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Abstract

Vehicle re-identification (re-ID), namely, finding exactly the same vehicle from

a large number of vehicle images, remains a great challenge in computer vi-

sion. Most existing vehicle re-ID approaches follow a fully-supervised learning

methodology, in which sufficient labeled training data is required. However,

this limits their scalability to realistic applications, due to the high cost of data

labeling. In this paper, we adopted a Generative Adversarial Network (GAN)

to generate unlabeled samples and enlarge the training set. A semi-supervised

learning scheme with the Convolutional Neural Networks (CNN) was proposed

accordingly, which assigns a uniform label distribution to the unlabeled images

to regularize the supervised model and improve the performance of the vehicle

re-ID system. Besides, an improved re-ranking method based on Jaccard dis-

tance and k-reciprocal nearest neighbors is proposed to optimize the initial rank

list. Extensive experiments over the benchmark datasets VeRi-776, VehicleID

and VehicleReID have demonstrated that the proposed method outperforms the

state-of-the-art approaches for vehicle re-ID.
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1. Introduction

With the explosive growth of video data captured by various surveillance

cameras, there is an increasing demand for improved surveillance video analysis

capabilities which require a large number of vehicle related tasks, such as vehicle

detection, classification and verification. In this work, we focus on the task of5

vehicle re-identification (re-ID) in still images, which aims to quickly discover,

locate and track the target vehicles across multiple cameras, thus automating

the time consuming manual task. Vehicle re-ID has practical applications in

surveillance systems and intelligent transportation [1]. In vehicle re-ID systems,

a query image, also called a probe image, is compared with the gallery images10

that contain various vehicles captured by multiple cameras. Normally, a rank

list is generated that has several matched images from the gallery set. Fig.1

further explains the vehicle re-ID task.

Traditionally, the combination of sensor data and multiple clues are used to

solve the task of vehicle re-ID, such as the transit time [2] and the wireless mag-15

netic sensors [3]. However, these methods are sensitive to the fickle environment

(e.g., thunder and lightning) and require the extra cost of additional hardware.

In addition, the license plate is an important clue which contains the unique ID

of vehicle, thus the technologies related to license plate have been proposed in

[4], [5]. Nevertheless, it’s easy to occlude, remove, or even forge the license plate,20

especially in criminal circumstances. To alleviate these limitations, we focus on

this task based on on its visual appearance, which is essential for fully-fledged

vehicle re-ID system.

To this end, the discriminative features should be extracted to distinguish

different vehicles for robust vehicle re-ID [6]. Basically, there exists two chal-25

lenges. (1) Different lighting and complex environments causes difficulties for

appearance-based vehicle re-ID. Also, large variations in appearance will be pro-

duced if capture vehicle using different cameras. How to take such large intra-

class variance into account for feature representation is crucial. (2) Compared

with the person re-ID, vehicle re-ID is more challenging as different vehicles30
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Figure 1: Explanation of the task of vehicle re-ID. Given a snapshot of a vehicle (the probe), a

re-ID system retrieves from a database (the gallery) which contains a list of other snapshots of

vehicles, usually taken from different cameras at different time, and ranks them by decreasing

similarities to the probe.

can be visually very similar to each other, especially when they are from the

same category. Fig.2 further explains the situations of intra-class variance and

inter-class similarity.

The deep embedding method has shown generalization abilities and promis-

ing performance in the re-ID task, which aims at learning compact features35

embedded in some semantic spaces through a deep convolutional neural net-

work (CNN). The objective of embedding is typically expresses as pulling the

features from similar images closer and pushing the features from dissimilar

images further away. Among these methods, learning identity-sensitive and

view-insensitive features is crucial to ensure the learning effectiveness of the40

CNN model. Hence rich labelled data from different camera views is required

to learn a feature representation that is invariant to the appearance changes.

However, relying on manually labelled data for each camera view results in poor

scalability. This is due to two reasons: (1) It’s a tedious and difficult task for

humans to match an identity correctly among hundreds of data from each cam-45

era. (2) In real-world applications, there are a large number of cameras in a

surveillance network (e.g., those in an airport or shopping mall), it’s infeasible

to annotate sufficient training samples from all the camera views. Therefore,
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Figure 2: Examples explaining the intra-class variance and inter-class similarity. (a) Due to

the different viewing angles and illuminations levels of cameras, the images of each row on

the left column from the same vehicle produce the significant intra-class variance. (b) The

images of each row on the right column belonging to the different vehicles from the same class

and produce inter-class similarities. It’s challenging to distinguish the vehicles with similar

appearance.

these practical issues severely limit the applicability of the existing vehicle re-ID

methods.50

To alleviate the large demand of training data, the approaches of semi-

supervised learning have been proposed recently which uses the unlabeled sam-

ples to boost the performance on a specific task. It is driven by the practical

value in learning faster, cheaper, and better feature representations. Semi-

supervised learning attempts to obtain a deep model that can more accurately55

predict unseen test data than a deep model learned only from labeled training

data. Common semi-supervised learning methods include variants of genera-

tive models [7], co-training [8] and graph Laplacian based methods [9]. Above

works in semi-supervised learning are based on the fact that sufficient unlabeled

data is available. However, if the number of unlabeled sample is scarce or diffi-60

cult to collect, traditional semi-supervised methods may become useless. In our

work, instead of using unlabeled data from the real sample space, we propose a

semi-supervised feature embedding method which directly uses a generative ad-
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Figure 3: The workflow of the proposed method. There are three stages: (1) Generation of

unlabeled data by using the original training set of vehicles to train the generative adversarial

network [10]; (2) Semi-supervised learning by combining the labeled training set with vehicle

ID and the unlabeled images data to fine-tune the CNN model with LSRO; (3) Feature ex-

traction and rank optimization. We achieve an initial ranking based on the pairwise Euclidean

distance of deep feature for the probe and each image in gallery set. To improve the initial

ranking list, we finally add the re-ranking step.
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versarial network (GAN) to generate unlabeled samples. Goodfellow et al. [11]

first proposed the GAN to obtain the optimal discriminator network between65

real samples and generated samples based on the min-max game between gen-

erator and discriminator. Besides, the performance of image generator network

will be improved simultaneously. Rather than investigating how to enhance the

quality of the generated samples [10], [12], our research will focus on how to

use GAN to promote the performance of classifiers. Specifically, we incorporate70

the generated samples with original training images to train CNN models with

semi-supervised learning.

