will usually be short (lRg) compared
to the contour length of the chain section, and thus give only
a small correction to the total chain scattering. However, the
addition of the nonoscillatory rod term to the oscillatory
chain term in scattering expression Eq. �11� is more pro-
nounced, as it influences both the phase and amplitude of the
oscillations. The equations defining model 1 and 2, Eqs. �4�–
�6� and Eqs. �9�–�11�, are purely due to the geometrical as-
sumptions: The chain CMs are evenly distributed on a sphere
with radius Rcm , and that chains are tethered to the end of a
rod; whereas the objects that scatter radiation are described
by the form factor and form factor amplitudes, Eqs. �7�, �8�,
�12�, and �13�. Neither model 1 nor model 2 accounts for

chain–chain interactions in the corona, both models, how-
ever, take chain connectivity explicitly into account, and
they mimic the chain exclusion from the core by raising the
chain CM above the core surface. Since chains are described
by the Debye and Hammouda expressions, finite length ef-
fects and effects due semi-flexibility are not included. In the
Rcm→0 limit model 1 reduces to the expression for a star
polymer.20

III. MONTE CARLO SIMULATION

In the simulation we model the micelle as a spherical
core, having N semi-flexible chains tethered to the surface.
Each chain in turn consists of n bonds �or n�1 vertices� of
length l0 . The valence angle between subsequent bonds is
fixed at 135.585 degrees, while the dihedral angle is free.
This results in a Kuhn length b�6l0 , such that the radius of
gyration of a flexible and semi-flexible chain coincides in the
long chain limit.

We introduce excluded volume interactions by placing
hard spheres along each of the chains, and a large hard
sphere at the core center. We have 6 vertices per Kuhn length
of chain, which corresponds to one sphere at each vertex. We
have chosen the hard-sphere radius ��0.1b , a choice which
reproduces the binary cluster integral of polystyrene in a
good solvent.21

Each of the tethered chains on the micelle is initially
generated by growing it from a root. A root consists two
bonds, the first bond originating at the micelle core surface
and a virtual zeroth bond ending on the surface, each of the
two bonds point in a random direction. The two root bonds
and their cross product defines a coordinate system, which
can be used as a basis for adding a new bonds with a given
valence and dihedral angle, and this procedure is easily iter-
ated.

The micellar corona is generated by creating roots until
all chains have roots, then bonds are successively added to
the shortest chain, until all chains have the desired number of
bonds. Every time a root is created or a bond is added, it is
checked for overlap with the existing chains and the core. If
an overlap is detected then 20 bonds are removed from the
chain. If this includes removing the root, then a new root is
generated at a different location. A micelle with a dense
corona is difficult to generate, therefore we artificially reduce
the chance for overlap during the creation of the initial mi-
celle configuration, by limiting the range of the dihedral
angle to the interval ��60° ,60°� . This tends to stretch the
chains, thereby reducing the probability for overlap, while
the micelle is grown.

During the Monte Carlo �MC� simulation we update
chains using the pivot algorithm of Stellman and Gans.22 The
chain vertices are periodically corrected for numerical errors
introduced by the repeated multiplication of rotation matrices
during the pivot moves; our correction algorithm is similar to
that used by Stellman and Gans. Furthermore, we use two
types of surface updates; the first type moves the chain on
the core surface by pivoting the entire chain about core cen-
ter. The second type reorientates the chain by pivoting it
about the tether vertex. The zeroth bond is not used when
collecting data, nor is it used when checking for chain over-
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lap; however, it is pivoted with the rest of the chain, and this
ensures that the first two bonds define a local coordinate
system for the chain, that is, rotated along with all the MC
moves, which provides a constant basis from which to run
the Stellman and Gans correction algorithm.

After each chain update, we check for core overlap,
intra-chain overlap, and inter-chain overlap. An update is
rejected if it overlaps. Both types of chain checks are per-
formed using the ‘‘zippering method.’’23 The inter-chain
check is performed in an order where chains that previously
overlapped with the updated chain are checked first. This is a
heuristic attempt to check chains more prone to overlap be-
fore others, which on average reduces the time spent on
checking for inter-chain overlap.

After a micelle is grown it is equilibrated for 200 times
the total number of degrees of freedom of accepted MC
moves to avoid sampling the initially biased configuration. A
simulation consists of 50 or 100 blocks, each block is the
configuration average of 100 samples, and 1000 MC updates
is performed between each sampling. Error bars are esti-
mated from the fluctuations of block averages.

Let rik be the position of the kth vertex on the ith chain
relative to the core center. In the following i , j denote chain
indices with a 1, . . . ,N range, and k ,l denote vertex indices
with a 1, . . . ,n�1 range. During a simulation, we sample
the average chain CM radius Rcm , and the square radius of
gyration Rg

2 of the individual chains. These are defined as:

Rcm�� 1

N �
i

�Rcm ,i� � with Rcm ,i�
1

n�1 �
k

rik ,

�14�

and

Rg
2�� 1

�n�1 �N �
i

�
k

�Rcm ,i�rik�2� . �15�

We also sample the partial scattering contributions, cor-
responding to the chain self-correlation Fc(q), the chain–
chain correlation function Scc(q), and the chain–core corre-
lation function Scs(q); these are, respectively, given by:

Fc�q ��� 1

�n�1 �2N
�

i
� �

k
e�iqrik� � �

l
e iqril� � ,

�16�

Scc�q ��� 1

N�N�1 ��n�1 �2 �
i

� �
k

e�iqrik�
�� �

j�” i
�

l
e iqrj l� � , �17�

and

Scs�q ��� Re� 1

�n�1 �N �
i

�
k

eiqrik� � . �18�

A practical description of how these quantities are evalu-
ated during a simulation is presented in the Appendix. The
averages consist of both an orientational average, and a con-
formal average over nonoverlapping conformations. These
are performed by averaging the partial scattering contribu-

tions over 13 different directions for each configuration
sample. The partial scattering contributions are all normal-
ized to unity in the q→0 limit. Note that the core form factor
amplitude has been taken out of the chain–core scattering
contribution, which allows data obtained from the MC simu-
lation to be compared to the corresponding expressions in the
analytical models.

IV. RESULTS AND DISCUSSION

In order to describe the dependence of the various prop-
erties on surface coverage, we define a dimensionless mea-
sure of surface coverage as the ratio between the area of a
single chain, defined by the radius of gyration R0 of a un-
perturbed semi-flexible chain with a finite number of steps24

and the surface area available per chain at a distance Rco

�R0 from the core center:

��
N�R0

2

4��Rco�R0�2
. �19�

Our surface fraction is analogous to the dimensionless
c/c* concentration in semi-dilute solutions, where c* is the
concentration at which the individual polymers begin to
overlap. At a surface coverage much less than one, chains are
separated and their conformation mainly influenced by core
expulsion and expansion due to excluded volume effects
within each chain. We expect that as the surface coverage
reaches unity, polymers begin to overlap and the interaction
between different chains becomes more pronounced. Curva-
ture is another effect which influences the properties of the
micellar corona. When chains are tethered to a flat surface,
they will approximately be uniformly stretched away from
the surface �the Alexander–de Gennes approximation� in or-
der to balance the elastic stretching energy and excluded vol-
ume interaction between monomers.12 However, chains teth-
ered to a sphere �or any convex surface� will gain a relatively
larger accessible volume at constant surface coverage, as
they stretch away from the surface with a large curvature
�i.e., small core�, compared to chains tethered to surface with
low curvature �i.e., large core�. We use the dimensionless
ratio � between the radius of gyration and the core radius as
a measure of curvature effects. When this ratio is small,
chains behave as they are tethered to a flat interface. If the
ratio is large, i.e., chains have a large radius of gyration
compared to core radius, the micelle becomes more like a
star polymer. These proposed measures of surface coverage
and curvature will fail, if chains are stretched away from the
core to such an extent that the chains can no longer be con-
sidered to be isotropic, i.e., when the chains form a brush, or
if the chains are so short that their radius of gyration and
contour lengths are comparable.

We have defined a reference micelle having N�44
chains, core radius Rco�3.33b , and contour length L/b
�8.32 corresponding to n�50 bonds. We have performed
simulations, varying each of the three parameters in turn,
while keeping the remaining two parameters fixed at their
reference values. Eighteen simulations have been performed
with the number of chains ranging from 1 to 360, corre-
sponding to a surface coverage in the range from 0.01 to 4.9.
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16 simulations varying core radius in the range
1.24b – 22.11b , corresponding to a surface coverage from
0.02 to 2.4, and 11 simulations varying contour lengths in
the range 1.5b – 60.67b corresponding to a surface coverage
in the range from 0.1 to 2.6.

Simulation results for the total chain scattering are
shown in Figs. 1–3, for low (��0.1), medium (��0.67)
and high (��2.4) surface coverage. The medium results
correspond to the reference micelle, which is shown in all
figures as a common basis for comparison. The total chain
scattering from simulations carried out with core expulsion,
but without excluded volume interactions, is also shown on
the figures. These are termed noninteraction simulations in
the remainder of the paper. Scattering from these simulations
is independent of the number of chains, except for the

weighting between the inter- and intra-chain scattering con-
tributions to the total chain scattering. These simulation re-
sults are well described by both the analytical models from
Sec. II �these fits are not shown in the figures�. Comparing
noninteracting simulations to simulations with interactions
allows us to identify features in the observed scattering
which are due to excluded volume effects.

A qualitative examination of the simulation results
shown in Fig. 1 reveals that the total chain scattering has a
very nontrivial dependence on the number of chains for
simulations with excluded volume interactions compared to
the noninteracting simulations. The general behavior ob-
served is one where the scattering intensity at high q values
drops, while oscillations become more pronounced, as we
increase the number of chains. This is a direct consequence
of weighting of intra-chain and the oscillatory contribution
from inter-chain correlations in Eq. �2�, and is clearly ob-
served on the noninteraction simulations. Simultaneously,
the excluded volume interactions causes the first minima to
grow progressively more narrow, while the higher order os-
cillations appear to be attenuated, when compared to the
noninteraction simulations. The noninteracting simulations
are well described by both models, and since the inter-chain
contribution in both models is always positive, the minima in
the total chain scattering correspond to the zero points of the
inter-chain contribution; thus the depth of the minima is de-
fined by the intra-chain contribution. The fact that the
minima of the simulations with excluded volume interactions
are below those of the simulations without interactions leads
us to conclude that the inter-chain contribution is negative at
the first minima, and at the higher order oscillations, since
the intra-chain contribution is only slightly affected by the
increase in the number of chains.

By examining the pair distance distribution correspond-
ing to the inter-chain correlations Scc(q) for: �i� simulations
without core expulsion and excluded volume effects �not
shown, but described by model 1�; �ii� simulations with core
expulsion but without interactions between different chains;

FIG. 1. Total chain scattering functions when varying the number of chains.
The simulations with N�6 �circles�, N�44 �boxes�, and N�160 �dia-
monds, shifted down half a decade� correspond to surface densities �
�0.09, 0.67, and 2.44, respectively. Curves are simulation results without
excluded volume interactions �full�, model 1 �dash-dotted�, and model 2
�dashed� fits.

FIG. 2. Total chain scattering function when varying the core radius. For
simulations with Rco�9.89b �circles, shifted down a decade�, Rco�3.33b
�squares, shifted down half a decade�, and Rco�1.24b �diamonds� corre-
sponding to surface densities ��0.11, 0.67, and 2.43, respectively. Curves
are simulation results without excluded volume interactions �full�, model 1
�dash-dotted� and model 2 �dashed� fits.

FIG. 3. Total chain scattering function when varying the chain length. The
simulations with L�1b �circles�, L�8.32b �squares�, and L�60.67b �dia-
monds� correspond to surface densities ��0.11, 0.67, and 2.59, respec-
tively. Curves are simulation results without excluded volume interactions
�full�, model 1 �dash-dotted� and model 2 �dashed� fits.
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and �iii� full interacting chains, we observe that the intra-
chain interaction introduces a correlation hole in the short
range part of the pair-distance distribution. At low surface
coverage, chain overlap is negligible, and effects of the hole
are absent from the observed scattering. However, as the
surface coverage increases, and chains begin to overlap, and
the shape of the correlation hole becomes clearly defined.
This is consistent with the correlation hole associated with
semi-dilute polymer solutions and polymer melts.25

Figure 1 shows an inward shift of the first secondary
peak as the number of chains increases, when comparing
simulations with and without excluded volume interactions.
This is consistent with the expectation that an increase in
chain interactions forces the chain CM away from the core.
A very slight decrease in scattering at high q values is ob-
served for the low surface coverage simulation, which is due
to the slight increase in the radius of gyration due to intra-
chain excluded volume interactions. The decrease of scatter-
ing at high q values for higher surface coverage is caused by
the negative inter-chain scattering contribution, which de-
cays slower than the noninteraction simulation results.

A qualitative pairwise comparison between Figs. 2 and 3
shows curves that appear to be identical except for a scale
factor. This is to be expected since the simulations shown in
the two figures have nearly identical surface coverage, cur-
vature measure ��Rg /Rco , and number of chains, and
these are the dimensionless quantities that describe the co-
rona. Thus we expect the two scattering contributions to fol-
low a scaling behavior of the form:

S�q �� f � ,� ,N�qRg�. �20�

The curves shown in Fig. 2 coincide at high q values,
where the intra-chain scattering contribution dominates. This
is to be expected, since the radius of gyration is only per-
turbed by the reduction of the core radius. However, the
reduction of the core radius moves the chains CM closer to
the core center, which corresponds to a shift of the oscilla-
tions toward larger q values as observed. In Fig. 3 the large
change in the radius of gyration associated with the increase
in the chain length is clear from the decrease of scattering in
the high q range. However, as the chains become longer, the
chain CM move away from the core, which corresponds to a
shift of the oscillations toward lower q values, which is also
observed. In Fig. 3 we observe a clear difference in the decay
of the intra-chain contribution for the longest chains. The
decay is given by (qRg)�1/�, where � is the critical length
exponent, which is ��0.5 for a random walk, and �
�0.588 for a self-avoiding random walk.14 For simulations
with short chains this decay is not observed due to finite size
effects.

For the simulations shown in Figs. 2 and 3, the ampli-
tude of oscillations due to the inter-chain scattering contri-
bution is observed to decrease with increasing surface cov-
erage and decreasing core radius, i.e., for increased
curvature. For the noninteracting simulations, this is due to
the fact that intra-chain correlations dominate the inter-chain
correlations in the q range, where oscillations would be ob-
served, and as a result oscillations appear to be attenuated.
This is also true for the noninteracting simulations, however,

the intra-chain term is strongly affected by the effects of the
correlation hole due to the increased curvature and surface
coverage.

Figures 4–6 show the logarithm of the absolute value of
the chain–core scattering, a term that only depends on the
radial density distribution of chains. This term oscillates
around zero, and for each sign change the logarithm gives
rise to an inverted peak. A qualitative comparison between
the chain–core scattering shown in the figures reveals that
the frequency of the oscillations depends strongly on the
chain length and core radius, but they are only slightly per-
turbed by a variation in the number of chains. The noninter-
acting simulations are well represented by both models,
where the oscillatory behavior originates in the dependence
on the chain CM radius. This explains why increasing the
number of chains only slightly effects the oscillations, com-
pared to simulations where the core radius or radius of gy-

FIG. 4. Chain–core scattering when varying the number of chains for the
simulations shown in Fig. 1. The medium and high surface coverage curves
have been shifted down two and four decades, respectively. Curves are
simulation results without excluded volume interactions �full�, model 1
�dash-dotted� and model 2 �dashed� fits.

FIG. 5. Chain–core scattering when varying the core radius for the simula-
tions shown in Fig. 2. The medium and high surface coverage curves have
been shifted down two and four decades, respectively. Curves are simulation
results without excluded volume interactions �full�, model 1 �dash-dotted�
and model 2 �dashed� fits.
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ration of the chains changes. In the latter cases the chains
CM moves closer or further away from the core, and this
corresponds to the observed shift of the oscillations toward
larger or smaller q values; whereas an increase in the number
of chains only perturbs the radius of gyration slightly and we
only observe a slight shift of the oscillations shown in Fig. 4.

We have fitted the model expressions for Fct(q ,Rg ,Rcm)
and Scs(q ,Rg ,Rcm) simultaneously to the corresponding data
obtained from the simulation. We have used Rg and Rcm as
fit parameters and fixed the number of chains N, and core
radius Rco at the values used in the simulation. The total
contour length is fixed at L�nl0 . The contour length along
with Rcm defines the weighting between the scattering from
the rod and chain sections for model 2 fits.

