

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 03, 2019

End-to-end information extraction from business documents

Palm, Rasmus Berg

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Palm, R. B. (2019). End-to-end information extraction from business documents. DTU Compute. DTU Compute
PHD-2018, Vol.. 501

http://orbit.dtu.dk/en/publications/endtoend-information-extraction-from-business-documents(9cdaf80a-47fb-4059-8a49-2867ec0348a7).html

Ph.D. Thesis
Doctor of Philosophy

End-to-end information extraction from busi-
ness documents

Rasmus Berg Palm

Kongens Lyngby 2018

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Richard Petersens Plads
Bygning 324
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

PHD-2018-501
ISSN 0909-3192

Summary
Extracting structured information from unstructured human communication is an
ubiquitous task. There is a constant need for this task since computers do not un-
derstand our unstructured human communication, and we like to use computers to
effectively organize our data. The study of performing this task automatically is
known as Information Extraction (IE).

Current approaches to IE can largely be divided into two groups. 1) Rule based
systems, which work by extracting information according to a set of pre-defined rules.
These systems are flexible, and easy to understand but heuristic in nature. In addition
the rules must be manually created and maintained. 2) Token classification systems,
that works by classifying tokens, usually words, using machine learning. These are
elegant and often superior to rule based systems, but require data labeled at the token
level. This data is rarely available for IE tasks and must be explicitly created at great
cost.

Inspired by the breakthroughs that end-to-end deep learning has had in several other
fields, this thesis investigates end-to-end deep learning for information extraction.
End-to-end deep learning works by learning deep neural networks that map directly
from the input to the output data naturally consumed and produced in IE tasks.
Since it learns from the data that is naturally available, for example as the result of
a regular business process, it has the potential to be a widely applicable approach to
IE.

The research papers presented in this thesis explore several aspects of end-to-end deep
learning for IE. The main contributions are: 1) A novel architecture for end-to-end
deep learning for IE, which achieve state-of-the-art results on a large realistic dataset
of invoices. 2) A novel end-to-end deep learning method for structured prediction and
relational reasoning. 3) A natural and efficient input representation of documents
with combined text and image modalities.

ii

Resume (Danish)
Ekstraktion af struktureret information fra ustruktureret menneskelig kommunika-
tion er en allestedsnærværende opgave. Der er et konstant behov for denne opgave
eftersom computere ikke forstår vores ustrukturerede menneskelige kommunikation og
vi samtidigt ynder at bruge computere til at organisere vores data. Studiet af hvordan
denne opgave kan udføres automatisk er kendt som Informations Ekstraktion (IE).

Nuværende tilgange til IE kan stort set deles op i to grupper. 1) Regelbaserede syste-
mer, der virker ved at udtrække informationen i henhold til et sæt af foruddefinerede
regler. Sådanne systemer er fleksible og nemme at forstår, men er heuristiske. Hvad
mere er; reglerne skal laves og vedligeholdes manuelt. 2) klassifikationsbaserede syste-
mer der virker ved at klassificere elementer, typisk ord, ved brug af machine learning.
Disse systemer er elegante og ofte bedre end regelbaserede systemer, men kræver data
der er annoteret på element niveau. Denne slags data er sjældent tilgængelig for IE
opgaver og skal derfor laves eksplicit, til stor omkostning.

Inspireret af gennembruddene som ende-til-ende dyb læring har haft i adskillige andre
felter, undersøger denne afhandling ende-til-ende dyb læring for informations ekstrak-
tion. Ende-til-ende dyb læring virker ved at lære dybe neurale netværk som direkte
beregner resultatet fra input af det data som naturligt er konsumeret og produceret
i IE opgaver. Siden denne fremgangsmåde lærer direkte fra det data som naturligt
er forekommende, f.eks. som resultatet af en normal forretningsprocess, har den
potentiale til at være en bredt brugbar fremgangsmåde til IE.

Forskningsartiklerne som er præsenteret i denne afhandling undersøger flere aspekter
omkring ende-til-ende dyb læring. Hovedbidragene er: 1) En ny arkitektur til ende-
til-ende dyb læring for IE, som opnår gode resultater på et stort realistisk datasæt
bestående af faktura. 2) En ny ende-til-ende dyb læring metode til struktureret
prædiktion og relationel ræsonnering. 3) En naturlig og effektiv input repræsentation
af dokumenter med kombineret tekst og billede modaliteter.

iv

Preface
This thesis was prepared at the Cognitive Systems section of DTU Compute, de-
partment of Applied Mathematics and Computer Science at the Technical University
of Denmark. It constitutes a partial fulfillment of the requirements for acquiring a
Ph.D. degree at the Technical University of Denmark.

The Ph.D. project was sponsored by Tradeshift and the Innovation Fund Denmark
under the industrial Ph.D. program, grant number 5016-00101B. It was supervised
by Ole Winther of DTU Compute and Florian Laws of Tradeshift.

The work was carried out at Tradeshift and at the Cognitive Systems section of DTU
Compute from November 2015 to October 2018, except for an external research stay
at the University of Houston in the fall of 2017.

The thesis consists of four research papers.

Kongens Lyngby, October 31, 2018

Rasmus Berg Palm

vi

Acknowledgements
First and foremost, I’d like to thank my supervisors Ole Winther and Florian Laws
for all their support and encouragement these last three years.

I’ve been privileged to study alongside some great people. I’d like to thank Søren
Sønderby, Lars Maaløe, Casper Sønderby, Marco Fraccaro, Rasmus Bonnevie, Simon
Kamronn and Peter Jørgensen, for our stimulating conversations.

Thanks to Tradeshift and the Innovation Fund Denmark for funding the research.

Finally, a huge thanks to my lovely wife Helena Breth Nielsen, for her support
throughout these studies.

viii

Contributions
Included in Thesis

1. CloudScan - A configuration-free invoice analysis system using recurrent neural
networks. Rasmus Berg Palm, Ole Winther, Florian Laws - Presented at Inter-
national Conference on Document Analysis and Recognition (ICDAR) 2017.

2. End-to-End Information Extraction without Token-Level Supervision. Rasmus
Berg Palm, Dirk Hovy, Florian Laws, Ole Winther - Presented at Workshop
on Speech-Centric Natural Language Processing (SCNLP) at the Conference of
Empirical Methods in Natural Language Processing (EMNLP) 2017.

3. Attend, Copy, Parse - End-to-end information extraction from documents. Ras-
mus Berg Palm, Florian Laws, Ole Winther - Unpublished.

4. Recurrent Relational Networks. Rasmus Berg Palm, Ulrich Paquet, Ole Winther
- Accepted at Conference on Neural Information Processing Systems (NIPS)
2018.

Other contributions

1. Blayze - A fast and flexible Naive Bayes implementation for the JVM. Rasmus
Berg Palm, Fuyang Liu, Lasse Reedtz
https://github.com/Tradeshift/blayze

x

Contents
Summary i

Resume (Danish) iii

Preface v

Acknowledgements vii

Contributions ix

Contents xi

1 Introduction 1
1.1 The problem . 1
1.2 Deep Learning . 4
1.3 Information Extraction . 8

2 Research 15
2.1 Motivation . 15
2.2 Approach . 16
2.3 Papers . 18

3 Conclusions 27
3.1 Conclusion . 27
3.2 Future work . 28

A CloudScan - A configuration-free invoice analysis system using
recurrent neural networks. 29

B End-to-End Information Extraction without Token-Level Super-
vision 39

C Attend, Copy, Parse - End-to-end information extraction from
documents 45

D Recurrent Relational Networks 55

xii Contents

Bibliography 79

CHAPTER 1
Introduction

1.1 The problem

This is an industrial Ph.D. project, focused on solving a single real-world problem.
While this problem is an instance of a more general problem, and the research is
relevant in this more general setting, it’s instructive to explain the specific problem
in some detail at this point. Many of the directions taken in the presented research
stems from the specific constraints and challenges of this problem, and is easier to
understand with a firm understanding of the specific problem.

An invoice is a document sent by a supplier to a buyer, listing the products or ser-
vices bought, the debt owed, and when and how to pay said debt. Large companies
can receive tens of thousands of invoices yearly. To efficiently manage such volumes
they use software systems. The software systems can record when the invoices were
received, manage payment, detect duplicate invoices, flag suspicious invoices, match
invoices to orders, etc. All in all, greatly helping the company managing their pur-
chases. Before any of these benefits can be enjoyed however, the information in the
invoices must be extracted and entered into the software system. This is typically
done by humans. However, this is a tedious and costly task, so an automated solution
would be of great benefit.

The problem then is simple to describe: Turn the document image in figure 1.1 into
the structured output in figure 1.2. That is, automatically extract a predefined set
of important fields from an invoice. This automatic extraction forms the core of
a Tradeshift product that help companies turn paper and PDF invoices into their
structured, digital counterparts. You might argue that a PDF invoice is already a
digital document. That is true. It is not, however, a structured document. There’s
no schema, detailing where each field must be, which format they must follow, etc.
To a computer it’s just a bunch of unstructured text and images. Contrast this with
the structured version in figure 1.2. It follows a strict machine-readable schema and
can be further processed in software system e.g. accounting and payment software as
described above.

2 1 Introduction

FAKTURA
Yderligere spescifikation fremkommer ikke

Kunde: Leverandør:

Faktura nr.:

Vare nr Varetekst Antal Vare a Pant a Beløb

Kunde nr.: 52200

Rasmus Berg Palm
Peter Skafte ApS

Sankt Hans Torv 3, 5. 3 Park Alle 352-A
2200 København N 2605 Brøndby

Telefon : 43 27 00 00
Swift : DABADKKK
E-mail : peter@skafte.dk
CVR Nr. : 14 29 04 00

 IBAN : DK1230003557061940
i gården Bank : 4440 3557061940
25329691 / Site : www.skafte.dk

722191 mandag 2. maj 2016

8407 Leje Anlæg Tuborg Rå S 1,00 300,00 0,00 300,00
8904 Leje Kulsyre 1-4 1,00 0,00 0,00 0,00
8405 Fus Øko Tuborg Rå 25S 2,00 612,00 160,00 1.544,00
7774 Fadøls-krus 70x40cl 1,00 76,00 0,00 76,00
621 Kørsel lev+afh 1,00 400,00 0,00 400,00
875 Tom fus -2,00 0,00 160,00 -320,00

Sum af varer og pant
moms 25%
Fakturatotal til betaling DKK

 2.000,00
 500,00
 2.500,00

 Betaling inden 06maj16 til Bank : 4440 3557061940
 Rykkergebyr kr. 100,- + rente

side 1/1

Figure 1.1: An example invoice document image input.

1.1 The problem 3

1 {
2 "number": "722191",
3 "date": "2016-05-02",
4 "order id": None,
5 "buyer": "Rasmus Berg Palm",
6 "supplier": "Peter Skafte ApS",
7 "currency": "DKK",
8 "sub total": 2000.00,
9 "tax total": 500.00,

10 "total": 2500.00,
11 "tax percent": 25.00,
12 ..., # additional fields
13 "lines" : [
14 {
15 "id": "8407",
16 "description": "Leje Anlæg Tuborg Rå S",
17 "amount": 1.00,
18 "price": 300.00,
19 "total": 300.00
20 },
21 ... # the rest of the lines
22]
23 }

.

Figure 1.2: The target structured output of the invoice in figure 1.1 as a python
dictionary. Note many of the values does not appear verbatim in the
inputs, e.g. the date, amounts, etc.

The dataset available comes from production usage of the above mentioned Tradeshift
product. It consists of approximately 1.2 million pairs of PDF invoices, and their
structured outputs, as seen in figure 1.1 and 1.2 respectively. The data has a single
defining characteristic: The structured output data only denotes what the field values
are, not where they are in the PDF document. If the data denoted where in the
document the field values were, the problem would be a lot simpler. However, that
is not the case, and this presents a challenge, which will shape much of the research.
The reason the structured data only contain the value of each field, is because the
users can freely type in the values for each field when using the product. The product
will automatically suggest values for the fields, but if anything needs to be changed
the user can simply type in the correct value. The product could require the users to
specify where in the document a field value was, but this would place an additional
labeling burden on the user, hindering them instead of helping them.

4 1 Introduction

1.2 Deep Learning
The methods employed in this thesis all fall under the deep learning paradigm. As
such I’ll give a very brief and incomplete introduction here. For an excellent exposition
see Goodfellow et al. [2016].

Conceptually deep learning is the belief that in order to solve complex data problems,
the best approach is to use powerful deep machine learning models, trained on lots of
data, which is represented as raw as possible [LeCun et al., 2015]. Contrast this with
the alternative approach: designing complex features and using shallow classifiers.
Deep and shallow refers to the number of learned functions that separate the input
from the output. The problem with the latter approach is that it’s hard for humans
to design features that are descriptive and robust for certain problems, e.g. image
recognition, speech recognition, etc. The deep learning approach instead learns to
represent the inputs as a composition of multiple levels of intermediate representa-
tions. This is known as representation learning and is a key concept in deep learning
[Goodfellow et al., 2016].

Conceptually deep learning is not tied to any specific machine learning model or
learning algorithm. In practice however, it is deeply tied to neural networks and
stochastic gradient descent. Neural Networks are a class of parameterized functions,
and stochastic gradient descent is an optimization algorithm.

1.2.1 Optimization
Optimization is at the heart of deep learning, and machine learning in general. As-
sume you have a dataset of N input output pairs x = [x1, ..., xN] and y = [y1, ..., yN].
In supervised learning the objective is to find a model, parameterized by θ, that
maximize the probability of the outputs given the inputs, s.t.

θ̂ = max
θ

p(y|x; θ) . (1.1)

If the data pairs can be assumed to be independent and identically distributed then
p(y|x; θ) =

∏N
i=1 p(yi|xi; θ), s.t.

θ̂ = max
θ

N∏
i=1

p(yi|xi; θ) . (1.2)

For numerical stability it’s often convenient to minimize the negative log-probability
instead of maximizing the probability directly,

θ̂ = min
θ

N∑
i=1

− log(p(yi|xi; θ)) . (1.3)

1.2 Deep Learning 5

The function that is being minimized is also denoted the loss function, L(θ; x,y),
since, loosely, it is a measure of how poorly the model models the data. In the above
example L(θ; x,y) =

∑N
i=1 − log(p(yi|xi; θ)).

One particular optimization algorithm, that is used extensively to optimize neural
networks is stochastic gradient descent. Gradient descent works by iteratively com-
puting the gradient of the loss function with respect to the parameters θ, and taking
steps in the direction of the negative gradient until convergence or some other stop-
ping criterion.

∆θt = δL(θt; x,y)
δθt

, (1.4)

θt+1 = θt − α∆θt , (1.5)

where α is a small scalar hyper-parameter, the step size, or learning rate. The par-
tial derivatives of the parameters θ can be efficiently computed in neural networks
using the back-propagation algorithm [Rumelhart et al., 1986]. If the dataset is large
computing the loss function for the entire dataset can be prohibitively expensive.
Stochastic gradient descent instead use a random sample of the dataset to approx-
imate the loss function at every iteration. Under some mild constraints gradient
descent converge to a local minima. If the loss function is convex this is also the
global minima. However, deep learning often use highly non-convex functions, so
there’s no guarantees that gradient descent converges to the global minima. In prac-
tice it works well though. Why is an open research question [Dauphin et al., 2014,
Dinh et al., 2017, Kawaguchi and Bengio, 2018].

1.2.2 Neural Networks
The basic unit of a neural network is the artificial neuron, a mathematical abstraction
of the functioning of the biological neuron. The output of a single artificial neuron
a ∈ R is

a = u

(
b+

I∑
i=1

wizi

)
, (1.6)

where z ∈ RI are the I inputs, w ∈ RI are I weights, b ∈ R is the bias and u : R → R
is a non-linear function, typically the rectified linear unit u(x) = max(x, 0) [Nair
and Hinton, 2010]. The entire neuron is a function gθg

: RI → R parameterized by
θg = {b,w} the scalar bias and weight vector.

A collection of J artificial neurons operating on the same input is known as a layer.

aj = u

(
bj +

I∑
i=1

Wijzi

)
, (1.7)

6 1 Introduction

where a ∈ RJ , j ∈ [1, J] indexes the neuron in the layer and u is applied elementwise.
The entire layer is a function hθh

: RI → RJ parameterized by θh = {b ∈ RJ ,W ∈
RI×J} the bias vector and weight matrix.

(W(1),b(1)) (W(2),b(2)) (W(3),b(3))

x1

x2

1

a
(1)
1

a
(1)
2

a
(1)
3

1

a
(2)
1

a
(2)
2

a
(3)
3

1

y1

y2

Figure 1.3: A fully connected neural network. The green circles are artificial neu-
rons. The rectangles enclose layers. The blue background highlights
layers with parameters (W(l),b(l)).

Finally a neural network is a Directed Acyclic Graph (DAG) of layers. Let the neural
network consist of L layers. let J (l) ∈ N denote the number of neurons in layer l and
let a(l)

j ∈ R denote the output of neuron j of layer l. The input vector to layer l,
z(l), is the concatenation of the output of the parent layers. As such the number of
inputs to layer l, I(l) ∈ N, is the sum of the number of outputs of the parent layers:
I(l) =

∑
p∈P (l) J

(p), where P (l) is the set of indexes of parent layers for layer l.

a(l)
j = u(l)

b(l)
j +

I(l)∑
i=1

W(l)
ij z(l)

i

 , (1.8)

where u(l) : R → R is the non-linear function for layer l, b(l)
j ∈ R is the bias of node

j in layer l, W(l)
ij is the weight from input i to neuron j in layer l and z(l)

i is the
i’th element of the input vector z(l) for layer l. The layers which does not have any
parents, are the inputs to the neural network, typically denoted x. The layers with
no children are the outputs of the neural network, typically denoted y. A neural
network can also be described more generally without introducing layers, as a DAG
of artificial neurons, but layers are a common abstraction. The entire neural network

1.2 Deep Learning 7

is a function fθf
: RX → RY parameterized by θf = {(b(1),W(1)), ..., (b(L),W(L))}

the parameters of the L layers, where X and Y are the dimensionality of the inputs
and outputs respectively.

The description above introduces the vocabulary of neural networks and covers the
typical architectures, but does not cover every neural network proposed. In the most
general sense a neural network is just a parameterized function, that typically use
artificial neurons. Two architectures deserve special mention: 1) the recurrent neural
network and 2) the convolutional neural network.

Recurrent Neural Networks (RNNs) takes a sequence of vectors [x1, ...,xT] as
input, and computes a sequence of hidden state vectors [h1, ...,hT] [Williams and
Zipser, 1989]. The hidden states are defined recurrently:

ht = f(xt,ht−1) , (1.9)

where the function f determines how the recurrent neural network updates its inter-
nal state and h0 is predefined, typically either a vector of zeros, or a vector of learned
parameters. See figure 1.4 for a graphical representation. The standard RNN defines
ht = tanh(b + Wxxt + Whht−1), where b, Wx and Wh is a bias vector, and two
weight matrices respectively. The Long Short Term Memory (LSTM) [Hochreiter
and Schmidhuber, 1997] and the Gated Recurrent Unit (GRU) [Chung et al., 2014]
variants of f both help with long term memory of sequences and are popular choices.
RNNs are powerful sequence models and have improved state-of-the-art in language
modelling [Zaremba et al., 2014], machine translation [Wu et al., 2016], image cap-
tioning [Karpathy and Fei-Fei, 2015], speech recognition [Graves et al., 2013] and
several other [Schmidhuber, 2015].

xt−1

ht−1

xt

ht

xt+1

ht+1

Figure 1.4: A recurrent neural network.

8 1 Introduction

Convolutional Neural Networks (CNNs) were proposed for image recognition
tasks [LeCun et al., 1989]. The key insight is that local features in images are transla-
tion invariant; a cat is still a cat, regardless of where it is in the image. Convolutional
neural networks use artificial neurons, named “kernels”, with small spatially local re-
ceptive fields, e.g. 5 × 5 × P pixels, where P is the number of channels in the input
image, e.g. 3 for a RGB image. The output of kernel j in layer l, at position (x, y) is

a
(l)
j (x, y) = u

b(l)
j +

P∑
p=1

∆x∑
δx=−∆x

∆y∑
δy=−∆y

Wp,∆x+δx,∆y+δy
a(l−1)

p (x+ δx, y + δy)

 ,

(1.10)

where u : R → R is a non-linear function, b(l)
j ∈ R is a bias term, P is the number

of kernels in the previous layer, (2∆x + 1) and (2∆y + 1) are the input field size in
the horizontal and vertical dimensions respectively, and W ∈ RP ×(2∆x+1)×(2∆y+1)

is the kernel weight tensor. Since the kernels are applied over the entire image, the
number of parameters in a CNN is determined by the size and number of kernels,
not the spatial size of the input. Compared to a fully connected neural network
it “shares” parameters across spatial positions. The use of deep CNNs have lead to
breakthroughs in object detection [Krizhevsky et al., 2012], face recognition [Taigman
et al., 2014], image segmentation [Ronneberger et al., 2015], and “ConvNets are now
the dominant approach for almost all [Computer Vision] recognition and detection
tasks” [LeCun et al., 2015].

1.3 Information Extraction
The problem described is an instance of an Information Extraction (IE) task. Here
I’ll briefly give an overview of the field of information extraction and the approaches
taken. The field of information extraction broadly studies extracting structured data
from unstructured documents [Sarawagi et al., 2008]. Extracting such structured,
machine-readable, information from unstructured human communication, is a task
as mundane as it is ubiquitous. The constant demand for these tasks rests on three
axioms. 1) People communicate using unstructured human language and artifacts
(documents, emails, etc.), 2) people use computer systems for aggregating and man-
aging information and 3) computers don’t understand unstructured human commu-
nication. Imagine arranging a meeting with a co-worker. You send an email to your
co-worker with the proposed date, room and time, and if she accepts, you create an
event in your online calendar. Mapping back to the axioms, you: 1) communicated in
human language 2) extracted the relevant information and typed it into a computer
system and 3) your email client can’t create the event for you, despite having all the
information.

The grand prize would of course be that computers really understood unstructured

1.3 Information Extraction 9

human language. However, it’s likely that this essentially requires strong Artificial
Intelligence (AI); an AI fully on-par with human intelligence in all aspects [Yampol-
skiy, 2013]. If we had such a system we could simply instruct it to extract the relevant
information as we’d instruct a human and there would be no need for information
extraction systems, or for a lot of other specialized machine learning systems for that
matter. This has remained an elusive prize for decades however [Turing, 1950]. In the
meantime IE takes the more pragmatic approach of automating small well defined
information extraction tasks.

There’s a variety of tasks considered in IE. The canonical task is template filling or
event extraction; given a document extract information to fill a template. For in-
stance an IE system could be built to extract information about terrorist attacks in
newspaper articles. This was the main task type in the seminal Message Understand-
ing Conference (MUC) series [Sundheim, 1991]. Such an IE system takes as input a
newspaper article describing a terrorist attack and output a structured template of
the terrorist attack detailing, e.g. the perpetrators, the victims, the date, etc. The
problem considered in this thesis is an instance of this task. The latter MUCs intro-
duced Named Entity Recognition (NER) and coreference resolution sub-tasks as well
[Grishman and Sundheim, 1996]. Named Entity Recognition is the task of identifying
proper nouns, e.g. named persons, organizations, places, etc. Coreference resolution
is the task of finding expressions that refer to the same entity, e.g. resolving pronouns
to their nouns, etc. The Automatic Content Extraction (ACE) research program re-
placed the MUC series and introduced the relation extraction task, which aims to
extract generic relations, e.g. social relations (spouse, sibling, etc.), role relations
(manager, staff, etc.), etc., from a corpus of documents [Doddington et al., 2004].
Finally the Text Analysis Conference (TAC) series succeeded the ACE program, and
have focused on Knowledge Base Population (KBP), which aims to fill a knowledge
base with facts from a corpus of documents. NER, coreference resolution and relation
extraction can be seen as sub-tasks of KBP.

