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Abstract

The Tokai-to-Kamioka (T2K) experiment is a long baseline neutrino oscillation experi-

ment based in Japan. An intense neutrino beam is directed over a 295 km baseline from

J-PARC based in Tokai, on the east coast of Japan, and reaches Super-Kamiokande, the

far detector, on the west coast of Japan. The neutrino beam is directed 2.5◦ off-axis,

in order to produce a narrow-band beam, and also so that the peak of the neutrino

energy distribution maximises the νµ disappearance probability of T2K.

This thesis describes the first T2K studies into low energy particle production in neu-

trino interactions within the Fine Grained Detectors at the Near Detector (ND280) via

the Vertex Activity (VA) variable, a measure of energy deposited in a vertex region.

The VA is the only way in which low energy particles produced in neutrino-nucleon

interactions can be investigated at T2K, as well as other experiments, and is therefore

a useful candidate to constrain low energy particle production in the ND280 during

neutrino interactions.

A disagreement in data and MC at low VA regions was observed in the νµ CC0π sam-

ple, and this thesis explores the reasons behind the excess in broad detail. It is expected

that the excess is due to a mismodelling of low energy protons in MC generators. This

thesis investigates the sensitivity of the VA to additional protons added to MC and

presents results of the optimal percentage of protons added to the final state in the

MC to improve the discrepancy observed.
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Chapter 1

Introduction

The Standard Model (SM) of physics was developed in the early 1970s and has been

the key to linking fundamental particles and their governing forces, however the SM

does not describe the subatomic world in a foolproof manner. Neutrino physics which

is the focus of this thesis, is a theory that needs to be developed beyond the SM, after

neutrino oscillations were postulated and experimentally proven in the early 2000s.

Chapter 2 will delve deeper into a history of neutrino physics, spanning from early

days of postulation right through to discovery of the three neutrino flavours, and os-

cillations, as well as the future outlook of neutrino physics.

Chapter 3 will discuss neutrino-nucleon interactions and why it is crucial that our cur-

rent understanding of the nuclear model is improved, as well as the limitations and

future prospects of new models. Chapter 4 summarises the T2K (Tokai-to-Kamioka)

experiment in Japan, including the near and far detector, beam and current status.

Chapter 5 outlines the ECal calibration studies, including the mismapped channel

swap analysis, as well as the bar-to-bar calibration. Chapter 6 is the start of the Vertex

Activity (VA) analysis, beginning with a description of VA, moving onto a definition of

the analysis and distributions. Chapter 7 discusses response functions and how they

can be used to probe low energy production, Chapter 8 describes the proton VA analy-

sis, including results and systematics, and finally Chapter 9 provides conclusions and

an outlook to future VA work.

1



Chapter 2

Neutrino Oscillations

2.1 The Standard Model

The Standard Model (SM) of particle physics, developed in the early 1970s, is a uni-

fied theory of elementary particles and the forces that govern them; Figure 2.1 shows

the currently understood SM. The SM predicts that particles are composed of a com-

bination of 12 fundamental spin- 1
2 particles, known as fermions, that can undergo

interactions mediated by bosons, which are particles with integer spins. The interac-

tions that are predicted by the SM are the: strong force, mediated by the gluon, weak

force, mediated by the W+/− and Z0 boson, and finally the electromagnetic force, me-

diated by the photon. There is a fourth interaction, known as the gravitational force,

that is thought to be mediated by a spin-2 particle known as a Graviton, but this is

not theorised by the SM. The final particle predicted by the SM, the Higgs boson, was

discovered in 2012, at the Large Hadron Collider (LHC) at CERN [1].

Fermions can be separated into two distinct groups, known as quarks and leptons.

There are 6 types of quarks, that can interact by any of the three forces, and can be

categorised into up-type with a charge of + 2
3 e (where e is the absolute electron charge),

and down-type quarks with a charge of − 1
3 e. The second group of fermions, known

as leptons, do not interact via the strong interaction, and have a charge of -1e. Each

fermion has a corresponding antiparticle with the opposite charge.

2
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Neutrinos, which are the main topic of this thesis, do not strongly interact and are

known as neutral leptons. There are 3 flavours of neutrinos (each with a correspond-

ing antiparticle with the same mass): electron (anti)neutrino (νe/ν̄e), muon (anti)neutrino

(νµ/ν̄µ), and tau (anti)neutrino (νµ/ν̄τ). The SM predicts that neutrinos do not have

a mass, but as neutrinos can oscillate (which will be discussed in Section 2.7), this

means that their mass and flavour eigenstates are different, therefore they must have

a non-zero mass.

Figure 2.1: The Standard Model prediction for elementary particles of matter and

their bosons [2].

The following section will discuss the history of the neutrino, from its early prediction,

to the discovery of all neutrino flavour types, neutrino oscillations and finally to the

present day understanding of the elusive particles.



CHAPTER 2. NEUTRINO OSCILLATIONS 4

2.2 The history of the neutrino

Weak interactions were first discovered in the late 1890s from radioactive decays by

Henri Becquerel [3], and this was followed by Ernest Rutherford’s discoveries of α and

β in 1899 [4], with γ rays being discovered later. James Chadwick, in 1914 discovered

that the electrons emitted in β-decay have a continuous energy spectrum [5]; this was

contrasting to α and γ rays, which have a discrete spectra due to energy conservation.

In 1930, in order to remedy this momentum and energy conservation problem, as well

as the issue of spin statistics in β-decay, Wolfgang Pauli postulated the existence of a

weakly interacting, neutral fermion, called a neutron [6]. The neutron, as we know

it today, was discovered in 1932 by Chadwick which led to Enrico Fermi renaming

the Pauli particle, the neutrino. In 1934 Fermi formulated a theory of β-decay (Fermi

Theory), which included the production of an electron-neutrino pair and a proton

when a neutron decays [7], as a solution of momentum and energy conservation of

β-decay

n→ p + e− + ν̄. (2.1)

It took more than two decades, in 1956, in order to observe this reaction, when Reines

and Cowan developed the first reactor-neutrino experiment to measure

inverse β-decay

ν̄e + p+ → e+ + n (2.2)

during which an antineutrino can produce a positron. Their setup used scintillator in

a water tank, doped with cadmium chloride (CdCl2) positioned by a nuclear reactor

to detect antineutrino interactions. A definite signal for the interaction was observed

via two γ-rays produced from e+-e− annihilation proceeding neutron capture on cad-

mium.
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In 1962 at Brookhaven National Laboratory, L.M. Lederman, M. Schwartz, J. Stein-

berger et al. observed evidence of a second neutrino type, the muon neutrino, νµ,

during the first accelerator neutrino experiment [8]. Protons with an energy of 15 GeV,

were fired at a Be target to produce a beam of pions, which decayed to produce muons

and muon neutrinos

π+ → µ+ + νµ. (2.3)

In 1975, a third lepton flavour, tau, τ was discovered by M. Perl [9] at SPEAR, the

e+ − e− colliding ring. This led to the prediction of a third neutrino, tau neutrino, ντ,

which was discovered in Fermilab in 2000 by the DONUT experiment [10]. A neutrino

beam, formed using 800 GeV protons from the Fermilab Tevatron, passed through a

three foot long DONUT target of iron plates sandwiched between layers of emulsion,

which was used to locate and resolve decays. The τ leaves a track with a kink in the

nuclear emulsion that indicates the decay of the tau lepton; Figure 2.2 shows the decay

of the τ particle.

Figure 2.2: Feynman diagram for the decay of a tau, showing how tau neutrinos are

produced [11].

Although the SM is consistent with the presence of 3 light active neutrino flavours,

postulations regarding a fourth neutrino type have been made. Light sterile neutrinos

were introduced to explain the experimental anomaly detected at The Liquid Scintil-

lator Neutrino Detector (LSND) in Los Alamos in the 1990s [12]. LSND observed an

excess in events for the νµ → νe oscillation search which led to the construction of the

Mini Booster Neutrino Experiment (MiniBooNE) at Fermilab [13]; MiniBooNE began

taking data in 2002. MiniBooNE has recently published results [14], which are consis-

tent with the LSND results by suggesting an excess in νe events, however these results

have been controversial, and previous results from other experiments disagree with

both LSND and MiniBooNE.
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2.3 Solar Neutrinos

The Sun is a source of electron neutrinos with energy of the order ∼ 1 MeV, produced

in the thermonuclear fusion reactions in the solar core. The solar neutrino flux on the

Earth is around 6 x 1020 cm−2s−1 but solar neutrinos mainly pass by unnoticed, as they

have a small neutrino interaction cross section, resulting in the requirement of large

detectors placed underground to detect them.

Homestake and the Solar Neutrino Problem

The Homestake experiment [15], located in South Dakota and led by Ray Davis in the

late 1960s, was the first to detect solar neutrinos, specifically νe from the sun, through

the Pontecorvo-Alvarez inverse β-decay process

νe +37 Cl →37 Ar + e−. (2.4)

The experiment used a large cylindrical steel tank containing 615 tonnes of tetra-

chloroethylene, C2Cl4, in order to count the number of 37Ar atoms produced by solar

neutrinos through the Cl-Ar reaction. The initial data from Homestake found a neu-

trino flux value much less than the rate predicted by the Standard Solar Model (SSM),1

of less than 3 Solar Neutrino Units (SNU), where 1 SNU = 10−36 events atom−1s−1.

Davis et al. continued to take data at Homestake for over 25 years, but still found the

solar neutrino rate to be around a third of that predicted by Bachall. This discrepancy

between the predicted and observed rates of neutrinos produced in the sun is known

as the Solar Neutrino Problem (SNP).

The energy spectra of neutrino fluxes from the pp chain 2, is shown in Figure 2.3, and

the top label shows which experiments are sensitive to the particular processes and

energy ranges.

1The SSM is a model used to understand the physics of the sun, including the energy spectra of

neutrino fluxes of the proton-proton cycle as shown by Figure 2.3. The SSMs used in neutrino physics

have been largely developed by J. N. Bachall since 1962 [16].
2The thermonuclear reactions that power the Sun are known as the pp chain and the CNO cycle,

which result in the conversion of 4 protons and 2 electrons into a 4He nucleus and two νes

4p + 2e− →4 He + 2νe + Q (2.5)

where Q, the Q-value, is the thermal energy release of the process.
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Figure 2.3: Energy spectra of neutrino fluxes from the pp chain as predicted by the

SSM. It is clear to see the processes which are dominated by specific solar

neutrino experiments [17].

Kamiokande

After Homestake, the Kamioka Nucleon Decay Experiment (Kamiokande) [18], a wa-

ter Cherenkov experiment, was used to observe the most energetic 8B solar neutrinos,

at an energy of the order 10 MeV. The Kamiokande experiment, located 1 km under-

ground in the zinc Kamioka mine in Japan, was a large cylindrical cavity containing

around 3000 tonnes of water surrounded by 1000 PMTs. Kamiokande was originally

built to detect nucleon decay but from 1987, Kamiokande detected 8B solar neutrinos

via the neutrino-electron elastic scattering reaction

νe + e− → νe + e−. (2.6)

The flux of 8B solar neutrinos measured by Kamiokande was around half the SSM

flux with a discrepancy of more than 2σ. The importance of the Kamiokande result

was that although the missing solar neutrinos were unaccounted for, it was possible

to reconstruct the directional correlation of the incoming neutrino and the Sun, via the

recoil electron producing Cherenkov light; Figure 2.4 represents this. This means that

the direction of the incident neutrinos can be determined and the signal from the sun

can be identified clearly.
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Figure 2.4: The 8B solar neutrino results from the Kamiokande experiment.

Kamiokande was able to reconstruct the directional information of the

incoming neutrino [19].

Gallium Experiments

In the early 1990s, many gallium experiments were designed to measure the solar neu-

trino flux, including: the GALLium Experiment (GALLEX) [20] and its successor Gal-

lium Neutrino Observatory (GNO) [21] and the Soviet-American Gallium Experiment

(SAGE) [22]. The gallium experiments, crucially, are the only experiments sensitive to

the solar flux of pp solar neutrinos (0 - 4.2 MeV), which are neutrinos produced at the

start of the pp cycle

p + p→2 H + e+ + νe, (2.7)

where 2 protons fuse into a deuteron, 99.76% of the time.

The gallium experiments can detect solar neutrinos via the inverse nuclear β decay of

gallium

νe +71 Ga→71 Ge + e−. (2.8)

The gallium experiments rely on the atoms of 71Ge to be extracted by chemical meth-

ods from large detectors, and combining the neutrino capture rate from all three ex-

periments gives a value around half of the SSM prediction.
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Super-Kamiokande

Super-Kamiokande (SK) [23], the successor to Kamiokande, is a 50 kton water Cherenkov

detector, also located in the Kamiokande mine. SK initially began taking solar neutrino

data from 1996-2001, again specifically searching for the most energetic 8B solar neu-

trinos. SK found a flux rate of around half the SSM, thus confirming the solar neutrino

deficit that was observed by Kamiokande and the gallium experiments.

SNO

In 2002, the Sudbury Neutrino Observatory (SNO) [24], a heavy-water 3 Cherekenkov

detector located in the Creighton mine in Canada, observed high-energy 8B solar neu-

trinos via charged-current (CC), neutral-current (NC) and elastic scattering (ES) reac-

tions

νe + d→ p + p + e−(CC) (2.9)

να + d→ p + n + να(NC) (2.10)

να + e− → να + e−(ES) (2.11)

where α is e, µ, τ.

The CC reactions only occur for νe, allowing a measurement for the νe flux, whereas

the NC reaction allows the measurement of νe, νµ and ντ, or in other words the total

flux of neutrinos from the Sun. It is therefore possible to calculate the flux of νe sepa-

rately from the total neutrino flux, and it was measured that the flux of solar νes were

approximately three times smaller than the flux of νe, νµ and ντ. SNO showed that νes

can change flavour to νµs and ντs, thus solving the SNP and also providing a key piece

of evidence for neutrino oscillations.

Figure 2.5 shows the SNO result, in which the total neutrino flux summed over all

flavours is consistent with the SSM prediction.

3The term heavy water is used to describe the target material used in the water for the SNO detector,

D2O consisting of a deuterium atom, 2H, in contrast to the water previously used in Cherenkov detectors

which contained a 1H atom.
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Figure 2.5: Muon neutrino and tau neutrino flux versus electron neutrino flux. The

bands represent the charged current (red), neutral current (blue) and

elastic scattering (light green) flux measurements. The total 8B solar

neutrino model as predicted by the standard solar model is shown as

dashed lines [25].

2.4 Atmospheric Neutrinos

Atmospheric neutrinos occur when cosmic rays interact with nuclei in the upper at-

mosphere to produce π that decay to µ and νµ which then decay to e and νe. The

atmospheric neutrinos with an energy range between 100 MeV to 100 GeV can be ob-

served in underground detectors that contain sufficient shielding from cosmic rays.

These experiments measure the neutrino flux as a ratio of

R ≡ νµ + ν̄µ

νe + ν̄e
(2.12)

where for low energies R ' 2 but, for higher energies, R increases as muons reach the

ground before they are able to decay.

Detection techniques of atmospheric neutrinos were theorised in the 1960s and initial

observations were made in 1965 by detectors in the Kolar Gold Field Mine in South

India [26] and in the East Rand Proprietary Gold Mine in South Africa [27]. In the

late 1980s, Kamiokande observed atmospheric neutrinos [28] but initially considered

them a background for nucleon decay searches. Kamiokande observed a deficit in

muon-like events compared to predictions, but the electron-like events were in agree-
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ment. This was followed by results from the Irvine-Michigan-Brookhaven (IMB) de-

tector [29], located deep underground in a salt mine near Ohio in the USA, that were

compatible with the ”atmospheric neutrino anomaly” observed by Kamiokande.

In 1998, SK published a measurement of atmospheric muon neutrino disappearance [30],

and a discrepancy in the number of muons passing upwards through the ground, com-

pared to the number of muons observed passing downwards from the atmosphere

was observed. This is known as the up-down asymmetry, in which the flux of at-

mospheric neutrinos is directionally correlated. Vertically down-going neutrinos are

produced in the atmosphere above the detector and can travel for around 15 km be-

fore interacting, whereas up-going neutrinos can travel for around 13000 km through

the Earth before detection. The most likely solution to the discrepancy observed by

SK was to attribute the ”missing” muon neutrinos to neutrino oscillations, and Fig-

ures 2.6 and 2.7 show the dependency of muon-like events on the function L/E. Fig-

ure 2.6 shows that for L/E below ∼ 102 kmGeV−1 there is agreement with the MC

prediction, as the neutrinos do not have enough time to oscillate, however for L/E ≥
102 kmGeV−1 there is a deficit compared to the prediction as the oscillation phase is

large enough for oscillations to occur. Similarly, for Figure 2.7, at high L/E there is a

deficit in the atmospheric muon neutrino flux, consistent with neutrino oscillations.

Figure 2.6: The number of µ-like events compared to the unoscillated prediction as a

function of L/E at SK [31].
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Figure 2.7: Results from SK showing the ratio of observed electron-like and

muon-like events compared to the unoscillated MC prediction versus

L/E. The dashed lines represent the expected shape for the νµ → ντ

oscillation at ∆m2 = 2.2 x 10−3 eV2 and sin22θ = 1 [30].

2.5 Reactor Neutrinos

Reactor neutrinos are ν̄e produced via the inverse β-decay (Equation 2.2), originally

detected by Reines and Cowan, as was discussed in Section 2.2. Neutrino oscillation

experiments require an appropriate source-detector distance in order to observe oscil-

lations, which causes an issue for reactor experiments, as although reactor antineutri-

nos have a low energy, the antineutrino flux decreases rapidly with distance, making

it difficult to observe oscillations, and only ν̄e oscillations can be observed. This was

an issue for short-baseline (SBL) reactor experiments, (L ∼ 10 - 100 m), and also long-

baseline (LBL) experiments such as Chooz [32] and Palo Verde [33]; who were unable

to observe ν̄e disappearance, but as the ν̄e disappearance channel is sensitive to the

third mixing angle, (θ13), Chooz was able to provide a limit on this angle.

The Kamioka Liquid scintillator AntiNeutrino Detector (KamLAND) [34] is located

in the Kamioka mine, where Kamiokande was previously located, and consists of

1200 m3 of liquid scintillator housed in a balloon-shaped volume. KamLAND was

designed to measure electron antineutrinos produced by 53 nuclear power reactors in

Japan, and from data collected between 2002 - 2004, KamLAND measured the disap-

pearance of ν̄e. Figure 2.8 shows the ratio of the observed ν̄e spectrum to the unoscil-

lated prediction as a function of L/E, and there is quite clearly a variation in the ratio,
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thus confirming the oscillation solution from the SNP.

Figure 2.8: Results from KamLAND showing the ratio of ν̄e compared to the

unoscillated prediction as a function of L/E. There is quite clearly a

shape dependence on the ratio, which represents the disappearance and

reappearance of ν̄e as a function of energy [34].

The more recent reactor neutrino experiments, Daya Bay [35] based in China, Dou-

ble Chooz [36], the upgrade of the Chooz experiment, and Reactor Experiment for

Neutrino Oscillation (RENO) [37], based in South Korea, were designed with further

precision, and were able to rule out the hypothesis of no oscillations, and measure

the best results of θ13; Figure 2.9 shows the result from Daya Bay, where the ratio of

the far and near spectra is in agreement with the oscillation prediction. The Jiangmen

Underground Neutrino Observatory (JUNO) [38], a proposed medium baseline reac-

tor neutrino experiment based in China, is likely to further improve the oscillation

parameters, and is expected to commence data taking in 2020.

2.6 Accelerator Neutrinos

It is possible to create a high energy neutrino beam by colliding protons on a fixed nu-

clear target, which produces pions, that then decay and subsequently lead to muons

and muon neutrinos; this procedure is the basis of accelerator experiments. Typically,

there will be a ”near” detector close to the neutrino beam production, and a ”far”

detector located at an ideal distance to probe the relevant neutrino oscillation parame-

ters. The fact that the distance the neutrino travels, between the source and detector, is

fixed, means that there is control over the neutrino energy, which leads to a reduction

in the uncertainties due to cross sections. Accelerator neutrino experiments are sensi-

tive to the atmospheric neutrino oscillation parameters via νµ disappearance (and νe
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Figure 2.9: Result from Daya Bay, top plot shows the background subtracted

positron energy (MeV) observed in the far site (black) and derived

expectation of near site, in red (with oscillation) and blue (without

oscillation). The bottom plot shows that the ratio of far and near spectra

is consistent with that predicted for oscillation [39].

appearance) by measuring the θ13 mixing angle.

K2K [40], based in Japan was a long baseline accelerator experiment, with the neu-

trino source located in KEK and the far detector, 250 km away, in SK. K2K was the first

accelerator experiment to observe muon neutrino disappearance in good agreement

with neutrino atmospheric experiments, which provided confirmation of neutrino os-

cillations.

The Main Injector Neutrino Oscillation Search (MINOS) [41], ran from 2003 - 2012,

and utilised the NuMI beam at Fermilab to produce muon neutrinos that were then

detected by the Far Detector in the Soudan mine, 735 km away from the production

target. MINOS confirmed muon neutrino disappearance in good agreement with the

atmospheric neutrino observation, and further improved the oscillation parameters.