Figures 1–3 show model 1 and 2 fitted to the total chain
scattering for simulations with excluded volume interactions.
It is apparent that both models show systematic deviations at
high q values. At large q values the intra-chain scattering
term Fc(q) dominates the total chain scattering Fct(q), and
both models use the Debye expression for the chain self-
correlation function. However, the simulated chains are
semi-flexible and have a finite number of bonds, and this
influences the self-correlation function at high q, where a
crossover to rigid rodlike scattering is expected. As a result
of this observation, we have limited the fit range to qb
�4.5, where the Debye expression works reasonably well.
Note that both models fit the noninteracting simulation data
in this range.

The fits are in very good agreement with the simulation
data for surface densities �0.1, but as the surface coverage
increases toward unity, the minima become deeper, and both
models fail to account for this since they fail to reproduce the
negative inter-chain scattering contribution due to the corre-
lation hole. However, both models are able to reproduce the
correct oscillatory behavior, and can account for the height
of the first oscillation. The difference between models 1 and
2 on the total chain scattering is marginal, and only shows up

as a slightly more accurate fit to the first oscillation for
model 2.

Model 1 and model 2 fits to the simulated the chain–core
scattering are shown in Figs. 4–6. For surface coverages less
than unity, the fits are in good agreement with the simulation
results except for some phase and amplitude deviations at
high q values. The amplitude deviations are caused by the
failure of the Gaussian chain form factor amplitude in repre-
senting the simulated chains, analogous to the situation for
the intra-chain scattering contribution. The addition of a rod
section to model 1 yielding model 2 has visibly improved
both amplitude and phase matching. The rod term has the
effect of shifting the zero points of the chain–core scattering
contribution of model 2 given by Eq. �11�, which explains
the improved phase and amplitude matching. For high sur-
face densities the second secondary peak in Fig. 4 is broad-
ened, while the first secondary peaks in Figs. 5 and 6 are
broadened. Neither model reproduces this broadening, which
we believe is due to the high monomer density close to the
surface.

When comparing values for Rg and Rcm obtained from
simulations with those obtained from the fits, we need to
make some corrections for model 2. The two fit parameters
describe the Gaussian chain part of the chain, and not the rod
section. The rod section decreases the chain CM radius,
while it increases the radius of gyration. These corrections
can be calculated analytically, and are given by:

�Rcm�corr�Rcm�
l2

2L
, �21�

and

�Rg
2�corr�Rg

2� 3
l�L�l �

L2
�

�L�l �2

L2 �
�l2� l2

12L2
�

l�L�l �

3L2 � . �22�

The correction of the total CM radius is the weighted
average between the rod and chain CM, while the correction
to the radius of gyration was obtained by expanding Eq. �9�.
Note again that l�Rcm�Rco is the length of the rod section,
which connects the core surface to the chain segment starting
a distance Rcm from the core, while L is the total length of
the rod and chain section. In the l→0 limit the rod section
and associated corrections vanish, while in the l→L limit the
chain segment vanishes. In the limit where the chain section
vanishes, Rcm moves inward by L/2, which is the location of
the rod CM, and the radius of gyration correction reduces to
L2/12, which is the radius of gyration of a rigid rod of length
L.

Figures 7–9 show a comparison between Rg and Rcm

obtained from the fits shown in Figs. 1–6 and the values
obtained directly from the simulation. All figures show the
onset of chain interactions effects at �1. For the two simu-
lations where a minimal surface coverage limit is well de-
fined, i.e., N�1 and Rco�22b , both simulations show that
d�Rcm�Rco�1.085Rg . The simulation results shown in
Fig. 9 display a qualitatively different behavior compared to

FIG. 6. Chain–core scattering when varying the chain length for the simu-
lations shown in Fig. 3. The medium and high surface coverage curves have
been shifted down one and two decades, respectively. Curves are simulation
results without excluded volume interactions �full�, model 1 �dash-dotted�
and model 2 �dashed� fits.
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those shown in Figs. 7 and 8. In Fig. 9 the chain length
varies, which has a large impact on the radius of gyration,
while varying the number of chains or the core radius only
has an indirect effect on the radius of gyration, which ex-
pands slightly due to increased chain interactions.

A qualitative comparison of the estimate of the two
models of Rg and the simulation result shows that model 1
provides a better estimate for the radius of gyration over a
large range of surface densities, except for the simulations
with long chains, where there is no discernible difference
between the two models. We expect this to be caused by an
overestimation of the radius of gyration, when the rod sec-
tion is a significant percentage of the total chain length. Con-
versely, model 2 provides a better estimate of the chain CM
radius, which is due to the fact that the rod section improves
the representation of the radial density distribution caused by
core expulsion. One exception is the simulations varying the
number of chains, where both models consistently underes-
timate Rcm�Rco �model 1 by 20%, model 2 by 12%�, which
is due to the bad phase match in Fig. 4. Model 2 consistently
shows improved phase matching compared to model 1,

which explains why it provides a more accurate estimate of
Rcm . For the high surface coverages, the fits only agree with
the simulations results for low q values. However, they still
provide estimates of the two fit parameters. This is because
the location of the first inverted peak of the chain–core scat-
tering provides an estimate of Rcm , while the low q behavior
�of model 1�, Scs(q)�1�(3Rg

2�Rcm
2 )q2/6, contains infor-

mation on Rg and Rcm .
A quantitative comparison of the fit results shown in

Figs. 7–9, show that for surface coverage �0.1, the fits are
very good, and the value of the fit parameters are very close
to those obtained directly from the simulations. As the sur-
face coverage is increased to �0.67 �our reference micelle�
clear deviations become apparent in the total chain scatter-
ing. The deviation between simulation and fits for Rg is 1%
for model 1, and 7% for model 2, while the Rcm�Rco de-
viation is 19%, and 12%, respectively. This translates into a
deviation for Rcm of 5%, and 3%, respectively. For a sur-
face coverage of �2.4, the models only reproduce the
simulation data in for low q values, but they still provide
reasonable estimates for the radius of gyration and chain CM
radius. For the simulation varying the number of chains
��(N)�2.44� the deviations for Rg is 5%, and 13% for
model 1 and 2, respectively. The deviations for Rcm is 6%
and 4%. The deviations for Rcm�Rco is a about factor of 3
larger. For the simulation varying the core radius ��(Rco)
�2.43� the Rg deviations are less than 10%, however, the
deviations for Rcm is 20%, and 11% for the two models,
respectively. The deviations for Rcm�Rco are a about factor
of 2 larger. For the simulation varying the chain length
��(n)�2.59� , both Rg deviations are 6%, while the devia-
tions for Rcm are 21%, and 15%, respectively. The devia-
tions for Rcm�Rco are 1.5 times larger.

As already mentioned, we have also fitted the models to
the simulations without excluded volume interactions, and
both models produce good fits as expected. Model 2 yields a
somewhat better fit to the simulations, and provides an im-
proved estimate of the chains CM radius, when these are
compared to the simulation results. Conversely, model 1 pro-
vides a slightly better estimate of the radius of gyration. This
behavior is consistent with the results for simulations with

FIG. 7. Plot of radius of gyration �bottom curve against the left axis� and the
chain CM radius �top curve against the right axis� when varying the number
of chains. Symbols: Radius of gyration from simulation �circles and full
curve�, chain CM radius from simulation �box and full curve�, model 1 fit
�cross�, and model 2 fit �plus�.

FIG. 8. Plot of radius of gyration and chain CM radius for simulations when
varying the core radius. Symbols as in Fig. 7.

FIG. 9. Plot of the radius of gyration and chain CM radius for simulations
when varying the chain length. Symbols as in Fig. 7.
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excluded volume interactions. These fits are not shown in the
figures.

V. SUMMARY

We have performed Monte Carlo simulations of a model
of spherical block-copolymer micelles, simulations have
been performed with and without excluded volume interac-
tions, in order to qualitatively probe the effects of excluded
volume interactions on the micellar scattering function. We
conclude, that the observed effects can be attributed to a
correlation hole introduced by the excluded volume interac-
tions, which strongly affects the inter-chain and chain–core
contributions to the micellar scattering for micelles with high
surface coverage.

Furthermore we have analyzed the simulation data in the
context of the model of Pedersen and Gerstenberg and an
improved model, where chains are connected to the micelle
surface by a radially pointing rigid rod, which is a crude
model for the chain stretching close to the core surface. Both
models take explicit account of chain correlations due to
single chain connectivity, but neglect excluded volume ef-
fects. Both models approximate the effects of core expulsion
by lifting the polymer corona CM away from the core sur-
face. We have fitted the models simultaneously to the two
scattering contributions; the total chain scattering function
and chain–core scattering contributions as obtained directly
from the Monte Carlo simulations. The fits were performed
with only two free parameters, i.e., the chain radius of gyra-
tion and the chain CM radius. Both models provide very
good fits to simulations with core expulsion but without ex-
cluded volume interactions.

To avoid complications due to the semi-flexible chains
we have simulated, the fit range was restricted to qb�4.5.
This restriction could be removed by applying a more accu-
rate model for the chain form factor and form factor ampli-
tude �7 and 8� for instance a model derived from the Daniels
distribution.26 However, a chain form factor and form factor
amplitude based on the Daniels approximation are not valid
for our reference micelle, since it has only eight statistical
independent segments. Another possibility is an empiric ex-
pression for semi-flexible chains.21 The longest chains simu-
lated shows the decay expected for excluded volume chains,
and these require a chain form factor that can account for
excluded volume effects.14 We are currently working on de-
riving an empiric expression for the form factor and form
factor amplitude of a semi-flexible excluded volume chain
with a finite number of bonds, using Monte Carlo techniques.

For simulations with surface coverage less than unity,
fits of model 1 and 2 to the simulation provide accurate
estimates of the radius of gyration and the chain CM radius
compared to those obtained directly from the simulation. The
fitted parameters show systematic deviations due to excluded
volume interactions for surface coverages above unity. How-
ever, the fits still provide reasonable estimates of the two
parameters. Model 2, which attempts to include effects due
to chain stretching close to the core, has improved the model
estimate of the chain CM radius; however, it has had a det-
rimental effect on the radius of gyration estimate. We at-
tribute this deviation to the fact that the addition of a rigid

rod section overestimates the radius of gyration from the
stretched chains, when the rod section is a relatively large
percentage of the total chain length. However, the rod sec-
tion modifies the model such that it provides a more realistic
representation of the radial density distribution, and thus pro-
vides a more accurate chain CM radius estimate.

In the present paper we have used Monte Carlo simula-
tions to analyze the effects of excluded volume interactions
on spherical block copolymer micelles, and we have evalu-
ated two models that describe these objects. Generally, mod-
els are necessary to extract data from scattering experiments,
which do not allow for direct inversion of the experimental
results in terms of physical structures and their associated
parameters. Analysis and interpretation of experimental re-
sults require a large toolkit of different models. But the qual-
ity of the interpretation can only be as good as the quality of
the model in representing a physically realistic structure. To
evaluate the quality of a particular model, well-defined test
cases need to be examined; for this Monte Carlo simulations
are very well suited.

APPENDIX: CALCULATION OF PARTIAL
SCATTERING FUNCTIONS

To resume: rik denotes the position of the kth vertex on
the ith chain relative to the core center �ranges of indices as
defined previously�.

Let the phase sum of the ith chain be zi(q)
��k exp(�irikq); then the phase sum of the entire polymer
corona is given by w(q)�� iz i(q). The chain self-scattering
function, chain–chain and chain–core interference contribu-
tions are then given by:

�n�1 �2N Fc�qn��� �
i

z i*zi� , �A1�

�n�1 �2N�N�1 � Scc�qn��� w*w��
i

z i*zi� , �A2�

�n�1 �N Scs�qn���Re�w ��. �A3�

Here w* denotes complex conjugation of w. The aver-
ages are taken over the allowed chain conformations �an MC
average� and micelle orientations. For each MC sample the
scattering functions are sampled for a number of directions,
M, of the q vector. The resulting partial scattering functions
depend only on the magnitude of the scattering vector qn .
Let Nq be the number of qn values sampled per MC sample.

Each time an MC sample is made, MNqN(n�1) com-
plex exponentials �i.e., two trigonometric functions� have to
be evaluated, which should be compared to the N2(n�1)2

evaluations that a direct space sampling method would re-
quire to calculate the pair-distance distribution. Reciprocal
space sampling is clearly a vast improvement, since we are
free to chose both M and Nq . However, this is still by far the
most dominant contribution to the total execution time of a
simulation, and a trick is clearly needed to calculate the com-
plex exponentials in an efficient manner. An obvious choice
would be a FFT technique;27 however, FFT require that the
qn’s are positioned on a lattice, and the number of points
required to cover the range from qmin to qmax is Nq
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�qmax /qmin , even though the cost of evaluating each of the
exponentials is low, a huge number of points is required to
cover 3–4 decades. We have chosen a hybrid approach to
calculating the complex exponentials directly, using symme-
try properties to derive them, while keeping the qn’s approxi-
mately equidistant on a logarithmic scale.

Let us abbreviate �qn�rik•(qnq̂) where q̂ is a unit vec-
tor. In the following we will concentrate on calculating
exp(�i�qn) in the case where exp(�i�qm) has already been
calculated for all m�n . If qm exists such that qn�2qm , then
exp(�i�qn)�exp(�i�qm)2 �the double angle formulas�, since
we have previously evaluated exp(�i�qm), we only need to
square that number. If qm ,qp exists such that qn�qm�qp

then exp(�i�qn)�exp(�i�qm)exp(�i�qp) �the addition for-
mulas�, since both exponentials have previously been evalu-
ated, we only need to calculate the product of two numbers.
Thus by an advantageous choice of the qn distribution, we
can use symmetry properties to convert many trigonometric
evaluations into simple products of known complex num-
bers. The higher order symmetry properties require more al-
gebraic operations, and do not provide a significant optimi-
zation.

Let the target distribution be given by

qn
0�10(log qmax�log qmin) �n/Nq� �log qmin, �A4�

which is an equidistant distribution, with Nq points covering
the interval from qmin to qmax on a logarithmic scale.

The actual distribution of qn’s are chosen as to minimize

E�q1 , . . . ,qNq
��k� Nq

ln�10�� log qmax�log qmin�
� 2

��
i�1

Nq �qi�qi
0�2

�qi
0�2

�A5�

��Ncalc��Nadd��Ndouble , �A6�

where Ncalc ,Nadd , and Ndouble is the number of exponentials
that require direct evaluation, or can be deduced using the
addition formulas, or formulas for the double angle, respec-
tively. Thus Nq�Ncalc�Nadd�Ndouble . The weights � ,� ,
and � are chosen to represent the duration of the respective
numerical operation; we have used ��1 and ����0.1.

The first term is a harmonic term that determines how large
deviations from a perfect logarithmic distribution should be
allowed, in order to speed up the evaluation; since the distri-
bution is on a logarithmic scale, we have to divide by the
local length scale, which is given by the parenthesis and the
denominator. The constant k should be chosen so small that
the ordering qm�qn when m�n is ensured, we have used
k�0.01. This penalty functional is easily minimized by a
simulated annealing quench, with moves that shift qn’s,
which require trigonometric evaluations into qn’s, which can
be evaluated by simple algebraic operations on known num-
bers. If Nq is huge, care must be taken to avoid truncation
errors in the evaluation. In our implementation only about
10% of the complex exponentials need to be evaluated di-
rectly.
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Block copolymer micelle coronas as quasi

two-dimensional dilute/semi-dilute polymer

solutions
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Chain-chain interactions in a corona of polymers tethered to a spherical core under

good solvent conditions are studied using Monte Carlo simulations. The total scatter-

ing function of the corona as well as di�erent partial contributions are sampled. By

combining the di�erent contributions in a self-consistent approach it is demonstrated

that the corona can be regarded as a quasi two-dimensional polymer solution, with a

concentration dependence analogous to that of an ordinary polymer solution. Scatter-

ing due to the corona pro�le and density �uctuation correlations are separated in this

approach. The osmotic compressibility is extracted from the latter, and it is shown to

be a universal function of surface coverage, with some deviations at high coverage due

to surface curvature e�ects.
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Polymers can be tethered to a surface, thus forming a di�use layer on the
surface [1, 2]. The equilibrium properties of such a layer follow from the balance
between entropic forces and excluded volume interactions. The latter favor a
state with a minimum of monomer-monomer contacts, which can be achieved
by increasing the available volume per chain by increasing the layer thickness.
Entropic forces will tend to maximize the number of available chain con�gura-
tions by opposing the chain stretching and by shifting the corona away from the
surface to some extent. At low surface coverage the surface interaction will dom-
inate, and the polymers will have a mushroom like shape. At very high surface
coverage excluded volume interactions and chain-chain interactions dominate
and chains will be strongly stretched forming a polymeric brush [3, 4]. Between
the mushroom and brush regime there is a broad region of intermediate sur-
face coverages [5], which is the typical regime accessible by experiments, see e.g.
[6, 7].

