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Abstract 13 

Introduction  14 

Inherited susceptibility to lung cancer risk in never smokers is poorly understood. One of the 15 

major reasons for this is that because this disease is uncommon in many populations (with a 16 

notable exception of Asians), it is difficult to assemble an adequate sample. In this study we 17 

conducted a genome-wide association study (GWAS) on the largest, to date, set of European-18 

descent never smokers with lung cancer. 19 

Methods 20 

mailto:olga.y.gorlova@dartmouth.edu
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We conducted a two-phase (discovery and replication) GWAS in never smokers of European 1 

descent. We further augmented the sample size by performing a meta-analysis with never 2 

smokers from the recent OncoArray study, which resulted in a total of 3,636 cases and 6,295 3 

controls. In addition, we compare our findings with those in smokers with lung cancer. 4 

Results 5 

We detected three genome-wide statistically significant SNPs rs31490 (OR 0.769, 95% 6 

confidence interval (CI) [0.722-0.820], p-value 5.31x10-16), rs380286 (OR 0.770, 95% CI [0.723-7 

0.820], p-value 4.32x10-16), and rs4975616 (OR 0.778, 95% CI [0.730-0.829], p-value 1.04x10-8 
14). All three mapped to Chromosome 5 CLPTM1L-TERT region, which has been previously 9 

shown to be associated with lung cancer risk in smokers and in never smoker Asian women, as 10 

well as risk of other cancers including breast, ovarian, colorectal and prostate.  11 

Conclusions 12 

We found that genetic susceptibility to lung cancer in never smokers is associated to genetic 13 

variants with pan-cancer risk effects. The comparison with smokers shows that top variants 14 

previously shown to be associated with lung cancer risk only confer risk in the presence of 15 

tobacco exposure, underscoring the importance of gene-environment interactions in the etiology 16 

of this disease.  17 

 18 

  19 
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Introduction 1 

Lung cancer is the leading cause of cancer mortality worldwide, accounting for over 1 million 2 

deaths each year 1. Although most lung cancer is preventable, since the majority of cases 3 

occur in tobacco smokers 2, around 10% of cases are seen in lifetime never-smokers. Even 4 

though lung cancer is diagnosed in a minority of never smokers it still ranks as the seventh to 5 

ninth most common cause of cancer death worldwide 3.  6 

In never smokers, lung cancer has characteristics distinct from those associated with  7 

smoking, including different histology and mutation spectrum 4. The only well-established risk 8 

factors for lung cancer in never smokers are exposure to radon 5, secondhand smoke and 9 

dust 6, asbestos 7, and, notably, family history of cancer 6, 8,, which has provided evidence for 10 

inherited susceptibility.  11 

To date, genome-wide association studies (GWAS) on lung cancer has largely been focused 12 

on ever smokers 9-11, and have identified 18 independent loci influencing risk 12. While several 13 

GWAS studies in never smokers have been conducted, these have primarily been based on 14 

Asian women 13-15. Several environmental risk factors for lung cancer, including cooking 15 

fumes and air pollution, are highly prevalent in Asian populations 16, raising the possibility of 16 

effect modification. Identifying lung cancer susceptibility alleles among never smoking 17 

European populations has been limited to candidate gene analyses 17, 18 and small GWA 18 

studies 19-21. Reported here are the results of a large GWAS of lung cancer in never smokers 19 

of European descent, based on 3,636 cases and 6,295 controls.  20 

Materials and Methods 21 

Study design and samples   22 

Never smokers were defined as individuals who had smoked less than 100 cigarettes over their 23 

lifetime. The study had a discovery and a replication series, both from studies participating in 24 

the International Lung Cancer Consortium (ILCCO; http://ilcco.iarc.fr). The discovery series, 25 

after quality control (Appendix), comprised 1,287 cases and 1,655 controls with European 26 

ancestry from seven centers (Table A.1). The replication series comprised 960 cases and 940 27 

controls from 16 study centers, of which some centers (but not study subjects) participated also 28 

in the discovery phase (Table A.2). Comprehensive details of each series have been previously 29 

reported 12, 20, 22-25. To increase statistical power, data on never smokers recently generated by 30 

