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Summary

The power grid was originally designed to forward electric power from large and
isolated power production units to residential, commercial and industrial end-users.
Due to recent trends such as the increasing allocation of uncertain in output renewable
and broadly distributed generators (leading to a two-way flow of electricity, from
isolated power production units to the grid and from the end-users to the grid) and
environmental changes which are drifting weather scenarios towards extremes, the
traditional grid design is radically changing. In order to respond promptly and safely
to those important changes, reliability and resilience are becoming major concerns for
the future power grid. Improve overall resilience of future infrastructures is of primary
importance and, to do so, power grid computational models and associated frameworks
for the system assessment have to be improved, better designed, robustly validated and
updated. This is necessary to clearly understand which are the key factors affecting the
system risk and which are the main hazards with the potential to undermine a reliable
delivery of electric power. Enhance the future power grid reliability and resilience is
paramount.

In the power grid literature, reliability is a well-defined concept and is sometimes
referred to as the probability of power grid satisfactory operation over the long run.
Similar to reliability, network vulnerability is a power grid security-related concept. If
compared to power network reliability, vulnerability rather focuses on low-probability-
high-consequence events and on assessing the inherent structural weaknesses and ro-
bustness of the power system. Differently, the concept of power grid resilience tries to
merge both the reliability and vulnerability ideas in a unified assessment framework,
but also further extending the scope of the analysis. The resilience concept has been
recently introduced for power grids, although a generally accepted definition still has to
be formulated. It is sometimes defined as ’the power grid ability to anticipate extraor-
dinary, high-impact, low-probability scenarios, promptly reacting and quickly recovering
from these disruptive events, reorganizing its structure and operation to mitigate the im-
pact of similar events in the future’. We believe that much research has to be carried out
to provide a robust definition of network resilience and introduce a set of well-accepted
metrics for resilience quantification and a standardized framework for its evaluation.
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The Author’s also belief is that a robust resilience framework should account for the
following key concepts, which are extensively discussed in this dissertation:

1 Assure a robust quantification of all the relevant sources of uncertainty, which
can be due to inherently variable inputs, small sample sizes (e.g. rare events),
qualitative, vague and incomplete information (e.g. due to data protection, expert
opinions or non-collaborative agents); (addressed in Chapters 2- 4 and in Ref.
[131])

2 Distinguish between epistemic and aleatory uncertainty, therefore highlighting
how much of the uncertainty on the resilience metric is reducible; (addressed in
Chapters 2 and 4 and in Ref. [131])

3 Include an evaluation of structural vulnerability and the consequence of
low-probability-high-consequence events such as multiple-components out-
ages;(addressed in Chapter 5 and in Ref. [132])

4 Account for domino effects, cascading failures and weather effects (e.g. inter-
dependencies weather-grid, weather-induced failures, delays, renewable produc-
tion, etc); (addressed in Chapters 6- 7 and in Ref. [133]- [129])

5 Embed an economic component, i.e. should be usable in a cost-resilience optimi-
sation; (addressed in Chapter 8 and in Ref. [121]- [24]- [127])

6 Should discern between different learning capabilities of different systems, i.e.
given that a new piece of information is provided, a resilience metric should discern
between systems which are capable of learning faster and better policies (i.e.
minimising costs and maximising resilience); (addressed in Chapter 8 and [121])

Problems of uncertainty

Uncertainty affects complex systems, critical infrastructures and the simulation tools
adopted for their analysis. For power grid systems, the problem of uncertainty is
particularly interesting because of the many factors involved such as renewable sources,
weather scenarios, etc. Uncertainty is affecting the power network in many ways. For
instance, uncertainty affects the complex interaction between the network fundamental
constituents (e.g. components and subsystems) and heterogeneous weather conditions,
which can potentially trigger multiple failures, cascading outages, repairing crew
delays and can alter the operative state of the system (e.g. the power produced
by renewable energy sources, the electric heating load demand, etc.). Uncertainty
is affecting simulation models, weather models and the collected data, thus, it has
to be addressed consciously. A proper characterization and quantification of all the
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relevant uncertainties is a necessary step to guarantee a high system resilience perfor-
mance and at the same time assure economic gain for both grid operator and customers.

A review of the most recent and advanced uncertainty quantification methods is
proposed in Chapter 2 and testing on 2 novel case study is proposed in Chapter 4.

Definition of quantitative metrics

Due to the complexity of the network and critical role played by the asset, it is
generally not possible to check the power grid reliability trough analytical analysis
or experimental testing. Commonly, the only viable way to evaluate and check the
system safety is to rely on high-fidelity simulators, which are reproducing realistically
all the relevant network behaviours. Once defined, power grid computational models
can be then embedded within a resilience assessment framework, which is dedicated to
the assessment of the grid performance in terms of safety, reliability and vulnerability.
One of the critical steps to develop a resilience assessment framework is the definition
of a robust and comprehensive quantitative resilience metric. Traditionally, reliability
indices have been adopted as reference metrics, although they miss some of the key
features of the resilience concept. Metrics for structural/topological vulnerability
assessment have been recently introduced and provide a different perspective on
the system security. Chapter 3 of this thesis proposes a state-of-the-art review of
security-related concepts for the analysis of power grid (such as reliability, vulnerability,
risk and resilience) as well as a review of power flow methods for a high-fidelity or
approximated modelling and simulation of the system.

Topological vulnerability metrics provide a computationally efficient way of dealing
with low-probability-high-consequence events and can be considered as additional met-
rics for measuring the system security (e.g. to be combined with traditional reliability
metrics). In the Chapter 5 of this dissertation, we analyse classical and novel vulnera-
bility metrics and reliability metrics, pointing out strength, weaknesses and similarities.
The vulnerability metrics are generally computed adopting graph theoretical approaches
to analyse topologically the network. This is done to try quantifying what are the con-
sequences of severe contingencies on the system (e.g. terrorist threats, targeted attacks
or extreme weather events). Uncertainty is indeed affecting these metrics and it has to
be addressed through all the phases of the calculations.

Weather-driven effects, cascading failures and repairs

Nowadays, it is generally well-known that external environmental factors are intimately
linked to the power grid operative behaviour and structure. High penetration of
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weather-dependent renewable energy sources, seasonal variability in the electric heating
and electric cooling of houses and commercial facilities, increasing penetration of
electric mobility which usage pattern depends on human behaviour (also affected by
the weather conditions) are few examples of how external environmental factors affect
power grid operations and structure.
Furthermore, the vast majority of blackout events are caused by extreme weather
phenomena such as, for instance, lightning strikes, extreme wind gusts, heavy wet
snow, ice storms, trees branches and so on. To develop and improve realistic simulation
frameworks for critical infrastructures, it is a necessity to consider and model extreme
weather as well as weather-system interactions. A reliable indicator of the associated
uncertainties should be also provided in the process.

Chapter 6 analyses the effect of weather-induced failures and repairs on power grids.
It also introduces a computationally efficient framework for lack of data quantification
on the coupled weather-grid model. Weather extremes are also known to have the
potential to trigger severe cascading events and are extensively analysed. Cascading
failures are dangerous failure mechanisms which can affect a large portion of the grid
and, although several computational models for the assessment of cascading failure have
been proposed, many do not account for relevant uncertainties. Uncertainty affects
cascading failure models and one of the most prominent issues is the lack of statistical
failure samples associated with large blackout events, undermining the validity of the
cascading models to evaluate large cascading events. Chapter 7 of this dissertation
further investigates the robustness of a realistic cascading failure model by analysing
its sensitivity to variable and uncertain input factors.

Learning capability and optimal decision-making under uncertainty

Finally, to assure high resilience, the system should have a capacity to learn from past
occurrences, i.e. some learning capabilities. The power grid should be able to efficiently,
effectively and, if possible, autonomously process new data, information, events. New
sensors and monitoring technologies, e.g. Prognostic Health Management devices, can
enlarge the quantity of information gathered. Thus, equip the system with automatic
learning capabilities could allow for a substantial improvement in existing operational
routines, maintenance actions and decision policies in general. Reinforcement learning
and agent-based learning frameworks offer an interesting opportunity to tackle this
issue. For this reason, Reinforcement Learning framework for the optimization and
maintenance and operations of power grid systems has been investigated in Chapter 8.

xii



Research questions

Concluding this summary, the modelling aspect of the project proposed several chal-
lenges and posed a variety of research questions. The goal of this dissertation is to
provide some answers to the following challenging questions:

• When the available information suffice to answer a basic reliability, vulnerability
and resilience question?

• How to maintain computational tractability when advanced uncertainty quantifi-
cation methods are adopted?

• What is the contribution of a good network topology and good operations in the
overall power grid security?

• How to properly select quantitative metrics for reliability, vulnerability and re-
silience assessment?

• How to realistically model cascading failures and domino effects?

• How to model extreme environmental conditions and interaction to the power grid
resilience? How these environmental conditions link to components failures?

• How to learn better policies when gathering new data from a stochastic system-
environment?
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1.1 Abstract

The power grid is one of the largest man-made critical infrastructures. It has been
designed to distribute electric power from generating units to residential, commercial
and industrial end-users. Due to the continuous increasing of electrical penetration,
the availability and reliability of network is of paramount importance. In addition, the
continuous increasing of renewable generators posed a further challenges to the stability
of the network due to their dependencies on environmental changes, which are drifting
weather scenarios towards extremes. Hence, resilience is becoming a major concern for
the future power grid. In order to respond promptly to those important changes, the
resilience of the such critical infrastructure has to be augmented. This can only be
achieved with the availability of robust computational models that allow to design a
better network, robustly validated and updated the results. Ideally, a computational
framework for the assessment of power grid resilience should capture all the relevant
physical interactions between components, subsystems and the system as a whole. Fur-
thermore, uncertain and heterogeneous environmental factors have to be accounted for
and their effect on safety-related metrics explicitly modelled and quantified. This is
necessary to reveal power grid risks, hazards and identity situation for which an imme-
diate safety and resilience enhancement is necessary. In this thesis, the existing power
grid safety-related concepts (i.e. reliability, risk, vulnerability and resilience) and ancil-
lary uncertainty quantification methods are analysed. The major weakness in existing
quantification frameworks has been identified as the way a lack of data required by
the frameworks and the treatment of such imprecise information. To overcome this
limitation, a novel and robust methods for the uncertainty quantification in power grid
safety-critical evaluations has been developed. The main contributions of this disserta-
tion are a set of novel tools for the assessment of power grid reliability, vulnerability and
resilience and accounting for a rigorous treatment of lack of data uncertainty. These
methods have a limited need for artificial model assumptions, which might alter the
quality of the available information and, with it, the validity of safety-critical decisions.
One of the key elements for a resilient grid is the system ability to learn from past
events, improving the grid structure, operations and policies. For this reason, a Rein-
forcement Learning framework for optimal decision-making under uncertainty has been
investigated. This allows to equip the systems with learning capabilities, which is a
fundamental component of the resilience concept, and it optimizes operation and main-
tenance decisions. The developed frameworks can be used to investigate the effect of
threatening scenarios (such as extreme weather conditions, multiple contingencies and
cascading events) on the grid safety performance. The validity of the approaches has
been tested on scaled-down power grids and prognostic health management as well on
realistic models of existing systems (e.g. the IEEE reliability test system). These tools
provide a valuable contribution to the research community and industrial practitioners
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as they can help to discern whether the available information suffices to answer a re-
liability, vulnerability or resilience related question. If the information is limited and
additional data has to be gathered, the method informs the decision-maker with the
most relevant and sensitive factors, i.e. a basic indication on where to start collecting
data so that an expected reduction in uncertainty is maximised.

1.2 Context

Nowadays, complex systems and highly interconnected critical infrastructures are
integrating part of our existence and of the society, we all live in. Safeguard their
physical and functional integrity is uttermost important as these systems provide
indispensable services to local industry and citizens. Virtual models and simulation
tools offer a viable way to test the safety and reliability of the system, under the
occurrence of threats and disturbances, in a protected digital environment.

Realistic (high-fidelity) simulators are necessary tools to test the system capacity to
respond to unexpected events. The computational model (i.e. a digital copy of the real
system) has to be verified and the outcomes of the analysis validated against historical
data of the physical system. Ideally, a computational model should capture all the
relevant physical interactions between system, subsystems, components and dynamic
external environments where sub-systems are operated. Once a high-fidelity simulator
of the physical system is generated, it has to be embedded within robust assessment
frameworks aiming at evaluating the system robustness against contingency scenarios
(e.g. reliability, vulnerability and resilience assessment frameworks). It goes without
saying, the modelling part of the system is a challenging task on its own and attempt
to embed the computational model within a broader, more general framework (e.g.
for reliability, vulnerability and resilience assessments) poses additional questions and
challenges for the modellers and analysts.

In particular, relevant sources of uncertainty affecting the system should be consid-
ered in all the phases of the analysis. Uncertainty should be quantified, not just in the
virtual modelling phase, but throughout the whole life of the system, from the digital
verification of its safety performance to the real actions and operations performed on
the physical system, all the way to its decommissioning.

In this thesis, we review and apply uncertainty quantification methods to anal-
yse computational models of power grid critical infrastructures. Novel generalised
uncertainty quantification methods have been developed to better analyse reliability,
vulnerability and resilience of power grid systems. The power grid system has been
adopted as a representative case study due to its inherent complexity, large size,
non-trivial inter-dependencies between sub-systems and components and due to the
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many uncertainties affecting its structure, operations and external environment.

The concepts of reliability, vulnerability and resilience are presented in the power
grid security analysis literature and are defined based on different concepts. Broadly
speaking, reliability assess power grid ability (likelihood or probability) to correctly op-
erate in the long-run, vulnerability assess its innate structural robustness against low-
probability-high-consequence events, resilience investigates the grid ability to promptly
and adequately react to a variety of contingency scenarios (e.g. common failures and
also low-probability events), rapidly recovering and also learning from the new data
and experiences. These security-related concepts have been reviewed and novel frame-
works have been proposed by adopting a generalised probabilistic framework for the
quantification of the uncertainties.

1.3 A generalised framework for uncertainty quantification

Many challenges are associated with the modelling of a complex system. One of the
most prominent issues is probably the necessity to cope with the unavoidable uncertainty
affecting both the model of the system and the collected data. Uncertainty has to be
properly characterised and quantified to improve confidence in the model and its results.
In general, uncertainty can affect the data and the model in several ways. For instance:

• noises can affect signals;

• privacy issues can lead to a partial censoring of the data;

• lack of data, small sample sizes, e.g. due to time-economic constraints;

• low image/signal resolutions;

• tolerances imprecision and measurement tools limitations;

• gaps in the data or missing points in the data;

• qualitative or subjective information;

• limited numerical/computational precision;

• linguistic vagueness;

• inherent variability;

• low-fidelity models (surrogates, reduced, simplified models);

• conflicting evidence (e.g from sensors or experts).
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In some situation, when data is scarce or at all available, expert elicitation (i.e. expert
guessing) may be the only viable way of carrying on with the analysis.

In the last decades, generalised uncertainty quantification methods have been de-
veloped to better cope with the combination of epistemic and aleatory uncertainty in
a unified mathematical framework. In particular, characterise lack of data and im-
precision (i.e. epistemic uncertainty) using only classical probability is particularly
challenging as, for its treatment, strong artificial assumptions are often required (and
are generally hardly justifiable). Generalised probabilistic methods have been recently
developed to better cope with the uncertain quantification tasks when problems affected
by a combination of epistemic and aleatory uncertainties are challenging the analyst.
Generalised methods are generally non-intrusive and applicable to any computational
model. These methods do not require (or require less) unwarranted, hard-to-justify as-
sumptions compared to their classical probabilistic counterpart, thus better preserving
the real information content in the data, and can quantify the effect of both aleatory
and epistemic uncertainty without mixing them. Their capability to differentiate be-
tween aleatory and epistemic uncertainty offer several advantages from a modeller and
analyst perspective. First, this allows modellers to clearly defined which among the
input factors uncertainties can be, theoretically, reduced (i.e. the one for which can be
economically viable to collect more data). Secondly, the output of a generalised prob-
abilistic framework points out if the uncertainty in the system performance is mainly
due to lack of knowledge or inherent variability.
This is valuable information for decision makers which will have quantitative evidence
to discuss:

1) A necessity to achieve higher precision in the results;

2) The inability/ability to take a decision based on the assessed uncertainty;

3) The need to invest in further data gathering;

4) On which uncertain factors focus the data collection;

5) Uncertainty reduction (precision-cost) trade-off;

Although those methods are powerful and flexible, thse find a limited application in
real world industrial environments. This is possibly due to lack of clear guidance for
practitioner, relatively new and not fully developed theory and to the few applications
needed to display capability of the methods. Moreover, generalised probabilistic
approaches are very intensive computationally speaking and, in many cases, this
restricts their applicability.
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Figure 1.1 presents the generalised framework for uncertainty quantification adopted
in this work. Figure 1.1 presents some of the key components of the framework which
can be summarised as follows:

1: High-Fidelity Computational Model: The high-fidelity model is a realistic
representation of a system or a process. For the goals of uncertainty quantification
it can be conveniently regarded as a black-box model. This can include a digital
twin of the real physical system, but it can also be a combination of models (e.g.
system-environment models coupled) or an entire work-flow, e.g. different pieces
of software, physical experiments, framework for the reliability, vulnerability, re-
silience assessment.

2: Uncertainty Characterisation (Epistemic): The epistemic uncertainty char-
acterization goal is to model the uncertainty associated to features for which the
information is limited, imprecise, vague, qualitative or affected by any mixture of
lack of data and variability. Mathematical tools deriving from imprecise proba-
bility theory (such as P-boxes, Possibility distributions, Credal Sets, Fuzzy Vari-
ables or Dempster-Shafer structures) can be used for the modelling as described
in Chapter 2.

3: Uncertainty Characterisation (Aleatory): Aleatory uncertainty can be effec-
tively characterised by e.g. cumulative distribution function, probability masses,
probability distributions etc. Classical probability theory is commonly used to
characterise aleatory uncertainty.

4: Uncertainty Propagation (Aleatory): The propagation of aleatory uncer-
tainty deals with the effect of inherent variability of model inputs to the quan-
tities of interest in the model outputs. Aleatory uncertainty propagation can be
performed using classical sampling methods, e.g. Monte Carlo (MC), Lathing Hy-
percube Sampling (LHS), or if appropriate, more efficient methods such as subset
simulation, line sampling, importance sampling, etc.

5: Uncertainty Propagation (Generalised): Generalised propagation of the un-
certainties consists of a combined analysis of the effect of epistemic and aleatory
uncertainty (without mixing them) on the model output quantities of interest.
This is generally performed using time costly double loop methods and optimiza-
tion methods.

6: Emulators/Surrogates: In case of time-consuming codes, a low-fidelity, compu-
tationally cheap substitute of the high-fidelity model can be adopted. This model
will act as an approximated model (also known as emulator or surrogate model)
on top of which uncertainty quantification can be performed efficiently. Some
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representative examples are the Response Surfaces models, Polynomial Chaos Ex-
pansions, Gaussian Process Emulator (GPE), Artificial Neural Networks (ANN),
Extreme Learning Machines.

7: Aleatory feedback loops: When new information is made available to the
analyst (e.g. new information which comes from the propagation/quantification
of aleatory uncertainty), it can be used to update and refine the model and produce
better inferences on output quantities of interest. For instance, sensitivity analysis
and dimensionality reduction can be performed on the aleatory space (e.g. by
applying screening methods or variance-based sensitivity analysis) or Bayesian
inference used to refine the model.

8: Epistemic feedback loop: Analogously to the aleatory feedback loop, the epis-
temic feedback loop adopts the new information to improve the model but also
to reduce the extent of the epistemic uncertainty by a better characterisation of
the imprecise inputs. The uncertainty model can be update and refine in this
phase, imprecisely defined parameters can be better specified and also sensitivity
analysis can be performed (e.g. epistemic space pinching, Bayesian updating of
the epistemic space, etc.).

1.4 International standards

The ’Guide to the expression of Uncertainty in Measurement’ (GUM) is a book of
standards intended to guide the reader in uncertainty evaluation tasks. Complemen-
tary documents such as the one provided by the Working Group 1 of the JCGM (and
has bene[U+FB01]ted from detailed reviews undertaken by member organizations of
the JCGM and National Metrology Institutes) provides additional guidance in the
uncertainty-related topic not explicitly treated in the GUM [60]. These standards pro-
vide good guidance to perform uncertainty quantification analysis. However, a proba-
bilistic treatment of uncertain is generally recommended. This treatment is suggested
independently from the amount of data available to characterize the probabilistic model
and, thus, it substantially different from the the proposed this work. In this work, im-
precise quantities will be considered affected by both aleatory and epistemic uncertainty
and a non-probabilistic treatment of epistemic uncertainty is proposed. On the other
hand, the GUM and JCGM books refer to the term imprecision in an aleatory uncer-
tainty sense. To give an example, the JCGM 101:2008 document states that ”If the only
available information regarding a quantity X is a lower limit a and an upper limit b with
a ă b, then, according to the principle of maximum entropy, a rectangular distribution
Rpa, bq over the interval ra, bs would be assigned to X”, [60]. This assumption seems
reasonable and can be used to carry on with classical probabilistic analysis. However,
this can be a strong assumption, with the potential to lead to an underestimation of the
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uncertainty, which is potentially dangerous in a reliability/resilience assessment con-
text. In fact, it is challenging to model uncertainty arising from poor quality data, e.g.
interval-valued information, using classical probability theory. This has the potential to
undermine the goodness of the analysis and even worst induce a sense of over-confidence
in the results (e.g. confidence that a safe/reliable/resilience design has been found for
a system to be built). Further examples are provided in the remaining of this Ph.D.
thesis. The author believes there is a need to update the international UQ standards to
include a more robust treatment of uncertainties arising from lack of knowledge, vague
information, conflicting pieces of evidence, etc. Generalized UQ methods, when com-
pared to classical probabilistic methods, can provide a valuable perspective on the real
quality of the available information.