IE is closely related to the field of Natural Language Processing (NLP). NLP is ”...
the subfield of computer science concerned with using computational techniques to
learn, understand, and produce human language content” [Hirschberg and Manning,
2015]. Since most IE is done on natural language text, IE often make use of methods
originally developed for NLP.

Approaches to IE fall into two broad categories: 1) patterns and rules and 2) token
classification.

1.3.1 Patterns and rules
There’s typically some obvious patterns in the unstructured data and an intuitive
approach is to try to use those patterns to extract the information. For instance,

10 1 Introduction

if we wish to extract a date, we could look for strings that parse as dates, e.g.
"2018-02-23". Such dates could be captured with the following regular expression
[Thompson, 1968] /\d{4}-\d{2}-\d{2}/, which will match strings of: four digits, dash,
2 digits, dash and 2 digits. This will match all ISO 8601 formatted date strings,
but it’ll also match "9852-89-97" and it won’t match "23rd Feb, 2018". We could
extend this simple pattern, and create more patterns to try to cover all the various
ways of writing dates, all the typical prefixes, e.g. ”at”, ”on”, ”since”, ”after”, etc.
and all other relevant patterns we can think of. This would give us a set of patterns.
Given a new document we would evaluate all our patterns on the document, which
would give us a set of strings that matched one or more of the patterns. To decide
which of these strings, if any, was the date, we would define a rule, e.g. ”The date
is the string matching most patterns and at least 5.”. This date example is overly
simple compared to actual research in this area. That is not to trivialize this area
of research, but rather to let the reader appreciate the basic elements with a simple
example.

Pattern and rule based IE has a rich history and is still being actively researched.
Indeed a recent survey found that “...rule-based IE dominates the commercial world...”
Chiticariu et al. [2013]. Here I’ll only very briefly and non-exhaustively cover some
of the more prominent ideas. Several systems make use of the syntactic structure
of sentences, e.g. the terrorist target is the subject in sentences with the ”bombed”
past tense verb [Riloff et al., 1993, Huffman, 1995, Soderland et al., 1995]. Kim and
Moldovan [1995], Soderland et al. [1995] also considers the semantics, e.g. only match
targets that are buildings. To alleviate the need for manually writing these patterns
and rules, several works propose automatically extracting instances of patterns given
broad classes of patterns and a few labeled examples [Ciravegna, 2001, Califf and
Mooney, 2003, Gupta and Manning, 2014a]. Since building a rule based IE system
is often a highly iterative process of creating and adjusting rules, another vein of
research focuses on improving interfaces for visualizing and debugging rules [Gupta
and Manning, 2014b, Liakata et al., 2009]. See Muslea et al. [1999] and Patwardhan
[2010] for surveys on rule based IE.

In general the main strength of rule based IE systems is that they are interpretable
and easily modified [Chiticariu et al., 2013]. Errors can be traced back to rules and
rules can be understood and modified by users. They are also often flexible, allowing
users to quickly create rules and patterns for a new IE task based on predefined
classes of patterns. The main drawback is the need to manually create and adjust
the rules and that the systems are heuristic in nature, i.e. there’s no guarantee that
the decisions are optimal in any sense [Chiticariu et al., 2013]. There’s also a risk
that the rules become brittle, e.g. minor spelling errors or formatting changes can
throw them off. Rule based IE works better the more homogeneous and structured
the input is. For instance, rule based IE works very well for extracting information
from well defined forms such as immigration forms, tax returns, etc.

1.3 Information Extraction 11

For the specific task of extracting information from invoices, several systems have
been proposed that are based on patterns and rules [Esser et al., 2012, Rusinol et al.,
2013, Cesarini et al., 2003, Dengel and Klein, 2002, Schuster et al., 2013, Medvet
et al., 2011]. These systems generally assume that invoices from the same supplier
follow the same layout or template. In broad terms they work by letting the user
define a set of rules for each supplier. These are either hand-written or induced from
broad classes of patterns by labeled examples. These rules are typically based on
keywords, absolute and relative positions and regular expressions. For instance, a
rule might be that the first word to the right of the word "total" which can also
be parsed as an amount is the total amount. Given a new invoice the systems first
classify the supplier of the invoice, then apply the rules for that supplier. The rules
suggests strings to be extracted which are then scored using heuristics, e.g. whether
the totals found add up, etc.

1.3.2 Token classification

Token classification is the other major approach to information extraction. The idea
is to classify which tokens, typically words, to extract using supervised machine learn-
ing. It requires that each token is labeled. The Air Travel Information Services (ATIS)
dataset is a good example [Price, 1990]. It consists of 5871 transcribed airfare queries
with each word in the query labeled with one of 127 labels using Beginning-Inside-
Out (BIO) labels [Ramshaw and Marcus, 1995]. See table 1.1 for an example. The
BIO labeling scheme enables the extraction of fields that span multiple word. The
beginning prefix, "B-", denotes the beginning of a label, and subsequent inside pre-
fixes, "I-", denotes a continuation of that label. The outside label "O" denotes that
the word is none of the labels. Given the labeled sentence in table 1.1 a ”chunking”
algorithm would iterate over the words, joining contiguous label segments and output
"cost_relative": "cheapest", "toloc.city_name": "new york city", etc.

word label
cheapest B-cost_relative
flight O
to O
new B-toloc.city_name
york I-toloc.city_name
city I-toloc.city_name
from O
la B-fromloc.city_name

tomorrow B-depart_date.today_relative

Table 1.1: ATIS dataset example.

12 1 Introduction

Given such a dataset, supervised machine learning can be used to learn a classifier
that classifies the labels for each word. Consider the case where you haveK words and
label pairs [(xi, yk)..., (xK , yK)] for a single document. Let x = [x1, ..., xK] denote all
the feature vectors, and y = [y1, ..., yK] all the labels. The feature representation, xi,
of a word is critical for the performance of any supervised learning classifier. Typical
features include one-hot encoding the word or using a learned vector embedding
[Mikolov et al., 2013], whether the word is present in lists of known keywords, e.g.
cities, names, etc., syntactic information, e.g. part of speech tags and finally whether
the word matches various regular expressions. Most rules from the rule and pattern
based approach to information extraction can also be reformulated as binary features,
whether the word would have been extracted by the rules.

The next step is to choose a classifier. An important distinction is how the classifier
handle the context of each word. The simplest classifiers treat the labels as condition-
ally independent given the feature vectors, s.t. p(y|x) =

∏K
i=1 p(yi|xi). Any standard

supervised classifier can be used e.g. logistic regression, neural networks, decision
trees, Support Vector Machines (SVMs) [Hearst et al., 1998], etc. In this case it’s im-
portant that the features capture enough context to classify the words. Alternatively a
fixed size context window can be used s.t. p(y|x) =

∏K
i=1 p(yi|xi−M , ..., xi, ..., xi+M),

which would correspond to a window of size 2M+1. For the indices where the window
fall outside the sequence, i.e. i < M + 1 and i > K −M padding with empty feature
vectors are typically used. Convolutional Neural Networks naturally fall into this
category. Also, all the same classifiers as before can be used since the 2M + 1 feature
vectors can be seen as a single feature vector with 2M + 1 the amount of entries.
The next step is the classifiers which map a variable number of feature vectors into
a fixed size representation hi and then consider the labels conditionally independent
given hi, i.e. p(y|x) =

∏K
i=1 p(yi|hi). Recurrent Neural Networks fall into this cat-

egory, using a recurrent function definition hi = g(xi, hi−1) which maps the feature
vectors of the current and all previous words into a fixed size hi. Given pre-computed
hi any of the standard classifiers can also be used. The final set of classifiers also
take the dependence between the labels into account. An example is linear chain
Conditional Random Fields (CRFs) which models the pairwise dependence between
labels s.t. p(y|x) = 1

Z(x) exp
(∑K

i=1 ψu(yi,x) +
∑K−1

i=1 ψp(yi, yi+1,x)
)
, where ψu and

ψp are functions that map to R, and Z(x) is the partition function.

The main advantages of the token classification approach are that 1) the supervised
learning algorithm can find complex patterns in the features that a human might
not be able to define and 2) the discovered patterns are learned from the training
data, which means they are robust to common noise present in the training data,
e.g. common misspellings, formatting differences, etc. Also, given relatively simple
features a sufficiently powerful classifier can automatically discover patterns from
complex combinations of the features. This shifts the burden of designing complex
patterns and rules from the human to the learning algorithm. The main drawbacks are

1.3 Information Extraction 13

1) the extensive labeling effort needed and 2) the learned classifier is often opaque, i.e.
it’s hard to understand how it works, which can make it hard to improve [Chiticariu
et al., 2013]. Due to the extensive labeling required for token classification, acquiring
it is costly and time-consuming. As such, this approach is not feasible for many real
life IE tasks.

14

CHAPTER 2
Research

2.1 Motivation
Deep Learning have lead to breakthroughs in several fields. Many of the key break-
throughs have come when researchers discovered efficient ways of learning to solve the
complete problem end-to-end, instead of breaking it down and trying to solve sub-
problems. Manually creating features for object classification gave way to learning
object recognition end-to-end [Krizhevsky et al., 2012]. Machine translation started
as translating words, then phrases, to finally being trained on whole sentences [Wu
et al., 2016]. Text-to-speech went from concatenating small units of speech and using
vocoders to directly outputting the raw waveform [Van Den Oord et al., 2016].

Inspired by such breakthroughs this thesis explores the use of end-to-end deep learn-
ing models for the problem of information extraction from invoices. How can the
information extraction task be formulated and solved in an end-to-end manner? This
end-to-end approach represents a third approach to information extraction, distinct
from the rule based and token classification approaches discussed.

The research is inspired by the breakthroughs mentioned, but also by necessity; the
available data from Tradeshift is simply of an end-to-end nature. I don’t believe
this is a special case, rather I think it represents the vast majority of information
extraction tasks currently performed by people. Simply by performing the tasks
they are generating end-to-end data; unstructured data in, structured data out. The
specifics of the generated data varies, but will have one thing in common: it is not
created for machine learning purposes. Data that can be used for machine learning,
e.g. token labels, can of course be explicitly created, but this will invariably incur
extra costs. End-to-end information extraction concerns itself with learning from the
available data directly. This make it applicable for tasks that would otherwise require
either 1) a custom rule based system or 2) expensive labeling.

2.1.1 The general case for end-to-end
Breaking down large problems and solving the smaller sub-problems is a powerful
strategy, and deeply ingrained in engineering and computer science. This is how we

16 2 Research

build everything from houses to operating systems. So why doesn’t it work for object
detection, machine translation, speech synthesis, etc.? What’s the case for end-to-end
learning systems in general?

False assumptions of independence Breaking a problem down often requires
assumptions of independence which can lead to irreducible errors. As an example
consider state-of-the-art machine translation systems which are trained on corpus of
aligned sentences [Wu et al., 2016]. This assume that sentences can be translated
independently of each other, which is not always the case. Take for instance the sen-
tences pairs “He liked fishing. Especially bass.” and “He liked playing instruments.
Especially bass.”. The latter sentences are the same, but should have different transla-
tions. If the model translates the sentences independently those type of errors cannot
be reduced. Further, errors introduced in this way add up. If a problem is broken
into 10 sub-problems, which each introduce 2% irreducible, independent errors, then
the joint solution will have approximately 18.3% irreducible errors.

More data Another possible reason is the hypothesis that there is more data avail-
able for the real problems. Sub-problems have less data since they are often not
worthwhile solving in and of themselves. As such datasets for sub-problems often
have to be explicitly created, at considerable cost. For instance, solving machine
translation at the word, phrase or sentence level requires alignments at the respec-
tive level, i.e. these N words in the source text correspond to these M words in the
target text. This data is not valuable or useful for anything except creating machine
translation models. Contrast this with the proceedings of the European Union which
have been translated into 21 member languages [Koehn, 2005]. This large dataset is
available because these translation are inherently valuable to the European Union.
This is also the case for the invoice data from Tradeshift. It is created because it is
valuable in its own right, not because it is valuable for machine learning purposes.

2.2 Approach
All models that can transform input into output in an end-to-end manner are not
equal. If this was the case we could simply treat every supervised problem as a
sequence of bytes in and a sequence of bytes out and use sequence to sequence models
for everything. The model and data representations have to be, for lack of a better
word, efficient. I don’t have a clear definition of efficient, but I’ll give some examples of
what I mean. The output representation should be as simple as possible. For instance,
instead of representing a currency as a three letter code, e.g. ”USD”, it should be
treated as a classification problem with approximately 180 classes corresponding to
the different currencies in the world. The former representation has 263 = 17, 567
possible states of which only 180 are valid. In other words, it should be as hard as
possible for the model to make a mistake. Similarly the input should be represented

2.2 Approach 17

as “naturally” as possible. For instance, in Palm et al. [2017b] we represent the
words in the invoice as a sequence, read left to right, top to bottom. This is not
optimal since it ignores the spatial layout of the words, e.g. columns, etc. Lastly,
hard independence assumptions made when breaking down a problem should instead
be incorporated as soft, structural priors. Take for instance machine translation,
in which the major breakthrough came when attention was introduced, which acts
as a learned, soft, word-alignment model [Bahdanau et al., 2014]. Similarly fully
connected neural networks can learn exactly the same functions that CNNs can, but
the structural priors incorporated in CNNs make them much better. The trick is
making the models just flexible enough and offering shortcuts and hints in the form
of structural priors where possible.

Finding the right input and output representations, and finding the architecture with
the right structural priors that make end-to-end training feasible and efficient repre-
sent the bulk of the research presented here.

The research presented in this thesis does not consider all aspects of the problem.
Three major areas are not considered:

1. Converting images of text characters into machine-encoded text, known as Op-
tical Character Recognition (OCR). Very good OCR engines already exists and
this is a whole area of research in itself. The presented research assumes an
OCR engine is used to extract the text.

2. Extracting the lines. The lines are important, but I decided to consider the prob-
lem of the header-level fields first, as I reasoned that any solution for extracting
the lines would build upon a solid understanding of extracting individual fields.
After all, a line is simply a collection of fields.

3. Some of the fields to be extracted have a limited output space, e.g. there’s only
around 180 currencies in the world. Similarly, there’s a known set of companies
using Tradeshift representing the possible buyers and suppliers. Extracting the
values for these fields can be formulated as classifying the entire invoice into
one of the possible outputs. This is known as document classification, and is
another well studied research field. The research presented here only consider
the harder task of the fields with an effectively unlimited output space, e.g. the
amounts, the invoice number, etc.

The following sections summarize the research papers, discuss how they fit into the
overall research goals and how they fit together.

18 2 Research

2.3 Papers

2.3.1 CloudScan - A configuration-free invoice analysis system
using recurrent neural networks

Rasmus Berg Palm, Ole Winther, Florian Laws - Presented at International Con-
ference on Document Analysis and Recognition (ICDAR) 2017. See appendix A.

Palm et al. [2017b] introduce the problem, argues for a configuration-free approach
and present a token classification model. The focus on configuration-free should be
seen in contrast to the other state-of-the-art systems for extracting information from
invoices. These systems are rule-based systems, and thus require configuration before
they can be used for a new supplier, typically in the form of labeling. The proposed
system is based on token classification, and generalize across suppliers. As such a
new supplier can use the system with zero up-front configuration. Learning a single
model that generalize across suppliers and invoice formats was a significant step from
rule-based systems towards a learned end-to-end system. The proposed system works
by classifying N-grams in the invoice into one of 65 classes (32 classes using BIO
notation). Using these classifications a set of heuristics picks the words for each field.
See figure 2.1 for an overview and table 2.1 for the results on unseen invoice layouts.

Figure 2.1: The two systems evaluated. The top (blue) track is the baseline, and
the bottom (green) track is the recurrent neural network based system.
White components are shared between the two systems.

The proposed system has a major drawback. It requires data labeled at the token
level. Since this data is not available the paper propose to infer it from the available
end-to-end data. In short the inference procedure works by noting that if the total is
“2500.00”, then any word in the PDF that can be parsed to “2500.00” gets the label
“total”. This is closely related to the idea of distant supervision by Mintz et al. [2009].
Depending on the recall and precision of the parsers this procedure will miss legitimate
totals, and introduce spurious ones. This introduces noise in the training and testing
data. We hypothesized that the noise would be relatively random compared to the
correct words, such that a classifier, with the right amount of regularization, might
learn to recognize the right words, and ignore the noise. Regardless, it’s inelegant,
and hard to optimize since at some point, doing better on the evaluation set means

2.3 Papers 19

F1 Precision Recall
Field Baseline LSTM Baseline LSTM Baseline LSTM

Number 0.71 0.760 0.76 0.79 0.67 0.73
Date 0.69 0.774 0.76 0.85 0.64 0.71
Currency 0.91 0.91 0.98 0.98 0.85 0.84
Order ID 0.43 0.52 0.82 0.74 0.29 0.41
Total 0.84 0.90 0.86 0.91 0.82 0.88
Line Total 0.80 0.88 0.83 0.89 0.78 0.87
Tax Total 0.83 0.88 0.84 0.88 0.83 0.87
Tax Percent 0.81 0.87 0.83 0.89 0.80 0.85

Micro avg. 0.79 0.84 0.84 0.88 0.75 0.80

Table 2.1: Expected performance on next invoice from unseen template. Best results
in bold. From Palm et al. [2017b].

picking up more of the noise. A further complication is that the actual measure of
performance we’re interested in, is the end-to-end performance. Since the values for
each field are ultimately chosen by the heuristics, a better token classifier does not
always translate into better end-to-end performance.

How to represent the input such that the the text and image modality was combined
in a natural way was a major research question throughout the thesis. In this paper
we ignore the image modality and propose to represent the words in the invoice as
a sequence, read left to right, top to bottom. We show how this representation is
better at capturing the context of a word than using a fixed context window of the
four closest words in the cardinal directions. Regardless, it’s an inelegant solution
since it ignores the spatial layout of the words, and forces us to impose a somewhat
spurious ordering.

2.3.2 End-to-End Information Extraction without Token-Level
Supervision

Rasmus Berg Palm, Dirk Hovy, Florian Laws, Ole Winther - Presented at Work-
shop on Speech-Centric Natural Language Processing (SCNLP) at the Conference of
Empirical Methods in Natural Language Processing (EMNLP) 2017. See appendix
B.

Palm et al. [2017a] introduces the end-to-end information extraction task in a sim-
plified setting. The task is simplified by using standard text based IE datasets which

20 2 Research

are labeled with BIO labels at the token level, e.g. ATIS. From these labels we derive
equivalent end-to-end datasets. This simplifies the task in two ways. First, the input
is regular text, so there is no document image to consider. Second, the label values
in the end-to-end dataset are always present, verbatim, in the input text. Since the
original datasets are labeled at the token level we can compare to state-of-the-art
sequence classification methods. We propose an end-to-end neural network model
based on pointer networks [Vinyals et al., 2015] for extracting the information and
show that it is comparable to state-of-the-art neural sequence classification models.
See figure 2.2 for an overview and table 2.2 for the results.

Figure 2.2: The multi-head pointer network. At each step each decoder “points” to
a word in the encoded inputs, indicated by the red arrows. From Palm
et al. [2017a].

The main drawback of the proposed model is that it can only output words that are
present in the input text. This means that if the target output is not verbatim in the
input the network will always fail. For the general end-to-end task it is likely that
values in the output will not match values in the input verbatim. For instance, if the
input contains the date “16 Oct. 2018” the structured output would contain the date
in some standard format, e.g. ISO 8601 “2018-10-16”. Despite its shortcomings the
paper made clear what the remaining obstacle was to achieve end-to-end training:
figuring out how to parse the extracted input into normalized output.

Data set Baseline Ours p

ATIS 0.977 0.974 0.1755
Movie 0.816 0.817 0.3792
Restaurant 0.724 0.694 0.0001

Table 2.2: Micro average F1 scores on the E2E data sets. Results that are sig-
nificantly better (p < 0.05) are highlighted in bold. From Palm et al.
[2017a].

2.3 Papers 21

2.3.3 Attend, Copy, Parse - End-to-end information extraction
from documents

Rasmus Berg Palm, Florian Laws, Ole Winther - Unpublished. See appendix C.

Palm et al. [2018a] address the end-to-end information extraction task directly and
make substantial progress. First, the text and image modalities are combined in a
natural way by concatenating learned word embeddings with the document image as
extra image channels at the positions of the embedded words. The input “image” thus
have 3 + D channels, where the first three channels are the red, green, blue image
channels and D is the dimensionality of the learned word embeddings. The word
embeddings are replicated across the spatial extent of each word in the document
image. This is a quite elegant representation of the input in my opinion since it
naturally links the word features and the image features. A CNN working on this
input can discover the importance of spatial structure itself, without requiring us to
impose any spurious ordering on the words, etc.

Attend Copy

Parse

Context

{"Invoice", "2. may 2016", ..., "2.500,00"}

Memory "2016-05-02"

"2. may 2016"

Input Attend, Copy, Parse Output

Figure 2.3: Overview of the Attend, Copy, Parse architecture. All modules are end-
to-end differentiable. The modules highlighted in green are learned.
From Palm et al. [2018a].

Second, the model can directly output, and be trained on, the end-to-end output,
including normalized fields that require parsing, e.g. dates, amounts, etc. The archi-
tecture for accomplishing this is a bit involved, but is conceptually simple. For each
field, the model extracts an N-gram from the input using an attention mechanism.
This is similar to how the pointer network extracts a word in the Palm et al. [2017a].
The main difference is that the extracted N-gram is encoded as a sequence of char-
acters. This sequence of characters is then passed through a learned neural parser,
which parses it into the desired output format. The whole model is then trained
end-to-end to produce the right sequence of characters. See figure 2.3 for an overview
and table 2.3 for the results on new invoice layouts.

22 2 Research

Field Readable Prod Prod- Attend, Copy, Parse

Number 0.90 0.78 0.78 0.87
Order id 0.90 0.82 0.82 0.84
Date 0.83 0.70 0.70 0.80
Total 0.81 0.85 0.77 0.81
Sub total 0.84 0.84 0.73 0.79
Tax total 0.80 0.87 0.77 0.80
Tax percent 0.79 0.83 0.68 0.87

Average 0.84 0.81 0.75 0.83

Table 2.3: Results. Fraction of correct values. Readable is the fraction of target
values that can be found in the document using recall oriented parsers.
”Prod” is a production system based on token classification and heuris-
tics. ”Prod-” is the ”Prod” system, but with total heuristics disabled.
From Palm et al. [2018a].