the OncoArray lung cancer study from ILCCO 12 were also leveraged. After excluding samples 31 

overlapping between the OncoArray and the discovery set and between the OncoArray and the 32 

replication set, 1,149 cases and 1,144 controls from the discovery, 1,527 cases and 4,211 33 

controls from the OncoArray, and 960 cases and 940 controls from the replication sets were 34 

included in the final analyses. Most of the lung cancer cases (76.7% in the discovery, 69.2% in 35 

the replication, and 63.1% in the OncoArray sets) had histologically confirmed adenocarcinoma, 36 

followed by squamous and small cell carcinoma (Tables A.1-A.3). Given that subtype-specific 37 

associations are likely to exist, adenocarcinomas were also analyzed separately. Table 1 38 

presents the demographic characteristics of the final dataset. 39 

 40 
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Table 1. Characteristics of never smoking lung cancer cases and controls included in the 1 

final dataset. 2 

Characteristic  Cases 
(n=3,636) 

Controls 
(n=6,296) 

Age, mean, SD  63.6 12.4 61.9 11.9 

Sex, n, % Male 1,156 31.8 2,595 41.2 

 Female 2,480 68.2 3,701 58.8 

Histology, n, % Adenocarcinoma 2,509 69.0 6,296  

 Squamous cell carcinoma 310 8.5 6,296  

 3 

Genotyping and quality control  4 

Both cases and controls from the discovery set were genotyped using Illumina Infinium 5 

OmniExpress-24 v1.2 BeadChips, with the exception of cases and controls from Harvard School 6 

of Public Health (HSPH), genotyped on Illumina Human660W-Quad BeadChip. Genotyping of 7 

the replication series for 384 selected SNPs was performed using Illumina GoldenGate 8 

technology. Genotyping quality control and SNP selection procedures are detailed in the 9 

Appendix. The OncoArray genotyping platform, the never smoker samples to which it was 10 

applied, and genotyping and quality control procedures are described in the Appendix and have 11 

been previously characterized in detail 12, 26. 12 

Data analysis 13 

To harmonize data and address population stratification in the discovery set, the studies were 14 

grouped as follows. Provided they used the same genotyping array and study participants were 15 

from the similar geographic origin they were combined. This resulted in two groups: UK studies 16 

and North American studies. Since the HSPH samples were genotyped on a different platform, 17 

these were analyzed separately. Thus the following clusters were used: (i) HSPH, (ii) UK, and 18 

(iii) North America (see Table A.4 for more detail). Three separate GWAS analyses were ran 19 

based on the three groups. We applied logistic regression analyses with case-control status as 20 

the outcome and the SNP genotype as a predictor to identify risk-associated SNPs in these 21 

three groups. Additive models, with 0 for reference allele homozygotes, 1 for heterozygotes, and 22 

2 for variant allele homozygotes were used. Reference alleles were defined as in hg19 23 

reference genome. Age (continuous variable), sex, secondhand smoke exposure (SHS; from 24 

any venue at any period in a lifetime), education level, and study site within the group (if more 25 

than one site) were used as covariates. The definition of the education variables and more 26 

information on the SHS assessment are given in the Appendix. Missing values for SHS and 27 

education status were treated as a separate category. To offset potential effects of population 28 

stratification within clusters, SNP based principal components analyses (PCA) were performed 29 
27 and the corresponding first five principal components were included as covariates, even 30 

though the PCA of these three GWAS clusters do not suggest population stratification (Figure 31 

A.1). An inverse variance fixed effects meta-analysis was used to combine the results for the 32 

three group-based GWASs 28.  33 

A brief description of the OncoArray never smoker dataset is provided in the Appendix. To 34 

perform the joint analysis of the discovery and the OncoArray sets, inverse variance meta-35 

analysis was used, whereby studies were grouped into five clusters (Discovery-North America, 36 
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Discovery-UK, OncoArray-North America, OncoArray-UK, and OncoArray-Continental Europe), 1 

as detailed in Table A.5. This joint analysis was adjusted for age, sex, study site within the 2 

group, and the first five principal components, but not SHS or education level, as they were not 3 

available in the OncoArray set. 4 

Criteria for SNP selection and the quality control procedures in the replication phase are 5 

described in the Appendix.  6 

Results  7 

We focus on the joint analysis of the discovery and OncoArray sets as having the largest 8 

sample size (the results for the discovery set separately are presented in the Appendix, Figure 9 