As illustrated in Fig.3, there are three stages in the proposed algorithm.

Initially, we obtain the generated vehicle images by using the original images

in training set to train DCGAN [10]. In the second stage, we improve the75

discriminative power of the deep model for the re-ID task by using a larger

training set which includes unlabeled images. More precisely, we use the initially

labeled target dataset plus the unlabeled data generated in stage one to fine-tune

the CNN model. In this manner, the improved ResNet-50 model [13] is trained

with all the data simultaneously. This stage is in the setting of semi-supervised80

learning, as the training dataset includes images with labels and images without

labels.

Although significant progress has been achieved from previous researches of

appearance based deep learning approaches for vehicle re-ID, their ranking ac-

curacies are often unsatisfactory. To further improve the performance of vehicle85

re-ID, a technique is presented that uses a distance metric for rank optimiza-

tion in the third stage. Specifically, we apply the trained CNN model from the

second stage to extract the CNN features for probe image and each vehicle in

gallery set. The initial ranking list can be achieved by calculating the pairwise

Euclidean distances between the probe and the gallery. Then we compute the90

Euclidean distance and the Jaccard distance by comparing their k-reciprocal

nearest neighbor set. We integrate the Euclidean distance and the Jaccard dis-

tance to obtain the proposed ranking list. We validate the performance of the

proposed technique on three publically available vehicle re-ID datasets, VeRi-
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776 [14], VehicleID [15] and VehicleReID [16] dataset, all with promising results.95

Our contributions can be summarized as follows:

• We propose a semi-supervised deep learning scheme for vehicle re-ID task

which makes learning rich feature representations of vehicles from a limited

number of labeled data possible.

• We present a re-ranking algorithm for ranking optimization which is firstly100

introduced for the vehicle re-ID task. Since the sample label is not re-

quired, the process of the re-ranking algorithm can be performed in unsu-

pervised learning.

• We conduct extensive experiments and improve state-of-the-art vehicle re-

ID performance on two benchmark datasets, VeRi-776 [14] and VehicleID105

[15] and demonstrate the effectiveness of our proposal. We apply the single

shot setting on the VehicleReID [16] dataset for the first time and achieved

promising results, providing baseline data for subsequent research.

The remainder of this paper is organized as follows: Section 2 offers a brief

overview of the vehicle re-ID literature. We then provide a detailed description of110

the proposed method in Section 3. The implementation details and experimental

results are discussed in Section 4, followed by the conclusion in Section 5.

2. Related work

As an emerging research topic, vehicle re-ID has recently attracted great sig-

nificant interest [14], [15], [16], [17], [18]. In this section, we review the relevant115

works from three aspects: semi-supervised learning, re-ranking for person re-ID

and vehicle re-ID.

2.1. Semi-supervised Learning

Semi-supervised learning exploits both the labeled data and unlabeled data

to perform the learning task and bridges the gap between the fully-supervised120
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learning and unsupervised learning. Some research exploits weak label anno-

tations for each bounding box [19], or image [20] to enrich the training data.

Compared with strong annotations, i.e., pixel-wise segmentations, weak anno-

tations for bounding boxes and images cost less time. Therefore, they generally

assume that there are a large number of weak annotations available for train-125

ing, while the amount of training images with strong annotations are limited. In

this setting, weakly annotated samples are used to update the supervised deep

model by iteratively inferring and refining hypothetical segmentation labels.

A framework of semi-supervised feature selection has been introduced in [21],

both labeled and unlabeled training data are exploited to analyse the feature130

space. The researches in [22], [23], [24] explore the idea of assigning virtual labels

to the generated samples in the setting of semi-supervised learning. Salimans et

al. [22] and Odena et al. [23] proposed an all-in-one method which simply take

all the generated images as a new class. In practice, N defines the number of

classes in the real training sets, then N+1 is assigned to each generated sample.135

However, the generated samples tend to belong to the classes in N rather than

the N + 1 class due to the fact that they are generated from distribution of the

real samples. Without using an extra class, the method of assigning virtual label

to generated samples has been proposed in [24], which exploits the maximum

predicted probability generated for unlabeled image. After fedding an unlabeled140

sample into network, it will be fitted to a certain pre-defined class after several

training epochs. A virtual label smoothing regularization for outliers (LSRO)

was introduced by Zheng et al. [25] to address the over-fitting problem in [24].

LSRO assigns a uniform label distribution on generated samples to regularize

the training process of deep network.145

2.2. Re-ranking for Person re-ID

Recently, several re-ranking methods are proposed to improve the perfor-

mance of person re-ID by optimizing the original ranking list [26], [27]. In [28],

a re-ranking model is developed by analyzing the correlation of nearest neigh-

bors of each pair images. Garcia et al. [29] introduced a re-ranking method for150
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person re-id, in which the content and content information are both considered

to remove ambiguous samples. A bidirectional ranking method has been pro-

posed in [30], which joins the contextual similarities with content similarities to

revise the initial ranking list.

Some researchers have exploited the nearest neighbors of the multiple base-155

line methods to the re-ranking task [31], [32]. In [31], the common nearest

neighbors of local and global features are combined as new queries, then aggre-

gate the global and local feature to optimize the initial ranking list. Ye et al.

[32] calculated both the similarity and dissimilarity of the k-nearest neighbor set

from different baseline methods to optimize the initial ranking list. These re-160

ranking methods have made contributions to discover the potential information

from the k-nearest neighbors.