Tokai-to-Kamioka (T2K) [42], the first off-axis (the detector is shifted by a small angle

from the axis of the beam) accelerator neutrino experiment has been collecting data

since 2010. In July 2013, T2K was the first experiment to observe oscillations of νµ

to νe [43]. T2K has also improved the precision in measurements of the oscillation

parameters involved in νµ disappearance, ∆m2
23 and θ23 [44]. The NuMI Off-Axis νe

appearance (NOνA) experiment [45] uses the NuMI neutrino beam produced at Fer-
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milab, and also utilises an off-axis configuration to study the appearance of electron

neutrinos or antineutrinos. NOνA has been running since 2014, and has produced

results that are in agreement with T2K but require further statistics.

Future proposed accelerator experiments include the Deep Underground Neutrino

Experiment (DUNE) [46], in the USA, currently expected to take data in 2026, and

Tokai-to-Hyper-Kamiokande (T2HK) [47], in which the far detector will be the up-

grade to SK. The future accelerator experiments will look for further precision in os-

cillation parameters as well as searching for CP violation in neutrino oscillations.

2.7 Neutrino Oscillation Theory

Neutrino oscillations are a quantum-mechanical phenomenon whereby a neutrino can

change its flavour whilst travelling through space. Neutrino oscillations were first

proposed by Pontecorvo in 1957 [48], and his idea was considered to be very radical

as neutrinos were required to have mass and at the time only one neutrino flavour

had been observed. After the discovery of the second neutrino, the muon neutrino,

Pontecorvo published a paper which included the νe � νµ oscillation.

Neutrinos can interact via Charged Current (CC) and Neutral Current (NC) weak in-

teractions, as shown by the Feynman diagrams in Figure 2.10, and their flavour eigen-

states can couple via the weak interaction and be expressed as a superposition of three

light neutrino mass eigenstates

|vα

〉
=

3

∑
i=1

Uαi|vi
〉

(2.13)

where α = e, µ, τ. Uαi is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing ma-

trix [49], parametrised by three mixing angles (θ12, θ13, θ23), and the charge-parity (CP)

violating phase δ

U =


1 0 0

0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

Atmospheric


c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1


︸ ︷︷ ︸

Solar

(2.14)

=


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s13s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (2.15)
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where cij = cos(θij) and sij = sin(θij).

In vacuum, the initial neutrino state at t=0 is given by

|ν(t = 0)〉 = |να〉 =
3

∑
k=1

U∗αk|νk〉. (2.16)

The temporal evolution of the flavour eigenstate is governed by Shrödindger’s equa-

tion

i
d
dt
|νκ(t)〉 = H|νκ(t)〉 (2.17)

where H is the Hamiltonian, and assuming the plane wave approximation

|νκ(t)〉 = e−iEκ t|νκ〉. (2.18)

The time evolution of the state is then

|ν(x, t)〉 =
3

∑
i

U∗αie
−i(Eit−pix)|νi〉 (2.19)

where Ei and pi are the energy and momentum of a neutrino in the ith mass eigenstate.

The probability of a flavour eigenstate neutrino να to transform to another flavour

eigenstate νb is

P(να → νb, t) = |A(να → νb, t)|2 , (2.20)

where A is the probability amplitude given by

A(να → νb, t) = 〈νb|ν(t)〉 = U∗αke−iEkt〈νb|νk〉 = UbiU∗αke−iEkt〈νi|νk〉 = Ubke−iEktU∗αk.

(2.21)

Assuming the neutrino masses are very small or there is no mixing, and as neutrinos

are relativistic, one can express the neutrino momentum as

p =
√

E2 −m2 ∼ E +
m2

2E
(2.22)

t ∼ L (2.23)
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where E is the neutrino energy and L is the propagation distance, such that:

|νij(L)〉 = exp

(
−i

m2
ijL

2E

)
|νij(0)〉. (2.24)

The general form of the neutrino oscillation probability is as follows

Pνα→νβ
(L, E) =

3

∑
i,j=1

U∗αiUβiUαjU∗βj exp

(
−i

∆m2
ijL

2E

)
, (2.25)

where ∆m2
ij = m2

j −m2
i , the mass-squared differences:

∆m2
21 = m2

2 −m2
1 (2.26)

∆m2
31 = m2

3 −m2
1. (2.27)

Using the unitarity of matrix U, the probability can be expressed as:

P(να → νb, t) = δαb − 4 ∑
i>k

Re (U∗αkUbiUαiU∗bk) sin2
(

∆m2L
4E

)
+

+ 2 ∑
i>k

Im (U∗αkUbiUαiU∗bk) sin
(

∆m2L
2E

)
. (2.28)

The final independent parameters are the mass-squared differences ∆m2
23 and ∆m2

12,

and it is unknown whether m3 > m2 > m1, known as Normal Hierarchy (NH), or

m2 > m1 > m3, known as Inverted Hierarchy (IH), shown by Figure 2.11.
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Figure 2.10: Feynman diagrams showing the Charged Current (CC) reaction (left)

and Neutral Current (NC) reaction (right) of neutrinos with matter [50].

Figure 2.11: A schematic showing the normal (left) and inverted (right) mass

hierarchies for the neutrino mass states. In NH the difference between

m1 and m2 is much smaller than the difference between m2 and

m3 [51].

The oscillation formulas can be simplified if we consider two-neutrino mixing instead,

in which, only two massive neutrinos out of three are considered. This is beneficial as

many experiments are not sensitive to three neutrino mixing and so can be analysed

by a two neutrino model just as effectively.
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The two neutrino mixing matrix is given by

U =

(
cosθ sinθ

−sinθ cosθ

)
(2.29)

where θ is the mixing angle and from this the probability of a neutrino oscillating from

να → νβ is given by

P(να → νβ) ≈ sin22θ12sin2
(

1.267
∆m2

12L
E

GeV
eV2km

)
(2.30)

where ∆m2 is the mass square difference and gives the amplitude of the oscillations,

eV2, L is the distance travelled by the neutrino in km and E is the energy of the neu-

trino in GeV.

The oscillation length can be given by:

LOSC =
πE

1.267∆m2
12

. (2.31)

If L
LOSC � 1 or if L

LOSC � 1 then flavour oscillations cannot be measured, the only cir-

cumstance in which there is sensitivity to ∆m2 is when L
LOSC ∼ 1 as the neutrinos have

time to oscillate at least once. Experimentally, L and E can be controlled in order to

maximise the oscillation signal in the detector.

2.7.1 Current Status

The current best fit values for the oscillation parameters are given by Table 2.1:

Solar neutrino experiments and KamLAND are sensitive to the mass squared differ-

ence, ∆m2
21, and the mixing angle θ12. The atmospheric parameters, ∆m2

32 and θ23, have

been measured by SK, as well as MINOS, T2K and NOνA. The most precise measure-

ment of θ13 comes from the reactor experiments Daya Bay, Double Chooz and Reno.

Currently, there are no measurements for δCP, but T2K hints towards δCP = 0 and δCP

= π being excluded at a 90 % confidence level [53], [54]. Future experiments such as

DUNE and HyperK aim to measure δCP to precise values.
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Parameter NH or IH Best fit values

∆m2
21[x10−5 eV2] - 7.53 ± 0.18

∆m2
32(31)[x10−3 eV2] NH 2.51 ± 0.05

∆m2
32(31)[x10−3 eV2] IH -2.56 ± 0.04

sin2θ12 - 0.307 ± 0.013

sin2θ23 NH 0.425 ± 0.039

sin2θ23 IH 0.587 ± 0.038

sin2θ13 NH 0.02166 ± 0.00075

sin2θ13 IH 0.02179 ± 0.00076

Table 2.1: Best fit values for neutrino oscillation parameters, and where necessary

Normal Hierarchy (NH), as well as Inverted Hierarchy (IH) values have

been listed. These values have been adapted from [52].

Although the field of neutrino physics has produced many significant results over the

past century, there are still some unknown questions:

• the value of δCP

• the sign of ∆m2
32

• the octant is unknown; does θ23 deviate from maximal mixing (θ23 = 45◦), and if

so, does it have a low-octant (θ23 < 45◦) or a high-octant solution (θ23 > 45◦)?

• the absolute value of the neutrino masses; ∆m2
31 ' ∆m2

32 ≥ 0 (NH)

or ∆m2
31 ' ∆m2

32 ≤ 0 (IH)?

• are neutrinos Dirac particles or are they Majorana particles, in which case neu-

trinos are their own antiparticle?

In addition, measuring θ13, θ12, θ23, ∆m2
21 and ∆m2

32 to higher precisions will be made

possible by future neutrino experiments.
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Neutrino-nucleus interactions

As neutrino oscillation physics heads towards an era of high statistical precision, cross

section uncertainties may soon become the main limiting factor in the precision of

measurements of parameters (e.g. δCP, θ23, ∆m2
32), therefore it is crucial to understand

neutrino interactions and their cross sections. The uncertainties from the interactions

between neutrinos and nucleons will be the main source of the systematic uncertain-

ity in future experiments, so by an improved comprehension of the initial neutrino-

nucleus interactions, as well as the final state interactions, future measurements can

be improved.

This chapter will describe neutrino-nucleus interactions, giving a history to the inter-

actions and past experiments, and how the interactions are measured experimentally

at T2K and at future experiments. A discussion of the nuclear model will also be pro-

vided, along with a description of CCQE interactions and other interaction modes.

3.1 Neutrino-nucleus Scattering

Neutrino-nucleus scattering describes events in which a neutrino from a beam hits

a target composed of ”nucleons” and undergoes a particular type of scattering. The

most likely interaction to occur at low neutrino energies is Elastic Scattering (ES), in

which the energy transfer to the nucleus is not sufficient enough for an unbound nu-

cleon to escape, and so the nucleus recoils in the same state as it was initially. Moving

towards higher energies (Eν ∼1 GeV), quasielastic (QE) scattering is most probable.

In QE scattering, a nucleon will scatter off the nucleus and this can occur via a Neu-

tral Current (NC), mediated by a Z boson, with no leptons in the final state, or via a

Charged Current (CC) mediated by a W± boson, where there is a lepton in the final

21
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state.

Figure 3.1 summarises the current measurements of CC neutrino and antineutrino

cross sections, accumulated over many decades using different neutrino targets, for a

full explanation of the experiments that contributed to the figure, the reader is referred

to [50].

Figure 3.1: Total neutrino (top) and anti-neutrino (bottom) cross section as a

function of neutrino energy, for current experimental data, separated by

interaction mode: quasi-elastic (dashed), resonance (dot-dash) and deep

inelastic scattering (dotted) [50].
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The region of interest for T2K interactions is around 1 GeV where interactions mainly

occur on nucleons and nuclei and, as Figure 3.1 shows, the main interaction channels

are QE, as well as Resonance (RES). The RES processes peak at higher energies than

the QE interaction mode. During a resonant process the target nucleon has enough

energy to create a baryonic resonance (N∗ or ∆), that will then decay to produce a final

state consisting of nucleons and mesons. Figure 3.1 also shows that at Eν >10 GeV,

Deep inelastic scattering (DIS) interactions dominate, in which there is enough energy

to resolve the inner structure of the nucleon. During DIS interactions, the neutrino is

able to scatter directly off the quarks inside the nucelon.

In addition to the interactions described by Figure 3.1, there also exists coherent scat-

tering, which occurs at low energies, where the neutrino will scatter off the whole nu-

cleus. Finally this chapter will discuss multinucleon interactions, including two-body

interactions (n particles - n holes, (np-nh)), during which a a weak boson is exchanged

by a pair of nucleons, as well as Final State Interactions (FSI).

It should be noted, that it is not possible to measure the interactions themselves, in-

stead the particles that leave the nucleus are measured. At T2K events are categorised

using the topology information, where the contribution of each true interaction type

is provided by the MC. The set of particles that leave the nucleus after the final state

interaction within the target nucleus is defined as the topology. At T2K the topology

observed for CCQE events is known as the CC0π topology, where the signal will in-

clude all neutrino interactions which do not produce a pion in the final state but also

2p2h contributions. The interactions in which a pion is absorbed before the final state

could actually be CC1π events; T2K also defines these as a topology.

3.1.1 Nuclear Model

The nuclear model, which describes the initial state of nucleons within the nucleus, is

used for simulation in Monte Carlo (MC) generators. MC generators work by using

the input parameters to simulate a variety of neutrino interactions but discrepancies

can arise in generator predictions for a single nucleon in the final state compared to

what is measured by the data in the final state. There has been a great deal of interest

recently in improving the nuclear models that describe the neutrino-nucleus interac-

tions incorporated into MC generators and implementing these improved models will

allow for the best measurements possible. At T2K, NEUT [55] is used as the default

MC generator and GENIE [56],[57] is used as a cross-check. The simulations at T2K de-

scribe neutrino-nucleon interactions based on the “impulse approximation”, in which

the total cross section is calculated as an incoherent sum of scattering on free nucleons.



CHAPTER 3. NEUTRINO-NUCLEUS INTERACTIONS 24

The nuclear model was initially described in NEUT using the Spectral Function (SF) [58].

The SF model considers the nuclear matter to be a two-dimensional distribution of

the nucleon momentum and binding energy, however disagreements between this

model and experiments have led to a different model to be used instead. This model

is the simplest impulse approximation approach and is known as the Global Relativis-

tic Fermi Gas (RFG) model based on the Smith-Moniz model [59]. RFG describes the

momentum of the nucleons as behaving flat, up until the the highest momentum nu-

cleon, which has a Fermi momentum, pF, the value of which depends on the size of

the nucleus. The RFG model is now the default model used in NEUT, and GENIE uses

a modified RFG model [60] to incorporate short range nucleon-nucleon correlations.

3.1.2 Charged Current Quasi-Elastic Scattering

Charged-Current Quasi-Elastic (CCQE) scattering (Figure 2.10 represents a CCQE re-

action), mediated by a W+/− boson, is the primary way in which neutrinos interact

with matter at T2K’s peak energy range, around 600 MeV. The CCQE reaction involves

a neutrino interacting with a neutron in the nucleus to produce a charged lepton and

proton in the final state

νl + n→ l− + p (3.1)

or similarly for an antineutrino

ν̄l + p→ l+ + n. (3.2)

CCQE is modelled using a Llewellyn-Smith formalism [61] for both NEUT and GE-

NIE, and the differential cross section is expressed as a function of the four momentum

transfer squared (Q2)

dσν,ν̄

dQ2 =
M2G2

F cos2 θC

8πE2
ν

(
A(Q2)± B(Q2)

s− u
M2 + C(Q2)

(s− u)2

M4

)
, (3.3)

where the sign in front of the B term represents neutrino (-) and antineutrino (+) scat-

tering, M is the nucleon mass, GF is the Fermi coupling constant, θc is the Cabbibo

angle, Eν is the neutrino energy and

s− u = 4MEν −Q2 −m2
l , (3.4)
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where s and u are the Mandlestam kinematic variables corresponding to the centre of

mass energy squared and the four momentum squared respectively.

The functions A, B and C are given by

A(Q2) =
m2

l + Q2

M2

{
(1 + τ)F2

A − (1− τ)
(

FV
1

)2
+ τ(1− τ)

(
FV

2

)2
+ 4τFV

1 FV
2 −

− m2
l

4M2

((
FV

1 + FV
2

)2
+ (FA + 2FP)2 −

(
Q2

M2 + 4
)

F2
P

)}
, (3.5)

B(Q2) =
Q2

M2 FA

(
FV

1 + FV
2

)
, (3.6)

C(Q2) =
1
4

(
F2

A +
(

FV
1

)2
+ τ

(
FV

2

)2
)

, (3.7)

where ml is lepton mass and τ is a constant, such that

τ =
Q2

4M2 . (3.8)

The vector form factors, FV
1 and FV

2 , can be defined in terms of the electromagnetic

form factors of electron-nucleon scattering, as a consequence of the conserved vector

current (CVC) hypothesis [62], and FP is a pseudoscalar form factor that can be ex-

pressed as

FP(Q2) =
2M2

Q2 + m2
π

FA(Q2), (3.9)

where mπ is the mass of the pion, and the axial form factor, FA is usually parame-

terised with a dipole form

FA(Q2) =
gA(

1 + Q2

MQE2
A

)2 , (3.10)

where gA is known as the axial coupling constant, with a value of = - 1.2670 ± 0.0035,

well known from neutron β decay [63], and MQE
A is the axial mass term; for NEUT

MA = 1.21 GeV and for GENIE MA = 0.99 GeV. Early investigations of the QE scat-

tering date back to the early 1970s when bubble chamber experiments [64] employed

deuterium as a nuclear target, and consequently led to initial nucleon form factor mea-

surements. MQE
A constrained from neutrino-deuterium scattering in bubble chamber

experiments, was 1.026 ± 0.021 GeV [65]. Currently, with an improved analysis of the
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original data and using updated vector form factors, MQE
A ∼ 1.0 GeV. The value of MA

changes the scale and shape of the Q2 distribution and discrepancies have been ob-

served with recent experiments and the bubble chamber results; this will be discussed

further in Section 3.2.

3.1.3 Neutral Current Elastic Scattering

Neutral Current Elastic (NCE) processes are similar to CCQE, but are mediated by Z0

bosons, and a neutrino and nucleon is produced in the final state, as shown below:

νl + p→ νl + p (3.11)

νl + n→ νl + n. (3.12)

As no lepton is present in the final state, it is difficult to detect these processes.

3.1.4 Resonant Pion Production

The resonant pion production process is dominant for neutrinos with energies around

1.5 GeV to 5 GeV, as shown by Figure 3.1. Resonant pion production processes occur

when there is enough energy in a nucleon interaction to create a resonance state (N∗

or ∆), that then decays to produce a pion. The single pion production in MC uses a

Rein-Sehgal model [66], and the target nucleon can be a proton or a neutron.

Neutrino induced single pion production on nucleons can occur through three charged-

current channels:

νl + p→ l− + π+ + p (3.13)

νl + n→ l− + π+ + n

l− + π0 + p
(3.14)

and four neutral-current channels:

νl + p→ νl + π+ + n

νl + π0 + p
(3.15)



CHAPTER 3. NEUTRINO-NUCLEUS INTERACTIONS 27

νl + n→ νl + π0 + n

νl + π− + p.
(3.16)

3.1.5 Coherent Scattering

In a coherent neutrino-nucleus interaction, the neutrino will scatter (via a CC or NC)

off the nucleus, but there will be no excitation or fragmentation involved, so the nu-

cleus ends up in the same quantum state as it was initially.

The coherent neutrino-nucleus interaction is also modelled using the Rein-Seghal model

and a Feynman diagram for the νµ coherent process is shown by Figure 3.2.

The coherent process for CC interactions can be expressed as:

νl + A→ νl + A + π0 (3.17)

νl + A→ l− + A + π+ (3.18)

where A is the target nucleus, and the neutrino that is produced will have a very low

momentum.

νµ

µ−

W

A

π+

A

Figure 3.2: Feynman diagram of a CC coherent pion production.

3.1.6 Deep Inelastic Scattering processes

Deep Inelastic Scattering (DIS) processes dominate at high energies, Figure 3.1 shows

that this occurs at Eν > 5 GeV, which is not in T2K’s region of sensitivity. DIS occurs
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when a neutrino is able to interact with a quark inside a nucleon through a W+/−

boson (CC) or Z boson (NC), and can cause the nucleus to fragment and produce a jet

of hadrons.

The DIS process can be expressed as:

νl + N → l− + X

νl + X
(3.19)

ν̄l + N → l+ + X

ν̄l + X
(3.20)

where X denotes the hadronic multiple particle system.

3.2 Multinucleon Processes

As experiments move towards nuclear targets that are more complex, a clear under-

standing of nuclear effects is paramount. External data gave constraints on cross sec-

tion systematics, starting with bubble chamber experiments (as mentioned previously

in Section 3.1.2), and this was followed by investigating lepton-nucleus QE scattering

using electrons. The benefit of using electrons is that the properties, such as beam,

flux, momentum, among others, are known to precise values, which means that the

Q2 and momentum transferred to the nucleus during an interaction can be precisely

measured. In fact, as the form factors are similar to QE, the early electron scattering

configurations have been adapted to describe neutrino data at T2K.

Following on from the bubble chamber results, K2K [67], and MiniBooNE [68] found a

discrepancy in the absolute QE cross section as a function of energy, based on the stan-

dard value of MA = 1.03 GeV/c2. For the MiniBooNE results it was necessary to in-

crease the MA value to 1.35 GeV/c2, in order to account for the discrepancy observed.

It was inferred that there was a problem with the interaction model, and not the flux,

as a similar issue is seen in the Q2 distribution. SciBooNE was able to resolve the final

state by identifying the proton track as well as the muon track [69], and this agreed

with a higher MA prediction, which is consistent with the MiniBooNE measurement.

NOMAD [70], uses a 2-track event selection with a reconstructed proton track, and the

cross section was measured with a best-fit MA value of 1.05 GeV/c2, consistent with

the world average value. MINOS [71] observes similar shape disagreements as those

seen in K2K, MiniBooNE and SciBooNE, and requires a larger MA value.
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The MINOS experiment uses a higher energy and an iron target instead of carbon.

T2K has also published results consistent with a high effective MA value [72].

Evaluating the results from all of these experiments suggests the presence of another

interaction model, such as a multinucleon neutrino interaction model, in order to ac-

count for the discrepancy observed. Multinucleon processes, which are also known

as np-nh1, occur when a neutrino interacts with more than one nucleon. An example

of such an interaction is, a pion produced via the excitation of a ∆ resonance escaping

detection due to reabsorption into the nucleus, simulating a QE interaction, but is in

actual fact a multinucleon process. The cross section of np-nh processes are low and

difficult to calculate, but have a significant effect in electron scattering experiments,

shown by Figure 3.3.