A.2 showing the Q-Q plot that demonstrates no indication of an inflation of type I error 10 

(λ=1.005), and Table A.6 presenting the list of the top SNPs derived from the discovery set 11 

(p<1x10-4)). 12 

Figure 1 presents the scatter plot of the –log 10 p-values against the chromosome position (the 13 

so-called Manhattan plot) for the meta-analysis of the discovery and the OncoArray samples. 14 

The analysis identified 71 genome-wide statistically significant SNPs (P<5x10-8, the accepted 15 

genome-wide level of statistical significance 29), all of them mapping to the 5p15.33 CLPTM1L-16 

TERT region. Table A.7 presents the 229 top SNPs at P<10-5. There is also a peak on 17 

Chromosome 9 in the CDKN2A region, but none of the SNPs in this regions attained statistical 18 

significance at the GWAS level. 19 

 20 

Figure 1. Manhattan plot of the association analysis of lung cancer in European ancestry never smokers performed 21 
jointly in the discovery set and the OncoArray samples. The x-axis is chromosomal position, and the y-axis is the 22 
statistical significance on a –log10 scale.   23 

The principal component analysis of the replication samples showed no differences by the case-24 

control status for the first five principal components (Figure A.3).  25 

Table A.8 presents the list of nominally statistically significant (p<0.05) SNPs from the 26 

replication analysis. The most significant SNPs (rs380286 (p=3.88x10-7), rs31490 (p=4.68x10-7), 27 

and rs4975616 (p=2.50x10-6) were located in the 5p15.33 (CLPTM1L-TERT) region (Table 2). 28 

These three SNPs were significant after the Bonferroni correction for 370 tests resulting in the 29 

p-value of 1.35x10-4 to declare significance (the FDR approach identified the same three SNPs 30 

as statistically significant; Table A.8). 31 
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The 370 candidate SNPs selected for the replication (see Appendix for the selection criteria) 1 

were analyzed using all three study population sets: the discovery, the replication, and the 2 

OncoArray (total 3,636 cases and 6,295 controls). The analysis identified three SNPs 3 

statistically significant at the genome wide level: rs380286 (P=1.6x10-14), rs31490 (P=5.1x10-14), 4 

and rs4975616 (P=5.8x10-14; Table 2). These three SNPs are from the CLPTM1L-TERT region 5 

and the association with the variant alleles was consistently negative (OR < 1). These SNPs 6 

belong to a wide LD block corresponding to the LD Region 2 marked by rs451360 as described 7 

in 30. The very high LD between the pairs of SNPs (0.925 for rs380286 and rs31490; 0.915 for 8 

rs380286 and rs4975616; 0.955 for rs31490 and rs4975616) did not allow identifying the 9 

leading SNP among the three, as there was very little variation in a SNP when the genotypes of 10 

the other two were fixed.   11 

Table 2. The three GWAS-significant (P<5x10-8) variants for lung cancer in European ancestry 12 

never smokers, found in the joint analysis of the original discovery set, the never smoker subset 13 

of the OncoArray set, and the replication set (6 clusters, 3636 cases, 6295 controls), adjusted 14 

for age, sex, and the first five principal components. 15 

SNP ID CHR* Position Odds  95% CI P-value* Reference  Effect EAF* Gene  

   Ratio* Lower  Upper  allele allele  symbol 

    boundary boundary      

rs380286** 5 1320247 0.770 0.723 0.820 4.32x10-16 A G 0.4169 CLPTM1L 

rs31490† 5 1344458 0.769 0.722 0.820 5.31x10-16 G A 0.4142 CLPTM1L 

rs4975616‡ 5 1315660 0.778 0.730 0.829 1.04x10-14 G A 0.4005 CLPTM1L 

* Adjusted for age, gender, and the first 5 principal components; CHR, chromosome; EAF, effect allele frequency 16 
**  intronic variant 17 
† splice variant 18 
‡  downstream gene variant 19 
 20 