1.5 Problem statement, open issues and objectives

Power grid reliability is a well-defined mathematical concept and several frameworks
to assess power grid reliability have been proposed in the last decades. Reliability
generally focuses on known threats and assess the power grid capacity to withstand
a predefined list of contingencies. Similarly, power network vulnerability assesses the
capacity of the network to withstand unexpected scenarios. However, it differs from
the reliability concept as the unexpected disturbances considered in vulnerability
analysis are generally low-probability-high-consequences scenarios. Moreover, vulner-
ability commonly assesses the grid robustness only from a structural perspective (e.g.
structural integrity after a targeted attack or an extreme N ´ k contingency).
As mentioned, power grid resilience can be regarded as a unifying concept, extending
both classical reliability and vulnerability definitions. It broadens the reliability and
vulnerability concepts by evaluating both high-probability threats, low-probability-
high-consequence events (such as severe weather conditions or targeted attacks) but
also accounting for the system ability to quickly recover, self-healing and learning
from those occurrences. To provide a comprehensive definition of network resilience,
the system ability to learn from past occurrences is one of the key elements and has
to be properly accounted for and an example of resilience definition is ‘the network
ability to withstand high impact low probability events, rapidly recovering and improving
operations and structures to mitigate the impact of similar events in the future’.

Thus, it can be argued that the main difference between a reliable power grid and
a resilient power grid is that, in the latter, low-probability-high-consequence events are
specifically considered and handled, with the ability to learn from past occurrences. To
achieve this, a comprehensive analysis of the relevant sources of uncertainty should be
provided. In particular, lack of data is generally affecting low probability events and
computational tractability is an issue for advanced uncertainty quantification methods.
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To improve overall robustness of the analysis, it is uttermost important to develop
and improve frameworks capable of tackling (effectively and efficiently) data deficiency
issues. A rigorous quantification of the lack of data affecting extreme low-probability-
high-consequence events, vulnerability, reliability and resilience frameworks is necessary.
Following those considerations, the research questions motivating this work and disser-
tation can be summarised as follows:

1 How to quantify the effect of epistemic and aleatory uncertainties in power grid
reliability, vulnerability and resilience frameworks without mixing them?

2 How does the choice of a specific vulnerability metric affect the result of power
grid robustness analysis? What is the uncertainty associated with this selection
and what are the effects on the contingency ranking results?

3 How does extreme weather affect power grid failures, repairs and overall resilience?

4 How to efficiently handle computationally demanding simulations? How to speed
up uncertainty quantification tasks for power grid analysis?

5 How do variability and uncertainty in the electric demand and production affect
the consequences of cascading failures?

6 A resilient grid is a grid capable of self-healing and autonomously learn from past
experience. How to tackle decision-making tasks in an automatic way? How to
provide self-healing and learning capabilities to power grid systems?

1.5.1 Outline of the dissertation

Table 1.1 presents an overview of the chapters which constitute this dissertation. The
chapter novelty, or state of the art (SoA), is highlighted and key words introducing
the contextual area investigated is presented. Chapters 4 to 8 present novel meth-
ods and frameworks for the analysis of power grid systems whilst Chapters 2 and 3
review state of the art concepts for probability analysis and power grid security analysis.

The rest of this thesis is organized as follows: Chapter 2 reviews methods for ad-
vanced uncertainty characterisation and propagation, In Chapter 3 an overview of power
flow methods and a state-of-the-art review of reliability, vulnerability and resilience con-
cepts for power grids is proposed. In Chapter 4 lack of data issues are discussed and 2
case study are proposed to test the generalised uncertainty quantification framework. In
Chapter 5 vulnerability and robustness concepts are further reviewed and a novel vul-
nerability assessment framework is proposed for the assessment of spectral vulnerability
metrics and components ranking under uncertainty. Chapter 6 introduces a computa-
tionally efficient framework for the resilience assessment of power grid. A combined
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Table 1.1: Outline of the thesis: each row presents the chapter index, if it contains new
material or belongs to the State-of-the-Art (SoA), Also, a few keywords are included to guide
the reader.

Chap. Novelty Key Words
2 SoA Review
3 SoA Review
4 New Uncertainty quantification, Information quality,

Probability boxes, Dempster-Shafer, Computa-
tional tool, Reliability

5 New Vulnerability assessment, Contingency ranking,
Power grid, Uncertainty, Overload cascading
failures, Spectral graph metrics

6 New Load curtailing, Severe weather, Power grids,
Resilience, Global sensitivity, Artificial neural
network, Credal sets

7 New Resilience, Reliability, Cascading failures Mor-
ris’ sensitivity, Sobol’s sensitivity, Given data
sensitivity

8 New Reinforcement Learning, Prognostic and health
management, Operation and maintenance,
Degradation, Power grid, Uncertainty, Re-
silience,

weather-grid model is proposed and a novel emulator of the power-flow solver allows
computational tractability of imprecise probabilistic analysis. Chapter 7 presents an
application of sensitivity analysis and screening methods used to validated and verify a
computational model for power grid cascading failures. In Chapter 8, a Reinforcement
Learning framework is investigated for optimal operations and maintenance scheduling
in a scaled-down power grid case study. The final Chapter 9 conclude the dissertation
with a summary and a discussion on the need for future research.
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Figure 1.1: A conceptual framework for generalised uncertainty quantification on top of any
computational model.
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Chapter 2

Probability Theory and Stochastic
Analysis
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2.1 Abstract

In this chapter, we briefly review probability theory axioms, modeling tools, and un-
certainty quantification methods. Advanced tools for generalized uncertainty quantifi-
cation and modeling of quantities affected by mixed aleatory-epistemic uncertainty is
also presented. Evidence theory, Probability boxes, Dempster-Shafer structures, and
Credal sets are introduced and their interchangeability discussed. Slicing method and
double loop Monte Carlo methods for mixed aleatory-epistemic uncertainty propagation
are introduced and used to quantify the effect of the uncertainty on any outputs of in-
terest in computational models. Finally, traditional variance-based sensitivity analysis
methods are reviewed and compared to generalized methods for sensitivity analysis on
Probability boxes. An introduction to widely applied surrogate models for uncertainty
quantification is also proposed.
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2.2 Classical probability theory

2.2.1 Axioms

First, let define the probability space pΩ,F ,Pq, where Ω is an event space (or sample
space) equipped with a σ-algebra F and P is a probability measure. A probability
measure is a real-valued function mapping P : Ω Ñ R and satisfying the followings
axioms:

1. PpEq ě 0 @ω P Ω (non-negativity)

2. Ppωq ` Ppωcq “ 1 @ω P Ω and ωc X ω “ H (unitarity)

3. for any set of mutually exclusive events tω1, .., ωi, .., ωnu P Ω (σ-additivity)

Pp
8
ď

i“1

ωiq “
8
ÿ

i“1

Ppωiq

In the traditional Kolmogorov’s probability theory, a probability Ppωq associated to an
event ω P Ω is defined to satisfy the above mentioned Kolmogorov’s axioms.

2.2.2 Random variables, CDFs and method of moments

Given a probability space pΩ,F ,Pq, a random variable X is defined as a map X : ω P

Ω Ñ Xpωq P IX Ă R, which relates basic events ω in the event space Ω to a value
Xpωq included in the random variable support IX , subset of the real line. If X is
discrete, then it is generally associated with a probability mass function fXpxq defined
as fXpxq “ PpX “ xq “ Pptω P Ω : Xpωq “ xuq. If X is continuous, then is associated
with a probability density function (PDF) fXpxq, where fXpxq is non-negative Lebesgue-
integrable function such that:

Ppa ď x ď bq “

b
ż

a

fXpxqdx (2.1)

where the PDF express how likely is to have the random va in the interval ra, bs.

A cumulative distribution functions (CDFs) FXpxq is a non decreasing mapping
from P to [0,1] such that for a probability measure P and for each x P R, the followings
FXpxq “ Ppp´8, xsq and fXpxq “

dFXpxq
dx hold. An empirical CDF can be used to

estimate the CDFs of a random variable X given data. In particular, given a set of
realisations tX1, ..,Xi, ..,XNu, the empirical CDF is defined as:

F eXpxq “
1

N

N
ÿ

i“1

IxěXipxq (2.2)
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where Xi is the ith realization of the random variable X and the indicator function
IxěXi is equal 1 if x ě Xi and 0 otherwise.

The nth moment of a real-valued continuous density function associated to a random
variable is defined as:

µn “

`8
ż

´8

px´ cqnfXpxqdx (2.3)

Given a population of X samples, it is possible to estimate the row moments and
central moments of the underlying FXpx,pq where p is the parameter vector identifying
a specific distribution family. The first raw moment is named expectation (or sample
mean) and the second central moment is named variance, both can be estimated from
samples of FXpx,pq as follows:

ErX s “ 1

N

N
ÿ

i“1

Xi V arrX s “ 1

N ´ 1

N
ÿ

i“1

pXi ´ ErX sq2 (2.4)

where for a sufficiently large number of samples the 2 moments will correctly estimate
the true mean µ and standard deviation σ of the underlying distribution family. One
of the limitations of classical probability theory, is that the measure Xpωq is a crisp
(precise) value, which is obtained assuming exact knowledge of the underlying PDF and
cumulative probability distribution function. Especially for cases affected by a lack of
data, where imprecise information or expert judgement are utilised, and there is a poor
understanding of all the relevant underlying process, strong initial assumptions may be
needed to characterize Xpωq is a crisp (precise) way, i.e. using classical probabilistic
methods.

2.2.3 Limitations: Do we have enough data?

From a pragmatic preservative, uncertainty can be conveniently classified into two
categories, one is the aleatory uncertainty and the other is the so-called epistemic
uncertainty. Aleatory uncertainty (also known as Type I or irreducible uncertainty),
represents stochastic behaviours, inherent variability and randomness of events and
variables. Hence, due to its intrinsic random nature it is normally regarded as
irreducible. Some examples of aleatory uncertainty are future weather conditions,
stock market prices or chaotic phenomenon. On the other hand, epistemic uncertainty
(sometimes named Type II or reducible uncertainty), is commonly associated with
lack of knowledge about phenomena, imprecision in measurements and poorly designed
models. It is considered to be reducible since further data can decrease the level of
uncertainty, although this might not always be practical or feasible. This classification
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is often considered very useful as it allows do discuss and understand if there is hope
for a better determined of a model output quantity of interest (e.g. by further data
gathering to reduce the epistemic uncertainty) and to which extent this quantity is
inherently variable (i.e. affected by aleatory uncertainty and thus not better defined
but just quantified).

Generally speaking, traditional probability methods rely upon a good characteri-
sation of variables as well as distribution moments to be estimated through samples
data. This usually requires a considerable body of empirical information in order to
properly define probability distributions or to accurately estimate expectation, variance
or higher moments. Furthermore, prior assumptions can be necessary to define the
shape distribution family FXpx,pq (e.g. Gaussian, Beta, Exponential), even if no
prior knowledge on the shape of family type is actually available. More importantly,
probability theory provides only single measure for the uncertainty. This makes the
uncertainty analyst unable to grasp how much of the uncertainty is due to inherent
variability and to what extent the uncertainty is due to poor data quality (therefore
suitable to be reduced in principle).

In recent decades, efforts were focused on the explicit treatment of imprecise knowl-
edge, non-consistent information and both epistemic and aleatory uncertainty [9]. The
methodologies have been proposed and discussed in literature by different mathemati-
cal concepts: Dempster-Shafer theory of Evidence [136]- [37], interval probabilities [8],
Bayesian approaches [106], Fuzzy-based approaches [150], info-gap approaches [16],
probability boxes [49] and Credal sets [63] are some of the most intensively applied
concepts and will be briefly reviewed in the following sections.

2.3 Evidence theory

The Dempster-Shafer (DS) theory of evidence is a well-suited framework to represent
both aleatory and epistemic uncertainty. The main difference between the axioms of
classical probability theory and the DS theory of evidence is that the latter slacken
the strict assumption of a single probability measure for an event. It can be seen as a
generalisation of Bayesian probability [37].

2.3.1 Dempster-Shafer structures

Mathematically, a Dempster-Shafer structure on the real line R is identified with a basic
probability assignment, that is a map as follows:

m : 2R Ñ r0, 1s (2.5)
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Probability mass DS structure

Figure 2.1: A comparison between a probability mass function associated to 3 point-valued
data and DS structure associated to 3 interval-valued data.

where the probability mass is mprxi, xisq “ pi for each focal element rxi, xis Ď R with
i “ 1, .., n and n is the number of interval-valued data available on the quantity x. The
probability mass associated with the the empty set S “ H and to any set S ‰ rxi, xis

is mpSq “0, such that pi ą 0 @i and
n
ř

1
pi “ 1. Dempster-Shafer structures are similar

to discrete distribution but probability mass is no longer associated to precise points or
events, but rather to sets of real values, i.e. focal elements. An example of Dempster-
Shafer structure is the following:

tprx1, x1s,m1q, prx2, x2s,m2q, ..., prxn, xns,mnqu (2.6)

where prxi, xis,miq represents the ith focal element with upper bound xi and lower
bound xi, mi is the probability mass associated. Figure 2.1 presents the difference
between probability mass functions and DS structures.

In the literature, the upper bound on probability is generally referred as plausi-
bility and the lower bound as belief. The cumulative plausibility function Plpxq and
cumulative belief function Belpxq are computed as:

Plpxq “
ÿ

xiďx

mi (2.7)

Belpxq “
ÿ

xiďx

mi (2.8)
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Compute cumulative Belpxq and Plpxq is a straightforward way of transforming a
Dempster-Shafer structure in a distribution-free probability box.

2.4 Credal sets

Set-theoretical methods are often used to deal with epistemic uncertainty. The set-
theoretical models [91] use set-valued descriptors (e.g. intervals) to model epistemic un-
certainty, e.g. intervals [93], random sets [146] or fuzzy sets [92]. Intervals are used when
variables are only known to be bounded within lower and upper limits whereas Fuzzy
Sets can be used to simultaneously analyse different bounded sets. This is particularly
helpful if the bounds are not precisely known [124]- [36]. Credal sets theory [63] provides
strong mathematical foundation to express sets of probability distributions. A Credal
set (C) is defined as a set of probability distribution functions. The hyper-parameters
p defining the joint probability distribution FXpx;pq can be given as intervals (i.e. an
n-orthotope also called hyper-rectangle). A Credal set is then defined as follows:

C “ tFXpx;pq|p ă p ă pu (2.9)

where x is the random variable vector and p and p are the lower and upper bounds of
the parameter vector defining the joint probability distribution FXpx;pq, respectively.

2.4.1 Expectations in generalised uncertainty models

When the probabilistic model input is precisely defined, i.e. p “ p “ p, its output will
also be precisely specified, i.e. a crisp probability distribution and expectation. The
precise expectation of the probabilistic model FXpx;pq is defined as:

ErFXpx;pqs “
ż

Ω
FXpx;pqdη (2.10)

When imprecision is affecting the problem, the expectation becomes imprecise and can
be obtained as follows:

«

ErFXpx;pqs
ErFXpx;pqs

ff

“

»

—

–

sup
păpăp

inf
păpăp

fi

ffi

fl

ż

Θppq
FXpx;pqdx (2.11)

where Ω is the probability space, Θ is the space of epistemic uncertainty dependent on
the vector p, E and E are the upper and lower expectations, respectively. In order to
compute bounds for the expectation, a minimisation (inf) maximisation (sup) problem
constrained by the hyper-parameter space bounds p,p has to be solved [3]. For the
solution, different approaches can be used, for instance vertex methods [40], global
optimisation techniques [110]- [25], sampling or interval arithmetic methods [153].
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2.5 Probability boxes

Mathematically, a P-box is defined as a pair of lower and upper cumulative distribution
functions rFX , FXs from the epistemic space Θ to [0,1] such that FXpxq ď FXpxq ď

FXpxq @ x P Ω and Ω is a classical event space, i.e. such that FX stochastically
dominates FX [49]. The upper and lower bounds for the CDFs are FX “ P pX ď xq

and FX “ P pX ď xq, respectively. A P-box can be viewed as a continuous form of
random sets and Dempster-Shafer structure. Note that the probability distribution
family associated with the random variable x can be either specified or not specified.
The former are generally named distributional P-boxes, or parametric P-boxes, the
latter are named distribution-free P-boxes, or non-parametric P-boxes [106].

2.5.1 Distributional P-boxes

In general distributional P-box can be defined as follows:

tP P P |@p P R, FXpxq “ Ppp´8, xsq ď FXpxqu (2.12)

where equation (2.12) defines the Credal set induced by the p-box rFX , FXs.

Figure 2.2 shows a distributional P-box, the parent distribution is the normal distri-
bution and the mean and standard deviation are defined as intervals. The lower bound
FXpx, µ, σq and the upper bound FXpx, µ, σq are obtained combining the bounds on
the distribution parameters.

P-box

x0

1

Figure 2.2: Illustrative example of distributional P-box. The parent distribution is the normal
distribution with mean and standard deviation defined as intervals. The figure displays the lower
bound on the probability, also named Belpxq, and the upper bound, also named Plpxq, which
can be constructed as combination of lower and upper bounds on the distribution parameters.
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2.5.2 Distribution-free P-boxes

Distribution-free P-boxes are defined only through bounds and the underlying proba-
bility distribution family is not known and not defined, i.e. rFX , FXs. Distribution-free
P-boxes are closely related to Dempster-Shafer structures as they can be always trans-
lated to a DS and vice versa [49]. Probability boxes (P-boxes) are powerful and versatile

P-box

x0

1

ECDF
Plausibility

Belief

Figure 2.3: Illustrative example of distribution-free P-box and 3 sample distributions enclosed
between lower and upper bounds. Two CDF for which probability family is known (e.g. normal)
are shown in dashed smooth red lines. In dashed discontinuous blue line an empirical cumulative
distribution functions, e.g. an ECDF obtained from samples.

tools to characterise quantities affected by both aleatory and epistemic uncertainty [14]
and they have a very intuitive way of distinguish between those two types of uncertainty.
The wider the distance between the upper and the lower bound is, the higher the incerti-
tude associated to the random variable. Fig.2.4 shows two examples of distribution-free
P-boxes. The distance between the upper and lower CDFs represents the amount of
epistemic uncertainty associated with the quantity of interest (e.g. vulnerability in the
figures). It can be observed that the P-box on the right-hand side is strongly affected
by epistemic uncertainty. Conversely, the P-box on the left-hand side has a stronger
aleatory component and the epistemic uncertainty appear to be less relevant.

2.6 Constructing P-boxes from data

2.6.1 Kernel density estimation

It is in general difficult to identify the true distribution from a small number of samples
using parametric methods. This is because in general, there is not enough information
to properly estimate the PDF when only a few data points are available. Then Kernel
density estimator is a non-parametric approach that can be used to construct the prob-
ability density function associated to data samples [115]. The approach does not need
to assume an underlying distribution. However, samples need to be assumed indepen-
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Figure 2.4: A comparison of two P-box used to characterize the uncertainty affecting a
factor (vulnerability in this example). The one on the right-hand side has a strong epistemic
component.

dent and identically distributed (iid) and some ‘smoothness’ condition, i.e. continuity
or differentiability, have to be satisfied (or assumed). A commonly used univariate
parametric kernel is the Gaussian or normal Kernel, defined as follows:

f̂pxq “
1

nσ
?

2π

n
ÿ

i“1

ˆ

´px´ xiq
2

2σ2

˙

(2.13)

where f̂Xpxq represents the estimated probability density function of n samples Xi
drawn from an unknown density function fXpxq. The variance (or bandwidth) σ2 is
the only parameter that needs to be estimated. The best bandwidth can be estimated
using, for instance, the Silverman’s rule of thumb [138] or in case of very small sample
sizes the approach proposed by [115]. One way of construct probability boxes by using
Kernel density estimator method is to obtain confidence bounds rσ,σs for the estimated
parameter σ (e.g. by Bootstrapping). The set of σ P rσ,σs will correspond to a set
of Kernel densities, which are in turn equivalent to a set of CDFs (i.e. distributional
P-box).

2.6.2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) statistical test [81] is a non-parametric test that used
to compute bounds on empirical CDFs given N samples. The test is based on the
maximum distance between an empirical CDF and a hypothetical CDF, as follows:

T “ supx|F
e
Xpxq ´ FXpxq| (2.14)

where supx is the supermum of the set of distances and F eXpxq and FXpxq are the
empirical CDF (built using the N samples) and an hypothetical CDF, respectively. The
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KS test can be used to assess whether a given FXpxq is a plausible underlying probability
distribution of F eXpxq, thus obtaining confidence limits on FXpxq given sample and a
predefined confidence level. The bounds of the distribution-free P-box can be computed
as follows [161]:

rFXpxqs “ rmax p0, F
e
Xpxq ´Dpα,Nqqs (2.15)

rFXpxqs “ rmin p1, F
e
Xpxq `Dpα,Nqqs (2.16)

where Dpα,Nq is the one-sample KS critical statistic for the α significance level and the
N number of samples. Different α and sample sizesN lead to different confidence bounds
on the CDFs, see for instance Miller’s tables [90]. Those bounds when propagated,
produce boarder or narrow bounds on the resulting P-boxes, which have to be regarded
as a statistical claim for the selected significance level α.