The proposed model can be seen as an end-to-end differentiable version of the system
in Palm et al. [2017b]. In Palm et al. [2017b] the system is split into two parts: 1) the
classifier which classifies the N-grams and 2) the heuristics which picks the most likely
N-gram and parses it into the output. In the proposed model the attention over the
N-grams can be seen as an implicit N-gram classifier, and the learned neural parsers
directly replace the non-differentiable hand-crafted parsers. This is an instance of
replacing a hard independence assumption with a soft structural prior. By learning
the whole system end-to-end the model avoids the noise introduced when inferring the
N-gram labels from the end-to-end data. Also, since the optimization objective now
match the end-to-end measure of performance, better performance on the evaluation
set directly translate into better end-to-end performance.

The proposed model performs better on four of the seven fields. The three fields it
performs worse on are the total, sub total before tax, and tax total fields. The reason
the baseline is better at these fields is because it uses a heuristic to select them jointly
such that the totals add up. This heuristic significantly boosts the performance of the
relatively weak baseline. In order to incorporate something like this, an end-to-end
model needs to model the outputs that depend on each other jointly, which makes it
an instance of a structured prediction problem. We discuss one idea for incorporating
this heuristic in the paper, but it did not improve on the results.

The model stores pre-computed N-grams in the external memory. These N-grams are
computed by a heuristic algorithm that assigns the words to lines and sorts them. In
fact it’s the same algorithm as used in Palm et al. [2017b]. This is unfortunate, since

2.3 Papers 23

this algorithm is not trained end-to-end and any errors it make cannot easily be solved
by the rest of the model. If for instance it decides two words are on different lines
because the document image is slightly rotated, it won’t generate an N-gram of those
two words, which means the attend module cannot attend to it. A better solution
would be to store words in the external memory, and then recurrently attending to
them, but this make the parsing much more difficult, and would be computationally
more expensive.

2.3.4 Recurrent Relational Networks
Rasmus Berg Palm, Ulrich Paquet, Ole Winther - Accepted at Conference on
Neural Information Processing Systems (NIPS) 2018. See appendix D.

Palm et al. [2018b] introduces the Recurrent Relational Network (RRN). The RRN
models dependent variables by operating on a graph of variables. The nodes in
the graph represent the variables, represented by real valued vectors, and the edges
represent the dependencies between the variables. The RRN is run for a pre-defined
number of steps. At each step the variables “send” vector valued messages along the
edges of the graph. The variables are then updated as a function of the incoming
messages, their own states and their initial states. All the functions in the model are
learned neural networks, and the whole model is trained in a supervised manner to
output a fixed target for each variable at each step. We demonstrate the RRN on
several datasets which require reasoning about dependent variables. Most notably
the RRN solves 96.6% of the hardest Sudokus. This corresponds to finding the
maximum (in fact, only) likely configuration of a joint distribution over 81 variables
with complex dependencies. See figure 2.4 for an overview and table 2.4 for the results
on the Sudoku dataset.

The RRN has three main advantages. 1) It’s differentiable. As such it can be added
to any neural network and trained end-to-end. Constraint propagation and search
are powerful techniques, as shown in Norvig [2006], but they are not differentiable.
The same is true for the total heuristic used by the baseline model in Palm et al.
[2018a]. 2) It does not require you to specify how your variables depend on each
other. The RRN that learns to solve Sudokus is never informed that digits in the
same row, column and box must be unique. This is very useful in the case where you
don’t know how to formulate the dependencies. Indeed one of the early motivations
for developing the RRN was the need to output the total fields that depended on
each other, without knowing how to specify a proper joint model. 3) It does not
require any special loss function or learning algorithm. It does not even need to be
the last layer in the network. It is “just” a parameterized, differentiable function that
operates on a graph of vectors, and output a graph of vectors.

The main limitation is that it ultimately models the dependent variables as condi-

24 2 Research

ht
1

x1

ot
1 ht

2

x2

ot
2

ht
3

x3 ot
3

mt
12

mt
21

mt
13
mt

31 mt
23

mt
32

Figure 2.4: A recurrent relational network on a fully connected graph with 3 nodes.
The nodes’ hidden states ht

i are highlighted with green, the inputs xi

with red, and the outputs ot
i with blue. The dashed lines indicate the

recurrent connections. Subscripts denote node indices and superscripts
denote steps t. From Palm et al. [2018b].

tionally independent given the inputs. If the inputs x, and outputs y both consists
of N vectors s.t. x = [x1, ..., xN] and y = [y1, ..., yN], then the RRN model the joint
probability as p(y|x) =

∏N
i=1 p(yi|x). This is a false assumption of independence in

many datasets, in which case p(y|x) cannot accurately model the true distribution.
In practice it seems to work well though.

2.3 Papers 25

Method Givens Accuracy

Recurrent Relational Network* (this work) 17 96.6%
Loopy BP, modified [Khan et al., 2014] 17 92.5%
Loopy BP, random [Bauke, 2008] 17 61.7%
Loopy BP, parallel [Bauke, 2008] 17 53.2%
Deeply Learned Messages* [Lin et al., 2015] 17 0%
Relational Network, node* [Santoro et al., 2017] 17 0%
Relational Network, graph* [Santoro et al., 2017] 17 0%
Deep Convolutional Network [Park, 2016] 24-36 70%

Table 2.4: Comparison of methods for solving Sudoku puzzles. Only methods that
are differentiable are included in the comparison. Entries marked with an
asterix are our own experiments, the rest are from the respective papers.
From Palm et al. [2018b] .

26

CHAPTER 3
Conclusions

3.1 Conclusion
The goal of the project was to develop end-to-end deep learning models for extracting
information from invoices. For simple fields, this has to a large degree been achieved.
For the fields that depend on each other, e.g. the totals, there is still some way to go
in successfully modelling the joint distribution. Outputting the lines present an even
greater challenge, since these are both repeating and structured.

While the project have been very focused on invoices, the proposed models should be
broadly applicable to end-to-end information extraction tasks. As discussed, informa-
tion extraction tasks are ubiquitous, and end-to-end data is often the only available
data. The presented research should be broadly applicable in these situations. While
it’s clear that there are great challenges remaining for end-to-end information extrac-
tion to be broadly successful, I hope the research presented in this thesis can serve as
a starting point.

In particular I hope three contributions will be useful

1. The Attend, Copy, Parse architecture as a neural building block for end-to-
end information extraction systems. Extracting and parsing snippets of text is
arguable at the core of IE. This architecture shows how to do it in an end-to-
end differentiable manner that can be used as part of a larger end-to-end IE
architecture.

2. The Recurrent Relational Network, as a powerful neural module for relational
reasoning and modelling dependent variables. Especially for cases where prop-
erly modelling the dependent variables are hard.

3. The input representation, where learned word embeddings are fused early with
the document image. It’s a general representation of document images that
combine the text and image modalities in a natural way. While it is very similar
to the approach taken in Yang et al. [2017], it is a very useful representation.

28 3 Conclusions

3.2 Future work
The interdependent total fields is an obvious candidate for future work. This is a
challenging structured prediction problem with hard constraints on the variables. In
this case there are four variables and two constraints: 1) total = sub total + tax
total and 2) tax total = sub total × tax percent. In most cases these fields
will not be verbatim present in the inputs so needs to be parsed before the constraints
can even be evaluated. In some cases some of the fields will legitimately not be present
in the input, e.g. if there’s no tax, a zero tax total might not be present. In these
cases the fields should instead be inferred from the constraints. One idea, is to extract
and parse N candidates for each total field, then construct the N4 combinations, and
compute attention probabilities for each combination. Finally the output for each
field would be a weighted sum over the field values in the combinations weighted by
their attention probability. Another idea is to feed the 4N candidates into a RRN as
a fully connected graph, and finally attend to a candidate for each of the fields.

Extracting the lines is an even harder task, with both individual and joint con-
straints. Individually each line should satisfy line total = line price × line
amount, and jointly all the lines should satisfy sub total =

∑
line totals. All

the same difficulties regarding the total fields apply. Additionally a variable number
of lines must be extracted, potentially hundreds. Since many of the structured pre-
diction difficulties are shared with the total fields, I think solving those first would
be a sound approach.

At some point the errors introduced by the OCR engine might become the dominant
source of errors. In this case looking at improving the OCR process might be relevant.
I’d advice against training a new OCR engine from scratch as part of a fully end-to-end
model. Fine tuning an existing OCR engine might be a better approach. Some OCR
engines output n-best lists of word candidates or even individual character probability
distributions. The latter would be especially interesting, since it fits naturally into
the Attend, Copy, Parse architecture where the inputs to be parsed are encoded as a
sequence of character distributions. This might allow the parser to correct commonly
mistaken characters, e.g. 1 and 7.

The presented research has only considered the case of learning a single model of
invoices that generalize to new suppliers. It would be interesting to see if one could
obtain better results by learning individual models for each supplier, maybe initialized
from a single global model.

APPENDIX A
CloudScan - A

configuration-free
invoice analysis system
using recurrent neural

networks.
Published at International Conference on Document Analysis and Recognition (IC-
DAR) 2017

CloudScan - A configuration-free invoice analysis
system using recurrent neural networks
Rasmus Berg Palm

DTU Compute
Technical University of Denmark

rapal@dtu.dk

Ole Winther
DTU Compute

Technical University of Denmark
olwi@dtu.dk

Florian Laws
Tradeshift

Copenhagen, Denmark
fla@tradeshift.com

Abstract—We present CloudScan; an invoice analysis system
that requires zero configuration or upfront annotation.

In contrast to previous work, CloudScan does not rely on
templates of invoice layout, instead it learns a single global model
of invoices that naturally generalizes to unseen invoice layouts.

The model is trained using data automatically extracted
from end-user provided feedback. This automatic training data
extraction removes the requirement for users to annotate the
data precisely.

We describe a recurrent neural network model that can
capture long range context and compare it to a baseline logistic
regression model corresponding to the current CloudScan pro-
duction system.

We train and evaluate the system on 8 important fields using
a dataset of 326,471 invoices. The recurrent neural network
and baseline model achieve 0.891 and 0.887 average F1 scores
respectively on seen invoice layouts. For the harder task of unseen
invoice layouts, the recurrent neural network model outperforms
the baseline with 0.840 average F1 compared to 0.788.

I. INTRODUCTION

Invoices, orders, credit notes and similar business docu-
ments carry the information needed for trade to occur between
companies and much of it is on paper or in semi-structured
formats such as PDFs [1]. In order to manage this information
effectively, companies use IT systems to extract and digitize
the relevant information contained in these documents. Tra-
ditionally this has been achieved using humans that manually
extract the relevant information and input it into an IT system.
This is a labor intensive and expensive process [2].

The field of information extraction addresses the challenge
of automatically extracting such information and several com-
mercial solutions exists that assist in this. Here we present
CloudScan, a commercial solution by Tradeshift, free for
small businesses, for extracting structured information from
unstructured invoices.

Powerful information extraction techniques exists given that
we can observe invoices from the same template beforehand,
e.g. rule, keyword or layout based techniques. A template is a
distinct invoice layout, typically unique to each sender. A num-
ber of systems have been proposed that rely on first classifying
the template, e.g. Intellix [3], ITESOFT [4], smartFIX [5] and
others [6], [7], [8]. As these systems rely on having seen the
template beforehand, they cannot accurately handle documents
from unseen templates. Instead they focus on requiring as few
examples from a template as possible.

What is harder, and more useful, is a system that can accu-
rately handle invoices from completely unseen templates, with
no prior annotation, configuration or setup. This is the goal
of CloudScan: to be a simple, configuration and maintenance
free invoice analysis system that can convert documents from
both previously seen and unseen templates with high levels of
accuracy.

CloudScan was built from the ground up with this goal in
mind. There is no notion of template in the system. Instead
every invoice is processed by the same system built around a
single machine learning model. CloudScan does not rely on
any system integration or prior knowledge, e.g. databases of
orders or customer names, meaning there is no setup required
in order to use it.

CloudScan automatically extracts the training data from
end-user provided feedback. The end-user provided feedback
required is the correct value for each field, rather than the map
from words on the page to fields. It is a subtle difference,
but this separates the concerns of reviewing and correcting
values using a graphical user interface from concerns related to
acquiring training data. Automatically extracting the training
data this way also results in a very large dataset which allows
us to use methods that require such large datasets.

In this paper we describe how CloudScan works, and inves-
tigate how well it accomplishes the goal it aims to achieve. We
evaluate CloudScan using a large dataset of 326,471 invoices
and report competitive results on both seen and unseen tem-
plates. We establish two classification baselines using logistic
regression and recurrent neural networks, respectively.

II. RELATED WORK

The most directly related works are Intellix [3] by
DocuWare and the work by ITESOFT [4]. Both systems
require that relevant fields are annotated for a template
manually beforehand, which creates a database of templates,
fields and automatically extracted keywords and positions for
each field. When new documents are received, both systems
classify the template automatically using address lookups or
machine learning classifiers. Once the template is classified
the keywords and positions for each field are used to propose
field candidates which are then scored using heuristics such
as proximity and uniqueness of the keywords. Having scored
the candidates the best one for each field is chosen.

ar
X

iv
:1

70
8.

07
40

3v
1

 [
cs

.C
L

]
 2

4
A

ug
 2

01
7

Fig. 1. The CloudScan graphical user interface. Results before any correction. Disregard the selected sender and recipient as these are limited to companies
connected to the company uploading the invoice. This is an example of a perfect extraction which would give an F1 score of 1.

smartFIX [5] uses manually configured rules for each tem-
plate. Cesarini et al. [6] learns a database of keywords for each
template and fall back to a global database of keywords. Esser
et al. [7] uses a database of absolute positions of fields for each
template. Medvet et al. [8] uses a database of manually created
(field, pattern, parser) triplets for each template, designs a
probabilistic model for finding the most similar pattern in a
template, and extracts the value with the associated parser.

Unfortunately we cannot compare ourselves directly to the
works described as the datasets used are not publicly available

and the evaluation methods are substantially different. How-
ever, the described systems all rely on having an annotated
example from the same template in order to accurately extract
information.

To the best of our knowledge CloudScan is the first invoice
analysis system that is built for and capable of accurately
converting invoices from unseen templates.

The previous works described can be configured to handle
arbitrary document classes, not just invoices, as is the case for
CloudScan. Additionally, they allow the user to define which

set of fields are to be extracted per class or template, whereas
CloudScan assumes a single fixed set of fields to be extracted
from all invoices.

Our automatic training data extraction is closely related to
the idea of distant supervision [9] where relations are extracted
from unstructured text automatically using heuristics.

The field of Natural Language Processing (NLP) offers a
wealth of related work. Named Entity Recognition (NER)
is the task of extracting named entities, usually persons or
locations, from unstructured text. See Nadeau and Sekine [10]
for a survey of NER approaches. Our system can be seen as
a NER system in which we have 8 different entities. In recent
years, neural architectures have been demonstrated to achieve
state-of-the-art performance on NER tasks, e.g. Lample et
al. [11], who combine word and character level RNNs, and
Conditional Random Fields (CRFs).

Slot Filling is another related NLP task in which pre-defined
slots must be filled from natural text. Our system can be seen
as a slot filling task with 8 slots, and the text of a single
invoice as input. Neural architectures are also used here, e.g.
[12] uses bi-directional RNNs and word embedding to achieve
competitive results on the ATIS (Airline Travel Information
Systems) benchmark dataset.

In both NER and Slot Filling tasks, a commonly used
approach is to classify individual tokens with the entities or
slots of interest, an approach that we adopt in our proposed
RNN model.

III. CLOUDSCAN

A. Overview

CloudScan is a cloud based software as a service invoice
analysis system offered by Tradeshift. Users can upload their
unstructured PDF invoices and the CloudScan engine converts
them into structured XML invoices. The CloudScan engine
contains 6 steps. See Figure 2.

1) Text Extractor. Input is a PDF invoice. Extracts words
and their positions from the PDF. If the PDF has embed-
ded text, the text is extracted, otherwise a commercial
OCR engine is used. The output of this step is a
structured representation of words and lines in hOCR
format [13].

2) N-grammer. Creates N-grams of words on the same
line. Output is a list of N-grams up to length 4.

3) Feature Calculator. Calculates features for every N-
gram. Features fall in three categories: text, numeric and
boolean. Examples of text features are the raw text of
the N-gram, and the text after replacing all letters with
”x”, all numbers with ”0” and all other characters with
”.”. Examples of numeric features are the normalized
position on the page, the width and height and number
of words to the left. Boolean features include whether
the N-gram parses as a date or an amount or whether
it matches a known country, city or zip code. These
parsers and small databases of countries, cities and zip
codes are built into the system, and does not require

any configuration on the part of the user. The output is
a feature vector for every N-gram. For a complete list
of features see table V.

4) Classifier. Classifies each N-gram feature vector into 32
fields of interest, e.g. invoice number, total, date, etc. and
one additional field ’undefined’. The undefined field is
used for all N-grams that does not have a corresponding
field in the output document, e.g. terms and conditions.
The output is a vector of 33 probabilities for each N-
gram.

5) Post Processor. Decides which N-grams are to be used
for the fields in the output document. For all fields,
we first filter out N-gram candidates that does not fit
the syntax of the field after parsing with the associated
parser. E.g. the N-gram ”Foo Bar” would not fit the
Total field after parsing with the associated parser since
no amount could be extracted. The parsers can handle
simple OCR errors and various formats, e.g. ”100,0o”
would be parsed to ”100.00”. The parsers are based on
regular expressions.
For fields with no semantic connection to other fields,
e.g. the invoice number, date, etc. we use the Hungarian
algorithm [14]. The Hungarian algorithm solves the as-
signment problem, in which N agents are to be assigned
to M tasks, such that each task has exactly one agent
assigned and no agent is assigned to more than one task.
Given that each assignment has a cost, the Hungarian
algorithm finds the assignments that minimizes the total
cost. We use 1 minus the probability of an N-gram being
a field as the cost.
For the assignment of the Total, Line Total, Tax Total
and Tax Percentage we define and minimize a cost
function based on the field probabilities and whether the
candidate totals adds up.
The output is a mapping from the fields of interest to
the chosen N-grams.

6) Document Builder. Builds a Universal Business Lan-
guage (UBL) [15] invoice with the fields having the
values of the found N-grams. UBL is a XML based
invoice file format. Output is a UBL invoice.

B. Extracting training data from end-user provided feedback

The UBL invoice produced by the engine is presented to
the user along with the original PDF invoice in a graphical
user interface (GUI). The user can correct any field in the
UBL invoice, either by copy and pasting from the PDF, or by
directly typing in the correction. See figure 1.

Once the user has corrected any mistakes and accepted the
invoice we add the resulting UBL to our data collection. We
will extract training data from these validated UBL documents,
even though they might deviate from the PDF content due to
OCR error, user error or the user intentionally deviating from
the PDF content. We discuss these issues later.

The classifier is trained on N-grams and their labels, which
are automatically extracted from the validated UBL invoices
and the corresponding PDFs. For each field in the validated

Fig. 2. The CloudScan engine.

UBL document we consider all N-grams in the PDF and check
whether the text content, after parsing, matches the field value.
If it does, we extract it as a single training example of N-gram
and label equal to the field. If an N-gram does not match
any fields we assign the ’undefined’ label. For N-grams that
match multiple fields, we assign all matched fields as labels.
This ambiguity turns the multi-class problem into a multi-label
problem. See Algorithm 1 for details.

input : UBL and PDF document
output: All labeled N-grams
result ← {};
foreach field ∈ fields do

parser ← GetParser(field);
value ← GetValue(UBL, field);
maxN ← Length(value) + 2;
nGrams ← CreateNgrams(PDF, maxN);
foreach nGram ∈ nGrams do

if value = Parse(nGram, parser) then
Add(result, nGram, field);

end
end

end
nGrams ← CreateNgrams(PDF, 4);
foreach nGram ∈ nGrams do

if nGram /∈ result then
Add(result, nGram, undefined);

end
end
return result

Algorithm 1: Automatic training data extraction

Using automatically extracted pairs like this results in a
noisy, but big data set of millions of pairs. Most importantly,
however, it introduces no limitations on how users correct
potential errors, and requires no training. For instance, we
could have required users to select the word matching a
field, which would result in much higher quality training
data. However in a high volume enterprise setup, this could
reduce throughput significantly. Our automatic training data
generation decouples the concerns of reviewing and correcting
fields from creating training data, allowing the GUI to focus
solely on reviewing and correcting fields. The user would
need to review the field values and correct potential errors
regardless, so as long as we do not limit how the user does
it, we are not imposing any additional burdens. In short, the
machine learning demands have lower priority than the user
experience in this regard.

As long as we get a PDF and a corresponding UBL invoice
we can extract training data, and the system should learn and
improve for the next invoice.

IV. EXPERIMENTS

We perform two experiments meant to test 1) the expected
performance on the next invoice, and 2) the harder task of

expected performance on the next invoice from an unseen
template. These are two different measures of generalization
performance.

The data set consists of 326,471 pairs of validated UBL
invoices and corresponding PDFs from 8911 senders to 1013
receivers obtained from use of CloudScan. We assume each
sender corresponds to a distinct template.

For the first experiment we split the invoices into a training,
validation and test set randomly, using 70%, 10% and 20%
respectively. For the second experiment we split the senders
into a training, validation and test set randomly, using 70%,
10% and 20% respectively. All the invoices from the senders
in a set then comprise the documents of that set. This split
ensures that there are no invoices sharing templates between
the three sets for the second experiment.

While the system captures 32 fields we only report on eight
of them: Invoice number, Issue Date, Currency, Order ID,
Total, Line Total, Tax Total and Tax Percent. We only report
on these eight fields as they are the ones we have primarily
designed the system for. A large part of the remaining fields
are related to the sender and receiver of the invoice and used
for identifying these. We plan to remove these fields entirely
and approach the problem of sender and receiver identification
as a document classification problem instead. Preliminary
experiments based on a simple bag-of-words model show
promising results. The last remaining fields are related to
the line items and used for extracting these. Table extraction
is a challenging research question in itself, and we are not
yet ready to discuss our solution. Also, while not directly
comparable, related work [3], [4], [6] also restricts evaluation
to header fields.

Performance is measured by comparing the fields of the
generated and validated UBL. Note we are not only measuring
the classifier performance, but rather the performance of
the entire system. The end-to-end performance is what is
interesting to the user after all. Furthermore, this is the strictest
possible way to measure performance, as it will penalize errors
from any source, e.g. OCR errors and inconsistencies between
the validated UBL and the PDF. For instance, the date in the
validated UBL might not correspond to the date on the PDF.
In this case, even if the date on the PDF is found, it will
be counted as an error, as it does not match the date in the
validated UBL.

In order to show the upper limit of the system under
this measure we include a ceiling analysis where we replace
the classifier output with the correct labels directly. This
corresponds to using an oracle classifier. We use the MUC-5
definitions of recall, precision and F1, without partial matches
[16].

We perform experiments with two classifiers 1) The produc-

tion baseline system using a logistic regression classifier, and
2) a Recurrent Neural Network (RNN) model. We hypothesize
the RNN model can capture context better.

A. Baseline

The baseline is the current production system, which uses a
logistic regression classifier to classify each N-gram individ-
ually.

In order to capture some context, we concatenate the feature
vectors for the closest N-grams in the top, bottom, left and
right directions to the normal feature vectors. So if the feature
vector for an N-gram had M entries, after this it would have
5M entries.

