

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 03, 2019

The Ultrasound File Format (UFF) - First draft

Bernard, Olivier; Bradway, David; Hansen, Hendrik H.G.; Kruizinga, Pieter; Nair, Arun; Perdios, Dimitris;
Ricci, Stefano; Rindal, Ole Marius Hoel; Rodriguez-Molares, Alfonso; Stuart, Matthias Bo; Dos Santos,
Pedro Filipe Viseu
Published in:
Proceedings of 2018 IEEE International Ultrasonics Symposium

Link to article, DOI:
10.1109/ULTSYM.2018.8579642

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bernard, O., Bradway, D., Hansen, H. H. G., Kruizinga, P., Nair, A., Perdios, D., ... Dos Santos, P. F. V. (2018).
The Ultrasound File Format (UFF) - First draft. In Proceedings of 2018 IEEE International Ultrasonics
Symposium IEEE. https://doi.org/10.1109/ULTSYM.2018.8579642

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/196529861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ULTSYM.2018.8579642
http://orbit.dtu.dk/en/publications/the-ultrasound-file-format-uff--first-draft(c270bfc1-9a69-42f5-82e7-a6143fc45819).html

The Ultrasound File Format (UFF) - First draft
Olivier Bernard *

CREATIS
University of Lyon,

Lyon, France

David Bradway
Dept. of Biomedical Engineering

Duke University
Durham, United States

Hendrik H.G. Hansen
Medical UltraSound Imaging Center
Radboud University Medical Center

Nijmegen, Netherlands

Pieter Kruizinga
Biomedical Engineering

Erasmus MC
Rotterdam, Netherlands

Arun Nair
PULSE Lab

Johns Hopkins University
Baltimore, United States

Dimitris Perdios
Signal Processing Laboratory

EPFL
Lausanne, Switzerland

Stefano Ricci
Engineering Information Dept.

University of Florence
Florence, Italy

Ole Marius Hoel Rindal
Dept. of Informatics
University of Oslo

Oslo, Norway

Alfonso Rodriguez-Molares
Dept. Circulation and Medical Imaging

NTNU
Trondheim, Norway

Matthias Bo Stuart
Biomedical Engineering

Technical University of Denmark
Lyngby, Denmark

Pedro Filipe Viseu Dos Santos
Dept. of Cardiovascular Imaging and Dynamics

KU Leuven
Leuven, Belgium

Abstract—The lack of a standard format for storing ultrasound
research data is hindering our ability to share and compare
research results. This is slowing down the progress in our field,
making it difficult to assess the relevance of new techniques.

In October 2017 the Ultrasound File Format (UFF) initiative
was formed with the aim of defining such a standard, with the
support of eleven research groups. Here we present some of the
components of the first draft of the UFF format.

Index Terms—ultrasound, file, format, channel data, data
sharing, research data, data reuse

I. INTRODUCTION

Systems able to produce channel data have become widely
available to research laboratories, enabling the development of
advanced sequences and processing techniques.

Despite its popularity, channel data are often stored in
formats defined by the laboratories themselves, meeting their
particular interests and tools. Those formats are often highly
efficient, but they are fitted to specific sequences, systems, or
probes, omitting information that would be required by a third
party to use the data. They are difficult to maintain and expand.

Due to the increasing complexity of ultrasound imaging
techniques, it no longer suffices with a set of images to assess
the validity, correctness, and relevance of new techniques [1].
In recent years, there has been an increase in willingness to
embrace data sharing practices [2]. Over 63% of researchers
submit research data files as supplementary information for
their manuscripts, or deposit the files in an open repository. It
has been shown [2] that this practice increases the return on
investment, enabling the reproduction, assessment, and reuse
of research.

However, in the field of ultrasound imaging, the prevalence
of custom formats hampers the diffusion of data.

In the occasion of the IEEE IUS 2017 conference (Wash-
ington D.C), the Ultrasound File Format (UFF) initiative

*Authors are shown in alphabetical order.

was started. Eleven laboratories agreed upon the need for a
common format for channel data that would facilitate dis-
semination of data, replication of results, and comparison of
processing techniques.

And hence the UFF taskforce was formed, composed by one
member from each laboratory, with the objective of developing
the common format. During most of 2018 the UFF taskforce
has worked in the first draft of the standard. A draft that is
disclosed in the following sections.

II. METHODS

All units are given in SI units unless otherwise specified.
We use blue color to identify references to UFF objects, and
green to identify arrays of UFF objects.

Hierarchical Data Format (HDF5) was chosen due to its
ability to store and organize large amounts of data [3]. HDF5
is a platform independent data model and file format that
supports an unlimited variety of datatypes. It is designed for
flexible and efficient I/O in local and remote systems.

HDF5 is developed by the HDF Group, a non-profit orga-
nization with the mission of advancing state-of-the-art open
source data management technologies. HDF5 has become a
de facto standard in the scientific community. Many scientific
environments count with a HDF5 API such as MATLAB [4],
Python [5], or Julia [6].

