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ABSTRACT: In this paper we discuss some concepts and a methodology of a Bayesian framework for
model validation under uncertainty, which produces a probabilistic value for a models validity and may
be used in the design of validation experiments. By using a stochastic metric as a measure of the
distance between experiment and prediction, we update a validation distribution. We show this in
practice using a simple numerical experiment and discuss the current shortcomings of the method. We
finally discuss the role of information entropy in designing validation experiments.

1. INTRODUCTION

Following the greater availability of resources,
computational models are being increasingly used
by the engineer to address the performance and re-
liability of his/her designs and by the scientist to
perform prediction and inferences. Recently also,
physics and engineering codes describing different
phenomena are being integrated to produce multi-
physical and multi-scale systems simulations'. It is
evident that if these unions are to be trusted uncer-
tainty quantification must play a central role within
the constituents and at the interface; and that a
concrete framework for addressing their reliability
and predictive capability is needed. This task falls
to Verification and Validation (V&V). The ASME
(2006)? provides a widely accepted formal defini-
tion and guide for V&V. They can be summarised
as follows:

e Verification: How well the computational
model is mathematically representative of its
conceptual design.

e Validation: How well the computational
model is physically representative for its in-

'The coupling of neutronics and thermal—hydraulic codes
is a good example that will soon become common practice in
the civil nuclear industry. Avramova and Ivanov (2010)
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tended use.

Verification can be subdivided further into code
verification as the removal of logical errors in the
implementation, and calculation verification as re-
moval of errors associated with any numerical ap-
proximation, such as discretization of continuous
quantities or the truncation of infinite sequences. It
is evident that this should be performed prior to any
comparison or improvement to the model by phys-
ical data.

It is validation which is the definitive test for
whether a model is fit for its intended application.
It is here when the model is directly compared to
physical data. At this time the model should not
be changed or improved. If model calibration is
performed it should come prior to the validation
test, and any data used in calibration should not be
reused in validation. It is argued that the experiment
used in validation should be specially designed to
either prove or disprove that the model is accept-
able (Oberkampf et al. (2004)). Designing valida-
tion experiments can be difficult, particularly when
obtaining experimental samples is costly. In this
paper we adopt concepts and propose a Bayesian
framework for model validation which, along with
providing a probabilistic value for the validity of a
model, may be used by the analyst in the design of
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validation experiments. This paper follows from re-
cent published work on a frequentest probabilistic
metric for validation (Dvurecenska et al. (2018)):
this work may act as its Bayesian compliment.

2. PROPOSED APPROACH

The proposed methodology is based on the follow-
ing assumptions:

e Both the validation data and model are uncer-
tain in the subjective probabilistic sense: for
example model uncertainty may come from a
previous Bayesian calibration which provides
an uncertain model; or by other methods for
quantifying uncertainty. The assumption of
probabilistic uncertainty may be relaxed how-
ever.

e A stochastic metric is chosen to determine the
distributional distance between the data and
model.

e A tolerance has been provided by the engineer
or scientist for what is an acceptable distance
between model and data.

It should be noted for the last point that we pro-
vide no advice on how to define an acceptable tol-
erance for a models intended use, this will most
likely need to be discussed between the computa-
tional modeller and the experimentalist.

In the next section we will discuss a stochastic
metric useful for validation. Following this we will
discuss a Bayesian scheme for updating a valida-
tion distribution. Finally we will discuss the role of
information entropy in designing validation experi-
ments.

2.1. A STOCHASTIC METRIC FOR VALIDA-
TION

When performing a comparison between an uncer-
tain model and uncertain data, some notion of dis-
tance is required. This is what a stochastic metric
will provide. There are some characteristics for a
distance metric that are favourable for validation:

1. Retains the physical units of the distributions

Most stochastic metrics result in some statistical
measure that is both difficult to interpret and can
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be unfamiliar to the modeller. A metric which pre-
serves physical units would provide a statistical dis-
tance that is familiar to the engineer. It also allows
for the definition of the minimum tolerable distance
between prediction and experiment to be defined in
physical units.