Figure 3.3: Inclusive cross section for electron scattering on carbon with Q2 = 0.24

GeV2 at the QE peak. The 2p2h interactions (blue) peak in the dip region

inbetween the QE peak (green) and the resonance peak (red

dash-dotted-dotted line) [73].

Multinucleon effects are being studied in more detail for neutrino scattering, and there

are a number of different multinucleon models implemented into neutrino generators,

including the one used in NEUT by Nieves et al. [74], which uses a many-body expan-

sion to calculate the total lepton scattering. There is also the Martini et al. [75] model

which uses a many-body expansion method as well, with alternative approximations.

In addition, both Nieves and Martini require a correction to the nuclear model known

as the Random Phase Approximation (RPA) [74]. RPA is a long-range correlation that

considers the collective excitation of the nucleus and calculates this as a superposition

of 1p1h excitations. Both Nieves and Martini have theorised that, a calculation based

on a free local Fermi gas with RPA excitations and 2p2h interactions, can explain the

11p-1h stands for 1 particle-1 hole and 2p-2h stands for 2 particle-2 hole.
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MiniBooNE data [76], [77].

Recent results from MINERνA have shown that for CCQE-like interactions, there is an

excess in the energy deposited around the vertex, which can be attributed to an excess

of protons in the final state [78], and is consistent with a multinucleon model. T2K has

also recently seen results suggesting that multinucleon interactions are misidentified

as CCQE events due to misreconstruction of events. In particular the focus of this

thesis is a discrepancy observed between data and MC at low VA values for a muon

neutrino CC0π sample, which may be explained using a multinucleon model, and

will be discussed in further detail in Chapters 6-8.

3.3 Final State Interactions

Neutrino-nucleon interactions are often identified depending on the circumstances of

the hadronic final state, which can be adjusted depending on Final State Interactions

(FSI). It is difficult to define FSI but it is important to understand them as they can

distort the topology and kinematics of nucleon interactions, and so are a significant

source of error in cross section measurements. FSI are not able to isolate the initial

interaction type, such that for example, a CCRES event in which a pion is absorbed

by the nucleus, may look like a CCQE event, in which there is no exiting proton, and

only the outgoing lepton will be observed.

NEUT uses a cascade model [55] to simulate FSI, in which the hadrons that are pro-

duced at the neutrino interaction vertex propagate through the nucleus step-by-step.

GENIE also uses a cascade model, which is called hA, and more details can be found

in [79].

In conclusion, the current understanding of multinucleon effects, as well as FSI, are

limited but are important to understand as they could help explain the results from

certain experiments, where the measured CCQE cross section is significantly higher

than expected. Generators are limited in the understanding of these nuclear effects but

it is crucial that the multinucleon interaction models as well as further models that can

help explain the discrepancies observed in QE interactions, are implemented in event

generators. In addition, future experiments that are sensitive to protons produced

in a neutrino-nucleon interaction, including at the Fermilab Short Baseline Neutrino

Program, where it may be possible to reconstruct low energy protons at the vertex of

neutrino events [80], are necessary to help improve the current understanding of 1p1h

and 2p2h interactions.
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The T2K Experiment

T2K (Tokai to Kamioka) is a long baseline neutrino oscillation experiment located at

the Japan Proton Accelerator Research Complex (J-PARC) in Tokai, Japan. An intense

ν beam is produced by the J-PARC accelerator on the east coast of Japan and is di-

rected through a number of near detectors and a far detector, Super-Kamiokande (SK),

located 295 km away from J-PARC (shown by Figure 4.1); the beam is directed 2.5◦off-

axis towards SK.

Figure 4.1: Illustration of the T2K beamline direction travelling from J-PARC to

SK [42].

4.1 Motivations

The T2K experiment was designed with an emphasis on probing the last unknown

lepton sector mixing angle θ13 by measuring the oscillation of νµ → νe [81]. It has also

investigated sin2θ23 and the mass difference ∆m2
23 through νµ disappearance.

Since May 2014, T2K has been running in anti-neutrino mode to give sensitivities and

constraints to the CP violation phase δCP. The sign of the CP-violating term is the

31
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opposite for neutrino and antineutrino oscillations therefore antineutrino beam data

allows CP violation effects to be studied directly. The T2K experiment is also involved

in measurements of neutrino interaction cross sections and exotic physics such as ster-

ile neutrino and Lorentz Violation searches.

4.2 Neutrino Beam

The T2K neutrino beam is produced at J-PARC and is obtained from the acceleration

of protons. The following sections will discuss the J-PARC accelerator complex where

the beam originates, as well as a detailed description of the neutrino beam production.

4.2.1 The J-PARC Accelerator

The J-PARC accelerator complex is located in Tokai, Ibaraki and consists of three accel-

erators: a linear accelerator (LINAC), a rapid-cycling synchrotron (RCS) and the main

ring (MR) synchrotron, shown by Figure 4.2.

Figure 4.2: Birds-eye view of the J-PARC facility [82].

A H− beam is accelerated by the LINAC to a kinetic energy up to 400 MeV and is

stripped of electrons by thick carbon foils to be converted into a proton beam, H+,

which is then injected into the RCS and accelerated to 3 GeV. The RCS has a cycle fre-
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quency of 25 Hz and contains two bunches in each cycle. Approximately 5% of these

bunches are supplied to the MR, the rest of the beam is used in the muon and neutron

beamline at J-PARC. The MR accelerates the protons to 30 GeV in a circumference of

1567 m. There are 8 bunches in the MR which are extracted for the neutrino beamline

in a single turn.

4.2.2 ν Beamline

The T2K neutrino beamline is composed of a primary beamline and a secondary beam-

line, as shown by the schematic in Figure 4.3. The purpose of the primary beamline is

to ensure the extracted protons from the MR are pointed in the direction of Kamioka

where the far detector, SK, is based. The primary beamline consists of three sections:

a 54 m preparation section, a 147 m arc section and finally a focusing section that is 37

m long. The extracted proton beam in the preparation section is focused and deflected

by 11 magnets ready for the arc section. During the arc section the proton beam is

directed towards the location of Kamioka; superconducting magnets bend the proton

beam by 80.7◦. The final focusing section helps guide the proton beam towards the

target where it reaches the secondary beamline. The protons collide with a graphite

target to create secondary pions, which are focused by magnetic horns and decay into

neutrinos that form the T2K neutrino beam. The secondary beamline, shown by Fig-

Figure 4.3: Overview of the T2K neutrino beamline, showing the secondary and

primary beamline [42].

ure 4.4, consists of three sections: the target station, decay volume and beam dump.

The target station contains a collimator, optical transition radiation monitor (OTR),
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proton beam target and three magnetic horns, all located inside a helium vessel. A

beam window separates the target station from the primary beamline at the upstream

end and is connected to the decay volume at the downstream end. The target is made

from a graphite rod of length 91.4 cm and diameter 2.6 cm and is sealed inside a 0.3

mm thick titanium case. Each of the three magnetic horns [83] were designed for a

pulsed peak current of 320 kA and consist of two, inner and outer, coaxial conductors

encompassed in a volume containing a torodial magnetic field of up to 1.7 T. The first

horn collects the mesons produced by proton interactions at the target whereas the

second and third horns focus the mesons. The horns can be run in either Forward

Horn Current (FHC) mode or, if the polarity of the magnetic field is reversed, Reverse

Horn Current (RHC) mode. When running in FHC mode, positively charged mesons

are collected to produce a neutrino beam whereas in RHC mode negatively charged

mesons are collected to produce an antineutrino beam:

Ihorn = +250KA⇐⇒K+/π+ →µ+ + νµ

Ihorn = −250KA⇐⇒K−/π− →µ− + ν̄µ.
(4.1)

The decay volume is a long steel tunnel approximately 96 m long surrounded by 6

m thick reinforced concrete shielding. The charged meson beam enters this decay

volume where they decay to form muon neutrinos (FHC)

π+→µ+ + νµ (4.2)

or muon antinuetrinos (RHC)

π−→µ− + ν̄µ. (4.3)

A small number of muon neutrinos and antineutrinos are also produced from the

decay of kaons, these νµ have a higher energy than the ones produced from pion decay:

K+→µ+ + νµ K+→π0 + µ+ + νµ (FHC)

K−→µ− + ν̄µ K−→π0 + µ− + ν̄µ (RHC)

The resulting beam is dominated by muon neutrinos and antineutrinos but there is a

small νe contamination produced via the Ke3 decay which has a branching ratio of 5%

K−→π0 + e+ + νe.
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Some fraction of νe contamination also occurs in the decay tunnel from muon decay

µ+→e+ + νe + ν̄µ.

At the end of the decay volume is the beam dump; this consists of a core made of

75 tons of graphite, 3.174 m long, 1.94 m wide and 4.69 m high, contained within a

helium vessel. Muons below ∼ 5 GeV/C and all hadrons are stopped by the beam

dump whereas the neutrinos pass through the beam dump to be used for physics ex-

periments. The muons above ∼ 5 GeV/C are monitored to characterise the neutrino

beam. The neutrino beam intensity and direction is monitored by the muon monitor,

which is located just behind the beam dump. The neutrino beam direction can be mea-

sured with a precision better than 0.25 mrad, which corresponds to a 3cm precision of

the muon profile centre.

Figure 4.4: Side view of the secondary beamline, showing the target station, decay

volume and beam dump [42].

4.3 Off-Axis Neutrino Beam

The T2K experiment uses an off-axis beam with an angle 2.5◦ away from the beam

centre. This method allows a narrow-band neutrino beam to be selected so that the

neutrinos observed have a narrow spread of energy. The peak energy of the neutrino

beam can be varied by changing the off-axis angle. As the peak energy of the neutrino

beam at the first oscillation maximum at SK is ∼ 0.6 GeV, the off-axis angle has been
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set to 2.5◦. This maximises the effect of the neutrino oscillations at 295 km and reduces

background events, Figure 4.5 shows the neutrino flux predicitions for different off-

axis angles.

The outgoing neutrino energy (Eν) can be written as:

Eν =
m2

π −m2
µ

2(Eπ − pπ.cosθ)
(4.4)

where mπ, Eπ and pπ are the mass, energy and 3-momentum of the pion respectively,

mµ is the mass of the muon and θ is the angle between the neutrino and pion direc-

tions.

Figure 4.5: T2K neutrino flux predictions for different off-axis angles and muon

neutrino survival probability at 295 km as a function of neutrino

energy [84].

4.4 Neutrino Flux

The neutrino flux is modelled by a Monte Carlo (MC) simulation driven by experimen-

tal data from the experiment NA61/SHINE [85], as it covers the full kinematic region

of interest for T2K. FLUKA [86] is used to simulate the hadronic interactions inside

the graphite target and passes kinematic information to JNUBEAM, a MC simulation

package based on GEANT3 [87] developed to cover the entire secondary beamline,
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and interactions outside the target use GEANT3/GCALOR [88]. Neutrino interac-

tions are simulated with a neutrino event generator, either NEUT [55] or GENIE [56].

The runs 1-8 prediction of the T2K flux for the near and far detector in both ν and ν̄

mode is shown by Figure 4.6.
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(a) ND280 ν-mode
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(b) ND280 ν̄-mode
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(c) SuperK ν-mode
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(d) SuperK ν̄-mode

Figure 4.6: Flux Predictions for ND280 (left) and SuperK (right) for runs 1-8 with

horns operating in 250 kA mode, normalised to 1021 POT [82].
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4.5 T2K Data

T2K began data collection in January 2010 in neutrino mode and since 2014 the beam

has been running mainly in antineutrino mode. The data collected so far has been

divided into nine runs and is summarised in Table 4.1, and the number of protons

on target (POT) accumulated along with beam power is shown in Figure 4.7. The

analysis presented in this thesis in Chapters 6-8 uses the data from runs 2-4 which

were collected between November 2010 and April 2013 and correspond to 5.736 x 1020

POT in neutrino mode.
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Figure 4.7: Number of accumulated protons on target (POT) for each T2K run, as

well as the J-PARC proton beam power [82].

Run Period Dates ν POT (x 1020) ν̄ POT (x 1020)

Run 1 Jan. 2010 - Jun. 2010 0.323 -

Run 2 Nov. 2010 - Mar. 2011 1.108 -

Run 3 Mar. 2012 - Jun. 2012 1.579 -

Run 4 Oct. 2012 - May 2013 3.560 -

Run 5 May 2014 - Jun. 2014 0.242 0.506

Run 6 Nov. 2014 - Jun. 2015 0.190 3.505

Run 7 Feb. 2016 - May 2016 0.480 3.520

Run 8 Oct. 2016 - Apr. 2017 7.252 -

Run 9 Oct. 2017 - May 2018 0.205 8.887

Total Jan. 2010 - May 2018 15.131 16.505

Table 4.1: A table outlining the details of the T2K runs, including the number of

POT for neutrino and antineutrino mode.
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4.6 Super-Kamiokande

Super-Kamiokande (SK) [89] is a 50 kiloton (22.5 kiloton fiducial) water Cherenkov

detector located in Kamioka Township, Gifu Prefecture, Japan. SK is used as the far

detector for the T2K experiment, as well as having other scientific goals including pro-

ton decay searches and studies of neutrinos from sources such as the sun, atmosphere,

supernovae and gamma rays among many others. SK published the first unambigu-

ous evidence of neutrino oscillation in atmospheric neutrinos [90] and confirmation

of the solar neutrino flux deficit. SK is located in the Mozumi mine and the detector

cavity lies under Mt. Ikenoyama, as shown by Figure 4.8.

Figure 4.8: A diagram of the Super-Kamiokande detector [82].

The SK detector consists of a 39 m diameter and 42 m tall welded stainless-steel tank.

Inside the tank there is a stainless-steel framework of thickness 55 cm, spaced approx-

imately 2-2.5 m inside the tank walls, which supports two separate arrays of PMTs.

There are 11,146 inward-facing PMTs located about 2.5 m inside the wall and, along

with the the volume of water they view, are referred to as the Inner Detector (ID). The

outward-facing PMTs, of which there are 1885, are located 2 m inside the wall. These

PMTs, and the water volume they view, are known as the Outer Detector (OD). Events

over a wide range of energy (4.5 MeV to over 1 TeV) can be detected; for low energy

events (solar neutrino studies) the energy is calculated from the number of PMT hits,

while for high energy events (atmospheric neutrino and muon studies) the energy is
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measured in terms of net charge detected by PMTs. The Cherenkov light emitted by

the charged particles produced is used to detect neutrino interactions. The size, shape

and orientation of the Cherenkov light pattern produced on the ID walls can be used

to identify events as being electron-like if they are fuzzy, as electrons undergo multiple

Coulomb scattering resulting in a blurred ring, or muon-like if they are not, as muons

are highly penetrating so will pass through the detector with minimal scattering pro-

ducing a sharper and better defined ring; this is shown by Figure 4.9.

Figure 4.9: SuperK Event Display. The top image is a muon-like event and the

bottom image is an electron-like event [91].
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4.7 T2K Near Detectors

The near detector complex at J-PARC is located 280 m downstream from the produc-

tion target and is used to monitor the neutrino beam, measure neutrino event rates

and help minimise uncertainties in measurements of neutrino oscillation parameters.

The T2K near detectors consist of an on-axis detector, Interactive Neutrino Grid (IN-

GRID), and an off-axis detector, Near Detector at 280m (ND280), described in more

detail in Sections 4.7.1 and 4.7.2 respectively.

4.7.1 INGRID

The on-axis detector located at J-PARC is known as INGRID. It contains a set of mod-

ules with sufficient target mass to continuously monitor the neutrino beam rate, pro-

file and centre. In order to achieve this, INGRID is designed to sample the beam in a

transverse section of 10 m x 10 m, with 14 identical modules arranged in two groups

along the horizontal and vertical axes, as shown by Figure 4.10. The point at which the

two modules cross in the centre is the neutrino beam centre and is 0◦ with respect to

the direction of the primary proton beamline. The purpose of the two off-axis modules

is to verify the axial symmetry of the neutrino beam.

Figure 4.10: Overview of INGRID viewed from beam upstream [42].

The INGRID modules are arranged in a sandwich structure of nine iron target plates

and eleven tracking scintillator planes as shown by Figure 4.11. Charged particles

coming from the outside of the modules are rejected by veto scintillator planes that
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surround the tracking scintillator planes. A more detailed description of the INGRID

module can be found at [42].

Figure 4.11: A single INGRID module, which consists of a sandwich structure of

nine iron plates and 11 tracking scintillator planes surrounded by a veto

scintillator plane [42].

Proton Module

A module separate from the 16 INGRID modules, known as the Proton Module, was

installed in 2010, and is shown by Figure 4.12. The purpose of the Proton Module is

to measure the neutrino cross section precisely with the T2K on-axis neutrino beam.

The measurement of CCQE cross sections on carbon at mean neutrino energies of 1.94

GeV and 0.93 GeV was achieved with a total uncertainty of around 20%, dominated

by neutrino flux errors.

Figure 4.12: Schematic view of the proton module [42].
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The Proton Module consists of 34 tracking planes, made up of 32 scintillator bars

which are finer grained than the INGRID module planes, surrounded by 6 veto planes;

there are no iron plates present. The module is 1.42 m high x 1.43 m wide x 0.96 m

deep, has a total target mass of 556 kg and contains 1204 channels.

The Proton Module is currently located upstream of INGRID. The Proton Module is

a fully-active detector therefore track reconstruction from the interaction point is pos-

sible. An example of an Ingrid and Proton Module Event Display is shown by Fig

4.13.

4.7.2 ND280

A large, fine grained, magnetised off-axis near detector, ND280 is located at J-PARC

280 m downstream from the start of the neutrino beam. It is designed to measure

the flavour content, energy spectrum and NC and CC interaction rates of the unoscil-

lated neutrino beam to predict the neutrino event rate and energy spectrum at the SK

detector.

The goals of ND280 are to:

• measure the νµ energy spectrum

• determine the rate of νµ induced CC interactions

• measure the inclusive and exclusive cross section rates

• measure the NC π0 production rates.

ND280 is located inside the UA1 magnet at a magnetic field of 0.2 T and contains sev-

eral subdetectors designed to measure neutrino interactions in the 100 MeV to few

GeV range. The tracker section of ND280 (used in most analyses) consists of 2 Fine

Grained Detectors (FGDs) used as a target for neutrino interactions sandwiched be-

tween 3 gaseous Time Projection Chambers (TPCs), that have excellent particle iden-

tification capabilities. A π0 detector, (PØD), is located upstream of the tracker to form

what is known as the basket region and is optimised for π0 detection. Surrounding

this basket region are the Electromagnetic Calorimeters (ECALs) and a magnet which

houses a Side Muon Range Detector (SMRD) that measures muon momenta. This sec-

tion will describe, in further detail, the subdetectors that make up ND280, as shown

by Figure 4.14.
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Figure 4.13: An event display showing a typical proton module event (left) and

INGRID event (right) [42].
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Figure 4.14: A diagram of the ND280 off axis detector [42].

4.7.3 ND280 Magnet

The magnet that houses the ND280 detector was previously used for the UA1 detec-

tor [92] and NOMAD experiment [93], both based at CERN. The magnet provides a

dipole magnetic field of 0.2 T and is comprised of water-cooled aluminium coils that

produce the horizontally oriented dipole field, and a 850 ton flux return yoke. The

magnet has an inner volume of 7.0 m x 3.5 m x 3.6 m and an outer volume of 7.6m

x 5.6 m x 6.1 m. The aluminium coils are shaped like bars with a 5.45 cm x 5.45 cm

square cross section and a central 23 mm diameter bore for water to flow.

4.7.4 Side Muon Range Detector

The Side Muon Range Detector (SMRD) is incorporated into the magnetic yoke that

surrounds ND280 and consists of layers of plastic scintillator placed in the air gaps

found in the yokes of the UA1 magnet [94].

The main purpose of the SMRD is to measure the momentum of muons produced in

neutrino interactions and muons that escape the inner detectors at a large angle with

respect to the neutrino beam. The SMRD also acts as a cosmic ray trigger and helps

identify beam-related event interactions that occur in the cavity walls and iron of the

magnet. The SMRD consists of a total of 440 scintillator modules (192 horizontally
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oriented and 248 vertically oriented) which are located in the 1.7 cm air gaps between

4.8 cm thick steel plates that make up the UA1 magnet flux return yokes; Figure 4.15

shows a single yoke structure. The SMRD consists of three scintillator module layers

on the top and bottom of all yokes, all of which are located in the innermost gaps of

the UA1 magnet in order to detect particles escaping the inner detectors.

Figure 4.15: A drawing of the single yoke structure showing bolts holding the iron

plates together to form horizontal, vertical and corner subsections [94].

4.7.5 Fine Grained Detectors

The Fine Grained Detectors (FGDs) provide the target mass for neutrino interactions

and tracking of charged particles originating from the interaction vertex [95].

There are 2 types of FGDS in ND280: FGD1 which contains scintillator bars only

(shown by Figure 4.16) and FGD2 which contains additional water layers. The scin-

tillator bars are 1 cm long and have a square cross section of 9.6 mm on a side, which

provides the fine granularity of the FGD. Each scintillator bar contains a reflective

coating which includes Ti02 and a wavelength shifting fibre that connects to an MPPC.