In the present work we study the scattering from the polymeric layer of a
spherical particle such as the polymer corona of a diblock copolymer micelle.
We use Monte Carlo (MC) simulation-generated data to show that a model in
which the the corona is regarded as a two-dimentional solution is applicable.
The total corona scattering can be decomposed in two ways. In the analytical
model of Pedersen and Gerstenberg [8], the intra-chain and inter-chain scat-
tering contributions are combined to give the corona scattering, however, the
same result can be obtained by combining the scattering contribution due to
the average corona pro�le and density �uctuation correlations [9]. The latter de-
composition can be interpreteted as being the scattering expected from a thin
layer of dilute/semi-dilute solution con�ned to a thin layer around the core [10].
The approach presented in the present paper is based on self-consistent analysis
of the MC results using the expressions provided by these two decompositions.
The total corona scattering as well as the intra-chain, inter-chain, and corona
pro�le scattering contributions were sampled during the simulations. The ef-
fects of excluded volume interactions, core expulsion, and chain semi-�exibility
on the scattering was simulated and series of simulations varying the number of
chains, chain length, and core radius were performed. In the analysis of the two
expressions a Random Phase Approximation (RPA) was used for the �uctuation
scattering contribution, and excellent agreement was obtained when inserting
the partial scattering contributions as obtained from MC simulations. The ex-
cellent agreement of the two expressions enables us to extract the scattering
contribution due to density �uctuation correlations within the corona. These
carry thermodynamic information about the apparent second virial coe�cient
and the osmotic compressibility of the polymer layer. These quantities show
a surface coverage dependence analogous to that expected from an ordinary
polymer solution.

Numerous approaches such as self-consistent �eld theory [27, 28], variational
techniques [29], and numerical simulations [13, 14] have all been applied for
investigating the pro�les of brushes on curved interfaces. Polymer layers at low
and medium surface coverages are not amenable to analytically treatment, due
to the presence of large density �uctuations. However, the small-angle scattering
from a polymeric interface depends not only on the pro�le but also on the



86 CHAPTER 8. ARTICLE II

correlations of density �uctuations [9]. The scattering from a dilute or semi-
dilute solution of star polymers were treated by Marques et al. using an empirical
`blob' approach [16]. Our approach o�ers a clear quantitative picture of the
interaction e�ects in micellar coronas, which are based �rmly on Monte Carlo
simulation results.

We describe the density of chains in a polymer corona on the surface of a
spherical particle using a reduced surface coverage. Due to the chain entropy,
the center of mass of a chain will be located at approximately a distance Rg

from the core surface, where Rg is the unperturbed chain radius of gyration.
The e�ective core surface area is thus 4�(Rco + Rg)

2, where Rco is the core
radius, whereas the cross-sectional area of N chains is �R2

gN . The reduced
surface coverage is given by the ratio of cross-sectional chain area to available
surface area as � = N�R2

g=[4�(Rco + Rg)
2]. The reduced surface coverage is a

two-dimensional analogy of the c=c� concentration [20, 25] for ordinary polymer
solutions. A surface coverage of unity corresponds to critical overlap, where the
area occupied by an unperturbed chain equals the available surface area per
chain. For � < 1 chains are few and far apart and weakly perturbed by the
presence of other chains, and the scattering is well described by the model of
Pedersen and Gerstenberg [8]. However, in the brush regime (� � 1) the surface
will induce chain ordering perpendicular to the surface as chains are stretched.
The scattering in this regime is expected to be described by a core-shell model
[19]. Experimentally � < 5 is found for copolymer micelles [20, 16, 17].

The normalized corona scattering [Fcor(q = 0) = 1] consists of two weighted
contributions: an intra-chain contribution Fc and an inter-chain contribution
Scc as

Fcor(q) =
1

N
Fc(q) +

�
1� 1

N

�
Scc(q): (8.1)

Here q is the magnitude of the scattering vector, and Fc is the Fourier trans-
form of the pair-distance distribution between sites on the same chain. The
intra-chain scattering is mainly due to chain connectivity and self-avoidance,
and single-chain properties such as the radius of gyration, the contour length L,
and the Kuhn length b can be determined from it. For a long semi-�exible chain
the Kuhn length is the step length of an equivalent random walk. The inter-chain
scattering Scc is the Fourier transform of the pair-distance distribution between
sites on di�erent chains. The inter-chain scattering contains information about
the corona pro�le, and the radius of the core. However, it also includes corre-
lations due to chain-chain interactions such as the `correlation hole', which is
known to be present in ordinary polymer solutions [20, 25].

Core-shell models [19] describe the corona scattering in terms of the con�g-
urationally averaged pro�le, and as a result all density �uctuation correlations
due to chain connectivity, self-avoidance, and chain-chain interactions are ne-
glected. The core-shell approximation is Fcor = A2

cor, where the pro�le scattering
is given by Acor(q) =

R1
0 f(r) sin(qr)=(qr)4�r2dr, and where f(r) is the corona

pro�le. If chain-chain interactions are negligible, di�erent chains will be uncor-
related, and the inter-chain scattering will be given by Scc = A2

cor. Chain-chain
interactions will yield an additional contribution to the inter-chain scattering
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due to short-ranged density �uctuation correlations, which will dominate the
inter-chain scattering at high q values. These �uctuations are caused by the re-
pulsive excluded volume interactions between di�erent chains. Based on this we
de�ne an �uctuation scattering contribution Ffluc, leaving only correlations due
to the average pro�le (given by A2

cor). Thus the corona scattering is rewritten
as

Fsol(q) =
1

N
Ffluc(q) +

�
1� Ffluc(q = 0)

N

�
A2
cor(q): (8.2)

The weighting ensures that Fsol is normalized for q = 0 since Ffluc is not
normalized. Rewriting (1) as (2) has the e�ect of shifting the in�uence of the
correlation hole from Scc into Ffluc. Therefore, inter-chain correlations has to be
included in an expression for the Ffluc(q) term. We apply an expression based
on the PRISM theory for polymer solutions and melts, see e.g. [23]:

Ffluc(q) =
Fc(q)

1� �c(q)Fc(q)
: (8.3)

Here c(q) is the Fourier transform of the direct correlation function between
sites on di�erent chains in an equivalent site approximation, which depends
on the site-site interaction potential, and � is the density of scattering sites.
The Fsol expression has the interpretation as being the scattering of a dilute or
semi-dilute solution with a pro�le f(r), and will be called solution scattering.

We use Monte Carlo (MC) simulation results for comparing Fcor and Fsol.
The micelle was modelled as a number of semi-�exible chains tethered to a
spherical core. Interactions were included by placing six hard spheres of radius
0:1b per Kuhn length b of the chains as this reproduces the excluded volume
e�ects found experimentally for polystyrene in a good solvent [24]. Chains were
excluded from the core region. The MC moves consisted of pivoting the chain
tails [25], and two moves, that moved and reorientated chains on the core sur-
face. We note that chains are not free to move about on the surface of a micelle
with a glassy or crystalline core. However, the observed scattering is an ensem-
ble average of all allowed corona con�gurations, and this includes an average
over the location of the chain tethering points, which requires a surface move.
The con�gurational ensemble averages of the Fc, Scc, and Acor scattering con-
tributions were simultaneously sampled during the MC simulations [26]. The
unperturbed chain radius of gyration was obtained from a separate set of simu-
lations of a single chain. We chose a reference micelle de�ned as having N = 44
chains, chain length L = 8:33b, and core radius Rco = 3:33b, this choice mimics a
Pluronic P85 micelle [8]. We performed three series of simulations, where one of
the three parameters was varied in turn, while keeping the remaining two �xed
at their reference values. The range of variation was chosen to correspond to a
variation of surface coverage � in the range from 0.01 to about �ve, thus cover-
ing the experimental regime ranging from isolated chains to a reasonable chain
overlap. It should be noted that the equilibrium corona con�guration does not
only depend on the reduced surface coverage but also on the surface curvature
Rg=Rco and number of chains N .
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Comparing (8.1), (8.2), and (8.3) for the sampled scattering contributions
allows us to obtain the ��c(q) term from the simulation results. We found that it
has a weak dependence on q, and as a result we approximate it with an e�ective
excluded volume parameter �(�) � ��c(q). This converts the PRISM expression
(8.3) into the form of a Random Phase Approximation. The excluded volume
parameter is related to a virial expansion of the reduced osmotic compressibility
as �(�) = 2A2�+ 3A3�

2 + : : : = 2A2(�)� where A2(�) is the reduced apparent
second virial coe�cient [28]. Acor oscillates around zero, and we have determined
�(�) from the �rst zero point of Acor.

The sampled corona scattering from simulations varying the number of
chains is shown in �g. 1 normalized such that they coincide for large q values.
The huge increase in oscillations as the number of chains increases is caused
by the change in weighting between the highly oscillatory inter-chain contribu-
tion, and the non-oscillatory intra-chain contribution. Also shown in �g. ?? is
the solution scattering. The two sets of curves show an excellent match, which
demonstrates the self-consistency of our model of the corona scattering. Simi-
lar excellent agreement is obtained for simulations varying length of chains and
core radius (not shown). Finally, the �uctuation scattering contribution Ffluc is
shown. This contribution is seen to decrease with increasing surface coverage,
analogous to the concentration dependence of the scattering from a polymer
solution, see e.g. [28]. The corona scattering is dominated by pro�le scattering
at low q values, whereas the �uctuation scattering dominates at large q values.

A �uctuation-dissipation theorem relates the Fourier transform of the den-
sity �uctuation correlation function to the osmotic compressibility [20]. The
reduced osmotic compressibility is given by � � @��

@� = Ffluc(q = 0)�1 =
1 + 2A2(�)� where the reduced osmotic pressure is �� = �R2

g�=(kbT ). In this
expression �,kb, and T are the osmotic compressibility, Boltzmann constant,
and temperature, respectively. Fig. 2 shows the reduced osmotic compressibil-
ity obtained from simulations varying number of chains, chain length, and core
radius, and the points fall on an universal curve as function of surface cover-
age. Similar behaviour have been predicted for polymers at �at interfaces by
Carignano and Szleifer for �� [5] for � < 6. The osmotic compressibility shows
a weak dependence of surface coverage for � < 1, as one would expect from
the dilute polymer solution analogy, see e.g. [25]. The insert of �g. 2 shows the
apparent second virial coe�cient. The values from the three series of simula-
tions approximately collapse onto a common power law relation: A2(�)� = ���

with � = 0:68 � 0:01 and � = 0:95 � 0:02. PRISM theory in the thread limit
[23] predicts that A2(c=c

�) is a constant for low concentrations. We observe a
weak dependence on surface coverage in the range of surface coverages we have
simulated. At high surface coverages the deviations from power law behaviour
observed in the insert of �g. 2 is re�ected in the compressibility. We attribute
these deviations to e�ects of chain stretching, which shows some dependence on
the surface curvature.

In this paper we have demonstrated that the scattering from a corona of
chains tethered to a spherical core for experimentally relevant surface coverages
can be self-consistently re-expressed as the scattering one would expect from
a quasi two-dimensional dilute/semi-dilute polymer solution con�ned to a thin
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layer on the core surface. We note that the radius of gyration as well as the
correlation length are comparable to the corona thickness, which is why the
polymer layer can be regarded as being quasi two-dimensional. In the brush limit
the chains will be aligned perpendicular to the surface. This is clearly far from
the case of a semi-dilute solution, and we expect the RPA expression to break
down in this limit. It should be noted that we do not observe any deviations
between the corona scattering and the solution scattering even for the largest
surface coverages simulated. The expression we have proposed for the solution
scattering bridges the gap between the model of Pedersen and Gerstenberg, valid
at low surface coverage, and the core-shell models expected to be valid at very
high surface coverage, while retaining formal similarities with both models.

We have also demonstrated that the scattering contributions due to the
corona pro�le and �uctuations decouple, allowing us to deduce the osmotic
compressibility of the corona from the density �uctuation correlation function.
The compressibility shows a universal dependence on surface coverage analogous
to that observed for ordinary polymer solutions as function of concentration.
We furthermore expect similar expressions to be valid for the scattering from
micelles with elliptical and cylindrical cores, however, with some deviations due
to the variation of the local surface curvature for such geometrical shapes. The
model, we have presented, can be used for separating corona pro�le and chain-
chain correlation information in real experiments, and thus allows more detailed
information to be gained by analysis of experimental data.
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Figure 1: Comparison between corona scattering Fcor and solution pro�le
scattering Fsol:prof for micelles with number of chains: N = 3; 8; 22; 44; 87; 131
(bottom to top). Fcor (thick line), Fsol:prof (full boxes), and the �uctuation
scattering Ffluc (thin dashed line). These are normalised such that the single
chain scattering coincides in the large q limit.
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Figure 2: The reduced osmotic compressibility � plotted against surface cov-
erage for simulations varying number of chains (circle), varying chain length
(box), and varying core radius (diamond). The insert shows the A2(�)� plot-
ted against surface coverage. The line in the insert is the power law A2(�)� =
0:675�0:95 and the corresponding osmotic compressibility is shown as a line in
the �gure.
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Form factors of block copolymer micelles with

excluded volume interactions of the corona chains

determined by Monte Carlo simulations
Carsten Svaneborg and Jan Skov Pedersen*

Condensed Matter Physics and Chemistry Department, Risø national Labora-
tory, DK-4000 Roskilde, Denmark
*Present address: Department of Chemistry, University of Aarhus, Langelands-
gade 140, DK-8000 Aarhus C, Denmark

The scattering of a diblock-copolymer micelle has been simulated using Monte

Carlo techniques. The scattering is analysed using a novel model, where the corona

is represented as a dilute/semi-dilute polymer solution with a radial pro�le. This ap-

proach decouples the scattering due to interaction and connectivity induced density

�uctuations and the average radial pro�le of the corona. Three di�erent pro�les have

been used to �t the simulated corona scattering: a box with a Gaussian tail, and two

maximum entropy (ME) pro�les; chain penetration into the core region is not allowed

for any of the pro�les. Excellent �ts are obtained, especially for a ME pro�le with

three parameters. An excluded volume parameter and the corona compressibility are

obtained, and show a strong dependence on surface coverage. The derived expressions

for the form factor provides a new approach for analyzing experimental data obtained

by neutron or x-ray small-angle scattering for block copolymer micelles with signi�cant

intra and inter-chain excluded volume interactions interactions.

This paper has been submitted to Macromolecules.



9.1. INTRODUCTION 97

9.1 Introduction

When a diblock copolymer is dissolved in a solvent which is good of one block
and bad for the other block, micelles are spontaneously formed. These micelles
have a relatively dense core of the insoluble blocks surrounded by a di�use corona
consisting of the solvated blocks. The core can have various geometric shapes
such as spherical, elliptical, or cylindrical, depending on solvent and the length
of the polymer blocks [1]. Such micelles provide a model system for studying
the interactions between polymer chains tethered to a curved surface [2][3].

Much work have been invested in understanding properties of such systems,
as tethering polymers to a surface provide a way of modifying the physical,
chemical, and biological properties of surfaces [4][5]. There are numerous studies
in the literature of polymers tethered to a �at interface forming a polymer layer,
see e.g. [6][7][8][9]. For chains tethered to a convex surfaces such as a sphere
the available volume per chain segment will grow rapidly along the chain as
segments moves away from the surface, and this has a strong e�ect on the
properties of the polymer layer. The pro�les of brushes on convex surface have
been examined using variational minimisation of mean �eld theory [10], self-
consistent �eld theory [11][12][2][3], and simulation techniques such as Monte
Carlo and Molecular Dynamics simulations [13][14].