The results of the joint analysis of the discovery and replication sets without the OncoArray 21 

samples are shown in the Table A.9. In brief, the same 3 SNPs from the CLPTM1L-TERT 22 

region were identified as genome-wide statistically significant.  23 

Analysis of only adenocarcinoma cases produced nearly identical results, with only CLPTM1L-24 

TERT region SNPs showing statistical significance (Tables A.10, A.11). 25 

Table 3 summarizes the comparisons between our study results and previous published 26 

findings reported in never smokers from genome-wide and candidate gene/SNP association 27 

studies in both individuals of European descent and Asians. Our study confirmed SNPs located 28 

in 5p15.33 (CLPTM1L-TERT) region. Notably, the direction of the association is highly 29 

concordant among the studies for the SNPs in this region. The results for 3q28 (TP63) and 30 

6q22.2 (ROS1-DCBLD1) regions are suggestive in our analysis (P-values of ~10-4 for both 31 

these regions). The results from our study for the loci identified in the recently published largest-32 

to-date lung cancer study that involved mostly smokers 12 are shown in Table A.12. 33 

A comparison of the regional association plots for the CLPTM1L-TERT region and 15q25 34 

(CHRNA3) region in never smokers and smokers was also performed (whereby the smokers’ 35 

data were obtained from the lung OncoArray project) (Figure 3 a,b). We found that the risk 36 

association profile plotted as the –log10P for the SNPs in the CLPTM1L-TERT region in never 37 

smokers tightly followed that in smokers (Fig. 3a). By contrast, the association profiles in the 38 
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CHRNA3 region (implicated in nicotine dependence) are strikingly different in never and ever 1 

smokers, with very high –log10P values in smokers and a flat profile in never smokers (Fig. 3b). 2 

Analogous comparisons for two other regions, TP63 and CDKN2A, are presented in the Figure 3 

A.4. 4 

The analyses of associations for the 3 most statistically significant SNPs from the CLPTM1L-5 

TERT region stratified by the SHS exposure status are shown in the Appendix (Table A.13). 6 

There was no indication of SNP-SHS interaction effects or a SNP effect modification by the SHS 7 

exposure, as the interaction term was not significant for any of the SNPs.  8 

Table 3. Previous findings from the association analyses of lung cancer in never smokers, with 9 

a comparison to this study 10 

Previously Published Studies This Study* 

Region Gene RefSeq* 
Study 
type 

Pubmed 
ID 

Histology  Ethnicity 
Discovery                             
cases | 
controls 

Replication               
cases | 
controls 

OR* P-value OR P-value 

13q31.3 GPC5 rs2352028 GWAS* Li et al 20 NSCLC Mostly 
Eur. 
descent 

377 | 377 328 | 407 1.46 5.90E-06 0.99 0.95 

5p15.33 CLPTM1L rs4975616 Candidate Wang et al 
18 

NSCLC Eur. 
descent 

239 | 553 - 0.69 7.90E-04 0.78 1.04E-14 

5p15.33 CLPTM1L-TERT rs2736100 GWAS Hsiung et 
al 13 

Adeno Asian 
women 

584 | 585 2184 |2515 1.5 5.40E-11 1.3 2.66E-09 

10q25.2 VTI1A rs7086803 GWAS Lan et al 14 NSCLC Asian 
women 

5547 | 4492 1085 | 2877 1.3 5.10E-17 1.3 0.011 
6q22.2 ROS1-DCBLD1 rs9387478 0.85 7.80E-08 0.86 1.50E-04 
6p21.32 HLA II rs2395185 1.16 2.60E-06 1.04 0.34 
5p15.33 CLPTM1L-TERT rs2736100 1.38 4.20E-27 1.27 2.66E-09 

5p15.33 CLPTM1L-TERT rs2853677 GWAS Shiraishi et 
al 15 

Adeno Asians 
(Japanese) 

1695 | 5333 3328 | 8168 1.44 3.90E-23 1.28 1.12E-09 
5p15.33 CLPTM1L-TERT rs2736100 1.37 9.90E-19 1.27 2.66E-09 
3q28 TP63 rs10937405 1.28 2.00E-10 1.16 1.50E-04 
17q24.3 BPTF rs7216064 1.21 1.50E-06 1.1 0.054 
6p21.3 BTNL2 rs3817963 1.21 1.50E-07 1.06 0.2 