The scintillator bars are arranged in XY modules with each module containing a layer

of 192 scintillator bars in the horizontal direction glued to 192 bars in the vertical di-

rection. The dimensions of the scintillator modules are 186.4 cm x 186.4 cm x 2.02 cm,

not including electronics.
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FGD1 has 15 of these modules whereas FGD2 has 7 scintillator modules, as well as 6

water target modules, composed of thin-walled hollow corrugated polycarbonate, 2.5

cm thick. The interaction rates in both the FGDs can be compared in order to measure

separate cross sections on carbon and water. Each FGD has external dimensions of

230 cm x 240 cm x 36.5 cm (depth in beam direction), and contains 1.1 tonnes of target

material, a cross section image of the FGD is given by Figure 4.17.

Figure 4.16: A CCD camera image of a FGD scintillator bar. The scintillator bar has a

hole in the middle where the wavelength shifting fibre is coupled to a

multi-pixel photon counter [95].

The FGD is capable of particle ID, by distinguishing protons, from muons and pions,

using the dE/dx information, and Figure 4.18 shows a scatterplot of deposited en-

ergy vs track range for particles produced in neutrino interactions that stop in FGD1.

Slower moving particles will deposit more energy per path length, therefore the en-

ergy loss in a particular region can be used to determine the particle that produced a

track in the FGD.

The FGD is capable of measuring short-range particles such as low momentum recoil

protons, using a measure of energy deposit in a particular vertex region known as

the Vertex Activity (VA), which will be discussed further in the analysis Chapters, 6-

8. The FGD requires a track to have at least 3 hits for reconstruction, and is able to

reconstruct short tracks that begin and end in the FGD, not matched to TPC tracks

using a pattern recognition algorithm. There is also a FGD-TPC matching process

where TPC tracks are matched to the FGD hits using a Kalman filter [96].
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Figure 4.17: Cross sectional view of the FGD, as viewed by the beam. The location of

the XY modules, photosensors, support straps, electronic minicrates

and dark box are shown [95].

Figure 4.18: Distribution of FGD1 energy deposited (MeV) versus FGD1 track range

(mm). The scatterplot represents stopping particles in neutrino beam

data, and the curves show MC expectations for charged particles [95].
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4.7.6 Time Projection Chamber

The ND280 tracker contains 3 Time Projection Chambers (TPCs) that separate the 2

FGDs that were described in the previous section. The main purposes of the tracker

are to:

• provide three-dimensional imaging capabilities to determine the number and

orientation of charged particles in the detector

• measure the momenta of charged particles produced by neutrino interactions

outside of the TPC

• identify different types of charged particles and determine the relative abun-

dance of electron neutrinos in the beam.

Data from the tracker allows studies of CC neutrino interaction rates and kinematics

before oscillation in order to reduce uncertainties in the far detector oscillation mea-

surements [97]. The TPC is capable of differentiating between different charged par-

ticles using the energy loss per distance, dE/dx, as shown by Figure 4.19. The dE/dx

resolution for MIPs is 7.8 ± 2 %, which allows muons to be accurately distinguished

from electrons.

Each TPC module is rectangular in design (to fit the geometry of the UA1 magnet) and

consists of a double box design operated in a magnetic field of 0.2 T. The top, bottom,

front and back walls of the inner box are made from 13.2 mm thick copper-clad-G10

laminated panels. The inner box is split into two parts separated by a cathode at its

midpoint. The outer box is surrounded by 14.3 mm thick aluminium-rohacell lami-

nated panels. The inner box walls serve as a field cage whereas the walls of the outer

box are at ground potential, and CO2 acts as an insulator between the two boxes; this

is shown by Figure 4.20. The inner volume contains a gas mixture of Ar:CF4:iC4H10

(95:3:2) which allows drift space for the primary electrons. A readout plane is located

on either end of the inner box volume (6 overall) and contain 12 micromegas modules

tiled in two offset columns so that there is no alignment in the small inactive region of

the module. When charged particles pass through the TPCs, ionisation electrons pro-

duced in the gas drift from the central cathode and towards one of the readout planes

where they multiply and are detected by the bulk micromegas detectors.
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Figure 4.19: The dE/dx distribution in a TPC as a function of momentum for

charged particles [97].

Figure 4.20: Cut-away drawing of the TPC, with the key features labelled [97].
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4.7.7 Electromagnetic Calorimeters

The ECal is a lead-scintillator sampling electromagnetic calorimeter formed of three

detectors: the barrel ECal and the Ds-ECal that surround the tracker region of ND280

(known as the tracker-ECal) and the PØD ECal [98] that surrounds the PØD, shown

by Figure 4.14. The tracker-ECal consists of 6 barrel-ECal modules (2 top, 2 bottom,

2 side) parallel to the z (beam) axis and 1 Ds-ECal module; there are 6 PØD-ECal

modules (2 top, 2 bottom, 2 side) parallel to the z axis. Each ECal module consists of

layers of scintillating polystyrene bar with a thickness of 10 mm, bonded to lead sheets

that act as a neutrino-interaction target, and Figure 4.21 shows an external view of a

single ECal module.

Figure 4.21: A close up external view of one ECal module, showing the scintillator

bars running horizontally inside the module [42].

The ECal assists the rest of the ND280 detectors in full event reconstruction by de-

tecting the energy and direction of charged particles, as well as photon detection.

The physics aims of the tracker-ECal are to complement the TPC’s charged-particle

tracking and particle identification capabilities by detailed reconstruction of electro-

magnetic showers. The tracker-ECal is designed as a tracking calorimeter with 31

scintillator-lead layers in the barrel-ECal and 34 layers in the DS-ECal. The tracker-

ECal is essential in ND280 calibration studies, and further details of this and of the

tracker-ECal will be discussed in Section 5.5.

The purpose of the PØD-ECal differs from the tracker-ECal somewhat and this is re-

flected in the differences in design of the two types of ECal. The PØD-ECal is designed

to tag escaping energy and distinguish between photons and muons. The PØD-ECal

has only 6 scintillator-lead layers all running parallel to the beam direction, as its main
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purpose is energy containment therefore it has coarser sampling than the tracker ECal

which provides particle tracking. The lead sheets found in the PØD-ECal are thicker

(4.00 mm compared to 1.75 mm in the tracker-ECal) to ensure that showers are well

contained and photons are detected with a high efficiency. Table 4.2 lists the properties

of the PØD ECal in more detail.

PØD ECal (side) PØD ECal (top/bottom)

Dimensions (m) 2.45 x 2.90 x 1.55 2.45 x 1.58 x 1.55

Weight (kg) 3000 1500

No. of layers 6 6

Bar Orientation Longitudinal Longitudinal

No. of Bars 828 912

Bars/layer 69 38

Bar length (m) 2.34 2.34

Table 4.2: Properties of the PØD ECal including dimensions, bar and layer details.

4.7.8 Pi-Zero detector

The Pi-Zero detector (PØD), located upstream of the ND280 tracker, is a plastic-scintillator

based detector optimised for π0 detection [99]. The dominant background to the νe ap-

pearance signal at SK occurs from events containing π0s.

The PØD has been designed with a primary aim of measuring the neutral current π0

rate

νµ + N→νµ + N + π0 + X (4.5)

on a water target, in order to understand one of the largest backgrounds that occurs at

SK.

The electronic supports and detector mounting system surround the active regions of

the detector; a 3D drawing showing the main features of the PØD is shown by Figure

4.22. The PØD contains 40 scintillator modules known as PØDules, each comprised of

two perpendicular arrays of triangular scintillator bars: 134 horizontal bars (2133 mm

long) and 126 vertical bars (2272 mm long). The x and y planes of scintillator bars are

read out by a single WLS fibre and are interleaved with fillable water target bags and

lead and brass sheets. The PØD acts as a neutrino target and the water target cross

sections are calculated by statistical subtraction of data, when the water target bags

are full and, when they are empty. The PØDules are formed into four ”super-groups”
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known as super-PØDules, as shown by a schematic in Figure 4.23.

There are two ECal super-PØDules, located at the front and rear sections, made from

a sandwich of seven PØDules alternating with seven lead sheets. The water target

is made from the remaining two super-PØDules located in the central region and is

made from 13 PØDules alternating with water bag layers and brass sheets. The entire

PØD active target region is 2103 mm wide x 2239 mm high x 2400 mm long, and the

mass of the detector is 15800 kg with water and 12900 kg without water.

Figure 4.22: A three-dimensional view of the PØD [99].

Figure 4.23: A schematic view of the PØD detector, showing the scintillator bars and

water bags. The beam arrives from the left [99].
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4.8 ND280 Software and Data Processing

The ND280 offline software suite comprises of a variety of packages, as shown by the

flow chart in Figure 4.24. ROOT [100] and GEANT4 [101], written predominantly in

C++, are used as the basic framework for data and simulations.

Maximum Integrated Data Acquisition System (MIDAS) [102] data files are converted

for offline use by the oaEvent library before the data processing stages occur. There are

three main stages to processing the data prior to analysis: calibration, reconstruction

and reduction. The oaEvent data files enter the calibration stage controlled by the

oaCalib package, which produces calibration constants for detectors stored in a mySQL

database [103]. The reconstruction stage is handled by oaRecon and is a two-stage

process: firstly, with individual subdetectors reconstructing tracks and showers for

each event, then this information is combined for event reconstruction on a global level

across muiltiple subdetectors. The final stage in data processing uses the oaAnalysis

package to reduce the large reconstruction files into oaAnalysis files that are composed

of ROOT objects.

Figure 4.24: A flow chart of the ND280 Software Suite [42].
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The MC data production requires firstly simulation of neutrino interactions which are

handled by NEUT [55] or GENIE [56],[57]. At T2K, NEUT v5.3.2 is used as the default

MC generator for Production 6 1 and GENIE is used as a crosscheck; in this thesis GE-

NIE v2.8.0 was used for the Vertex Activity (VA) analysis in Chapters 6 - 8. Geant4

is then used to simulate final state particle information which is propagated through

nd280mc and stored as hits which contains a particle’s position, time and energy de-

posited information. Finally the output is passed through elecSim in order to simulate

the response of the detector. The generated MC files can then be processed in the same

way as outlined previously for real data.

1For Production 7, NEUT v5.4.0 will be used.



Chapter 5

Electromagnetic Calorimeter and

Calibration

This chapter will discuss ECal calibration including the ECal channel swap analysis

and ECal bar-to-bar equalisation, as well as a more detailed description of the ND280

ECal itself. The ND280 ECal consists of a barrel ECal and a Downstream ECal (DsE-

Cal), which together are known as the tracker-ECal (which will be the main focus of

this chapter), and a PØD ECal that has been described in more detail in Section 4.7.7.

The barrel ECal is attached to the magnet and surrounds the inner tracking detectors

whereas the DsECal is located further downstream in the basket region. Figure 5.1

shows the ND280 detector in the pit at J-PARC with the barrel ECal shown, for a re-

minder of the layout of ND280, the reader is referred to Figure 4.14.

Figure 5.1: The ND280 detector located in the pit. The barrel ECal is shown in the

centre of the image.

56
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5.1 Barrel ECal

The barrel ECal consists of 6 modules: 2 top, 2 bottom and 2 side. Table 5.1 sum-

marises the properties of the barrel ECal. Layers of scintillating polystyrene bars make

up the modules, and each bar has a cross section of 40 mm x 10 mm. The purpose of

the barrel ECal is to provide a neutrino-interaction target and this is achieved by the

lead sheets attached to the modules which act as a radiator to produce electromagnetic

showers.

Barrel ECal (side) Barrel ECal (top/bottom)

Dimensions (m) 4.14 x 2.50 x 4.62 4.14 x 1.67 x 4.62

Weight (kg) 8000 10000

No. of layers 31 31

No. of Bars (longitudinal) 1710 2280

No. of Bars (perpendicular) 3072 6144

Bars/layer (long.) 57 38

Bars/layer (perp.) 96 96

Bar length (m) (long.) 3.8 3.8

Bar length (m) (perp.) 2.28 1.52

Table 5.1: Properties of the Barrel ECal including dimensions, bar and layer details.

The four ECal top and bottom modules are 4140 mm long x 1676 mm wide x 462 mm

high with 31 lead-scintillator layers: 16 with 1520 mm-long scintillator bars running

perpendicular to the beam direction and 15 with 3840 mm-long bars parallel to the

beam direction. Similarly, the two side barrel ECal modules are 4140 mm long x 2500

mm wide x 462 mm deep, with 31 lead-scintillator layers: 16 with 2280 mm long scin-

tillator bars running perpendicular to the beam direction and 15 with 3840 mm long

bars running parallel to the beam direction. In all cases, the perpendicular bars have

a single-ended readout whereas the longitudinal bars all have double-ended readout.

The ECal scintillator bars were made at the Fermi National Accelerator Laboratory

(FNAL) from extruded polystyrene doped with organic fluors at concentrations of

1% PPO (Polyphenylene Oxide) and 0.03% POPOP. Polystyrene co-extruded with Ti02

coats the scintillator bars providing light reflection and isolation.
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5.2 DsEcal

The DsECal was the first detector to be constructed in 2008 and commissioned at

CERN in 2009 for cosmic ray and test beam data taking. It is 2300 mm high x 2300 mm

wide x 500 mm long and comprises of 34 layers, each containing 50 scintillator bars

of length 2000 mm; Table 5.2 lists the properties of the DsEcal. The most-upstream

layer contains bars running in the x-direction, and the layers are surrounded by 25

mm thick aluminium bulkheads which contain holes for the WLS fibres to exit and

connect to the MPPC.

Downstream ECal

Dimensions (m) 2.3 x 2.3 x 0.5

Weight (kg) 6500

No. of layers 34

No. of Bars 1700

Bars/layer 50

Bar length (m) 2.0

Table 5.2: Properties of the Downstream ECal including dimensions, bar and layer

details.

5.3 Electronics

The scintillator bars are read out by the MPPCs, which are a pixellated array of Avalanche

Photo-Diodes (APDs). The readout system uses Trip-T front-end electronic boards

(TFBs) which are mounted on cooling panels that contain slots to allow the TFBs to

be connected to the MPPCs. There are 64 MPPCs which are connected to 48 TFBs.

MPPCs are used rather than PMTs as they have a higher photon detection efficiency

(PDE) than PMTs for the wavelength distribution produced by the WLS fibres. The

TFBs are connected to the Readout Merger Modules (RMMS) which provide control

and readout; the Barrel ECal has 8 RMMs and the DsECal has 2. The RMMs provide

the communication interface with the off-detector data acquisition system (DAQ).
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5.4 ECal Channel Swap

5.4.1 Introduction

A detailed study of the mapping of electronic channels to a specific scintillator bar

location within the ND280 ECal was performed [104] which found 65 mis-mapped

channels, that occur when an electronic channel is connected to an incorrect MPPC,

to exist in the ECal. Mis-mapping of channels can lead to issues such as inaccuracies

in particle reconstruction and measured energy deposition. ND280 relies heavily on

event detection of the ECal as well as accurate software reconstruction, therefore it is

important for these mis-mappings to be resolved for ND280 analyses. This section dis-

cusses the problem of mis-mapped channels in the ECal during detector construction,

as well as implementation and validation of the ECal channel swaps.

5.4.2 Particle Detection

When a particle enters the ECal it will deposit its energy in a scintillator bar causing

light to be produced. The scintillation light is directed to a WLS coupled to the MPPCs

and pixels, which read out the light. The analogue sum of all the fired pixels is the out-

put, known as a Pixel Energy Unit or PEU. The incoming MPPC signal is capacitively

split, by a ratio of 1:10, into high and low gain channels. 1 PEU signal corresponds to

roughly 10 ADC counts in the high gain channel whereas the low gain channel cor-

responds to around 500 PEU. The MPPCs correspond each to a channel and there are

22,336 channels in the T2K event reconstruction software. A detailed account of the

electronics involved in the ECal was given in Section 5.3, but as a recap, there are up

to 64 MPPC channels on each TFB. Each TFB has 4 Trip-T chips, numbered from 0-3

or A-D, which read in data for up to 16 channels. During the 2011 earthquake RMM9

lost two TFBs, TFB13 and TFB25, both containing 64 channels each. The Barrel ECal

TFB mapping is shown in Figure 5.2. The Barrel ECal has single and double-ended

bars whereas the DsEcal only has double-ended bars.



CHAPTER 5. ELECTROMAGNETIC CALORIMETER AND CALIBRATION 60

Figure 5.2: The TFB mapping of the Barrel ECal.

5.4.3 Identifying mis-mapped channels

The method for identifying the mis-mapped channels in the ECal was described in

thorough detail in [104], and is beyond the scope of this thesis, but a brief overview of

the procedure will be provided in this section to avoid ambiguity.

The analysis began with fitting a sample of production 6B cosmic ray data files from

run 4 with Simple Track Fitter (STF), a simple and robust tool that quickly reconstructs

data to produce 2D clusters which are connected by straight lines to form well under-

stood tracks. STF can differentiate between hits forming a track and outlying hits,

the latter of which were stored in a list and compared to tracks containing missing or

anomalous hits to find mis-mapped channel candidates.

Plots were produced to show the number of hits for a given channel on each TFB in the

ECal, excluding RMM2 and RMM7 as they belong to the PØDECal, and were analysed

to see if there were any mis-mapped channels present which would be observed as a

deficit of hits in two channels on the same TFB1 as when a channel is hit in physical

space, the potentially mis-mapped channel would be activated in the software.

1It is highly unlikely that a channel on one TFB would be swapped with a channel on a separate TFB

as the readout cables used for the electronics in the ECal are not long enough for this to occur. For the

instances where cross-TFB swaps did occur, they were rectified prior to the channel swap analysis.
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STF proceeded to ignore these channels and this was noticeable in the plot as a vast

decrease in the total number of hits for both the channels. Hits were then viewed in

Bar/Layer space for RMMs rather than TFBs in order to reduce the number of plots

produced. Some module types have two sets of RMM numbers that represent them

(e.g. DsECal has RMM numbers 0 and 1 and barrel side left has RMM numbers 5 and

6), and Table 5.3 lists the RMM and TFBs numbers for all the ECal modules. In order

to distinguish between single ended and double ended views, the hitEnd function is

used where a value of -1, 0 and 1 corresponds to downstream, single and upstream

respectively. As was mentioned before, the DsECal has only double ended bars there-

fore there is no single ended view plot for this module.

Module Name RMM Number Number of TFBs

Downstream ECal 0 28

Downstream ECal 1 28

P0D ECal Left (South) 2 15

Barrel Top Left (South) 3 44

Barrel Bottom Left (South) 4 44

Barrel Side Left (South) 5 26

Barrel Side Left (South) 6 26

P0D ECal Right (North) 7 15

Barrel Side Right (North) 8 26

Barrel Side Right (North) 9 24

Barrel Bottom Right (North) 10 44

Barrel Top Right (North) 11 44

Table 5.3: List of ECal Modules, RMM numbers and TFB numbers.

The variables that are stored in the anomalous channels list are RMM, Bar, Layer,

Stream Direction, TripT and Channel and this is shown for a small sample by Table 5.4.

The next stage was to search through each element in the array that corresponds to a

hit bar and layer on each RMM and store the number of hits in a variable, a cut was

used to ensure that the values were not from a dead channel. The mean of each value

was taken as an ideal value for the channel in question and the square root of the mean

was used similarly to the standard deviation. The hit value of the channel was com-

pared to the mean of channels surrounding it and if the value differed greatly from the

mean then it was regarded as an anomalous channel. This process was repeated with

the known anomalous channels removed so that they did not affect the means and

a list of anomalous channels was outputted. Further cuts including a more stringent

timing cut were performed and finally the post-simple track fitted events were sub-

tracted from the pre-simple track fitted event so that the residual hits that remained

were likely to be mismapped channels.
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5.4.4 Validation

As a first step in the validation the same cosmic data files used in the original analy-

sis [104] were used in order to reproduce the Bar/Layer space plots. Figure 5.3 shows

an example of one of the Bar/Layer space plots of the cosmic hits for RMM4 in the

single ended view before the channel swap was applied. The pre-swapped Bar/Layer

space plots were compared to the ones in the original analysis and as they were similar

the validation process continued.

The 66 mis-mapped channels that were identified [104] were stored in data files in the

ND280 software, and Table 5.4 shows examples of some of the channels for each ECal

module type, the full list is provided in Appendix 9.1. The first step in implementing

the channel swaps was to manually adjust the channels in the data files.

Once the channel swaps were implemented new reconstruction files that contained

updated channel swap information were produced from raw MIDAS files. The pro-

cessing takes raw MIDAS files and oaCalib is applied in order to produce a calibration

ROOT file. Next, the calibration file is processed using oaRecon in order to produce

the new reconstruction ROOT files which contain hit information with the channel

swaps applied.

Once it was established that the processing stage worked, production 6B raw MIDAS

files were run through the ND280 processing chain in order to produce reconstruc-

tion files and post-swap Bar/Layer space plots. Pre and Post channel swap Bar/Layer

plots were produced for every ECal module type and included as examples are: Fig-

ure 5.4 which shows the post swap plot for the Barrel Bottom Left, i.e. RMM4 for the

single ended view and Figures 5.5 and 5.6 which show the pre and post swap view

for the DsECal. As it is difficult to identify where the channels of interest are in Fig-

ures 5.3- 5.6, the post-swap Bar/Layer space plots were subtracted from the pre-swap

Bar/Layer space plots in order to produce subtracted plots. The subtraction was per-

formed so that the resulting plots would include a deficit of hits corresponding to the

swapped channels, when compared to the Bar/Layer locations of the mis-mapped

channels. The z axis in the subtracted plots is the difference in channel hits, and each

subtracted plot is provided in the Channel swap results in Section 5.4.5.
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Figure 5.3: Plot showing the cosmic hits for the barrel bottom left ECal Module

pre-channel swap. White hits indicate dead channels (as the channels are

inactive there is no response hence observed by a ”blank” white hit) and

the purple hits occur when the output is a bad channel response.