2.6.3 P-boxes and Dempster-Shafer structures interchangeability

A Dempster-Shafer structure can be always converted into a distribution-free P-box by
constructing cumulative plausibility and belief functions (Plpxq and Belpxq). Similarly,
a P-box can be translated into a Dempster-Shafer structure by performing the so-called
α-slicing of the P-box (i.e. a discretization procedure). The Dempster-Shafer structure
is constructed as follows: 1) n α-cuts p0, .., αi, .., 1q are selected; 2) one interval is
obtained for each αi inverting P-box bounds (equations-2.17-2.18) and a probability
mass mi “ FXpαi`1q ´ FXpαiq is assigned to the interval:

FXpαq
´1 “ tx|FXpxq “ αu @α P r0, 1s (2.17)

FXpαq
´1 “ tx|FXpxq “ αu @α P r0, 1s (2.18)

where the interval rFXpαiq´1, FXpαiq
´1s is the support of the focal element i. Figure

2.5 shows an example of DS and P-box interchangeability. It is important to mention
that Dempster-Shafer structures can be always translated into P-boxes although that
is not a biunivocal transformation. More specifically, a Dempster-Shafer structure can
be associated to a single Probability box, while a Probability box can be associated to
more than one Dempster-Shafer structure depending on the number of the number n
in the α-slicing procedure (e.g. a low n will correspond to a coarse discretization) [49].
Probability boxes and Dempster-Shafer structures offer a straightforward way to deal
with multiple and overlapping intervals, inconsistent sources of information and small
sample sizes.
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Figure 2.5: Illustrative example of how to construct P-box (top figure) using DS structure
(bottom figure) and vice versa.

2.7 Generalized methods for uncertainty propagation

2.7.1 Black-box models

Consider a (deterministic) computational model MV , is a map from a m-dimensional
input space x to a o-dimensional output space of a multidimensional quantity V. For-
mally, it is:

MV : x P IX Ă Rm Ñ V “MVpxq P Ro (2.19)

where input and output vectors are x “ px1, ..., xM q and V “ pV1, ...,VOq, respectively.
In order to perform uncertainty quantification, this computational model can be treated
as a black-box of which only the input and output vectors can be processed. If x is
affected by aleatory uncertainty, it will be characterised using appropriate probability
distribution function (and corresponding CDF). Once propagated through MV (e.g.
using classical Monte Carlo method) the output will result in a well-defined CDF. If x is
affected by epistemic or mixed aleatory-epistemic uncertainty, generalised probabilistic
tools (e.g. DS, P-boxes) will be suitable for the characterisation. After uncertainty
propagation, the outputs will produce bounds on the vulnerability CDFs (i.e. P-boxes).
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Figure 2.6: A conceptual comparison between advanced uncertainty quantification and clas-
sical uncertainty quantification methods applied to a simple vulnerability model.

2.7.2 Classical versus generalized uncertainty propagation

Fig.2.6 presents a simple comparison between a classical probabilistic method to an
advanced uncertainty quantification (UQ) method. In the example, a vulnerability
measure is the output quantity computed using the model MV (sum of quantity
A and quantity B), where input A has a well-known aleatory behaviour (e.g. it is
distributed as a normal PDF) and the B is a parameter affected by purely epistemic
uncertainty (e.g. a tolerance interval). The parameter B does not have a stochastic
behaviour, but it is rather imprecisely defined. This is due, for instance, to a limited
precision in the available measurements for B. This interval can be narrowed down
by providing better instruments for the measurements, i.e. reducing the epistemic
uncertainty associated. In order to run a classical Monte Carlo method, a PDF should
be assumed to characterize the uncertainty for B. Commonly, uniform distribution is
assumed within the interval, adopting the so-called Laplace’s principle of indifference.
Once the probabilistic model is well-defined and uncertainty propagated, the output
will have a precise probabilistic description (i.e. a crisp CDF in long-dashed line).
This might result inappropriate for two main reasons. First, assumptions might be
difficult to justify and might produce wrong results. Secondly and perhaps most
importantly, the system analysts will be unable to distinguish between the contribution
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of epistemic uncertainty and aleatory uncertain to the output [14]. To overcome this
limitation, classical probabilistic approaches can be coupled to advanced uncertainty
quantification which allows differentiating between epistemic and aleatory uncertainty
in the output without introducing assumptions (i.e. uniform random behaviour of a
parameter within a tolerance interval) and with weaker or fewer assumptions compared
to the classical counterpart. Resulting output will be described by e.g. intervals or by
lower and upper bounds on the CDF, see for instance Fig.2.6 in solid and dashed line,
respectively. The drawback of those methods is the generally higher computational
cost [109]- [41] and an imprecise probabilistic description of the output [14], which is
the price to pay for slaking the assumptions on the probabilistic model. Nevertheless,
generalised probabilistic frameworks provide a valuable perspective on the result and,
being non-intrusive, are applicable to any computational model [109].

2.7.3 Monte Carlo method

The Monte Carlo (MC) method is a numerical procedure which can be used to
quantify the uncertainty associated with the output of a computational model MV by
propagating the uncertainty in inputs factors. Monte Carlo is flexible, unbiased and
one of the most well-established methodologies to propagate uncertainty. Moreover,
MC method is not heavily affected by the curse of dimensionality as, by the central
limit theorem, this method displays 1{

?
N convergence, i.e. quadrupling the number of

sampled points halves the error, regardless of the number of dimensions.
However, the classical MC implementation does not differentiate between aleatory and
epistemic uncertainty. In fact, a clear definition of input CDFs and dependencies have
to be provided for the method to be applicable.

The idea behind the MC method is that it is possible to approximate the output CDF
(and PDF) of a black-box model by sampling realisations from the input distributions,
i.e. by using a random numbers generator (pseudo random numbers), then, evaluating
the corresponding model outputs. The set of output samples will provide a statistical
description of the outputs variability, moment and correlation.
The MC procedure can be summarised as follows:

1. Inverse transform sampling: (1) Sample M random numbers rni distributed
uniformly distributed in [0,1], one for each input i. (2) Obtain the jth input vector
realisation x by calculating the values of the inverted CDFs at random numbers
values, xj “ pF´1

X1
prn1q, ..., F

´1
XM
prnM qq;

2. Model Evaluation: run the computational model to obtain the corresponding
output vector Vj “MVpxjq;
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3. Loop and post-process: Save Vj and repeat step 1. and 2. for several j until
the output CDF is approximated;

2.7.4 Dempster-Shafer structures propagation

Figure 2.7 introduces a simple procedure for Dempster-Shafer structures propagation
given any black-box computational model. The procedure works as follows:

1. First, n “Parameter cells” are constructed by Cartesian product of the focal ele-
ments. Then, each parameter cell IX,i is an hypercube IX,i : tx ď x ď x @ xu , i “
1, .., n.

2. The minimum and maximum value for each entry i of the model output vector V
is calculated based on optimization technique:

V i “ max
xPIX,i

MVpxq (2.20)

V i “ min
xPIX,i

MVpxq (2.21)

where equations 2.20-2.21 define constrained maximization and minimization
problems, respectively. The optimisation are, therefore problem specific and might
be relatively hard to solve efficiently and/or effectively.

3. Each min-max interval is used to construct a focal element prV i,V is,miq by asso-
ciated to the interval a probability mass equal to the product of the probability
masses associated to the focal elements in IX,i, i.e. mi “

ś

jmj where j indicates
the jth focal element used to build IX,i.

4. The n focal elements (i.e.result of the propagation of the focal ele-
ments) are used to construct Dempster-Shafer structures for each V, i.e.
tprV1,V1s,m1q, ¨ ¨ ¨ , prV i,V is,miq, ¨ ¨ ¨ , prVn,Vns,mnqu

The computational cost of the procedure is proportional to the number of input
intervals to be propagated and the time needed to simulate the system. Applicability
for complex systems with highly non-regular behaviour, which are hence computation-
ally expensive, can require a meta-modelling approach to speed-up the propagation
procedure (e.g. Polynomial Chaos, Artificial Neural Networks).

2.7.5 P-boxes propagation

P-boxes can propagated using several different strategies, examples are the double loop
Monte Carlo algorithm or the slicing method [124]. Fig.2.8 presents graphically the two
methods.
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Figure 2.7: Dempster-Shafer structures propagation procedure.

Double loop Monte Carlo method

A simple and effective (but not efficient) way of propagating both aleatory and epistemic
uncertainties without mixing them is the double loop MC [109] method. A first loop
(outer loop) samples from the epistemic uncertainty space Θ, e.g. sampling P-boxes
parameters uniformly in the given intervals. Each epistemic space realisation corre-
sponds a traditional probabilistic uncertainty quantification problem (i.e. inputs CDFs
are specifically defined) for which only aleatory type of uncertainty has to be accounted.
Then, a traditional MC simulation can be used (inner loop) to propagate aleatory un-
certainty. The quantity Ne is the number of realisations in the epistemic space and Na

is the number of samples from the aleatory space. θj is the set of uncertain parameters
of the epistemic space realizations j, sampled from a known set of intervals rθ, θs. The
quantity xk,i is the sample i of the random variable k obtained from the inverse trans-
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Figure 2.8: A conceptual comparison of the double loop Monte Carlo (in the top panel)
method and the slicing method (in the bottom panel) [124].

form of the associated CDF FXk|θj pxq, which depends on the epistemic realization θj .
The cumulative distribution FY |θj pyq of the model output can be used for instance to
compute Pf,j , which is the system failure probability given the epistemic realization j.
The probability results of the inner loop are not to be averaged over the outer loop but
only collected. Then the minimum and maximum can be selected to obtain bounds on
the quantity of interest.

Slicing method

The slicing method (or focal element propagation) a total of Ns independent samples are
directly obtained from the P-box bounds. For each input P-box a so-called ‘alpha-cut’
α is generated by sampling from the uniform probability distribution Up0, 1q. Then,
the bounds of the P-boxes are inverted to obtain an interval [FXpαq´1, FXpαq

´1] as
described in equations 2.17-2.18. The Cartesian product of the input intervals defines
the IX of the α-slice and corresponds to a parameter cell which is defined by the m-
orthotope:

IX,i : rFX1pα1q
´1, FX1pα1q

´1s ˆ ...ˆ rFXmpαmq
´1, FXmpαmq

´1s (2.22)

Once the support IX is sampled, minimum and maximum of the output are obtained
as in equations 2.20-2.21. The procedure stops when a total of Ns hyper-rectangles IX
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are sampled and empirical upper and lower CDF bounds computed as:

F epVq “
1

Ns

Ns
ÿ

i“1

1VďVi F epVq “
1

Ns

Ns
ÿ

i“1

1VďVi

In order to obtain V i and V i, different methods can be used. For instance, bounds
can be approximated by sampling within IX , using vertex methods [116] or by global
optimisation approaches [109].

2.8 Feedback loop: Surrogates, sensitivity and Bayesian
model updating

2.8.1 Sensitivity analysis

This section proposes a brief introduction to uncertainty quantification and meth-
ods for sensitivity analysis. Sensitivity analysis are often connected to uncertainty
analysis (propagation and quantification), which ideally, should run in a looped fashion.

An uncertainty quantification analysis generally starts by characterizing the uncer-
tainty in the model input factors (i.e. assiging probability distributions to variables
and parameters). Once the uncertainty has been characterized, it is propagated into
the simulation code via, for instance, Monte Carlo method. First, uncertain factors are
characterised by assigning joint probability distributions describing the uncertainty, this
is an important step which has to be performed adequately to assure high quality and
consistency of results [111]. Then, samples are obtained from the joint probability distri-
bution of the input factors, e.g. by Latin hypercube sampling, quasi-random sequences
or crude Monte Carlo inverse transform sampling [107]. Once the ith input realisation is
obtained Xi “ rXip0q, .., Xipmqs, the sample is forwarded to the computational model
MpXq. This allows obtaining information about the input-output mapping defined by
the computational model as follows:

M : X Ñ Y, XÑ Y “MpXq (2.23)

where Y is the model output, for simplicity assumed 1-dimensional and without loss of
generality.

Sensitivity analysis is, in essence, the study of how an uncertain output Y of a math-
ematical or numerical model M can be apportioned to different sources of uncertainty
in its inputs X “ rXp1q, Xp2q, ..., Xpmqs. There are a large number of approaches to
performing a sensitivity analysis, many of which have been developed to address specific
issues. Some of the prominent constraints and issues often faced when performing sen-

30



sitivity analysis are for instance computationally expensive model M , correlated inputs
(most sensitivity analysis methods assume independence, but sometimes inputs can be
strongly correlated), model interactions, multiple output, given data (e.g. unavailable
model M).

From a general perspective, sensitivity analysis method can be devised in local and
global methods. Local methods generally involve taking the partial derivative of the
output Y with respect to the jth input factor Xipjq in a specific point i of the variable
support:

ˇ

ˇ

ˇ

BY
BXpjq

ˇ

ˇ

ˇ

Xi

Few examples of local method are the elementary effect method and
automated differentiation method. Local method are computationally light, the results
quite easy to interpret. One of the main drawback is that the sensitivity information is
valid only locally. On the other hand, global sensitivity analysis methods try to identify
the most and the least relevant factors over the whole input space, not just locally
in Xipjq. Global method are usefull tool to gain additional knowledge of the input-
output mapping defined in equation 2.23. Several global methods have been developed
in the last decades. For instance, screening methods, such as the Morris method [95],
variance-based methods and density-based methods are some of the most intensively
applied concepts.

Variance-based Sensitivity Analysis

Variance-based sensitivity analysis is a form of global sensitivity analysis. It works by
decomposing the variance of the output into fractions which can be attributed to inputs
or groups of inputs.

Let define Y as a chosen univariate output of a model M (multiple outputs can be
analysed by multiple independent sensitivity analyses) and be Xpiq P r0, 1s, i “ 1, 2, .., d

a set of independent model inputs uniformly distributed in the unit hypercube. The
model can be decomposed as:

Y “M0 `

d
ÿ

i“1

MipXpiqq `
d
ÿ

iăj

MijpXpiq, Xpjqq ` ¨ ¨ ¨ `M1,2,...,dpXp1q, Xp2q, . . . , Xpdqq

whereM0 is a constant and Mi is a function of the variable i, Mij is a function of Xpiq
and Xpjq, etc. Being all the terms in the functional decomposition orthogonal, the
functional decomposition can be rewritten in terms of conditional expected values:

M0 “ E rY s

MipXpiqq “ E rY |Xpiqs ´M0

MijpXpiq, Xpjqq “ E rY |Xpiq, Xpjqs ´M0 ´Mi ´Mj
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where Mi is the effect of varying Xpiq alone (also referred as the main effect of the
factor i), and Mij is the effect of varying Xpiq and Xpjq simultaneously, additional to
the effect of their individual variations. This is known as a second-order interaction.
Higher-order terms have analogous definitions. Further assuming that the MpXq is
square-integrable, the functional decomposition may be squared and integrated to give
the popular variance decomposition equation as follows:

V arpY q “
d
ÿ

i“1

Vi `
d
ÿ

iăj

Vij ` ¨ ¨ ¨ ` V12...d

where the term on the right hand side are:

Vi “ V arXi rEX„irY | Xiss

Vij “ V arXij
“

EX„ij rY | Xpiq, Xpjqs
‰

´ Vi ´ Vj

. . .

V12...d “ . . .

The X i notation indicates the set of all variables except Xpiq. The above variance de-
composition shows how the variance of the model output can be decomposed into terms
attributable to each input, as well as the interaction effects between them. Together,
all terms sum to the total variance of the model output.

Sobol’s indices

A variance-based statistic, commonly referred to as the first order sensitivity coefficient,
quantifies the (additive) effect of each input factor on the model output as follows [76]:

Si “
V arXi rEX„irY |Xpiqss

V ar rY s
(2.24)

where V ar rY s is the total variance of the output Y , Xpiq is the ith uncertain input
factor, X„i is the matrix of all uncertain factors but Xpiq, EX„irY |Xpiqs is the
expectation of the model output Y taken over all possible values of X„i while removing
the Xpiq uncertainty (i.e. keeping Xi fixed) and V arXirs is the variance taken over all
possible values of Xpiq. The indices Si can be used to reveal the importance of the input
factor Xpiq on the variance of the output and it is a normalized index, that is

ř

i Si “ 1.

The main effect index reveals what is the importance of each uncertain input factor
on the uncertainty in the model output. It is relatively cheap to compute, especially
by employing given data methods, e.g. using input-output data retrived from a plain
Monte Carlo or by scatter plot decomposition [114]. The main drawback of the main
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effect index is that it does not account for interactions between input factors (e.g.
inherently to the structure of the model M) nor it accounts for correlation between
inputs. Higher order Sobol’s effects (second and higher order interactions) compose the
so-called total effect index ST i. This is a variance-based measure of the influence of an
input i accounting for all the interactions with other uncertain factors. It is defined as
follows:

ST i “
EX„i rV arXirY |X„iss

V ar rY s
“ 1´

VX„i rEXirY |X„iss
V ar rY s

(2.25)

where ST i account for all the contribution to the total variance of the output V ar rY s
when the first order effect of X„i is removed. On the contrary of Si, we have in
general

ř

i ST i ě 1 as the input factor effects are accounted multiple times because
of interactions within the model (we have

ř

i ST i “ 1 only in case of purely additive
models).

Elementary effects and Morris diagram

The Elementary Effects (EEs) is a screening method used identify the effect of input
factors Xpiq with i “ 1, 2, ..,m on the output Y of a mathematical or computational
modelMpXq. The method consists in the calculation ofm incremental ratios, also called
Elementary Effects, which are used to assess the influence of the input variables and
parameters and are somehow analogous to partial derivatives of a dependent variable
Y with respect to x. The ith elementary effect of the m-dimensional input vector X0 is
defined as follows:

δipX0q “
Y pX0p1q, ., X0piq `∆, ., X0pmqq ´ Y pX0q

∆
(2.26)

where the quantity ∆ is a given variation in the input factor whose effect has to be
evaluated. Intuitively speaking, the input factors leading to the higher incremental
ratios δipX0q have to be considered as the most relevant for the output quantity Y . Of
curse, this relevance metric is valid only locally, in X0, where Y has been evaluated.
Repeated One-At-a-Time (OAT) evaluations of random vector configurations provide
the elementary effect method with global sensitivity analysis features [147]. The mean
and standard deviation of the EEs, resulting from random input vector configurations,
can be plotted in the well-known µpδq´σpδq plot proposed by Morris [95]. If a factor Xi

results in a small absolute value of the mean and small variance, it should be considered
less relevant for the model. On the other hand, a factor Xi resulting in a high |µpδiq|
has to be considered highly relevant for the model, i.e. it leads to the average higher
variation in the output. Similarly, a factor Xi resulting in a high σpδiq is also of interest
for the model output. In fact, high σpδiq probably indicate a non-linear relation between
the factor i and the output and/or a relevant interaction with other factors. Figure 2.9
presents an example of Morris diagram. The standard error of the mean (SEM) is
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Figure 2.9: An example of Morris diagram and how to discern between important and non-
important factors.

used to partition the plot in different areas of interest. The method has some points of
strength, worth highlighting:

1. It is relatively easy to implement;

2. Computationally cheap compared to other global sensitivity methods, also for a
high number of factors;

3. It uses a sensitivity measure which is simple to communicate (similarity between
incremental rations and partial derivatives) to non-experts;

4. Compared to variance/based measures, shows if the input factors are (in average)
positively or negatively correlated to the output;

P-boxes sensitivity and epistemic space pinching

Sensitivity analysis is performed to systematically investigate how input variables influ-
ence the output of the model. In many cases, it is possible to reduce the dimensionality
of an input space and understand which among the input estimates should be improved
to improve the most the output estimate [109]. Sensitivity analysis is common practice
in Monte Carlo based approaches but it has been proposed also for non-parametric
input P-boxes trough pinching and focal elements propagation [50]. Classically,
variance-based sensitivity analysis of the output is done by fixing the uncertain input
variables to precise values and quantifying its effect on the uncertainty in the output
(e.g. reduction in variance) before and after reducing the input uncertainty [111]. For
P-boxes sensitivity analysis, this procedure is referred to as “pinching” of the epistemic-
aleatory space. The pinching can be done in several ways, for instance, a P-box can be
pinched to a precise distribution, can be replaced with a precise point value, or pinched
to an interval with zero variance (i.e. removing the aleatory uncertainty but not the
epistemic uncertainty). Figure 2.10 shows input P-boxes pinched to point values and
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Figure 2.10: This figure presents 2 examples of P-box “pinching” and sensitivity analysis. The
variable x2 is pinched to a specific CDF, whilst X1 to a precise point-value. The former leads
to the higher reduction in the P-box area.

to a precise CDF. The uncertainty in the output of a model fpxq is reduced accordingly.

Analogously to variance-based methods used in a global sensitivity analysis, a sen-
sitivity index Sidx can be computed as, for instance, a percentage of reduction in a
measure of uncertainty of the output δ. An example of a sensitivity measure can be as
follows:

Sidx “ 100

ˆ

δ ´ δi
δ

˙

(2.27)

where δi is the uncertainty after pinching of input variable i. A straightforward indicator
of the epistemic uncertainty in the P-box is the area between upper and lower bounds.
The measure δ is computed as follows:

δ “

ż `8

´8

|FXpxq ´ FXpxq|dx (2.28)

This index can be used to rank the epistemic uncertain inputs with respect to their
effect on the uncertainty in the output.
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2.8.2 Surrogates models

Surrogate models, also known in the literature as meta-models or emulators, are mathe-
matical models used to mimic the input-output relation of the computational expensive
numerical model M. This is generally done by replacing the high-fidelity model with a
cheaper analytical model M̂. Some examples of surrogate models are Artificial Neural
Networks (ANN) [166], Poly-Harmonic Splines [78], Extreme Learning Machines [58],
Kriging models and response surfaces.