However, the overall performance from the above works may be restricted

if the k-nearest neighbors are used to achieve the task of re-ranking directly,

because false matches are often included. In the literature, the k-reciprocal165

nearest neighbor [33], [34] is effective to increase the amount of true matches on

the top-k images. We regard the two images as k-reciprocal nearest neighbors

[34] if they are both ranked between top-k in the ranking list when the other

image is used as the probe. In this paper, we propose an effective re-ranking

method for vehicle re-ID and study the importance of the k-reciprocal neighbors.170

2.3. Vehicle re-ID

In recent years, the researches on various computer vision tasks have achieved

significant progresses, including object matching [35], [36], traffic scene recogni-

tion [37], action recognition [38], [39] and vehicle related works [18], [40]. Several

researchers have proposed to apply the visual characteristics and the semantic175

attributes for vehicle retrieval. A vehicle retrieval and detection system was

presented in [41], in which the task of attribute recognition and vehicle retrieval

were both achieved. Liu et al. [14] exploited the real-world spatial-temporal en-

vironment to achieve a content assisted search for vehicle re-ID. There are some

works focused on applying the linear discriminant analysis (LDA) [42], [43] to180
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optimize distance metrics in re-ID tasks. LDA learns a transformation matrix

for feature space from high-dimensional to low-dimensional while preserving the

class discrimination information as much as possible [44]. In [45], Local Fisher

Discriminant Analysis was employed to learn a distance metic. Wu et al. [46]

approximated the variations of intra-class and inter-class by training a hybrid185

deep architecture with an LDA criterion.

Additionally, hybrid features have been proposed to enhance the recognition

of vehicle characteristics in some published works. For example, Cormier et al.

[18] proposed a mixed descriptor for low resolution vehicle re-ID, in which the

local variance and local binary patterns (LBP) were combined. Liu et al. [40]190

presented a vehicle re-ID method that incorporated the feature of metric learn-

ing and vehicle model into one network. Despite these progresses on vehicle

re-ID, how to exploit unlabeled samples and the re-ranking algorithm have not

been well investigated in detail, which can significantly influence vehicle recog-

nition performance. In this work, we propose to use GAN generated samples195

and re-ranking to boost the vehicle re-ID performance of off-the-shelf CNN.

3. Proposed Approach

3.1. Generative Adversarial Networks

A generator and a discriminator are two sub-networks in the generative

adversarial network (GAN)[11]. A generator produces a model distribution by200

transforming a random noise seed. A discriminator then tries to distinguish

between samples between that model distribution and the target distribution.

The training process of adversarial can be regarded as a minimax game: both

the generator and discriminator oppose each other’s objective and minimize its

own cost, which leads a converged status that minimize the distance between205

the distribution of real samples and generated samples.

We use the basic framework of DGCAN [10] in our research. Many other vari-

ants of GAN have been proposed, such as conditional GAN [47] and stackedGAN

[48]. While most of previous researches are focus on studying the methods of
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generating more complex sample by training with high-quality images of objects,210

our aim is to modify the basic GAN model [10] and use it to generate unlabeled

samples from the low-quality surveillance image of vehicles, thus helping im-

prove the discriminative learning.

Five deconvolution functions are used to expand the tensor, which is defined

as a data container with an N-dimensional array. The stride of the deconvolution215

filters 2 and their size is 5×5. Following with a tanh activation function, we add

one deconvolutional layer with a stride of 1 and kernel size 5×5 to fine-tune the

result. An image can then be drawn from the generator net after training. We

combine the original training set with the generated images and then fed them

into the discriminator network. Five convolutional layers with a stride of 2 and220

kernel size 5×5 are used to identify whether the generated images are fake.

3.2. Label Smoothing Regularization for Outliers

Our model computes the probability of each class n ∈ {1, 2, ..., N}: p(n|x) =

exp(zn)∑N
n=1 exp(zn)

for each training image x. Here, N is the number of pre-defined

classes in the training set and zn represents the logits or unnormalized log-

probabilities. We normalize the ground-truth distribution over labels q(n|x) for

image x so that
∑
n q(n|x)=1. We define the he cross-entropy loss as Eq.1,

which omits the dependence of p and q on example x.

l = −
N∑
n=1

log(p(n))q(n) (1)

Minimizing the cross-entropy loss is equal to maximize the expected log-likelihood

of a label, which is selected according to its ground-truth distribution q(n).

Cross-entropy loss is widely appied for gradient training of deep models. The

gradient can formulated as ∂l
∂zn

= p(n)− q(n), the bounded range for it defined

as [−1, 1]. Suppose there exsits a single ground truth label y, we can express

the q(n) as:

q(n) =

 0 n 6= y

1 n = y
(2)
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In this case, the objective of minimizing the cross-entropy loss is equal to maxi-

mize the predicted probability of the expected log-likelihood of the ground truth

label. For a particular image x with ground truth y, the log-likelihood is max-225

imized for q(n), which equals to 1 for n = y. This maximum is not achievable

for finite zn but is approached if zy > zn for all n 6= y, which means the logit

of ground-truth label is larger than other logits. However, two problems can be

caused. First, it may result in overfitting: the generalize can not be guaranteed

if the model assigns full probability to the ground-truth label for each training230

example. Second, the model is overconfident about its predictions, resulting in

a larger difference between the maximum logit and all other logits.