All 5M features are then mapped to a binary vector of size
222 using the hashing trick [17]. To be specific, for each feature
we concatenate the feature name and value, hash it, take the
remainder with respect to the binary vector size and set that
index in the binary vector to 1.

The logistic regression classifier is trained using stochastic
gradient descent for 10 epochs after which we see little
improvement. This baseline system is derived from the heavily
optimized winning solution of a competition Tradeshift held1.

B. LSTM model

In order to accurately classify N-grams the context is
critical, however when classifying each N-gram in isolation, as
in the baseline model, we have to engineer features to capture
this context, and deciding how much and which context to
capture is not trivial.

A Recurrent Neural Network (RNN) can model the entire
invoice and we hypothesize that this ability to take the entire
invoice into account in a principled manner will improve the
performance significantly. Further, it frees us from having to
explicitly engineer features that capture context. As such we
only use the original M features, not the 5M features of the
baseline model. In general terms, a RNN can be described as
follows.

ht = f(ht−1, xt)

yt = g(ht)

Where ht is the hidden state at step t, f is a neural network
that maps the previous hidden state ht−1, and the input xt

to ht and g is a neural network that maps the hidden state
ht to the output of the model yt. Several variants have been
proposed, most notably the Long Short Term Memory (LSTM)
[18] which is good at modeling long term dependencies.

A RNN models a sequence, i.e. x and y are ordered and as
such we need to impose an ordering on the invoice. We chose
to model the words instead of N-grams, as they fit the RNN
sequence model more naturally and we use the standard left-
to-right reading order as the ordering. Since the labels can span
multiple words we re-label the words using the IOB labeling

1https://www.kaggle.com/c/tradeshift-text-classification

scheme [19]. The sequence of words ”Total Amount: 12 200
USD” would be labeled ”O O B-Total I-Total B-Currency”.

We hash the text of the word into a binary vector of size 218

which is embedded in a trainable 500 dimensional distributed
representation using an embedding layer [20]. Using hashing
instead of a fixed size dictionary is somewhat unorthodox but
we did not observe any difference from using a dictionary, and
hashing was easier to implement. It is possible we could have
gotten better results using more advanced techniques like byte
pair encoding [21].

We normalize the numerical and boolean features to have
zero mean and unit variance and form the final feature vector
for each word by concatenating the word embedding and the
normalized numerical features.

From input to output, the model has: two dense layers with
600 rectified linear units each, a single bidirectional LSTM
layer with 400 units, and two more dense layers with 600
rectified linear units each, and a final dense output layer with
65 logistic units (32 classes that can each be ’beginning’ or
’inside’ plus the ’outside’ class).

Fig. 3. The LSTM model.

Following Gal [22], we apply dropout on the recurrent units
and on the word embedding using a dropout fraction of 0.5
for both. Without this dropout the model severely overfits.

The model is trained with the Adam optimizer [23] using
minibatches of size 96 until the validation performance has
not improved on the validation set for 5 epochs. Model
architecture and hyper-parameters were chosen based on the
performance on the validation set. For computational reasons
we do not train on invoices with more than 1000 words, which
constitutes approximately 5% of the training set, although
we do test on them. The LSTM model was implemented in
Theano [24] and Lasagne [25].

After classification we assign each word the IOB label
with highest classification probability, and chunk the IOB
labeled words back into labeled N-grams. During chunking,
words with I labels without matching B labels are ignored.
For example, the sequence of IOB labels [B-Currency, O, B-
Total, I-Total, O, I-Total, O] would be chunked into [Currency,
O, Total, O, O]. The labeled N-grams are used as input for
the Post Processor and further processing is identical to the
baseline system.

V. RESULTS

The results of the ceiling analysis seen in Table I show that
we can achieve very competitive results with CloudScan using
an oracle classifier. This validates the overall system design,

TABLE I
CEILING ANALYSIS RESULTS. MEASURED ON ALL DOCUMENTS.

EXPECTED PERFORMANCE GIVEN AN ORACLE CLASSIFIER.

Field F1 Precision Recall

Number 0.918 0.967 0.873
Date 0.899 1.000 0.817
Currency 0.884 1.000 0.793
Order ID 0.820 0.979 0.706
Total 0.966 0.981 0.952
Line Total 0.976 0.991 0.961
Tax Total 0.959 0.961 0.957
Tax Percent 0.901 0.928 0.876

Micro avg. 0.925 0.974 0.881

including the use of automatically generated training data, and
leaves us with the challenge of constructing a good classifier.

The attentive reader might wonder why the precision is not
1 exactly for all fields, when using the oracle classifier. For the
’Number’ and ’Order ID’ fields this is due to the automatic
training data generation algorithm disregarding spaces when
finding matching N-grams, whereas the comparison during
evaluation is strict. For instance the automatic training data
generator might generate the N-gram (”16 2054”: Invoice
Number) from (Invoice Number: ”162054”) in the validated
UBL. When the oracle classifier classifies the N-gram ”16
2054” as Invoice Number the produced UBL will be (Invoice
Number: ”16 2054”). When this is compared to the expected
UBL of (Invoice Number: ”162054”) it is counted as incorrect.
This is an annoying artifact of the evaluation method and
training data generation. We could disregard spaces when com-
paring strings during evaluation, but we would risk regarding
some actual errors as correct then. For the total fields and
the tax percent, the post processor will attempt to calculate
missing numbers from found numbers, which might result in
errors.

As it stands the recall rate is the limiting factor of the
system. The low recall rate can have two explanations: 1) The
information is present in the PDF but we cannot read or parse
it, e.g. it might be an OCR error or a strange date format, in
which case the OCR engine or parsing should be improved,
or 2) the information is legitimately not present in the PDF, in
which case there is nothing to do, except change the validated
UBL to match the PDF.

Table II shows the results of experiment 1 measuring the
expected performance on the next received invoice for the
baseline and LSTM model. The LSTM model is slightly better
than the baseline system with an average F1 of 0.891 compared
to 0.887. In general the performance of the models is very
similar, and close to the theoretical maximum performance
given by the ceiling analysis. This means the classifiers both
perform close to optimally for this experiment. The gains that
can be had from improving upon the LSTM model further are
just 0.034 average F1.

More interesting are the results in Table III which measures

TABLE II
EXPECTED PERFORMANCE ON NEXT RECEIVED INVOICE. BEST RESULTS

IN BOLD.

F1 Precision Recall
Field Baseline LSTM Baseline LSTM Baseline LSTM

Number 0.863 0.860 0.883 0.877 0.844 0.843
Date 0.821 0.828 0.876 0.893 0.773 0.772
Currency 0.869 0.874 0.974 0.992 0.784 0.781
Order ID 0.776 0.760 0.936 0.930 0.663 0.642
Total 0.927 0.932 0.940 0.942 0.915 0.924
Line Total 0.923 0.936 0.936 0.945 0.911 0.927
Tax Total 0.931 0.939 0.933 0.941 0.929 0.937
Tax Percent 0.901 0.903 0.927 0.930 0.876 0.878

Micro avg. 0.887 0.891 0.924 0.930 0.852 0.855

TABLE III
EXPECTED PERFORMANCE ON NEXT INVOICE FROM UNSEEN TEMPLATE.

BEST RESULTS IN BOLD.

F1 Precision Recall
Field Baseline LSTM Baseline LSTM Baseline LSTM

Number 0.711 0.760 0.761 0.789 0.668 0.733
Date 0.693 0.774 0.759 0.847 0.637 0.712
Currency 0.907 0.905 0.977 0.983 0.847 0.838
Order ID 0.433 0.523 0.822 0.737 0.294 0.406
Total 0.840 0.896 0.864 0.907 0.818 0.884
Line Total 0.803 0.880 0.826 0.891 0.781 0.869
Tax Total 0.832 0.878 0.835 0.881 0.829 0.874
Tax Percent 0.812 0.869 0.828 0.887 0.796 0.853

Micro avg. 0.788 0.840 0.836 0.879 0.746 0.804

the expected performance on the next invoice from an unseen
template. This measures the generalization performance of the
system across templates which is a much harder task due to the
plurality of invoice layouts and reflects the experience a new
user will have the first time they use the system. On this harder
task the LSTM model clearly outperform the baseline system
with an average F1 of 0.840 compared to 0.788. Notably
the 0.840 average F1 of the LSTM model is getting close
to the 0.891 average F1 of experiment 1, indicating that the
LSTM model is largely learning a template invariant model of
invoices, i.e. it is picking up on general patterns rather than
just memorizing specific templates.

We hypothesized that it is the ability of LSTMs to model
context directly that leads to increased performance, although
there are several other possibilities given the differences be-
tween the two models. For instance, it could simply be that
the LSTM model has more parameters, the non-linear feature
combinations, or the word embedding.

To test our hypothesis we trained a third model that is
identical to the LSTM model, except that the bidirectional
LSTM layer was replaced with a feedforward layer with an
equivalent number of parameters. We trained the network

with and without dropout, with all other hyper parameters
kept equal. The best model got an average F1 of 0.702
on the experiment 2 split, which is markedly worse than
both the LSTM and baseline model. Given that the only
difference between this model and the LSTM model is the
lack of recurrent connections we feel fairly confident that our
hypothesis is true. The feedforward model is likely worse than
the baseline model because it does not have the additional
context features of the baseline model.

TABLE IV
WORD EMBEDDING EXAMPLES.

EUR GBP DKK
$ USD DKK
Total Betrag TOTAL
Number No number
Number: No Rechnung-Nr.
London LONDON Bremen
Brutto Ldm ex.Vat
Phone: code: Tel:

Table IV shows examples of words and the two closest
words in the learned word embedding. It shows that the learned
embeddings are language agnostic, e.g. the closest word to
”Total” is ”Betrag” which is German for ”Sum” or ”Amount”.
The embedding also captures common abbreviations, capital-
ization, currency symbols and even semantic similarities such
as cities. Learning these similarities versus encoding them by
hand is a major advantage as it happens automatically as it
is needed. If a new abbreviation, language, currency, etc. is
encountered it will automatically be learned.

VI. DISCUSSION

We have presented our goals for CloudScan and described
how it works. We hypothesized that the ability of a LSTM
to model context directly would improve performance. We
carried out experiments to test our hypothesis and evaluated
CloudScan’s performance on a large realistic dataset. We
validated our hypothesis and showed competitive results of
0.891 average F1 on documents from seen templates, and
0.840 on documents from unseen templates using a single
LSTM model. These numbers should be compared to a ceiling
of F1=0.925 for an ideal system baseline where an oracle
classifier is used.

Unfortunately it is hard to compare to other vendors di-
rectly as no large publicly available datasets exists due to
the sensitive nature of invoices. We sincerely wish such a
dataset existed and believe it would drive the field forward
significantly, as seen in other fields, e.g. the large effect
ImageNet [26] had on the computer vision field. Unfortunately
we are not able to release our own dataset due to privacy
restrictions.

A drawback of the LSTM model is that we have to decide
upon an ordering of the words, when there is none naturally.
We chose the left to right reading order which worked well, but

in line with the general theme of CloudScan we would prefer
a model which could learn this ordering or did not require
one.

CloudScan works only on the word level, meaning it does
not take any image features into account, e.g. the lines, logos,
background, etc. We could likely improve the performance if
we included these image features in the model.

With the improved results from the LSTM model we are
getting close to the theoretical maximum given by the ceiling
analysis. For unseen templates we can at maximum improve
the average F1 by 0.085 by improving the classifier. This
corresponds roughly to the 0.075 average F1 that can at
maximum be gained from fixing the errors made under the
ceiling analysis. An informal review of the errors made by
the system under the ceiling analysis indicates the greatest
source of errors are OCR errors and discrepancies between
the validated UBL and the PDF.

As such, in order to substantially improve CloudScan we
believe a two pronged strategy is required: 1) improve the
classifier and 2) correct discrepancies between the validated
UBL and PDF. Importantly, the second does not delay the
turnaround time for the users, can be done at our own pace
and only needs to be done for the cases where the automatic
training data generation fails. As for the OCR errors we will
rely on further advances in OCR technology.

ACKNOWLEDGMENT

We would like to thank Ángel Diego Cuñado Alonso and
Johannes Ulén for our fruitful discussions, and their great work
on CloudScan. This research was supported by the NVIDIA
Corporation with the donation of TITAN X GPUs. This work
is partly funded by the Innovation Fund Denmark (IFD) under
File No. 5016-00101B.

REFERENCES

[1] A. J. Sellen and R. H. Harper, The Myth of the Paperless Office.
Cambridge, MA, USA: MIT Press, 2003.

[2] B. Klein, S. Agne, and A. Dengel, “Results of a Study on Invoice-
Reading Systems in Germany,” in Document Analysis Systems VI, ser.
Lecture Notes in Computer Science, S. Marinai and A. R. Dengel, Eds.
Springer Berlin Heidelberg, Sep. 2004, no. 3163, pp. 451–462.

[3] D. Schuster, K. Muthmann, D. Esser, A. Schill, M. Berger, C. Weidling,
K. Aliyev, and A. Hofmeier, “Intellix – End-User Trained Information
Extraction for Document Archiving,” in 2013 12th International Confer-
ence on Document Analysis and Recognition, Aug. 2013, pp. 101–105.

[4] M. Rusiñol, T. Benkhelfallah, and V. P. dAndecy, “Field Extraction
from Administrative Documents by Incremental Structural Templates,”
in 2013 12th International Conference on Document Analysis and
Recognition, Aug. 2013, pp. 1100–1104.

[5] A. Dengel and B. Klein, “smartFIX: A Requirements-Driven System
for Document Analysis and Understanding,” in Proceedings of the 5th
International Workshop on Document Analysis Systems V, ser. DAS ’02.
London, UK, UK: Springer-Verlag, 2002, pp. 433–444.

[6] F. Cesarini, E. Francesconi, M. Gori, and G. Soda, “Analysis
and understanding of multi-class invoices,” Document Analysis and
Recognition, vol. 6, no. 2, pp. 102–114, Oct. 2003. [Online]. Available:
http://link.springer.com/article/10.1007/s10032-002-0084-6

[7] D. Esser, D. Schuster, K. Muthmann, M. Berger, and A. Schill,
“Automatic Indexing of Scanned Documents - a Layout-based
Approach,” Document Recognition and Retrieval XIX (DRR), San
Francisco, CA, USA, 2012. [Online]. Available: http://proceedings.
spiedigitallibrary.org/proceeding.aspx?articleid=1284003

[8] E. Medvet, A. Bartoli, and G. Davanzo, “A probabilistic approach to
printed document understanding,” International Journal on Document
Analysis and Recognition (IJDAR), vol. 14, no. 4, pp. 335–347,
Nov. 2010. [Online]. Available: http://link.springer.com/article/10.1007/
s10032-010-0137-1

[9] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision
for relation extraction without labeled data,” in Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2. Association for Computational
Linguistics, 2009, pp. 1003–1011.

[10] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26,
2007.

[11] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural Architectures for Named Entity Recognition,” 2016.

[12] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investigation of recurrent-
neural-network architectures and learning methods for spoken language
understanding.” in INTERSPEECH, 2013, pp. 3771–3775.

[13] T. Breuel, “The hOCR Microformat for OCR Workflow and Results,” in
Ninth International Conference on Document Analysis and Recognition
(ICDAR 2007), vol. 2, Sep. 2007, pp. 1063–1067.

[14] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, Mar.
1955. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/
nav.3800020109/abstract

[15] G. K. Holman, “Universal business language v2.0,” 2006.
[16] N. Chinchor and B. Sundheim, “MUC-5 Evaluation Metrics,” in Pro-

ceedings of the 5th Conference on Message Understanding, ser. MUC5
’93. Association for Computational Linguistics, 1993, pp. 69–78.

[17] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature Hashing for Large Scale Multitask Learning,” in Proceedings
of the 26th Annual International Conference on Machine Learning,
ser. ICML ’09. New York, NY, USA: ACM, 2009, pp. 1113–1120.
[Online]. Available: http://doi.acm.org/10.1145/1553374.1553516

[18] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[19] L. A. Ramshaw and M. P. Marcus, “Text Chunking Using
Transformation-Based Learning,” Proceedings of the Third ACL Work-
shop on Very Large Corpora, pp. 82–94, 1995.

[20] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural
Probabilistic Language Model,” Journal of Machine Learning Research,
vol. 3, no. Feb, pp. 1137–1155, 2003. [Online]. Available: http:
//www.jmlr.org/papers/v3/bengio03a.html

[21] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[22] Y. Gal, “A Theoretically Grounded Application of Dropout in
Recurrent Neural Networks,” arXiv:1512.05287 [stat], Dec. 2015,
arXiv: 1512.05287. [Online]. Available: http://arxiv.org/abs/1512.05287

[23] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Dec. 2014, arXiv: 1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[24] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016. [Online]. Available: http://arxiv.org/abs/
1605.02688

[25] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby,
D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw,
M. Heilman, D. M. d. Almeida, B. McFee, H. Weideman, G. Takács,
P. d. Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu, G. French, and
J. Degrave, “Lasagne: First release.” Aug. 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.27878

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

TABLE V
N-GRAM FEATURES.

Name Description

RawText The raw text.
RawTextLastWord The raw text of the last word in the N-gram.
TextOfTwoWordsLeft The raw text of the word two places to the

left of the N-gram.
TextPatterns The raw text, after replacing uppercase char-

acters with X, lowercase with x, numbers
with 0, repeating whitespace with single
whitespace and the rest with ?.

bottomMargin Vertical coordinate of the bottom margin of
the N-gram normalized to the page height.

topMargin Same as above, but for the top margin.
rightMargin Horizontal coordinate of the right margin of

the N-gram normalized to the page width.
leftMargin Same as above but for the left margin.
bottomMarginRelative The vertical distance to the nearest word be-

low this N-gram, normalized to page height.
topMarginRelative The vertical distance to the nearest word

above this N-gram, normalized to page
height.

rightMarginRelative The horizontal distance to the nearest word to
the right of this N-gram, normalized to page
width.

leftMarginRelative The horizontal distance to the nearest word
to the left of this N-gram, normalized to page
width.

horizontalPosition The horizontal distance between this N-gram
and the word to the left, normalized to the
horizontal distance between the word to the
left and the word to the right.

verticalPosition Same as above but vertical.
hasDigits Whether there are any digits 0-9 in the N-

gram.
isKnownCity Whether the N-gram is found in a small

database of known cities.
isKnownCountry Same as above, but for countries.
isKnownZip Same as above but for zip codes.
leftAlignment Number of words on the same page which

left margin is within 5 pixels of this N-grams
left margin.

length Number of characters in the N-gram.
pageHeight The height of the page of this N-gram.
pageWidth The width of the page of this N-gram.
positionOnLine Count of words to the left of this N-gram

normalized to the count of total words on this
line

lineSize The number of words on this line.
lineWhiteSpace The area occupied by whitespace on the line

of this N-gram normalized to the total area
of the line.

parsesAsAmount Whether the N-gram parses as a fractional
amount.

parsesAsDate Same as above but for dates.
parsesAsNumber Same as above but for integers.
LineMathFeatures.isFactor Whether this N-gram, after parsing, can take

part in an equation such that it is one of two
factors on the same line that when multiplied
equals another amount on the same line.

LineMathFeatures.isProduct Same as above, except this N-gram is the
product of the two factors.

38

APPENDIX B
End-to-End

Information Extraction
without Token-Level

Supervision
Published at Workshop on Speech-Centric Natural Language Processing (SCNLP)
at Conference on Empirical Methods in Natural Language Processing (EMNLP)
2017

End-to-End Information Extraction without Token-Level Supervision
Rasmus Berg Palm

DTU Compute
Technical University of Denmark

rapal@dtu.dk

Dirk Hovy
Computer Science Dpeartment

University of Copenhagen
dirk.hovy@di.ku.dk

Florian Laws
Tradeshift

Landemærket 10, 1119 Copenhagen
fla@tradeshift.com

Ole Winther
DTU Compute

Technical University of Denmark
olwi@dtu.dk

Abstract

Most state-of-the-art information extrac-
tion approaches rely on token-level labels
to find the areas of interest in text. Unfor-
tunately, these labels are time-consuming
and costly to create, and consequently, not
available for many real-life IE tasks. To
make matters worse, token-level labels are
usually not the desired output, but just an
intermediary step. End-to-end (E2E) mod-
els, which take raw text as input and pro-
duce the desired output directly, need not
depend on token-level labels. We propose
an E2E model based on pointer networks,
which can be trained directly on pairs of
raw input and output text. We evaluate our
model on the ATIS data set, MIT restau-
rant corpus and the MIT movie corpus and
compare to neural baselines that do use
token-level labels. We achieve competi-
tive results, within a few percentage points
of the baselines, showing the feasibility
of E2E information extraction without the
need for token-level labels. This opens up
new possibilities, as for many tasks cur-
rently addressed by human extractors, raw
input and output data are available, but not
token-level labels.

1 Introduction
Humans spend countless hours extracting struc-
tured machine readable information from unstruc-
tured information in a multitude of domains.
Promising to automate this, information extraction
(IE) is one of the most sought-after industrial ap-
plications of natural language processing. How-
ever, despite substantial research efforts, in prac-
tice, many applications still rely on manual effort
to extract the relevant information.

One of the main bottlenecks is a shortage of
the data required to train state-of-the-art IE mod-
els, which rely on sequence tagging (Finkel et al.,
2005; Zhai et al., 2017). Such models require suf-
ficient amounts of training data that is labeled at
the token-level, i.e., with one label for each word.

The reason token-level labels are in short supply
is that they are not the intended output of human
IE tasks. Creating token-level labels thus requires
an additional effort, essentially doubling the work
required to process each item. This additional ef-
fort is expensive and infeasible for many produc-
tion systems: estimates put the average cost for
a sentence at about 3 dollars, and about half an
hour annotator time (Alonso et al., 2016). Conse-
quently, state-of-the-art IE approaches, relying on
sequence taggers, cannot be applied to many real
life IE tasks.

What is readily available in abundance and at no
additional costs, is the raw, unstructured input and
machine-readable output to a human IE task. Con-
sider the transcription of receipts, checks, or busi-
ness documents, where the input is an unstructured
PDF and the output a row in a database (due date,
payable amount, etc). Another example is flight
bookings, where the input is a natural language
request from the user, and the output a HTTP re-
quest, sent to the airline booking API.

To better exploit such existing data sources,
we propose an end-to-end (E2E) model based on
pointer networks with attention, which can be
trained end-to-end on the input/output pairs of hu-
man IE tasks, without requiring token-level anno-
tations.

We evaluate our model on three traditional IE
data sets. Note that our model and the baselines
are competing in two dimensions. The first is cost
and applicability. The baselines require token-
level labels, which are expensive and unavailable
for many real life tasks. Our model does not re-

ar
X

iv
:1

70
7.

04
91

3v
1

 [
cs

.C
L

]
 1

6
Ju

l 2
01

7

Figure 1: Our model based on pointer networks. The solid red lines are the attention weights. For clarity
only two decoders are drawn and only the strongest attention weight for each output is drawn.

quire such token-level labels. Given the time and
money required for these annotations, our model
clearly improves over the baselines in this dimen-
sion. The second dimension is the accuracy of the
models. Here we show that our model is compet-
itive with the baseline models on two of the data
sets and only slightly worse on the last data set, all
despite fewer available annotations.