Artificial neural networks

An ANN is a mathematical model defining a function M̂ : I Ñ Y where M̂pgq is
a composition (e.g. non-linear weighted sum) of other weighted functions gipxq. The
basic architecture for a feed-forward ANN consists of one input layer, one or more hidden
layers and one output layer [166]. Each layer employs several artificial neurons, also
known as nodes, which are connected to the neurons of the adjacent layers by weighted
links. In each neuron, the inputs are first weighted and, then, summed as follows:

gpxq “
n
ÿ

i“1

ωi ¨ gipxq ` b

where ωi are the weights, gipxq is the output of the node i in the previous layer and b
is the bias, which is generally introduced in the hidden and output layers and acts as
a threshold for the argument of the activation function. The sum gpxq is processed by
an activation function K to produce the neuron’s output. An example of commonly
employed activation function is the sigmoidal function, defined as follow:

Kpgq “
1

p1` e´gq

Figure 2.12 exemplifies a neural network architecture and node functionality is de-
picted.

Select a suitable ANN topology is a problem specific task and it can be useful to
maximise the emulator performance. Advanced optimisation approaches can be em-
ployed for the selection. A simple but computationally demanding method consists of
a heuristic testing of different architectures, exploring different combinations of hidden
neurons and hidden layers. Then, the best ANN architecture is selected based on a
performance indicator. The coefficient R2 can be used as the performance index of
the ANN regression and used to select the most suitable ANN architecture. The R2

coefficient is expressed as follows:

R2 “ 1´

ř

ipyi ´ ŷiq
2

ř

ipyi ´ ȳq
2
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Figure 2.11: Conceptual scheme of an Artificial Neural Network architecture and the function
of an artificial neuron.

where yi is the ith output of the high-fidelity model, ŷi is the output predicted by the
surrogate model, ȳ is the average of the output of the high-fidelity model.

Gaussian process emulators

A Gaussian Process Emulator (GPE), also known as Kriging emulator, is a stochastic
process (i.e. a collection of random variables in the time and/or space domains), such
that every finite linear combination of them is normally distributed. The concept of
Gaussian processes is named after Carl Friedrich Gauss because it is based on the
notion of the Gaussian distribution (normal distribution). Gaussian processes can be
seen as an infinite-dimensional generalization of multivariate normal distributions. The
distribution of a Gaussian process is the joint distribution of all those (infinitely many)
random variables, and as such, it is a distribution over functions with a continuous
domain, e.g. time or space. Algorithms that involve GPs use a measure of the similarity
between points also known as the kernel function. The kernel is used to forecast the value
for an unvisited data point in the input domain (i.e. a point not available in the training
data). One of the main advantages of GPEs is that the predicted output has a measure
of uncertainty which is automatically associated with it (i.e.the marginal distribution
at that point). Gaussian processes are useful in statistical modelling, benefiting from
properties inherited from the normal and to replace computationally expensive models.

Let fpxq be a function or a computer model mapping a multidimensional input on
the real line, f : Rm Ñ R. Let X “ tx1, ..,xnu be a set of n design points (i.e. the
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set of points in the input space) and corresponding set of outputs Y “ ty1, .., ynu, such
that xi P Rm@i “ 1..., n denotes a given input configuration and each output reads
yi “ fpxiq@i “ 1..., n. Then, each pair pxi, yiq denotes a training run for the Gaussian
Process Emulator, which is assumed to be an interpolation model yi “ f̂pxiq. If a
fully parametrised Gaussian process prior is assumed for the outputs of the simulator,
then the set of design points has a joint Gaussian distribution. The general assumption
is that the simulator satisfies the statistical model for the output with the following
structure:

fpxq “ hpxqTβ ` Zpx|σ2, φq (2.29)

where hp¨q is a vector of known basis (location) functions of the input, β is a vector
of regression coefficients, and Zpx|σ2, φq is a Gaussian process with zero mean and
covariance function covpx, x1|φ, σ2q “ σ2kpx, x1|φq where σ2 is the signal noise and
φ P Rm denotes the length-scale parameters of the correlation (kernel) function kp¨, ¨q.
The kernel function is capable of measuring the distance between different input (and
corresponding output) configurations are. The base of such measure is related to the
Euclidean distance in such a way that it weights differently each input variable.

Figure 2.12: An example of Gaussian process regression using 6 data points gnerated by an
unknown function fpxq. The uncertainty (confidence interval) is larger in the area of the input
spaced where data is not provided and is zero in correspondence of the training points.
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2.8.3 Bayes’ theorem and model updating

A Bayesian model updating procedure is based on the well-known Bayes’ theorem [13].
The general formulation is the following:

P pθ|D, Iq “
P pD|θ, IqP pθ|Iq

P pD|Iq
(2.30)

where θ represents any hypothesis to be tested, e.g. the value of the model parameters,
D is the available data (i.e. observations), and I is the background information. Main
terms can be identified in the Bayes’ theorem:

• P pD|θ, Iq is the likelihood function of the data D;

• P pθ|Iq is the prior probability density function (PDF) of the parameters;

• P pθ|D, Iq is the posterior PDF;

• P pD|Iq is a normalization factor ensuring that the posterior PDF integrates to 1;

The equation (2.30) introduces a way to update some a priori knowledge on the
parameters θ, by using data or observations D and conditional to some available
information or hypothesis I.

In a model updating framework, the initial knowledge about the unknown adjustable
parameters, e.g. from prior expertise, is expressed through a prior PDF. A proper prior
distribution can be a uniform distribution in the case when only a lower and upper
bound of the parameter is known, or a Gaussian distribution when the mean and the
relative error of the parameter are known. The likelihood function gives a measure of
the agreement between the available experimental data and the corresponding numerical
model output [168]. Particular care has to be taken in the definition of the likelihood,
and its choice depends on the type of data available, e.g. whether the data is a scalar or
a vector quantity. Different likelihood leads to different accuracy and efficiency in the
results of the updating procedure and should be selected with caution; as an example,
the use of unsuitable likelihood function might cause that the model updating does not
produce any relevant variation in the prior [119].
Finally, the posterior distribution expresses the updated knowledge about the parame-
ters, providing information on the most plausible ranges of values, based on the initial
knowledge and on the collected experimental data.

2.8.4 Transitional Markov-Chain Monte-Carlo

The Bayesian updating expressed in equation (2.30) needs a normalizing factor P pD|Iq,
that can be very complex to obtain or not treatable. An effective stochastic simulation
algorithm, called Transitional Markov Chain Monte Carlo (TMCMC) [28], has been
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used in this analysis. This algorithm allows the generation of samples from the complex
shaped unknown posterior distribution through an iterative approach. In this algorithm,
m intermediate distributions Pi are introduced:

Pi9P pD|θ, Iq
βi P pθ|Iq (2.31)

where the contribution of the likelihood is scaled down by an exponent βi, with
0 “ β0 ă .. ă βi ă .. ă βm “ 1, thus the first distribution is the prior PDF, and
the last is the posterior distribution. The value of these exponents βi is automatically
selected to ensure that the dispersion of the samples at each step meet a prescribed
target. For additional information, the reader is reminded to [28]. These intermediate
distributions show a more gradual change in the shape from one step to the next when
compared with the shape variation from the prior to the posterior.
In the first step, samples are generated from the prior PDF using direct Monte-Carlo.
Then, samples from the Pi`1 distribution are generated using Markov chains with the
Metropolis-Hasting algorithm [55], starting from selected samples taken from the Pi dis-
tribution, and βi is updated. This step is repeated until the distribution characterized
by βi “ 1 is reached. By using the Metropolis-Hasting algorithm, samples are generated
from the posterior PDF without the necessity of ever computing the normalization con-
stant. By employing intermediate distributions, it is easier for the updating procedure
to generate samples also from posterior showing very complex distribution, e.g., very
peaked or multi-modal. The Bayesian model updating procedure solved using TMCMC
requires many model evaluations and the overall computational time for the detection
can result very high. To reduce computational time, a surrogate model approach can
be adopted.
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Chapter 3

Power Grid Reliability,
Vulnerability and Resilience
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3.1 Abstract

In this chapter we introduce some of the basic concepts for the analysis of complex sys-
tems and critical infrastructures. In particular, resilience-related concepts such as risk,
safety, reliability and vulnerability are reviewed and discusses. Quantitative metric are
reviewed and load-flow solvers used to analyse power grid systems are introduced. It is
worth pointing out that, although definitions, metrics and analysis tools introduced here
come from the power grid literature, this shouldn’t be regarded as a lost of generality.
In fact, many of the resilience-related ideas and load-flow analysis methods naturally
translates to wider class of complex systems and critical infrastructures which power
grids well-represent.
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Table 3.1 presents two definitions of complex systems and critical infrastructures.
It is fair to argue that power grid is an extremely complex systems and it has a crucial
role in the society, i.e. is a critical infrastructure. Power grid includes many highly inter-
connected components which are operated to provide a service/utility to the customers
and society as a whole. Maximising the system productivity, minimizing the costs
while assuring a safe and reliable delivery of electric power is of uttermost import. This
requires robust uncertainty quantification and decision-making frameworks, capable
of outperforming existing experience-based methods while accounting for uncertainty
affecting system operational conditions, components health states and interactions
with the external environment. Power grids are generally complex, heterogeneous, with

Complex
System

A complex system can be defined as an ensemble of components,
functionally and physically interconnected as in a network struc-
ture. Often heterogeneous and showing complex dynamic and
complex structural behaviours [167].

Critical
infrastruc-
ture

An infrastructure is called critical if its incapacity or destruction
has a significant impact on health, safety, security, economics and
social well-being (Council Directive 2008/114/EC) [167]. Another
definition is ’infrastructure whose unavailability or destruction
would have a extensive impact on economy, Infrastructure Gov-
ernment services and, in general, on everyday life, with severe
consequences for a nation [34].

Table 3.1: Definition of Complex Systems and Critical Infrastructure

many highly interconnected components connected in a network-like fashion. Also,
even a partial disruption of the grid would cause significant damage to the society and
economy of the affected state. The power grid is probably the most representative
example of a complex system and critical infrastructure and, thus has been selected
in this work as the reference system for the testing and verification of novel methods
for generalised quantification of uncertainty. In this chapter, an in-depth review of
probabilistic methods for power grid safety analysis and a concise introduction to
safety-related terminology is presented. In this chapter we introduce some of the basic
concepts for the analysis of complex systems and critical infrastructures safety and
reliability and with particular regard to power grid systems. Two literature definitions
of complex systems and critical infrastructures are presented within Table 3.1.

3.2 Power grid background information: Reliability, risk,
vulnerability and resilience

Table 3.2 reviews some of the most widely applied concepts often used within safety-
related power grid analysis.
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Reliability usually refers to the ability of the system to satisfying operational criteria
over the long run (or to perform a given function over a given time interval). Similarly,
but with a slightly different meaning, probabilistic risk assessments in power grids focus
on providing satisfactory operations accounting for the consequences of unwarranted
events and the probability of facing those events. Different metrics are generally used to
quantify different risks and probabilistic risk metrics are more commonly adopted when
the analysts are interested in short-term (operational) scenarios [84]- [157], although
these metrics have been effectively employed also to perform long-term maintenance
and planning evaluations [122]. Table 3.3 and Table 3.4 present two (non-exhaustive)
lists including some the most widely applied indices for power grid reliability and
risk analysis, respectively. The list includes the metrics proposed within the IEEE
reliability standards [59] and other reliability and risk indices which have been recently
defined to match specific analysis goals.

The term robustness (sometimes defined as the opposite of vulnerability for power
grids) is used to quantify network damages after unexpected events occur. It is closely
linked to the system reliability and risk concepts but it primarily focuses on extremely
rare events with, in general, very high consequences for the system (e.g. malicious
terrorist attacks or targeted outages). Vulnerability assessments generally focus on
the network structure rather on the system operations (i.e. its topology/architecture
rather than the safe operations) although some works have been proposed to extend
this type of analysis with information from the operational state of the system. Power
network robustness is generally assessed by using complex network theoretical concepts
and graph theory. This is going to be discussed in more details in Chapter 5 of this
thesis. The definition of suitable metrics for robustness and vulnerability assessment of
power grid is an open topic of research and Table 3.5 presents a sample of vulnerability
metrics adopted to analyse power grid systems.

Tables 3.3 and 3.4 show the equations for the indices calculation (the third column).
For the reliability indices, the term pi is the likelihood/probability of loss of capacity,
ti the duration of loss (load greater than capacity) in percent, E is the total energy
in the period considered, n is the number of units, Ni is the number of customers
interrupted by each incident i, NT is the total number of customers in the system,
ri is the restoration time for each interruption, Pi is the average load interrupted by
each interruption i, Nc is the total number of customers that have experienced at
least one interruption during the reporting period, Nc,kąn is the number of customers
who experienced more than n sustained interruption and monetary interruption events
during the observed period, T is the time interval or observed period (e.g. 8760 hours).
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Reliability The probability of satisfactory operation over the long run [67].
Risk Product of the probability (or frequency) of disturbances to sys-

tem operation and their consequences [122].
Robustness Degree to which a network is able to withstand an unexpected

event without degradation in performance. It quantifies how much
damage occurs as a consequence of such unexpected perturbation
[34].

Vulnerability The lack of robustness. Vulnerability is often used to score low
reliability of power grids [34].

Resilience The ability to withstand high impact-low probability events,
rapidly recovering and improving operations and structures to
mitigate the impact of similar events in the future [104].

Adequacy Reliability criteria in terms of violations of static failure conditions
are called adequacy criteria [85].

Security Reliability criteria in terms of violations of dynamic failure con-
ditions are called security criteria [85].

Contingency Unexpected failure (outage) of grid component (e.g. generator,
line, transformer) [122] [27].

Disturbance An unexpected event that produces an anomalous system condi-
tion [34].

N-k Contingency ‘Simultaneous’ failure of k components in the system. [27].
Table 3.2: State of the art definitions of safety related concepts for power grids.

3.2.1 Reliability metrics

Power grid reliability assessments have been traditionally performed by using analytical
methods or by using simulation-based methods. Table 3.3 presents some of the most
widely applied reliability metrics.

Recently, the Council of European Energy Regulators (CEER) proposed an accurate
review of the historical trend for the power grid reliability scores of countries belonging
to the European power network. The Benchmarking Report [99] on the continuity
of electricity and gas supply presents reliability trend for the European grids in the
last 10-15 years is presented and mainly focusing on SAIFI, SAIDI, ENS and CAIDI.
Figure 3.1, taken from [99], shows an example of historical trends for the SAIDI
indices of different countries, from 2002 until 2016. This study further highlights
the need to account for uncertainty, in fact, it can be observed a high variability of
the reliability score. State-specific policies, energy diversification, grid topological
robustness, exceptional events, etc. will lead to a very different values of the SAIDI
for different countries and different years. For instance in the year 2016, Switzerland
and Germany resulted as the most stable (approximately 10 minutes interruptions per
customer over the year) and reliable whilst Romania and Poland (about 300 and 200
minutes per customer over the year, respectively) score as the less reliable in terms of
SAIDI index within the European network. In [99], an estimation of the total ENS for
several European countries is also presented. These estimations include only unplanned
events and neglect extraordinary contingencies (e.g. major power outages). Similarly to
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Figure 3.1: Unplanned SAIDI scores, without including exceptional events (in minutes per
customer) – time series and min-max [99]

the SAIDI, also the ENS shows large variability among different networks and between
different years. For instance, the Italian grid ENS score ranges from values as low as
1.5 to values higher than 3.5 MWh (between years 2006 and 2015). On the other hand,
the Romanian power grid ENS ranges from 30 to about 390 between 2004 and 2014 [99].

It can be noticed that some of the reviewed indices can be computed analytically. In
some cases, however, use Monte Carlo method may be necessary to calculate statistical
moments of the reliability indices (e.g. expectation and variance). The moments are
generally obtained by simulating different time histories/trajectories for the system and
by a realistic simulation of e.g. failures, load variability. The Loss-of-Load-Probability
(LOLP) is probably one of the most popular reliability measures for power grids. It
is commonly used for the definition and dosing of generation capacity as a standard
reliability criterion. The unreliability of a system in this context is viewed as its
inability to meet the daily peak load. A loss of load occurs whenever the system load
exceeds the available generating capacity. The overall probability that there will be
a shortage of power (loss of load) is called the Loss-of-Load-Probability. It is usually
expressed terms of days per year, hours per day, hours per year or as a percentage of
time. When expressed as the expected accumulated amount of time during which a
shortage of power is experienced, the measure is more correctly referred to as the loss
of load expectation (LOLE). A common practice is to plan the power system to achieve
an LOLP of one-day-in-ten-years.
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The CAIDI gives the average outage duration that any given customer would expe-
rience, it can also be viewed as the average restoration time and measured in units of
time, often minutes or hours. The System Average Interruption Duration Index (SAIDI)
indicates the total duration of interruption for the average customer during a prede-
fined period of time. It is commonly measured in customer minutes or customer hours of
interruption. The Customer Average Interruption Duration Index (CAIDI) represents
the average time required to restore service. The Customer Total Average Interruption
Duration Index (CTAIDI) represents the total time in the reporting period that average
customers who actually experienced an interruption were without power. This index is
a hybrid of CAIDI and is similarly calculated, except that those customers with multi-
ple interruptions are counted only once. The Average Service Availability Index (ASAI)
represents the fraction of time (often in percentage) that a customer has received power
during the defined reporting period. The System Average Interruption Frequency Index
(SAIFI) indicates how often the average customer experiences a sustained interrup-
tion over a predefined period of time. The Customers Experiencing Multiple Sustained
Interruption and Momentary Interruption Events Index (CEMSMIn) is the ratio of in-
dividual customers experiencing n or more sustained interruptions or/and momentary
interruption events to the total customers served. Its purpose is to help identify cus-
tomer issues that cannot be observed by using averages.

3.2.2 Risk metrics

Risk is defined as the product of the probability (or frequency) of disturbances to system
operation and their consequences. Probability of face an event and the consequences of
this event, i.e. the severity, are to be computed to quantify the system risk. Generally
speaking, risk is defined as the product of probability of occurrence of a threatening
event (i.e. a contingency/failure event) and the related consequences (i.e. severity). In
order to account for multiple events in an integral way, the definition can be extended
by summing all the contributions as follows:

R “
n
ÿ

i“1

PpEiqSevpEiq (3.1)

where PpEiq is the probability of occurrence of the undesired event Ei and SevpEiq

quantify the consequences or severity if the event happens.

Also for power grids, risk indices generally include a probabilistic term and a severity
term. In the last decades, many severity metrics have been proposed to evaluate different
consequences on different system features. Table 3.4 presents a short list of some of
the most commonly adopted risk metrics to analyse the power grid. In the Table
3.4, the term PpCk|ζq defines the probability to face the contingency Ck under the
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LOLP Loss-of-Load-Probability
n
ř

i“1
pi ¨ ti [h/yr]

LOLE Loss-of-Load-Expectation
n
ř

i“1
pi ¨ ti ¨ T [h/yr]

LOEE Loss-of-Energy-Expectation
n
ř

i“1

pi¨Pi
E [kWh/yr]

ENS Energy Not Supplied
ř

i Pi ¨ ri [kWh/yr]
AENS Average Energy Not Supplied

ř

i
Pi¨ri
ř

iNi
[kWh/yr cust]

SAIFI System average interruption
frequency index

ř

i
Ni
NT

[int/yr cust]

SAIDI System average interruption
duration index

ř

i
Ni¨ri
NT

[h/yr cust]

CAIDI Customer average interrup-
tion duration index

ř

i
Ni¨ri
ř

iNi
[h/yr cust]

CTAIDI Customer total average inter-
ruption duration index

ř

i
Ni¨ri
Nc

[h/yr cust]

CAIFI Customer average interrup-
tion frequency index

ř

i
Ni
Nc

[h/cust]

ASAI Average service availability in-
dex

ř

i
Ni¨ri
NT ¨T

[h/yr cust]

CEMIn Customers experiencing mul-
tiple interruptions

Nc,kąn
NT

[int/yr cust]

Table 3.3: Definition of reliability indices for power grid analysis. Reliability indices are taken
form the IEEE summary in reference [59]. The unit of measure refers to an observed period T
of 1 year (yr).
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ROL Over Load Risk
ř

j

ř

k PpCk|ζq ¨ SOL,jpCk, ζq
RLV Low Voltage Risk

ř

b

ř

k PpCk|ζq ¨ SLV,bpCk, ζq
RV I Voltage Instability Risk

ř

k PpCk|ζq ¨ SV IpCk, ζq
RCOL Cascading Over Load Risk

ř

j

ř

k PpCj |Ck, ζq ¨

SOL,jpCk, ζq

RLoL Loss of Load Risk
ř

k PpCk, ζq ¨ SLoL,jpCk, ζq
Table 3.4: Definition of risk indices for power grid analysis. Indices have been taken from
references [122]- [85].

environmental-operational conditions ζ, Ck refers to the kth contingency listed (e.g. the
kth line, generator or transformer failure). The overload severity function for the line j
under the contingency k and grid-environment condition ζ is SOL,jpCk, ζq; SLV,bpCk, ζq
is the low voltage severity of the node (bus) b; SV IpCk, ζq is the voltage instability
severity function, defined for the whole system under contingency k, PpCj |Ck, ζq is a
probabilistic indicator for cascading failures (i.e. probability of face failure Cj after
failure Ck) and SLoL,jpCk, ζq is the loss of load severity (i.e. overall load curtailed after
failure Ck). The severity functions can be defined focusing on different consequences
and with several mathematical expressions, as explained in [156] (e.g. step-discrete,
continuous linear, continuous exponential, etc.). As mentioned, each severity function
is defined to extract specific system features, grid behaviours or physical limits. For
instance, the overload severity function relates to the thermal limit of transmission and
distribution lines, the low voltage severity is connected to the stability of the system
and to the reactive power consumption at each bus, thus to the possibility of facing
generators tripping. Both overload and low voltage severity function are specifically
defined for each component in the power network and thanks to the additive propriety
of risk can be summed to provide an overall risk index for the grid as a whole. Conversely,
the voltage instability severity function is specifically defined for the system as a whole
and it is computed as the percentage of margin from the loadability point in the nose
curve (i.e. Power-Voltage curve), thus, providing an indicator of how adequate is the
given system state to satisfy the power need of the customers. The cascading index,
similarly to overload risk, relates to the lines thermal limits but accounts also for the
conditional probability of failure after previous contingencies such as the N ´ 1 ´ 1

contingency (i.e. secondary single failure after the first N ´ 1 contingency).