Under good solvent conditions a reduced surface coverage of a �at polymer
layer can be de�ned as � = �R2

go=A
0, where Rgo is the radius of gyration of

an unperturbed polymer chain, and A0 is the surface area available per chain
(the inverse grafting density). For � � 1 (the mushroom regime) all chains are
essentially isolated. The polymer layer will be laterally inhomogeneous, and the
conformation of a single polymer chain depends only on self-interactions and
the presence of the surface. The pro�le of a polymer layer has recently been
investigated by renormalization group calculation [15] in the low coverage limit.
For � � 1 (the brush regime) each chain will interact with many neighbouring
chains, and chains will stretch away from the surface in an attempt to reduce the
excluded volume energy contribution by a reduction of the monomer density,
which is achieved by increasing the height of the polymer layer. However, chain
stretching will be accompanied by a decrease in the con�gurational entropy
caused by the reduction of the number of possible chain con�gurations. The
height of the polymer layer is determined by the balance of these two e�ects.
In the brush regime the layer will be laterally homogeneous, and the chain
stretching will be uniform except at the outer edge of the layer, where there will
be some �uctuations due to the increased degrees of freedom of the chain ends
[10].

For a spherical micellar core we de�ne speci�cally the reduced surface cov-
erage as

� =
N�R2

go

4�(Rco +Rgo)2
: (9.1)

Here Rgo is the unperturbed radius of gyration of the chains, while Rco is
the core radius, and N is the number of chains. The reduced surface coverage is
the packing fraction of chains on the surface, assuming that chains are spherical
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objects on the surface of the core. Due to the non-penetration of the chains into
the core region the center-of-mass of a chain is displaced a distance about Rgo

from the core surface yielding an e�ective surface area per chain of 4�(Rco +
Rgo)

2=N , while the cross-sectional area of a chains is �R2
go.

The topic of the present article is to present results from computer simula-
tions for the scattering from micelles as well as an analysis of the results by a
novel semi-empirical model. The model is a generalization of core-shell models
that takes the scattering due to density �uctuation correlations into account.
The model allows the radial pro�le, chain radius of gyration, and the corona
osmotic compressibility to be obtained from micellar scattering data.

We have performed simulations of the scattering for surface coverages � < 5,
which correspond to the region of surface coverages experimentally available for
copolymer micelles, see e.g. [2][16][17]. The computer simulations have been
performed using semi-�exible chains with excluded volume interactions, where
chains are excluded from the spherical core region. Monte Carlo simulation
techniques (MC) allow us to sample the scattering contributions from the micelle
just as in a real experiment using contrast variation techniques, but using a well-
de�ned model for the scattering object, here a micelle. This allows us to test
models for the scattering from complex objects using simulation results, and
it allows us to correlate the observed scattering to properties of the simulated
model system, which will improve the interpretation of experimental scattering
data. The simulation results are analysed using a semi-empirical model, which
combines expressions for the scattering from a core-shell model with that of
a dilute/semi-dilute polymer solution; a similar model have been used by de
Gennes for describing the dynamics of brushes at �at interfaces [18][19]. We
have used three radial pro�les for describing the average radial pro�le, a box
with a Gaussian tail, and two Maximum Entropy pro�les [20][21][22], where
knowledge of the two or three �rst momenta of the pro�le is assumed.

The paper is organised as follows: In section 2 we present a derivation of
the model, section 3 presents the Monte Carlo simulations, and the quantities
that are sampled during the MC simulations. In section 4 our MC results are
presented and discussed, while section 5 contains our analysis and modelling of
the data, and our conclusions are summarised in section 6.

9.2 Analytical Models

In a dilute polymer solution polymers are well separated, and as a result the
conformation and position of di�erent polymer chains are uncorrelated. The
scattering from the solution is given by the single chain form factor, which for
an ideal �exible chain is given by FDebye(x) = 2[x � 1 + exp(�x)]=x2 with
x = (qRg)

2, where Rg is the radius of gyration, and q the magnitude of the
scattering vector [23]. For qRg � 1 the form factor follows a (qRg)

�2 power
law; this is a re�ection of the < R2

ij >/ ji�jj scaling relation between the root-
mean-square (RMS) distance between two sites on the chain and the contour
length of the chain segments connecting the two sites. Topologically the ideal
chain is a connected string-like object with a fractal dimension of two, while
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actual polymer chains are multi-fractals due to their �nite size and the semi-
�exibility of the polymer backbone.

The reduced density for a polymer solution is de�ned as � = 4�R3
go�=3

(identical to the reduced overlap concentration c=c�, where c� is the overlap
concentration of a polymer solution), and � is the number density of chains. If
the reduced density is well below unity, the solution is dilute, and polymers are
well separated. If the reduced density is well above unity, the solution is in the
semi-dilute regime, where polymers are entangled, forming a transient network
of intermeshed chains [24][25]. Using a discrete model with n sites per chain,
the scattering from a semi-dilute solution follows the predictions from PRISM
theory [26][27], which states that it depends on the single chain scattering and
a direct inter-chain correlation function c(q) as

FPRISM (q) =
FDebye(q)

1� n�c(q)FDebye(q)
: (9.2)

Here we have neglected the e�ects of self-avoidance and we do therefore
not consider the screening at higher concentrations. Let us assume that the
di rect correlation function can be approximated by its low q limit, then �noc(q)
can be approximated by an e�ective concentration dependent excluded volume
interaction parameter �(�)[27]. This turns the PRISM expression into the form
of a Random Phase Approximation (RPA) [28]. De�ning the reduced surface
compressibility as � � @��=@�, where the reduced osmotic pressure is �� =
4�R3

g�=(3kbT ) (�� = �R2
g�=(kbT ) in the case of a two-dimensional system

of tethered chains to a surface). Here �; kb, and T are the osmotic pressure,
Boltzmann constant, and absolute temperature, respectively. The RPA excluded
volume interaction parameter can be related to a virial expansion of the reduced
osmotic compressibility as � = 1+2A2�+3A3�

2+ : : : = 1+2A2(�)� = 1+ �,
where the A2(�) = A2 + 3A3�=2 + : : : function de�nes the apparent second
virial coe�cient [28]. In the dilute limit the RPA expression reduces to the form
factor of an ideal chain, while in the q ! 0 limit the inverse forward scattering
is F�1

RPA(q = 0) = 1 + � = � which is expected from a �uctuation dissipation
theorem.

A block copolymer micelle consists of a di�use corona of the dissolved block
and a dense core of the insoluable block. The normalised form factor [Fmicelle(q =
0) = 1] of a block copolymer micelle with a homogeneous spherical core can be
written in terms of partial scattering contributions as

Fmicelle(q) =
1

(�cor + �s)2

h
�2s�

2(q) + �2corFcor(q) + 2�s�corAcor(q)�(q)
i
;

(9.3)
where the three contributions correspond to scattering from the core, the corona,
and an interference term between the core and the corona, respectively. The
corona and core excess scattering lengths are denoted �c and �s, respectively,
and they are de�ned as �cor = NVcor��chain and �s = NVs��core, where Vcor,
Vs, ��chain, and ��core are the volume of a corona and core block, the excess
scattering length densities of a corona block, and core block, respectively. A
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diblock copolymer micelle has implicitly been assumed, such that N denotes the
aggregation number. In this paper the corona, core and corona-core interference
contributions to the micelle scattering are normalised to unity in the q ! 0
limit. The normalised form factor amplitude of a sphere is given by Rayleigh as
�(qRco) = 3[sin(qRco)� qRco cos(qRco)]=(qRco)

3, where Rco is the radius of the
micelle core [29].

Because the core is assumed to be spherical and homogeneous, Acor only
depends on the radial distribution of segments '(r), i.e. the corona pro�le, and
Acor will in the rest of the paper be denoted pro�le scattering. It is given by

Acor(q) =

Z 1

0
dr4�r2

sin(qr)

qr
'(r): (9.4)

If the single chain scattering contribution is neglected as well as correlations
due to density �uctuations caused by chain-chain interactions, the corona scat-
tering is given by Fcor = A2

cor. This is the approximation that yields a core-shell
model of the micellar scattering[30], which is the scattering from a con�gura-
tionally averaged micelle, rather than the con�gurationally averaged scattering
from a micelle, which is the scattering observed experimentally. As single chain
scattering is neglected, a core-shell model is unable to reproduce the character-
istic single chain power law decay at large q values, which is a signature of the
chain connectivity, nor is a core-shell model able to represent the �nite scatter-
ing observed in the minima where Acor(q) = 0. Only in the limit � � 1 where
the density of chains is very high, e.g. when the corona is in the brush regime, do
we expect these �uctuations to be su�ciently suppressed for core-shell models
to give a reasonable description.

For a micelle the corona scattering is the sum of two contributions: a con-
tribution from the intra-chain scattering F (q) (proportional to the number of
chains N), and inter-chain scattering H(q) (proportional to the number of dif-
ferent pairs of chains N(N � 1)). The normalised [Fcor(q = 0) = 1] corona
scattering is thus given by

Fcor(q) =
F (q)

N
+
N � 1

N
H(q): (9.5)

The separation of the corona scattering into inter-chain and intra-chain
scattering contributions is somewhat arbitrary. Another way of separating the
corona scattering is in terms of the scattering from the con�gurationally aver-
aged radial pro�le, and from the correlations of the density �uctuations [31][32]
about this average pro�le. The scattering due to the radial pro�le is given by
A2
cor as in a core-shell model. The density �uctuation correlation function de-

pends on chain interactions and chain connectivity, and we model this by the
scattering from a two dimensional dilute/semi-dilute solution using the RPA
approximation:

Fsol:prof (q) =
FRPA(q)

N
+
N � FRPA(q = 0)

N
A2
cor(q): (9.6)

Here the weighting of the two terms has been adjusted to account for the fact
that scattering have been shifted from the pro�le scattering contribution into the
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�uctuation scattering contribution, and the �uctuation scattering contribution
is not normalized. This expression for the corona scattering has separated the
total scattering into a term that only depend on the scattering from a single
chain and an excluded volume parameter, and a term that only depends on
the radial pro�le of the corona, and can be interpreted as being the scattering
one would observed from a polymer solution with a particular radial pro�le
being con�ned to the micellar surface. The �rst term is denoted the �uctuation
scattering in the rest of this paper, while the second term is denoted pro�le
scattering.

9.3 Monte Carlo Simulation

We have performed Monte Carlo (MC) simulations on block copolymer micelles
[33]. Micelles was modeled as a spherical core with a number N of semi-�exible
chains tethered to it, where each chain consists of n bonds of length l0. The
valence angle between segments was �xed at 135:585 degrees, which yielded a
Kuhn length b = 6l0 such that the semi-�exible chain reproduces the radius
of gyration of a �exible chain in the long chain limit. The excluded volume
interaction was simulated by placing six hard spheres along each Kuhn length
of the chain. The radius of the hard spheres was �xed at 0:1b, which is known
to reproduce the binary cluster integral of polystyrene in a good solvent [35].
The MC moves consisted of pivoting the individual chains [36], and two surface
MC moves, that moved and reorientated chains on the micelle surface. These
were performed by pivoting the entire chain about the core center or the tether
vertex, respectively. Con�gurations where a chain was found to overlap with
other chains or the core region were rejected. We used the �zippering� algorithm
[37] when checking for chain overlap, taking into account the semi-�exibility
of the chains, and taking care to avoid introducing local sti�ness by allowing
neighbouring vertices along the chain to overlap. The initial micelle con�guration
was constructed using slightly stretched chains, which were grown while avoiding
overlaps. This initially biased con�guration was equilibrated by performing MC
moves until the number of accepted moves was in excess of one hundred times
the number of degrees of freedom in the model. The three parameters controlling
the step size of the MC moves were adjusted during the equilibration stage to
yield approximately 50% acceptance probability for each of the three moves.

The chain was periodically reconstructed after every 50000 pivot moves us-
ing the tabulated dihedral angles to avoid the build up of numerical errors due
to the many repeated rotations needed to sample the micellar con�gurations
space. This was made possible because each chain carries a virtual zeroth seg-
ment around with it, and the zeroth segment and the �rst segment, de�ne a
coordinate system in which it is easy to add another segment with a speci�c di-
hedral angle, valence angle, and segment length. This procedure, when iterated,
uniquely reconstructs the chain based on a table of dihedral angles, a table which
was created during chain formation, and which was updated each time a pivot
move was accepted. This is a cheap and e�ective operation compared to solving
3 linear equations for each segment as in the chain correction algorithm of Stell-
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man and Gans [36], and also provides an easy way of creating the initial chain
con�guration. The deviation between the actual and expected dihedral angle
was constantly below 3� 10�12 during the simulation of the longest chain (229
segments), with deviations in segment length and valance angle below about a
third of that. During a MC simulation the con�guration was sampled for ev-
ery 1000 attempted MC steps, and a simulation consisted of 100 blocks, each
block being the average of 100 samples. Error bars was derived by analysing the
�uctuations of the block averages.

During MC simulations the radial density pro�les '(Rj) were sampled in
a number of bins at radii Rj as the number of vertices lying in a spherical
shell centered on the core with outer radius (Rj + Rj+1)=2 and inner radius
(Rj�1 +Rj)=2. Each bin was normalised by the volume of that spherical shell.
We sampled the radius of gyration of the individual chains de�ned as

R2
g =

*
1

(n+ 1)N

NX
i

n+1X
k

(Rcm;i � rik)
2

+
with Rcm;i =

1

n+ 1

n+1X
k

rik; (9.7)

where rik is the position of the k'th vertex on the i'th chain. N is the number of
chains and n+1 is the number of vertices/scattering sites. The scattering from
the micelle corona is given by the scattering from the set of vertices and core as

Fmicelle(q) /
*������cor

NX
i

Ai + �s�

�����
2+

; (9.8)

where the form factor amplitude of the i'th chain is

Ai(q) =
1

N(n+ 1)

n+1X
k

eiq�rik : (9.9)

Since the micelle core is assumed to be spherical and homogeneous, the core
form factor amplitude � is real and can be moved outside the con�gurational and
orientational average. The remaining con�gurational averages can be compared
to the corresponding terms in (9.3). The normalised corona scattering and the
pro�le scattering can be identi�ed as

Fcor(q) =
1

N2

*�����
NX
i

Ai

�����
2+

; (9.10)

and

Acor(q) =
1

N

*
Re

NX
i

Ai

+
: (9.11)

In this notation the single chain scattering and inter-chain scattering can be
written as the sum of diagonal and o�-diagonal members of (9.10) as:

F (q) =
1

N

*
NX
i

jAij2
+

and H(q) =
1

N(N � 1)

*
NX
i6=j

AiA
�
j

+
: (9.12)
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Comparing these equations to (9.10) demonstrates the weighting used in the
expression for corona scattering (9.5). The averages consist of a con�gurational
as well as a orientational average. These were performed using MC sampling, and
by evaluation of the scattering for 13 directions for each q value, and choosing a
new set of random directions each time a block of 100 samples was completed.
The set of q values were chosen as approximately logarithmic distributed, but
slightly tweaked such that many q values are the sum of two smaller q values, or
twice another q value. This converted many of the complex exponentials needed
to evaluate (9.9) into simple products and squares of previously calculated com-
plex numbers. This method of sampling yields a signi�cant optimisation of the
sampling of micellar scattering [33].

9.4 Results and Discussion

We have chosen a reference micelle de�nes as having N = 44 chains, chain
length L = 8:33b, and core radius Rco = 3:33b, as this mimics the con�guration
of the Pluroic P85 micelles [106]. We use the Kuhn length b as a length scale.
We have performed three series of simulations where one of the parameters N;
L, and Rco was varied while keeping the remaining two �xed at their reference
values. The range of variation was chosen to correspond to a variation of surface
coverage in the range from 0:01 to �ve, covering the experimentally accessible
regime for copolymer micelles [2][16][17].

Figure 1 shows the corona scattering for simulations where the number of
chains is varied. A qualitative examination shows a huge decrease of scattering
at high q values relative to the scattering at low q values as the number of chains
is increased, while the amplitude of the �rst subsidiary oscillation increases and
higher-order oscillations progressively become more pronounced. This is caused
by the weighting between the highly oscillatory inter-chain scattering H(q), and
the non-oscillatory intra-chain scattering F (q). The scattering is dominated by
single chain scattering and its 1=N dependence at high q values, while the rapidly
decaying pro�le scattering contribution dominates at low q values. The minima
of the corona scattering correspond to q values where Acor(q) = 0, and in those
minima the scattering intensity is given solely by the chain scattering F .

Figure 2 shows the corona scattering corresponding to simulations where the
core radius is decreased for �xed number of chains and core radius. Decreasing
the core radius, causes the oscillations due to the radial pro�le to shift towards
larger q values. Simultaneously the oscillations are reduced as the inter-chain
scattering becomes progressively less dominant compared to the chain scattering
F (q), which is essentially unchanged by a decrease in core radius.