1q25.1 ACVR1B rs10127728 Candidate Spitz et al 
17 

NSCLC Mostly 
Eur. 
descent 

451 | 508 
- 

1.68 3.00E-04 1.06 0.34 

3q28 TP63 rs4488809 Replication 
of GWAS 
findings 

Seow et al Adeno Asian 
women 

 7448 | 7007 0.8 4.30E-17 0.82 8.52E-07 

5p15.33 TERT rs2736100      7505 | 7070 1.43 6.12E-43 0.79 2.66E-09 
6p21.1 FOXP4 rs7741164      10531 | 10648 1.17 3.96E-13 0.97 8.28E-01 

6p21.3 BTNL2 rs3817963      7255 | 6745 1.16 1.63E-07 1.06 1.97E-01 

6p21.32 HLA-DPB1 rs2179920      7457 | 7020 1.17 1.69E-05 1.08 9.42E-02 
6p21.32 HLA class II rs2395185      7757 | 9637 1.16 2.04E-09 1.04 3.91E-01 

6q22.2 ROS1/DCBLD1 rs9387478      8022 | 9970 0.86 5.25E-11 0.86 1.53E-04 
9p21.3  rs72658409      10780 | 10938 0.76 2.37E-10 0.89 1.43E-01 
10q25.2 VTI1A rs7086803      7964 | 9914 1.25 9.22E-17 1.31 1.12E-02 
12q13.13  rs11610143      10267 | 10634 0.85 3.55E-13 0.97 4.88E-01 
17q24.3 BPTF rs7216064      7720 | 8630 0.86 6.19E-09 1.10 5.43E-02 

 
*”This study” pertains to the results of the meta-analysis of the discovery and OncoArray sets, except for rs4975616, for 
which the  result from the meta-analysis of the discovery, OncoArray, and replication sets is shown; RefSeq, Reference 
sequence or SNP ID; GWAS, genome wide association study; OR, odds ratio; nominally significant p-values are shown in 
bold 

 11 

Discussion 12 

This is the largest lung cancer GWAS so far conducted in never smokers of European descent. 13 

However, only one region (CLPTM1L-TERT) strongly associated with lung cancer risk in this 14 
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patient population was found. Our results for this region corroborate findings by earlier studies 1 

of lung cancer in never smokers (Table 3), showing consistent direction of effect. The 5p15.33 2 

CLPTM1L-TERT region SNPs have also been reported to be associated with multiple cancers 3 

including lung cancer in smokers 19, 31, breast cancer 32, glioma 33, nasopharyngeal cancer 34 and 4 

prostate cancer 35. TERT encodes the catalytic subunit of the telomerase reverse transcriptase, 5 

which takes part in adding nucleotide repeats to chromosome ends 36. While active in early 6 

development and germ cells, this gene is not expressed in most adult tissues, resulting in a 7 

shortening of telomeres with each cell division. When telomeres become critically short, the cell 8 

can no longer divide. However, cancer cells can upregulate telomerase, which enables them to 9 

continue dividing 37. The CLPTM1L gene is reported to be overexpressed in lung and pancreatic 10 

cancer where it promotes growth and survival 38, 39. Also there is a locus within the CLPTM1L 11 

gene that serves as a binding site for ZNF148, which promotes expression of TERT 40.  12 

Functional annotation of the top identified SNPs using Encyclopedia of DNA Elements 13 

(ENCODE) Ref found that rs4975616 coincides with the binding site for three transcription 14 

factors: ELF1, ZEB1 and BCLAF1. The target genes for the first two transcription targets include 15 

TERT and CLPTM1L and the target genes for BCLAF1 include CLPTM1L only. According to 16 

Ensemble regulatory database Ref, SNP rs31490 is located in the region that acts as promotor 17 

for CLPTM1L in the developing lung. In the Genotype-Tissue Expression (GTEx) Ref all three 18 

SNPs: rs31490, rs380286, and rs4975616 are reported as eQTLs for TERT in esophagus and 19 

CLPTM1L in skin. 20 

Previously, a fine-mapping study has been conducted on this locus (Kachuri et al 2016, 21 