An example of a risk model for power grid analysis

In traditional deterministic risk assessment, the impact of each failure is considered but
the likelihood of facing the contingency is not. In probabilistic risk assessment, the
probability of components failure is estimated based on the available information and
historical data. In this example, the probability of each contingency takes into account
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the failure of a distribution line by, for instance, a Poison distribution function as in [97]:

PpClq “ r1´ exppλlllqs expp´
ÿ

j‰l

λjljq (3.2)

where PpClq is the probability of line contingency l in the next 1 h, λl is the failure rate
of the distribution line l per unit time and length and ll source is the length of the lth

line. The expression 3.2 holds if the contingencies list include all the single line failures,
considered as mutually exclusive events in the model.

Severity functions are used to quantify the extent of the failure, several types of
severity expressions have been introduced in literature. The continuous type for over-
load is specifically defined for each circuit (distribution lines and transformers) and it
measures the extent of violation in terms of excessive power flow as the percentage of
rating PRl. The PRl value is obtained as the ratio between active power flowing in the
line fl and its emergency rating femerg,l. The expression for the continuous severity due
to overload of a line l is:

SOL,l “ d ˚ PRl ` c for PRl ě PRminl (3.3)

where the severity SOL,l is zero for PRl values less than a safety limit PRminl =0.9.
The deterministic limit for the violation of line l is PRl=1, the near violation region is
0.9ď PRl ă1, and the value PRl under 0.9 is regarded as safe, d=10 and c=-9.

3.2.3 Vulnerability metrics

An interesting field of research to analyse power grid vulnerability is the one employing
topological models based on network theory. Graph-theoretic models are particularly
valuable for assessing the robustness/vulnerability of critical infrastructures as most
systems are naturally organised as networks. Pure topological models disregard phys-
ical proprieties of the system (e.g. flows, electrical parameters), instead representing
the system abstractly as an unweighted graph G “ tN ,Lu, i.e. a collection of nodes
n P N and edges l P L [20]- [73]- [47]- [38]. In the simplest category of topological
models, there is no differentiation between components in the system; that is, different
functions within the set of nodes or edges are ignored [69]. For power systems, this
means that substations, buses, generators are equally treated as nodes and trans-
mission cables, underground or overhead distribution cables are equally treated as edges.

Those approaches have been criticised as they seem to be unable to capture entirely
the complexity of the network. However, these can be computationally very cheap
and offer a fast way to analyse efficiently large size systems. These can be used to
provide an ancillary point of view on the gird by analysing only its structure and trying
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to extrapolate collective systemic behaviours and weaknesses rather than analyse its
detailed operations. More recently, extended topological approaches were attempted
by including information from the electrical engineering field. Extended topological
approaches can be used to differentiate between e.g. substations and generators or
adopting weighted graphs G “ tN ,L,wu to include electrical proprieties of the system
within the analysis (e.g. reactive and active flows, line lengths, susceptances, thermal
limits, etc.) [20]- [73]- [47]- [38].

M. Ouyang et al. [100] analysed the correlation of six topology-based vulnerabil-
ity metrics respect to single and multiple component failures. E. Bompard et al. [20]
compared two hybrid metrics (i.e. extended betweenness and net-ability) by ranking
components with respect to the system vulnerability. Recently, Lucas Cuadra et al. [34]
reviewed power grid robustness metrics computed adopting complex network theory ap-
proaches. Authors of reference [145] show a method to perform power grid partitioning
(best islands section) clustering spectral proprieties of the power grid associated graph.
A relatively new field of research deals with the spectral graph analysis of power grid,
where vulnerability metrics have been obtained from the spectral decomposition of the
weighted adjacency matrix and the Laplacian of the adjacency matrix. Examples are
the spectral radius (ρG) [148], the algebraic connectivity (µ2) [65]- [122], the natural
connectivity λG [112] and effective graph resistance RG [65] (see Chapter 5 for further
details).
Table 3.5 review some of the most applied vulnerability indices based on network theory
and analysis of the power grid associated graph. The diameter of a network is defined as
the ‘longest shortest path’ in the network, where di,j is the minimum number of edges
(i.e. geodesic distance) between node i and node j. The shortest path between node i
and j is called geodesic path and the number of geodesic paths passing through a node
n and a edge l are named σijpnq and σijplq, respectively. Connectivity loss describes
the ability of distribution substations to receive power from the generators, where Ng

is the total number of generators, ND is the total number of distribution substations,
and N i

G is the number of generators connected to substation i. The Spectral radius is
the largest eigenvalue of adjacency matrix associated to the graph λ1 whilst µ2 is the
second smallest eigenvalue of the Laplacian of the adjacency matrix.

3.2.4 Resilience metrics

The first influential quantitative resilience metric based on the functionality recovery
curve was proposed by Bruneau et al. [22], where resilience is quantified as a loss in
functional (or resilience) performance as follows:

RL “

ż tf

t0

r100%´Qptqsdt (3.4)
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D Diameter maxi,j di,j
E Efficiency 1

NpN´1q

ř

i,j
1
di,j

CL Connectivity loss 1´ 1
ND

ND
ř

i

N i
g

NG

Cn Node Centrality degpnq
n´1

λG Natural connectivity ln

ˆ

1
N ¨

N
ř

1“1
eλi

˙

RG Effective resistance N ¨
N
ř

i

1
µi

ρG Spectral radius λ1

µ2 Algebraic connectivity µ2

Bpnq Node betweenness
ř

i

ř

j
σijpnq
σij

Bplq Edge betweenness
ř

i

ř

j
σijplq
σij

Table 3.5: A non-comprhensive list of vulnerability indices for power grid robustness analy-
sis [20]- [64]- [69].

where Qptq is the system functionality/utility at time t; t0 is the time when the event
strikes; tf is the time when the system utility fully recovers and RL is positive definite.
It has the advantage of being easily generalized to different structures, infrastructures,
and communities. This definition assumes that the functionality is 100% pre-event and
will eventually be recovered to a full functionality of 100%, although this may not be
true in practice. A system may be partially functional when a hurricane strikes and
may not be fully recovered due to uneconomic cost-benefit ratio.

Resilience index can be obtained normalized metric between 0 and 1, computed from
the functionality recovery curve:

R “

şth
t0
Qptqdt

th ´ t0
(3.5)

where th is the time horizon of interest. In the power grid reliability and resilience
analysis context, the ENS reliability metric has been used to measure resilience of
power grids, e.g. [43]- [102]- [104], it directly quantifies the power grid loss in function-
ality as the area between a power demand curve and a power supply curve. Figure 3.2
shows an example of Energy-Not-Supplied due to unexpected system disturbances.

The ENS and its robust estimation (i.e the Expected ENS which accounts for
relevant sources of uncertainty sources), are commonly adopted to assess power grids
reliability. Nonetheless, they are also suitable to describe key features of the resilience
concept when calculated in a broader framework which accounts for degradation, re-
covery during an event, as well as the comparison of system’s resilience performance in
different scenarios and stress by different hazards [43].
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Figure 3.2: An example of ENS quantification. The Energy-not-supplied index is calculated
as the area intercepted by the overall power demand curve and the overall power supply over
time
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3.3 Introduction to Power Flow methods

Power-flow or load-flow studies are important for planning the future expansion of power
systems as well as in determining the best operation of existing systems. The principal
information obtained from the power-flow study is the magnitude and phase angle of
the voltage at each bus, and the real and reactive power flowing in each line. Power
flow methods are commonly used in several power grid evaluation frameworks and their
applicability is scope/goal dependent. Generally, power flow methods are used to sim-
ulate/approximate/reproduce a realistic system behaviours and to assess a variety of
system features such as, operational costs, design costs, stability, adequacy, etc.
Power flow methods can be used to simulate the power grid performance in the long
run (e.g. design problems) or for short-term and medium-term time frames (e.g. op-
erational policies, control strategies, different power market structures, etc.). Different
problems will define tight or weak constraints on the computational cost of the analysis.
For instance, economic dispatch problems compared to design problems will result in
tighter constraints on the computational cost as they often deal with 1-day ahead, 1-h
ahead, or even real-time scheduling of the power produced by the controllable genera-
tors. The generalized uncertainty quantification methods proposed in this dissertation
mainly focuses over problems for which the computational cost of the analysis is not
a restrictive constraint (e.g. maintenance problems or design problems such as topo-
logical enhancements). Nonetheless, their applicability is theoretically extendable to
short-term medium-term decision processes, this is considered beyond the scope of this
work. Applicability to short-term time frame would require a substantial reduction
in computational complexity. This issue will be further discussed in the remaining of
this dissertation. The rest of this chapter presents a summary of power flow problems,
acronyms and associated system constraints. Table 3.6 presents a list of some of the
most widely applied methods.

3.3.1 AC and DC Power Flow (PF)

Alternating-Current (AC) and the Direct-Current (DC) are the most widely-used
power-flow models to analyse power grid. AC-PF and DC-PF are commonly used in
both the academic research environment and in the industrial sectors, a simple but
representative example of everyday life industrial use of those technologies is the energy
dispatch problem, which is the scheduling of the production from generators so that
the overall cost of the network is minimised and power demand satisfied.

Specifically, the AC power flow aims at solving a system of non-linear power balance
equations. It accounts for both active and reactive power without neglecting line loses
(see Table 3.6). In the AC model, the active and reactive nodal power balance equations
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are defined as follows [149]:

Pk “
Nb
ÿ

i

|Vi||Vk|rGi,kcospθi,kq `Bi,ksinpθi,kqs

Qk “
Nb
ÿ

i

|Vi||Vk|rGi,ksinpθi,kq ´Bi,kcospθi,kqs

(3.6)

where |Vi| is the voltage magnitude of node i, θi,k “ θi ´ θk is the voltage phase
difference between node i and k, Pk and Qk are the active and reactive power injected
in the node k, respectively. The elements Gl and Bl are parameters of the line l named
conductance and susceptance, respectively. The AC power flow solves equations (3.6)
for each node k in the set of nodes k P N , obtaining line active and reactive flows. The
solution can be obtained using iterative techniques (e.g. Newton-Raphson method)
although, it is worth remarking, convergence is not always guaranteed. In the AC
formulation the average power flow in a line (fij) is obtained as the contribution of
power flowing from node i to node j and vice-versa, i.e. fij “

|Pij |`|Pj,i|
2 .

The DC power flow is a linear approximation of the AC power flow which accounts
for just active power and neglects line losses. It has been widely used to alleviate the
computational cost of numerically intensive codes as it is computationally cheap and it
always has a feasible solution. The DC approximation is mainly adopted for transmis-
sion network analysis [149] as the DC assumptions are more easily met. Nonetheless, it
has been used also toe analyse power distribution systems [88]. The DC formulation is
based on the following 3 assumptions:

• Flat voltage profile |Vi| “ 1 per-unit @ i P N

• Small phases difference between each line nodes, i.e. sinpθlq « θl @ l P L;

• Relatively small lines resistances i.e. Rl ! Xl @ l P L ;

Thus, the nodal power equations can be rewritten as [149]:

Pk “
Nb
ÿ

i

|Vi||Vk|Bi,ksinpθi,kq «
Nb
ÿ

i

Bi,kθi,k “
Nb
ÿ

i

Pi,k (3.7)

where the power injected in the node k is linearly related to the lines susceptances
and the voltage phase differences between the linked nodes. Because in the DC
approximation the links are lossless, the average power flowing in a line becomes
fi,k “ |Pi,k| “ Bi,kθi,k. The DC model although useful in reducing the computational
cot of the analysis, produces inaccurate results if the underlying assumptions are not
met [149]. In order to obtain good quality results, grid voltage profile should be as flat
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as possible and the ratio X{R relatively high. This means that the quality of the DC
solution are system and operative state dependent.

3.3.2 Optimal Power Flow (OPF)

The goal of an optimal power flow problem is to find the minimum cost of electricity
generation that sattisfies a set of constraints, e.g. generation level constraints, line flow
constraints, bus voltage constraints. The basic idea is to find the optimal combination of
power generated by the controllable generators in the network which, given their power
production cost, will minimize the operating cost of the grid. The AC formulation of
the problem is defined as follows [164]:

minimize
Θ,V,P,Q

Ng
ÿ

i“1

rCiP pPiq ` C
i
QpQiqs

subject to gP pΘ,V,Pq “ 0,

gQpΘ,V,Qq “ 0,

hf pΘ,Vq ď 0,

htpΘ,Vq ď 0,

θref ď θi ď θref , i “ iref , i “ 1, .., Nb

|Vi|
min ď |Vi| ď |Vi|

max, i “ 1, .., Nb,

pmini ď pi ď pmaxi , i “ 1, .., Ng,

qmini ď qi ď qmaxi , i “ 1, .., Ng.

where CiP and CiQ are the cost functions specifically defined for the active and reactive
power production of the ith generator, Θ, V are vectors of voltage phases and voltage
magnitudes at each buss i “ 1, .., Nb, P, Q are the active and reactive power injections
by each generator i “ 1, .., Ng, respectively. In the AC definition of the optimal
power flow problem, gP and gQ are the non-linear nodal power balance equations,
i.e. the equality conctraints to be stattisfied for the Nb busses (see equations 3.6).
The inequality constraints hf and ht consist of two sets of Nl branch flow limits as
non-linear functions of the bus voltage angles and magnitudes, one for the ‘from-end’
and one for the ‘to-end’ of each lines [164]. Additional inequality constraints include
voltage phases constraints and voltage magnitude constraints for the Nb grid nodes;
reactive and active power production limits for the Ng generators installed in the grid.
For further details on the problem constraints please refer to Table 3.6.
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The OPF minimisation problem can be revritten in a compact form as follows [164]:

minimize
x

fpxq

subject to gpxq “ 0,

hpxq ď 0,

xmin ď x ď xmax.

were g and h are sets of equality and inequality constraints on the design variables x
whereas xmin and xmax define the lower and upper bounds on the variables, respectively.

The DC formulation of the OPF problem is similar to the AC OPF definition, the
main difference is that, thanks to the DC assumptions, reactive components in the
constraints and in the cost function have to be neglected. Furthermore, the voltage
magnitudes constraints are also removed as DC assumes unitary voltage magnitudes in
each node. The nodal power flow equations are linearised as described by equation 3.7.
One of the major advantages of DC-OPF formulation is that it significantly reduces
the computational cost needed to solve the optimization problem and it has better
convergence proprieties. Nonetheless, DC assumptions have to be used carefully as they
might be unrealistic in many practical situations, thus, leading to severe approximation
errors (see discussion in the previous Section).

3.3.3 Security Constrained Optimal Power Flow (SCOPF)

The optimal power flow problem aims to find the minimum cost of electricity genera-
tion that takes into account generation level constraints, line flow constraint, bus voltage
constraint and other relevant constraints (see Table 3.6). However, the OPF model is
not necessarily assuring security and safety of the grid operations. Specifically, if does
not assure security against equipment failure, i.e. contingencies of the grid components.
In the past years, attention has turned to an improved power flow models to take into
account security constraints. The so-called Security Constrained Optimal Power Flow
(SCOPF) guarantees that the power network can successfully balance power demand
and transfer power flows in a variety of contingency situations and not only for the
undamaged network topology. In fact, the generating cost of the network is minimised
but ensuring that the power balance and other constraints are met even if any contin-
gency in a predefined contingency list occur in the network (e.g. contingency caused by
losing segments of the network, such as power transmission lines or power generators).
similarly to the OPF, a compact definition of the SCOPF problem reads:
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minimize
x

fpxq

subject to gpxq “ 0,

hpxq ď 0,

spxq ď 0,

xmin ď x ď xmax.

where spxq identifies the set of security constrains on the control variables x.
One of the downsides of the SCOPF method is that it typically involve a large dimen-
sionality of the contingency space and convergence is often difficult to reach.

3.3.4 ENS using OPF and virtual generators

The DC optimal power flow problem finds the minimum cost of electricity given a set of
constraints and DC assumptions. However, in order to compute the Energy-not-supplied
by the system, its formulation has to be slightly modified. One simple way to calculate
the ammount of load curtailed (which is directly linked to the energy not provided to
the costumers) is to adopt ’virtual generators’. The sum of the power produced by the
virtual generators will correspond to the total load curtailed in the power grid. Virtual
generators will be included in the optimisation problem by simply rewriting the design
variable x, objective function f as follows:

x “

¨

˚

˝

P
Pvg

Θ

˛

‹

‚

fpxq “ xT

¨

˚

˝

CP

Cvg

0

˛

‹

‚

where Pvg is the vector of power injections from virtual generators and Cvg is the
cost associated with the power produced by the virtual generators. The cost of virtual
generators is set to be Cvg ąą CP . This will force the optimizer to activate virtual
generators only when a solution for the optimisation problem cannot be guaranteed
otherwise (e.g. contingency scenarios preventing electric loads to be served adequately).
Figure 3.3 presents a simple power grid system. The girid is used to illustrate more
clearly the procedure for the load curtailed calculation. The system is composed of
3 substations (nodes) and 2 transmission/distribution lines having known susceptance
B12 and B23. The aggregated power demands have to be satisfied in node 2 and node 3,
identified by solid black arrows. The only existing generator is allocated in node 1 and
has to serve the 2 loads, however, virtual generators are assumed uniformly allocated
within all the nodes of the grid (displayed with dashed lines). For the system, see Figure
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Table 3.6: A conceptual comparison between power flow methods and constraints.

A
cr
on

ym
P
ro
bl
em

na
m
e

m
in
im

is
e

co
st
?

V
ol
ta
ge

an
gl
e

co
n-

st
ra
in
ts
?

V
ol
ta
ge

M
ag
-

ni
tu
de

co
n-

st
ra
in
ts
?

T
ra
ns
m
is
si
on

co
ns
tr
ai
nt
s?

Lo
ss
es
?

R
ea
ct
iv
e

po
w
er

co
ns
id
-

er
ed
?

G
en
er
at
or

co
st
s?

C
on

ti
ng

en
cy

co
ns
tr
ai
nt
s?

A
C
-O

P
F

A
lt
er
na

ti
ng

-
C
ur
re
nt

O
pt
im

al
P
ow

er
F
lo
w

y
y

y
y

y
y

y
n

D
C
-O

P
F

D
ir
ec
t-
C
ur
re
nt

O
p-

ti
m
al

P
ow

er
F
lo
w

y
y

n
y

n
n

y
n

A
C
-P

F
A
lt
er
na

ti
ng

-
C
ur
re
nt

P
ow

er
F
lo
w

n
y

y
y

y
y

n
n

D
C
-P

F
D
ir
ec
t-
C
ur
re
nt

P
ow

er
F
lo
w

n
y

n
y

n
n

n
n

SC
O
P
F

Se
cu
ri
ty

C
on

-
st
ra
in
ed

O
pt
im

al
P
ow

er
F
lo
w

y
y

y
y

y
y

y
y

59



1

23

L3
L2

B13 B12

Pg1

Figure 3.3: A simple 2 lines, 3 nodes power grid allocating 1 generator in node 1 and 2 loads
in node 2 and 3. Virtual generators are distributed in dashed line and distributed over the 3
grid nodes to calculate the load curtailment and the ENS.

3.3, the linear DC OPF problem is then defined follows:

minimize
P,Pvg ,Θ

´

Pg1 Pvg1 Pvg2 Pvg3 θ1 ´ θ2 θ1 ´ θ3

¯

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

CP

Cvg,1

Cvg,2

Cvg,3

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and it is subject to power balance constraints

¨

˚

˝

1 1 0 0 ´B1,2 B1,3

0 0 1 0 B1,2 0

0 0 0 1 0 B1,3

˛

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Pg1

Pvg1

Pvg2

Pvg3

θ1 ´ θ2

θ1 ´ θ3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˝

0

L2

L3

˛

‹

‚

The power balance constraint defines a power conservation law for each node in the
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grid (i.e. sum of in-flows, out-flows, injections and demands should sum up to 0), thus
for node 1 it reads:

Pg1 ` Pvg1 `B1,2pθ1 ´ θ2q `B1,3pθ1 ´ θ3q “ 0

where B1,2pθ1´θ2q`B1,3pθ1´θ3q “ f1,2`f1,3 represent the sum of power flowing from
node 1 to node 2 and 3. In addition, voltage phases constraints are defined on each
node and relate to the stability of the network:

θref ď θ1 ď θref

θref ď θ2 ď θref

θref ď θ3 ď θref

Power production constraints on each generator are related to technological factors (e.g.
capacity and minimum operating power):

0 ď Pvg,1 ď Pmaxvg,1

0 ď Pvg,2 ď Pmaxvg,2

0 ď Pvg,3 ď Pmaxvg,3

Pming1 ď Pg1 ď Pmaxg1

Line flows constraints on each link of the grid which relate to the cable thermal limit:

´Pmaxi,j ď Bi,jpθi ´ θjq ď Pmaxi,j

Let consider for this example unitary generator cost CP “ 1 £/MW and high cost
for the virtual generators Cvg,i “ 1e4 £/MW. Let assume the power demanded in node
2 is L2 “ 40 MW and in node 3 L3 “ 15 MW, Pming1 “ 0 MW, Pmaxg1 “ 40 MW and
Pmaxvg,i “ 1e4 MW and voltage angles constraints neglected. Finally, consider Bi,j “ 1

for all the lines and Pmax1,2 and Pmax1,3 equal to 20 MW and 30 MW, respectively. For
this example the solution of the associated optimization problem returns the design
variables and cost for the network:

Pg1 ¨ CP `
ÿ

i

Pvg2 ¨ Cvg,i “ 2.0035e4 £

rPg1, Pvg1, Pvg2, Pvg3, θ1 ´ θ2, θ1 ´ θ3s “ r35, 0, 20, 0, 20, 15s

where θi ´ θj “ Pi,j due to unitary suceptances. It is clear that this configuration of
loads and constraints prevented the network to satisfy the demanded power in node 2
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(i.e. the maximum allowed line flow in 1-2 was reached). Thus, the total load curtailed
corresponds to the sum of the virtual generators productions, i.e. 20 MW.
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Chapter 4

Robust Reliability via Generalised
Uncertainty Quantification
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4.1 Abstract

In this chapter a generalised probabilistic framework is proposed for reliability assess-
ment and uncertainty quantification under a lack of data. The developed computational
tool allows the effect of epistemic uncertainty to be quantified and has been applied to
assess the reliability of an electronic circuit and a power transmission network. The
strength and weakness of the proposed approach are illustrated by comparison to tradi-
tional probabilistic approaches. In the presence of both aleatory and epistemic uncer-
tainty, classic probabilistic approaches may lead to misleading conclusions and a false
sense of confidence which may not fully represent the quality of the available informa-
tion. In contrast, generalised probabilistic approaches are versatile and powerful when
linked to a computational tool that permits their applicability to realistic engineering
problems.
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4.2 Introduction

Nowadays it is generally well accepted that estimating the effect of uncertainty is a
necessity, e.g. due to variation in parameters, operational conditions [80] and in the
modelling and simulations [122]. In practical applications, situations are common where
the analyst has to deal with poor quality data, few available specimens or inconsistent
information. A typical example is a situation where very expensive samples have
to be collected, such as field proprieties of a deep reservoir [77] or performance of
satellites [57]. In these cases, the amount of data will be scarce due to economic and
time constraints and in several cases, expert elicitation (i.e. the best estimate of an
expert) may be the only viable way of carrying on with the analysis [48].

