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Introduction

An effective way to generate fast ions in a fusion plasma is by means of Ion Cyclotron Res-
onance Heating (ICRH). The most adopted scenario is the so called minority heating, where a
minority species at a few percent level is added to the main bulk plasma and is accelerated by
ICRH. A typical example is the heating of *He ions in a bulk deuterium plasma, which has also
been used to study the excitation of fast ion instabilities and their transport [1]. A new ICRH
scenario for plasma heating and fast ion studies has been theoretically proposed and experi-
mentally demonstrated at the JET and Alcator C-mod tokamaks [2]. It is based on optimizing
the polarization of the wave at the resonance in the vicinity of the ion-ion hybrid layer. This
can be accomplished in a 3 ion species plasma, where two bulk species determine the propaga-
tion properties of the wave and a third species, which is added at the per mille level, efficiently
absorbs the power in the vicinity of the ion-ion hybrid layer. In this paper we present a first
quantitative analysis of the data obtained in a recent experiment on 3 ion ICRH heating in a D-
(*He)-H plasma at JET, where H and D, in the ratio of approximately 70:30, were the two bulk

species required by the scenario and *He was the species to accelerate (X[*He] ~ 0.2 —0.3%).

JET D — (°He) — H acceleration experiment
Figure 1 shows the time traces of some relevant quantities from the D — (*He) —H 3 ion

scenario experiments performed at JET, with particular reference to discharge #90753.
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Figure 1: Time traces for the D — (*He) — H experiment at JET for discharge #90753. From top

to bottom: ICRH and NBI power; core electron temperature 7,; plasma energy Wp

The plasma was preheated by means of Neutral Beam Injection (NBI), followed by the appli-
cation of ICRH in the 3 ion scheme. The power delivered by the radio-frequency (RF) wave is
effectively absorbed by the plasma, as testified by the increase of the stored energy as a function
of time in response to the application of ICRH. A first indirect evidence of the production of
fast 3He ions in the plasma comes from the time trace of the core electron temperature 7,o. As
the NBI power is applied, sawteeth manifest themselves in the time trace of T,o with a char-
acteristic period of ~0.2 s. As ICRH is turned on, the sawteeth period increases up to a ~0.8
s. This qualitatively indicates the production of MeV range *He ions, which have a stabilizing
effect on the sawtooth period.

The most direct evidence of effective >He acceleration to MeV energies and their confinement
in the 3 ion scheme is provided by gamma-ray spectroscopy, in particular from the obser-
vation of the gamma-ray lines born from the '"B* and !'C* excited nuclei produced in the
3He +?Be —!! B* 4+ p and *He +? Be —!! C* +n reactions, which are spontaneous processes
occurring in the plasma between fast *He ions and °Be impurities.

Figure 2 shows the gamma-ray spectrum measured by a LaBr3(Ce) detector observing the
plasma along a vertical line of sight. A large number of peaks appears, which results from

the production of ''B* and ''C* in a variety of excited states.

Quantitative modeling

Modeling of the gamma-ray emission from the plasma and the detector response function
can be adopted to infer quantitative information on the *He distribution function at MeV ener-
gies produced in the D — (*He) — H scenario. This is done by identifying the individual lines
that contribute to the spectrum of figure 2, where the aim is to infer the relative population of
the excited states of !'B* and !'C* as a function of < Esj;, >. Here we focus in particular on

two specific lines at £,=7.28 MeV and Ey=7.98 MeV, which are born from the de-excitation
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Figure 2: Gamma ray spectrum for discharge #90753 and fit to the experimental data in terms of

the expected gamma-ray emissions from the different excited states of the ''B and !'C nuclei.

of ''B* in its 6th and 7th excited states, respectively. After careful analysis, we find that the
measured ratio of the intensities between the 7.28 MeV and 7.98 MeV lines is r = 1.3 £0.2
This value can be compared with that expected from a model of the *He distribution function
and the corresponding gamma-ray emission. As the simplest approach, we can take the well
known analytical, asymptotic solution of the ICRH problem proposed by Stix [3] and evaluate
the expected asymptotic tail temperature T3y, of the 3He ions starting from measured plasma
parameters and a TORIC simulation of the power density deposited in the plasma. We find that
T3y, =~ 3MeV (for comparison, traditional *He minority heating typically results in T3, <500
keV [1]). However, at this high temperature gamma-ray modeling would predict r ~ 3, which
is well above measurements.

As the discrepancy might come from the too simplistic assumptions of the Stix formulation,
we have performed a full RF simulation with the SCENIC code [4], which includes both a
careful computation of the wave propagation in the plasma for fundamental ICRH and detailed
wave-particle interactions by means of a Monte Carlo kick operator. An illustration of the core
3He distribution determined by SCENIC for discharge #90753 is shown in figure 3 (a) and, as
expected, this is more complex than the Stix description in terms of a tail temperature. Still,
both Stix and the more comprehensive SCENIC simulation predict that 3He ions are found pre-
dominantly at energies of a few MeVs.

By the development of a synthetic gamma-ray diagnostic, which starts from the SCENIC sim-
ulation and carefully describes the generation of gamma-rays along the line of sight seen by
the instrument, we are able to determine r and, as for the Stix model, this is predicted to be
~ 3, which is larger than the measured value. As the predominance of MeV range ions in the
3He distribution function is independently predicted by different ICRH codes, and experimen-

tally supported by a variety of fast ion diagnostic data[2], we interpret the discrepancy between
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Figure 3: (a) Core *He distribution function for discharge #90753 as calculated by the SCENIC
code and (b) MHD activity spectrogram for discharge #90753. We observe core localised TAEs

at a frequency of ~310 kHz, as well as modes at ~80 kHz right after the sawtooth crashes.

the modeled and measured r as due to some missing effects in the model, where a possibil-
ity is the interplay between core localized TAE modes and the He ions (see figure 3 (b)). An
evaluation of the differential reactivity of the He +° Be —!! B* + p reaction starting from the
SCENIC distribution function, and when !B* is born in either its 6th or 7th excited state, shows
that gamma-ray emission is due almost exclusively to *He ions with energies between 2 and 3
MeV, which are also predicted to drive the observed core localised TAEs according to theory.
Hence, we may expect a redistribution of these fast 3He ions from the core to the periphery,
i.e. out of the line of sight of the instrument we have used. This might explain the observed

discrepancy and will be investigated in future studies.
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