HDF5 uses two objects types: groups and datasets. HDF5
groups organize data objects similarly to directories and files in
UNIX. Every HDF5 file contains a root group that can contain
other groups. HDF5 datasets contain data and metadata that
describe the data [3].

We use the term UFF object to refer to an independent
set of data. UFF objects are stored as HDF5 groups, and are
suited to be implemented as classes in several programming
languages.

Fig. 1: Example of sequences

III. RESULTS

In this section we describe the objects that have been
included in the first draft of the UFF.

A. Channel data

The object uff.channel_data contains all the information
needed to store and later process channel data,

uff.channel_data

authors < string

description < string

local_time < string ISO 8601

country_code < string ISO 3166-1

system < string

sound_speed < double

repetition_rate < double

probes < uff.probe

unique_waves < uff.wave

unique_events < uff.event

sequence < uff.timed_event

event < uff.event

time_offset < double

data < double

where authors identify the authors of the data; description
describes the acquisition scheme, motivation and application;
local_time and country_code identify the time and place the
data were acquired; system describes the hardware used in
the acquisition; sound_speed contains the reference speed of
sound that was used in the system to produce the transmitted
waves; and repetition_rate is the sequence repetition rate,
also referred to as framerate in some scenarios

The object uff.channel_data contains all the probes

used in the acquisition, a list of the unique_waves that
have been transmitted, and a list of the unique_events that
form the sequence. The sequence is specified as an array
of uff.timed_events, each member containing an event

reference, and the time_offset since the beginning of the
beginning of the current repetition, also referred to as frame.

The HDF5 dataset data contains the channel data, organized
as a matrix of four dimensions:

samples × channels × events × repetitions

where samples is the number of temporal samples acquired
by the system, channels is the number of active channels,
events is the number of events in the sequence (not unique
events), and repetitions is the number of times the sequence
was repeated.

This proposal has the limitation of requiring that all event
acquisitions have the same number of time samples and active
channels.

B. Events

We define uff.event as a tuple of uff.transmit_setup

and uff.receive_setup objects,

uff.event

transmit_setup < uff.transmit_setup

probe < uff.probe

transmit_waves < uff.transmit_wave

wave < uff.wave

time_offset < double

weight < double

channel_mapping < int32

receive_setup < uff.receive_setup

probe < uff.probe

time_offset < double

sampling_frequency < double

channel_mapping < int32

The object transmit_setup contains a reference to the
probe used to transmit the waves, an array describing all the
transmit_waves, and a channel_mapping dataset routing the
elements in the probe to the active channels in the system.

Each of the transmit_waves contains a reference to a wave,
and the time_offset since the start of the event. Note that
several waves can be transmitted simultaneously, with different
geometry, weight and time_offset relative to each other.

The object receive_setup contains a reference to the probe

used on receive, the time_offset between the event start and
the beginning of data acquisition, the sampling_frequency,
and a channel_mapping dataset routing the elements in the
probe to the channels in the system.

C. Waves

The geometry of an ultrasonic wave is defined as

uff.wave

origin < uff.transform

wave_type < enumeration

aperture < uff.aperture

origin < uff.position

window < string

f_number < double

fixed_size < double

excitation < uff.excitation

where wave_type is an enumerated type (int32) that indicates
the type of transmitted wave: converging wave (0), diverging
wave (1), plane wave (2), or cylindrical wave (3). The interpre-
tation of origin depends on wave_type. For converging waves
origin.translation holds the location of the wave focal
point, for diverging waves origin.translation holds the lo-
cation of the virtual source; in both cases the origin.rotation

is ignored. For plane waves origin.rotation holds the ori-
entation of the wave and origin.translation is ignored.

While origin completely defines the transmit delay pro-
file, the aperture defines the transmit apodization profile.
In this case aperture.origin defines the center of the
aperture. The size of the aperture can be described with
fixed_size, or with f_number in which case the aper-
ture size is A = d/F where F is the f_number and
d is the distance between uff.wave_geometry.origin and
uff.wave_geometry.aperture.origin.

The object window is a string describing the apodization
window. Examples of uff.wave are shown in Fig. 2.

Fig. 2: Example of waves defined with uff.wave

Fig. 3: Example of probes defined with uff.probe

D. Probes

UFF aims to support all possible probe geometries by
defining uff.probe as an arbitrary collection of elements

uff.probe

transform < uff.transform

focal_length < double

elements < uff.element

transform < uff.transform

geometry < uff.element_geometry

impulse_response < uff.impulse_res...

element_geometries < uff.element_geom...

perimeter < uff.perimeter

impulse_responses < uff.impulse_response

initial_time < double

sampling_frequency < double

data < double

units < string

where focal_length specifies the lens focusing dis-
tance. Note that the elements in element_geometry and
impulse_response are referred by the fields geometry and
impulse_response of each member in element. This avoids
unnecessary replication of information.