To address the second problem, the label smoothing regularization (LSR)

has been introduced in [49] to encourage the model to be less confident. While

it not consistent with the goal of maximizing training tags, it does regularize

the model and make it more adaptable. In [49], the label distribution qLSR(n)

is written as:

qLSR(n) =

 ε
N n 6= y

1− ε+ ε
N n = y

(3)

where ε ∈ [0, 1] is a smoothing parameter. If set ε to zero, Eq.3 will reduce

to Eq.2. On the contrary, the model may not be able to predict ground truth

label if ε is too large. Therefore, the value of ε equals 0.1 in most cases. The

cross-entropy loss evolves to Eq.4 by considering Eq.1 and Eq.3:

lLSR = −(1− ε)log(p(y))− ε

N

N∑
n=1

log(p(n)) (4)

In order to use the generated images in the process of deep feature learning,

Zheng et al. [49] propose the label smoothing regularization for outliers (LSRO)

method, which extends LSR [49] from the fully-supervised learning to the semi-

supervised learning. It assumes the generated samples do not belong to any

pre-defined class and sets the virtual label distribution to be uniform over all

classes. Therefore, the maximum probability that is produced for the generated

samples will be very low, which makes the network cannot make prediction for

them. So the class label distribution for the unlabeled samples qLSRO(n) is
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defined as:

qLSRO(n) =
1

N
(5)

We combine Eq. 1, Eq. 2 and Eq. 5 to re-write the cross-entropy loss:

lnew = −(1− Z)log(p(y))− Z

N

N∑
n=1

log(p(n)) (6)

For a real training image, Z = 0. For a generated training image, Z = 1.

Therefore, the loss for the real images and generated images are different in the

system. During the training process, we define the loss of LSRO on a generated

sample as follows:

lLSRO =
1

N

N∑
n=1

log(p(n)) (7)

With the help of LSRO, we can regularize the model by processing more

training images (outliers) that are located near the real training images in the

sample space, which introduces more variances such as lighting and color. For235

example, if only one black-color vehicle exists in the training set, the discrimi-

native power of the model will be limited because the model may be misled and

regarded the black-color as discriminative feature. By adding generated images,

such unlabeled black-color vehicle, the classifier will be punished if it misjudges

the labeled black-color vehicle. In this manner, the network will be encouraged240

to look for more underlying causes and to be less prone to over-fitting.

3.3. Re-ranking Method

Problem Definition. Given a gallery set G = {gi|i = 1, ..., T} and a

probe vehicle image b, where i defines the index of each image and T is the

size of the gallery. After comparing the Euclidean distance between probe b245

and each image in gallery gi, we reorder the indices of images in G so that

{g1, g2, ..., gT } correspond to L(b,G). The similarities between b and gi satisfy

S(b, g1)>S(b, g2)>S(b, g3)> · · ·>S(b, gT ). The objective of re-ranking method

is to make more true matches rank top in the ranking list, thus improve the

performance of the vehicle re-ID.250
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K-reciprocal Nearest Neighbors. Following [34], we define the k-nearest

neighbors as the top-k samples of the ranking list of a probe b, it can be expressed

as R(b, k):

R(b, k) = {g1, g2, ..., gk} (8)

A potential assumption is that the returned image can be used for the sub-

sequent re-ranking when it ranks within the k-nearest neighbors of the probe.

However, some traditional methods which directly using the top-k images in

the ranking list to perform re-ranking may introduce noise into the system and

affect the final result. Therefore, we apply the k-reciprocal nearest neighbor

R∗(b, k) [33], [34] to solve this problem. It can be defined as:

R∗(b, k) = {gi|(gi ∈ N(b, k)) ∧ (b ∈ N(gi, k))} (9)

Rank Aggregation. Compared with the k-nearest neighbors, the k-reciprocal

nearest neighbors are more relevant to probe b. However, the true matches may

not appear in the R∗(b, k) due to the variations in occlusions, illuminations,

poses and views. To solve this problem, for each sample q in R∗(b, k), we add

the half of the samples in its k-reciprocal nearest neighbors set into another set

Rnew(b, k) as the following step:

Rnew(b, k)← R∗(b, k) ∪R∗(q,
1

2
k) (10)

Therefore, Rnew(b, k) includes more images that are more relevant to the

samples in R∗(b, k). Then we consider the Rnew(b, k) as contextual knowledge

and re-calculate the distance between the deep features of the probe and the

images in gallery set. As described in [32], the similarity of two images is higher if255

more duplicate samples in their k-reciprocal nearest neighbor sets. We calculate

the new distance between the k-reciprocal sets of b and gallery gi according to

the Jaccard metric:

dj(b, gi) = 1− |Rnew(b, k) ∩Rnew(gi, k)|
|Rnew(b, k) ∪Rnew(gi, k)|

(11)
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Algorithm 1 Rank Aggregation Algorithm

Input: A probe image b and a gallery set G = {gi|i = 1, ..., T}

Output: A rank list for the probe image

Offline:

1: Compute the pairwise Euclidean distance between the probe vehicle b and

images in gallery set.

2: Reorder the indices of images in G by sorting the pairwise Euclidean dis-

tance.

3: Correspond the set {g1, ...gT } to the initial ranking list L(b,G), and obtain

the top-k galleries R(b, k) from L(b,G) of the probe image.

4: Query each image gi in the gallery G.

5: Obtain the top-k galleries R(gi, k) of each image gi.

Online:

6: for i = 1 to |L(b,G)| do

7: gi is the i-th item in L(b,G)

8: Get the k-reciprocal nearest neighbors of probe b by Eq. (9)

9: Add more positive samples into Rnew(b, k) by Eq. (10)

10: end for

11: for i = 1 to |R∗(b, k)| do

12: gi is the i-th item in R(b, k)

13: Compute the new distance dj(b, gi) between b and gi by the Jaccard metric

of their k-reciprocal sets as Eq.(11)

14: Compute the final distance df between b and gi as Eq.(12)

15: end for

16: Use the final distance to obtain the new rank list revised ranking list

Lnew(b,G)

.

15



Inspired by [50], the original distance and the Jaccard distance are aggregated

to emphasize the importance of the original distance and improve the initial

ranking list. We define the final distance df as:

df (b, gi) = (1− λ)dj(b, gi) + λd(b, gi) (12)

where λ represents the weight of original distance in the final distance, and

d represents the Euclidean distance. Finally, we obtain the new ranking list260

for probe b Lnew(b,G) by sorting the final distance df . We denote the size

of Rnew(b, k) and R(b, k) as k1 and k2, respectively. Our rank aggregation

algorithm is summarized in Algorithm 1.