As a consequence, strong assumptions may be needed to apply classical probabilis-
tic methods given poor information quality, which can lead to erroneous reliability
estimations and a false sense of confidence [14]. Generalised approaches, which fit in
the framework of imprecise probability [14], are powerful methodologies for dealing
with imprecise information and lack of data. These methodologies can be coupled
to traditional probabilistic approaches in order to give a different prospective on the
results, whilst avoiding the inclusion of unjustified assumptions and enhancing the
overall robustness of the analysis. Generalised methods are rarely used in practice
and this is probably due to lack of proper guidance, simulation tools, as well as some
misconception in the interpretation of the results. Further comparison of different
methodologies, both in theoretical aspects and in their applicability to real case studies,
are required.

An original throughout analysis of the applicability of different methodologies to
deal with different level of imprecision is presented. In addition, this work presents
a novel computational framework for generalised probabilistic analysis that can
be adopted to deal with low quality data, few available samples and inconsistent
information. Efficient and generally applicable computational strategies have been
developed and implemented into OpenCossan [41]. The proposed framework is applied
to assess the reliability of an electric series RLC circuit (a problem proposed by the
NAFEMS Stochastics Working Group [52]) and of a power transmission network, both
affected by a lack of data.

Generally speaking, different system performance indicators may be affected very
differently by the same (lack of) data. The extent of a lack of information is not a-priori
quantifiable and depends on the context of the analysis. The proposed approach is
used to assess the information quality by comparison to classical probabilistic results
and with respect to system reliability estimates. One of the main contributions of
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CASE R [Ω] L [mH] C [µF]
A: Interval [40,1000] [1,10] [1,10]
B: source 1 [40,1000] [1,10] [1,10]
B: source 2 [600,1200] [10,100] [1,10]
B: source 3 [10,1500] [4,8] [0.5,4]
C: Samples 861, 87, 430, 798,

219, 152, 64, 361,
224, 61

4.1, 8.8, 4.0, 7.6,
0.7, 3.9, 7.1, 5.9,
8.2, 5.1

9.0, 5.2, 3.8, 4.9,
2.9, 8.3, 7.7, 5.8,
10, 0.7

D: Interval [40,RU1] [1,LU1] [CL1,10]
D: Other info RU1 ą650 LU1 ą6 CL1 ă7
D: Nominal Val. 650 6 7

Table 4.1: The available information for CASE-A, CASE-B, CASE-C, and CASE-D (data
taken from [52]).

this work is a detailed comparison between classical and generalised probabilistic
approaches from a straightforward applicative point of view and under different levels
of imprecision. This serves as guidance for engineering practitioners to solve problems
affected by a lack of data.

The rest of the chapter is structured as follows: The NAFEMS reliability challenge
problem is described and solved in Section 4.3. A lack of data problem for power
network reliability estimation is solved in Section 4.4. A discussion on the limitations
of the different approaches is presented in Section 4.5 and Section 4.6 presents some
conclusions on these applications.

4.3 Case Study I: The NAFEMS challenge problem

4.3.1 Problem definition

The challenge problem, prepared by the NAFEMS Stochastics Working Group [52],
consists of four uncertainty quantification and information qualification tasks motivated
by the need to promote best practices to deal with uncertainty to industry. The analysts
are asked to evaluate the reliability of an electronic resistive, inductive, capacitive (RLC)
series circuit. Four different cases (A, B, C and D) have been proposed in [52], each
one having incomplete, scarce or imprecise information about the system parameters,
as shown in Table 4.1. In CASE-A single intervals, i.e. one upper bound and one lower
bound for parameter R, L and C are given. In CASE-B, each parameter can lay within
multiple intervals, i.e. three upper and lower bounds. In CASE-C, ten sampled points
for each parameter are provided. Finally, for CASE-D, imprecise bounds and nominal
values is the only available information. The last case is similar to CASE-A, but one
bound is not precisely defined. The equations governing the RLC circuit, although
very simple, are provided by the challengers and reported here for completeness. The
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transfer function of the system is defined as:

VcpSq

V
“

ω2

S2 ` R
LS ` ω

2
(4.1)

where the voltage at the capacitor Vc is the model output. Depending on the
values of R, L and C, the system may be classified as under-damped (Z ă1), critically
damped (Z “1) or over-damped (Z ą1) and having different solutions as detailed below.

Vcptq “

$

’

’

’

&

’

’

’

%

V ` pA1cospωtq `A2sinpωtqq exp´αt if Z ă 1

V ` pA1 `A2tq exp´αt if Z “ 1

V ` pA1 expS1t`A2 expS2tq se Z ą 1

(4.2)

Where α “ R
2L , ω “

1?
LC

, the damping factor is Z “ α
ω and roots obtained as S1,2 “

´α˘
?
α2 ´ ω2. Coefficients A1 and A2 are determined by assuming the initial voltage

and voltage derivative equal zero and a unitary step voltage function is considered.
In this case study, the main goals consist in qualifying the value of information and
evaluating the reliability of the system with respect to three requirements:

Vcpt “ 10msq ą 0.9 V , tr “ tpVc “ 0.9V q ď 8 ms , Z ď 1 (4.3)

where tr is the voltage rise time, i.e. the time required to increase Vc from 0 to 90% of
the input voltage, and it has to be less than or equal 8 ms. The first two requirements
are on the voltage at the capacitance Vc, the third requirement is on the damping factor,
which assures that under-damped system responses are discharged (Z ď1). Specifically,
Vc(10ms), Vc(8ms) and Z are regarded as performance variable for the system, and if
these conditions are not satisfied the system is considered to have failed. Probabilistic
and generalised probabilistic approaches are adopted to tackle the four cases and uncer-
tainty characterization and propagation are presented for each case. Depending on the
approach selected, CDFs or P-boxes are obtained for the three performance variables,
see Eq.(4.3). If Vc(10ms),Vc(8ms) and Z result in crisp CDFs, the probability of failure
is computed by estimating the CDF values at 0.9 Volts for the requirements on Vc and
voltage rise time tr as well as the CDF value at Z=1 for the requirement on the damping
factor. Similarly, if bounds on the CDFs are obtained (i.e. P-boxes), then bounds on
probability of not meeting the requirements are computed as explained in Chapter 2,
which are rP V c10, P V c10s, rP tr, P trs, and rPZ , PZs, respectively. This case study was
previously tackled by different groups and the author using different approaches. For
further reading the reader is reminded to Refs. [52]- [128]. This work presents additional
analyses of the NAFEMS challenge problem by adopting novel algorithms in a unified
computational framework.
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4.3.2 Solution: CASE-A and CASE-B

In CASE-A, a single interval was provided for the parameters while multiple intervals
were available in CASE-B (see, Table 4.1). CASE-B degenerates to CASE-A if the
probability mass equal one is assigned to the first source of information. This because
in CASE-B intervals values for source 1 corresponds to the interval values in CASE-A.
Due to the considerations made, the two cases are presented and solved together.

Probabilistic Approach

In the CASE-A the intervals were propagated using a single loop Monte Carlo by as-
suming a uniform distribution within the bounds on R, L and C, which is an assumption
made with respect to the principle of maximum entropy. The reliability is assessed by
evaluating if the system requirements are met as shown in Eq. (4.3). For the solu-
tions of CASE-A, failure probabilities have been estimated using 107 samples and are
PV c10 “0.243, Ptr “0.345 and PZ “0.031. The probability of failure for requirement
one is lower than the probability of failure for requirement two.
For the solution of the CASE-B, each interval is considered individually. Hence, three
different uniform distributions for each R, L, and C parameter are used, one for each
source of information. The reliability analyses have been performed to compute 3 prob-
abilities of failure and results are shown in Table 4.2. The Source 3 has the lowest
estimated probability of failure while the Source 1 shows an intermediate failure proba-
bility. On the right-hand side of Figure 4.1 the resulting CDFs for the three sources of
information and three requirements are displayed.

Table 4.2: The results for CASE-B obtained by Monte Carlo method and 107 samples.
CASE-B Source 1 Source 2 Source 3
PV c10 0.243 0.549 0.052
Ptr 0.340 0.660 0.129
PZ 0.031 1.25 10´5 0.069

Generalised Probabilistic Approach

Possible values of the parameters (interval) can be represented by means of the gen-
eralised probabilistic approach without defining a probability distribution. Parameter
uncertainty has been characterised using Dempster-Shafer structures. For CASE-A
three Dempster-Shafer structures composed by a single focal element have been defined
as

 `

rR1, R1s,m1

˘(

,
 `

rL1, L1s,m1

˘(

and
 `

rC1, C1s,m1

˘(

, where the probability mass
m1 is equal one. For CASE-B, each DS structure is defined as:

 

prX1, X1s,m1q, prX2, X2s,m2q, prX3, X3s,m3q
(

68



Table 4.3: The results of CASE-B obtained adopting generalised probabilistic approach.
CASE-B Source 1 Source 2 Source 3 All

Sources
PV c10 [0,1] [0,1] [0,1] [0,0.9]
Ptr [0,1] [0,1] [0,1] [0,1]
PZ [0,1] [0,1] [0,1] [0,0.7]

where rXi, Xis represents the ith interval source for one of the parameters (R, L or C)
and mi is the associated probability mass. The CASE-B degenerate to the CASE-A
if the probability mass m2 and m3 are set equal to zero. It was not possible here to
establish if some sources of information are better, thus, pieces of information derived
from different sources are assumed as equally likely, i.e. m1 “ m2 “ m3 “ 1{3.
Twenty-seven parameter cells are constructed by the permutation of the intervals.
Then, minimizations and maximisations of Vc(8ms), Vc(10ms) and Z were performed
to identify the bounds of the system performance. The output Dempster-Shafer
structures are used to create probability boxes for the system performances Vc(8ms),
Vc(10ms) and Z and the corresponding failure probabilities obtained.

Applying the procedure to the CASE-A, the resulting P-boxes give no valuable
information on the failure probability for the three performance requirements. The
probability of failure is in fact just bounded in the interval [0,1] for all the requirements.
The CASE-B includes all the information available for the CASE-A plus two additional
sources of information. The additional intervals contribute to reducing the uncertainty
on the system performance as shown on the right-hand side of Figure 4.1. Resulting
bounds are also presented in Table 4.3 and it can be noticed that the outputs have
high associated uncertainty, but less than that in the CASE-A. Ptr lays within the
interval [0,0.9], PV c10 within [0,1] and PZ lays within the interval [0,0.7]. Hence, failure
probability for requirement two does not show any reduction in the uncertainty.
The failure probability computed by adopting classical approaches always lays within
the bounds obtained using the Dempster-Shafer methodology, as shown in Figure 4.1.
The maximum failure probability for the Z requirement is 0.069 (source 3), while the
generalised approach bounds the results between 0 and 0.7. This reliability overestima-
tion was due to the assumption made on the parent distribution needed to apply the
classical methodology. In fact, by selecting a PDF we explicitly assume a well-defined
stochastic behaviour for the parameters. As a matter of fact, no information was given
to assume a random behaviour at all, and the imprecise information could be due to
different experts advising for different scale ranges to be analysed.

The computational time for CASE-B using classical Monte Carlo simulation was
about 6.7 seconds. The generalised solution to CASE-A and CASE-B was relatively
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Figure 4.1: Comparison of the Vcp8msq, Vcp10msq and Z results for CASE-B, respectively.
Resulting CDFs obtained using the probabilistic approach (on the left) and P-boxes obtained
from the generalised approach (on the right).
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computationally inexpensive, taking about 0.07-0.08 seconds for the solution of each
min-max problem. Thus, the DS structures propagation for the 3 reliability require-
ments took just 5-6 seconds for CASE-B on a 4 cores machine with 8.00 Gb ram and a
2.00 GHz Intel Core i5-4590T processor.

4.3.3 CASE-C

Probabilistic Approach

For the solution of CASE-C, two methodologies were adopted. Firstly a uniform distri-
bution approach and secondly a Kernel Density estimation (KDE) approach [115]. The
uniform distribution approach allows the values of the parameters to change within the
sampled range (but not outside). The bounds are assumed equal to the minimum and
maximum values of the samples. Then, 105 MC run have been performed obtaining es-
timated probabilities of failure of PV c10=0.183, Ptr=0.273, PZ=0.016, respectively. The
Kernel Density Estimator is a well-known approach that allows a probability distribu-
tion to be constructed based on sample data without assuming its distribution form.
Different Kernels can be used and the Gaussian Kernel is a popular choice which has
been adopted in this work because it allows the incorporation of measurement error. The
optimal bandwidth value was obtained using Silverman’s rule of thumb [115]. By adopt-
ing KDE the estimated failure probabilities are PV c10=0.232, Ptr=0.292, PZ=0.121,
respectively. These values are slightly larger compared to the one obtained with the
uniform distribution approach. Higher values of the probability of failure are due to the
tails of the Kernel fitted probability distribution (displayed in Figure 4.2) which allows
the value of the parameter to change outside the range of the samples. Plots on the
left-hand side in Figure 4.3 show the output CDFs when adopting uniform distributions
and KDE to model parameter uncertainty. The CDF of Z has been zoomed around
the value Z=1 for graphical reasons. The failure probabilities calculated using sampled
values of R, L and C are also lower if compared to the ones obtained in CASE-A and
CASE-B. This is due to the smaller upper bound on R in CASE-C (861 Ohm).

Generalised Probabilistic Approach

CASE-C is solved by applying the Kolmogorov-Smirnov (KS) test to characterise the
uncertainty of the input parameters as shown in [49], and obtaining bounds on the
empirical cumulative probability distribution function (see section 2.6.2 for further
details). Maximum and minimum values of the parameters are assumed and the CDF
upper and lower bounds are truncated accordingly. Due to the underlying physics
governing the system, all the parameters must be positive and this condition allows
the lower bounds to be set. Truncating the tails of the distributions, especially in
reliability analysis, can lead to erroneous results and safety overconfidence. Thus a
relatively high upper bound for the CDF truncation was selected, which was assumed

71



Figure 4.2: The Kernel fitting (on the right panel) and the P-box bounds (on the right panel)
of the resistance R for the CASE-C.

equal to the sample mean plus three times the sample’s standard deviation. In Figure
4.2 the upper and lower bounds (dashed and solid lines) are shown for the empirical
CDF (square marker blue line) and the Kernel density estimator (blue dot-dashed
line). Three different confidence levels for the KS test are used for each parameter.
The bounds on the left-hand side plots refer to a confidence level α=0.05 and they
are compared to the plots on the right-hand side which show the obtained bounds for
α=0.01 (dashed and solid star marker lines), α=0.1 (dashed and solid blue lines) and
α=0.2 (dashed and solid circle marker lines).

The obtained P-boxes are propagated through the system. On the right plots
of Figure 4.3, the voltage at the 10th ms, 8th ms and damping factor P-boxes are
presented, red blue and black colour lines with different markers refer to confidence
level α=0.01, α=0.1 and α=0.2 respectively. The P-box of the damping factor has been
zoomed around the value Z=1 to improve the readability of the plot. The bounds on
the probabilities of failure are presented in the Table 4.4. It can be observed that the
intervals on the failure probability are quite wide, as already observed for CASE-A and
CASE-B. Nevertheless, the failure probability bounds appear to be narrower if com-
pared to CASE-A and CASE-B. This shows that the information provided for CASE-C
is of higher quality, which allows less imprecise reliability estimates to be obtained.
The results show that the uncertainty in the system reliability was underestimated
by using the Monte Carlo method because precise probability distribution functions
were assumed despite the small sample size. The failure probabilities estimated by
adopting the classical approach lay within the probability interval obtained by adopting
generalised approaches.

Using the same machine adopted for solving the previous cases, the classical proba-
bilistic solution of CASE-C required about 0.07 seconds for the fitting and propagation
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Figure 4.3: CDFs (on the left pannel) and P-boxes (on the right pannel) of Vc(10ms), Vc(8ms)
and Z for the CASE-C

Table 4.4: The results for CASE-C, the probability bounds for the three requirements and
the three confidence levels.

CASE-C α=0.01 α=0.1 α=0.2
PV c10 [0,0.87] [0,0.7] [0,0.63]
Ptr [0,0.92] [0,0.77] [0,0.7]
PZ [0,0.83] [0,0.7] [0,0.64]
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of the Kernel probability densities and additional 0.05 seconds for the propagation of
uniform probability densities. Conversely to the generalised solution to CASE-A and
CASE-B, the computational time needed for the propagation of the focal elements
is generally higher when compared to its classical probabilistic counterpart. The DS
structures propagation took about 461 seconds for each confidence level α (i.e. about
23 minutes for the 3 confidence levels). The higher computational cost is attributable
to the larger number of min-max optimisations performed (i.e. 2197 combinations of
focal elements).

4.3.4 CASE-D

Similarly to CASE-A, the bounds of the parameters are provided. However, just one
bound is precisely defined for each parameter. The upper bounds of R and L and the
lower bounds of C are imprecisely defined as shown in the last row of Table 4.1. In
addition, the nominal values for the parameter are provided. The problem has been
tackled by defining upper bounds of R and L, which were redefined as T times their
nominal value while the lower bound of C was redefined as its nominal value divided
by T , where T “10. Thus, the maximum truncation bounds are Rn=6500 Ω, Ln=60
mH and Cn=0.7µF. The quantity T is defined as ‘truncation level’ and n “10 linearly
spaced intermediate bounds are also considered.

Probabilistic Approach

Uniform PDFs are assumed within the defined intervals and all combinations of upper
and lower bounds are propagated by the Monte Carlo method. Having reduced the
semi-definite intervals to a set of defined intervals, it is now possible to estimate the
reliability of the systems by adopting the same approach as CASE-B. For the first
two requirements, the probability of failure increases from 0.1 up to 0.9. The MC
method is not efficient in providing solutions for the lower bounds of the intervals. In
fact, the probability of having Z ă1 goes from a maximum of 0.2 to a minimum of
approximatively 0.0005 (requiring at least 105 samples for a rough estimation).

Generalised Probabilistic Approach

The parameters’ uncertainty has been characterised using a set of n multiple intervals
translated into DS structures. A probability mass function equal to 1{n has been as-
signed to each interval (for normalization reasons) defining Dempster-Shafter structures
for the parameters, for instance the structure of R is

 

prR,R1s,
1
nq, ..., prR,Rns,

1
nq
(

. The
three probabilities of failure lay within the interval [0,1]. In particular, the imprecision
associated with the last requirement indicates a severe misjudgement of the real uncer-
tainty when the only classical probabilistic solution is considered (obtaining a maximum
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PZ “0.2).
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Figure 4.4: Variation in the probability bounds due different values of Rn. The truncation
values are Rn=650¨T Ω with T=1,..,10 and 60 and 0.7 for Ln and Cn, respectively.

In order to investigate the effect of the assumptions on the results, a sensitivity
analysis of the values of Rn, Ln and Cn is performed. The sensitivity approach adopted
is similar to the one-at-a-time method presented in [21]. The selected base-case has
truncation level T=10 and truncation bounds Rn=6500 Ω, Ln=60 mH and Cn=0.7µF.
A total of 27 sensitivity cases are defined by selecting 9 truncation level to T=9,8,7..,1
for each one of the parameters taken one-at-a-time. Then uncertainty propagation
is carried out for the sensitivity cases and results compared to the bounds of the
base case. The comparison shows that the shape of the P-boxes is affected most
by Rn. On the other hand, it does not have relevant effects on the bounds of the
failure probability. Figure 4.4 displays the sensitivity analysis performed by varying Rn.

The computational time required to solve CASE-D is about 200 seconds by using
the DS structure propagation algorithm whilst the classical approach required 1400
seconds for the solution (selecting 105 samples for the Mone Carlo and propagating all
the combinations of upper and lower bounds).