The logarithm of the absolute value of the pro�le scattering is shown in
�gures 3 and 4. Each sign change gives rise to an inverted peak due to the log-
arithm. A qualitative examination shows that increasing the number of chains
has only a slight e�ect on the pro�le scattering i.e. the corona pro�le, as the
�rst inverted peaks are shifted slightly towards smaller q values indicating a
slight increase of the corona width. As the core radius is decreased a huge shift
is seen in the shift of the oscillations towards larger q values shown in �gure
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4, which indicates that varying core radius has a large impact on the corona
pro�le. Simulations where the chain length is increased will display similar ef-
fects as those where the core radius is decreased, as this provides two opposite
mechanisms of controlling the surface curvature, which can be quanti�ed by the
dimensionless ratio of the radius of gyration to core radius. A broadening of
the �rst subsidiary and second subsidiary oscillation is observed in �gure 3 and
4, and this is attributed to e�ects of surface coverage and surface curvature,
respectively, on the shape of the corona pro�le.

Figure 5 shows the reduced density pro�les sampled during the simulations,
where the number of chains, or core radius was varied. Simulations varying the
chain length yields the same reduced density pro�le as simulations varying the
core radius, as these simultaneously varies the surface coverage and curvature in
a similar manner. The reduced density pro�les are de�ned as '0(r0) = '(r0)=C
where C =

R
'(r0)dr0 is an area normalisation constant, and the reduced radius

is de�ned as r0 = (r �Rco)=(hri �Rco), where hri =
R
r'(r) 4�r2dr is the �rst

moment of the simulated pro�le. This representation shows the change of the
pro�le shape rather than the change of the pro�le itself.

At low surface coverage all pro�les indicate a depletion zone close to the
core, however, no depletion zone is present when the surface coverage is in-
creased above unity. At su�ciently large surface curvatures the '(r) / r�4=3

scaling behaviour predicted by Halperin [24] is clearly observed in the vicinity
of the core surface, however, further away from the core the radial pro�les decay
faster than predicted by Halperin, which is due to the �nite length of the sim-
ulated chains. Upon variation of the number of chains, the pro�le only shows
a dependence on the number of chains for surface coverages above unity, indi-
cating that chain interactions are negligible for surface coverages below unity.
The pro�le for simulations where the chain length is varied shows a large change
of shape. This is due to the fact that the e�ective surface curvature Rg=Rco is
simultaneously increased.

9.5 Analysis and modelling of the results

For a quantitative analysis of the simulated chain scattering, two parameters
are required for the chain scattering, namely the radius of gyration Rg , and
the excluded volume parameter in the RPA expression, which is assumed to be
a function of the surface coverage �(�). We have assumed that the excluded
volume coe�cient only depends on the reduced surface coverage, in analogy
with an ordinary polymer solution where it is a function of the reduced density
� as shown in the theory section. We have simulated semi-�exible chains, as this
provides a relatively realistic model for real polymer chains. The simple RPA
expression is modi�ed using a Daniels form factor in the denominator [55], which
takes the semi-�exibility of the chains into account in an approximate manner,
while we retain the Debye form factor in the numerator of the RPA expression.
Simulations have shown, that this provides a quite accurate expression for the
scattering from semi-dilute solutions of semi-�exible polymers [40]. The full
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expression for the �uctuation scattering contribution is

FRPA(qRg) =
FDaniels

�
q2R2

g

e(L=b)

�
1 + �(�)FDebye(q2R2

g)
; (9.13)

FDaniels(x) = FDebye(x) +
b

15L

�
4 + 7x�1 � (11 + 7x�1)e�x

�
;

FDebye(x) =
2[x� 1 + exp(�x)]

x2
;

and

e(n) = 1� 3

2n
+

3

2n2
� 3

4n3

�
1� e�2n

�
:

Here e(n) is a correction to the radius of gyration of the Daniels expression
due to the �nite number of statistically independent segments in our simulations
[41]. The pro�le scattering Acor is the Fourier transform of the radial pro�le, and
requires an expression for the radial monomer pro�le '(r). To our knowledge, no
theoretical expressions exist for the radial density pro�les of spherical micelles
in the low to medium coverage limit, which we explore in the present paper.
As a result we use three empirical pro�les, all of which are generalisations of a
Gaussian distribution.

The �rst pro�le we use is a box with a Gaussian tail, abbreviated BoxGauss
pro�le, which is de�ned as follows

'(r) =

8><>:
0 r < Rco

B Rco � r < Rch

B exp
��(r �Rch)

2=(2s2)
�

Rch � r
:

Here B�1 =
R
'(r)4�r2dr is a normalisation constant, Rch is the outer edge

of the box, and s de�nes the length scale on which the Gaussian tail decays.
The normalised scattering from this pro�le is given by:

Acor(q; s;Rch) =
Sg(q; s;Rch) + V (Rch)�(qRch)� V (Rco)�(qRco)

Vo + V (Rch)� V (Rco)
: (9.14)

Here �(qR) is the normalised form factor amplitude for a homogeneous
sphere with a volume V (R) = 4�R3=3. And the normalised scattering contribu-
tion of the half-Gaussian is

Sg(q; s; r) =
n
qr
�
4rs+

p
2�(r2 + s2)

�o�1�

(
2rs sin(qr) +

p
2� exp(�(qs)2

2
)
�
qrs2 cos(qr) + r2 sin(qr)

�
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+2
p
2D[

qsp
2
]
�
r2 cos(qr)� qrs2 sin(qr)

��
;

while the corresponding volume of the Gaussian pro�le is

Vg(s; r) = 2�s
�
4rs+

p
2�(r2 + s2)

�
The Dawson integral is given by D[y] = exp(�y2) R y0 exp(t2)dt and a numer-

ical expression for this integral is given in Numerical Recipes [46]. An expression
for the scattering from a Gaussian-shaped pro�le has previously been reported
by H. Bagger-Jörgensen et al. [42], however, the published expression contains
errors.

We also use two maximum entropy (ME) [20][21][22] pro�les for analysing
the data. These pro�les are based on the assumptions that no chains enter the
micellar core, such that '(r) = 0 for r < Rco. We furthermore assume knowledge
of the �rst two or three momenta of the pro�le. In general assuming knowledge
of the �rst m momenta of pro�le leads to an entropy functional

S['] =

Z 1

Rco

dr4�r2'(r)

 
�K ln'(r) +

mX
n=0

�nr
n

!
;

where a uniform prior is assumed. Here �n is a set of Lagrange multipliers to
ensure them+1 constraints of the momenta of the distribution '(r). The zeroth
constraint ensures normalisation. Upon variation of the entropy functional it is
seen that the maximum entropy pro�le can be written as

'm(r; a1; : : : ; am) =

(
0 r < Rco

B exp [�Pm
n=1 an(r �Rco)

n] r � Rco
;

where B is a normalisation constant, and the set of an's are related to the
Lagrange multipliers. We take these as �t parameters when �tting the scattering.
For m = 2 the normalised pro�le scattering produced by this pro�le, hence
denoted the ME2 pro�le, can be worked out for a2 > 0. This yields

Acor(q; a1; a2) =

4a
3=2
2 sin(qRco) + 2a2

p
�Re

�
Erfc(x+ iy) exp(x2 � y2)(q + ib)eic

	
p
�(2a2 + b2)qErfc(x) exp(x2)� 2

p
a2 (a1 � 4a2Rco) q

; (9.15)

where b = 2a2Rco�a1, c = 2xy�qRco, x = a1=(2
p
a2), and y = q=(2

p
a2). Refzg

is the real part of the complex number z, and Erfc(z) is the complementary error
function of complex argument; an expression for Erfc(x+ iy) exp(x2�y2) is also
given in the appendix. In the limit of Rch ! Rco and a1 ! 0 both pro�les
converges towards a simple Gaussian pro�le, and the two scattering expressions
(9.14) and (9.15) are identical.
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We have also used a ME pro�le with m = 3 denoted the ME3 pro�le.
The pro�le scattering was obtained by numerical Fourier transformation of the
pro�le. The pro�le was represented by 500 piecewise linear segments in the range
from Rco to Rco + 6Rg, and an analytical expression for the Fourier transform
was used for the scattering from each segment.

The corona and pro�le scattering obtained from the MC simulations using
(9.10) and (9.11) were �tted simultaneously by the corresponding theoretical
expressions (9.6) and (9.4), where we model the �uctuation scattering by (9.13),
and we model the pro�le by one of the three pro�les: box with a Gaussian tail
(abbreviated BoxGauss), and a maximum entropy pro�le assuming knowledge of
the �rst two or three momenta (abbreviated ME2 and ME3). The �t parameters
for the �uctuation scattering are the radius of gyration Rg and the excluded
volume coe�cient �. The �t parameters for the radial pro�les are Rco and s for
the BoxGauss pro�le, while the �rst two or three an parameters are �tted for
the two ME pro�les. The �t range for the pro�le scattering was qb < 10 and
qb < 4 for the corona scattering. The latter range is dictated by the fact that
the Daniels expression is not valid for larger values of qb, as it fails to reproduce
the rigid rod scattering behaviour observed at large q values.

The results of �tting the model using the three pro�les to the simulation
results for the corona scattering and pro�le scattering are shown in �gures 1-4.
For � < 1 all the �ts have reduced chi-square value [43] �2red < 5, except for the
simulations with the shortest chains L = 2b and L = 4b which have a �2red < 30.
These large values are due to the fact that the Daniels distribution is not valid
for chains with so few statistical segments. In the � < 1 range the ME2 and
ME3 pro�les are identical since the a3 parameter is estimated to zero within
the statistical errors for the ME3 pro�le. For simulations with very large core
radii both ME �ts consistently have somewhat smaller �2red values compared
to the BoxGauss pro�le �ts, however, for simulations with a low aggregation
number, all three pro�les provide �ts of similar quality. The agreement between
model and simulation data is excellent for surface coverage � < 1 for all three
pro�les. However, for � > 1 the �ts provided by the ME2 pro�le are comparable
to those using the BoxGauss pro�le, while the ME3 pro�le consistently provides
signi�cantly better �ts, where �2red is reduced by at least an order of magnitude.
This vast improvement can be understood by observing the deviations shown
in the high q part of corona scattering shown in �gure 1 and 2 for the largest
surface coverage. These deviations are caused by the inability of the pro�le in
representing the actual pro�le scattering, as shown in �gure 3 and 4, where
the ME3 pro�le can be seen to give a much better �t to the pro�le scattering
compared to the BoxGauss and ME2 pro�les.

Pro�les obtained by �tting the scattering and pro�les sampled during the
simulation are shown in �gure 5 and 6. They have been plotted using the scal-
ing transformation of the corresponding simulation pro�le to avoid introducing
artifacts when comparing the two scaled pro�les. For low surface coverages the
�tted pro�les are very similar, and show a good agreement with the simulated
pro�les. For high surface coverages the ME3 pro�le give signi�cantly better es-
timates than the two other pro�les. These deviations at high surface coverages
are re�ected in the deviations in the pro�le scattering shown in �gures 3-4. The



108 CHAPTER 9. ARTICLE III

deviations in the vicinity of the core do not appear to have any e�ect on the
pro�le scattering.

For � < 1 �tting the three pro�les yields identical estimates of the radius
of gyration and the excluded volume parameter, while for � > 1 signi�cant
deviations are observed between the estimates provided by �tting the three
model expressions. These are caused by the inability of the BoxGauss and ME2
pro�les in �tting the sampled pro�le scattering and corona scattering at high
q values. Both the radius of gyration and the excluded volume parameter are
estimated from the corona scattering at high q values, and as a result of this we
only report the results obtained from the �ts using the ME3 pro�le.

The radius of gyration obtained from the simulations is shown in �gure 7.
For the simulations where the surface coverage is increased by increasing the
number of chains or decreasing the core radius show a radius of gyration with a
similar dependence on surface coverage. Radius of gyration estimated by the �ts
is also shown, and they are in good agreement with the simulations results with
less than 2% deviation for simulations with a low number of chains or large core
radius. Larger deviations (12% for the highest surface coverage) are apparent
for simulations with long chains.

The insert in Figure 8 shows the �(�) parameters obtained from �ts using
the ME3 pro�le. While this parameter also depends on the surface coverage and
the number of chains, the points from simulations varying number of chains,
core radius, and chain length collapse on the same curve, which shows a power
law dependence on surface coverage. The power law is �(�) = ��� with � =
1:42 � 0:03 and � = 1:04 � 0:02. The simulations with the shortest chains can
be observed to deviate from this behaviour, which we attribute to the Daniels
form factor not being valid for such short chains. Previously we have analysed
the scattering data using a self-consistent approach [44], where the single chain
scattering, sampled using (9.12) during MC simulations, was used in numerator
and denominator in the RPA expression (9.13). �(�) was derived by equating
(9.5) and (9.6) in the �rst minima of the pro�le scattering where Sch(q) = 0,
and a power law behaviour with � = 1:35 � 0:02 and � = 0:95 � 0:02 was
found. This indicates that while �(�) shows a simple power law relation on
�, the corresponding constant and exponent shows a weak dependence on the
particular expressions used for the chain and pro�le scattering.

The forward scattering due to density �uctuations is related to the osmotic
compressibility � through a �uctuation dissipation theorem, which states that
the osmotic compressibility is inversely proportional to the q ! 0 limit of the
Fourier transform of the density �uctuation correlation function. For a polymer
solution the observed scattering is due to density �uctuations, and as a result
it is easy to obtain the osmotic compressibility by extrapolating the observed
scattering to the q ! 0 limit. For a micellar corona the scattering at low q
values is dominated by pro�le scattering due to the average radial pro�le. Thus
the pro�le scattering dominates the scattering due to the density �uctuations,
making a simple extrapolation impossible, however, by modelling the pro�le
and �uctuation scattering separately as we have done in this paper is is trivial
to obtain the q ! 0 limit of the �uctuation scattering contribution as �(�) =
F�1
RPA(q = 0) = 1 + �(�) just as for a polymer solution [24]. The osmotic
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compressibility is shown in �gure 8, the osmotic compressibility can be seen to
follow a universal dependence on the surface coverage except for high surface
coverages where deviations due to a dependence on the number of chains and
surface curvature can be seen.

9.6 Conclusions

We have presented Monte Carlo simulation results performed on the scattering
from a micelle as function of number of chains, chain length, and core radius.
We have, furthermore, presented a novel empirical model expressions for the
scattering from block copolymer micelle with a spherical core and that includes
the e�ects of excluded volume interactions. The corona scattering is represented
as a sum of scattering contributions due to the average radial density pro�le and
the density �uctuations correlations about this pro�le. We model the �uctuation
contribution to the scattering as that of a dilute/semi-dilute polymer solution.
The proposed model depends on the radius of gyration, an excluded volume
parameter, which is proportional to the apparent second virial coe�cient, and
an expression for the radial pro�le of the micellar corona. To our knowledge,
there is no theoretical expression available for the radial pro�le except in the
high curvature limit. We used three empirical expressions for the corona pro�le,
one with a box with a Gaussian tail and two maximum entropy estimates where
knowledge of the two or three �rst momenta was assumed. The model expres-
sions for the corona scattering and pro�le scattering were simultaneously �tted
to the scattering obtained directly from the MC simulations. These �ts show an
excellent agreement for low surface coverages � < 1 for all three pro�les, while
the ME3 pro�le shows an excellent agreement also for � > 1, where the Box-
Gauss and the ME2 pro�le show signi�cant deviations at high q values for the
corona scattering. These deviations are caused by the fact that the BoxGauss
and ME2 pro�les provide a poor represention of the actual corona pro�le. This
is re�ected in the estimates of radius of gyration and the excluded volume pa-
rameter by these two models, as these are estimated from the high q behaviour
of the corona scattering where the �uctuation scattering dominates. For � < 1
all pro�les provides identical estimates for the radius of gyration and excluded
volume parameter. Besides providing estimates for the radius of gyration and
the excluded volume parameter, the �ts also provide estimates for the radial
pro�le, which can be compared to the actual radial pro�les obtained from the
MC simulation.

Pro�les obtained by �tting the simulated scattering are in good agreement
with the pro�les obtained directly from simulations, except for small deviations
close to the core. For � < 1 the three pro�les obtained from the �ts of the
simulated scattering are very similar, however, at high surface coverages, the
ME3 pro�le yields a signi�cantly better estimate for the radial pro�le.