3.4. Complexity Analysis

In the proposed re-ranking method, calculating the pairwise distance of all265

image pairs requires a large amount of computational cost. We define the gallery

size as t, O(t2) and O(t2 log t) represent the computation complexity of distance

measure and the ranking process, respectively. Since the work of calculating

the pairwise distance and obtaining the initial ranking list for the probe can

be done in advance offline, the computation costs will be reduced in practical270

applications. Therefore, the computation costs include only O(t) and O(t log t),

the former representing the calculation of pairwise distance between probe and

gallery, the latter representing the complexity of ranking all final distances.

4. Experiments Results and Discussion

4.1. Datasets Introduction275

Extensive experiments are conducted on three vehicle re-ID benchmark datasets:

VeRi-776 [14], VehicleID [15] and VehicleReID dataset [16].

VeRi-776 [14] consists of 50,000 labeled images of 776 vehicles which col-

lected by 20 cameras in a road network in 24 hours. The specific information

of vehicles are also provided, such as car model, camera locations and license280

plates. The dataset has been divided into two parts, a training set and a testing
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set. The training set contains 37,778 images of 576 vehicles, and the testing set

consists of 9,919 images belong to 200 vehicles. For the vehicle re-ID task, the

1,678 probe vehicle images in testing set are selected randomly to search the

other images in testing set.285

VehicleID [15] is currently the largest publicly available vehicle re-ID dataset.

It contains 222,628 images belong to 26,328 vehicles collected from the traffic

surveillance system. There are two parts in the dataset: a training set and a

testing set. The training set contains 113,346 images belong to 13,164 vehicles

and the testing set contains 109,282 images captured from 13,164 vehicles. The290

testing data provides three subsets including small, medium and large scale for

the vehicle re-ID task.

VehicleReID [16] contains 1,232 vehicle image pairs obtained from two

surveillance camera. The appearance of the same vehicle is changed by varia-

tions of viewpoints, illuminations and the locations of cameras.There are 553295

vehicles from camera view A and 530 from camera view B, with 423 common

vehicles in both views.

4.2. Implementation Details

CNN Baseline. The ResNet-50 [13] model which pre-trained on the ImageNet

dataset is slightly improved and used in our experiments as the basic CNN300

network. We fine-tune the model using the training set to classify the train-

ing identities. ResNet-50 is a state-of-the-art architecture that exhibits top

performance in several tasks in the field of computer vision, such as face identi-

fication, object classification and action recognition. It is composed of multiple

basic blocks that are serially connected to each other and introduces shortcut305

connections summed after every few layers, so as to represent residual func-

tions. In such way, it allows for a very deep architecture without hindering the

learning process and at the same time shows less complexity in comparison to

other networks of even smaller depth. Although there exists deeper versions of

ResNet, we choose the 50-layer variant as the baseline model, as computation310

time is still crucial for this task.
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Figure 4: The structure of the improved ResNet-50 model. There are two modifications

in the ResNet-50 model structure,1) we add a dropout layer before FC layer to reduce the

possibilities of overfitting; 2) we concat the 5a, 5b and 5c convolutional layers to obtain mid-

level identity-sensitive information.

We use the Matconvnet [51] package to implement the network training and

resize all the images to 256 × 256. During training, random horizontal flipping

is applied to crop the images to 224 × 224 randomly. A dropout layer has

been inserted before the final convolutional layer to reduce the possibility of315

overfitting. Assume the original training set has K vehicle identities, we add

K neurons in the last fully-connected layer to predict the K-classes. In most

existing deep re-ID models, the final convolution layer will compute the feature

vector. Inspired by [52], which demonstrates that the useful information of

mid-level identity-sensitive can be obtained before the last fully-connected layer320

in a DNN, as shown in Fig.4, we thus concat the 5a, 5b and 5c convolutional

layers of the ResNet-50 structures into a 2048-dim feature vector after the last

fully-connected layer.

The GAN model. We used the Tensorflow [53] and DCGAN package to train

the GAN model. Before training, we resize all the images in the training set325

to 128×128 and perform randomly flipped on them. The model is trained with

mini-batch stochastic gradient descent (SGD) with a mini-batch size of 64. We

use a zero-centered Normal distribution to initialize the weights and set the
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Figure 5: Examples of original images in training set and images generated by GAN from (a)

VeRi-776 [14], (b) VehicleID [15], (c) VehicleReID [16].

standard deviation as 0.02. We apply the Adam stochastic optimization with

parameters β1 and β2 which are used to define a memory for Adam, and average330

the gradient and squared gradient, respectively. Following the practice in [54],

the good default settings for the tested machine learning problems are β1 =

0.9, β2 = 0.99. During testing, we fed a 50-dim random vector with Gaussian

noise distribution into the GAN to generate vehicle images. Finally, all the

generated samples are resized to 256 × 256 and are used in training the CNN335

with the LSRO. Fig.5 illustrates the generated and real samples on these three

datasets. Although human can easily recognize the generated samples as fake,

they are still effective in promoting the performance by adding the LSRO as

virtual labels in our experiment.

Evaluation Metrics. We use Mean Average Precision (mAP) and Cumulative340

Match Curve (CMC) to measure the re-ID quantitatively.

Mean Average Precision: The mAP metric evaluates the overall per-
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formance of re-ID. For each probe image b, average precision is calculated as

follows:

ρ =

∑n
k=1 P (k)× rel(k)

Ngt
(13)

where k defines the rank in the list of retrieved vehicles, n denotes the number

of retrieved vehicles, Ngt is the number of ground truth retrievals for the probe.

