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I ntroduction

Neoclassical tearing modes (NTMs) are MHD instabilitiedalihcan form at rational sur-
faces in tokamak plasmas. They appear at high plasma peemsdtimit the achievable plasma
performance by degrading the confinement. Large NTMs can k&l to plasma disruptions.
NTMs are characterized bym, n), their poloidal and toroidal mode numbers, respectively. |
has previously been observed that NTMs cause losses obfes{i, 2, 3]. Here, these studies

are expanded by investigating the internal transport oficed fast ions.

Experimental observations

The fast-ion [y (FIDA) spectroscopy diagnostic is a charge-exchange distgnmeasur-
ing the Doppler shift of deuterium Balmer alpha radiationotder to have a sufficiently strong
source of neutral particles, the ASDEX Upgrade FIDA systeoks at one of the 60 keV neutral
beams used for heating. The system consists of five in-viessas, oriented such that each ob-
serves the plasma from a different angle. This is importantélculating the fast-ion distribu-
tion function directly from the measurements using veigspace tomography[4, 5]. From each
lens, a number of lines-of-sight are oriented in a fan-ligdgrn crossing the neutral beam. This
enables the FIDA diagnostic to measure at different rad@dtions. The measurement regions
are defined by the overlap of a line-of-sight and the neuahin and are of the order of a few
centimetres. Figure 1 shows time traces from the ASDEX Ugeyidischarge analysed in this
paper. The top panel shows the neutral beam injection (Nil)edectron cyclotron resonance
heating (ECRH) power. The ECRH power is constant througtieitiischarge while the NBI

*See author list of "H. Meyer et al 2017 Nucl. Fusion 57 102014"
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signal and plotted as a function of time and
radius, here given b the square-root of theFigure 1:Time traces of ASDEX Upgrade discharge
normalized toroidal flux. Front = 2.4 s to 33196 showing the effect on the plasma and the fast
t = 2.58 s fishbones can be seen in the mdgps of a large (2,1) NTM.

netic spectrogram. No strong effects on the

fastions or the plasma are observedt At2.58 s a fishbone triggers(2,1) NTM. This causes

a decrease of stored energy, core density and fast-ionlsfgrta= 2.7 s the observed frequency
of the (2,1) NTM goes to 0 as the mode stops rotating and locks to the egldr fleither the
plasma nor the fast-ion signals recover, despite the isectheating, and the plasma disrupts
att = 3.27 s. The FIDA signal depends on the local fast-ion distrdruas well as the back-
ground plasma, and forward modelling of the signal is neargss order to determine whether
the observed drop in FIDA signal is due to changes in plasmélgs or to fast-ion trans-
port. Such modelling of synthetic spectra has been cartedising the FIDA forward model
FIDAsim[6] and a fast-ion distribution function from TRANENUBEAM[7], and it cannot
explain the observed drop in FIDA signal. It should here beeddhat TRANSP/NUBEAM
assumes a toroidally symmetric equilibrium. As mentionadier, it is possible to calculate the
fast-ion distribution function directly from the measuremis using velocity-space tomography.
This is done here fot = 2.6 s andt = 2.7 s near the centre of the plasmagat= 0.1. The
results are shown in figure 2. A significant drop in the fastdestribution is observed after the
(2,1) NTM has been present for 100 ms. The tomography is ceedmssuming a smooth and

non-negative solution.
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Figure 2:Fast-ion distribution functions in units of [ions/keV#gitcn?] calculated using velocity-space
tomography. (a) At the onset of the (2,1) NTM. (b) After th&)(RITM locks.

NTM modelling

It is possible to match the forward modelled FIDA signal te tmeasured one using a
TRANSP/NUBEAM distribution that considers an ad-hoc antlmaa fast-ion diffusion. How-
ever, ideally the fast-ion distribution function shoulddimulated taking into account the fast-
ion transport induced by the magnetic field perturbaticgifiteind not just the changing plasma
profiles and an unphysical anomalous diffusion. This is dio@e using the full-orbit code
LOCUST](8], which can calculate the fast-ion distributiam€tion from a realistic ionization
profile, taking into account collisions, a realistic tokdnggometry as well as magnetic pertur-
bations, fort = 3.0 s where the NTM is locked. The perturbation due to the NTMaisulated
as a perturbed magnetic vector potenﬂ?aland it is assumed that the perturbation in the mag-

netic vector potential is along the background magnetid fillowing the procedure used in

[9]:
A=aB. (1)

The perturbed magnetic fiel®, is then calculated as the curl of the perturbed magnetitmvec
potential.a in equation (1) is defined as

a= Z OmnCOSMO —NY), (2)

m,n
wheream, are radial functions which describe the position, shapesamplitude of the pertur-

bation for a given set of mode numbeésis the straight-field-line poloidal angle agis the

toroidal angle. The size of the mode is estimated from ededemperature variations measured
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Figure 3:(a) Poincare plot of strong (2,1) NTM. (b) Measured and sgtithradial FIDA profiles.

Including the NTM in the simulation improve the match to tlreasured profile.

by the electron cyclotron emission diagnostic. Figure 3ansha Poincare plot of a large (2,1)
NTM generated using LOCUST. The perturbation is so largé ttiemagnetic field close to
the (2,1) island becomes stochastic. The fast-ion digtabdunction simulated including this
perturbation is used with FIDAsim to calculate synthetiecpa. A radial profile is calculated
from these and shown in figure 3b (blue) together with a sitrafawith an axi-symmetric
equilibrium (red) and the measured profile (black). Inahggihe (2,1) NTM in the simulation
improves the match between simulation and measurememdaioid-radius. However, there
is still a discrepancy in the centre of the plasma. The hyggithis that this is caused by a (1,1)
kink mode, which can couple toroidally to (2,1) modes in tolks. However, identifying this
in the experiment is difficult since the NTM is locking. Work oncluding this (1,1) kink mode

in the simulation is ongoing.
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