The �ts yields estimates of the radius of gyration which are in good agree-
ment with the radius of gyration obtained directly from simulations. Plotting
the excluded volume parameter against reduced surface coverage for simulations
varying chain length, number of chains and core radius shows that the results
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approximately fall on a common curve corresponding to a power law behaviour.
However, the coe�cients and exponents are slightly di�erent from those we have
previously obtained through a self-consistent analysis, where simulation results
for the single chain scattering were used in the RPA expression for the corona
scattering, thus forming a complete self-consistent expression for the corona
scattering. This suggests that the power law behaviour is sensitive to the model
expressions used for �tting the scattering.

We have shown that the e�ects from chain connectivity and excluded vol-
ume interactions between tethered chains on the scattering of a micelle with a
spherical core can be described by a relatively simple model, where the corona
is modelled as a dilute/semi-dilute solution with a particular radial pro�le. We
note that this method of including connectivity and excluded volume interac-
tions e�ects in the scattering from colloidal aggregates can be generalised to
geometries such as micelles with elliptical and cylindrical cores. The models of
the scattering from colloidal aggregates presented in the present paper allows
more accurate and detailed information to be obtained from the analysis of ex-
perimental results. We are currently applying the expressions in the analysis
of small-angle neutron contrast variation data and small-angle x-ray scatter-
ing data for micelles of polystyrene-polyisoprene in decane. The results will be
presented in a future article.
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9.7 Appendix

The real and imaginary parts of G(x; y) = exp(x2 � y2)Erfc(x + iy) can be
separated into real and imaginary parts using an in�nite series approximation
[45]

G(x; y) = ex
2�y2Erfc(x)� e�y

2

2�x cos(2xy)� 2
�

P1
n=1

e�
n2

4 �y2

n2+4x2 fn(x; y)

+i

(
� e�y

2
sin(2xy)
2�x � 2

�

P1
n=1

e�
n2

4
�y2

n2+4x2 gn(x; y)

)
;

where

fn(x; y) = 2x� 2x cosh(ny) cos(2xy) + n sinh(ny) sin(2xy)
gn(x; y) = 2x cosh(ny) sin(2xy) + n sinh(ny) cos(2xy)

:

Here Erfc(x) is the real complimentary error function. An expression for it
is given in Numerical Recipes [46]. Evaluation of the two auxiliary functions fn
and gn can be optimised using the addition formulae in which case only cosh(y)
and sinh(y) need to be evaluated, and subsequent evaluations of cosh(ny) and
sinh(ny) require only a few simple arithmetic operations of precalculated con-
stants.
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Figure 9.1: Corona scattering for simulations varying the number of chains cor-
responding to surface coverages � = 0:016; 0:13; 0:36; 0:72; 2:15;and 5:37 (top
to bottom using symbols). Lines are model �ts. Dotted line: BoxGauss, dashed
line: ME2, and solid line: ME3 pro�le.
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Figure 9.2: Corona scattering for simulations varying the core radius correspond-
ing to surface coverages � = 0:13; 0:72; and 2:10, respectively (using box, dia-
mond, and plus symbols respectively). Lines are model �ts. Dotted line: Box-
Gauss, dashed line: ME2, and solid line: ME3 pro�le.



BIBLIOGRAPHY 117

10
-1

10
0

10
1

qb

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
co

r

Figure 9.3: Pro�le scattering for simulations varying the number of chains cor-
responding to surface coverages � = 0:016, � = 0:72 (shifted down one decade),
and � = 5:37 (shifted down two decades). Lines are model �ts using BoxGauss
pro�le (dotted), ME2 pro�le (dashed line), and ME3 pro�le (solid line).
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Figure 9.4: Pro�le scattering for simulations varying the core radius correspond-
ing to surface coverages � = 0:13 (shifted down two decades), � = 0:72 (shifted
down one decade), and � = 2:10. Lines are model �ts using BoxGauss pro�le
(dotted), ME2 pro�le (dashed line), and ME3 pro�le (solid line).
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Figure 9.5: Reduced radial density pro�les obtained from simulations varying
number of chains (symbols) and pro�les obtained by �tting the scattering us-
ing the BoxGauss (dotted lines), ME2 (dashed lines), and ME3 pro�le (solid
line). The �tted pro�les have been transformed using the parameters as for the
simulation pro�le. Simulation pro�les are shown for a number of chains corre-
sponding to surface coverages � = 0:05 (circle), � = 0:72 (box shifted up 0:25),
and � = 5:37 (diamond, shifted up 0:5).



120 BIBLIOGRAPHY

0 1 2

(r-R
co

)/(<r>-R
co

)

0.5

1

1.5

R
ed

uc
ed

 d
en

si
ty

Figure 9.6: Reduced radial density pro�les obtained from simulations varying
the core radius (symbols) and pro�les obtained by �tting the scattering using the
BoxGauss (dotted lines), ME2 (dashed lines), and ME3 pro�le (solid line). The
�tted pro�les have been transformed using the parameters for the simulation
pro�le. Simulation pro�les are shown for a core radius corresponding to surface
coverages � = 0:13 (circle), � = 0:72 (box, shifted up 0:25), and � = 2:10
(diamond, shifted up 0:5).
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Figure 9.7: Radius of gyration obtained from simulation (lines and symbols) and
from �ts (symbols) varying number of chains (circle and line) and core radius
(box and line). The inset shows the radius of gyration for simulations varying
chain length (diamond and line). Radius of gyration estimated by �tting the
scattering using the ME3 pro�le for simulations varying the number of chains
(star), core radius (plus) and chain length (cross).
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Figure 9.8: Compressibility � vs. surface coverage � obtained from �tting the
ME3 pro�le to the simulation data. Inset shows excluded volume coe�cient
�(�) plotted against surface coverage for �ts using the ME3 pro�le. Simulations
varying number of chains (circle), core radius (diamond) and chain length (box).
The solid line in the inset is the power law relation �(�) = 1:42�1:04 and the
solid line is the corresponding compressibility.
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Analytical calculations of scattering form

factors of stars, branched polymers and block

copolymer micelles for chains with excluded

volume interactions

Carsten Svaneborg and Jan Skov Pedersen*

Condensed Matter Physics and Chemistry Department, Risø National Labora-
tory, DK-4000 Roskilde, Denmark
*Present address: Department of Chemistry, University of Aarhus, Langelands-
gade 140, DK-8000 Aarhus C, Denmark

A general formalism is presented for scattering of acyclic polymer structures, and
expressions for the form factor of arbitrary branched polymers are derived. In addition
expressions are give for the form and intermolecular structure factor for micelles with
an arbitrary core geometry, and star polymers with arms consisting of arbitrary block
copolymers. Excluded volume interactions are included on the level of a linear chain
through the applied scattering expressions. The results for copolymer stars are used
for �tting scattering data obtained by Monte Carlo simulations for triblock copolymer
stars with f = 2; 3; and 6 with and without interactions.

This is an incomplete draft of an article, however, the theory section is
complete and forms the majority of the article. The draft article will probably
converted into two or three articles, and generalised to structures that include

loops. Citations in this article refer to the thesis reference list.
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10.1 Introduction

Scattering techniques, such as light scattering, small-angle neutron or x-ray
scattering (LS, SANS and SAXS, respectively) are ideally suited for probing
the structure of colloidal suspensions [18]. However, a prerequisite for the useful
application of scattering methods is the availability of expressions for the form
and structure factor, corresponding, respectively to various geometrical models
for colloidal aggregates and to their interactions, as this is a requirement for
an accurate interpretation and modelling of experimental scattering data, from
which parameters related to the structure and interaction of colloidal aggregates
can be extracted in an reliable manner.

10.2 Theory

The scattering from a solution of identical composite particles such as micellar
aggregates or structures such as branched polymers consists of two terms

I(q) = F (q) +H(q):

Here the �rst term is the form factor, i.e. the Fourier transform of the pair-
distance distribution function between scatterers within the composite particle,
and the second term is the Fourier transform of the pair-distance distribution
function between scatterers belonging to di�erent composite particles. This is
the intermolecular structure factor. By de�ning an apparent structure factor as

Sapp(q) = 1 +
H(q)

F (q)
;

the total scattering can be recast in the simple form associated with the scat-
tering from dispersions of mono-disperse spheres.

I(q) = F (q)Sapp(q):

The normalised (F (q = 0) = 1) form factor of a composite particle is de�ned
as

F (q) =

 X
k

bk

!�2*�����X
k

�bke
iq�rk

�����
2+

:

Here rk is a vector describing the location of the k'th scatterer in the com-
posite particle, which has an excess scattering length �bk. The average is over all
the possible conformations and orientations of the composite particle or struc-
ture. The composite particle is assumed to consist of a number of subunits which
could be subchains in branched polymer structures, blocks in block copolymers,
or corona and core in the case of micelles. In this case

F (q) =

 X
k

�k

!�2*X
j;k

�j�kAjk(q)

+
;
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where the interference from pairs of sites in the j'th and k'th subunits is

Ajk(q) = (�j�k)
�1

 X
l

X
i

�bjl�bkie
iq�(rjl�rki )

!
;

where jl and ki denote the subset of all the scatterers contained in the l'th
and i'th subunit, respectively. The total excess scattering of the i'th subunit
is �i =

P
i�bki . Assuming that each subunit has a reference point Ri, such

as the center-of-mass of a solid particle, the end of a polymer chain, or the
boundary between two adjacent blocks in a copolymer, we can de�ne the form
factor amplitude of a subunit i as

Ai(q) =

 X
i

�bki

!�1X
i

�bkie
iq�(rki�Ri):

Using this de�nition the form factor amplitude is normalised to unity in the
limit of small q values, and the scattering from pairs of sites can be expressed
as

Ajk(q) = A�
j (q)Ak(q)e

iq�(Rj�Rk);

where A�
j denotes complex conjugation of Aj . The form factor can be expressed

in terms of subunit form factor amplitudes as

F (q) /
*X

j

�2jA
�
jAj +

X
j 6=k

�j�kA
�
jAke

iq�(Rj�Rk)

+
:

If, for instance, subunits j and k are two distant blocks on a N -block copoly-
mer, then a unique path consisting of steps from one block boundary to the
next can be constructed connecting the two reference points of the distant sub-
particles. The vector connecting the two reference points is nothing more than
the sum of all the vectors representing the individual steps. Thus assuming in
general that for any pair of subunits j and k a path of njk � 0 steps exists,
denote by Ri

jk the i'th step in that path, and de�ne R0
jk = Rk and R

njk
jk = Rj ,

the vector connecting the two reference points can be written in terms of indi-
vidual steps as

Rj �Rk =

njkX
i=1

�
Ri
jk �Ri�1

jk

�
:

In this case the form factor of the composite particle is

F (q) /
*X

j

�2jAjA
�
j +

X
j 6=k

�j�kA
�
jAk

njkY
i=1

e
iq�
�
Ri

jk�R
i�1
jk

�+
:

At this stage no approximations have been made. However, if we assume that
we can carry out the con�gurational and orientational average of the subunits
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independently of each other, which corresponds to an assumption that the pair-
distance distribution between scattering sites on di�erent subunits can be fac-
torised into products of site-to-reference, reference-to-reference, and reference-
to-site probabilities, we can identity the form factor of the j'th subunit by

Fj(q) =
D
AjA

�
j

E
, which is a real function, that only depends on the magni-

tude of the q vector due to the orientational average. If we furthermore assume
that the con�gurational and orientational average of the individual steps can be
carried out separately, we can de�ne the phase factor of the i'th step between
subunits j and k as

	i
jk(q) =

*
e
iq�
�
Ri

jk�R
i�1
jk

�+
;

which is the Fourier transform of the distance distribution of each step. For
example in the case of a polymer connecting two subunits, the phase factor is
the Fourier transform of the end-to-end distance distribution of the connecting
block. Subject to these assumptions the normalised form factor [F (q = 0) = 1]
of the composite particle is

F (q) =

 X
i

�i

!�2
8<:X

i

�2i Fi + 2
X
j<k

�j�kAj

 njkY
i=1

	i
jk

!
Ak

9=; :

The expression for the form factor of a single composite particle resembles
the scattering expression for a solution of di�erent particles, where the product
of phase factors plays the role of a partial structure factor between subunits
of the composite particle. This is due to the somewhat arbitrary distinction
between composite particle and subunit.

The Fourier transform of the pair-distance distribution between sites on
di�erent composite particles can be derived through an analogous argument,
assuming that the con�guration, orientation and location of di�erent particles
are uncorrelated [110]. Assuming one of the reference points coincide with the
center of mass of the composite particle, then there exists a unique path of
nck � 0 steps (ncc = 0) connecting the center (reference point denoted by index
�c�) to the k'th reference point, where the i'th step is denoted 	i

ck. In this case
the inter-particle structure factor is

H(q) =

 X
i

�i

!�2(X
k

�kAk

 
nckY
i=1

	i
ck

!)2

(Scc(q)� 1) ;

where Scc(q) denotes the center-to-center structure factor of the composite par-
ticles, which has to be supplied by some other means, such as PRISM theory
using an e�ective interaction potential between the composite particles. The
term in the curly parenthesis plays the role of the form factor amplitude of the
entire composite particle as it can be identi�ed as the Fourier transform of the
radial scattering length distribution [110].

The expressions for the form factor and structure factor were derived assum-
ing that di�erent composite particles, as well as di�erent sub-particles within
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the composite particle, are uncorrelated. These approximations are valid at low
concentrations of particles, and in cases where the sub-particles are not strongly
interacting, such as micellar aggregates with a low surface coverage. It was
furthermore assumed that subsequent steps between reference points were not
orientationally correlated, and that individual steps only depend on the radial
distance. These assumptions are valid for sub-particles connected by �exible and
long semi-�exible chain molecules.

The expressions for the form and structure factor are geometrical statements
containing only information about the relative positions of sub-particles. Infor-
mation about the pair distance distribution within a sub-particle is described
through the form factor of that sub-particle, while the form factor amplitude
contains information about the distance distribution relative to the reference
point, and the phase factor contains information about the distance distribu-
tion between two reference points, such as the end-to-end distance distribution
of the polymer chain connecting two sub-particles. Interactions between scatter-
ers within each sub-particle is included in this description through the particular
equations used to describe these three contributions to the scattering functions.

10.3 Subunits consisting of chain molecules

For a chain molecule we chose as reference point one of the ends. The three scat-
tering function contributions: the phase factor, form factor amplitude, and form
factor, respectively, are the Fourier transforms of the end-to-end Pee, end-to-
site Pes, and site-to-site Pss pair-distance probability distributions, respectively.
These probability distributions are typically given by the same function, that
describes the probability that two sites on the chain, that are separated by a
contour length l along the chain, are located at a direct distance r from each
other. The scattering functions are de�ned as

	(q; L) =

Z
dr4�r2

sin(qr)

qr
Pee(r; L); (10.1)

A(q; L) =

Z L

0
dl
1

L

Z
dr4�r2

sin(qr)

qr
Pes(r; l); (10.2)

and

F (q; L) =

Z L

0
dl
2(L� l)

L2

Z
dr4�r2

sin(qr)

qr
Pss(r; l); (10.3)

where L is the total contour length of the chain. These integral expressions
can be recast into sums over the number of segments using the substitutions
L = bN and l = bn, where b is the Kuhn length, and N the total number of
segments. The Kuhn length of a semi-�exible chain is the segment length of the
corresponding �exible chain, and thus it is a measure for the length scale below
which the chain e�ectively becomes a rigid rod. The Kuhn length of a �exible
chain is identical to the step length of the chain as the direction of subsequent
steps are uncorrelated.
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The most basic example is a randomly orientated in�nitely thin rigid rod
with length L. In this case the end-to-end probability distribution is Pee(r; L) =
Æ(L� r)=(4�r2). The rigid rod is special as the contour length l and direct dis-
tance r are degenerate parameters, and only the contour length integral has to
be performed. The end-to-internal point and internal-to-internal point distribu-
tions are both given by Pes(r; l) = Pss(r; l) = �(L � r)Æ(r � l)=(4�r2), where
Æ(r� l) takes care of the degeneracy. Here Æ(x) denotes the delta function, while
�(x) denotes the step function. Using these distributions it is straight forward
to perform the integrations (10.1)-(10.3) and one obtains

	rod(q; L) =
sin(qL)

qL
; Arod(q; L) =

Si(qL)

qL
;

and

Frod(q; L) =
2Si(qL)

qL
� 4

(qL)2
sin2

�
qL

2

�
;

where Si(x) =
R x
0 dy sin(y)=y is the Sin integral. The expression for the rod form

factor was previous derived by Neugebauer [111]. For a �exible chain without
excluded volume interactions, all the pair distance distributions are given by a
Gaussian distribution

P (r; l) =

�
3

2�bl

� 3
2

exp

 
�3

2

r2

bl

!