P (k) denotes the precision at cut-off k, rel(k) indicates whether the k-th recall

image is right match or not. So we define the mAP as follows:

mAP =

∑Q
b=1 ρ

Q
(14)

where Q denotes the number of probe images.

Cumulative Match Characteristics: The CMC curve describes the ex-

pectation of positive samples within the first k ranks, we calculate the CMC

value for top k ranks as follows:345

CMC@k =

∑Q
i=1 f(bi, k)

Q
(15)

where bi is i-th probe vehicle, f(bi, k) is an indicator function which equals to 1

when the positive samples are within the top k ranks, otherwise, it equals to 0.

4.3. Semi-supervised Learning Results

Performance Comparisons on VeRi-776 Dataset. The proposed method was

evaluated on the VeRi-776 dataset [14] firstly which is the only existing vehicle350

re-ID dataset providing spatial and temporal annotations. We used the previ-

ously explained semi-supervised learning of the CNN model, and applied the

re-ranking for the final identification. The Cumulative Match Curve (CMC)

metric and mean Average Precision (mAP) are adopted for the evaluation. We

describe the details of experiment procedure and three comparative settings as355

follows:

(1) The CNN baseline.

Following the procedure of training and testing described in Section 4.2,

the final results of the VeRi-776 dataset are reported in Table 1, Table 2
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Table 1: Match rate (CMC@Rank-R, %) and mAP (%) under different dropout rate on the

VeRi-776 dataset [14]

Methods Rank-1 Rank-5 Mean AP

CNN baseline (Without dropout layer) 82.54 90.52 48.90

CNN baseline (Dropout rate 0.5) 84.74 92.49 54.36

CNN baseline (Dropout rate 0.6) 86.23 92.37 53.95

CNN baseline (Dropout rate 0.7) 85.52 92.13 53.17

CNN baseline (Dropout rate 0.8) 85.76 92.67 54.47

CNN baseline (Dropout rate 0.9) 85.88 92.85 54.59

and Table 3. To evaluate the stand-alone performance of ResNet-50, we360

extracted the CNN feature from the first fully connected layers (FC6) for

each vehicle image and directly apply it for vehicle re-ID as a comparative

baseline. As shown in Table 1, the CNN model with dropout layer gains

about 5.46 points increase in mAP, from 48.90% to 54.36%. To select the

best dropout rate, the extensive comparative experiments were further per-365

formed. As can be seen in Table 1, the best performance was achieved when

the dropout rate is 0.9. Therefore, in our implementation, the final result

of CNN baseline has a Rank-1 match rate of 85.88% and 54.59% mAP. We

also compared the result of CNN baseline with other published vehicle re-ID

results, from Table 2, the CNN baseline achieves better performance than370

previous works [14], [17]. There are no unlabeled samples in this scenario

and the re-ranking methods have not been taken into account. We report

the results of semi-supervised learning with different numbers of generated

images in Table 3. The performance of vehicle re-ID has been improved

when we fed different numbers of unlabeled data into the process of CNN375

training, which implies that CNN features alone are insufficient compared

with semi-supervised learning.

(2) Semi-supervised learning with different numbers of generated images.
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Table 2: Match rate (CMC@Rank-R, %) and mAP (%) for different methods on the VeRi-776

dataset [14]

Methods Rank-1 Rank-5 Mean AP

FACT [17] 50.95 73.48 18.49

FACT+Plate-SNN+STR [14] 61.44 78.78 27.77

Siamese-CNN+Path-LSTM [55] 83.49 90.04 58.27

VGG+C+T+S [56] 86.59 92.85 57.40

CNN Baseline (Ours) 85.88 92.85 54.59

SSL (Ours) 88.57 93.56 61.07

SSL+re-ranking (Ours) 89.69 95.41 69.90

We trained DCGAN on the VeRi-776 training set, and combined the orig-

inal training set with the generated images to fine-tune the CNN model.380

We evaluated the effect of the number of generated images on re-ID per-

formance. Since unlabeled data is easy to obtain, we hope that as the

number of unlabeled images increases, the model will obtain more general

information. We compare the number of real training images (37,778) with

the number of generated images fed into network, then two conclusions are385

obtained after analyzing the results in Table 3. First, the baseline has been

consistently improved by adding different numbers of generated images.

Adding approximately 2 times generated images (70,000) that of the real

training set still obtain +1.44 points improvement to rank-1 match rate.

Second, the peak performance is achieved when 0.3 times generated images390

(10,000) that of the real training set are added. From Table 3, when 10,000

generated images are added to the semi-supervised learning, the re-ID per-

formance on VeRi-776 has been significantly improved. We observed the

improvement of 3.09 points (from 85.88% to 88.97%), 0.71 points (from

92.85% to 93.56%) and 6.48 points (from 54.59% to 61.07%) in the Rank-1,395

Rank-5 match rates and mAP, respectively. Too many or too few images

generated images incorporated into the semi-supervised learning will pro-
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Table 3: Match rate (CMC@Rank-R, %) and mAP (%) after using different numbers of

generated images on the VeRi-776 dataset [14]

The number of generated images Rank-1 Rank-5 Mean AP

0 (basel.) 85.88 92.85 54.59

2,000 86.12 92.96 55.43

5,000 86.78 93.21 57.68

8,000 88.31 93.35 59.34

10,000 88.97 93.56 61.07

30,000 88.19 93.54 59.00

50,000 87.90 92.90 59.10

70,000 87.34 92.61 58.87

duce negative impacts on the model.

In semi-supervised learning with LSRO, generated images are used to learn

more discriminative features and reduce the possible of over-fitting by as-400

signing a uniform label distribution to the generated images to regularize

the CNN model. When we incorporate too few GAN samples, the regu-

larization ability of the LSRO is inadequate. In contrast, if we add too

many GAN samples to fine-tune the network, the CNN model will tend to

converge towards assigning a uniform label distribution to all the training405

images, which lead to overfitting and affect the discriminative learning from

real images. Therefore, we recommend to make a trade-off of GAN samples

to avoid poor regularization and overfitting.