Figure 5.4: Plot showing the cosmic hits for the barrel bottom left once the

mis-mapped channels were corrected, as shown by the absence of blue

channels around bar number 70 and layer 5, indicated within the circled

region.
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Figure 5.5: Cosmic hits for the DsECal downstream before the channel swap was

applied.

Figure 5.6: Cosmic hits for the DsECal downstream after the channel swap was

applied, around layer 18 to 25 and bar number 6 to 8, as indicated by the

highlighted region.
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5.4.5 Results

The following section will discuss the results for each of the different modules for the

Barrel ECal and DsECal module. A Bar/Layer space plot showing the cosmic hits after

the post-channel swap plots were subtracted from the pre-channel swap is provided

for each ECal module type, as well as a table listing the swaps that were determined.

It should be noted that, as most of the subtracted plots are presented in the single view

only 2, some of the swaps listed in the tables will not correspond to the channels ob-

served in the plots. During the analysis, a complete set of single/downstream/upstream

view plots were produced and analysed, but only the single sided views are presented

in this section to avoid an oversaturation of plots, and also as the single sided plots

contain most of the key information.

2The side right module and DsECal modules are presented in the downstream view.
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Barrel Bottom Left

Pre Swap Post Swap

Bar Number Layer Number Bar Number Layer Number

77 20 77 22

71 0 68 6

71 2 68 4

71 4 68 2

71 6 68 0

70 0 69 6

70 2 69 2

70 4 69 4

70 6 69 0

Table 5.5: Bar and layer numbers for Barrel Bottom Left ECal.

Figure 5.7: Bar/Layer subtracted plot for RMM4 which corresponds to the barrel

bottom left ECal module. The plot is a single-ended view where the

z-axis is the difference in channel hits.

All the swaps have been observed except for Bar# 77 Layer# 20 and Bar# 77 Layer# 22.
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Side Left

Pre Swap Post Swap

Bar Number Layer Number Bar Number Layer Number

23 0 23 2

82 30 83 24

83 16 83 18

19 5 19 7

29 19 29 23

Table 5.6: Bar and layer numbers for Barrel Side Left ECal.

Figure 5.8: Bar/Layer subtracted plot for RMM5 and RMM6 which corresponds to

the barrel side left ECal module. The plot is a single-ended view where

the z-axis is the difference in channel hits.

For the barrel side left ECal module all the swaps were seen except for a single channel,

bar# 83 and layer# 18, a few anomalous channels were also observed.
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Top Left

Pre Swap Post Swap

Bar Number Layer Number Bar Number Layer Number

0 24 2 24

0 16 2 18

4 16 5 18

1 18 3 18

4 18 5 22

Table 5.7: Bar and layer numbers for Barrel Top Left ECal.

Figure 5.9: Bar/Layer subtracted plot for RMM3 which corresponds to the barrel

top left ECal module. The plot is a single-ended view where the z-axis is

the difference in channel hits.

For RMM3, the barrel top left ECal module, all swaps were observed in the Bar/Layer

space subtracted plot except for a single swap corresponding to a bar value of 0 and

a layer number of 24 being swapped with bar number 2 and layer number 24. There

was also a single anomalous channel seen in blue.
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Bottom Right

Pre Swap Post Swap

Bar Number Layer Number Bar Number Layer Number

32 14 33 10

10 18 10 20

Table 5.8: Bar and layer numbers for Barrel Bottom Right ECal.

Figure 5.10: Bar/Layer subtracted plot for RMM10 and RMM11 which corresponds

to the barrel bottom right ECal module. The plot is a single-ended view

where the z-axis is the difference in channel hits.

Only one swap was not observed for the barrel bottom right ECal module: bar# 10

and layer# 18 being swapped with bar# 10 and layer# 20.
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Side Right

Pre Swap Post Swap

Bar Number Layer Number Bar Number Layer Number

48 3 49 1

42 29 43 27

30 15 31 11

87 8 87 10

86 16 86 18

7 11 7 13

Table 5.9: Bar and layer numbers for Barrel Side Right ECal.

Figure 5.11: Bar/Layer subtracted plot for RMM9 which corresponds to the barrel

side right ECal module. The plot is a single-ended view where the

z-axis is the difference in channel hits.

All of the swaps were observed in the Bar/Layer subtracted plot for the barrel side

right ECal module.
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DsECal

Pre Swap Post Swap

Bar Number Layer Number Bar Number Layer Number

27 8 29 8

7 19 5 23

21 19 26 21

Table 5.10: Bar and layer numbers for Downstream ECal.

Figure 5.12: Bar/Layer subtracted plot for RMM0 which corresponds to the DsECal

module.

Figure 5.13: Bar/Layer subtracted plot for RMM0 and RMM1 which correspond to

the DsECal module.
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5.4.6 Conclusions

The subtracted Bar/Layer space plots, along with the pre/post swap hit maps, show

that the swaps make a clear improvement, this was further shown by the Bar-to-Bar

calbration plots that are included in Section 5.5.

There are some channels that were absent in the subtracted plots and the reason for

this could be lack of statistics. The ND280 reconstruction package ecalRecon requires

at least 3 hits for a hit cluster, therefore a track might not be reconstructed if there are

not enough hits. In addition, noise could be another reason why we do not see certain

channels. As well as this, there were a few examples of new anomalous channels, as

listed in Table 5.11. The original analysis by no means computed an exhaustive list

of mismapped channels, so a future analysis to explore the channels further would be

beneficial.

Module Bar Layer

Top Left 6 23

Side Left 65 5

Side Left 85 28

Side Left 85 30

Side Right 27 3

DsECal 34 17

DsECal 13 8

Table 5.11: Details of the new anomalous channels that were observed. The list is

not exhaustive and a future analyser may discover further channel

discrepancies.

For the mismapped channel analysis presented in this thesis, the validation was rea-

sonable and so to finalise the investigation, the swapped channel tables were commit-

ted to the software ready for Production 8.
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5.5 Bar-to-Bar Calibration

5.5.1 Overview

The ECal (see Section 4.7.7 for a more detailed description of the detector) needs to

be properly calibrated in order to perform at a high-quality and consistent level. It is

essential that all bars in the ECal have a uniform response to equal amounts of energy

deposited as a variation in the amount of energy recorded by the scintillator bars can

cause an effect on certain outputs such as energy reconstruction and clustering.

5.5.2 Scintillator bars

The scintillator bars [105] used for the Ecal modules were fabricated at FNAL and are

mainly composed of doped polystyrene (Poly(1-phenylethane-1,2-diyl), (C8H8)n). In

addition to the polystyrene, the scintillator bars are doped with two scintillating com-

pounds that actuate a two stage photon emission process: PPO (2,5-Diphenyloxazole,

C15H11NO), added at a 1% level to the polystyrene and 1,4-bis(5-phenyloxazol-2-

yl)benzene, which is commonly known as POPOP (C24H16N2O2), is added to the

polystyrene at an 0.03 % level. The first doping compound, PPO, releases photons

mainly in the 340 - 400 nm wavelength region; these photons are highly attenuated

by the scintillator bars themselves therefore a two-stage doping process is required.

POPOP acts as a wavelength shifter, absorbing the photons emitted and re-emitting

them with an energy distribution that peaks at 410 nm, a photon wavelength that is

not so readily attenuated by the bars.

5.5.3 Data sample

A sample of through-going cosmic muons is used to investigate the amount of energy

recorded by the scintillator bars. Cosmic muons are ideal for calibration purposes

as they are a well understood control sample, plentiful and behave like Minimum

Ionising Particles (MIPs); they deposit approximately the same amount of energy in

each bar they pass through. Figure 5.14 shows a charged particle travelling through

several bars in an ECal.
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Figure 5.14: A schematic showing a charged particle traversing multiple bars in the

ECal [106].
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The mean rate of energy loss of heavy charged particles, including muons, is given by

the Bethe-Bloch formula [2]:

−dE
dx

= Kz2 Z
A

1
β2

[
1
2

ln
2mec2β2γ2Tmax

I2 − β2 − δ(βγ)
2

]
(5.1)

where

• Tmax ' 2mec2 β2 γ2

• K = 4πNAr2
e mec2

• NA is Avogadro’s number

• re is the classical electron radius

• I is the mean excitation energy

• δ(βγ) is the density effect correction to the ionisation energy loss

When a particle hits a scintillator bar, scintillation light is produced and collected by

the WLS fibres and transported to the MPPCs. The light yield that is recorded re-

quires two corrections to be applied: a path length difference in a scintillator layer, as

particles with longer path lengths will deposit more energy in the same length, and

secondly a correction for the angle travelled by the charged particle track through the

bar.

5.5.4 Calculating bar-to-bar constants

The first step in the calibration is to calculate the average response for each bar. An

example of the hit charge fitted with a Landau-Gaussian for a bar in the DsECal is

shown by Figure 5.15. A histogram for each bar is filled with the charge of all the hits in

that bar, where each hit is corrected for how far it was from the sensor at the end of the

bar and the path the track took through the bar. This gives a charge spectrum for each

bar that is then fitted with a Landau Gaussian function. The energy loss of particles

passing through a scintillator layer varies from particle to particle, so the distribution

of energy deposits forms a Gaussian-like distribution but one that is more skewed

(Landau-like) for thin scintillator layers,such as that for the DsECal and Barrel ECal

scintillator planes. The measured energy is plotted in MEU (MIP Equivalent Units)

for each channel and fitted with a Landau Gaussian to produce a most probable value

(MPV) for each channel. Each bar is corrected so that the average energy recorded
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by a bar is divided by the average energy recorded for all the bars of the same type

(orientation and module). The uncertainty on the MPV, σ is given as:

σ =
MPV√

N
(5.2)

where N is the total number of hits.

Figure 5.15: Energy spectrum for cosmic muons.

The calibration is performed on both the Barrel ECal and DsECal on a hit-by-hit basis,

the results for run 7 and run 8 are shown in Figure 5.16. Each green block is composed

of points before the bar equalisation calibration is applied. The first 2 green blocks

correspond to double-ended bars only while the rest correspond to a mixture of single-

ended and double-ended bars. The blue points are produced after the calibration is

applied and each horizontal band corresponds to a different RMM. The P0D ECal

RMMs are calibrated by a different method, therefore they are not included in the

results. It should be noted that with the implementation of the swapped channels as

explained in Section 5.4, there are fewer outliers in the bar-to-bar plots as compared to

constants from previous runs.
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Figure 5.16: The average energy (PEU) for each bar for run 7 (top) and run 8

(bottom) bar-to-bar constants. Each blue band represents a different

RMM, and is composed of blue points after the calibration has been

applied. The green points show the scatter of average energy recorded.

The DsECal (2 blocks at the left) contains only double ended bars,

whereas the Barrel ECal contain a mixture of single and double ended

bars (as represented by the rest of the blocks).
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In order to validate the bar-to-bar results, calibration constants from different runs

can be compared. Figure 5.17 shows the run 7 calibration constants in red, the run 8

calibration constants in blue and the difference between the two constants normalised

to the run 7 constants in black. The normalised difference in the calibration constants

has a narrow peak that centres on 0 which means that the constants are stable across

different runs.

Once the constants have been produced and validated they are uploaded to the mySQL

database. This is performed once per data run and the latest run 8 constants were up-

loaded in November 2017.
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Figure 5.17: Run 7 (red) and run 8 (blue) bar-to-bar constants comparison. The black

histogram shows the difference between the run 7 and run 8 constants,

normalised to the run 7 constants.



Chapter 6

Vertex Activity in the FGDs

During a neutrino-nucleus interaction (Section 3 discusses these interactions), low en-

ergy particles can be produced that are below the reconstruction threshold of the de-

tector1 and these can impact on the kinematics of the event and lead to misidenti-

fication of the event and miscalculation of the neutrino energy during event recon-

struction. If the muon kinematics are altered, the momentum of the neutrino may be

incorrectly determined leading to inaccurate measurements, therefore it is essential to

understand these nuclear effects better. The low energy particles produced are not

observable but the detector can measure the energy they deposit around the vertex.

The Vertex Activity (VA) is defined as being the amount of energy deposited in a given

region around the vertex point, including contributions from reconstructed tracks as

well as short-ranged particles that are difficult to reconstruct. The VA is sensitive

to final-state particles that exit the nucleus after a neutrino interaction but are not

reconstructed as their energy is below the reconstruction threshold.

The VA calculation begins with a box centered on the vertex, which is the start position

of the 3D fitted track, with dimensions given by: layers deep x bars 2 high x bars wide

of values: 1x1x1, 3x3x3, 5x5x5 or 7x7x7. All the bars within the specified VA region

are selected and the energy deposited by particles within that area is summed up to

give a VA value measured in Photon Equivalent Units (PEU), where 1 MeV ∼ 21.7

PEU [107].

Figure 6.1 shows the VA calculation for different vertex box regions; it should be noted

that, unless specified otherwise, all plots presented in this thesis have a VA region of

5x5x5. This region was identified as being the optimal size as, during reconstruction

1The proton momentum analysis threshold at ND280 is around 450 MeV.
2Information about FGD1 scintillator bars is provided in Section 4.7.5

80
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events that deposit their energy at the edge of the box may not be detected therefore

a compromise needs to be made in which the box is big enough to account for the VA

that occurs during an event, but not too large as key information may be lost or the

measurement may be too susceptible to noise or other such effects.

Figure 6.1: Schematics showing the definition of vertex activity, clockwise from first

image, 1x1x1, 3x3x3, 5x5x5 and 7x7x7 [108].

6.1 Analysis Motivations

A large number of particles produced in neutrino interactions have a track length too

short to be reconstructed (FGD reconstruction requires a track to contain at least 3

hits in order to be reconstructed), or do not enter a TPC for PID. The only way to
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study short-range energy deposits is to use the VA as it is sensitive to all charged

particles3 of any track length. The VA variable was implemented into the Production

5 software with the relevant information stored in the FGD component of a Global

PID in oaAnalysis files (discussed in Section 4.8). The VA can be used to disentangle

2p2h, 1p1h (Section 3.2 discusses these models in further detail) and further models,

including ones with multiple protons, as well as being very sensitive to Final State

Interactions (FSI), which have been discussed in Section 3.3.

Figure 6.2: Illustration of a neutrino-nucleon interaction showing protons leaving

the nucleus [109].

This analysis will look deeper into how the VA can be used to probe low energy pro-

tons that are produced in neutrino interactions in FGD1, a schematic of which is shown

by Figure 6.2. Protons to first order deposit their energy at the end of the track so when

they escape the VA region a smaller amount of energy will be recorded. Sometimes

the momenta of protons can be so low that it is not possible to reconstruct the energy

deposit as tracks, but the VA variable allows the detection of low momentum parti-

cles and is therefore a useful candidate to constrain these low energy particles that are

produced in the ND280 detector during neutrino interactions.

Generators model low energies in various ways which do not necessarily agree with

data, thus the need for more robust theoretical models in neutrino-nucleus interac-

tions is essential. Uncertainties from neutrino–nucleus interactions will be the major

source of systematic uncertainty in the next generation neutrino oscillation experi-

ments, therefore by improving our understanding of nuclear effects, the systematic

uncertainties on cross section measurements can be reduced, which will ultimately

lead to improved determination of oscillation parameters [110].

3Any neutral particle or an NC event (discussed in Section 3.1.3) will not affect the VA and neutrons

will have a negligible effect on the VA.
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6.2 Muon Neutrino Sample

The inclusive muon neutrino sample begins with a reconstructed forward going muon

starting within the FGD1 Fiducial Volume (FV) and with no reconstructed pions, and

is then split into the following subsamples: CC0π, CC1π+ and CCother, depending

on the number of pions and charge [111]. All the MC samples are processed with pro-

duction 6B which corresponds to NEUT version 5.3.2 [55], which uses the Llewellyn-

Smith model [61] coupled with the Spectral Function (SF) model and 2p2h contribu-

tions from the Nieves model [112], and GENIE version 2.8.0, which does not include

any 2p2h contributions and uses the Relativistic Fermi Gas (RFG) model [113].

MC generator version Nuclear model 2p2h model MA FSI

NEUT 5.3.2 SF Yes, Nieves 1.21 Cascade

GENIE 2.8.0 RFG No 0.99 Empirical (hA)

Table 6.1: A summary of MC generators and the models associated with them.

The data sample used for this analysis includes runs 2-4 which correspond to data col-

lected between November 2010 and April 2013 with run 1 excluded as the BarrelECal

had not been fully installed at the time. Table 6.2 shows the data POT used for the

runs specified and ”water in” and ”water out” periods are named as such depending

on whether the PØD contained water or not.

T2K Run Data POT (x 10 20)

Run 2 (water in) 0.429

Run 2 (water out) 0.355

Run 3b (water out) 0.215

Run 3c (water out) 1.348

Run 4 (water in) 1.627

Run 4 (water out) 1.762

Total POT 5.736

Table 6.2: The statistics in neutrino mode used in this analysis for data.

The MC samples were generated using a flux prediction that takes into account the

beam conditions for each run; the total POT for NEUT MC was 5.744 x 1021 and for

GENIE MC was 6.146 x 1021.

For all the plots in this chapter, the MC is normalised to the data using POT (unless

specified otherwise) and a set of corrections were applied to both data and MC in

order to reduce any discrepancy observed; these corrections were performed using

the highLAND2 framework v2r7 and are listed in Table 6.3.
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Correction

de/dx applied to data and MC

Data Quality

Momentum resolution

TPC particle identification (PID)

FGD PID

TPC cluster efficiency

TPC tracking efficiency

TPC charge misassignment

TPC-FGD matching efficiency

TPC-ECal matching efficiency

TPC-PØD matching efficiency

FGD-ECal matching efficiency

FGD-ECal-SMRD matching efficiency

ECal tracking efficiency

ECal PID

FGD tracking efficiency

Michel electron efficiency

Out of FV (OOFV)

Pile-up

Pion secondary interactions

Proton secondary interactions

Table 6.3: A list of the corrections applied to the data and MC samples for the muon

neutrino sample.
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This thesis does not deal with a muon neutrino selection therefore only a brief descrip-

tion of each cut will be provided, for further details please see [114]. The standard cuts

used in the muon neutrino CC inclusive sample for FGD1 were applied to this analysis

in order to select νµ charged-current events that are well reconstructed:

• Event quality: the full spill must contain a good global ND280 data quality flag.

• Bunching: a group of tracks belonging to a specific beam packet are known as a

bunch, and events must occur within the particular bunch time window of the

neutrino beam. Neutrino interactions in two different bunches within a beam

spill are considered as two separate events, in order to reduce the risk of pile-up

events. The bunch width for data is around 15 ns; tracks are associated within a

bunch if they deviate from the centre of the bunch by less than 60 ns (4 x 15 ns =

4 σ).

• Track multiplicity: there must be at least one reconstructed track in FGD1.

• TPC track quality: good reconstruction quality is required for tracks with a TPC

segment. All TPC tracks should have more than 18 hits.

• Muon candidate search: the muon is identified as being a negatively charged

track with the highest momentum starting in the FGD1 FV. This FV does not

ensure that every event has been encompassed in FGD1 so a further cut will be

applied which will be discussed in the following subsection.

• PID: The PID in the TPC is based on the dE/dx variable which measures energy

loss. The muon candidate will have a muon-like PID based on the pull value:

Pulli =
dE
dx measured − dE

dx expected, i

σdEdxmeasured
dEdxexpected

, i (6.1)

where i = e, µ, p or π.

Discrimination functions are used to reject certain particle types:

Li =
e−Pull2

i

∑
i=e,µ,p,π

e−Pull2
i (6.2)

Proton and pions are removed by the following condition:

Lµ > 0.05

Lπ > 0.3
(6.3)
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Electrons with p < 500 MeV/C are rejected by:

LMIP =
Lµ + Lπ

1− Lp
> 0.8 (6.4)

• Entering backgrounds cut: events with mis-reconstructed tracks are removed.

Figure 6.3 shows the distributions of muon angle for the muon neutrino sample and

Figure 6.4 shows the momentum distribution for the muon neutrino CC-inclusive se-

lection using NEUT MC. The MC is separated into different topologies4:

• CC-0π: Events with a true negative muon and zero pions in the FSI.

• CC-1π: Events with a negative muon and 1 neutral or charged pion (also in-

cludes events with kaons).

• CC-Other: Any other CC event, not included in the previous CC samples, con-

taining a negative muon and > 1 neutral or charged pion.

• Background: consisting of CC and NC neutrino interactions.

• External: Events where the interaction vertex is outside of the FGD1 FV.

6.2.1 Vertex Activity Analysis Cuts

For the VA analysis, FGD1 is used as a target only and additional tailored cuts were

applied as follows:

• Cut 1: Single track TPC events only are selected

• Cut 2: The FV is modified so that only the last 2 layers of FGD1 are excluded, as

shown by Table 6.4.

xmin xmax ymin ymax zmin zmax

FGD1 -874.51 874.51 -819.51 929.51 136.25 426.125

Table 6.4: FV values for FGD1.