2. That the metric may be used to compare the
various output dimensions simultaneously

In the case where one would like to address the
complete predictive capacity of a computational
model, it is necessary to perform the distance com-
parison on multiple dimensions of the models out-
put space at once. If the physical unit is preserved
in distance evaluation, then output dimensions with
different physical units will need to be projected
onto a universal unitless scale.

3. Holds the mathematical definition of a metric

Most stochastic metrics do not hold the mathemat-
ical definition of a metric. A formal mathemati-
cal metric d holds the following properties (Fréchet
(1906)):

1. Non-negativity

e d(x,y) >0,
2. Symmetry

e d(x,y) =d(yx),
3. Triangle inequality

e d(x,z) <d(x,y)+d(y,z), and

4. Identity of indiscernibles

o dx,y) =0 < x=y.

It should also hold that as the two distributions
under comparison tend further and further apart that
the metric should tend to infinity.

4. That the metric may be used for comparing data
that is not only distributional
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Figure 1: A comparison of various types of uncertain data using the area metric. The resulting distances are
1.1666u, 1.7911u, 1u, 1.5622u, 1.0918u and 2.017u respectively and where u is the physical unit of the abscissa
axis.
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We may sometimes be presented with a valida-
tion case where our data may be a mix of certain
and probabilistic, or that the model or data may be
uncertain but in a non-probabilistic® sense. For ex-
ample we may have a model which produces an in-
terval prediction as apposed to a probability distri-
bution, and we would like to compare it with dis-
tributional experimental data. Or it may also be
the case where we have an uncertain distribution,
like a probability box (Ferson et al. (2015)), that we
would like to compare. A stochastic metric which
is robust to any type of presented data is favourable.

Ferson et al. (2008) proposed a stochastic metric
which holds all of the above characteristics. They
suggested to use the area between the predictive and
data distributions as a measure of their comparison.
This, what they call the area metric, is the hori-
zontal integral of the two distributions commutative
distribution functions (CDF), or:

~+oo

adPE)= [P0 -E@ldx, (D

—o0

where P and E are the predictive and experimen-
tal distributions, respectively. Figure 1 shows the
area metric being used for various types of data
points. Notably, when the metric is performed with
two scalars, as it is in (c), the metric returns their
difference. When comparing an imprecise distri-
bution, as in (d), the distance is taken as the area
between the distribution and the envelopes of the
imprecise distribution, where any part of the distri-
bution that falls within the envelopes (the red area
in d) will score a zero in the area metric. The dis-
tance between the distribution and an imprecise dis-
tribution is found to be:

A1 +A; —As 2)
2 ?
where A; and A, is the area between the distri-
bution and the two envelopes and A3 is the area be-
tween the envelopes. If the entire distribution falls
within the envelopes, then the area metric returns a
distance of zero.

3Non-probabilistic here meaning other than probabilistic
rather than not-probabilistic. There exist types of uncertainty
that are best modelled by theories that are extensions of prob-
ability theory (Klir (2005))
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The area metric may also be used to compare
multiple output dimensions at once. This is done
by transforming samples from the experimental dis-
tribution onto the CDF axis using the CDF of the
predictive distribution. The distribution of trans-
formed samples from all outputs may now be com-
pared to a uniform distribution. By definition, if
the experimental samples are distributed according
to the predictive distribution then the transformed
samples should be uniformly distributed. This tech-
nique, called u-pooling, is very well described by
Ferson et al. (2008) in their original area metric pa-
per.