The objects in elements describe an ultrasonic element with
a given geometry and impulse response, located at a given
location in space. The objects in element_geometry define
the geometry of the elements that have unique geometry (i.e.
in a linear array element_geometry will have size 1).

(a) (b)

(c) (d)

Fig. 4: Example of element geometries (a and b) and corre-
sponding elements after transformation (c and d)

Here we assume that the acoustic center of the element is
at origin O = (0, 0, 0) pointing towards ~z = (0, 0, 1). The
element shape is defined by a closed perimeter contained
within the XY -plane, that is in turn composed of an ordered
set of uff.position instances. In Fig. 4 examples are shown
of two different element geometries and the attitude they take
after applying the transform in the corresponding element.

The objects in impulse_responses describe the the two-way
impulse response of unique elements, where initial_time

denotes the time offset between the activation of the im-
pulse and the first acquired sample. Note that geometry and
impulse_response are references (H5Link).

The probe contains a uff.transform object that enables
moving the probe in space, a convenient feature in probe
tracking applications, or if more than one probe is used.

E. Transforms
The object uff.transform, which is included in many UFF

objects, defines an affine transformation in a 3D Cartesian
system, as

uff.transform

translation < uff.translation

rotation < uff.rotation

A transform is composed by a rotation R = (rx, ry, rz)
followed by a translation T = (tx, ty, tz). The rotation axis
X, depicted in Fig. 5, is known as elevation, the rotation axis
Y is known as azimuth, and the rotation axis Z is known as
roll, in aeronautical terminology.

Fig. 5: 3D Cartesian axes and rotations.

IV. CONCLUSION

We present here the main components in the first draft of
the Ultrasound File Format (UFF). The scope of this first
draft is limited to the specification of the components needed
to store and process channel data. The UFF aims to be as
general as possible, covering all possible probes, systems, and
transmission schemes.

The format is based on HDF5, a platform independent file
format designed for efficient handling of large amounts of data.

UFF is developed by the UFF taskforce, a group of re-
searchers aiming to facilitate and popularize the dissemination
of research data, replication of results, and comparison of
processing techniques.

At the moment of this publication, the first draft is be-
ing discussed and revised by the UFF taskforce. However
files and code examples are available at https://bitbucket.org/
ultrasound file format/uff/wiki/Home.

ACKNOWLEDGMENT

The UFF taskforce would like to thank the IEEE IUS
organizing committee for providing a venue for UFF meetings,
and our home institutions for supporting our activity in the
UFF initiative.

REFERENCES

[1] O. M. H. Rindal, A. Austeng, H. Torp, S. Holm, and A. Rodriguez-
Molares, “The dynamic range of adaptive beamformers,” in 2016 IEEE
International Ultrasonics Symposium (IUS), pp. 1–4, Sept 2016.

[2] N. A. Vasilevsky, J. Minnier, M. A. Haendel, and R. E. Champieux,
“Reproducible and reusable research: are journal data sharing policies
meeting the mark?,” PeerJ, vol. 5, p. e3208, 2017.

[3] The HDF Group, “Introduction to hdf5.” https://portal.hdfgroup.org/
display/HDF5/Introduction+to+HDF5, 2018. [Online; accessed 2018-09-
17].

[4] Mathworks, “Hdf5 files.” https://www.mathworks.com/help/matlab/
hdf5-files.html?searchHighlight=hdf5&s tid=doc srchtitle, 2018.
[Online; accessed 2018-09-17].

[5] A. Collette, “Hdf5 for python.” http://docs.h5py.org/en/stable/, 2018.
[Online; accessed 2018-09-17].

[6] T. Holy, “Julia hdf5 guide.” https://github.com/JuliaIO/HDF5.jl/blob/
master/doc/hdf5.md, 2018. [Online; accessed 2018-09-17].

https://bitbucket.org/ultrasound_file_format/uff/wiki/Home
https://bitbucket.org/ultrasound_file_format/uff/wiki/Home
https://portal.hdfgroup.org/display/HDF5/Introduction+to+HDF5
https://portal.hdfgroup.org/display/HDF5/Introduction+to+HDF5
https://www.mathworks.com/help/matlab/hdf5-files.html?searchHighlight=hdf5&s_tid=doc_srchtitle
https://www.mathworks.com/help/matlab/hdf5-files.html?searchHighlight=hdf5&s_tid=doc_srchtitle
http://docs.h5py.org/en/stable/
https://github.com/JuliaIO/HDF5.jl/blob/master/doc/hdf5.md
https://github.com/JuliaIO/HDF5.jl/blob/master/doc/hdf5.md

	Introduction
	Methods
	Results
	Channel data
	Events
	Waves
	Probes
	Transforms

	Conclusion
	References