4.4 Case Study II: Analysis of a power transmission net-
work

The case study selected for the analysis is a 6-bus and 11-lines power transmission
network [155]. Figure 4.5 displays the network topology, nodes indices and load names.
The nodes 1-3 represent the generator buses while the nodes 4-6 are the demand buses.
To simplify the reliability assessment, loads correlation is neglected and grid stress is
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Figure 4.5: The 6-bus power network system.

increased. The reference loads Ld4, Ld5 and Ld6 and the decreased maximum power
capacity of the generators are reported in Figure 4.5.

It is assumed that a lack of data is affecting the failure rate of the transmission
lines. This is a common situation for highly reliable components for which at best only
a few failures have been observed. A common practice used to estimate the failure rate
of transmission lines is to merge the few available failure samples between similar lines.
This procedure is named “data pooling” and assumes that the behaviour of similar
components can be described by the same probabilistic model. This is often a rational
assumption. However, when (similar) components are subjected to different work loads
(e.g. close/far from their thermal limits), different conditions (e.g. in a harsh/mild
environment) or with different maintenance policies such assumptions are rarely true.
Different endogenous and operational-environmental factors will most likely influence
the ageing of the components and produce a very different failure behaviour even for
identical lines. For more details on the problem, the reader is referred to [94].

The transmission links in the system are assumed to be LGJ-300 and for this
specific line, an estimation of the failure rates (λl) for each link l is presented in [158].
The available data consists of 40 failure times collected over 10 years for a first line and
5 years of failure times for a second. Over the first 5 years, the estimated λl is 0.00027
[failure/h] while for the last 3 years the failure rate increases to 0.00042 [failure/h]
(possibly due to a poorly described ageing effect). Similarly to CASE-A in the first
case study (Section 4.3), an interval data source is considered for each line failure rate
λl with l “ 1, .., 11. The failure rate is imprecisely defined during the ageing of the line
(e.g. between 5 years to 8 years from installation) and this might affect the estimation
of the power network reliability.
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The Energy-not-Supplied is a well-known reliability indicator for power grids and
is employed here to assess the network failure probability (for further details refer to
Table 3.3). The power network is simulated for a given period of time (e.g. 1 day) and
random components’ failures are sampled from probability distributions used to model
the components’ failure times. The probability of failure for a line is assumed to follow
a Poison distribution and obtained as explained in Section 3.2.2 and similarly to [122].
During the simulation, the network power flow equations are solved and in the case of
occurred failures or unsatisfied constraints (e.g. thermal or generators capacity limits),
part of the power load can be curtailed and calculated as explained in subsection 3.3.4.
The power grid will fail to meet the performance requirement if the energy not provided
to the customers is larger than a predefined threshold level (i.e. ENS ą ENStsh).
The ENStsh has been set equal to 0.05 % of the total load demand. Further details on
the reliability model are available in Ref. [88]. First, a classical probabilistic approach
is used to assess the power grid reliability. The probabilistic model for the grid has
to be precisely defined. Hence, a point value for the failure rate of each ageing line
has been selected and set equal to the mean failure rate (0.000345 [failure/h]). A plain
Monte Carlo is employed to propagate 104 independent realisations of the power grid
history. In each MC run, failures can randomly occur according to the line failure
probability and the ENS is computed for the sampled network state. The resulting
CDF of the Energy-Not-Supplied (FENS) is displayed by the blue circle markers line
in Figure 4.6. It can be used to obtain the probability of failure for the network as
follows: P pENS ą ENStshq “ 1´ FENSpENStshq.

1-Pf

1-Pf

1-Pf

ENS threshold

Figure 4.6: The CDF, Cumulative belief and Cumulative plausibility functions for the ENS
in [MWh]. The plot is zoomed in to better display the reliability results and ENStsh.
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The imprecise information available for the failure rate has been propagated using
a double loop Monte Carlo approach as previously presented. In the outer loop, 50
values of the failure rates are sampled from the interval [0.00027,0.00042] failure/h
and forwarded to the inner loop. In the inner loop, analogously to the classical
probabilistic analysis, a Monte Carlo simulation is used to obtain independent histories
for the power network, sampling failed components and obtaining the ENS. The
results are cumulative belief (black solid line) and plausibility (dot-dashed red line),
displayed in Figure 4.6. The threshold ENStsh is also presented with a dashed line.
The resulting reliability interval is [3.89, 6.09]¨10´2 which includes the single-valued
reliability estimator obtained by the classical probabilistic approach, 4.99¨10´2.

The analysis has been extended by accounting for imprecision in the power loads
Ld4, Ld5 and Ld6. Generally speaking, electric loads in power networks are inherently
variable and changing their magnitude significantly during the day (e.g. night loads
vs daytime loads) and during the year (e.g. cooling/heating winter/summer loads vs
spring/autumn loads). Hence, power grid loads are often characterized as aleatory
uncertain quantities variables (e.g. using stochastic processes, PDFs, CDFs). These
mathematical tools are generally fitted using historical time series, possibly pooling a
lot of data gathered from several years of operations. Although the amount of infor-
mation and data available to fit load distribution is generally quite high, the author
believes that loads are also affected by a significant amount of epistemic uncertainty.
This is mainly due to newly installed technologies (e.g. distributed generators, micro
grids), new sources of electric power demand (e.g. electric vehicles, new load nodes
and new customers) which can change substantially the overall demand behavior
from year to year. An accurate uncertainty model for the loads, considering both
the effect of inherent day/night winter/summer variability and epistemic uncertainty
can be accounted for. However, for sake of simplicity and to test the framework, this
work considers a characterization of the load demand as a purely epistemic uncertain
quantity (similarly to Ref. [11] where power demand is affected by imprecision and
modelled using two interval cases). Specifically, 4 imprecision levels on the power
demanded (from 5% to 20% of the design load) are considered, due, for instance, to
measurement errors, forecast incertitude and newly installed load-affecting devices
(e.g. storage, electric vehicles, renewable generators). Table 4.5 summarises the
result for increasing imprecision on the load value and Figure 4.7 displays the output
cumulative Pl and Bel. The reliability bound gets wider the larger the imprecision
surrounding the system loads is. It is worth noticing that when the load interval
is increased from 15 to 20 % the upper failure probability increases drastically,
from 9.64¨10´2 to 1 (dashed marked lines in Figure 4.7). This because within the
parameter cell ω :

 

Ldi ď Ldi ď Ldi @ i “ 4, 5, 6
(

exists at least one combinations of
loads (Ld4, Ld5, Ld6) for which the power flow can not satisfy the given constraints
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Table 4.5: The probability bounds resulting from the generalised approach accounting for 4
levels of imprecision for the nodal load demand, Ldi.

Imprecision on
Ldi

5% 10% 15% 20%

P f 0.0874 0.0964 0.0964 1
P f 0.0389 0.0387 0.0384 0.032

(i.e. power balance, thermal limit and generators capacity constraints). As conse-
quence, the power flow solver curtails a significant amount of load even for undamaged
grid conditions and for each realisation within the inner loop the ENS exceeds ENStsh.

Figure 4.7: The Cumulative belief and plausibility functions for different levels of imprecision
on the loads. The plot is zoomed in to improve the graphical output.

In this final application, the developed framework has been tested using a more
complex engineering application. Comparing the results obtained using the classical
and generalised probabilistic approaches helped to understand the quality of the infor-
mation on λl and loads and their impact on the network reliability. In the first case, the
information quality was good and the imprecise data resulted in a moderate (but defi-
nitely observable) effect on the network reliability. In the second analysis, an increasing
level of imprecision affecting the power demand is considered. The results showed that
more imprecision in the input load increases the imprecision in the reliability estimate.
Moreover, the generalised approach pointed out that increasing the imprecision in the
load up to 20%, drastically stretched the reliability bounds (about [0,1]). This is in-
deed an indicator of a severe lack of the available information quality, which has been
successfully pointed out by the generalised approach. The computational time for the
solution was about 98 seconds using classical approaches (MC with 104 samples) and
about 4900 seconds for the generalised approach (50 outer loop samples and 104 inner
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loop samples).

4.5 Limitation faced and discussions

Classical probabilistic approaches require the estimation of (or assuming) PDFs
to describe parameters. Uncertainty and uniform distributions and Kernel density
estimators have been used to characterise parameter uncertainty. In both cases, it has
been explicitly assumed that the analysed parameters have some sort of stochastic
nature, which in reality might not be true. One of the strongest limitations of classical
probabilistic approaches is the need to represent the epistemic uncertainty as aleatory
and then mix these two types of uncertainty. The analysed NAFEMS reliability prob-
lem has confirmed that artificial model assumptions might lead to an underestimation
of the uncertainty. Hence the reliability analysis might not represent precisely the
real quality of the available data. For extreme cases, a severe lack of data can lead
to non-informative bounds [0,1]. The large epistemic uncertainty about the system
parameters may suggest considering an investment in collecting more empirical data
rather than refining the model for the reliability assessment. The overall outcomes of
the study highlighted some of the positive and negative aspects of employ a generalised
approach with respect to classical uncertainty quantification methodologies.

The reliability assessments were affected by severe uncertainty when, if tackled using
classical probabilistic approaches, the analyst is forced to make unjustified assumptions
leading to a strong underestimation the true output uncertainty. A case affected by
a severe lack of data was the NAFEMS reliability problem for which the epistemic
component appeared to be a dominant part of the outcomes’ uncertainty. On the other
hand, a reliability problem affected by a mild lack of data would have had results less
sensitive to the epistemic uncertainty. This might be well-represented by the power
grid reliability problem for which the failure rate imprecision influenced moderately
(but visibly) the precision of reliability estimate. Similar results have been obtained for
imprecision on the load demand up to 15 %. On the other hand, higher imprecision on
the load (20%) drastically widened the reliability bounds. This has been pointed out
thanks to the proposed comparison framework for classical and generalised probabilistic
approaches.

4.6 Conclusions and future direction

In order to define a precise and ‘exact’ probabilistic model, a very high amount of data
(possibly infinite) would be necessary. Unfortunately, a lack of information always
affects engineering analysis and its extent cannot be quantified a priori. In general,
the quality of the available information is context and scope-dependent, e.g. different
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systems performance indicators may react very differently to the same lack of data.
The proposed framework provides a simple but effective way to assess a data deficiency
by comparing the system reliability bounds (obtained through generalised probabilistic
approaches) against single-valued probability indicators (obtained adopting classical
probabilistic methods). If the lack of knowledge is not too large, the system reliability
will result in relatively narrow bounds and always include the point reliability estimator.
In this case, classical approaches will be well-suited to tackle the problem. Conversely,
if the lack of data is severe, the reliability bounds will result very wide or, for extreme
cases, even non-informative ([0,1]). Combination of pure probabilistic approaches (e.g.
Monte Carlo Simulation) and generalised uncertainty quantification approaches (e.g.
based on Dempster-Shafer structures and probability boxes), implemented in a common
computational framework, are unavoidable tools for the industry which may rely on
multiple accurate information qualification approaches. This will aid understanding if
the data is of high quality or poor quality, with the aim of designing safer and more
reliable systems and components. The NAFEMS uncertainty quantification challenge
problem and a small-scale power system reliability assessment have been selected as
representative test cases and have been solved using the proposed computational tool.
Essential information has been provided and the quality of the available data assessed.

In order to deal with low-probability failures, characterised by a low occurrence
probability, becomes particularly challenging using sample-based approaches. In order
to provide a different perspective to the analysis, vulnerability assessment methods were
developed, which can be used to perform structural robustness evaluations of power grids
given that large size failures occurred (e.g. due to malicious targeted attacks). Vulnera-
bility methods generally neglect occurrence probabilities of those contingencies and fo-
cus on (generally severe) consequences of those events, trying to assess the innate ability
of the system to absorb or minimize these consequences from a structural/topological
point of view. Although occurrence probability is often neglected, several uncertain
factors are affecting the assessment (such as model imprecision and variable electrical
setting of the system). In the next Chapter, we compare spectral vulnerability metrics
for the ranking of relevant contingencies. The generalised uncertainty quantification
framework is adapted to propagate both aleatory and epistemic uncertainty. Effect of
model imprecision and inherent variability in the system operative setting are quantified
in the vulnerability output and in the contingency ranking.
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Chapter 5

Assessment of Power Grid
Vulnerabilities
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5.1 Abstract

Vulnerability and robustness are major concerns for future power grids. Malicious at-
tacks and extreme weather conditions have the potential to trigger multiple components
outages, cascading failures and large blackouts. Robust contingency identification pro-
cedures are necessary to improve power grids resilience and identify critical scenarios.
This work proposes a framework for advanced uncertainty quantification and vulnera-
bility assessment of power grids. The framework allows critical failure scenarios to be
identified and overcomes the limitations of current approaches by explicitly considering
aleatory and epistemic sources of uncertainty modelled using probability boxes. The
different effects of stochastic fluctuation of the power demand, imprecision in power grid
parameters and uncertainty in the selection of the vulnerability model have been quan-
tified. Spectral graph metrics for vulnerability are computed using different weights
and are compared to power-flow-based cascading indices in ranking N ´ 1 line failures
and random N ´ k lines attacks. A rank correlation test is proposed for further com-
parison of the vulnerability metrics. The IEEE 24 nodes reliability test power network
is selected as a representative case study and a detailed discussion of the results and
findings is presented.
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5.2 Introduction

The Power Grid is the world’s largest, man-made interconnected structure and plays a
critical role in the well-being of society. The working productivity, comfort and safety
of local citizens relies on on power grids integrity and even modest power outages
can seriously compromise their welfare. Severe blackouts may have a huge social and
economic impact and is therefore necessary to develop resilient future power grids,
capable of withstanding their occurrences. This requires vulnerability assessments of
the electric power supply, the identification of critical scenarios, contingency plans and
a high degree of confidence in the results. It is also necessary to better understand
the relationship between power grids operational risks and those associated with a
vulnerable topological structure. This will help mitigate the effects of unexpected and
hazardous failures, and enhance the overall network robustness and resilience.

The structure and operations of power grids are changing radically [167]- [51]:
The growing share of intermittent and uncertain renewable power sources is making
grid behaviour less predictable; climate change is predicted to increase the intensity
and frequency of extreme weather events with the potential to deeply compromise
grid integrity [122]; and as highly meshed (non-radial) distribution grid topology is
expected to become more common in the future [101], it is likely to see an increasing
structural complexity and interconnection between the power grid components. Due
to this scenario of increasing complexity and uncertainty, it is important to assess
both the inherent variability in the system and imprecision affecting the network
parameters. Topological and operational weaknesses have to be better understood in
order to provide superior network designs capable of promptly react to unexpected
hazardous situations. One potential method of achieving higher grid resilience is by
enhancing existing frameworks for power grid vulnerability assessment and by adopting
sophisticated uncertainty quantification techniques.

The robustness of power networks is defined as the degree to which the grid is
able to withstand unexpected events without degradation in performance [64]. A
closely related concept is the vulnerability, which is generally regarded as the lack of
robustness. Vulnerability metrics can be obtained in several ways and, in the literature,
overload cascading indices based on power-flow evaluations have been proposed to
assess the effect of cascading failure events [157]- [18]. This approach has proven
adequate in cases where the cascades are mainly driven by overload line trippings [18].
Alternative approaches have focused on the grid topology by using graph theory to
analyse its structure [64]- [65]- [31]- [20]- [35]- [56]- [69]- [125]. The so-called pure
topological analysis use unweighted adjacency matrices to calculate vulnerability
whilst extended topological approaches enrich the analysis by incorporating electrical

85



engineering information in the weights of the graph. The extended metrics have been
introduced based on the idea that pure topological approach may fail in exhaustive
captivation of the electric network complexity. Whether or not pure topological
approaches and their extended version are capable of fully capture vulnerabilities of
power grids is still an open debate [34].

Imprecision is a common problem for power grid models and their parameters,
appearing in the calculations due to a number of factors such as, tolerance errors,
scarcity of data, inconsistent information, and experts’ judgement. This type of
uncertainty is generally referred as epistemic or subjective. For example, earlier works
dealt with this type of uncertainty using fuzzy power flow analysis [83] or stochastic
frameworks for reliability analysis [135]. To the authors’ knowledge, topological
approaches are generally applied by assuming an exact knowledge of the network
parameters and do not account for uncertainty in the calculations. Authors of Ref. [31]
analysed the correlation between vulnerability metrics and power flow models. E.
Bompard et al. [20] compared two enhanced metrics (i.e. the extended betweenness
and net-ability) by ranking components with respect to the system vulnerability.
Recently, Lucas Cuadra et al. [34] reviewed power grid robustness metrics which
were computed by adopting complex network theory approaches. G. J. Correa et
al. [31]- [32] investigated power network structural vulnerability to single and multiple
failures and compared graph-theory approaches against power flow approaches. S.
Cvijić and M. Ilić [35] discussed the applicability of graph-theory methods (generally
applicable in transportation networks) to power grids. It was showed that some of the
physical laws applied to power systems are limiting factors but, when graph-theory
methods are applied, the computational cost of analysis is greatly reduced. P. Hines et
al. [56] discussed the use of topological measures for power grid vulnerability analysis.
Through the analysis of random failures it was argued that topological measures can be
useful as general trend indicators of vulnerability, although physical-based models (e.g.
power flow models) are believed to be more realistic. S. LaRocca et al. [69] investigated
different measures for power grids vulnerability and risk assessment by randomly
removing grid components. Similarly, R. Rocchetta and E. Patelli [125] compared
graph-theoretic spectral vulnerability metrics to power flow based vulnerability metrics
in ranking power grid most critical lines. They showed that load demand uncertainty
and tolerance imprecision affect the results of the contingency ranking.

To the authors knowledge, none of the reviewed works analysed the effects of both
aleatory and epistemic uncertainty on the computation of graph-theoretic spectral
vulnerability metrics. However, it is known that sources of uncertainty will inevitably
affect power grids robustness. There are several representative examples which consider
these effects in the power grid reliability assessment literature. Few notable approaches
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include reliability assessments of power grids allocating renewable energy sources [88],
increasing interdependency between different networks (e.g. telecommunication
network transportation network, etc.) and the inherent variability of the (changing)
external environmental conditions [122]. Accounting for relevant sources of uncertainty
affecting power grid robustness and vulnerability may help to improve the overall
confidence in the results and better identify critical scenarios. Being able to distinguish
between the (inherently variable) aleatory component of the uncertainty and the (in
principle) reducible epistemic uncertainty can be beneficial for the analysis and for
improve confidence in the results. Furthermore, many vulnerability metrics have been
proposed in the literature and the results will be inevitably affected by a specific metric
selection. It is therefore necessary to assess the level of uncertainty associated to power
grid robustness when different metrics are employed for vulnerability analysis.

In this work, drops in performance due to single and multiple line failures are
analysed by employing algorithms developed by the authors. A novel weighting factor
based on the line percentage of rating is also introduced and compared to weights
applied in the literature. Load demand is inherently variable and the increasing
allocation of non programmable renewable energy sources are making its behaviour
even more uncertain. Thus, the aleatory and the epistemic uncertainty affecting load
demands and network parameters are accounted for and propagated to the vulnerability
metrics and respective contributions highlighted. The proposed framework is flexible
and can account for renewable energy sources uncertainty. This can be done by
proposing a different characterisation of the uncertainty in the load. One of the
main contributions of this work is a systematic comparison of the vulnerability based
on operational flow-based models and topological approaches (pure and extended).
Furthermore, none of the reviewed works compared spectral vulnerability metrics for
contingency ranking purposes embedding the methods within advanced uncertainty
quantification framework. Thus, similarities and differences of the different metrics are
discussed for increasing damage size and accounting for uncertainties due to stochastic
loads and line parameters imprecision.

The chapter is structured as follows: A concise review on power grid modelling and
spectral graph analysis is proposed in Section 5.3. In Section 5.4, vulnerability metrics
are defined. The uncertainty modelling and contingency analysis are described in Sec-
tion 5.5. The developed algorithms and framework are summarised within Section 5.6.
In Section 5.7 presents the analysis of the IEEE reliability test system. The limitation
faced are discussed in Section 5.8 and in Section 8.8 conclusions are drawn.
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5.3 Background and Power Grid Modelling

A power network structure can be modelled using weighted or unweighted undirected
graphs G “ tN ,L,wu, where N is the set of network buses (or nodes set), L is the
set of lines connecting the nodes (i.e. links set) and w is the set of weights associated
to the lines [20]- [73]- [47]- [38]. Generally when graph-theory approaches are used,
a conservative (pessimistic) hypotesis is made on the network structure, to ease the
calculations. Self-loops such as parallel lines are removed from the graph G and replaced
by the equivalent single line model. Different weights define different graph models
of the power network, for instance, if w “1 the model and following analysis will be
named purely topological [34], since no electrical quantities are employed. Alternatively,
weights can be used to represent specific electrical engineering information. Quantities
such as the line susceptance (Bij) or power flow (fij) have been previously adopted
as line weights, see e.g. [65]- [145], where i and j represent the generic nodes. The
number of buses and the number of branches in the power network is represented by
the cardinality of the node set Nb “ |N | and the cardinality of the line set NL “ |L|,
respectively. To simplify the notations the line subscript pijq P L can be replaced with
the subscript l representing the line index.

5.3.1 Overflow Cascading Vulnerability

A ‘cascade’ is a sequential succession of dependent events [157]. In power systems
cascading analysis a failure sequence (lines tripping) can be defined as load-driven when
the thermal expansion results in the line dropping beneath its safety clearance, or load-
independent such as in case of a mechanical failure. The metric adopted in this work
focuses on load-driven failures and is used to assess the network vulnerability to overload
cascading events. We recall the definition of cascading index (CEI), which is is obtained
computing the ‘immediate’ post-contingency power-flow operative state and it is defined
as follows [157]:

CEIpCN´kq “
ÿ

lPL
PpCl|CN´kq ¨ SlpCN´kq (5.1)

where PpCl|CN´kq is the probability of a secondary (post-contingency) trip of the
line plq after the contingency denoted as CN´k occurred. The severity SlpCN´kq is a
overload severity function for the line l due to the occurrence of a single trip (k “ 1)
or multiple failures (k ą 1).