(3) Ranking Optimization with different metrics. We set the parameter k1

=50, k2 = 10, and λ=0.3 which have the best performance in the test. After410

adding the step of re-ranking, the Rank-1, Rank-5 match rates and mAP

are further improved to 89.69%, 95.41% and 69.90%. Table 2 compares

the performance of our best approach and semi-supervised learning with

re-ranking, against other state-of-the-art methods.

We compare our results with the methods in [14],[17], in which the hand415
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Table 4: Match rate (CMC@Rank-R, %) and mAP (%) for the compared methods on the

VeRi-776 dataset [14]

Methods Rank-1 Rank-5 Mean AP

SSL+KISSME 86.84 92.37 60.12

SSL+KISSME+ re-ranking 88.66 94.62 64.71

SSL+XQDA 87.49 93.80 60.11

SSL+XQDA+ re-ranking 88.72 94.92 67.48

Figure 6: The CMC curves of the proposed methods on VeRi-776 (a), VehicleID (b), Ve-

hicleReID (c). The recognition rate shows the percentage of the probes that are correctly

recognized within the top k matches in the gallery. The numbers in the legend of curves are

the top 1 value of CMC.

crafted features were adopted for vehicle re-ID. It can be observed that our

method achieves significant improvement over them, proving the advantage

of deep feature. In [14], the license plate information (Plate-SNN) and

spatio-temporal information were additionally used to improve the perfor-

mance of vehicle re-ID. Compared with [14], our method based on vehicle420

appearance further yields an improvement of 28.25 points (from 61.44% to

89.69%) in Rank-1, 16.63 points (78.78% to 95.41%) in Rank-5 and 42.13

points (from 27.77% to 69.90%) in mAP. We also compare our method with

the appearance-based deep learning approach [56], which improved triplet-

wise training of CNN for vehicle re-ID. As shown in Table 2, the proposed425
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method with both semi-supervised learning and re-ranking leads to signif-

icant improvements compared with the best method (VGG+C+T+S) in

[56]. The CMC curves of the proposed methods are shown in Fig.6 (a)

Moreover, experiments conducted with two popular metric learning meth-

ods, KISSME [57] and Cross-view Quadratic Discriminant Analysis (XQDA)430

[58] verify the effectiveness of our ranking optimization method on different

distance metrics as shown in Table 4. In [57], the Mahalanobis distance is

learned by considering the log likelihood ratio test of two Gaussian distri-

butions. Based on the idea of KISSME [57], the XQDA further learns a

discriminant subspaces with more efficient metrics.435

Performance Comparisons on VehicleID Dataset. We provide our results from

the largest vehicle re-ID dataset [15] in Table 5 to further demonstrate the

effectiveness of the proposed method. Following the dataset setting in [15], we

randomly select one image from each vehicle and put it into gallery set, then the

remaining images are all used as probe images. The details of the three testing440

subsets are listed in Table 6. We preform the testing process with different

values of k1, k2 and λ, and obtain the best performance when k1=10, k2=6

and λ=0.3. The evaluation procedure was repeated for 10 times to evaluate

model prediction accuracy and obtain the final CMC curve.

The detailed match rates from Rank-1 to Rank-50 of the proposed meth-445

ods evaluated on the three scale test subset are presented in Fig.6 (b). For

VehicleID dataset, we fine-tuned the improved ResNet-50 model by using the

combination training set of original training set and 40,000 generated images.

The vehicle re-ID results of our proposed method on three scale test subsets

are shown in Table 5. Compared with the best state of the art method [56],450

the proposed method improves the Rank-1 and Rank-5 match rates for large

subset by 2.44 points (from 84.23% to 86.67%) and 2.16 points (from 88.67% to

90.83%), respectively, which proves once again that our method has significant

advantages. Four examples are shown in Fig.7. The proposed method, semi-

supervised learning+re-ranking, effectively ranks more positive samples at the455
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Table 5: Match rate (CMC@Rank-R, %) and mAP (%) of the comparison methods on the

VehicleID dataset [15]

Methods Small Medium Large

VGG+Triplet Loss [59]

Rank-1

40.40 35.40 31.90

VGG+CCL [15] 43.60 37.00 32.90

Mixed Diff+CCL [15] 49.00 42.80 38.20

VGG+C+T+S [56] 69.90 66.20 63.20

Baseline (Ours) 81.93 81.44 81.37

GAN+LSRO (Ours) 85.72 85.12 84.23

GAN+LSRO+ re-ranking (Ours) 88.67 88.13 86.67

VGG+Triplet Loss [59]

Rank-5

61.70 54.60 50.30

VGG+CCL [15] 64.20 57.10 53.30

Mixed Diff+CCL [15] 73.50 66.80 61.60

VGG+C+T+S [56] 87.30 82.30 79.40

CNN Baseline (Ours) 86.93 86.44 86.67

SSL (Ours) 89.12 88.12 88.67

SSL+re-ranking (Ours) 91.92 91.81 90.83

CNN Baseline (Ours)

mAP

70.13 66.67 65.47

SSL (Ours) 74.13 69.84 68.74

SSL+re-ranking (Ours) 76.42 71.39 70.59

Table 6: The three subset of testing set for the VehicleID Dataset [15]

Number of images Small Medium Large

Gallery size 6,493 11,777 17,377

Probe size 800 1,600 2,400

top of the ranking list which are not included in the ranking list of our baseline.

Performance Comparisons on the VehicleReID Dataset. Furthermore, we study

the effectiveness of our method on the VehicleReID dataset by using the single

shot setting. There are 423 vehicles from both camera view A and camera view
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Figure 7: Four examples of vehicle re-ID results (Rank-5) on the VehicleID dataset. For

each probe, the ranking results produced by our baseline are presented in the first row, the

second row corresponds to our proposed method (Semi-supervised learning+re-ranking) which

improves the baseline ranking results. The green box indicates a true matches, the red box

identifies the false matches.