Contributions We present an E2E IE model
with attention that does not depend on costly
token-level labels, yet performs competitively
with neural baseline models that rely on token-
level labels. By saving both time and money at
comparable performance, our model presents a vi-
able alternative for many real-life IE needs. Code
is available at github.com/rasmusbergpalm/e2e-ie-
release

2 Model
Our proposed model is based on pointer net-
works (Vinyals et al., 2015). A pointer network
is a sequence-to-sequence model with attention
in which the output is a position in the input se-
quence. The input position is ”pointed to” us-
ing the attention mechanism. See figure 1 for an
overview. Our formulation of the pointer network
is slightly different from the original: Our output
is some content from the input rather than a posi-
tion in the input.

An input sequence of N words x = x1, ..., xN
is encoded into another sequence of length N us-
ing an Encoder.

ei = Encoder(xi, ei−1) (1)

We use a single shared encoder, and k = 1..K de-
coders, one for each piece of information we wish

to extract. At each step j each decoder calculate an
unnormalized scalar attention score akji over each
input position i. The k’th decoder output at step j,
okj , is then the weighted sum of inputs, weighted
with the normalized attention scores attkji.

dkj = Decoderk(ok,j−1, dk,j−1) (2)

akji = Attentionk(dkj , ei) for i = 1..N (3)

attkji = softmax(akji) for i = 1..N (4)

okj =
N∑
i=1

attkji xi . (5)

Since each xi is a one-hot encoded word, and the
attkji sum to one over i, okj is a probability dis-
tribution over words.

The loss function is the sum of the negative
cross entropy for each of the expected outputs ykj
and decoder outputs okj .

L(x,y) = −
K∑
k=1

1

Mk

Mk∑
j=1

ykj log (okj) , (6)

where Mk is the sequence length of expected out-
put yk.

The specific architecture depends on the choice
of Encoder, Decoder and Attention. For the en-
coder, we use a Bi-LSTM with 128 hidden units
and a word embedding of 96 dimensions. We use
a separate decoder for each of the fields. Each de-
coder has a word embedding of 96 dimensions, a
LSTM with 128 units, with a learned first hidden
state and its own attention mechanism. Our atten-
tion mechanism follows Bahdanau et al. (2014)

aji = vT tanh(We enci +Wd decj) . (7)

The attention parameters We, Wd and v for each
attention mechanism are all 128-dimensional.

During training we use teacher forcing for the
decoders (Williams and Zipser, 1989), such that
ok,j−1 = yk,j−1. During testing we use argmax
to select the most probable output for each step j
and run each decoder until the first end of sentence
(EOS) symbol.

3 Experiments

3.1 Data sets

To compare our model to baselines relying on
token-level labels we use existing data sets for
which token level-labels are available. We mea-
sure our performance on the ATIS data set (Price,
1990) (4978 training samples, 893 testing sam-
ples) and the MIT restaurant (7660 train, 1521
test) and movie corpus (9775 train, 2443 test) (Liu
et al., 2013). These data sets contains token-level
labels in the Beginning-Inside-Out format (BIO).

The ATIS data set consists of natural language
requests to a simulated airline booking system.
Each word is labeled with one of several classes,
e.g. departure city, arrival city, cost, etc. The MIT
restaurant and movie corpus are similar, except for
a restaurant and movie domain respectively. See
table 1 for samples.

MIT Restaurant MIT Movie
2 B-Rating show O
start I-Rating me O
restaurants O films O
with O elvis B-ACTOR
inside B-Amenity films O
dining I-Amenity set B-PLOT

in I-PLOT
hawaii I-PLOT

Table 1: Samples from the MIT restaurant and
movie corpus. The transcription errors are part of
the data.

Since our model does not need token-level la-
bels, we create an E2E version of each data set
without token-level labels by chunking the BIO-
labeled words and using the labels as fields to ex-
tract. If there are multiple outputs for a single
field, e.g. multiple destination cities, we join them
with a comma. For the ATIS data set, we choose
the 10 most common labels, and we use all the
labels for the movie and restaurant corpus. The
movie data set has 12 fields and the restaurant has

8. See Table 2 for an example of the E2E ATIS
data set.

Input
cheapest airfare from tacoma to st. louis and detroit

Output
fromloc tacoma
toloc st. louis , detroit
airline name -
cost relative cheapest
period of day -
time -
time relative -
day name -
day number -
month name -

Table 2: Sample from the E2E ATIS data set.

3.2 Baselines

For the baselines, we use a two layer neural net-
work model. The first layer is a Bi-directional
Long Short Term Memory network (Hochreiter
and Schmidhuber, 1997) (Bi-LSTM) and the sec-
ond layer is a forward-only LSTM. Both layers
have 128 hidden units. We use a trained word em-
bedding of size 128. The baseline is trained with
Adam (Kingma and Ba, 2014) on the BIO labels
and uses early stopping on a held out validation
set.

This baseline architecture achieves a fairly
strong F1 score of 0.9456 on the ATIS data set.
For comparison, the published state-of-the-art is
at 0.9586 (Zhai et al., 2017). These numbers are
for the traditional BIO token level measure of per-
formance using the publicly available conlleval
script. They should not be confused with the E2E
performance reported later. We present them here
so that readers familiar with the ATIS data set can
evaluate the strength of our baselines using a well-
known measure.

For the E2E performance measure we train the
baseline models using token-level BIO labels and
predict BIO labels on the test set. Given the pre-
dicted BIO labels, we create the E2E output for the
baseline models in the same way we created the
E2E data sets, i.e. by chunking and extracting la-
bels as fields. We evaluate our model and the base-
lines using the MUC-5 definitions of precision, re-
call and F1, without partial matches (Chinchor and

Sundheim, 1993). We use bootstrap sampling to
estimate the probability that the model with the
best micro average F1 score on the entire test set
is worse for a randomly sampled subset of the test
data.

3.3 Our model

Since our decoders can only output values that are
present in the input, we prepend a single comma
to every input sequence. We optimize our model
using Adam and use early stopping on a held-out
validation set. The model quickly converges to op-
timal performance, usually after around 5000 up-
dates after which it starts overfitting.

For the restaurant data set, to increase perfor-
mance, we double the sizes of all the parameters
and use embedding and recurrent dropout follow-
ing (Gal, 2015). Further, we add a summarizer
LSTM to each decoder. The summarizer LSTM
reads the entire encoded input. The last hidden
state of the summarizer LSTM is then concate-
nated to each input to the decoder.

3.4 Results

Data set Baseline Ours p

ATIS 0.977 0.974 0.1755

Movie 0.816 0.817 0.3792

Restaurant 0.724 0.694 0.0001

Table 3: Micro average F1 scores on the E2E data
sets. Results that are significantly better (p <
0.05) are highlighted in bold.

We see in Table 3 that our model is competi-
tive with the baseline models in terms of micro-
averaged F1 for two of the three data sets. This
is a remarkable result given that the baselines are
trained on token-level labels, whereas our model
is trained end-to-end. For the restaurant data set,
our model is slightly worse than the baseline.

4 Related work
Event extraction (EE) is similar to the E2E IE task
we propose, except that it can have several event
types and multiple events per input. In our E2E IE
task, we only have a single event type and assume
there is zero or one event mentioned in the input,
which is an easier task. Recently, Nguyen et al.
(2016) achieved state of the art results on the ACE
2005 EE data set using a recurrent neural network
to jointly model event triggers and argument roles.

Other approaches have addressed the need for
token-level labels when only raw output values
are available. Mintz et al. (2009) introduced dis-
tant supervision, which heuristically generates the
token-level labels from the output values. You do
this by searching for input tokens that matches out-
put values. The matching tokens are then assigned
the labels for the matching outputs. One drawback
is that the quality of the labels crucially depend on
the search algorithm and how closely the tokens
match the output values, which makes it brittle.
Our method is trained end-to-end, thus not relying
on brittle heuristics.

Sutskever et al. (2014) opened up the sequence-
to-sequence paradigm. With the addition of at-
tention (Bahdanau et al., 2014), these models
achieved state-of-the-art results in machine trans-
lation (Wu et al., 2016). We are broadly inspired
by these results to investigate E2E models for IE.

The idea of copying words from the input to the
output have been used in machine translation to
overcome problems with out-of-vocabulary words
(Gulcehre et al., 2016; Gu et al., 2016).

5 Discussion
We present an end-to-end IE model that does not
require detailed token-level labels. Despite being
trained end-to-end, it is competitive with baseline
models relying on token-level labels. In contrast
to them, our model can be used on many real life
IE tasks where intermediate token-level labels are
not available and creating them is not feasible.

In our experiments our model and the baselines
had access to the same amount of training sam-
ples. In a real life scenario it is likely that token-
level labels only exist for a subset of all the data.
It would be interesting to investigate the quanti-
ty/quality trade-of of the labels, and a multi task
extension to the model, which could make use of
available token-level labels.

Our model is remarkably stable to hyper param-
eter changes. On the restaurant dataset we tried
several different architectures and hyper parame-
ters before settling on the reported one. The differ-
ence between the worst and the best was approxi-
mately 2 percentage points.

A major limitation of the proposed model is that
it can only output values that are present in the in-
put. This is a problem for outputs that are nor-
malized before being submitted as machine read-
able data, which is a common occurrence. For in-
stance, dates might appear as ’Jan 17 2012’ in

the input and as ’17-01-2012’ in the machine
readable output.

While it is clear that this model does not solve
all the problems present in real-life IE tasks, we
believe it is an important step towards applicable
E2E IE systems.

In the future, we will experiment with adding
character level models on top of the pointer net-
work outputs so the model can focus on an input,
and then normalize it to fit the normalized outputs.

Acknowledgments
We would like to thank the reviewers who helped
make the paper more concise. Dirk Hovy was sup-
ported by the Eurostars grant E10138 ReProsis.
This research was supported by the NVIDIA Cor-
poration with the donation of TITAN X GPUs.

References
Héctor Martı́nez Alonso, Djamé Seddah, and Benoı̂t

Sagot. 2016. From Noisy Questions to Minecraft
Texts: Annotation Challenges in Extreme Syntax
Scenarios. WNUT 2016 page 13.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Nancy Chinchor and Beth Sundheim. 1993. MUC-5
Evaluation Metrics. In Proceedings of the 5th Con-
ference on Message Understanding. Association for
Computational Linguistics, MUC5 ’93, pages 69–
78. https://doi.org/10.3115/1072017.1072026.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Informa-
tion into Information Extraction Systems by Gibbs
Sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.
Association for Computational Linguistics, Strouds-
burg, PA, USA, ACL ’05, pages 363–370.

Yarin Gal. 2015. A Theoretically Grounded Appli-
cation of Dropout in Recurrent Neural Networks.
arXiv:1512.05287 [stat] ArXiv: 1512.05287.
http://arxiv.org/abs/1512.05287.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393 .

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. arXiv preprint
arXiv:1603.08148 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput. 9(8):1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization.
arXiv:1412.6980 [cs] ArXiv: 1412.6980.
http://arxiv.org/abs/1412.6980.

Jingjing Liu, Panupong Pasupat, Scott Cyphers, and
Jim Glass. 2013. Asgard: A portable architecture for
multilingual dialogue systems. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on. IEEE, pages 8386–8390.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP:
Volume 2-Volume 2. Association for Computational
Linguistics, pages 1003–1011.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of NAACL-HLT .
pages 300–309.

Patti Price. 1990. Evaluation of spoken language sys-
tems: The ATIS domain. In Proceedings of the
Third DARPA Speech and Natural Language Work-
shop. Morgan Kaufmann, pages 91–95.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation 1(2):270–280.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, and others. 2016. Google’s Neural Ma-
chine Translation System: Bridging the Gap be-
tween Human and Machine Translation. arXiv
preprint arXiv:1609.08144 .

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen
Zhou. 2017. Neural Models for Sequence Chunk-
ing. arXiv preprint arXiv:1701.04027 .

APPENDIX C
Attend, Copy, Parse -

End-to-end
information extraction

from documents
Unpublished

Attend, Copy, Parse
End-to-end information extraction from documents

Rasmus Berg Palm
DTU Compute

Tradeshift
rapal@dtu.dk

Florian Laws
Tradeshift

fla@tradeshift.com

Ole Winther
DTU Compute
olwi@dtu.dk

Abstract—Document information extraction tasks performed
by humans create data consisting of a PDF or document image
input, and extracted string outputs. This end-to-end data is
naturally consumed and produced when performing the task
because it is valuable in and of itself. It is naturally available, at no
additional cost. Unfortunately, state-of-the-art word classification
methods for information extraction cannot use this data, instead
requiring word-level labels which are expensive to create and
consequently not available for many real life tasks. In this
paper we propose the Attend, Copy, Parse architecture, a deep
neural network model that can be trained directly on end-to-
end data, bypassing the need for word-level labels. We evaluate
the proposed architecture on a large diverse set of invoices,
and outperform a state-of-the-art production system based on
word classification. We believe our proposed architecture can
be used on many real life information extraction tasks where
word classification cannot be used due to a lack of the required
word-level labels.

I. INTRODUCTION

As long as people communicate using unstructured docu-
ments, there’ll be a demand for extracting structured informa-
tion from these documents. However, extracting information
from such documents is a tedious and costly task for humans.
The field of information extraction investigates how to auto-
mate this task.

Consider employees at an enterprise processing invoices.
They receive a paper or PDF invoice, extract a few important
fields, e.g. the invoice number, total, due date, etc, and type
it into a computer system. Simply doing their job they are
implicitly creating a dataset consisting of pairs of PDF or paper
invoices and their extracted fields. We define end-to-end data
as such data that is naturally consumed and produced in a
human information extraction tasks. By definition this data is
available, should one wish to capture it.

Unfortunately such end-to-end data cannot be used with
state-of-the-art machine learning methods for information ex-
traction. Current state-of-the-art approaches require labeling of
every word, which is costly to obtain, and consequently not
available for many real life tasks. The distinction between end-
to-end data and data labeled on the word level is subtle but
important. In the invoice example the end-to-end data simply
tells us what the total is, whereas data labeled on the word
level tells us where it is. The former type of data is plentiful,
produced naturally and is hard to learn from. The latter is

scarce, must be explicitly produced for the purpose of machine
learning, and is easier to learn from.

In this paper we propose an end-to-end deep neural net-
work architecture that can be trained directly from end-to-
end information extraction data. This is our main contribution.
We believe this architecture can be useful for many real-life
information extraction tasks, where end-to-end data already
exists, and word-level labeling is not feasible.

We evaluate our proposed architecture on a large diverse
set of invoices. Invoices are somewhat special documents, in
that documents from the same supplier often has a consistent
layout, or template. Powerful methods exists for extracting
information from templates, given that the template is known
beforehand, but these methods generalize poorly across tem-
plates. Our proposed architecture addresses the harder task of
learning a model that generalizes across document templates
and as such can be used on unseen templates. This is important
for invoices where the template often varies considerable
across suppliers. We make the key assumption that the same
structured information must be extracted from every document.
For invoices this is a reasonable assumption, as invoices are
fairly well defined documents.

Invoices are complex documents with considerable spatial
structure, featuring both text and image modalities. The pro-
posed architecture takes the spatial structure into account by
using convolutional operations on the concatenated document
text and image modalities. The text modality is represented
in a principled manner by embedding the extracted text in
a spatial grid. We assume the text of the document is given
or extracted using an Optical Character Recognition (OCR)
engine.

While this paper consider the case of invoices, the Attend,
Copy, Parse framework is in no way limited to invoices.
It could be used for any documents from which you are
interested in extracting a fixed set of fields e.g. quarterly
earning reports or meeting schedules from emails.

II. RELATED WORK

A. Pattern matching.

An intuitive approach to information extraction is to identify
patterns in the unstructured data and use that to extract
information. For instance, the total amount due in an invoice
is typically to the right of a word that says “total”, and is

typically a decimal number, a pattern which can be captured
using a regular expression.

There’s a rich literature that expand upon this general
idea. For instance, Riloff et al. [1993] suggests an expressive
pattern matching languages that can take the syntactic sentence
structure into account, e.g. match the noun of a given verb
keyword and Huffman [1995] proposes extracting multiple
target values using a single joint syntactic and keyword based
pattern match. See Muslea et al. [1999] for a survey.

For the more specific task of extracting information from
business documents several works use a pattern matching
approach. Schuster et al. [2013], Rusinol et al. [2013] and
Cesarini et al. [2003] require users to annotate which words
should be extracted for a given document template, then
automatically generate patterns matching those words. At
test time, these patterns generate candidate words, which are
scored using heuristics. Dengel and Klein [2002], Esser et al.
[2012] and Medvet et al. [2011] all use manually configured
patterns based on keywords, parsing rules and positions.

Pattern matching generally works better the more homoge-
neous and structured the input is. The main disadvantages are
that the patterns takes time and expertise to create and main-
tain, and often doesn’t generalize across document templates.

B. Word classification.

Machine learning offers an elegant solution to deciding
which words to extract. Given a dataset of documents and
labels for each word, it becomes a regular classification task;
given a word classify whether it should be extracted. If
multiple values are to be extracted, e.g. total, date, etc. it
becomes a multiclass classification task. The field of Natural
Language Processing (NLP) uses this approach extensively,
to perform a variety of tasks, e.g. Named Entity Recognition
(NER) or part of speech tagging. See Collobert and Weston
[2008] for an overview of tasks and methods.

Traditionally the machine learning practitioner would come
up with a set of features for words and use a shallow classifier,
e.g. logistic regression, SVMs, etc. Many of the insights and
heuristics used in the pattern matching approach can be re-
purposed as features. However, state-of-the-art deep learning
methods generally avoid feature engineering and favor word
embeddings [Mikolov et al., 2013, Pennington et al., 2014]
and deep neural networks [Ma and Hovy, 2016, Lample et al.,
2016, Santos and Guimaraes, 2015].

The main drawback of the word classification approach
to information extraction is the need for a richly labeled
dataset as every word must be labeled. Manual labeling is an
expensive process, that is consequently not feasible for many
real life information extraction tasks.

Distant supervision [Mintz et al., 2009] proposes to generate
the word-level labels heuristically from the available data.
For instance, in our invoice example, if we know the total
is "200.00" we can search for this string in the PDF, and
label all words that match as the total. Palm et al. [2017] takes
this approach and achieves state-of-the-art results on a large
diverse set of invoices. The drawback is that the quality of the

labels depend entirely on the quality of the manually created
heuristics. The heuristics should be smart enough to know that
the 200 in the string "total: 200 $" is probably the total,
whereas 200 in the string "200 liters" is probably not.
This is further complicated if the target string is not present
letter-to-letter in the inputs.

C. End-to-end methods

Deep neural networks and the end-to-end training paradigm
have lead to breakthroughs in several domains e.g. image
recognition [Krizhevsky et al., 2012], and machine translation
[Bahdanau et al., 2014]. We are broadly inspired by these
successes to investigate end-to-end learning for information
extraction from documents.

Convolutional neural networks have been used extensively
on document images, e.g. segmenting documents [Yang et al.,
2017, Chen et al., 2017a, Wick and Puppe, 2018], spotting
handwritten words [Sudholt and Fink, 2016], classifying doc-
uments [Kang et al., 2014] and more broadly detecting text
in natural scenes [Liao et al., 2017, Borisyuk et al., 2018].
In contrast to our task, these are trained on explicitly labeled
datasets with information on where the targets are, e.g. pixel
level labels, bounding boxes, etc.

Yang et al. [2017] proposes to combine the document image
modality with a text embedding modality in a convolutional
network for image segmentation, by fusing the modalities late
in the network. We fuse the modalities as early as possible,
which we find work well for our application.

The idea of reading from an an external memory using an
attention mechanism similar to the one proposed in Bahdanau
et al. [2014] was introduced in Graves et al. [2014] and Weston
et al. [2014], Sukhbaatar et al. [2015]. Our memory implemen-
tation largely follows this paradigm, although it is read-only.
External memories has since been studied extensively [Miller
et al., 2016, Santoro et al., 2016, Graves et al., 2016].

III. METHODS

We are given a dataset of N samples, each consisting of
• A document image x ∈ [0, 1]H×W×3, where H and W is

the height and width of the document image respectively.
• A set of P words w = {(w1, p1), ..., (wP , pP)} where wi

is the word text and pi ∈ [0, 1]4 denotes the normalized
word position and size in the document image. This
would typically be the output of an OCR engine applied
to the document image.

• Target strings tk for K values we wish to extract, e.g.
“2018-07-23” for a date.

The task is to learn a system that extracts the correct K
output strings y = [y1, ..., yK] for a new input (x,w). The
system should be able to handle:
• Unseen document templates, i.e. generalize across docu-

ment templates.
• Normalized target strings. Some target strings tk, e.g. date

and amounts, are normalized to standard formats in the
end-to-end data, so may not be present letter-to-letter in
the inputs.

Attend Copy

Parse

Context

{"Invoice", "2. may 2016", ..., "2.500,00"}

Memory "2016-05-02"

"2. may 2016"

Input Attend, Copy, Parse Output

Fig. 1. Overview of the Attend, Copy, Parse architecture. All modules are end-to-end differentiable. The modules highlighted in green are learned. The
document image is 128×128 pixels, the same resolution the network sees. The dashed lines indicates additional feature channels, primarily text embeddings.
See equation 3 for a list of all the features.

• Target strings spanning multiple words in the in-
put. A single normalized target string, e.g. the date,
"2018-07-23" might be represented as several words
in the input e.g. "23rd" "July," "2018".

• Optional outputs. An output might be optional.
A natural human approach to information extraction is: for

each value to extract: 1) locate the string to extract 2) parse
it into the desired format. Our proposed framework is broadly
inspired by this approach. On a high level the Attend, Copy,
Parse framework produces an output string yk as

ak = Attendk (x,w)

ck = Copyk (ak,w)

hk = Contextk (x,w)

yk = Parsek (ck, hk) .

The main idea is to build an external memory bank the same
size as the document image, containing the words encoded as a
sequence of characters at the memory positions corresponding
to the positions of the words in the image. The attend module
attends to this memory bank and the copy module copies
out the attended string. The parse module parses the attended
string into the desired output format, optionally given a context
vector computed from the inputs. See figure 1 for an overview.

We will now describe each module in detail for a single
model. The k subscript is dropped in the following since we
train separate models for each of the K fields.

A. External memory

We start by constructing the external memory bank, M ∈
{0, 1}H×W×G×L×D containing N-grams up to length G. In
our experiments G = 4. The N-grams are created by an
algorithm that divides the document into a number of non-
intersecting lines and sorts the words by their horizontal
position inside each line.

The N-grams are encoded as a sequence of one-hot encoded
characters, such that L is the maximum sequence length we
consider and D is the size of the character set we’re using.

For our experiments L = 128 and D = 103. The memory has
W ×H ×G slots, that can each contain an encoded N-gram.
The first two dimensions correspond to the spatial dimensions
of the document and the third to the length of the N-gram. This
memory tensor quickly becomes too big to keep in memory.
However, since it is very sparse it can be represented as a
sparse tensor.

It is not immediately obvious which slots in the memory
should contain the N-grams, since each N-gram span multiple
pixels in the document image. We found that it suffices to
store the encoded N-grams in the single slot corresponding to
the top-left corner position of the first word in each N-gram.
This makes the sums in the copy module considerably faster.