In the next section we will discuss our proposed
Bayesian framework where the area metric may be
used to provide a probabilistic value for model va-
lidity.
2.2. UPDATING A VALIDATION DISTRIBU-
TION
Without losing generality, uncertain experimental
data and model may be presented as (Kennedy and
O’Hagan (2001)):

y(x) = 3(x) +e(x) + 81 (x) (3)

and

f(6:x), “4)

where ¥(x) is the true physical response both the
experiment and model are aiming for. y(x) is the ex-
perimentally measure response, with the measure-
ment noise e(x) being a random variable of mean
y(x) and 0;(x) corresponding to experimental bias,
which is some unknown function. x here is known
as a system variable, a variable which the system
response depends on. It could for example be en-
ergy in a spectrum or time in a time series. f(0;x)
is our computational model, which attempts to pre-
dict the true system response ¥(x). 6 are uncer-
tain inputs to our model, which if have been pre-
viously characterised by calibration will provide a
probabilistic prediction for our model. In general,
a model bias is also included, however Kennedy
and O’Hagan (2001) provide a well established
Bayesian framework for calibrating both input pa-
rameters and model bias.
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The aim of this work is that for a given f and
y to provide a probabilistic value for the degree to
which they agree. For this we propose updating a
validation distribution, with a range between 0 and
1 corresponding to the probability that the model is
valid for the given data. Bayes’ law applied to the
validation problem is:

Pivinp) = POIDP0D

Here P(V, f) is a prior probability distribution for
our model validity, which lies between 0 and 1, and
where the value V corresponds the agreement of the
model and data. If no prior knowledge is known
about the models validity then we propose that a
uniform distribution (or a non-informative prior if
available) should be used between 0 and 1; or if one
is available, the posterior of a previous validation
analysis may also be used.

P(Vly, f) is the posterior: a probability distribu-
tion with the range of the prior but has been altered
by data y. Not only does this provide the most likely
value for validity, the mode of the posterior, but also
provides the uncertainty associated with this esti-
mate: the distributions dispersion. The evidence
P(y, f) is a constant which ensures that the poste-
rior is normalised.

P(y|V,f) is referred to as the likelihood in
Bayesian updating. For our validation case it is here
that the stochastic metric, data and model are cast
probabilistically to be used in the updating proce-
dure. As is often the case in Bayesian updating,
constructing a likelihood that is rigorous and true
to our updating problem is the main technical diffi-
culty in this scheme.

We propose that the beta distribution be used
in the updating, a common distribution used in
Bayesian updating. For this initial work, we use
the fact that the binomial and beta distributions are
prior conjugates, allowing for an analytic solution
to the updating. We create very simple binomially
distributed data by comparing the models predic-
tive distribution with the experimental distribution
using the area metric at the locations of the exper-
imental points in the input space. If the distance
between experiment and prediction falls outside the

&)
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provided tolerance, then the model is considered to
fail at this location, and returns a 0. Otherwise the
model passes and a 1 is generated. This series of
passes and failures may then be used to update the
prior beta distribution analytically to solve for the
posterior.

2.3. NUMERICAL EXAMPLE

Figure 2 shows an example of this framework be-
ing used for a simple test function, with Gaussian
predictions, and synthetic experimental points also
normally distributed. Both the grey envelope of the
model and the error bars of the experiment show
a single standard deviation. The data points that
have passed the tolerance test have been marked
with a cross. The resulting posterior distribution is
also shown. 20 data points were used with a toler-
ance which was provided as a fraction of the models
mean prediction.

The test function* is a simple polynomial, with
the uncertainty band around it produced using a
trigonometric function. The 20 experimental points
are randomly selected: their location is uniformly
sampled on the [—10,10] input space. Their mean
is then randomly perturbed about the mean of the
test function, with a random variance also selected.
Since the analytical solution is available for the
updating, the computational cost of producing the
posterior is negligible. Although not realistic, it
serves as as an initial test case for this framework
providing distributional data and model. In future,
we would like to further test our framework on a
real case validation problem, specifically the 2014
Sandia labs V&V challenge problem (Hu and Ori-
ent (2016)).