B, for solving the vehicle re-ID task, we chosen this subset from the original460

sets. We randomly split the vehicles in both camera A and camera B into two

almost equal subsets, where 211 vehicles for training and 212 vehicles for testing.

Among the 212 vehicles for testing, we treat the images from camera A as the

probe set and use the images from camera B as the gallery set. During the

testing process, we search the 212 test vehicles in all vehicles from camera B.465

We followed the semi-supervised learning method to fine-tune the CNN

model as previously explained, and applied the ranking optimization algorithm

for the final prediction. Specifically, the DCGAN was trained to generate un-

labeled vehicle images, then we combined the generated images with original

training set to fine-tune the improved ResNet-50 model. The ranking optimiza-470

tion was accomplished after the initial list generated by the Euclidean distance.

We set the appropriate value to k1=6, k2=3 and λ=0.8. The testing phase is

repeated for 10 times with the average results reported in Table 7. Our semi-

supervised learning method gains 5.01 points improvement in Rank-1 match

rate and significant 4.11 points improvement in mAP for CNN baseline. After475

applying the re-ranking algorithm, our method further gains an improvement of

1.53 points in Rank-1 match rate and 3.48 points in mAP. Experimental results
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Table 7: Match rate (CMC@Rank-R, %) and mAP (%) for the compared methods on the

VehicleReID dataset [16]

Methods Rank-1 Rank-5 Mean AP

CNN Baseline (Ours) 59.04 66.45 62.53

SSL (Ours) 64.05 72.56 66.64

SSL + re-ranking (Ours) 65.58 74.29 70.12

demonstrate that our method is also effective on the re-ID problem of single-shot

setting. Fig.6 (c) shows the CMC curve on the VehicleReID dataset.

5. Further Evaluation480

5.1. The impact of the scale of random vector fed to the GAN.

The generator, G, used in GAN input a random noise vector z which passed

through each layer in the network and generates a fake sample G(z) from the

final layer. We evaluate whether the scale of the random vector z fed to the GAN

impacts the performance of vehicle re-ID. To investigate the effect, we tried three485

different ranges of the random vector, i.e., [-0.5,0.5], [-1,1], and [-1.5,1.5], with

a normal distribution. The results of vehicle re-ID on the VeRi-776 dataset are

presented in Table 8. We find that the [-0.5,0.5] yields higher re-ID performance

than the other two ranges. The visual examples are shown in Fig.8. We find

that visual examples of [-1.5, 1.5] show obvious differences among the three490

ranges, with some strange shapes of vehicles. Typically, a larger range may

contain some strange variations and affect the quality of generated images.

5.2. Analysis of the parameters of ranking optimization method

The parameters of ranking optimization method are evaluated in this sub-

section. We observe the influence of k1, k2 and λ on the VeRi-776 dataset.495

Fig.9 (a)(b) show the impact of the size of k-reciprocal neighbors set on Rank-1

match rate and mAP. As k1 grows, the Rank-1 match rate first increases with

fluctuations, and then starts a slow decrease after k1 passes the optimal point
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Figure 8: The GAN generated images with different scales of the random vector, i.e. [-0.5,0.5],

[-1.0,1.0], [-1.5,1.5]. We hardly find any significant visual differences between them.

Table 8: Match rate (CMC@Rank-R, %) and mAP (%) after using the GAN generated images

with different scales of the random vector on the VeRi-776 dataset [14]

Random Range Rank-1 Rank-5 Mean AP

[-0.5,0.5] 89.65 95.41 68.97

[-1,1] 89.46 95.12 68.46

[-1.5,1.5] 89.13 94.97 68.40

at around 50. Similarly, the mAP increases with the growth of k1, and it starts

to slowly decline after k1 passes the optimal point. If k1 is too large, more500

false matches will be included in the k-reciprocal set and cause performance

degradation.

The impact of k2 is shown in Fig.9 (c)(d). Obviously, the performance will

increase as k2 grows within a reasonable range (e.g, smaller than 10). However,

the performance declines when the value of k2 is too large due to the set includes505

more false matches. In fact, it is very important to set an appropriate value to

k2 and thus further enhance the performance.

Fig.9 (e)(f) show the impact of the parameter λ. The Jaccard distance is

only considered when λ equals zero, in contrast, the Jaccard distance is left out

when λ equals one, and the result is obtained using only the original distance.510

It can be observed that our method consistently outperforms the CNN baseline

when the Jaccard distance is only considered, which indicates that the proposed
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Figure 9: (a)(b): The impact of the parameter k1 on the performance of the VeRi-776 dataset.

The k2 was fixed at 10 and λ set to 0.2; (c)(d): The impact of the parameter k2 on the

performance of VeRi-776 dataset. The k1 was fixed at 50 and λ set to 0.2; (e)(f): The impact

of the parameter λ on the performance of VeRi-776 dataset. The k1 was fixed at 50 and k2

at 10.

Jaccard distance is effective for re-ranking. Moreover, the performance is further

improved when we consider the importance of original distance and set the value

of λ arounds 0.2.515

6. Conclusion

In this paper, we proposed an effective semi-supervised learning approach

augmented with ranking optimization for the vehicle re-ID problem. Specifically,

a DCGAN model is exploited to generate the unlabelled images and effectively

demonstrate their regularization ability when trained with an improved ResNet-520

50 baseline model. The unlabeled generated images are used to assist the labeled

training images for simultaneous semi-supervised learning. We also addressed

the re-ranking task by improving the k-reciprocal Nearest Neighbors method.

The final distance based on the aggregation of the original distance and Jaccard

distance produces effective improvement of the re-ID performance on VeRi-776,525

VehicleID and VehicleReID datasets. Our experimental results indicate that

the proposed methods significantly outperforms state-of-the-arts methods on

the VeRi-776 and VehicleID dataset.
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