B. Attend

We compute unnormalized attention logits u ∈ RH×W×G
for each slot in the external memory.

u = Attend (x,w) . (1)

Since we know which slots in the memory are not empty, we
only want the network to put probability mass here. To achieve
this we set u to −1000 everywhere else before we compute
the attention distribution a ∈ [0, 1]H×W×G using the softmax
operation.

aijg =
euijg∑H

i=1

∑W
j=1

∑G
g=1 e

uijg

. (2)

In our experiments we parameterize the Attend function in
the following way. We construct an input representation of the
document r ∈ RH×W×U , where U is the number of feature
channels.

r = Concat (x, qw, qp, qc, z, δx, δy, η) , (3)

where qw, qp and qc are learned 32 dimensional word, pattern
and character embeddings, respectively. The pattern embed-
ding is an embedding of the word after all characters have
been replaced with the character x, all digits with 0 and all

other characters with a dot. Word and pattern embeddings
are replicated across the spatial extent of the entire word.
Character embeddings are replicated across the spatial extent
of each character in the word. In case characters overlap due to
downsampling of the document image, the rightmost character
wins. z is two binary indicator channels whether the N-gram
at this position parses as an amount or a date, according to
two pre-configured parsers. δx and δy contain the normalized
([0,1]) horizontal and vertical positions. Finally η is a binary
indicator whether the external memory at this spatial position
is non-empty.

We pass r through four dilated convolution blocks [Yang
et al., 2017]. A dilated convolution block consists of a number
of dilated convolution operations, each with a different dilation
rate, that all operate in parallel on the input, and whose outputs
are concatenated channel wise. Each dilated convolution block
contains 4 dilated convolution operations with dilation rates
[1, 2, 4, 8], each with 32 3×3 filters with ReLU nonlinearities.
The output of each dilated convolution block has 128 channels.
See figure 2.

Dilated conv
3x3, d=1

Dilated conv
3x3, d=2

Dilated conv
3x3, d=4

Dilated conv
3x3, d=8

Input Output

Dilated block

D
ila

te
d

bl
oc

k

D
ila

te
d

bl
oc

k

D
ila

te
d

bl
oc

k

D
ila

te
d

bl
oc

k

D
ro

po
ut

3x
3

co
nv

G

 c
ha

nn
el

s

Attend module

Fig. 2. Attend module and dilated block details. “d” denotes the dilation rate.

The dilated convolution block allows the network to pre-
serve detailed local information through the layers with
smaller dilation rates, while capturing a large context through
the layers with higher dilation rates, both of which are impor-
tant for our task.

After the 4 dilated convolution blocks we apply dropout, and
a final convolution operation with G linear 3×3 filters, to get
the unnormalized attention logits u, for each memory slot. We
tried several other attention module architectures including U-
nets [Ronneberger et al., 2015], residual networks [He et al.,

2016] and deeper, wider variants of the residual blocks. The
architecture described was chosen based on its performance
on a validation set.

C. Copy

Given the memory M and the attention distribution we copy
out the attended N-gram c ∈ [0, 1]L×D,

cld =
H∑
i=1

W∑
j=1

G∑
g=1

aijgMijgld . (4)

We use the term copy, although it is a soft differentiable
approximation to copy, such that each c is a weighted sum
over all the N-grams present in the document. Accordingly,
each character cl is a distribution over all the characters in the
character set.

D. Context

The context of an N-gram is often important for parsing it
correctly. For instance the date “02/03/2018” is ambiguous. It
can either be the 2nd of March or the 3rd of February, but
the context can disambiguate it. For instance, if the language
of the document is German, then it is more likely that it is
the former. In our experiments we use the following context
function.

hf =
H∑
i=1

W∑
j=1

G∑
g=1

aijgvijf ,

where v ∈ RH×W×128 is the output of the last dilated
convolution block of the attend module, after dropout. Thus,
h is a vector h ∈ R128. For simplicity the implementation of
the context function in our experiments only depend on the
attention module, but in general, it can be any function of the
input (x,w).

E. Parse

Given the attended word c, and the context vector h, we
parse c into the output y. This is in essence a character based
sequence to sequence task:

y = Parse(c, h) . (5)

The implementation of Parse depends on the output format.
Some fields might not need any parsing, while dates and
amounts need different parsing. In the following we describe
the four different parsers we use.

NoOp Parser. This is the simplest parser. It returns the
attended sequence as is

y = c .

Optional Parser. This returns a mixture of the attended input
and a string ε consisting solely of <EOS> tokens

α = f(h)

y = (1− α)c+ αε ,

where α in [0, 1] is the mixture parameter. We use a single
fully connected layer with one sigmoid output unit for f .

Date Parser. Our target dates are represented in ISO 8601
format, e.g. “2018-07-23” which has a constant output length
of ten characters, with two fixed characters. We use the
following architecture in our experiments which we find work
well:

e =
L∗∑
l=1

CNNMP(c)

y = MLP (Concat(e, h)) ,

where CNNMP is 4 layers of CNN with 128 ReLU units with
kernel size 3, followed by stride 2 maxpooling, L∗ = L

24 is
the length of the sequence after the four maxpooling layers.
As such e ∈ R128. MLP is 3 fully connected layers with 128
ReLU units, followed by dropout, and finally a linear layer
with 10 × D linear outputs, which outputs the unnormalized
logits for the ten characters. We could use a smaller output
character set than D, but for simplicity we use a single
character set for representing all characters.

Amount Parser. The amounts in the dataset are normalized
by removing leading and trailing zeros, e.g. “00.020” gets
formatted to “0.02” and “1.00” to “1”. We use a fixed output
size of 16 characters.

Our amount parser is a pointer-generator networks [See
et al., 2017], with a bidirectional LSTM with 128 units to
encode the input sequence, and a LSTM with 128 units to
generate the output hidden states. The idea behind using a
pointer-generator network is that if the attended input is a
digit, it can be copied directly, if it is a decimal separator, the
network can generate a dot, and if it is the last significant digit
the network can generate an <EOS> token. For details see the
appendix.

F. Loss and attention regularization

The main loss is the average cross-entropy between the
targets characters t and the output characters y.

We found that the softmax operation in equation (2) had
a tendency to underflow for many of the non-empty memory
positions causing the network to get stuck in the initial phase
of training. To solve this we added a regularization term
to the loss defined as the cross-entropy between a uniform
attention distribution over the non-empty memory positions
and the attention distribution produced by the attend module
in equation (2):

L(y, t) = − 1

L

L∑
l=1

log(yl[tl])− λ
1

|I|
∑

(i,j,g)∈I

log(aijg) ,

where yl[tl] indicates the tlth element of yl, I is the set of
non-empty memory positions and λ is a small scalar hyper-
parameter. The regularization encourages the network to place
attention mass uniformly on the non-empty memory positions.

IV. EXPERIMENTS

Our dataset consists of 1,181,990 invoices from 43,023 dif-
ferent suppliers. The dataset is obtained from production usage
of an invoice information extraction system. The suppliers

upload a document image and the system extracts several
fields of interest. If the system makes a mistake for a field the
suppliers themselves type in the correct value for the field.
Note, the suppliers do not need to indicate which word in
the document corresponds to the field so as to not burden
them with additional labeling effort. As such the dataset fits
our end-to-end dataset definition and the description in the
methods section; it is not known which words in the document
corresponds to the fields we wish to extract, we simply know
the target value of each field. We focus on seven important
fields, 1) the invoice number, 2) the order number, 3) the date,
4) the total, 5) the sub total before tax, 6) the tax total and 7)
the tax percent.

We split the suppliers randomly into 42,163 training suppli-
ers and 860 testing suppliers. The training and testing sets of
documents consists of all documents from each set of suppli-
ers, 1,153,078 and 28,912 documents, respectively. Splitting
on the suppliers instead of splitting on the documents allows
us to measure how well the model generalize across document
templates, assuming all suppliers use different templates.

There are two main sources of noise in this dataset, that
will limit the maximum performance of any system.

1) OCR. If the OCR engine makes a mistake, it is very hard
to recover from that later on. With a powerful enough
parser it is not impossible, but still unlikely.

2) Suppliers. The suppliers can and will type in field values
that are not present in the document image. For instance
the supplier might type in the date they are correcting the
document, rather than the date present in the document,
in order to not backdate the invoice. This kind of noise
is near impossible to correct for.

In order to estimate the maximum performance of a system
for this dataset, we perform the following analysis. Given a
target value tk we try to find this value in the document. If
tk is an amount, we use a recall oriented amount parser based
on regular expressions to parse the strings in the document.
We apply a similar procedure for dates. This way we can
measure an approximate fraction of target strings present in
the document. We use the term “Readable” for this fraction
of target values. For the fields that do not use a parser, i.e,
the invoice number and the order number, this is an upper
bound on the possible accuracy for our proposed end-to-end
architecture. For the other fields, it is conceivable that we can
learn a better parser than the regular expression based parsers,
but it is still a decent approximation of the achievable accuracy.

We compare the proposed end-to-end system to the produc-
tion system described in Palm et al. [2017], which is trained
and tested on the same data. In short the production system
uses the word-classification approach with word labels derived
using a distant supervision heuristic. A logistic regression
classifier classifies each word into, e.g. the invoice number,
total, etc. After classifying the words, they are parsed, and the
system uses heuristics to pick the best candidate words, e.g.
for the total fields, it tries to find a joint solution such that the
totals add up, etc.

We train a separate model for each of the seven fields, which
all have the same architecture and hyper-parameters, except
for the parsers. The invoice number uses the no-op parser,
the order number the optional parser, the date the date parser,
and the rest use the amount parser. We pre-train the amount
parser on amounts extracted from the training documents,
parsed with a conventional regular expression based parser. We
observe that the amount parser quickly learns to replicate the
regular expressions. Each model is optimized using the Adam
[Kingma and Ba, 2014] optimizer, with a batch size of 32,
learning rate 0.0003, dropout of 0.5, λ = 0.0001, and trained
for 50,000 batch updates, with a small L2 regularization of
0.0001. We resize the document image to 128 × 128 pixels,
disregarding aspect ratio. See table I for the results.

TABLE I
RESULTS. FRACTION OF CORRECT VALUES.

Field Readable Prod Prod- Attend, Copy, Parse

Number 0.90 0.78 0.78 0.87
Order id 0.90 0.82 0.82 0.84
Date 0.83 0.70 0.70 0.80
Total 0.81 0.85 0.77 0.81
Sub total 0.84 0.84 0.73 0.79
Tax total 0.80 0.87 0.77 0.80
Tax percent 0.79 0.83 0.68 0.87

Average 0.84 0.81 0.75 0.83

The proposed Attend, Copy, Parse system performs better on
average, and close to the approximate maximum accuracy pos-
sible given the architecture, denoted “Readable”. The invoice
number is a good field to compare how good the respective
systems are purely at “finding” the correct N-gram, since
there’s no parsing involved in either system. Here the Attend,
Copy, Parse system excels. However, the production system,
“Prod”, performs significantly better on 3 of the 4 amount
fields. The production system uses a heuristic to pick the total
fields jointly, such that they add up. In order to test how much
this heuristic improves the results we test a version of the
production system with this heuristic disabled. We denote this
“Prod-”. This version simply choose the word with the highest
probability given by the logistic regression classifier that can
be parsed into an amount for each of the total fields. It is
clear from the results that this heuristic considerably boosts
the accuracy on the total fields. Interestingly the Attend, Copy,
Parse architecture recovers more correct tax percentages than
can be found in the documents. Upon closer inspection this is
because many documents have zero taxes, but do not contain
an explicit zero. The pointer-generator amount parser learns
to generate a zero in these cases.

V. DISCUSSION

We have presented a deep neural network architecture for
end-to-end information extraction from documents. The archi-
tecture does not need expensive word-level labels, instead it
can directly use the end-to-end data that is naturally produced
in a human information extraction tasks. We evaluated the
proposed architecture on a large diverse set of invoices, where

we outperform a state-of-the-art production system based on
distant supervision, word classification and heuristics.

The proposed architecture can be improved in several ways.
The most obvious shortcoming is that it can only handle
single page documents. This is theoretically easy to remedy
by adding a new page dimension to the inputs, turning the
spatial convolutions into volumetric convolutions, and letting
the attend module output attention over the pages as well. The
main concern is the computational resources required for this
change.

It should be possible to learn a single network which
output the K strings. We experimented with this, by letting
the attention module output K attention distributions, having
K separate copy and parse modules, and training everything
jointly using the sum of losses across each of the K outputs.
It worked, but less well. We suspect it is because of imbalance
between the losses. For instance dates have lower entropy in
general compared to invoice numbers. Loss imbalance is a
general challenge in the multi-task learning setting [Kendall
et al., 2017, Chen et al., 2017b].

Going from not taking the dependencies between the total
fields into account (Prod-) to taking them into account (Prod)
significantly increases the performance of the system even
given a relatively weak classifier. Unfortunately, the heuristic
used in the Prod system cannot be directly used with the
Attend, Copy, Parse architecture as it is not differentiable.

We did come up with an idea to incorporate the two
constraints (total = sub total + tax total and tax total = sub
total · tax percentage) in our Attend, Copy, Parse framework
but it did not improve on the results. Here we describe the idea
briefly. It consists of three steps: 1) let the network output a
probability that each total field should be inferred from the
constraints instead of being outputted directly, 2) Assuming
you will sample which fields to infer from this distribution,
write up the marginal probability of all the fields being correct
and 3) Use the negative log of this probability as a loss instead
of the four individual total field losses. If you sample three
or four fields to infer, then the probability of all the fields
being correct is zero, since you can at most infer two of
the fields from the constraints. If you sample two fields or
less, then the probability that all the fields are correct is the
probability that all the non-inferred fields are correct. The
marginal probability that all of the fields are correct is then
the sum over the probability that a permutation of fields to
be inferred is chosen, multiplied by the probability that all
the non-inferred fields for the given permutation are correct.
There’s only

(
4
0

)
+
(
4
1

)
+
(
4
2

)
= 11 permutations that give

non-zero probabilities, so they can simply be computed and
summed.

The presented architecture can only extract non-recurring
fields as opposed to recurring, structured fields such as invoice
lines. Theoretically it should be possible to output the lines
by recurrently outputting the fields of a single line at a time,
and then conditioning the attention module on the previously
outputted line. This would be an interesting direction for future
work.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

Fedor Borisyuk, Albert Gordo, and Viswanath Sivakumar.
Rosetta: Large scale system for text detection and recog-
nition in images. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, pages 71–79. ACM, 2018.

Francesca Cesarini, Enrico Francesconi, Marco Gori, and
Giovanni Soda. Analysis and understanding of multi-class
invoices. Document Analysis and Recognition, 6(2):102–
114, 2003.

Kai Chen, Mathias Seuret, Jean Hennebert, and Rolf Ingold.
Convolutional neural networks for page segmentation of
historical document images. In Document Analysis and
Recognition (ICDAR), 2017 14th IAPR International Con-
ference on, volume 1, pages 965–970. IEEE, 2017a.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew
Rabinovich. Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. arXiv preprint
arXiv:1711.02257, 2017b.

Ronan Collobert and Jason Weston. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167. ACM,
2008.

Andreas R Dengel and Bertin Klein. smartfix: A requirements-
driven system for document analysis and understanding.
In International Workshop on Document Analysis Systems,
pages 433–444. Springer, 2002.

Daniel Esser, Daniel Schuster, Klemens Muthmann, Michael
Berger, and Alexander Schill. Automatic indexing of
scanned documents: a layout-based approach. In Document
Recognition and Retrieval XIX, volume 8297, page 82970H.
International Society for Optics and Photonics, 2012.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim
Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska, Ser-
gio Gómez Colmenarejo, Edward Grefenstette, Tiago Ra-
malho, John Agapiou, et al. Hybrid computing using a
neural network with dynamic external memory. Nature, 538
(7626):471, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Scott B Huffman. Learning information extraction patterns
from examples. In International Joint Conference on
Artificial Intelligence, pages 246–260. Springer, 1995.

Le Kang, Jayant Kumar, Peng Ye, Yi Li, and David Doer-
mann. Convolutional neural networks for document image
classification. In Pattern Recognition (ICPR), 2014 22nd
International Conference on, pages 3168–3172. IEEE, 2014.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene ge-
ometry and semantics. arXiv preprint arXiv:1705.07115, 3,
2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing
systems, pages 1097–1105, 2012.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian,
Kazuya Kawakami, and Chris Dyer. Neural architectures for
named entity recognition. arXiv preprint arXiv:1603.01360,
2016.

Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang, and
Wenyu Liu. Textboxes: A fast text detector with a single
deep neural network. In AAAI, pages 4161–4167, 2017.

Xuezhe Ma and Eduard Hovy. End-to-end sequence la-
beling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354, 2016.

Eric Medvet, Alberto Bartoli, and Giorgio Davanzo. A
probabilistic approach to printed document understanding.
International Journal on Document Analysis and Recogni-
tion (IJDAR), 14(4):335–347, 2011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein
Karimi, Antoine Bordes, and Jason Weston. Key-value
memory networks for directly reading documents. arXiv
preprint arXiv:1606.03126, 2016.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
Distant supervision for relation extraction without labeled
data. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2, pages 1003–1011. Association
for Computational Linguistics, 2009.

Ion Muslea et al. Extraction patterns for information extraction
tasks: A survey. In The AAAI-99 workshop on machine
learning for information extraction, volume 2. Orlando
Florida, 1999.

Rasmus Berg Palm, Ole Winther, and Florian Laws.
Cloudscan-a configuration-free invoice analysis system
using recurrent neural networks. arXiv preprint
arXiv:1708.07403, 2017.

Jeffrey Pennington, Richard Socher, and Christopher Manning.
Glove: Global vectors for word representation. In Proceed-
ings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

Ellen Riloff et al. Automatically constructing a dictionary for
information extraction tasks. In AAAI, volume 1, pages 2–1.
Citeseer, 1993.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–
241. Springer, 2015.

Marçal Rusinol, Tayeb Benkhelfallah, and Vincent
Poulain dAndecy. Field extraction from administrative
documents by incremental structural templates. In
Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on, pages 1100–1104. IEEE,
2013.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. One-shot learning
with memory-augmented neural networks. arXiv preprint
arXiv:1605.06065, 2016.

Cicero Nogueira dos Santos and Victor Guimaraes. Boosting
named entity recognition with neural character embeddings.
arXiv preprint arXiv:1505.05008, 2015.

Daniel Schuster, Klemens Muthmann, Daniel Esser, Alexander
Schill, Michael Berger, Christoph Weidling, Kamil Aliyev,
and Andreas Hofmeier. Intellix–end-user trained infor-
mation extraction for document archiving. In Document
Analysis and Recognition (ICDAR), 2013 12th International
Conference on, pages 101–105. IEEE, 2013.

Abigail See, Peter J Liu, and Christopher D Manning. Get to
the point: Summarization with pointer-generator networks.
arXiv preprint arXiv:1704.04368, 2017.

Sebastian Sudholt and Gernot A Fink. Phocnet: A deep
convolutional neural network for word spotting in handwrit-
ten documents. In Frontiers in Handwriting Recognition
(ICFHR), 2016 15th International Conference on, pages
277–282. IEEE, 2016.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-
to-end memory networks. In Advances in neural informa-
tion processing systems, pages 2440–2448, 2015.

Jason Weston, Sumit Chopra, and Antoine Bordes.
Memory networks. CoRR, 2014. URL
http://arxiv.org/abs/1410.3916.

Christoph Wick and Frank Puppe. Fully convolutional neural
networks for page segmentation of historical document
images. In 2018 13th IAPR International Workshop on
Document Analysis Systems (DAS), pages 287–292. IEEE,
2018.

Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel
Kifer, and C Lee Giles. Learning to extract semantic struc-
ture from documents using multimodal fully convolutional
neural networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

VI. APPENDIX

A. Amount parser details

We use a fixed output size of O = 16 characters. Each
output character yo ∈ [0, 1]D is a weighted sum over characters

from the attended string c, or generated from the character set.

yo = ρo

L∑
l=1

(aolcl) + (1− ρo)g(eo) ,

where ρo ∈ [0, 1] determines whether yo should be copied
from the attended string c or generated from the character set.
a ∈ [0, 1]O×L is O attention distributions over each character
in the input string; one for each character in the output string,
which determines which character to copy. g is a function that
maps eo ∈ R256 to a distribution over the character set. In our
experiments we use a single dense layer with D outputs and
a softmax nonlinearity. ρo is given as

ρo = f(eo) ,

where f is a function that maps eo to [0, 1]. In our experiments
we used a single dense layer with a single sigmoid output. eo
is

eo =

L∑
l=1

(aolhl) ,

where h ∈ RL×256 is the encoded input string c. We use a
bidirectional LSTM with 128 hidden units each to encode the
input string,

h = BiLSTM(ck) .

All that remains to be defined are a, the O attention distribu-
tions over the input characters.

aol =
eαol∑L
l=1 e

αol

αol = φ(uo, hl) ,

where φ maps uo ∈ R128 and hl ∈ R256 to R. Following
Bahdanau et al. [2014] we use

φ(uo, hl) = tanh(uoWu + hlWh)Wt ,

where tanh is applied element-wise and Wu ∈ R128×128,
Wh ∈ R256×128 and Wt ∈ R128×1 are learned weight
matrices. Finally, u ∈ RO×128 is the output of a 128 unit
LSTM run for O steps with no inputs.

54

APPENDIX D
Recurrent Relational

Networks
Published at Conference on Neural Information Processing Systems (NIPS) 2018

Recurrent Relational Networks

Rasmus Berg Palm
Technical University of Denmark

Tradeshift
rapal@dtu.dk

Ulrich Paquet
DeepMind

upaq@google.com

Ole Winther
Technical University of Denmark

olwi@dtu.dk

Abstract

This paper is concerned with learning to solve tasks that require a chain of interde-
pendent steps of relational inference, like answering complex questions about the
relationships between objects, or solving puzzles where the smaller elements of a
solution mutually constrain each other. We introduce the recurrent relational net-
work, a general purpose module that operates on a graph representation of objects.
As a generalization of Santoro et al. [2017]’s relational network, it can augment
any neural network model with the capacity to do many-step relational reasoning.
We achieve state of the art results on the bAbI textual question-answering dataset
with the recurrent relational network, consistently solving 20/20 tasks. As bAbI is
not particularly challenging from a relational reasoning point of view, we introduce
Pretty-CLEVR, a new diagnostic dataset for relational reasoning. In the Pretty-
CLEVR set-up, we can vary the question to control for the number of relational
reasoning steps that are required to obtain the answer. Using Pretty-CLEVR, we
probe the limitations of multi-layer perceptrons, relational and recurrent relational
networks. Finally, we show how recurrent relational networks can learn to solve
Sudoku puzzles from supervised training data, a challenging task requiring upwards
of 64 steps of relational reasoning. We achieve state-of-the-art results amongst
comparable methods by solving 96.6% of the hardest Sudoku puzzles.

1 Introduction

A central component of human intelligence is the ability to abstractly reason about objects and their
interactions [Spelke et al., 1995, Spelke and Kinzler, 2007]. As an illustrative example, consider
solving a Sudoku. A Sudoku consists of 81 cells that are arranged in a 9-by-9 grid, which must
be filled with digits 1 to 9 so that each digit appears exactly once in each row, column and 3-by-3
non-overlapping box, with a number of digits given 1. To solve a Sudoku, one methodically reasons
about the puzzle in terms of its cells and their interactions over many steps. One tries placing digits
in cells and see how that affects other cells, iteratively working toward a solution.