There are some clear shortcomings with the pre-
sented framework thusfar. For example, each ex-
perimental data point is given equal weighting in
the updating. We believe that ideal scenario is that
the weighting of each point should be a function
of the models and data uncertainty, and their cor-
responding distance. Another consequence of hav-
ing equal weighting for each validation test is that

“Test function, area metric implementation and
Bayesian updating code available for matlab.  Results
reproducible: https://github.com/AnderGray/
bayesianModelValidation


https://github.com/AnderGray/bayesianModelValidation
https://github.com/AnderGray/bayesianModelValidation
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Figure 2: Example of the validation framework for a test function
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the posterior is a direct function of the number of
validation points used. That is that the more you
experimental points used the posterior will become
more narrow, a general feature of Bayesian updat-
ing. The ideal scenario is that one should be able to
determine the number of experimental points need
to validate the model. As it stands, only by pro-
viding more experimental points will one achieve a
more accurate validation estimate. Notice also the
two failed data points around 3 and 5 in the input
space of figure 2 (a). These two have been marked
as failures although they fall within the predictive
distribution. It is debatable whether they are fail-
ures or not. On one hand, one could argue that they
should be passes since they fall within the models
uncertainty envelope. Another argument however
could be that the predictive distribution is too uncer-
tain to provide a prediction for experiments at their
accuracy, and so the model should be considered to
fail at these points. The solution to this ambiguity
most likely depends on the models intended use.
We believe that if these shortcomings can be
solved, then this framework will provide a rigorous
method for validating uncertain models. If these is-
sues are overcome, we also believe that this frame-
work may be used to design validation experiments
using the principle of information entropy. We will
discuss this concept in the following section.

2.4. INFORMATION ENTROPY: THE VALUE
OF AN EXPERIMENTAL POINT
We believe that information entropy, often used in
Bayesian updating to produce prior distributions
of maximum uncertainty under some known con-
straints, can be used in this framework to design
validation experiments. Information entropy may
be regarded as the uncertainty that is stored within
a distribution (Klir (1991)). The larger a distribu-
tions dispersion, the greater its information entropy
is and hence the predictability of a sample drawn
from this distribution falls: its associated uncer-
tainty is greater. In his book on generalised in-
formation theory Klir (2004) discusses the role of
uncertainty in information theory and outlines the
intimate duality information and uncertainty have.
When designing a validation experiment with a
limited budget for obtaining experimental samples,
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we believe that this principle is useful. We pro-
pose that the experimental sample that reduces the
information entropy the greatest between the prior
and posterior distribution contains the most infor-
mation value for validation. If one could optimise
in the input space to locate the points of greatest
information value, then these points could be se-
lected to design experiments within the experimen-
tal cost for each point. Ideally, one would also pro-
vide the minimum experimental uncertainty neces-
sary for this task. Using this technique, one would
not only be able to determine the minimum num-
ber of experiments necessary to prove or disprove a
model but also their locations and could incorporate
this with experimental cost. Clearly for this type
of optimisation to be available, one would need to
overcome the shortcomings outlined in the previous
section, particularly that all experimental samples
have equal weighting.

3. CONCLUSIONS

In this paper we present the concepts and foun-
dations for a Bayesian framework for validation,
where when presented with an uncertain model and
experimental data one can provide a probabilistic
value for the models validity. For this we dis-
cuss the favourable characteristics of a stochastic
metric for comparing model and experimental out-
puts, along with the metric we have selected for this
work. We present the implementation of this metric
in a Bayesian framework for updating a validation
distribution, which has range [0, 1] and whose value
gives the degree to which the model and data agree.
By measuring the distance between experiment and
prediction at experimental points and checking if
they lie within a predefined tolerance, we update
a Beta distribution analytically to solve for a pos-
terior validation distribution. We show this being
used with a test function, and discuss the issues
that need to be resolved for this to work in prac-
tice. Namely that each experimental point has equal
weighting in the updating and there is sometimes
ambiguity on whether a point/prediction combina-
tion returns a pass or a failure in the test. Upon
overcoming these issues, we believe that informa-
tion entropy may be used to design validation ex-
periments. By selecting the points in the input
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space which reduces the information entropy be-
tween the prior and posterior the greatest contain
the most information value for the validation prob-
lem.
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