Based on the Gaussian distribution the integrals (10.1)-(10.3) can be carried
out. The result for the form factor amplitude and form factor has previously been
given by Hammouda [108] and Debye [71]. Using the abbreviation x = (qRg)

2

where R2
g = bl=6, the results can be stated as

	o(x) = exp(�x) AH(x) =
1� exp(�x)

x
and FD(x) =

2[exp(�x)� 1 + x]

x2
:

Semi-�exible chains without excluded volume interactions are reasonably
described by the second Daniels approximation [55, 58], which is given by

P (r; l) =

�
3

2�bl

�3=2
 
1� 5b

8l
+

2r2

l2
� 33

40

r4

bl3

!
exp

 
�3r2

2bl

!

The three scattering functions can immediately be obtained by integrating
this distribution, and they can be written as a perturbation to the expressions
for �exible chains as follows

	Daniels(x;Nseg) = 	o(x) +
x

2N

�
1� 11

15
x

�
e�x;

ADaniels(x;Nseg) = AH(x) +
1

30N

�
4� 4e�x + 11xe�x

�
;

and
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FDaniels(x;Nseg) = FD(x) +
1

15N

�
4 +

7

x
�
�
11 +

7

x

�
e�x

�
:

Here N is the number of statistically independent segments i.e. N =L=b.
These expressions are valid when qb < 3:1 and l > 10b [52]. The expression for
the form factor and phase factor was previously given in [58].

For �exible chains with excluded volume interactions the end-to-end, end-to-
internal site, and internal-to-internal site distributions are commonly regarded
as being best described by the des Cloizeaux distribution [70], which has the
form

P (r; ro) = Br�do

�
r

ro

�2+�

exp

 
�D

�
r

ro

�Æ!
;

where ro =

rD
R2
xy=d

E
is the averaged site-to-site distance, for instance the

end-to-end Ree, end-to-site Res, or site-to-site Rss average distance, and d is the
space dimensionality. For a �exible chain with excluded volume interactions the

site-to-site distance is related to the number of segments as
D
R2
xy

E
= b2n2� =

2(1+�)(1+2�)R2
g , where n is the number of segments connecting the two sites, �

the excluded volume length exponent, and Rg the radius of gyration of the chain.
The two exponents Æ and � are given by Æ = 1=(1��) and � = (�1)=�, where 
is the entropic exponent of an excluded volume chain. In the limit of long �exible
chains renormalization group theory estimates the exponents as � = 0:588 and
 = 1:1619 for d = 3 [68]. The  exponent vary slightly depending on whether
one considers the end-to-end, end-to-internal site, or internal-to-internal pair
distance distribution. This is due to the increased degrees of freedom associated
with the end points compared to an internal point [60, 64]. B and D are nor-
malisation constants, and they are �xed by requiring that

R1
0 ddrP (r; r0) = 1

and
R1
0 ddrP (r; ro)r

2 = hr2xyi, where ddr = 2�d=2rd�1=(�[d=2])dr is the volume
of an in�nitesimal spherical shell in d-dimensions.

Based on this distribution the phase factor, form factor amplitude, and form
factor can be calculated and expressed in terms of a series and an asymptotic
expansion valid at low and high q values, respectively. Details are given in the
appendix. The results are summarised below using the following abbreviations

X =
(1 + 2�)(1 + �)

2

� (a)

� (a+ b)
(qRg)

2; C =
�[d=2]

� [a]
;

a =
2 + d+ �

Æ
; and b =

2

Æ
;

where �[x] is the Gamma function. Using these abbreviations the phase factor
has an series expansion

	(q;Rg) = C
1X
n=0

�[a+ bn](�X)n

�[d2 + n]n!
;
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and an asymptotic expansion

	(q;Rg) =
CÆ

2

1X
n=0

(�1)n�[a+nb ]

�[d2 � a+n
b ]n!

X�a+n
b :

The form factor amplitude has a series expansion

A(q) = C
1X
n=0

�[a+ bn]

�[d2 + n](2�n+ 1)

(�X)n

n!
;

and an asymptotic expansion

A(q) =
C�[ 12� ]�[a� b

2� ]

2��
h
d
2 � 1

2�

i X� 1
2�

+C
1X
n=0

(�1)n� �a+nb �
[b� 2�(a+ n)]�

h
d
2 � a+n

b

i
n!
X�a+n

b :

The form factors based on the des Cloizeaux distribution was derived by
Utiyama et al. [70, 112], and is stated here for the sake of completeness; the
series expression is

F (q) = C
1X
n=0

� [a+ bn] (�X)n

(1 + �n)(1 + 2�n)�
h
d
2 + n

i
n!
; (10.4)

while the asymptotic expansion is

F (q) =
C�

h
a� b

2�

i
�
h
1
2�

i
��
h
d
2 � 1

2�

i X� 1
2� �

C�
h
a� b

�

i
�
h
1
�

i
��
h
Æ
2 � 1

�

i X� 1
�

+Cb
1X
n=0

(�1)n� �a+nb �
[b� 2�(a+ n)][b� �(a+ n)]�

h
d
2 � a+n

b

i
n!
X�a+n

b :

The limit where chains are �exible and non-interacting is given by d = 3,
� = 0:5, and  = 0. In this case the des Cloizeaux distribution reduce to a
Gaussian distribution, and the des Cloizeaux scattering expressions reduce to
the previously stated Gaussian expressions.

All these sums can be written in the form

S(qRg) =
1X
n=0

snan(qRg)
�n =

1X
n=0

sne
bn+�nx where x = ln(qRg);

and sn = sign(an) in which case the an constants can be de�ned to be positive,
e.g. if an = 0 then the choice sn = 0 and an = 1 produce the same term. A
su�cient number of constants bn = ln(an) can be calculated in advance, allowing
the sums to be estimated with the required precision, without a need for the
repeated evaluation of Gamma functions.
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10.4 Excluded volume interactions

When writing the Fourier transform of the pair-distance distribution as a prod-
uct of form factor amplitudes and phase factors, it was implicitly assumed that
the pair-distance distribution could be factorised into a convolution of indepen-
dent site-to-reference, reference-to-reference, and reference-to-site probabilities.
This is only true if the correlations caused by interactions between subunits can
be neglected. In the case where the same probability distribution describes an
entire linear chain consisting of several blocks, the interference term can be cal-
culated exactly. When assuming that the same pair-distribution describes the
entire chain, the interference between two distant di�erent blocks j and k on a
linear chain, separated by a contour length of Lik, is given by the interference
is given by

Ajk(q;Lj ; Ljk; Lk) =

Z Lj

0

dlj
Lj

Z Lk

0

dlk
Lk

Z 1

0
dr4�r2

sin(qr)

qr
Pss(r; lj + Ljk + lk);

(10.5)
where Pss is the site-to-site probability distribution. For a Gaussian distribution
Ajk(q;Lj ; Ljk; Lk) = AH(q; Lj)	o(q; Ljk)AH(q; Lk) where the form factor am-
plitudes and phase factor was presented in the previous section. For a excluded
volume chain the des Cloizeaux distribution is used, and a series expansion of
the phase factor and performing the contour length integrations, the interfer-
ence term can be expressed, using the radius of gyration of the two blocks Rg;j

and Rg;k and of the inter-connecting chain segment Rg;jk, as

Ajk(q;Rg;j ; Rg;jk; Rg;k) =
C

2
(f [Rg;2] + f [Rg;123]� f [Rg;12]� f [Rg;23]) ;

with the radius of gyration abbreviations

Rg;12 =

�
R

1
�
g;j +R

1
�

g;jk

��
; Rg;23 =

�
R

1
�

g;jk +R
1
�

g;k

��
;

and

Rg;123 =

�
R

1
�
g;j +R

1
�

g;jk +R
1
�

g;k

��
;

and the function f is given by

f(R) =

 
R2

Rg;iRg;k

! 1
v

g

�
�[a](1 + �)(1 + 2�)

2�[a+ b]
q2R2

�
;

where g has a series expansion

g(y) =
1X
n=0

�[a+ bn](�y)n
(1 + �n)(1 + 2�n)�[d2 + n]n!

and an asymptotic expansion

g(y) =
�[a� b

2� ]�[
1
2� ]y

� 1
2�

��[d2 � 1
2� ]

� �[a� b
� ]�[

1
� ]y

� 1
�

��[d2 � 1
� ]
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+
1X
n=0

b(�1)n�[a+nb ]y�
a+n
b

[b� 2(a + n)�][b� (a+ n)�]�[d2 � a+n
b ]n!

:

In practice the crossover between the series and asymptotic expansion should
be located around y = 15.

10.5 Arbitrary linear block copolymer

The scattering from a linear copolymer consisting of an arbitrary number of
blocks, interacting with excluded volume interactions is given by

Flin(q) =
X
i

�2i Fi(q; Li) + 2
X
j<k

�j�kAjk(q; Ljk);

here Li is the contour length of the i'th block, while Ljk =
Pk�1

i=j+1 Li is the
contour length of all the blocks between the i'th and j'th block. Note that it has
been assumed that the pair-distance distribution between blocks is still given
by the same des Cloizeaux distribution.

10.6 Arbitrary branched polymer

For an arbitrary branched polymer there are two contributions to the total
scattering: One from the form factor of individual sub-chains yielding an Fi
for each subchain, and another from interference terms between all pairs of
di�erent sub-chains. It is assumed that a unique path consisting of steps from
one branch to the next branch exists, which connect any two sub-chains in
an arbitrary branched polymer. We then denote the i'th step from branch to
branch point between the j'th and k'th polymer segment out of njk � 0 steps
by 	(q; Lijk), where L

i
jk is the contour length of the step along the chain. Here

it has been assumed that all sub-chains have the same Kuhn length, such that
the phase factor is only a function of the contour length of a sub-chain. It is a
trivial extension to include di�erent Kuhn lengths of the various segments. In
this case the pair distance distribution between any two sites on two di�erent
sub-chains consists of a step from the site on the j'th subchain to the reference
point (yielding a factor Aj), each of the njk steps the path connecting the two
sites yields a factor, which for the i'th step is 	(q; Lijk), and a step from the
reference point to a site on the k'th chain (yielding a factor Ak). The form factor
of the branched polymer is the sum of the form factors of the individual sub-
chains, and the sum of all such possible paths between sites on chains weighted
by the respective scattering lengths.

Fbranch(q) =

 X
i

�i

!�2
0@X

i

�2i Fi(q) + 2
X
j<k

�j�kAj(q)Ak(q)

njkY
i=1

	(q; Lijk)

1A
This expression have previously been given in the limit of Gaussian chains

[19].
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10.7 Micelles with an arbitrary core

The form factor of a micelle with an arbitrary core geometry consists of contri-
butions from scattering between the following sub-units: core-core, core-chain,
chain-chain on the same chain, and chain-chain between two di�erent chains.
The reference point of the core is the center of mass, while reference point for
the tethered chains is the tethering point, i.e. the reference point of the chains
is the entire core surface. Index �ch� denotes chains, �co� core and �s� denotes
the surface.

The pair distance between a scatterer in the core and a chain is given by the
step from the core scatterer to the core reference point (Aco), a step from the core
reference point to any tethering point on the surface (	s), and from a tethering
point to any site on a chain (Ach). However, as the core and core surface are
�xed relative to each other the orientational average has to be performed on the
product of the respective steps yielding a term proportional to hAco	siAch for
the core-chain contribution to the total scattering. The pair distance distribution
between two sites on two di�erent chains can be regarded as a step from a site
on one chain to the tethering point of that chain (Ach), the step from one
tethering point on the surface to another tethering point (Fs), and a step from
that tethering point to a site on the other chain (Ach), which yields a term
AchFsAch for the chain-chain scattering between di�erent chains. The scattering
contribution from a pair of scatterers within the same chain is proportional to
the chain form factor Fch. �ch is the total scattering length of the corona and
contains all sites within the corona, however, intra-chain scattering contributes
�2ch=N while the inter-chain scattering contributes �2ch(N � 1)=N to the total
corona scattering length. Taking care to introduce all the numerical prefactors
the form factor of a micelle becomes

Fmicelle(q) =
1

(�co + �ch)2

�
�2coFco + 2�co�ch hAco	siAch

+
1

N
�2chFch +

N � 1

N
�2chA

2
chFs

�
:

Assuming that the center of mass of the core coincides with the center of
mass of the micelle, we can also give the intermolecular structure factor of the
micelles. This consists of the pair distance distribution from a scatterer in the
core to the center of the core, yielding a term Aco, and a core-chain contribution
from the core center to any site on any chain. This consists of a step from the
center of the core to the surface (	s), and a step from the tethering point to
any site on a chain (Ach), yielding a term 	sAch. The result when the excess
scattering lengths are included becomes [110]

Hmicelle(q) =
1

(�co + �ch)2
(�coAco + �chAch	s)

2 [Scc(q)� 1] :

In the special case where the core is spherical the phase and form factor of
surface, and the form factor amplitude and form factor of the core, respectively,
are given by
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	s(qRco) =
sin(qRco)

qRco
Fs(qRco) = 	2

s;

and

Aco =
3[sin(qRco)� qRco cos(qRco)]

(qRco)3
Fco = A2

co;

where Rco denotes the radius of the core. Inserting these expression in the micel-
lar form factor will reproduce the model of Pedersen and Gerstenberg [106, 107].
As correlations between chains and the core have been neglected chains are able
to enter the core region, however, core repulsion can be mimicked by increas-
ing the radius in the surface expressions relative to the radius used in the core
expressions.

10.8 Stars of arbitrary block copolymers

The form factor of a star polymer made of block copolymers contains three
contributions: The form factor of each block, the interference between two blocks
on the same chain, and the interference between two blocks on two di�erent
chains. We denote the form factor amplitude of the j'th block on the i'th chain as

A
(i)
j , and the corresponding phase factor as 	ij. The interference term describing

the pair distance between two sites on block j and l, respectively, on the i'th
chain consists of a jump from the site to the block boundary closest to the other

site (providing a A
(i)
j factor), then a number of steps from block boundary to

boundary along the chain, each step providing a phase factor until the reference

point l is reached yielding
Ql�1
�=j+1	

(i)
� . A step from the reference point to the

site on the block provides a form factor amplitude A
(i)
l .

Similarly the interference term between two sites j and l on two di�erent
chains i and k consists of a jump from the site to the block boundary closest

to the star center (providing a factor A
(i)
j ), then j � 1 steps between block

boundaries towards the center providing a factor
Qj�l
�=1	

(i)
� , and a number of

steps from the center to the l'th block boundary on the k'th chain providingQl�1
�=1	

(k)
� , and a single step from the block boundary to the site providing the

form factor amplitude A
(k)
l .

Let f be the number of arms, and ni the number of segments on chain i.
Then, neglecting the correlations introduced by steric interactions between the
di�erent arms and di�erent blocks, the normalised [Fstar(q = 0) = 1] form factor
of the star consists of the sum of all such paths connecting any two sites:

Fstar(q) =

0@ fX
i=1

niX
j=1

�
(i)
j

1A�2

0BBBBBB@
fX
i=1

niX
j=1

�
�
(i)
j

�
F

(i)
j + 2

fX
i=1

niX
j; l = 1
j < l

�
(i)
j �

(i)
l A

(i)
j A

(i)
l

l�1Y
�=j+1

	(i)
�
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+2
fX

i; k = 1
i < k

niX
j=1

nkX
l=1

�
(i)
j �

(k)
l A

(i)
j A

(k)
l

j�1Y
�=1

	(i)
�

l�1Y
�=1

	
(k)
�

1CCCCCCA : (10.6)

Here F
(i)
j is the form factor, A

(i)
j is the chain form factor amplitude, 	

(i)
j is

the phase factor, and �
(i)
j is the excess segmental scattering length of the j'th

block on the i'th chain. Rg;ij denotes the radius of gyration of block j on the
i'th chain. We use a notation where

Ql
�=j 	i� = 1 if l < j. The corresponding

normalised structure factor is given by the sum of all paths connecting any site
on any chain to the center and it is

Hstar(q) =

0@ fX
i=1

niX
j=1

�ij

1A�20@ fX
i=1

niX
j=1

�ijAij

j�1Y
�=1

	i�

1A2

(Scc(q)� 1) :

10.9 Monte Carlo simulations

Monte Carlo simulations of the scattering from stars of semi-�exible triblock
copolymers with and without excluded volume interactions have been performed.
The chains on the stars were modelled by a discrete Kratky-Porod model with
L=b = 100 or 400 segments per arm. Excluded volume interactions were in-
cluded by placing six hard-spheres with radius � = 0:1b per Kuhn length of
the chain. This is a choice which is known to reproduce the binary cluster in-
tergral of polystyrene in a good solvent [93]. The scattering at homogeneous
contrast (�1 = �2 = �3 = 1), as well as the scattering from the inner (�1 = 1,
�2 = �3 = 0), middle (�2 = 1, �1 = �3 = 0), and outer (�3 = 1, �1 = �2 = 0)
scattering have been obtained.