Contrast this with the canonical deep learning approach to solving problems, the multilayer perceptron
(MLP), or multilayer convolutional neural net (CNN). These architectures take the entire Sudoku
as an input and output the entire solution in a single forward pass, ignoring the inductive bias that
objects exists in the world, and that they affect each other in a consistent manner. Not surprisingly
these models fall short when faced with problems that require even basic relational reasoning [Lake
et al., 2016, Santoro et al., 2017].

The relational network of Santoro et al. [2017] is an important first step towards a simple module
for reasoning about objects and their interactions but it is limited to performing a single relational
operation, and was evaluated on datasets that require a maximum of three steps of reasoning (which,

1We invite the reader to solve the Sudoku in the supplementary material to appreciate the difficulty of solving
a Sudoku in which 17 cells are initially filled.

Preprint. Work in progress.

ar
X

iv
:1

71
1.

08
02

8v
3

 [
cs

.A
I]

 1
6

O
ct

 2
01

8

surprisingly, can be solved by a single relational reasoning step as we show). Looking beyond
relational networks, there is a rich literature on logic and reasoning in artificial intelligence and
machine learning, which we discuss in section 5.

Toward generally realizing the ability to methodically reason about objects and their interactions over
many steps, this paper introduces a composite function, the recurrent relational network. It serves
as a modular component for many-step relational reasoning in end-to-end differentiable learning
systems. It encodes the inductive biases that 1) objects exists in the world 2) they can be sufficiently
described by properties 3) properties can change over time 4) objects can affect each other and 5)
given the properties, the effects object have on each other is invariant to time.

An important insight from the work of Santoro et al. [2017] is to decompose a function for relational
reasoning into two components or “modules”: a perceptual front-end, which is tasked to recognize
objects in the raw input and represent them as vectors, and a relational reasoning module, which
uses the representation to reason about the objects and their interactions. Both modules are trained
jointly end-to-end. In computer science parlance, the relational reasoning module implements an
interface: it operates on a graph of nodes and directed edges, where the nodes are represented by real
valued vectors, and is differentiable. This paper chiefly develops the relational reasoning side of that
interface.

Some of the tasks we evaluate on can be efficiently and perfectly solved by hand-crafted algorithms
that operate on the symbolic level. For example, 9-by-9 Sudokus can be solved in a fraction of a
second with constraint propagation and search [Norvig, 2006] or with dancing links [Knuth, 2000].
These symbolic algorithms are superior in every respect but one: they don’t comply with the interface,
as they are not differentiable and don’t work with real-valued vector descriptions. They therefore
cannot be used in a combined model with a deep learning perceptual front-end and learned end-to-end.

Following Santoro et al. [2017], we use the term “relational reasoning” liberally for an object- and
interaction-centric approach to problem solving. Although the term “relational reasoning” is similar
to terms in other branches of science, like relational logic or first order logic, no direct parallel is
intended.

This paper considers many-step relational reasoning, a challenging task for deep learning architectures.
We develop a recurrent relational reasoning module, which constitutes our main contribution. We
show that it is a powerful architecture for many-step relational reasoning on three varied datasets,
achieving state-of-the-art results on bAbI and Sudoku.

2 Recurrent Relational Networks

We ground the discussion of a recurrent relational network in something familiar, solving a Sudoku
puzzle. A simple strategy works by noting that if a certain Sudoku cell is given as a “7”, one can
safely remove “7” as an option from other cells in the same row, column and box. In a message
passing framework, that cell needs to send a message to each other cell in the same row, column,
and box, broadcasting it’s value as “7”, and informing those cells not to take the value “7”. In an
iteration t, these messages are sent simultaneously, in parallel, between all cells. Each cell i should
then consider all incoming messages, and update its internal state ht

i to ht+1
i . With the updated state

each cell should send out new messages, and the process repeats.

Message passing on a graph. The recurrent relational network will learn to pass messages on a
graph. For Sudoku, the graph has i ∈ {1, 2, ..., 81} nodes, one for each cell in the Sudoku. Each
node has an input feature vector xi, and edges to and from all nodes that are in the same row, column
and box in the Sudoku. The graph is the input to the relational reasoning module, and vectors xi

would generally be the output of a perceptual front-end, for instance a convolutional neural network.
Keeping with our Sudoku example, each xi encodes the initial cell content (empty or given) and the
row and column position of the cell.

At each step t each node has a hidden state vector ht
i, which is initialized to the features, such that

h0
i = xi. At each step t, each node sends a message to each of its neighboring nodes. We define the

message mt
ij from node i to node j at step t by

mt
ij = f

(
ht−1
i , ht−1

j

)
, (1)

2

ht
1

x1

ot1 ht
2

x2

ot2

ht
3

x3 ot3

mt
12

mt
21

mt
13

mt
31 mt

23

mt
32

Figure 1: A recurrent relational network on a fully connected graph with 3 nodes. The nodes’ hidden
states ht

i are highlighted with green, the inputs xi with red, and the outputs oti with blue. The dashed
lines indicate the recurrent connections. Subscripts denote node indices and superscripts denote steps
t. For a figure of the same graph unrolled over 2 steps see the supplementary material.

where f , the message function, is a multi-layer perceptron. This allows the network to learn what
kind of messages to send. In our experiments, MLPs with linear outputs were used. Since a node
needs to consider all the incoming messages we sum them with

mt
j =

∑
i∈N(j)

mt
ij , (2)

where N(j) are all the nodes that have an edge into node j. For Sudoku, N(j) contains the nodes in
the same row, column and box as j. In our experiments, since the messages in (1) are linear, this is
similar to how log-probabilities are summed in belief propagation [Murphy et al., 1999].

Recurrent node updates. Finally we update the node hidden state via

ht
j = g

(
ht−1
j , xj ,m

t
j

)
, (3)

where g, the node function, is another learned neural network. The dependence on the previous node
hidden state ht−1

j allows the network to iteratively work towards a solution instead of starting with a
blank slate at every step. Injecting the feature vector xj at each step like this allows the node function
to focus on the messages from the other nodes instead of trying to remember the input.

Supervised training. The above equations for sending messages and updating node states define a
recurrent relational network’s core. To train a recurrent relational network in a supervised manner
to solve a Sudoku we introduce an output probability distribution over the digits 1-9 for each of the
nodes in the graph. The output distribution oti for node i at step t is given by

oti = r
(
ht
i

)
, (4)

where r is a MLP that maps the node hidden state to the output probabilities, e.g. using a softmax
nonlinearity. Given the target digits y = {y1, y2, ..., y81} the loss at step t, is then the sum of
cross-entropy terms, one for each node: lt = −

∑I
i=1 log o

t
i [yi], where oi[yi] is the yi’th component

of oi. Equations (1) to (4) are illustrated in figure 1.

Convergent message passing. A distinctive feature of our proposed model is that we minimize the
cross entropy between the output and target distributions at every step.

At test time we only consider the output probabilities at the last step, but having a loss at every step
during training is beneficial. Since the target digits yi are constant over the steps, it encourages the
network to learn a convergent message passing algorithm. Secondly, it helps with the vanishing
gradient problem.

3

Variations. If the edges are unknown, the graph can be assumed to be fully connected. In this case
the network will need to learn which objects interact with each other. If the edges have attributes,
eij , the message function in equation 1 can be modified such that mt

ij = f
(
ht−1
i , ht−1

j , eij
)
. If the

output of interest is for the whole graph instead of for each node the output in equation 4 can be
modified such that there’s a single output ot = r (

∑
i h

t
i). The loss can be modified accordingly.

3 Experiments

Code to reproduce all experiments can be found at github.com/rasmusbergpalm/recurrent-relational-
networks.

3.1 bAbI question-answering tasks

Table 1: bAbI results. Trained jointly on all 20 tasks using the 10,000 training samples. Entries
marked with an asterix are our own experiments, the rest are from the respective papers.

Method N Mean Error (%) Failed tasks (err. >5%)

RRN* (this work) 15 0.46± 0.77 0.13± 0.35
SDNC [Rae et al., 2016] 15 6.4± 2.5 4.1± 1.6
DAM [Rae et al., 2016] 15 8.7± 6.4 5.4± 3.4
SAM [Rae et al., 2016] 15 11.5± 5.9 7.1± 3.4
DNC [Rae et al., 2016] 15 12.8± 4.7 8.2± 2.5
NTM [Rae et al., 2016] 15 26.6± 3.7 15.5± 1.7
LSTM [Rae et al., 2016] 15 28.7± 0.5 17.1± 0.8
EntNet [Henaff et al., 2016] 5 9.7± 2.6 5± 1.2
ReMo [Yang et al., 2018] 1 1.2 1
RN [Santoro et al., 2017] 1 N/A 2
MemN2N [Sukhbaatar et al., 2015] 1 7.5 6

bAbI is a text based QA dataset from Facebook [Weston et al., 2015] designed as a set of prerequisite
tasks for reasoning. It consists of 20 types of tasks, with 10,000 questions each, including deduction,
induction, spatial and temporal reasoning. Each question, e.g. “Where is the milk?” is preceded by
a number of facts in the form of short sentences, e.g. “Daniel journeyed to the garden. Daniel put
down the milk.” The target is a single word, in this case “garden”, one-hot encoded over the full bAbI
vocabulary of 177 words. A task is considered solved if a model achieves greater than 95% accuracy.
The most difficult tasks require reasoning about three facts.

To map the questions into a graph we treat the facts related to a question as the nodes in a fully
connected graph up to a maximum of the last 20 facts. The fact and question sentences are both
encoded by Long Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] layers with 32
hidden units each. We concatenate the last hidden state of each LSTM and pass that through a MLP.
The output is considered the node features xi. Following [Santoro et al., 2017] all edge features eij
are set to the question encoding. We train the network for three steps. At each step, we sum the node
hidden states and pass that through a MLP to get a single output for the whole graph. For details see
the supplementary material.

Our trained network solves 20 of 20 tasks in 13 out of 15 runs. This is state-of-the-art and markedly
more stable than competing methods. See table 1. We perform ablation experiment to see which
parts of the model are important, including varying the number of steps. We find that using dropout
and appending the question encoding to the fact encodings is important for the performance. See the
supplementary material for details.

Surprisingly, we find that we only need a single step of relational reasoning to solve all the bAbI
tasks. This is surprising since the hardest tasks requires reasoning about three facts. It’s possible
that there are superficial correlations in the tasks that the model learns to exploit. Alternatively the
model learns to compress all the relevant fact-relations into the 128 floats resulting from the sum over
the node hidden states, and perform the remaining reasoning steps in the output MLP. Regardless, it
appears multiple steps of relational reasoning are not important for the bAbI dataset.

4

3.2 Pretty-CLEVR

Given that bAbI did not require multiple steps of relational reasoning and in order to test our
hypothesis that our proposed model is better suited for tasks requiring more steps of relational
reasoning we create a diagnostic dataset “Pretty-CLEVER”. It can be seen as an extension of the
“Sort-of-CLEVR” data set by [Santoro et al., 2017] which has questions of a non-relational and
relational nature. “Pretty-CLEVR” takes this a step further and has non-relational questions as well
as questions requiring varying degrees of relational reasoning.

(a) Samples.

0 1 2 3 4 5 6 7
Question jumps

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

RRN(1)
RN

RRN(2)
Random

RRN(3)
MLP

RRN(4)

(b) Results.

Figure 2: 2a Two samples of the Pretty-CLEVR diagnostic dataset. Each sample has 128 questions
associated, exhibiting varying levels of relational reasoning difficulty. For the topmost sample the
solution to the question: “green, 3 jumps”, which is “plus”, is shown with arrows. 2b Random
corresponds to picking one of the eight possible outputs at random (colors or shapes, depending on
the input). The RRN is trained for four steps but since it predicts at each step we can evaluate the
performance for each step. The the number of steps is stated in parentheses.

Pretty-CLEVR consists of scenes with eight colored shapes and associated questions. Questions are
of the form: “Starting at object X which object is N jumps away?”. Objects are uniquely defined
by their color or shape. If the start object is defined by color, the answer is a shape, and vice versa.
Jumps are defined as moving to the closest object, without going to an object already visited. See
figure 2a. Questions with zero jumps are non-relational and correspond to: “What color is shape X?”
or “What shape is color X?”. We create 100,000 random scenes, and 128 questions for each (8 start
objects, 0-7 jumps, output is color or shape), resulting in 12.8M questions. We also render the scenes
as images. The “jump to nearest” type question is chosen in an effort to eliminate simple correlations
between the scene state and the answer. It is highly non-linear in the sense that slight differences in
the distance between objects can cause the answer to change drastically. It is also asymmetrical, i.e.
if the question “x, n jumps” equals “y”, there is no guarantee that “y, n jumps” equals “x”. We find it
is a surprisingly difficult task to solve, even with a powerful model such as the RRN. We hope others
will use it to evaluate their relational models.2

Since we are solely interested in examining the effect of multiple steps of relational reasoning we
train on the state descriptions of the scene. We consider each scene as a fully connected undirected
graph with 8 nodes. The feature vector for each object consists of the position, shape and color. We
encode the question as the start object shape or color and the number of jumps. As we did for bAbI
we concatenate the question and object features and pass it through a MLP to get the node features
xi. To make the task easier we set the edge features to the euclidean distance between the objects.
We train our network for four steps and compare to a single step relational network and a baseline

2Pretty-CLEVR is available online as part of the code for reproducing experiments.

5

MLP that considers the entire scene state, all pairwise distances, and the question as a single vector.
For details see the supplementary material.

Mirroring the results from the “Sort-of-CLEVR” dataset the MLP perfectly solves the non-relational
questions, but struggle with even single jump questions and seem to lower bound the performance
of the relational networks. The relational network solves the non-relational questions as well as the
ones requiring a single jump, but the accuracy sharply drops off with more jumps. This matches the
performance of the recurrent relational network which generally performs well as long as the number
of steps is greater than or equal to the number of jumps. See fig 2b. It seems that, despite our best
efforts, there are spurious correlations in the data such that questions with six to seven jumps are
easier to solve than those with four to five jumps.

3.3 Sudoku

We create training, validation and testing sets totaling 216,000 Sudoku puzzles with a uniform
distribution of givens between 17 and 34. We consider each of the 81 cells in the 9x9 Sudoku grid a
node in a graph, with edges to and from each other cell in the same row, column and box. The node
features xi are the output of a MLP which takes as input the digit for the cell (0-9, 0 if not given), and
the row and column position (1-9). Edge features are not used. We run the network for 32 steps and
at every step the output function r maps each node hidden state to nine output logits corresponding to
the nine possible digits. For details see the supplementary material.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Figure 3: Example of how the trained network solves part of a Sudoku. Only the top row of a
full 9x9 Sudoku is shown for clarity. From top to bottom steps 0, 1, 8 and 24 are shown. See the
supplementary material for a full Sudoku. Each cell displays the digits 1-9 with the font size scaled
(non-linearly for legibility) to the probability the network assigns to each digit. Notice how the
network eliminates the given digits 6 and 4 from the other cells in the first step. Animations showing
how the trained network solves Sodukos, including a failure case can be found at imgur.com/a/ALsfB.

Our network learns to solve 94.1% of even the hardest 17-givens Sudokus after 32 steps. We only
consider a puzzled solved if all the digits are correct, i.e. no partial credit is given for getting individual
digits correct. For more givens the accuracy (fraction of test puzzles solved) quickly approaches
100%. Since the network outputs a probability distribution for each step, we can visualize how the
network arrives at the solution step by step. For an example of this see figure 3.

To examine our hypothesis that multiple steps are required we plot the accuracy as a function of the
number of steps. See figure 4. We can see that even simple Sudokus with 33 givens require upwards
of 10 steps of relational reasoning, whereas the harder 17 givens continue to improve even after 32
steps. Figure 4 also shows that the model has learned a convergent algorithm. The model was trained
for 32 steps, but seeing that the accuracy increased with more steps, we ran the model for 64 steps
during testing. At 64 steps the accuracy for the 17 givens puzzles increases to 96.6%.

6

We also examined the importance of the row and column features by multiplying the row and column
embeddings by zero and re-tested our trained network. At 64 steps with 17 givens, the accuracy
changed to 96.7%. It thus seems the network does not use the row and column position information
to solve the task.

0 10 20 30 40 50 60
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy 17 givens

19 givens
21 givens
23 givens
25 givens
27 givens
29 givens
31 givens
33 givens

Figure 4: Fraction of test puzzles solved as a function of number of steps. Even simple Sudokus
with 33 givens require about 10 steps of relational reasoning to be solved. The dashed vertical line
indicates the 32 steps the network was trained for. The network appears to have learned a convergent
relational reasoning algorithm such that more steps beyond 32 improve on the hardest Sudokus.

We compare our network to several other differentiable methods. See table 2. We train two relational
networks: a node and a graph centric. For details see the supplementary material. Of the two, the node
centric was considerably better. The node centric correspond exactly to our proposed network with
a single step, yet fails to solve any Sudoku. This shows that multiple steps are crucial for complex
relational reasoning. Our network outperforms loopy belief propagation, with parallel and random
messages passing updates [Bauke, 2008]. It also outperforms a version of loopy belief propagation
modified specifically for solving Sudokus that uses 250 steps, Sinkhorn balancing every two steps
and iteratively picks the most probable digit [Khan et al., 2014]. We also compare to learning the
messages in parallel loopy BP as presented in Lin et al. [2015]. We tried a few variants including a
single step as presented and 32 steps with and without a loss on every step, but could not get it to
solve any 17 given Sudokus. Finally we outperform Park [2016] which treats the Sudoku as a 9x9
image, uses 10 convolutional layers, iteratively picks the most probable digit, and evaluate on easier
Sudokus with 24-36 givens. We also tried to train a version of our network that only had a loss at the
last step. It was harder to train, performed worse and didn’t learn a convergent algorithm.

Table 2: Comparison of methods for solving Sudoku puzzles. Only methods that are differentiable
are included in the comparison. Entries marked with an asterix are our own experiments, the rest are
from the respective papers.

Method Givens Accuracy

Recurrent Relational Network* (this work) 17 96.6%
Loopy BP, modified [Khan et al., 2014] 17 92.5%
Loopy BP, random [Bauke, 2008] 17 61.7%
Loopy BP, parallel [Bauke, 2008] 17 53.2%
Deeply Learned Messages* [Lin et al., 2015] 17 0%
Relational Network, node* [Santoro et al., 2017] 17 0%
Relational Network, graph* [Santoro et al., 2017] 17 0%
Deep Convolutional Network [Park, 2016] 24-36 70%

7

3.4 Age arithmetic

Anonymous reviewer 2 suggested the following task which we include here. The task is to infer the
age of a person given a single absolute age and a set of age differences, e.g. “Alice is 20 years old.
Alice is 4 years older than Bob. Charlie is 6 years younger than Bob. How old is Charlie?”. Please
see the supplementary material for details on the task and results.

4 Discussion

We have proposed a general relational reasoning model for solving tasks requiring an order of
magnitude more complex relational reasoning than the current state-of-the art. BaBi and Sort-of-
CLEVR require a few steps, Pretty-CLEVR requires up to eight steps and Sudoku requires more
than ten steps. Our relational reasoning module can be added to any deep learning model to add a
powerful relational reasoning capacity. We get state-of-the-art results on Sudokus solving 96.6% of
the hardest Sudokus with 17 givens. We also markedly improve state-of-the-art on the BaBi dataset
solving 20/20 tasks in 13 out of 15 runs with a single model trained jointly on all tasks.

One potential issue with having a loss at every step is that it might encourage the network to learn a
greedy algorithm that gets stuck in a local minima. However, the output function r separates the node
hidden states and messages from the output probability distributions. The network therefore has the
capacity to use a small part of the hidden state for retaining a current best guess, which can remain
constant over several steps, and other parts of the hidden state for running a non-greedy multi-step
algorithm.

Sending messages for all nodes in parallel and summing all the incoming messages might seem like
an unsophisticated approach that risk resulting in oscillatory behavior and drowning out the important
messages. However, since the receiving node hidden state is an input to the message function, the
receiving node can in a sense determine which messages it wishes to receive. As such, the sum can
be seen as an implicit attention mechanism over the incoming messages. Similarly the network can
learn an optimal message passing schedule, by ignoring messages based on the history and current
state of the receiving and sending node.

5 Related work

Relational networks [Santoro et al., 2017] and interaction networks [Battaglia et al., 2016] are the
most directly comparable to ours. These models correspond to using a single step of equation 3.
Since it only does one step it cannot naturally do complex multi-step relational reasoning. In order
to solve the tasks that require more than a single step it must compress all the relevant relations
into a fixed size vector, then perform the remaining relational reasoning in the last forward layers.
Relational networks, interaction networks and our proposed model can all be seen as an instance of
Graph Neural Networks [Scarselli et al., 2009, Gilmer et al., 2017].

Graph neural networks with message passing computations go back to Scarselli et al. [2009]. However,
there are key differences that we found important for implementing stable multi-step relational
reasoning. Including the node features xj at every step in eq. 3 is important to the stability of the
network. Scarselli et al. [2009], eq. 3 has the node features, ln, inside the message function. Battaglia
et al. [2016] use an xj in the node update function, but this is an external driving force. Sukhbaatar
et al. [2016] also proposed to include the node features at every step. Optimizing the loss at every
step in order to learn a convergent message passing algorithm is novel to the best of our knowledge.
Scarselli et al. [2009] introduces an explicit loss term to ensure convergence. Ross et al. [2011] trains
the inference machine predictors on every step, but there are no hidden states; the node states are the
output marginals directly, similar to how belief propagation works.

Our model can also be seen as a completely learned message passing algorithm. Belief propagation
is a hand-crafted message passing algorithm for performing exact inference in directed acyclic
graphical models. If the graph has cycles, one can use a variant, loopy belief propagation, but it is
not guaranteed to be exact, unbiased or converge. Empirically it works well though and it is widely
used [Murphy et al., 1999]. Several works have proposed replacing parts of belief propagation with
learned modules [Heess et al., 2013, Lin et al., 2015]. Our work differs by not being rooted in loopy
BP, and instead learning all parts of a general message passing algorithm. Ross et al. [2011] proposes

8

Inference Machines which ditch the belief propagation algorithm altogether and instead train a series
of regressors to output the correct marginals by passing messages on a graph. Wei et al. [2016]
applies this idea to pose estimation using a series of convolutional layers and Deng et al. [2016]
introduces a recurrent node update for the same domain.

There is rich literature on combining symbolic reasoning and logic with sub-symbolic distributed
representations which goes all the way back to the birth of the idea of parallel distributed processing
McCulloch and Pitts [1943]. See [Raedt et al., 2016, Besold et al., 2017] for two recent surveys.
Here we describe only a few recent methods. Serafini and Garcez [2016] introduces the Logic
Tensor Network (LTN) which describes a first order logic in which symbols are grounded as vector
embeddings, and predicates and functions are grounded as tensor networks. The embeddings and
tensor networks are then optimized jointly to maximize a fuzzy satisfiability measure over a set of
known facts and fuzzy constraints. Šourek et al. [2015] introduces the Lifted Relational Network
which combines relational logic with neural networks by creating neural networks from lifted rules
and training examples, such that the connections between neurons created from the same lifted rules
shares weights. Our approach differs fundamentally in that we do not aim to bridge symbolic and
sub-symbolic methods. Instead we stay completely in the sub-symbolic realm. We do not introduce or
consider any explicit logic, aim to discover (fuzzy) logic rules, or attempt to include prior knowledge
in the form of logical constraints.