The FV was modified to exclude two FGD1 bars in the z direction, the final two

downstream layers, as well as five FGD1 bars in the x and y directions, to ensure

that the bars present in the VA region do not correspond to any bars close to the

edge of the detector.

4A topology is classified as a set of particles that leave the nucleus after an interaction.
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Figure 6.3: The muon angle distribution for different FGD1 samples: CC-inclusive

(top left), CC-0π (top right), CC-1π (bottom left) and CC-other (bottom

right), separated by topologies [114].
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Figure 6.4: The muon neutrino momentum distribution for runs 2-4 where NEUT is

used as the MC sample.
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Muon Neutrino Sample Discrepancy

The VA for the muon neutrino sample using NEUT MC separated into topologies is

given by Figure 6.5 for the different vertex regions. The plots show that there is a

discrepancy present in data and MC at low VA for each vertex region whereas for the

higher VA region the discrepancy is not seen. The discrepancy appears to be greater

at larger box regions, 5x5x5 and 7x7x7, and significantly worse at low VA than seen

with 3x3x3.

Figure 6.6 shows the VA for different NEUT interaction modes, and it is clear from

these plots and the interaction percentages shown in Table 6.5, that the CCQE-like

interaction mode (CCQEL, see Section 3.1 for an explanation of different neutrino in-

teraction modes) is dominant and that the discrepancy likely occurs from events in

this mode.

The discrepancy in low VA for the νµ sample was an unexpected result. The next stage

involved understanding why the discrepancy occurs, by firstly looking at the VA for

the ν̄µ sample in the next section, then followed by studies investigating the detector

response in Section 6.2.3.
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Figure 6.5: Muon neutrino vertex activity for data and NEUT MC separated into

different box sizes: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.
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Interaction mode NEUT (%)

QEL 63.32

COH 1.82

RES 21.47

DIS 0.42

BG 3.91

2p2h 9.07

Table 6.5: The breakdown in percentage of interaction modes for NEUT MC.
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Figure 6.6: Vertex activity of the muon neutrino sample separated by interaction

modes using NEUT MC, for the 5x5x5 vertex region.
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6.2.2 Muon Antineutrino Sample

The muon antineutrino sample used in this section comprises of data collected from

runs 5c (the first RHC mode at T2K) to runs 6e, this corresponds to data collected from

June 2014 to June 2015, and is described in Table 6.6. For the MC sample NEUT version

5.3.2 was used with a total POT value of 3.962x1020.

T2K Run Data POT (x 1019)

Run 5c 4.298

Run 6 (b+c+d+e) 34.023

Total POT 38.321

Table 6.6: The table shows data POT values in antineutrino mode used in this

analysis.

Events were selected using the standard muon antineutrino sample, where very pure

ν̄µ’s can be obtained by tagging postive muons, which requires events to be in-time

with proton bunches and for the data quality to be from a good global ND280 data

quality flag. The following are the selections applied for the muon antineutrino sam-

ple, for a more detailed discussion of the cuts, the reader is referred to [115]:

• Event quality: the full spill must contain a good global ND280 data quality flag

and occur in a defined timing bunch.

• Total multiplicity: there must be at least one reconstructed track in TPC2.

• Positive multiplicity and fiducial: the positive muon is defined as being the

positively charged track with the highest momentum starting in the FGD1 FV.

The track must consist of more than 18 TPC nodes.

• TPC1 veto: there must be no reconstructed tracks in TPC1. PØD, magnet and

FGD1 interactions with backward tracks are vetoed.

• External FGD1: muons originating upstream of FGD1, that are misreconstructed

into two separate tracks (muon track is split into PØD-TPC1-FGD1 and FGD1-

TPC2..) due to muon large-angle scattering, are rejected. If the second highest

momentum track begins < 150 mm upstream of the muon candidate, the event

is rejected.

• TPC PID: using the discriminant variables defined in equation 6.2, the highest

momentum positive muon candidate will have: 0.1 < Lµ < 0.7 and LMIP > 0.9,

if p < 500 MeV/c.

• Kinematic selection: The muon candidate must have a momentum in the range

of 0.2 - 5 GeV/c and cosθµ > 0.2.
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The distributions of pµ and cosθ for the muon antineutrino sample is given by Fig-

ure 6.7.

Figure 6.7: POT normalised MC to data distributions of pµ (left) and cosθ (right) for

the ν̄µ sample from runs 5c to 6e. The top plots show contributions from

different true identities of the µ+ candidate, middle shows the flavour of

the interacting neutrino and the bottom distributions have been

separated into different event topologies. Figure and caption from [116].
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As with the νµ sample, two additional cuts were added in order to tailor the sample

for the VA analysis (Section 6.2.1); the VA distribution after these cuts were applied is

given by Figure 6.8 for different VA box sizes.

There is no discrepancy observed in the ν̄µ sample for any of the vertex regions unlike

in the νµ sample. For the ν̄µ sample, the VA peaks at a lower region than the νµ VA,

because the ν̄µ contains a neutron in the final state. The different vertex regions also

show that the mean VA shifts towards the high VA region as the vertex box increases

in size, a larger box size means there will be more contributions from particles.

The data and MC agreement in the ν̄µ sample is better as neutron interactions, hav-

ing no associated charge, have a negligible contribution to the VA. The data and MC

agreement observed in the νµ sample is worse as proton nuclear interactions produce

VA contributions and will affect the FSI; the proton will have a different momentum

than observed. The likelihood is that the proton nuclear interaction modelling is not

correct in generators therefore there is a discrepancy in low VA for the νµ sample.
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(c)
Figure 6.8: The vertex activity for the muon antineutrino sample separated into

different box sizes: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7. The MC generator used

to produce these plots is NEUT. There is no clear data and MC

disagreement for this sample, unlike in the muon neutrino sample.
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6.2.3 Detector Response Studies

Once the low VA excess in the νµ sample was discovered and the ν̄µ sample was inves-

tigated, the next stage was to evaluate whether or not the discrepancy occurs due to a

detector effect. Many different studies were performed, some of which are included in

the next section, including varying the number of TPC tracks, momentum, pull, and

other variables.

Varying the Number of Selected Tracks

The first study involved varying the number of TPC and FGD-only tracks, in order

to see if there are indications of extra tracks contributing towards the overall charge

and making a difference to the overall VA. As mentioned previously, (Section 6.2.1),

the default for the VA analysis was to select on 1 TPC track only, as this allows events

that would have had a relatively low momentum proton in the CC-inclusive sample

to be removed. By varying the number of TPC and FGD-only tracks, one can assess

the impact that low momentum protons have on the VA.

The VA distributions with the number of TPC and FGD-only tracks varied is shown by

Figure 6.9, and it can be seen that selecting the number of TPC tracks to be > 0 causes

the low VA discrepancy to disappear, regardless of the FGD-only track selection cut.

This suggests that the discrepancy is present for multi-track events as there is a proton

present in the VA region that is misidentified. There is an overshoot in data for the

higher VA regions, shown by Figures 6.9 (b) and (d), which is likely to occur due to

the MC underestimating the number of particles contributing to high VA values.

After applying the cuts, selecting 1 TPC track and zero FGD-only tracks, the discrep-

ancy in the low VA regions appears to worsen. This is expected to happen if there is a

further veto on FGD1 tracks, so the overall charge contribution from the FGD1 is less,

therefore the discrepancy appears to be greater.
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(a) TPC tracks = 1 (default)

Vertex Activity (PEU)
0 500 1000 1500 2000 2500

E
ve

nt
s

0

200

400

600

800

1000

1200

numu_MC_fgd_V55numu_MC_fgd_V55CC1_numu_fgd_V55CC1_numu_fgd_V55CC1_numu_fgd_V55CC1_numu_fgd_V55CC1_numu_fgd_V55CC1_numu_fgd_V55CCother_numu_fgd_V55CCother_numu_fgd_V55CCother_numu_fgd_V55CCother_numu_fgd_V55CCother_numu_fgd_V55CCother_numu_fgd_V55Bkg_numu_fgd_V55Bkg_numu_fgd_V55Bkg_numu_fgd_V55Bkg_numu_fgd_V55Bkg_numu_fgd_V55Bkg_numu_fgd_V55Vertex Activity for Numu SampeeleVertex Activity for Numu SampeeleVertex Activity for Numu SampeeleVertex Activity for Numu SampeeleVertex Activity for Numu SampeeleVertex Activity for Numu SampeeleVertex Activity for Numu SampleVertex Activity for Numu Sample

Data
πCC-0
πCC-1

CC-Other
Background
External

(b) TPC tracks > 1
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(c) TPC tracks = 1 and FGD-only tracks = 0
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(d) TPC tracks = 1 and FGD-only tracks > 0

Figure 6.9: The impact of varying the number of TPC and FGD-only tracks on the

VA distributions. Figure (a) represents the default VA track selection

where the low VA discrepancy is observed, as shown previously.

Adjusting the number of tracks selected has an impact on the VA

distributions observed. All plots use NEUT MC.
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Z Position

The +Z direction of ND280, often referred to as downstream, denotes the direction

of the incoming neutrino beam. The FGD1 contains layers of alternating XZ and YZ

layers of extruded plastic scintillator bars and 5760 readout channels, Section 4.7.5

describes the FGD in further detail. The purpose of this study is to investigate the VA

of different FGD1 Z positions in order to see if there is any effect caused by the detector.

FGD1 was separated into four equally spaced regions as shown by Figure 6.10 and

Table 6.7.

Figure 6.10: Schematic of FGD1 separated into different equally spaced Z regions.

The FGD1 was separated after the FGD1 FV cut was applied, which

was described in Section 6.2.1.

Region size (mm)

1 135.0 - 207.5

2 207.5 - 280.0

3 280.0 - 352.5

4 352.5 - 425.0

Table 6.7: This table shows the values for the FGD1 Z region, separated into equally

spaced sections.

Figure 6.11 shows how the VA distribution varies for each FGD1 Z position; for both

MC samples the discrepancy seems to be more pronounced from region 3 onwards.
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(a) Region 1: 135.0 - 207.5 mm
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(b) Region 2: 207.5 - 280.0 mm
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(c) Region 3: 280.0 - 352.5 mm
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(d) Region 4: 352.5 - 425.0 mm

Figure 6.11: VA distributions for the FGD1 separated into the four different Z

positions as outlined by Table 6.7. The MC used for these distributions

is NEUT.

In order to see if the difference in the low VA discrepancy for each region is significant,

a χ2 test was performed for each pair of regions, and the resulting p-values can be

seen in Table 6.8. The p-values suggest that there are no clear differences between

any two region distributions which indicates that there is no significant issue with the

detector. In addition, there are more events in region 2 (shown by Figure 6.12) than

compared to the other regions which could have an effect on the VA distribution. As

well as this, the number of external events is much higher for region 4, as it is closer

to the edge of the detector, so this could also have an impact on the VA discrepancy.

Finally, there could be additional contributing factors such as noise or certain readout

channels not working as efficiently or further issues causing the discrepancy to be

more pronounced as the beam travels further into FGD1.
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Data regions p-value

1 and 2 0.898303

1 and 3 0.446539

1 and 4 0.781232

2 and 3 0.847541

2 and 4 0.665813

3 and 4 0.171174

Table 6.8: This table shows the p-values comparing the data for different FGD1 Z

regions.
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Figure 6.12: Plots showing the VA for FGD1 separated into four different z positions

for NEUT, top is for all MC, bottom is for externals only. It can be seen

that there are more MC events in region 2. The number of external

events in region 4 is highest, this region is closest to the edge of the FGD

so is more susceptible to external events.
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Muon Momentum Distribution

The next study looked at the effect on the VA when the muon neutrino momentum

was varied in different ranges from 200 MeV to greater than 700 MeV. The NEUT MC

momentum plots are shown by Figure 6.13 and these plots show that there seems to

be no clear effect on the discrepancy observed. At the lowest momentum range of 200-

300 MeV there is a lack of statistics as there are less muons at this momentum range.

The difference in the other momentum regions are due to the neutrino spectrum but

overall there seems to be no obvious indication that the momentum affects the data

and MC disagreement.
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(a) Momentum = 200 - 300 MeV
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(b) Momentum = 300 - 400 MeV
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(c) Momentum = 400 - 500 MeV
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(d) Momentum = 500 - 600 MeV
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(e) Momentum = 600 - 700 MeV
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(f) Momentum > 700 MeV

Figure 6.13: The VA distributions separated into different momentum regions, there

is no clear sign that the momentum has an effect on the VA discrepancy.
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Muon PID

The muon pull, δµ, is used to quantify particle identification and is defined as:

δµ =
de
dx measured − de

dx expected

σdedxmeasured
dedxexpected

(6.5)

The muon pull was varied for values between -0.5 and +0.5 to -2.0 and +2.0. Increasing

the pull to a wider value increases the chances of being further away from the mean,

so although there will be more muon events, the likelihood of incorporated particles

that are not muons increases. Cutting harder on the muon PID improves the muon

purity in a way that is independent of the neutrino interaction, in case the discrepancy

observed is caused by pions, protons or electrons being selected as the primary track.

The resulting VA distributions for these pull ranges are given by Figure 6.14 and they

show that varying the muon pull had no discernible effect on the VA observed; the

excess was present for all pull values.
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(a) Pull = -0.5 - 0.5
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(b) Pull = -1.0 - 1.0
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(c) Pull = -1.5 - 1.5
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(d) Pull = -2.0 - 2.0

Figure 6.14: The VA distributions separated into different pull values, the MC used

for these distributions is NEUT. Adjusting the pull seems to have no

clear effect on the VA discrepancy.
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6.3 GENIE MC Sample

The detector studies seem to suggest that the muon neutrino VA discrepancy is un-

likely to be caused by a problem with the detector itself, so the next step was to look

at a different MC generator to see if this behaved in the same way as NEUT MC. GE-

NIE was used as the next MC sample, the details of the version of GENIE used were

described in Section 6.2 and the momentum distribution of the sample is shown by

Figure 6.15.
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Figure 6.15: The νµ momentum distribution for runs 2-4 where GENIE is used as the

MC sample.

Figure 6.16 gives the VA distributions of different box sizes for the GENIE MC muon

neutrino sample separated into topologies, Figure 6.17 shows the VA for different GE-

NIE interaction modes and Table 6.9 lists the interaction percentages. For GENIE, just

like NEUT, a discrepancy in the data and MC is observed but the discrepancy of the

two generators is quite different. At the low VA region, GENIE tries to add extra VA

(unlike the low VA region of NEUT) but the amount added is too much, and the MC

peak is far higher than the data. Looking at the VA of a different generator also gives

us a discrepancy but the fact that GENIE is quite different to NEUT leads to the as-

sumption that the discrepancy is due to poor modelling of low energy particles in the

generators.
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(b)
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(c)
Figure 6.16: Distribution of the vertex activity for the νµ sample. The MC used is

GENIE, and each vertex region is shown: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.

There is a disagreement in data and MC observed.
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Interaction mode GENIE (%)

QEL 71.84

COH 0.44

RES 22.93

DIS 0.35

BG 4.45

2p2h N/A

Table 6.9: The breakdown in percentage of interaction modes for GENIE MC.
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Figure 6.17: The 5x5x5 vertex activity distribution of the νµ sample using GENIE

MC, separated by interaction modes.
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6.3.1 Discrepancy Conclusions

The VA discrepancy in data and MC was observed in the muon neutrino sample for

both NEUT and GENIE MC, and the way the discrepancy behaved in both of these

samples was very different. This effect is unexpected as one would presume that the

two generators would behave in a similar manner, however neither of the generators

agree with the data and the way they differ with data is very different.

Whilst the studies were ongoing, a bug in the NEUT 6B production (version 5.3.2) was

discovered that affected the proton FSI as shown by Figure 6.18, where a threshold

has been imposed at around 200 MeV/c. As low momentum protons contribute to

the VA and the bug occured at the low proton momentum range, it was suggested

that maybe this is the reason there is a difference in VA for data and MC. An updated

version of NEUT without any truth information (production 6D, v5.3.2.2) was avail-

able during the analysis and a shape-only comparison plot of NEUT productions 6B

and 6D as well as GENIE and data was produced, as shown by Figure 6.19. This fig-

ure shows that although the bug in NEUT 6B was fixed, there is still a discrepancy

in the updated NEUT version and data, which means that further studies into gener-

ator models are required to improve low momentum simulation. This analysis only

focused on the GENIE and NEUT MC generators, but other ones are available such as

NuWro [117] and Giessen Boltzmann–Uehling–Uhlenbeck (GIBUU) [118] which may

suggest alternative VA information.

The studies performed ultimately suggest that the reasons for the data and MC dis-

agreement are unlikely due to the detector but are instead due to a lack of understand-

ing of nuclear processes in generators. The way in which NEUT and GENIE simulate

low momentum proton production vary and more work in developing the low energy

theory of generators will greatly improve the understanding of multinucleon effects.
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Figure 6.18: Plot showing the proton momentum for different MC samples. It is

clear to see that there is a bug in proton momentum for the NEUT 6B

production [119].

Vertex Activity (PEU)
0 500 1000 1500 2000 2500

0

200

400

600

800

1000

1200

Genie

Neut 6B

Neut 6D

Data

Figure 6.19: A comparison of the vertex activity for the NEUT 6B (blue), NEUT 6D

(green), GENIE (red) and data (black) samples. There is a shape

difference in each sample and the data does not agree with any of the

MC at low vertex activity regions.
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6.4 Detector Systematics

In order to investigate the detector bias on the VA, the data and MC of two control

samples were compared. The VA of the FGD energy scale can be measured in two

ways, either by the energy deposition of MIPs as they traverse through the FGD or

by calorimetry of a stopping proton with a known momentum depositing its energy

inside a box centered on a stopping point. This section discusses the control samples

in further detail and provides systematic uncertainties for each sample.

The data used for the systematics came from runs 2-4 using Production 6L, and the

MC used was NEUT Production 6B which equates to v5.3.2. Both samples used High-

land2 v2r13 for FGD1 only, and all the plots in this section are POT normalised unless

specified otherwise.

6.4.1 Stopping Protons

Protons are a good way to measure the FGD energy scale because if their momentum

is known, it is possible to determine their energy deposition after they have stopped in

a region. For the stopping proton control sample, good event quality is required, then

the most energetic (Highest Momentum (HM) track) in a TPC with at least 18 TPC

hits and either positive or negative charge is selected. Table 6.10 outlines the number

of entries and POT values used for data and MC of the stopping proton sample and

Table 6.11 lists the cuts that were used in order to select the stopping protons, the

protons were required to pass the first 5 layers of FGD1, and then stop and deposit all

of their energy in FGD1.

Data MC

no. of entries 326324 2082070

POT (1021) 0.580 4.935

DATA/MC POT ratio 0.118

Table 6.10: The no. of entries and POT values for the stopping proton sample.

Figures 6.20 and 6.21 show the momentum distribution and dE/dx of the stopping

proton sample respectively.

In order to deduce the systematic uncertainties for the stopping protons, a landau fit to

data and MC of the dE/dx distribution was performed. It is possible to use the dE/dx

value as an alternative definition of VA (the amount of charge (or energy deposited

- dE) in a given region - dx). By measuring the difference in the means of data and

MC, one can measure the systematic uncertainty due to mismodelling of VA, i.e. the
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energy scale and then the differences in the width of data and MC gives a systematic

due to resolution. Table 6.12 provides the values for the mean and sigma for both data

and MC obtained from a landau fit, where the difference in data and MC mean is (0.60

± 0.34) % and in σ is (1.12 ± 0.02) %.

Number Name

0 Event quality

1 Postive candidate track

2 Candidate ends in FGD1 FV

3 No TPC2 track

4 No FGD2 tracks

5 No ECal tracks

6 Proton PID

7 HM track starts in PØD FV

8 NO other PØD tracks

Table 6.11: Cuts used for the stopping proton selection.

Stopping Proton dE/dx

µMC ± δµMC(PEU/mm) 0.653 ± 0.003

µdata ± δµdata (PEU/mm) 0.649 ± 0.003

σMC ± δσMC(PEU/mm) 0.127 ± 0.002

σdata ± δσdata (PEU/mm) 0.126 ± 0.002

Table 6.12: Values for the mean and sigma of the stopping proton sample obtained

from a landau fit.
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Figure 6.20: Momentum distribution of the stopping proton sample for data (black

points) and NEUT MC (red).
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Figure 6.21: Distribution of dE/dx for the stopping proton sample for data (black

points) and NEUT MC (red).
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6.4.2 Throughgoing Muons

The throughgoing muon control sample is used to measure the FGD1 energy scale

and cosmic or sand muons5 are used for the muon sample as they behave like MIPs.

Table 6.13 provides a list of the number of entries used for the throughgoing muon

sample; there is no POT information as the muons came from background events and

not from the beam. The throughgoing muon sample assumes good data quality, at

least one reconstructed track in a TPC, and then the most energetic global track is

selected. The selection requires that the muon must pass through all 3 TPCS as shown

by Figure 6.22 and Table 6.14 provides a list of the cuts used in this selection.

Data MC

no. of entries 14792819 116476088

Table 6.13: The no. of entries for data and MC, for the throughgoing muon sample.

Figure 6.22: ND280 event display showing an example of a event used in the

throughgoing muon sample. The muon (green) is seen traversing the

entire ND280 detector.