10.10 Results and Discussion

In the special case of a triblock copolymer star with f arms eq. (10.6) reduce to

Fstar(q) = f�1 (�1 + �2 + �3)
�2 ��21F1 + �22F2 + �23F3

+2 (�1�2A1A2 + �2�3A2A3 + �1�3A1A3	2)
+(f � 1)

�
�21A

2
1 + �22A

2
2	

2
1 + �23A

2
3	

2
1	

2
2

+2
�
�1�2A1A2	1 + �2�3A2A3	

2
1	2 + �1�3A1A3	1	2

��	
;

This expression was �tted simultaneously to the simulation data using the
four scattering contrasts calculated with the Daniels expressions for the form
factors, form factor amplitudes, and phase factors and �tting the radius of gyra-
tion of each block, as well as the number statistical independent segments in the
range of qb from 0:1 to 10. The �ts shown in �gures 10.1 - 10.3 are in excellent
agreement with the simulation results, and the reduced �2red < 1:2 for all �ts.

The form factor of triblock copolymer stars including excluded volume e�ects
on the linear level is given by
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F exvol
star (q) = f�1 (�1 + �2 + �3)

�2 ��21F1 + �22F2 + �23F3

+2 [�1�2A(L1; 0; L2) + �2�3A(L2; 0; L3) + �1�3A(L1; L2; L3)]
+(f � 1)

�
�21A(L1; 0; L1) + �22A(L2; 2L1; L2) + �23A(L3; 2L1 + 2L2; L3)

+2 (�1�2A(L1; L1; L2) + �2�3A(L2; 2L1 + L2; L3) + �1�3A(L1; L1 + L2; L3))]g :
(10.7)

Here the form factor F and form factor amplitude A is given by eq. (10.4) and
(10.5), respectively. Excluded volume interactions within each arm are accounted
for in this expression, while the excluded volume interactions between arms
ignore the presence of the f � 2 arms. Hence for f = 2 eq. (10.7) includes
the full excluded volume e�ects. Note the middle block has twice the length
of the other blocks. The form factor has been �tted to simulation results for
the scattering from a two-arm star with excluded volume interactions and semi-
�exibility. Fit parameters were the radius of gyration of the three blocks, and
the critical exponents � and  as well as four �at backgrounds that is added to
the scattering, thus e�ective exponents averaged over the entire star is obtained.
These backgrounds has the e�ect of mimicking the e�ects of semi-�exibility on
the scattering. The �t has �2red = 2:7 and is shown on �gure 10.4.

The �t yields the exponents � = 0:583 and  = 0:449. Renormalization
group theory [68] yields � = 0:588 and  = 1:1619 in the long �exible chain
limit.
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10.11 Appendix

The des Cloizeaux distribution [64, 60] is

P (r; r0) =
B

ro

�
r

ro

�2+�

exp

 
�D

�
r

ro

�Æ!

with

ro =

s
hR2

ssi
d

=

s
b2n2�

d
= Rg

s
2(1 + 2�)(1 + �)

d
;

where b is the Kuhn length of the chain and n the number of segments, while
Rg is the radius of gyration. �,  are the critical length and entropy exponent,
respectively, which for d = 3 is estimated to be � = 0:588 and  = 1:1619 from
RGT theory [68] for in�nite long �exible chains. The Gaussian limit is d = 3,
� = 0:5, and  = 0 in this limit r2o=2 = b2n=6 = R2

g

B and D are normalisation constants, derived from the zeroth and second
momenta of the des Cloizeaux distribution:

B =
Æ�
�
d
2

�
Da

2�d=2�(a)
D =

�
1

d

� (a+ b)

� (a)

�1=b
;

where the following abbreviations are used: Æ = 1=(1��) and � = (�1)=�. We
use the method and notation used by Förster and Burger[70]. Scattering from
a distribution is in arbitrary dimension given by

	(q; ro) =

Z 1

0
P (r; ro)0F1(

d

2
;�(qr)2

4
)
2�

d
2 rd�1

�[d=2]
dr:

For d = 3; this reduces to

	(q; ro) =

Z 1

0
P (r)

sin qr

qr
4�r2dr:

The de�nition of the oF1 hyper geometric function is

0F1(b; z) =
1X
n=0

�[b]

�[b+ n]

zn

n!
:

Inserting the expression into the integral and integrating produces the series
expansion of the phase factor:

	(q;Rg) =
2�d=2B

ÆDa

1X
n=0

�[a+ bn]

�[d2 + n]n!

�
�(1 + 2�)(1 + �)

2dD2=Æ
(qRg)

2
�n

We can obtain the asymptotic expansion by rewriting the sum as

	(q;X) = C
1X
n=0

�[a+ bn]

�[d=2 + n]

(�x)n
n!

(10.8)
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where the following abbreviations were used

a =
2 + d+ �

Æ
b =

2

Æ
x =

(1 + 2�)(1 + �)

2dDb
(qRg)

2 C =
�[d=2]

� [a]
:

Note that a series can be expressed as a complex integral as

1X
n=0

a(n)(�x)n
n!

= �
Z c+i1

c�i1

dz

2�i
a(z)�[�z]xz ;

where the integration path is chosen to include all poles of the Gamma function,
which are located at zero and all positive (real) integers. The asymptotic series
expansion is obtained by summing the residues of all poles for Re(z) < 0, i.e.
the poles of the prefactor

a(z) =
�[a+ bz]

�[d=2 + z]
;

which are located at a + bz = �m, where m is zero or a positive integer. The
residue of the integrand in the m'th pole is

Res[a(s)�[�s]xs; s = �(a+m)=b] =
�[m+a

b ]x�
m+a
b

b�[�m+a
b + d

2 ]
;

which yields the asymptotic series as

	(q;X) =
C

b

1X
m=0

(�1)m�[m+a
b ]x�

m+a
b

�[d2 � m+a
b ]m!

:

The form factor is obtained by integrating the phase factor as

A(q) =

Z N

0

dn

N
	(q; ro(n))

Inserting the sum, using r2o(n) = b2n2�=d, and interchanging the order of
the sum and the integration, the integration can be carried out term by term
yielding the series expansion of the form factor amplitude as

A(q) = C
1X
n=0

�[2+d+�+2n
Æ ]

�[d2 + n](2�n+ 1)n!

�
�(1 + 2�)(1 + �)

2dD2=Æ
q2R2

g

�n
:

The asymptotic expansion is derived analogous to that of the phase factor.
Simple poles are located at z = �(a+m)=b and z = �1=(2�) and summation
of the corresponding residues yields the asymptotic expansion

A(q;N) = C

0@�[ 12� ]�[a� b
2� ]x

� 1
2�

2��
h
d
2 � 1

2�

i +
1X

m=0

(�1)m� �a+mb �
x�

a+m
b

m!(b� 2(a+m)�)�
h
d
2 � m+a

b

i
1A
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Figure 10.1: Triblock copolymer star (two arms) scattering for semi-�exible
chains without excluded volume interactions (L=b = 100). Scattering for bulk
contrast, inner block, middle block, and outer block (from bottom to top using
boxes), �t (line).
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Figure 10.2: Triblock copolymer star (3 arms) scattering for semi-�exible chains
without excluded volume interactions (L=b = 100). Scattering for bulk contrast,
inner block, middle block, and outer block (from bottom to top using boxes),
�t (line).
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Figure 10.3: Triblock copolymer star (6 arms) scattering for semi-�exible chains
without excluded volume interactions (L=b = 100). Scattering for bulk contrast,
inner block, middle block, and outer block (from bottom to top using boxes),
�t (line).
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Figure 10.4: Triblock copolymer star (2 arms) scattering for semi-�exible chains
with excluded volume interactions (L=b = 400). Scattering for bulk contrast,
inner block, middle block, and outer block (from bottom to top using boxes),
�t (line).
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Chapter 11

Conclusion

The aim of the work presented in this thesis was to investigate the scattering
from diblock copolymer micelles with a spherical core using Monte Carlo (MC)
simulations. The purpose of the simulations was to formulate an expression
for the micellar form factor, that can be used when analysing experimental
scattering data. Using the solution pro�le scattering to represent the corona form
factor such an expression was formulated, and the expression was validated using
self-consistent analysis based on Monte Carlo simulation data in article II. These
MC simulations were performed varying the number of chains, chain length
and core radius within the experimentally available range of surface coverages
for diblock copolymer micelles. The corona form factor was obtained directly
from simulation results for the intra-chain and inter-chain scattering, while the
solution pro�le scattering was derived based on the simulation scattering results
for the intra-chain and corona form factor amplitude. Comparing the two results
for the corona form factor shows an excellent agreement for all simulation data,
even at the highest surface coverages. This demonstrates that the scattering from
the micellar corona can be regarded as being that of a quasi two dimensional
dilute/semi-dilute polymer solution, a solution that is con�ned to the micellar
corona region given by a radial pro�le with a width comparable to the chain
radius of gyration. The comparison shows that the polymer solution scattering
can be accurately approximated by an RPA approximation.

Article I investigated the validity of the model due to Pedersen and Gersten-
berg. This model includes e�ects due to single chain scattering and approximates
the e�ects of core expulsion, but it neglects excluded volume interactions within
the corona. The conclusion was that this model provides reasonable accurate
estimates of the radius of gyration and the corona center of mass distance from
the core center for surface coverages less than unity, while deviations increased
for increasing surface coverages above unity. The solution pro�le expression for
the corona form factor includes excluded volume interactions as well as core
expulsion, and the expression provides excellent �ts to the observed scattering
which was shown in article III. The estimated parameters have been compared
to the same parameters obtained directly from the MC simulation, and it was
shown that very accurate estimates for the radius of gyration and the shape of
the radial pro�le are obtained for all simulations. This has validated the pro-
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posed solution pro�le expression for the corona scattering, not just as being a
good description of the corona form factor, but also as an excellent tool for
estimating physical parameters from the experimental scattering data.

The solution pro�le concept also allows scattering due to the average ra-
dial pro�le and scattering due to density �uctuations within the pro�le to be
separated, even though the scattering due to the radial pro�le is the dominant
contribution to the corona form factor for low q values. This enables the scat-
tering due to density �uctuations in the forward direction to be obtained using
both an model �tting approach and a self-consistent approach. This has enabled
the extraction of the corona compressibility and apparent second virial coe�-
cient due to the chain interactions within the micellar corona from the simulated
scattering.

The osmotic compressibility has a universal dependence on surface cover-
age, with small deviations at very high surface coverages, which we attribute to
a weak dependence on surface curvature and number of chains. The apparent
second virial coe�cient for all simulations approximately collapses onto a com-
mon power law relation, and the power laws obtained from the self-consistent
analysis and model �tting approaches are in reasonable agreement. The osmotic
compressibility and apparent second virial coe�cient have an dependence on
reduced surface coverage analogous that of an ordinary polymer solution on the
reduced concentration c=c�, hence validating the claim that the micellar corona
can be regarded as a quasi-two dimensional polymer solution.

Article IV provides a way of calculating the form factor and structure factor
of polymer structures such as star copolymers, branched polymers, copolymer
micelles, and other structures that can be regarded as consisting of a number of
connected subunits. General expressions are presented for the form and struc-
ture factor for the polymer structures at level of approximation of the model of
Pedersen and Gerstenberg, i.e. interactions between subunits are neglected, how-
ever, it is shown how to include excluded volume interactions between subunits
on a linear chain, such as the e�ects of excluded volume interactions between
blocks in a copolymer. The formalism requires the knowledge of phase factors,
form factor amplitudes, and form factors for all the subunits, for a polymer.
These are the Fourier transforms of the end-to-end, end-to-internal site, and
internal-to-internal site distance distributions. In the article, results are pre-
sented or reviewed for subunits consisting of �exible and semi-�exible chains, as
well as chains with excluded volume interactions.

Expressions without excluded volume interactions have been �tted simul-
taneously to four contrasts of a triblock copolymer star with two, three and
six arms, respectively, and the �ts are in excellent agreement with the simula-
tion results. An expression with excluded volume interactions has, furthermore,
been �tted to a triblock copolymer star with two arms, e.g. a linear pentablock
copolymer, and this �t also shows excellent agreement

The articles and the present thesis describe some new simulation techniques.
The chain creation technique using a virtual zeroth bond have lead to a con-
siderable simpli�cation of creating a chain with a particular con�guration, and
has signi�cantly simpli�ed the computational task of correcting vertex positions
for numerical errors introduced by the repeated pivot moves compared to the
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technique due to Stellman and Gans [102]. A hybrid Fast-Fourier-Transform al-
gorithm for sampling the scattering on a logarithmically distributed q scale has
been presented, which greatly reduces the time required for sampling the partial
scattering contributions.

A prerequisite for an accurate analysis and interpretation of experimental
data is the existence of advanced models. This thesis and the articles included
have shown that a relatively simple expression exists for the scattering from
diblock copolymer micelles. And a general formalism for calculating form factors
of polymer micelles and branched polymer structures has been presented. It is
the author's hope that the results presented in the report will be applied for
interpreting experimental scattering results, and provide not only information
but also knowledge about the structure of complex �uids.

11.1 Suggestions for future work

The chapter summary of articles ended by proposing a generalisation of the
scattering from a micelle with an arbitrary core geometry by recasting the
corona scattering expression using a solution pro�le scattering term. However,
this expression has yet to be checked using simulation results. Simulations of
the scattering from micelles with end-capped cylindrical cores have already been
performed, but has yet to be analysed. It would also be interesting to perform
simulations with surface coverages in the brush regime, to compare Monte Carlo
results with the many theories that exists in this limit, and, for instance, to in-
vestigate the compressibility dependence on surface curvature and number of
chains.

All the simulations in this thesis have been performed for an athermal sol-
vent. This is su�cient to provide accurate expressions for the scattering from
polymers in a good solvent, however, it would be interesting to include an chain-
chain interaction potential such that, for instance, the e�ects of the screened
electrostatic interactions polyelectrolyte corona could be investigated.

The RPA approximation in the solution pro�le scattering contribution works
very well within the range of surface coverages simulated, but a full PRISM
treatment of the micellar corona should be possible, and this would yield the
direct correlation function c(q) as function of number of chains, chain length, and
core radius. This would provide an expression for the solution pro�le scattering
which does not rely on the RPA approximation.

The e�ects due to the structure factor has yet to be explored. In the chapter
with the summary of articles an equation for the structure factor using the
solution pro�le expression was proposed for a micellar solution, however, the
center-to-center structure factor Scc(q) is assumed to be given in this expression.
However, this center-to-center structure factor should also be amenable to a
PRISM treatment for instance by de�ning an e�ective micelle-micelle potential
based on the degree of overlap of the two micellar coronas, which in a mean �eld
approach is simply provided by the overlap of the radial monomer distributions
for two micelles.

In article three maximum entropy (ME) estimate for the radial pro�le was
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proposed based on knowledge of the �rst two/three moments of the pro�le.
These parameters were subsequently obtained by �tting the corona form fac-
tor amplitude based on the ME pro�le to the simulated scattering. It should
be possible to formulate a direct maximum entropy expression that provides
the corona pro�le by maximising the entropy subject to the constraints posed
by the known scattering data without the assumption that the pro�le can be
represented by a particular functional expression.

The formalism for calculating form and structure factors, which generally
neglects excluded volume interactions, has been extended to include excluded
volume interactions on the level of linear molecules. An interesting problem
would be how to introduce correlations due to interactions for instance between
the arms of star polymers. Renormalization group theory calculations for the
scattering from star polymers with excluded volume interactions exist, and simi-
lar techniques would probably be required for the general problem of introducing
interactions. An alternative approach would be to add some general expansion
that approximate the e�ects due to excluded volume interactions, where the
expansion parameters could be obtained by �tting numerical simulations. This
would provide a general method for parameterising Monte Carlo scattering re-
sults from polymer structures.
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