Carcinogenesis, PMID: 26590902); it included a limited number of never smokers and the 22 

identified novel loci did not show a significant effect specifically in that group. However, the 23 

direction of the effect was largely consistent with that in smokers, in line with what our study 24 

found (Fig. 3a). 25 

For other SNPs, e.g. those reported by Li et al 20, no association in our study was detected. 26 

However, Li et al.’s study 20 used additional covariates (e.g. COPD, lung cancer family history) 27 

to adjust for in their analyses. This may have made a comparison of their results with our study 28 

less straightforward, because the data on these covariates were not available from the majority 29 

of the sites participating in our study. The SNPs rs10937405 for 3q28 and rs9387478 for 30 

6q22.2, previously reported to be significant in Asian never smoking women (Table 3), showed 31 

at best a suggestive association (P-values of ~10-4 in both cases). These two regions have been 32 

shown also to be implicated in other cancer sites. SNPs in the TP63 region have been shown to 33 

be associated with lung adenocarcinoma in the UK population 10, acute lymphoblastic leukemia 34 
41, bladder cancer 42 and pancreatic cancer 43. SNPs in the ROS1-DCBLD1 region have been 35 

shown to be associated with colorectal cancer 44. This further suggests that SNPs/regions 36 

associated with lung cancer risk in never smokers are not specific for this type of cancer but 37 

rather have pleiotropic effects.  38 

Our analysis was designed to control for demographic variables (age and sex, as controls were 39 

slightly but statistically significantly younger (p<0.001) and had a higher proportion of men than 40 

cases (p<0.001)) as well as for known and potential risk factors, specifically, where possible, for 41 

education status and self-reported secondhand smoke exposure 45. To account for possible 42 

population stratification, the first five principal components and the study site were also 43 

adjusted. However, the information on radon exposure, asbestos, prior respiratory conditions, 44 
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and diet was not available from most studies. As such, these established and putative risk 1 

factors were not accounted for in the analyses. A further limitation is the self-reported nature of 2 

the never smoker status. Differential misreporting of the smoking status, e.g., if a modest 3 

proportion of former or current smoker controls reported that they have never smoked, might 4 

lead to SNPs associated with smoking appear as protective.  Unfortunately, the great majority of 5 

the participating studies did not verify it by cotinine measurements. However, SNPs in 6 

CHRNA3-5 or CYP2A6 regions, known to be associated with smoking 12, did not show any 7 

effect in this study (Fig. 3b; Table A.11).  8 

 Latest GWASs of lung cancer in smokers have generated many more findings than did this 9 

study, which is not surprising given that the former are much larger. Most SNPs reported as 10 

statistically significant in smokers showed the same direction of effect in never smokers (Table 11 

A.12). Gene-smoking interaction may be another factor contributing to the higher number of 12 

positive findings among smokers than never smokers: some of the sequence variations that are 13 

neutral in the absence of tobacco smoking confer risk when smoking and the associated tissue 14 

and DNA damage are present.  15 

High BMI 46 and alcohol exposure  47 are common and may also explain a proportion of the lung 16 

cancer risk in never smokers. It is possible that there are rare variants influencing risk that could 17 

not be detected by a GWAS that focuses on common variants. Additionally, gene-gene 18 

interactions that are beyond the scope of this study may in part explain variability in the 19 

incidence of lung cancer in never smokers. Very rarely, individuals can carry inherited mutations 20 

in TP53 increasing lung cancer risk 48, 49.  The availability of results from our GWAS will allow 21 

additional exposures to be studied using Mendelian Randomization approaches (as exemplified 22 

in 50), and developing models that can identify never smokers at highest risk for lung cancer 23 

development could improve early detection. 24 

 25 
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 1 

Figure 3. Regional association plots for smokers (red line) and never smokers (blue line) in CLPTM1L-2 
TERT region (a) and CHRNA3-5 region (b). The y axis corresponds to –log10P for 650 SNPs in the 3 
CLPTM1L-TERT region and –log10P for 535 SNPs in CHRNA3-5 region. To aid visual representation we 4 
selected the 10 closest SNP and computed average –log10P- values.  5 

 6 
7 
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