Amos and Kolter [2017] Introduces OptNet, a neural network layer that solve quadratic programs
using an efficient differentiable solver. OptNet is trained to solve 4x4 Sudokus amongst other problems
and beats the deep convolutional network baseline as described in Park [2016]. Unfortunately we
cannot compare to OptNet directly as it has computational issues scaling to 9x9 Sudokus due to an
implementation error (Brandon Amos, 2018, personal communication).

Sukhbaatar et al. [2016] proposes the Communication Network (CommNet) for learning multi-agent
cooperation and communication using back-propagation. It is similar to our recurrent relational
network, but differs in key aspects. The messages passed between all nodes at a given step are the
same, corresponding to the average of all the node hidden states. Also, it is not trained to minimize
the loss on every step of the algorithm.

Acknowledgments

We’d like to thank the anonymous reviewers for the valuable comments and suggestions, especially
reviewer 2 who suggested the age arithmetic task. This research was supported by the NVIDIA
Corporation with the donation of TITAN X GPUs.

References
Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.

arXiv preprint arXiv:1703.00443, 2017.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in Neural Information Processing
Systems, pages 4502–4510, 2016.

Heiko Bauke. Passing messages to lonely numbers. Computing in Science & Engineering, 10(2):
32–40, 2008.

Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pas-
cal Hitzler, Kai-Uwe Kühnberger, Luis C Lamb, Daniel Lowd, Priscila Machado Vieira Lima,
et al. Neural-symbolic learning and reasoning: A survey and interpretation. arXiv preprint
arXiv:1711.03902, 2017.

Zhiwei Deng, Arash Vahdat, Hexiang Hu, and Greg Mori. Structure inference machines: Recurrent
neural networks for analyzing relations in group activity recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4772–4781, 2016.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

9

Nicolas Heess, Daniel Tarlow, and John Winn. Learning to pass expectation propagation messages.
In Advances in Neural Information Processing Systems, pages 3219–3227, 2013.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun. Tracking the world
state with recurrent entity networks. arXiv preprint arXiv:1612.03969, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Sheehan Khan, Shahab Jabbari, Shahin Jabbari, and Majid Ghanbarinejad. Solving Sudoku using
probabilistic graphical models. 2014.

Donald E Knuth. Dancing links. arXiv preprint cs/0011047, 2000.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, pages 1–101, 2016.

Guosheng Lin, Chunhua Shen, Ian Reid, and Anton van den Hengel. Deeply learning the messages
in message passing inference. In Advances in Neural Information Processing Systems, pages
361–369, 2015.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Kevin P Murphy, Yair Weiss, and Michael I Jordan. Loopy belief propagation for approximate
inference: An empirical study. In Proceedings of the Fifteenth conference on Uncertainty in
artificial intelligence, pages 467–475. Morgan Kaufmann Publishers Inc., 1999.

Peter Norvig. Solving every Sudoku puzzle, 2006. URL http://norvig.com/sudoku.html.

Kyubyong Park. Can neural networks crack Sudoku?, 2016. URL https://github.com/
Kyubyong/sudoku.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy Harley, Andrew W Senior, Gregory Wayne, Alex
Graves, and Tim Lillicrap. Scaling memory-augmented neural networks with sparse reads and
writes. In Advances in Neural Information Processing Systems, pages 3621–3629, 2016.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational artificial
intelligence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 10(2):1–189, 2016.

Stephane Ross, Daniel Munoz, Martial Hebert, and J Andrew Bagnell. Learning message-passing
inference machines for structured prediction. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 2737–2744. IEEE, 2011.

Gordon Royle. Minimum Sudoku, 2014. URL http://staffhome.ecm.uwa.edu.au/
~00013890/sudokumin.php.

Adam Santoro, David Raposo, David GT Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. arXiv
preprint arXiv:1706.01427, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Luciano Serafini and Artur S d’Avila Garcez. Learning and reasoning with logic tensor networks. In
AI* IA 2016 Advances in Artificial Intelligence, pages 334–348. Springer, 2016.

Gustav Šourek, Vojtech Aschenbrenner, Filip Železny, and Ondřej Kuželka. Lifted relational neural
networks. In Proceedings of the 2015th International Conference on Cognitive Computation:
Integrating Neural and Symbolic Approaches-Volume 1583, pages 52–60. CEUR-WS. org, 2015.

Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–96,
2007.

10

Elizabeth S Spelke, Grant Gutheil, and Gretchen Van de Walle. The development of object perception.
1995.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pages 2440–2448, 2015.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation.
In Advances in Neural Information Processing Systems, pages 2244–2252, 2016.

Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional pose machines.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4724–4732, 2016.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards AI-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Hyochang Yang, Sungzoon Cho, et al. Finding remo (related memory object): A simple neural
architecture for text based reasoning. arXiv preprint arXiv:1801.08459, 2018.

6 Supplementary Material

6.1 bAbI experimental details

Unless otherwise specified we use 128 hidden units for all layers and all MLPs are 3 ReLU layers
followed by a linear layer.

We compute each node feature vector as

xi = MLP(concat(last(LSTMS(si)), last(LSTMQ(q)), onehot(pi + o)))

where si is fact i, q is the question, pi is the sentence position (1-20) of fact i and o is a random
offset per question (1-20), such that the onehot output is 40 dimensional. The offset is constant for
all facts related to a single question to avoid changing the relative order of the facts. The random
offset prevents the network from memorizing the position of the facts and rather reason about their
ordering. Our message function f is a MLP. Our node function g uses an LSTM over reasoning steps

ht
j , s

t
j = LSTMG(MLP(concat(xj ,m

t
j)), s

t−1
j) ,

where stj is the cell state of the LSTM for unit j at time t. s0j is initialized to zero.

We run our network for three steps. To get a graph level output, we use a MLP over the sum of the
node hidden states, ot = MLP (

∑
i h

t
i) with 3 layers, the final being a linear layer that maps to the

output logits. The last two layers uses dropout of 50%. We train and validate on all 20 tasks jointly
using the 9,000 training and 1,000 validation samples defined in the en_valid_10k split. We use
the Adam optimizer with a batch size of 512, a learning rate of 2e-4 and L2 regularization with a rate
of 1e-5. We train for 5M gradient steps.

6.2 bAbI ablation experiments

To test which parts of the proposed model is important to solving the bAbI tasks we perform ablation
experiments. One of the main differences between the relational network and our proposed model,
aside from the recurrent steps, is that we encode the sentences and question together. We ablate
the model in two ways to test how important this is. 1) Using a single linear layer instead of the
4-layer MLP baseline, and 2) Not encoding them together. In this case the node hidden states
are initialized to the fact encodings. We found dropout to be important, so we also perform an
ablation experiment without dropout. We run each ablation experiment eight times. We also do
pseudo-ablation experiments with fewer steps by measuring at each step of the RRN. See table 3.

11

Model Runs Mean Error (%) Failed tasks (err. >5%) Mean error @ 1M updates (%)

Baseline, 3 steps 15 0.46± 0.77 0.13± 0.35 1.83± 1.06
Baseline, 2 steps 15 0.46± 0.76 0.13± 0.35 1.83± 1.06
Baseline, 1 step 15 0.48± 0.79 0.13± 0.35 1.84± 1.06
linear encoding 8 0.20± 0.01 0± 0 0.63± 0.69
no encoding 8 0.53± 0.91 0.13± 0.35 2.39± 1.73
no dropout 8 1.74± 1.28 0.63± 0.52 2.57± 0.95

Table 3: BaBi ablation results.

6.3 Pretty-CLEVR experimental details

Our setup for Pretty-CLEVR is a bit simpler than for bAbI. Unless otherwise specified we use 128
hidden units for all hidden layers and all MLPs are 1 ReLU layer followed by a linear layer.

We compute each node feature vector xi as

oi = concat(pi, onehot(ci), onehot(mi))

q = concat(onehot(s), onehot(n))
xi = MLP(concat(oi, q))

where pi ∈ [0, 1]2 is the position, Nn ≡ {0, ..., n− 1}, ci ∈ N8 is the color, mi ∈ N8 is the marker,
s ∈ N16 is the marker or color of the start object, and n ∈ N8 is the number of jumps.

Our message function f is a MLP. Our node function g is,

ht
j = MLP(concat(ht−1

j , xj ,m
t
j))

Our output function r is a MLP with a dropout fraction of 0.5 in the penultimate layer. The last layer
has 16 hidden linear units. We run our recurrent relational network for 4 steps.

We train on the 12.8M training questions, and augment the data by scaling and rotating the scenes
randomly. We use separate validation and test sets of 128.000 questions each. We use the Adam
optimizer with a learning rate of 1e-4 and train for 10M gradient updates with a batch size of 128.

The baseline RN is identical to the described RRN, except it only does a single step of relational
reasoning.

The baseline MLP takes the entire scene state, x, as an input, such that

x = concat(o0, ..., o7, d00, ..., d77, q)

where dij ∈ R is the euclidean distance from object i to j.

The baseline MLP has 4 ReLu layers with 256 hidden units, with dropout of 0.5 on the last layer,
followed by a linear layer with 16 hidden units. The baseline MLP has 87% more parameters than
the RRN and RN (261,136 vs 139,536).

6.4 Sudoku dataset

To generate our dataset the starting point is the collection of 49,151 unique 17-givens puzzles gathered
by Royle [2014] which we solve using the solver from Norvig [2006]. Then we split the puzzles into
a test, validation and training pool, with 10,000, 1,000 and 38,151 samples respectively. To generate
the sets we train, validate and test on we do the following: for each n ∈ {0, ..., 17} we sample k
puzzles from the respective pool, with replacement. For each sampled puzzle we add n random digits
from the solution. We then swap the digits according to a random permutation, e.g. 1→ 5, 2→ 3,
etc. The resulting puzzle is added to the respective set. For the test, validation and training sets we
sample k = 1, 000, k = 1, 000 and k = 10, 000 puzzles in this way.

6.5 Sudoku experimental details

Unless otherwise specified we use 96 hidden units for all hidden layers and all MLPs are 3 ReLU
layers followed by a linear layer.

12

Denote the digit for cell j dj (0-9, 0 if not given), and the row and column position rowj (1-9) and
columnj (1-9) respectively.. The node features are then

xj = MLP(concat(embed(dj), embed(rowj), embed(columnj)))

where each embed is a 16 dimensional learned embedding. We could probably have used one-hot
encoding instead of the embeddings, embedding was just the first thing we tried. Edge features were
not used. The message function f is an MLP. The node function g, is identical to the setup for bAbI,
i.e.

ht
j , s

t
j = LSTMG(MLP(concat(xj ,m

t
j)), s

t−1
j) .

The LSTM cell state is initialized to zeros.

The output function r is a linear layer with nine outputs to produce the output logits oti. We run the
network for 32 steps with a loss on every step. We train the model for 300.000 gradient updates with
a batch size of 256 using Adam with a learning rate of 2e-4 and L2 regularization of 1e-4 on all
weight matrices.

6.6 Sudoku relational network baseline details

The node centric corresponds exactly to a single step of our network. The graph centric approach is
closer to the original relational network. It does one step of relational reasoning as our network, then
sums all the node hidden states. The sum is then passed through a 4 layer MLP with 81 · 9 outputs,
one for each cell and digit. The graph centric model has larger hidden states of 256 in all layers to
compensate somewhat for the sum squashing the entire graph into a fixed size vector. Otherwise both
networks are identical to our network. The graph centric has over 4 times as many parameters as our
model (944,874 vs. 201,194) but performs worse than the node centric.

6.7 Age arithmetic task details

We generated all 262,144 unique trees with 8 nodes and split them 90%/10% into training and test
graphs. The nodes represent the persons, and the edges which age differences will be given to the
network. During training and testing we sample a batch of graphs from the respective set and sample
8 random ages (0-99) for each. We compute the absolute difference as well as the sign for each edge
in the graphs. This gives us 7 relative facts on the form “person A (0-7), person B (0-7), younger/older
(-1,1), absolute age difference (0-99)”. Then we add the final fact which is the age of one of the nodes
at random, e.g. “3, 3, 0, 47”, using the zero sign to indicate this fact is absolute and not relative. The
question is the age of one of the persons at random (0-7). For each graph we compute the shortest
path from the anchor person to the person in question. This is the minimum number of arithmetic
computations that must be performed to infer the persons age from the given facts.

The 8 facts (1 anchor, 7 relative) are given to the network as a fully connected graph of 8 nodes. Note,
this graph is different from the tree used to generate the facts. The network never sees the tree. The
input vector for each fact are the four fact integers and the question integer one-hot encoded and
concatenated. We use the same architecture as for the bAbI experiments except all MLPs are 3 dense
layers with 128 ReLu units followed by one linear layer. We train the network for 8 steps, and test it
for each step. See figure 5 for results.

6.8 Unrolled recurrent relational network

6.9 Full Sudoku solution

13

0 1 2 3 4 5 6
Required arithmetic operations

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

RRN(1)
RRN(2)

RRN(3)
RRN(4)

RRN(8)
Random

Figure 5: Results for the age arithmetic task. The number in parenthesis indicate how many steps the
RRN was run during testing. Random corresponds to picking one of the 100 possible ages randomly.

14

x1

x2

x3

x1

x2

x3

x1

x2

x3

h0
1

o01

h0
2

o02

h0
3

o03

h1
1

o11

h1
2

o12

h1
3

o13

h2
1

o21

h2
2

o22

h2
3

o23

m1
12

m1
13

m1
21

m1
23

m1
31

m1
32

m2
12

m2
13

m2
21

m2
23

m2
31

m2
32

Recurrent relational network on a fully connected graph with 3 nodes. Subscripts denote node indices
and superscripts denote steps t. The dashed lines indicate the recurrent connections.

15

An example Sudoku. Each of the 81 cells contain each digit 1-9, which is useful if the reader wishes to
try to solve the Sudoku as they can be crossed out or highlighted, etc. The digit font size corresponds
to the probability our model assigns to each digit at step 0, i.e. before any steps are taken. Subsequent
pages contains the Sudoku as it evolves with more steps of our model.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

16

Step 1

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

17

Step 4

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

18

Step 8

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9
1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

19

Step 12

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9
1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

20

Step 16

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

21

Step 20

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6
7 8 9

1 2 3

4 5 6

7 8 9

1 2 3
4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

22

78

Bibliography
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Heiko Bauke. Passing messages to lonely numbers. Computing in Science & Engi-
neering, 10(2):32–40, 2008.

Mary Elaine Califf and Raymond J Mooney. Bottom-up relational learning of pattern
matching rules for information extraction. Journal of Machine Learning Research,
4(Jun):177–210, 2003.

Francesca Cesarini, Enrico Francesconi, Marco Gori, and Giovanni Soda. Analysis
and understanding of multi-class invoices. Document Analysis and Recognition, 6
(2):102–114, 2003.

Laura Chiticariu, Yunyao Li, and Frederick R Reiss. Rule-based information extrac-
tion is dead! long live rule-based information extraction systems! In Proceedings
of the 2013 conference on empirical methods in natural language processing, pages
827–832, 2013.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Fabio Ciravegna. Adaptive information extraction from text by rule induction and
generalisation. In Proceedings of the 17th International Joint Conference on Arti-
ficial Intelligence - Volume 2, IJCAI’01, pages 1251–1256, 2001.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli,
and Yoshua Bengio. Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. In Advances in neural information processing
systems, pages 2933–2941, 2014.

Andreas R Dengel and Bertin Klein. smartfix: A requirements-driven system for
document analysis and understanding. In International Workshop on Document
Analysis Systems, pages 433–444. Springer, 2002.

80 Bibliography

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima
can generalize for deep nets. arXiv preprint arXiv:1703.04933, 2017.

George R Doddington, Alexis Mitchell, Mark A Przybocki, Lance A Ramshaw,
Stephanie Strassel, and Ralph M Weischedel. The automatic content extraction
(ace) program-tasks, data, and evaluation. In LREC, volume 2, page 1, 2004.

Daniel Esser, Daniel Schuster, Klemens Muthmann, Michael Berger, and Alexander
Schill. Automatic indexing of scanned documents: a layout-based approach. In
Document Recognition and Retrieval XIX, volume 8297, page 82970H. International
Society for Optics and Photonics, 2012.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks. In Acoustics, speech and signal processing (icassp),
2013 ieee international conference on, pages 6645–6649. IEEE, 2013.

Ralph Grishman and Beth Sundheim. Message understanding conference-6: A brief
history. In COLING 1996 Volume 1: The 16th International Conference on Com-
putational Linguistics, volume 1, 1996.

Sonal Gupta and Christopher Manning. Improved pattern learning for bootstrapped
entity extraction. In Proceedings of the Eighteenth Conference on Computational
Natural Language Learning, pages 98–108, 2014a.

Sonal Gupta and Christopher Manning. Spied: Stanford pattern based information
extraction and diagnostics. In Proceedings of the Workshop on Interactive Language
Learning, Visualization, and Interfaces, pages 38–44, 2014b.

Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf.
Support vector machines. IEEE Intelligent Systems and their applications, 13(4):
18–28, 1998.

Julia Hirschberg and Christopher D Manning. Advances in natural language process-
ing. Science, 349(6245):261–266, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

Scott B Huffman. Learning information extraction patterns from examples. In In-
ternational Joint Conference on Artificial Intelligence, pages 246–260. Springer,
1995.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3128–3137, 2015.

Bibliography 81

Kenji Kawaguchi and Yoshua Bengio. Depth with nonlinearity creates no bad local
minima in resnets. arXiv preprint arXiv:1810.09038, 2018.

Sheehan Khan, Shahab Jabbari, Shahin Jabbari, and Majid Ghanbarinejad. Solving
Sudoku using probabilistic graphical models. unpublished, 2014.

Jun-Tae Kim and Dan I. Moldovan. Acquisition of linguistic patterns for knowledge-
based information extraction. IEEE transactions on knowledge and data engineer-
ing, 7(5):713–724, 1995.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In
MT summit, volume 5, pages 79–86, 2005.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten
zip code recognition. Neural computation, 1(4):541–551, 1989.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015.

Maria Liakata, Larisa N Soldatova, et al. Semantic annotation of papers: Interface
& enrichment tool (sapient). In Proceedings of the Workshop on Current Trends
in Biomedical Natural Language Processing, pages 193–200. Association for Com-
putational Linguistics, 2009.

Guosheng Lin, Chunhua Shen, Ian Reid, and Anton van den Hengel. Deeply learning
the messages in message passing inference. In Advances in Neural Information
Processing Systems, pages 361–369, 2015.

Eric Medvet, Alberto Bartoli, and Giorgio Davanzo. A probabilistic approach to
printed document understanding. International Journal on Document Analysis
and Recognition (IJDAR), 14(4):335–347, 2011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–3119, 2013.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for
relation extraction without labeled data. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1003–1011.
Association for Computational Linguistics, 2009.

82 Bibliography

Ion Muslea et al. Extraction patterns for information extraction tasks: A survey. In
The AAAI-99 workshop on machine learning for information extraction, volume 2.
Orlando Florida, 1999.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 807–814, 2010.

Peter Norvig. Solving every Sudoku puzzle. http://norvig.com/sudoku.html viewed
on 2017-10-12, 2006.

Rasmus Berg Palm, Dirk Hovy, Florian Laws, and Ole Winther. End-to-end informa-
tion extraction without token-level supervision. arXiv preprint arXiv:1707.04913,
2017a.

Rasmus Berg Palm, Ole Winther, and Florian Laws. Cloudscan - a configuration-
free invoice analysis system using recurrent neural networks. arXiv preprint
arXiv:1708.07403, 2017b.

Rasmus Berg Palm, Florian Laws, and Ole Winther. Attend, copy, parse - end-to-end
information extraction from documents. unpublished, 2018a.

Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks.
In Advances in neural information processing systems, 2018b.

Kyubyong Park. Can neural networks crack Sudoku?
https://github.com/Kyubyong/sudoku viewed on 2017-10-17, 2016.

Siddharth Patwardhan. Widening the field of view of information extraction through
sentential event recognition. PhD thesis, Citeseer, 2010.

Patti J Price. Evaluation of spoken language systems: The atis domain. In Speech and
Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania,
June 24-27, 1990, 1990.

Lance Ramshaw and Mitch Marcus. Text chunking using transformation-based learn-
ing. In Third Workshop on Very Large Corpora, 1995.

Ellen Riloff et al. Automatically constructing a dictionary for information extraction
tasks. In AAAI, volume 1, pages 2–1. Citeseer, 1993.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533, 1986.

Bibliography 83

Marçal Rusinol, Tayeb Benkhelfallah, and Vincent Poulain dAndecy. Field extraction
from administrative documents by incremental structural templates. In Document
Analysis and Recognition (ICDAR), 2013 12th International Conference on, pages
1100–1104. IEEE, 2013.

Adam Santoro, David Raposo, David GT Barrett, Mateusz Malinowski, Razvan Pas-
canu, Peter Battaglia, and Timothy Lillicrap. A simple neural network module for
relational reasoning. arXiv preprint arXiv:1706.01427, 2017.

Sunita Sarawagi et al. Information extraction. Foundations and Trends® in Databases,
1(3):261–377, 2008.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015.

Daniel Schuster, Klemens Muthmann, Daniel Esser, Alexander Schill, Michael Berger,
ChristophWeidling, Kamil Aliyev, and Andreas Hofmeier. Intellix–end-user trained
information extraction for document archiving. In Document Analysis and Recog-
nition (ICDAR), 2013 12th International Conference on, pages 101–105. IEEE,
2013.

Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy Lehnert. Crystal:
Inducing a conceptual dictionary. arXiv preprint cmp-lg/9505020, 1995.

Beth M Sundheim. Overview of the third message understanding evaluation and
conference. In Proceedings of the 3rd conference on Message understanding, pages
3–16. Association for Computational Linguistics, 1991.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1701–1708, 2014.

Ken Thompson. Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419–422, 1968.

Alan Turing. Computing machinery and intelligence. Mind, 59(236):433, 1950.

Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu.
Wavenet: A generative model for raw audio. In SSW, page 125, 2016.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances
in Neural Information Processing Systems, pages 2692–2700, 2015.

Ronald J Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural computation, 1(2):270–280, 1989.

84 Bibliography

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

Roman V Yampolskiy. Turing test as a defining feature of ai-completeness. In Artifi-
cial intelligence, evolutionary computing and metaheuristics, pages 3–17. Springer,
2013.

Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and C Lee Giles.
Learning to extract semantic structure from documents using multimodal fully
convolutional neural networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329, 2014.

	Summary
	Resume (Danish)
	Preface
	Acknowledgements
	Contributions
	Contents
	1 Introduction
	1.1 The problem
	1.2 Deep Learning
	1.3 Information Extraction

	2 Research
	2.1 Motivation
	2.2 Approach
	2.3 Papers

	3 Conclusions
	3.1 Conclusion
	3.2 Future work

	A CloudScan - A configuration-free invoice analysis system using recurrent neural networks.
	B End-to-End Information Extraction without Token-Level Supervision
	C Attend, Copy, Parse - End-to-end information extraction from documents
	D Recurrent Relational Networks
	Bibliography