Number Name

0 Data quality

1 Negative candidate track

2 POD-TPC2 track

3 TPC2-DsECal track

4 TPC1-TPC3 track

5 Passes through all 3 TPCs

6 Muon PID

Table 6.14: Cuts used for the throughgoing muon selection.

Figures 6.23 and 6.24 show the momentum distribution and energy distribution of the
5Sand muons are muons that are produced in the external material that surrounds the ND280 detector.
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throughgoing muon sample respectively.
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Figure 6.23: Momentum distribution of the throughgoing muon sample, the black

points represent data and NEUT MC is shown in red.
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Figure 6.24: Energy distribution recorded in FGD1 using the throughgoing muons

as they pass through the detector.
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There is a discrepancy observed in data and MC for the momentum distribution, how-

ever this could be caused by sand muons being excluded from the MC sample which

may mean that the excess is due to this alone. Secondly, the momentum distribution is

normalised prior to the Beam And ND280 Flux extrapolation task Force (BANFF) fit 6

which means that the flux and cross section uncertainty itself is larger and does not

benefit from the rescaling that would go into the oscillation analysis from the ND280

fit.

A similar procedure was applied to the throughgoing muons; a landau fit to data and

MC of the energy distribution. This gives a difference in the means of data and MC of

(0.27 ± 0.01) %, and a difference in σ of (3.87 ± 0.01) %; Table 6.15 lists the mean and

sigma values for the throughgoing muon sample.

Throughgoing Muon dE/dx

µMC ± δµMC(PEU/mm) 48.45 ± 0.02

µdata ± δµdata (PEU/mm) 48.31 ± 0.02

σMC ± δσMC(PEU/mm) 3.07 ± 0.01

σdata ± δσdata (PEU/mm) 2.95 ± 0.01

Table 6.15: Values for the mean and sigma of the throughgoing muon sample

obtained from a landau fit.

Table 6.16 outlines the difference in the means and σs between data and MC for the

stopping proton and the throughgoing muon sample. These results will be used to

estimate the overall systematic uncertainty in Section 8.2.

Stopping proton (%) Throughgoing Muon (%)

Difference in x̄ 0.60 0.27

Difference in σ 1.12 3.87

Table 6.16: The difference in the mean and sigma values, for data and MC, for the

stopping proton and throughgoing muon sample.

6The fit to the ND280 data to further constrain the flux and cross section uncertainties and provide

them to the oscillation analyses is known as the BANFF fit [120].



Chapter 7

Response Functions

A response function is a way in which predictions can be made regarding the recon-

struction of the detector, such as momentum or energy values, including all unknown

effects. For the VA analysis, response functions were constructed to predict the VA

for a given neutrino interaction. These were developed using a set of MC particles to

produce VA distributions that were then fitted appropriately, (e.g. using a gaussian,

landau-gaussian etc) in order to get a prediction for the VA for different particle types

and momentum ranges.

The benefit of using a response function is that it allows VA predictions of interactions

based on the MC which removes the need to undergo full GEANT reconstruction of

any MC. It is also possible to investigate what will happen if particles are introduced in

the final state such as extra low energy protons in order to reasonably assess the effect

of different models on the nuclear processes that produce VA. A response function is

necessary to predict the VA distribution from ND280 as low energy protons cannot be

reconstructed so, instead particle guns1 are used to simulate the response of particles

in the detector.

This chapter will discuss how the response functions for different particles, such as

electrons, muons and protons, were constructed, starting with simulations using MC

particle guns, then moving onto fitting these different distributions, and finally to

producing the response functions themselves. How this information can be used in

order to understand the VA discrepancy observed in the muon sample, will also be

discussed in this chapter.

1A particle gun is a way in which particles of a given type can be created to ”shoot” in a given direction

with a given kinetic energy or momentum. GEANT4 provides functions in which the user can adjust

particle kinematics to reproduce events within the detector.

113
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7.1 Monte Carlo

In order to investigate the behaviour of particles in the ND280 detector, a number

of different particle gun MCs were run and distributions of the VA were produced.

As the main focus of this analysis are muons and protons, these distributions will be

described in further detail, however a brief discussion of how the electron particle

guns behave has been included in Appendix 9.3 for completeness.

The VA is contingent upon a reconstructed track being present in the event, and the

reconstruction of the VA comes from the vertex of that reconstructed track. After sim-

ulating a muon using a particle gun MC, one can deduce the muon’s VA contribution

straightforwardly; the track can be reconstructed and the VA can be calculated. Prob-

lems start to occur when the VA of an additional track is considered, as the VA is

defined with respect to the reconstructed track, which will essentially be the recon-

structed muon. In order to combat this issue, MCs of muons in addition to the particle

to be investigated (in this case, protons) can be run and the VA contribution can be

investigated. In other words, because it is possible to understand a single muon’s

contribution to the VA, one can then run a low energy proton from the same point as

the muon and by fitting out the muon contribution, it is possible to understand the

proton’s VA contribution.

The following sections will show how it is possible to understand the VA behaviour

of low energy protons using MC simulations and response functions.

7.1.1 Muon and Proton Particle Gun Studies

The particles simulated by the particle guns were centered in FGD1 at a position of 0.0

x 0.0 x 30.0 cm, and the vertex size was 2cm x 2cm x 2cm. These dimensions were used

to ensure that the different VA box sizes encompassed the FGD FV and there were no

edge-of-detector effects caused from the final few bars of FGD1 or the TPC.

The muons simulated for the particle gun studies were run with a kinetic energy of

500 MeV, isotropically and at an opening angle of 45◦. The protons were run with a

range of kinetic energies between 10 MeV and 200 MeV, the particles were isotropic

and their opening angle was set at 360◦. Figure 7.1 shows an event display of a single

500 MeV muon, in green, and a single 50 MeV proton, in blue; the proton, having a

low momentum, is seen to deposit all its energy in FGD1 whereas the muon, with a

greater momentum, is seen to reach the downstream ECal.
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Figure 7.1: ND280 event display showing a single 500 MeV muon (green) and a

single 50 MeV proton (blue), simulated from FGD1.

Figure 7.2 shows the VA distribution of muons with a kinetic energy between 100-

800 MeV for different VA box sizes. These distributions show that although there is

a slight dependency on the mean muon momentum and VA2, when considering the

VA contribution and uncertainty, the effect is not significant enough to worry about

the value of muon momentum used. Therefore, only using a 500 MeV muon, for this

analysis, is completely acceptable.

The next set of particle guns produced were muons with protons of various energies,

and Figures 7.3 show the VA distribution for different vertex box regions for these

sets of particles. It can be seen that the addition of a proton shifts the mean of the

VA to higher values gradually with increasing KE up until a certain value, where the

mean VA shifts to lower values. This occurs because the proton is now escaping the

VA region, and depositing its energy outside of the VA region, thus the overall VA in

the box is lowered. Figure 7.3 shows that this occurs at a different value for each VA

region. For added clarity, the vertex activity for single muons and single muon plus

single proton has in addition, been represented using a log y scale, as can be seen by

Figure 7.4, and Table 7.1 shows a table of mean values.

2In Figure 7.2, the 5x5x5 muon momentum distribution gives a mean VA value for the 500 MeV muon

of roughly 90-100 PEU, and the mean VA for the 200 MeV muon is around 110 PEU, which corresponds

to a difference of 10-20 PEU. The VA value for a typical event (see Figure 7.6) is approximately 600-800

MeV, therefore the momentum dependence can be considered to be an insignificant effect.
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Figure 7.2: Distributions of vertex activity for the single 500 MeV muon at: (a) 3x3x3

(b) 5x5x5 (c) 7x7x7 vertex region.
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Figure 7.3: Distribution of vertex activity for the single 500 MeV muon and single

500 MeV muon + single (10 - 150 MeV) protons, for the vertex regions:

(a) 3x3x3 (b) 5x5x5 (c) 7x7x7.
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Figure 7.4: Distribution of vertex activity for the single 500 MeV muon and single

500 MeV muon + single (10 - 150 MeV) protons, using a loy y scale for

the vertex regions: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.
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Mean Value (PEU)

3x3x3 5x5x5 7x7x7

Single µ 68.36 109.45 150.31

Single µ + 10 MeV p 291.73 334.85 374.57

Single µ + 25 MeV p 537.32 657.32 705.17

Single µ + 50 MeV p 370.01 624.21 858.85

Single µ + 100 MeV p 128.92 169.74 209.51

Single µ + 150 MeV p 288.63 479.94 653.76

Table 7.1: A table of means for each vertex activity value.
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7.2 Building Response Functions

Response functions can be built from the particle gun plots by fitting the single muon

only and single muon and single proton distributions and using the relevant fit values

to construct a response function. As well as this, the single muon distributions can be

fitted out from the single muon and proton distributions in order to create a single pro-

ton only distribution. This method is necessary as single proton distributions are not

available as the momentum of the proton is too low for reconstruction in the ND280

software. This section will describe the methods used to build a response function,

starting with Gaussian fits and eventually moving onto a combined Landau-Gaussian

fit.

7.2.1 Gaussian Fits

As an initial, first order assumption the single muon, and single muon and proton

distributions, were fitted with a Gaussian in order to extract the relevant information

to develop the response functions.

The probability density function of a Gaussian fit is defined by

p(x; µ, σ) =
1√
2πσ

e−
(x− µ2)

2σ2 (7.1)

where µ is the mean, and σ is the width.

Figure 7.5 (a) shows the single muon sample fitted with a Gaussian and Figure 7.5

(b) shows the single muon and 100 MeV proton fitted with a Gaussian. It is clear to

see that there are problems with the Gaussian fit to both of these samples and the fit

does not match the data accurately. The Gaussian fit to the single muon and single 100

MeV proton is significantly worse than the single muon only distribution, the addition

of low energy protons means that the distribution is no longer modelled well by the

Gaussian.



CHAPTER 7. RESPONSE FUNCTIONS 121

Vertex Activity (PEU)

(a) Single 500 MeV muon.

Vertex Activity (PEU)

(b) Single muon and 100 MeV proton.

Figure 7.5: Single 500 MeV muon sample, as well as the single 500 MeV muon and

100 MeV proton, both fitted with Gaussian (red). It is clear that the

Gaussian does not provide a good fit to these samples.

7.2.2 Landau-Gaussian Fits

As the Gaussian fits presented in the previous section do not fit the data accurately,

the behaviour of Landau-Gaussian fits were investigated next. Landau fits are often

used to describe the statistical fluctuations in energy loss of a charged particle passing

through a thin layer of material as described by Landau [121]. The Landau distribu-

tion behaves similarly to a normal distribution but with a long upper tail caused by

highly ionising electrons. The single muon distributions are fairly well modelled by a

Gaussian but, the addition of low energy protons with energies far below the MIP en-

ergy mean that the Landau tail disappears and instead behaves more like a Gaussian

distribution. In addition, the detector resolution of ND280 provides an additional

resolution convolution which can be mapped better using a Gaussian, hence why a

Landau-Gaussian convolution is considered more suitable for these fits.

The Landau fit can be described as

φ
′
λ = − 1

π

∫ ∞

0
e−λuu1−u sinπ u du (7.2)

and the resulting Landau-Gaussian function is a convoluted sum of Equation 7.1 and

Equation 7.2.

Figure 7.6 shows the single 500 MeV µ, single 500 MeV µ + single 50 MeV proton,

and finally single 500 MeV µ + single 100 MeV proton distributions, fitted with a

Landau-Gaussian for the 5x5x5 vertex region. It is clear to see from these distributions

that, using a Landau-Gaussian convolution provides a more successful fit than using

a Gaussian alone.
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Figure 7.6: Distributions of the vertex activity, for the 5x5x5 vertex region, fitted

with a Landau-Gaussian for: (a) single 500 MeV muon (b) single 500

MeV muon and a single 100 MeV proton (c) single 500 MeV muon and a

single 50 MeV proton.
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Single Muon MC

Using the Landau-Gaussian fit values from Figure 7.6, it is possible to recreate the

single 500 MeV µ only histograms, by using a random number generator. Figure 7.7

shows a comparison of the new single µ distributions compared to the previous single

500 MeV µ MC (Figure 7.2), for different vertex regions.

(a)

(b)

(c)
Figure 7.7: Comparisons of the original single µ MC (Particle gun MC) and the new

µ MC (Toy MC) built using fit values from the original µ MC, for: (a)

3x3x3 (b) 5x5x5 (c) 7x7x7.
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Single Muon with Single Proton Distribution

The similarities between the original µ MC and new single µ samples show that pro-

ducing new distributions from fit values accurately gives us distributions matching

the original MC. Therefore the next stage was to compare the original single 500 MeV

µ + single proton particle gun MC to new particle gun distributions. The original dis-

tributions were fitted with a Landau-Gaussian and the fit parameters obtained were

used to draw new distributions using a random number generator, in the same way

as for muons only. Figure 7.8 shows the comparison between the original 500 MeV

µ + 100 MeV proton (blue) and the new constructed 500 MeV µ + 100 MeV proton

distribution (black) for each vertex region, and the χ2 values for each distribution is

given in Table 7.2. The two distributions behave in a similar manner, the tail is well

modelled and the peak of both distributions is centered around the same value.

As it is possible to construct new single µ and single proton distributions that are simi-

lar to the original MC distributions, the next stage involved extending the single muon

+ single proton distributions for protons with an energy range between 10-200 MeV,

at 10 MeV increments. This energy range was chosen by considering the distributions

in Figure 7.3, and ensuring the energy at which the mean VA was decreasing for all

vertex box sizes was encompassed in the full energy range. The same method to pro-

duce new distributions, as described previously, was repeated to construct new single

muon + single proton distributions.

The full proton KE energy MC ranging from 10-200 MeV was used to produce a re-

sponse function which is shown in Figure 7.9, along with the response function for

the original MC. The error bars in the response functions represent the spread of the

Landau-Gaussian that the distribution was drawn from.
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Figure 7.8: Comparison between the new MC (Toy MC) and particle gun MC

(original MC) for a single 500 MeV muon with a single 100 MeV proton

for (a) 3x3x3 (b) 5x5x5 and (c) 7x7x7. The two distributions behave in a

similar manner, the mean is centered around the same value.

Vertex region χ2 χ2/NDF

3x3x3 101.23 2.60

5x5x5 65.74 1.83

7x7x7 42.02 1.24

Table 7.2: A table showing the χ2 and χ2/NDF values for each of the vertex regions

for the new MC and particle gun MC for a single 500 MeV µ with a single

100 MeV proton.
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Figure 7.9: Response Functions for the single 500 MeV muon and single (10 - 200

MeV) proton distributions for: (a) the new MC (b) the original particle

gun MC. The error bars represent the width of the Landau-Gaussian.
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Single Proton Only Distribution

Now that it is possible to construct single muon and single proton distributions, the

next stage involved constructing single proton only distributions. As mentioned be-

fore, this method is necessary as ND280 does not allow the reconstruction of low en-

ergy protons, therefore low energy single proton MC cannot be simulated but instead,

they can be constructed from the single muon distributions being fitted out from the

single muon plus single proton distribution.

The single proton toy MC can be built by using the fit parameters of the single 500 MeV

muon (Figure 7.6 (a)) and the fit values from the single 500 MeV muon + single (10 -

200 MeV) proton and fitting the single muon contribution out, in order to construct

a single proton only distribution. In effect, the single proton distributions are built

by subtracting values randomly drawn from the single muon fit, from random values

drawn from the random values drawn from the muon plus proton distributions. Fig-

ure 7.10 shows the new single proton only distributions for protons (including the 500

MeV single muon), for each vertex region. The distributions behave similarly to the

distributions shown in Figure 7.3, and as observed previously, the VA values increase

as the vertex box region increases, up until a point, where the VA values fall as the

particles escape the vertex region.
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Figure 7.10: Vertex activity distribution for the 500 MeV single muon (blue), and the

single protons (10 - 150 MeV) built using the Landau-Gaussian fit

values for vertex regions: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.
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Appendix 9.4 shows the single proton distributions, for the full proton energy range

in increments of 10 MeV, starting from 10 MeV through to 200 MeV. Using the full

proton distribution it is possible to create a response function for single protons only,

as shown by Figure 7.11, where the error bars correspond to the spread of the Landau-

Gaussian fit.
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Figure 7.11: Response functions for single proton only distributions, created by

fitting out the single 500 MeV muon from the single 500 MeV muon and

single (10 - 200 MeV) proton MC. The error bars represent the spread of

the Landau-Gaussian.
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Figure 7.12: Response functions for single proton only distributions, similar to the

plot above, but with shaded bars instead
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Muon and Double Proton Distribution

As an additional study, distributions of single muon and double protons were pro-

duced and investigated. A single 500 MeV muon was simulated, along with two pro-

tons with a KE ranging from 5 MeV to 75 MeV, in order to compare to the single muon

and single proton distributions described in the previous section. Figures 7.13 show

the VA distributions for the single 500 MeV muon and double protons for each vertex

region.

Figure 7.14 shows the distributions of the single 500 MeV muon and single proton

compared to the single 500 MeV muon and double protons, where the overall energy

of the protons in each plot is the same, for the 5x5x5 vertex region. There may be an

assumption that going from 1 proton to 2 protons is straightforward and will only

require a factorising effect, but as Figure 7.14 clearly shows, single protons do not

behave in the same way as the double protons, especially towards higher proton ener-

gies. The distributions in Figures 7.14 (a) and (b) have a similar shape but the means

are not centered around the same value. At higher proton energies, the distributions

behave very differently. For example, whilst it may be assumed that one 100 MeV pro-

ton would behave the same as two 50 MeV protons, in reality the 100 MeV proton is

likely to escape the vertex region, so its energy will be deposited outside of the 5x5x5

region. On the other hand, the two 50 MeV protons, being of a lower energy value,

will deposit their energy in the vertex region and so their contribution towards the VA

is larger than a single 100 MeV proton.
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Figure 7.13: The vertex activity distribution for a single 500 MeV muon (cyan), as

well as double protons, with an energy ranging from 5 MeV to 75 MeV,

for the vertex regions: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.
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Figure 7.14: Vertex activity distributions for the single proton (black) compared to

double proton (red) for the 5x5x5 vertex region. Up to 25 MeV, the

single and double proton distributions similarly, but as the proton

energy increases the distributions behave very differently. This effect is

expected as higher energy protons will not remain in the 5x5x5 vertex

region but will escape and deposit their energy elsewhere. The lower

energy protons will deposit their energy in the vertex region and so will

contribute more towards the VA. This effect is reflected most obviously

for an overall proton energy > 100 MeV.
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7.3 Summary

This chapter has demonstrated that response functions can provide a lot of informa-

tion regarding low energy particle production and can also be used to produce many

different, and useful distributions, that cannot be easily determined otherwise. Single

muon contributions to the VA are straightforward to calculate, as the muon track can

be easily reconstructed in ND280 and the VA will be the reconstructed track. Mov-

ing towards additional interactions, such as a single proton is more complicated but

possible, as has been shown in this chapter, if a single muon is simulated along with

the proton. Using the information from these single muon and single proton distribu-

tions, one can create response functions, which allow predictions, such as VA values,

of the single proton only MC.

As it is not possible to reconstruct low energy protons in ND280, the ability to use

response functions is extremely important, as they allow single proton only distribu-

tions to be constructed.

The next chapter will discuss how the single proton response function can be used in

order to investigate the low VA discrepancy present in the muon neutrino sample and

whether adding low energy protons can help improve the data and MC disagreement.



Chapter 8

Proton Vertex Activity Analysis

Chapter 6 concluded that the low VA discrepancy seen in the muon sample (Sec-

tion 6.2.1) is likely to be caused by low energy production of protons that are not

simulated correctly by NEUT or GENIE. MINERνA also saw a similar problem in the

agreements between data and MC, and investigations into the effect of adding low

energy protons to the MC were performed [78].

For the MINERνA analysis, the MC generator used is GENIE v2.8.4 using the RFG

nuclear model with a dipole axial form factor of MA = 0.99 GeV, and the vertex region

was defined as a sphere around the vertex point of dimensions of 30 g/cm2 of mate-

rial centered on the vertex. MINERνA found that adding protons with a momentum

range of 0 - 225 MeV, 25 ± 1 (stat) ± 9 (sys) % of the time improved the data and MC

agreement, and Figure 8.1 shows the improvement in the vertex energy distribution

with the additional protons.

The CC ν-induced pion coherent production analysis using the proton module used

GENIE v2.8.0 with a vertex region of± 15cm, and this analysis found that adding pro-

tons with a momentum range of 0-100 MeV, 25% of the time improved the VA data and

MC agreement. It should be noted that the proton module analysis is not a completed

result yet, therefore there are no uncertainties associated with this measurement, and

the analysis from MINERνA will be used as the main comparison in this chapter.

This chapter discusses whether adding single low momentum protons will improve

the ND280 VA distributions, by reducing the low VA discrepancy.

134
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Figure 8.1: Result from MINERνA showing the reconstructed vertex energy of

events passing the selection criteria in the data (points with statistical

errors) compared to the GENIE RFG model (shown with systematic

errors). The top plot is for: Q2
QE < 0.2 GeV2/c2 and the bottom is for:

Q2
QE > 0.2 GeV2/c2 [78].
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All the single proton fits in Section 7.11 were stored in a ROOT file and different com-

binations of their energies were added to the GENIE MC 1 at different fractions of the

time. The χ2 value between the data and new MC with additional proton contribution

was determined, and the χ2 value versus the percentage of proton added is shown by

Figure 8.3 and in a 3D view in Figure 8.4 for each vertex box size. The distributions

were fitted with a quadratic in order to extract the minimum χ2 value to determine

what percentage of proton added gives the best fit. The quadratic formula used to

calculate the fit values is given by

y = a(x− b)2 + c (8.1)

where a is a constant, b is the x-axis value of the minimum χ2 and c is the y-axis value

of the minimum χ2.

In terms of the energy range, it was found that imposing a limit on the proton energy

below 200 MeV made no significant difference to the best fit value, for any of the vertex

regions, as is shown by Figure 8.2. The optimal percentage of protons added for each

vertex region, is listed in Table 8.1 for protons with an energy range between 10 - 200

MeV.

Vertex region Optimal % ± error on %

3x3x3 62.694 ± 0.103

5x5x5 69.497 ± 0.123

7x7x7 71.762 ± 0.156

Table 8.1: The optimal percentage values after protons of energy 10 - 200 MeV were

added to the GENIE MC.

The full best fit values can be found in the Results in Section 8.3.

VA plots for the optimal percent of events with protons to be added for data and MC

are given by Figure 8.5 for GENIE MC.

1Only GENIE will be investigated in this chapter as it will allow for comparisons with the result seen

at MINERνA. Unfortunately it was not possible to study NEUT, due to the fact that NEUT 6B contained

a proton FSI bug at low momentum, and there was no truth information available with NEUT 6D at the

time of the analysis.
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Figure 8.2: Chi squared value versus energy range for (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.

There is no obvious minimum for any of the vertex regions, suggesting

that there is no energy dependence on the (10-200 MeV) protons added

to the MC. It should be noted that the y-axis has been adjusted,

compared to the previous χ2 plots, in order to clearly show the χ2

distribution across the energy range.
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(c)
Figure 8.3: Chi square versus percent of proton added for vertex regions: (a) 3x3x3

(b) 5x5x5 (c) 7x7x7.
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(c)
Figure 8.4: Chi squared values versus percentage of protons added versus KE (MeV)

for vertex regions: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.



CHAPTER 8. PROTON VERTEX ACTIVITY ANALYSIS 140

Vertex Activity (PEU)
0 500 1000 1500 2000 2500

E
ve

nt
s

0

200

400

600

800

1000

1200

Data

Genie MC

(a)

Vertex Activity (PEU)
0 500 1000 1500 2000 2500

E
ve

nt
s

0

100

200

300

400

500

600

700

800

900

Data

Genie MC

(b)

Vertex Activity (PEU)
0 500 1000 1500 2000 2500

E
ve

nt
s

0

100

200

300

400

500

600

700

Data

Genie MC

(c)
Figure 8.5: Vertex activity distribution after the optimal percentage of protons were

added to Genie MC at vertex regions: (a) 3x3x3, 63% of the time (b)

5x5x5, 70% of the time (c) 7x7x7, 71% of the time.
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8.1 Adding Protons Comparison

Having determined the best value for the percentage of protons to add to the MC, the

VA distributions for the full data and MC were remade with the new proton contribu-

tion for each vertex region.

The original GENIE VA distributions were compared to the new samples with addi-

tional protons, and these are shown for each VA region by Figures 8.6, 8.7 and 8.8.

The VA distributions show that by adding low energy protons a certain fraction of

the time, depending on vertex size, to the MC, improves the data and MC agreement

significantly. The high peak observed at low VA values in the original plot disappears,

and there is clear improvement for each vertex region.

In addition, Tables 8.2, 8.3 and 8.4 show a comparison of the χ2 values for the original

distributions, when no protons are added, and after protons have been added to the

MC, at the optimal percentage, for the 3x3x3, 5x5x5 and 7x7x7 vertex regions respec-

tively; there is a clear improvement on the χ2 value for all vertex regions after protons

are added a certain fraction of the time.
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Figure 8.6: A comparison of the vertex activity distributions for the 3x3x3 vertex

region, where the top plot is the original νµ GENIE MC sample and the

bottom plot is the νµ GENIE MC sample with protons added 63% of the

time with an energy range between 0-200 MeV. The bottom plot shows a

clear improvement in the data and MC agreement after low energy

protons are added to the MC.

Vertex region χ2/NDF χ2/NDF

no protons added protons added 63% of the time (optimal)

3x3x3 10.05 2.57

Table 8.2: A comparison of the χ2 values when no protons have been added to the

MC, and after the optimal percent of protons have been added to the MC.

For the 3x3x3 region, the best fit percentage value was 63%, and a clear

improvement on the χ2 value is observed.
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Figure 8.7: A comparison of the vertex activity distributions for the 5x5x5 vertex

region. The top plot is the original νµ GENIE MC sample and the bottom

plot is the νµ GENIE MC sample with protons added 70% of the time

with an energy range between 0-200 MeV. The bottom plot shows a clear

improvement in the data and MC agreement after low energy protons

are added to the MC.

Vertex region χ2/NDF χ2/NDF

no protons added protons added 70% of the time (optimal)

5x5x5 11.43 2.68

Table 8.3: A comparison of the χ2 values when no protons have been added to the

MC, and after the optimal percent of protons have been added to the MC.

For the 5x5x5 region, the best fit percentage value was 70%, and a clear

improvement on the χ2 value is observed.
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Figure 8.8: A comparison of the vertex activity distributions for the 7x7x7 vertex

region. The top plot is the original νµ GENIE MC sample and the bottom

plot is the νµ GENIE MC sample with protons added 71% of the time

with an energy range between 0-200 MeV. The bottom plot shows a clear

improvement in the data and MC agreement after low energy protons

are added to the MC.

Vertex region χ2/NDF χ2/NDF

no protons added protons added 71% of the time (optimal)

7x7x7 11.53 4.44

Table 8.4: A comparison of the χ2 values when no protons have been added to the

MC, and after the optimal percent of protons have been added to the MC.

For the 7x7x7 region, the best fit percentage value was 71%, and a clear

improvement on the χ2 value is observed.
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8.2 Uncertainties

The statistical uncertainty on the proton vertex activity analysis was determined by

the value when the minimum χ2 increases by 1. This was deduced by using a fitted

curve function as defined in Eq 8.1.

In terms of the systematic uncertainties, it is important to consider what has con-

tributed to the final result and what could have affected this. The first systematic

to consider is how accurately the MC matches the data. This is calculated using the

control samples described in Section 6.4, where values for the systematic uncertainty

on energy scale (mean) and resolution (sigma) of the FGD1 were obtained for a sam-

ple of stopping protons and throughgoing muons. Using these values, the mean of

the single 500 MeV muon and the single 500 MeV muon plus single (10-200 MeV) pro-

ton distributions were adjusted. The difference in the data and MC of the mean and

sigma values of the throughgoing muon and stopping proton sample in Section 6.4,

were used to adjust the muon and proton distributions in order to account for any

systematic uncertainty in the MC and data modelling. The difference in the mean

and sigma for data and MC from the throughgoing muon sample was used to adjust

the mean and sigma of the single 500 MeV muon sample only. For the single muon

and single proton distributions, the differences in the data and MC for both the mean

and sigma of the throughgoing muon and stopping proton samples were added in

quadrature, and each mean and sigma of the single 500 MeV muon and (10-200 MeV)

proton distribution was adjusted using these values. New single proton distributions

were then built following the same procedure described previously, and protons from

these adjusted single proton distributions were added to the MC as described in Sec-

tion 7.2.2 to produce new VA distributions for each region, similar to those shown by

Figures 8.6 to 8.8.

The muon and proton sample were treated differently to account for any effects caused

by Birks Law [122], which describes the effect of light yield quenching for highly-

ionising particles and can be expressed by the following equation which relates the

light yield, dL to the energy loss dE:

dL = S.
dE

1 + kBde/dx
(8.2)

Incorporating the MIP to the muon component, and applying separately the stopping

proton, to all of the stopping proton distributions is covering the variation from Birk’s

law as it’s possible to distinguish between the different particles in the model. The

stopping protons are giving a representative measure of what it’s like for a proton
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style dE/dx, and the muon provides a representative measure for the muon dE/dx.

If further particles were introduced to the VA model, it would be possible to incor-

porate them, as pions are also minimum ionising so would be covered by the muon

contributions, and electrons are heavily ionising so could use the proton contribution.

The same procedure, of adding low energy protons, as outlined in Section 8 was re-

peated, having adjusted the means and sigma to account for any systematic uncer-

tainties, and new values for the optimal percent of protons added were determined

by fitting the new χ2 curves with a quadratic in the same way as previously. The

difference in the new values compared to the previous percentages was taken as the

systematic uncertainty for each vertex region.

Figure 8.9 shows a comparison for the 100 MeV single proton MC that has been ad-

justed to account for the systematic uncertainties compared to the normal 100 MeV

single proton MC for the 5x5x5 vertex region.
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Figure 8.9: A comparison of the 100 MeV single proton MC after the mean and

sigma have been adjusted according to the throughgoing muon and

stopping proton systematic values (Toy MC (adjusted)), compared to the

normal 100 MeV single proton MC (Toy MC (adjusted)) for the 5x5x5

vertex region.
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Figure 8.10: Chi square versus percent of proton added, adjusting for the systematic

uncertainty, for vertex region: (a) 3x3x3 (b) 5x5x5 (c) 7x7x7.
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Table 8.5 shows the systematic value for the normal χ2 distribution (Figure 8.3) and the

χ2 distribution adjusted for the systematic values (Figure 8.10). The small differences

between data and MC shown in Section 6.4 suggest that the MC is modelling the

energy scale and resolution well, and this is reflected in a low systematic uncertainty

resulting from these differences.

Vertex size Fit min (normal) Fit min (adjusted) Difference

3x3x3 62.9 62.7 0.2

5x5x5 69.6 69.5 0.1

7x7x7 70.9 71.8 0.9

Table 8.5: Table outlining the minimum fit value for the normal distribution, as well

as the adjusted distribution, and the difference between the two.

8.3 Results

The analysis determined that there was no dependence on the energy thus protons

with the full energy range of 10-200 MeV were used. There is a clear dependence on

the percentage of protons added into the MC and values for each vertex region were

determined.

The final percentage values, as well as the statistical and systematic errors, for each

vertex region are:

3x3x3: (62.9 ± 3.3 (stat) ± 0.2 (syst)) %

5x5x5: (69.6 ± 3.1 (stat) ± 0.1 (syst)) %

7x7x7: (70.9 ± 3.5 (stat) ± 0.9 (syst)) %.

MINERνA Comparison

MINERνA report that protons with an energy of 0-225 MeV added 25±1(stat)± 9(syst)

% of the time to the final state improves the excess of energy near the vertex.

Combining the statistical and systematic uncertainties from the MINERνA result gives

a value of: (25 ± 9.1) %.

For the purposes of comparison between the MINERνA and ND280 result, the 5x5x5

vertex region of ND280 was selected as it provides the best compromise of allowing

enough particles within the vertex region for a suitable VA measurement (the 3x3x3

region might not be representative of low energy particle production), but not too
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many particles that it saturates the VA result, which might occur with the 7x7x7 region.

Combining the 5x5x5 ND280 result in quadrature gives: (69.6 ± 3.1) %.

Using a standard consistency check

σagreement =
|x1 − x2|√

∆x1
2 + ∆x22

(8.3)

shows a discrepancy between the results of 4.6σ.

This difference is not entirely unexpected, as there are many reasons why the MINERνA

and ND280 results may differ, including but not limited to:

• peak beam energy difference; 3 GeV (MINERνA) and 0.6 GeV (T2K)

• target material; 95% CH, 5% other material (MINERνA) and 86%(C), 7%(H),

4%(O), 2%(Ti), 1%(Si) (T2K)

• GENIE model used; v2.8.4 (MINERνA) and v2.8.0 (T2K)

• definition of vertex size; sphere around the vertex with a radius sufficient to

contain a proton with 225 MeV KE (MINERνA) and layers deep x bars high x

bars wide of 5x5x5 (T2K)

• KE range of protons; 0-225 MeV (MINERνA) and 10-200 MeV (T2K)

However it is clear that both experiments observe an underprediction of the produc-

tion of low energy protons in the GENIE models used, leading to a discrepancy in the

low VA distribution, which is greatly improved by artificially adding single proton

contributions to the MC.



Chapter 9

Conclusions

The current state of understanding of multinucleon effects still requires further study

and development of the theory. Future experiments will use much more complicated

models therefore there needs to be a better comprehension behind these low energy

theories.

The VA measurement gives an extra piece of information regarding the low energy

particle production and is the only way for T2K and other experiments to assess the

low energy particles that are produced during neutrino-nucleon interactions. As neu-

trino models become more sophisticated and uncertainties decrease, the VA will be-

come increasingly important, as any added information regarding particles that are

sensitive to the nuclear effects will become important for the generators.

During the analysis chapters, a use of VA has been demonstrated and via the response

functions a mechanism in which MC models can start to be verified has been pro-

vided. The GENIE model examined during the proton VA analysis in Chapter 8, has

been shown to have a clear underprediction of low energy proton production, both at

MINERνA and ND280, in the results presented in this thesis. The VA study demon-

strates that although the low energy protons cannot be reconstructed, their effect is

visible in the data and that a new handle can, in the future, be used to further tune the

cross section models.

150
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This thesis demonstrates the first step in the use of VA in ND280, and shows for the

first time that viable information regarding low energy proton production can be pro-

vided by the VA. The future outlook for the VA would be to utilise this information

further, in order to assess different MC generators and their models. The VA has been

shown to be a useful tool in the verification of generator models, and as these mod-

els are improved further, the systematic uncertainties of oscillation parameters will

ultimately be reduced.
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Appendix A

9.1 Full list of Mismapped Channels

Module RMM TFB Channel ID Bar Layer

Top Left 3 6 2283301920 0 24

Top Left 3 6 2283301928 2 24

Top Left 3 6 2283301952 0 16

Top Left 3 6 2283301961 2 18

Top Left 3 6 2283301984 4 16

Top Left 3 6 2283301989 5 18

Top Left 3 6 2283301957 1 18

Top Left 3 6 2283301965 3 18

Top Left 3 6 2283301985 4 18

Top Left 3 6 2283301991 5 22

Bottom Left 4 4 2283818026 77 0

Bottom Left 4 4 2283818027 77 6

Bottom Left 4 34 2283940896 71 2

Bottom Left 4 34 2283940911 68 4

Bottom Left 4 34 2283940897 71 4

Bottom Left 4 34 2283940910 68 2

Bottom Left 4 34 2283940898 71 6

Bottom Left 4 34 2283940909 68 0

Bottom Left 4 34 2283940899 71 0

Bottom Left 4 34 2283940908 68 6

Bottom Left 4 34 2283940900 70 2

Bottom Left 4 34 2283940907 69 2

Bottom Left 4 34 2283940901 70 4

Bottom Left 4 34 2283940905 69 4

Bottom Left 4 34 2283940902 70 6

Bottom Left 4 34 2283940906 69 0

Bottom Left 4 34 2283940903 70 0

Bottom Left 4 34 2283940904 69 2
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Module RMM TFB Channel ID Bar Layer

Side Left 5 0 2284325996 23 0

Side Left 5 0 2284325997 23 2

Side Left 5 17 2284395563 82 30

Side Left 5 17 2284395564 83 24

Side Left 5 17 2284395596 83 16

Side Left 5 17 2284395597 83 18

Side Left 5 19 2284403822 19 5

Side Left 5 19 2284403823 19 7

Side Left 5 23 2284420165 29 19

Side Left 5 23 2284420167 29 23

Side Right 8 4 2285915137 48 3

Side Right 8 4 2285915140 49 1

Side Right 8 14 2285956162 42 29

Side Right 8 14 2285956164 43 27

Side Right 8 21 2285984843 30 15

Side Right 8 21 2285984845 31 11

Side Right 8 22 2285988928 87 8

Side Right 8 22 2285988929 87 10

Side Right 8 23 2285992996 86 16

Side Right 8 23 2285992997 86 18

Side Right 9 1 2286427213 7 11

Side Right 9 1 2286427214 7 13

Side Right 9 20 2286505067 30 15

Side Right 9 20 2286505069 31 11

Side Right 10 24 2287045667 32 14

Side Right 10 24 2287045669 33 10

Side Right 10 36 2287094857 10 18

Side Right 10 26 2287094858 10 20

DsECal 0 23 2281798661 27 8

DsECal 0 23 2281798663 29 8

DsECal 1 0 2282228748 7 19

DsECal 1 0 2282228780 5 23

DsECal 1 5 2282249325 21 19

DsECal 1 5 2282249327 26 21

Table 9.1: Full list of the mismapped channels, including module type, RMM, TFB,

bar and layer numbers.



Appendix B

9.2 GENIE plots

The detector study plots were extended to the GENIE MC, to further discredit the

discrepancy in the νµ being related to the detector. Figure 9.1 shows that selecting the

number of TPC tracks to be 0 causes the low VA discrepancy to disappear, regardless

of the FGD-only track selection cut, which is the same effect as seen in NEUT.
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Figure 9.1: Varying the number of TPC tracks for GENIE (a) no. of TPC tracks = 1 (b)

no. of TPC tracks > 1 (c) no. of TPC tracks = 1 and no. of fgd only tracks

= 0 (d) no. of TPC tracks = 1 and no. of fgd only tracks > 0.
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Figure 9.2 shows the effect on the VA after the FGD1 is separated into equally spaced

z regions. There is no clear indication that altering the z position has an effect on the

VA.

The final study varied the muon momentum form 200 MeV to greater than 700 MeV

and the GENIE plots are given by Figure 9.3. There seems to be no obvious indication

that the momentum affects the data and MC disagreement.
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Figure 9.2: Plots showing the VA for FGD1 separated into four different z positions

for GENIE MC.
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(a) Momentum = 200 - 300 MeV
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(b) Momentum = 300 - 400 MeV
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(c) Momentum = 400 - 500 MeV
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(d) Momentum = 500 - 600 MeV
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(e) Momentum = 600 - 700 MeV

Vertex Activity (PEU)
0 500 1000 1500 2000 2500

E
ve

nt
s

0

50

100

150

200

250

300

350

400

Data
πCC-0
πCC-1

CC-Other
Background
External

(f) Momentum = greater than 700 MeV

Figure 9.3: The vertex activity distributions separated into different momentum

regions, the MC used for these distributions is GENIE.
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9.3 Electron MC

Figure 9.4 shows an event display of a single 500 MeV electron (pink) simulated

isotropically in the centre of FGD1. Electrons are likely to undergo bremstrahhlung

as in this example shown by the spirals, and photons can also be produced which are

shown by the yellow lines.

Figure 9.4: Event display showing a single 500 MeV electron (pink) undergoing

bremstrahhlung and the resulting gammas (yellow) produced.

Figure 9.5 has been included in order to show the VA distribution for a single 500 MeV

electron as well as a single 500 MeV electron plus single proton of varying energies,

for the 5x5x5 vertex region.
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Figure 9.6 shows a comparison of a single electron with two 50 MeV protons and

a single muon with two 50 MeV protons. The difference between the electron and

muon distributions is negligible; at low VA there is a slight difference between the

low energy protons, however this is likely to be a statistical error.

Figure 9.5: Single electron and single electron with single proton particle gun

showing the vertex activity.

Figure 9.6: Vertex activity distribution of a single 500 MeV electron with two 50

MeV protons and a single 500 MeV muon with two 50 MeV protons.



Appendix D

9.4 Landau-gauss fits, V55
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Figure 9.7: 500 MeV muon and single proton with energy 10-200 MeV fitted with a

Landau-Gaussian for the 5x5x5 vertex region.
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9.5 Single Proton Toy MC, V3x3x3
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Figure 9.8: Single proton with energy 10-200 MeV for the 3x3x3 vertex region.
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9.6 Single Proton Toy MC, V5x5x5
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Figure 9.9: Single proton with energy 10-200 MeV for the 5x5x5 vertex region.



CHAPTER 9. CONCLUSIONS 164

9.7 Single Proton Toy MC, V7x7x7
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Figure 9.10: Single proton with energy 10-200 MeV for the 7x7x7 vertex region.



Appendix F

9.8 Particle gun and Toy MC comparison, V3x3x3
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Figure 9.11: Original MC (Particle gun MC, blue) and new toy MC (black)

comparison for a 500 MeV single muon with a 10-200 MeV single

proton in the 3x3x3 vertex region.
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9.9 Particle gun and Toy MC comparison, V5x5x5
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Figure 9.12: Original MC (Particle gun MC, black) and new toy MC (black)

comparison for a 500 MeV single muon with a 10-200 MeV single

proton in the 5x5x5 vertex region.
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9.10 Particle gun and Toy MC comparison, V7x7x7
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Figure 9.13: Original MC (Particle gun MC, blue) and new toy MC (black)

comparison for a 500 MeV single muon with a 10-200 MeV single

proton in the 7x7x7 vertex region.



Bibliography

[1] Georges Aad et al. Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716:1–29,

2012.

[2] Beringer, J. and others. Review of Particle Physics. Phys. Rev. D, 86:010001, Jul

2012.

[3] Henri Becquerel. On the rays emitted by phosphorescence. Compt. Rend. Hebd.

Seances Acad. Sci., 122(8):420–421, 1896.

[4] E. Rutherford M.A. B.Sc. Viii. uranium radiation and the electrical conduction

produced by it. The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, 47(284):109–163, 1899.
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