Severity functions can be used to quantify the operational risk due to components
failures [122]. The continuous severity function for overload is specifically defined for
each circuit (lines and transformers). It measures the extent (severity) of failures in
terms of line percentage of rating PRl “ fl

femerg,l
. The quantity femerg,l is the emergency

rating of the line l P L and is related to its thermal limit and fl is the power flow in
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the line. The expression for the continuous severity due to overload (Sl) of a line l is
defined as follows [122]:

SlpCN´kq “ d ˚ PRlpCN´kq ` c for PRl ě PRminl (5.2)

where Sl is zero for values of the flow rating less than a safety limit PRminl =0.9. The
deterministic limit for the violation of line l is PRl=1, the near violation region is
0.9ď PRl ă1, and the value PRl under 0.9 is regarded as safe, parameters of the severity
model are d=10 and c=-9. Continuous severity functions provides non zero values for
scenarios close to the performance limits, which reflects the realistic sense that close
to failure scenarios have non-zero risk (but deterministically safe). The probability of
cascading trip of line l after an initiating contingency CN´k occurs can be expressed as
follows [157]:

PpCl|CN´kq “
flpCN´kq ´ f0,l

ftrip,l ´ f0,l
(5.3)

where flpCN´kq is the flow on the line l after the contingency CN´k occurred, ftrip,l is
the flow leading to a certain trip of the line l (assumed to be 1.25 times its thermal
limit [157]) and f0,l is the flow in the line l before contingency CN´k. The rationale
underpinning Eq.5.3 is that higher load levels and larger transients increase the
likelihood of the secondary contingency (i.e. cascading) on the line l after an initi-
ating event CN´k. The probability PpCl|CN´kq is set equal 1 for each flpCN´kq ě ftrip,l.

The cascading index has indeed some limitations (i.e. the criteria for post-trip prob-
ability calculation is based on expert judgement and pre-contingency trip probabilities
are neglected). Nevertheless, the computational time needed for its calculation is very
small (i.e. that of a single power flow calculation) and this makes it suitable for ad-
vanced frameworks for uncertainty quantification, which are generally computationally
very demanding.

5.3.2 Spectral Graph Analysis for Power Grids

The topology of the graph G can be fully characterised by its adjacency matrix W .
An adjacency matrix is a N ˆ N symmetric matrix in which the non-null elements
represent weights of existing lines connecting different nodes. In general, the weight
are associated to some measure of interest or set equal to 1 (i.e. unweighted adjacency
matrix). The matrix D is the diagonal matrix which contains information about the
degrees of each node and its diagonal elements (di) are equal the sum of the weights of
the lines connected to the node i. The Laplacian L of the matrixW is simply L “ D´W
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and the elements can computed as follows [145]:

rLsij “

$

’

’

’

’

&

’

’

’

’

%

N
ř

j
wij if i “ j

wij , if i ‰ j, pijq P L

0, otherwise

(5.4)

where the term
N
ř

j
wij is the degree (di) of the node i.

Spectral graph analysis has been recently used to assess power grids robustness [65]
and to tackle islanding problems [145]- [46]. The eigen-proprieties of the adjacency
matrix are obtained as follows:

W “ ΦWΛΦT
W

Λ “ rλ1, .., λN s
(5.5)

Analogously, the spectrum of the network Laplacian is obtained as follows:

L “ ΦLΨΦT
L

Ψ “ rµ1, .., µN s
(5.6)

where Φ “ rΦ1, ..,ΦN s is the set of eigenvectors, Λ is the set of eigenvalues of the
adjacency matrix and Ψ is the set of eigenvalues of the Laplacian, such that 0 “ µ1 ď

µ2 ď ... ď µN . The eigenvalues of L are non-negative and the smallest (µ1) is equal to
0. The multiplicity of µ1 is equal to the number of connected components. If the graph
is disconnected, µ2 “ 0 and at least two separate grids exist. Further details are going
to be discussed in Section 5.4.

5.4 Vulnerability Metrics and Spectral Analysis for Power
Networks

An N ´ k contingency is defined as the unexpected simultaneous loss of k components
in the network [27] (e.g. lines, generators, transformers). Vulnerability indices can
be used to quantify the reliability of power networks by assessing relative changes in
performance metrics. The network vulnerability VpCN´kq associated to the contingency
pCN´kq can be generally quantified as follows [34]:

VpCN´kq “
|M´MpCN´kq|

M
(5.7)

where MpCN´kq is a vulnerability metric after contingency CN´k and M is the metric
value for the undamaged network.
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5.4.1 Pure and Extended Spectral Vulnerability Metrics

Power network structural vulnerability can be assessed by using pure or extended topo-
logical models of the grid. The first uses the unweighted adjacency matrix and lines are
regarded as identical [34] whilst the second extends the approach by including electrical
parameters to weight to the adjacency matrix. Extended topological approaches often
made use of the DC approximation, conveniently used to build the adjacency matrix
using the grid susceptance matrix [65]. Active power flows have also been used as an
alternative weighting factor [34].

In this work, a new weighting factor based on the line percentage of rating is
introduced. The weight is compared to existing weights taken from the literature.
Thus, the adjacency matrices will built using 4 different weights for each line l (i.e.
1, Bl, fl and PRl). The first 3 weights are selected based on earlier works while the
percentage of rating is selected on the idea that by weighting lines using fl relevant
information might be missing. For instance, a line that has a very small fl (e.g. few
MW flowing into the lines), can be nonetheless very close to failure (e.g. high PRl).
It is worth remarking that analysis performed using unweighted adjacency matrix or
weighted using susceptances have to be regarded as a static analysis (because weights
do not change over time). Conversely, using wl “ fl or wl “ PRl the analysis has to
be regarded as dynamic because weights change over time [145].

Recently, vulnerability metrics obtained from spectral decomposition of W and L

have been used to extract indicators of the grid robustness [122]. The metrics considered
are: the spectral radius (ρG) [148], the algebraic connectivity (µ2) [65]- [122], the natural
connectivity λG [112] and effective graph resistance RG [65]. The Spectral radius is the
largest eigenvalue of W whilst µ2 is the second smallest eigenvalue of L. The natural
connectivity and the effective graph resistance can be computed as follow:

λG “ ln

˜

1

N
¨

N
ÿ

1“1

eλi

¸

(5.8)

RG “ N ¨
N
ÿ

i

1

µi
(5.9)

where λi is the ith eigenvalue of W and µi is the ith eigenvalue of the L and the sum
is such that null µi are neglected. The measure ρG can be regarded as an indicator of
robustness of networks against dynamic processes (e.g. virus spreading, synchroniza-
tion processes and phase transition behaviours), high µ2 indicates a highly connected
network (difficult to be partitioned into independent components). The natural con-
nectivity quantifies the redundancy of alternative paths by quantifying the weighted
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Spectral Graph-Theoretic Metrics: λG RG ρG µ2

Type: Static Dynamic
Weights: wij “ 1 wij “ Bij wij “ fij wij “ PRij
Approach: Topological Extended topological

Table 5.1: The spectral graph metrics considered in this work and the weighting factors. Each
weight can be associated to different type of approaches (i.e. extended topological, topological,
dynamic and static).

number of closed walks of all lengths. The physical meaning is related to the Helmholtz
free energy of a network [45]. Finally, RG computed using susceptances is the sum of
effective resistances Rl between all l, the lower it is the higher the network robustness
is. The graph spectral radius, the natural connectivity, the algebraic connectivity and
the effective graph resistance are computed using the 4 lines weights and used to assess
drops in power grids robustness as summarised within Table 5.1. The overload cas-
cading index presented in Section 5.3.1 will be for additional comparison between the
metrics.

5.5 Treatment of Uncertainty

5.5.1 Uncertainty Characterisation

In this work, the sources of uncertainty investigated are:

1) The aleatory uncertainty associated to load demand variability. The aggregated
load connected to a node i (PL,i) can be described by a Normal distribution [122]

fpPL,iq “
1?

2πσi
e
´
pPL,i´µiq

2

2σ2
i , where PL,i is the load demand at node i, µi is the

load mean value and σi is the standard deviation at node i P N . The parameter
of the distribution can be estimated from historical records of load demand per
node.

2) Imprecision in the lines parameters (Bl), attributable to design tolerance modelled
as intervals (i.e. epistemic uncertain).

3) Uncertainty in the selection of the vulnerability model. Different vulnerability
metrics computed using different models (e.g. power-flow model, pure or extended
topological models) will be compared and discussed.

Once uncertain inputs are propagated through the computational model, the vulnera-
bility outputs will be characterised by a mixture of aleatory and epistemic uncertainty
and described using P-boxes.
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5.5.2 Uncertainty Propagation

The double loop Monte Carlo methods (see Figure 2.8) is used in this work to prop-
agate aleatory and epistemic uncertainty without mixing them. First,the epistemic
uncertainty space Θ is obtained by Cartesian product of the imprecisely defined inter-
val parameters of the lines Θ “ rB1B1sˆ ...ˆrBlBlsˆ ...ˆrBNL

BNLs. Then, the outer
loop starts by sampling random realization of the imprecise parameters, i.e. sampling
uniformly within the n-orthotope Θ a parameters vector realisation θj “ B. Each epis-
temic space realisation correspond a traditional probabilistic uncertainty quantification
problem (i.e. inputs CDFs for the loads and a crisp values for each interval) for which
only aleatory type of uncertainty has to be accounted. Then, a traditional MC sim-
ulation can be used (inner loop) to propagate aleatory uncertainty in the loads. The
output will be an envelope of cumulative distribution FV|θj pVq. The CDFs results of
the inner loop are not to be averaged over the outer loop but only collected. Then the
minimum and maximum can be selected to obtain bounds on the quantity of interest
to assess the effect of lines tolerance imprecision on the output vulnerability.

5.5.3 Contingencies and Combinatorial Problem

In some power flow applications, contingency analysis is performed to constrain the
network to safe operational states, for instance, by means of Security Constrained
Optimal Power Flows. Those states are safe (e.g. thermal constraints are met and no
cascading sequence occur) even if one of the contingencies listed is faced by the grid.
In general, even if the network has modest size (e.g. small distribution grid), analyse a
complete list of all possible failures is infeasible. A comprehensive contingency list will

include
N
ř

k“1

N !{k!pN ´ kq! failures, where k is the number of failed components and

N the number of network components. Consider, as example, a very small network
of just N “ 50 components, exhaustive contingency list includes 50 single component
failures (i.e. N ´ 1 contingencies), 4900 N ´ 2, 705600 N ´ 3, more than 1.32 ¨ 108

N ´ 4 contingencies and so on. In order to proceed with the calculations, a subset of
failures is generally selected from the full set of combinations, the one considered more
likely and with higher consequences. Higher order contingencies are often forsaken
by assuming a negligible probability of facing those events, too low to be relevant.
Nevertheless, targeted malicious attacks, extreme weather induced failures and other
common cause failure mechanisms have the potential to increase the likelihood of face
severe N ´ k contingencies [29] and have generally higher consequences for the system.
In this work, the complete set of N ´ 1 single line failure are analysed and the most
severe are identified using different vulnerability metrics. Random number Nc of N ´ k
contingencies are also analysed and for increasing damage size k. The most threatening
events will be ranked and the average network vulnerability for increasing k discussed.
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Relevant sources of uncertainty have been accounted in all the phases of the calculation.

5.6 The Proposed Framework

Algorithms (designed by the authors) are presented here and will be used to analyse
the power grid under N ´ 1 and N ´ k line contingency scenarios. These will be later
coupled to advanced, non-intrusive, uncertainty quantification approaches. Algorithm 1
is used for the N ´ 1 contingency analysis. First, a power grid case study is loaded
(e.g. a MATPOWER ‘Case’ [165]) and additional input provided. A pre-contingency
power flow (AC or DC) is solved and lines flows fl and rating PRl are obtained for
the undamaged network. The weights wl are selected, the undamaged adjacency and
Laplacian matrices (Wund and Lund) obtained and used to compute vulnerability as
explained in Sections 5.3.2 and 5.4. Single-line failures are evaluated one-at-a-time,
either using ‘Power-Flow Analysis’ and ‘Topological Analysis’ methods.
The ‘Power-Flow Analysis’ method works as follows:

1) Removed the line l from the undamaged network structure.

2) Compute post-failure fl and PRl using the post-contingency power flow presented
in Algorithm 2 which is summarised by steps (3-5).

3) Run the depth-first-search algorithm to find the connected components (cc) in the
damaged grid.

4) If the network is fully connected (i.e. cc “ 1), the power flow is solved, line
post-contingency flows obtained and percentage of rating computed.

5) If the network is not fully connected (i.e. cc ą 1), the islands Gis with a single
node are removed (the islanding is assumed unsustainable). For the remaining
islands Gis, a slack bus is selected among the P-V nodes generator nodes) and
the post-contingency fjpClq and PRjpClq obtained. If the grid island has no
generators, the partition is set as isolated (outage).

6) Compute the overload severity and the cascading probability for all survived lines
j and the cascading index CEIpClq for the failed line l (i.e. the one removed in
step 1).

7) The algorithm steps from 1) to 6) are repeated until all N ´ 1 line failures are
analysed.

Similarly, the ‘Topological Analysis’ method proceeds as follows:

1) Remove the line l from Wund and compute the damaged network L.
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2) Compute eigen-proprieties (ΦWund
, ΦLund , Ψ, Λ).

3) Compute the effective graph resistance, the natural connectivity, the spectral
radius and the algebraic connectivity as explained in Section 5.4.1.

4) Evaluate vulnerability to the analysed contingency VpClq as in Equations 5.7.

5) Repeat the Algorithm steps 1) to 4) until all the single line failures are analysed.

Algorithm 1 Vulnerability to N ´ 1 Line Contingencies
1: procedure N ´ 1 Line Contingency
2: Load Power Grid ‘Case’
3: Input: Load power demand and line parameters
4: Run: pre-contingency AC (or DC) power flow
5: Select wl P t1, Bl, fl, PRlu and build Wund and Lund
6: Compute & Save ΦWund

,ΦLund ,Ψ, Λ and M “ tρG , µ2, λ,RGu

7:
8: Power-Flow Analysis
9: for each line l P L do

10: Reset undamaged state and remove line l
11: Run: Post-Contingency Algorithm 2
12: Compute SjpClq and PpCj |Clq for each line in service j.
13: Compute CEIpClq
14: end for
15:
16: Topological Analysis
17: for each line l P L do
18: Set W “Wund and wl “ 0, build L
19: Obtain ΦW ,ΦL,Ψ and Λ and MpClq “ tρG , µ2, λ,RGu

20: Compute VpClq for each metric
21: end for
22: end procedure

Algorithm 2 Post-Contingency Power Flow
1: procedure Post-Contingency Power Flow
2: Search for connected components (cc) (depth-first-search)
3: if cc ą 1 then
4: Check and remove isolated node
5: @ island:
6: Select one slack among the P-V nodes
7: Run: AC (or DC) power flows
8: end if
9: if cc “ 1 then

10: Run: AC (or DC) power flows
11: end if
12: end procedure

The method used for the N ´ k line contingency analysis is summarised in the
Algorithm 3. First the network data, the size of the contingency k and the number
of contingency scenarios to be analysed NC are selected. Then, k lines are randomly
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removed from the undamaged network and the consequence are evaluated using both
Algorithm 2 and spectral analysis of the damaged adjacency matrix W . The procedure
is repeated until NC scenarios are analysed and the results are statistical description
of the vulnerability of each line (e.g. expectations and CDFs). For instance, the

expectation of the vulnerability is computed as E rVpCN´kqs “

NC
ř

i“1
VipCN´kq

NC
.

Algorithm 3 Vulnerability to the N ´ k Line Contingencies
1: procedure Vulnerability to an N ´ k Line Contingency
2: Input: Load Power Grid ‘Case’, set k and NC
3: Run: Pre-contingency AC (or DC) power flow
4: Select one wl P t1, Bl, fl, PRlu and build Wund and Lund
5: Compute ΦWund

, ΦLund , Ψ, Λ and obtain M “ tρG , µ2, λ,RGu

6: for i “ 1 to NC do
7: Remove k lines randomly and compute L
8: Obtain ΦW , ΦL, Ψ, Λ and MpCN´kq “ tρG , µ2, λ,RGu

9: Compute VipCN´kq for each metric
10: Run: Post-Contingency Algorithm 2
11: Compute SlpCN´kq and PpCl|CN´kq for each line in service k.
12: Compute CEIipCN´kq and restore undamaged topology
13: end for
14: Compute CDFs and expectations:
15: FCEIipCN´kq, FVpCN´kq, E rVpCN´kqs, E rCEIipCN´kqs
16: end procedure

Main difference between Algorithm 1 and 3 is that the first analyses all the possible
single line failures while the second considers random line failures of order k. The
main drawback is that it can result time consuming for large size network. Different
networks and weights can be easily selected and compared and both topology-based
and flow-based analysis performed in a common flexible computational framework. The
Algorithms for N ´ 1 contingency analysis is used in combination with non-intrusive
uncertainty propagation methods. The effect of aleatory uncertainty (stochastic
load demand) and epistemic uncertainty (parameters tolerances) on the vulnerability
output of Algorithm 1 are propagated using classical MC and double loop MC methods.

In this work the number of scenarios Nc has been selected based on experience.
However, for future analysis it would be interesting to determine a sufficiently high
number Nc of N ´ k contingency scenarios in order to ensure a good statistical descrip-
tion of the vulnerability of each line. For instance Nc can be selected such that at least
Nc,l failures are extracted for each line l, i.e. select Nc so that the moments of the
vulnerability distribution converge.
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Figure 5.1: The modified IEEE-RTS 24 nodes layout.
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5.7 A Case Study: IEEE 24 node reliability test system

The selected case study is a modified version of the IEEE 24 nodes reliability test
system [154]. The grid is realistic, fairly complex and suitable to test the proposed
framework. The modified network counts 24 nodes, 17 loads, 34 lines and 33 generators
distributed over 11 nodes. Within the grid, there are 11 P-V nodes (i.e. generator
nodes) and 13 P-Q nodes (i.e. load nodes). The original network topology has been
modified to substitute parallel lines with equivalent single lines (i.e. the lines l19´20,
l15´21, l18´21 and l20´23). The modified structure is presented in Fig.5.1 whilst the
design data can be found in Refs. [165]- [154].

5.7.1 Results: N-1 line failures

The N´1 line failures are analysed using the Algorithm 1 and using ‘Power-Flow Anal-
ysis’ and ‘Topological Analysis’ methods as presented in Section 5.6. The vulnerability
results obtained using ‘Topological Analysis’ method are displayed in Fig.5.2. The
Y-axis display relative changes in spectral vulnerability metrics due to failure of the
line l, i.e. VpClq. Each line is identified by an identification number (ID) and displayed
on the X-axis. On the right hand side of Fig.5.2 are presented vulnerability results
obtained using µ2 (the top plot) and RG (the bottom plot). The relative drops in ρG and
λ are presented on the left-hand-side in the bottom and top panels, respectively. Red
solid lines are obtained using pure topological analysis (wl “ 1), the bars are obtained
weighting adjacency with susceptances (wl “ Bl), the black dashed lines using the line
active flows (wl “ fl) and the green marked lines using percentage of rating (wl “ PRl).

The analysis is performed very efficiently and the 5 most vulnerable lines are ranked
in approximatively 0.15 seconds (which is the overall time for all the metrics and
weights). The ranking results are presented in Table 5.2 and pure topological rank-
ings are reported in the first column on the left. The results show similarities and
differences in ranks. For instance when algebraic connectivity is employed, the lines
l7´8 and l11´14 are identified as vulnerable, independently from the choice of the lines
weights.

The AC power flow and the DC linearised version are used to solve the network and
by running the method ‘Power-Flow Analysis’ the cascading indices CEI are obtained
and line failures ranked. The ranking results for the 5 most vulnerable lines are pre-
sented in Table 5.3. The DC results are quite similar the AC results, although the DC
approximation overestimates slightly some of the line flows. This is probably due to the
errors introduced by the DC approximation when the network is in contignency state
(e.g. for higher system stress, possibly higher losses and larger voltage angles [149]).
Furthermore for the selected MATPOWER case, the PV nodes have voltage magni-
tudes greater than 1 per-unit, whilst the DC formulation assumes flat voltage profile
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wij “ 1 wij “ Bij wij “ fij wij “ PRij
Rank Algebraic Connectivity µ2

1 l7´8 l7´8 l7´8 l7´8

2 l3´24 l16´17 l15´24 l11´14

3 l15´24 l11´14 l3´24 l14´16

4 l11´14 l14´16 l5´10 l15´24

5 l16´17 l3´24 l11´14 l16´19

Rank Natural Connectivity λG
1 l12´13 l16´17 l16´17 l16´17

2 l9´12 l15´16 l14´16 l14´16

3 l10´12 l17´18 l17´18 l7´8

4 l9´11 l16´19 l17´22 l17´18

5 l10´11 l14´16 l16´19 l12´23

Rank Spectral Radius ρG
1 l9´12 l16´17 l16´17 l16´17

2 l10´12 l15´16 l14´16 l14´16

3 l9´11 l17´18 l17´18 l17´18

4 l10´11 l16´19 l17´22 l17´22

5 l12´13 l14´16 l16´19 l16´19

Rank Effective Resistance RG
1 l3´24 l16´17 l15´24 l11´14

2 l15´24 l11´14 l3´24 l14´16

3 l16´19 l14´16 l5´10 l15´24

4 l16´17 l16´19 l11´14 l16´19

5 l20´23 l15´24 l14´16 l20´23

Table 5.2: The most vulnerable lines for the IEEE 24 nodes reliability test system. The top
5 most vulnerable lines are compared with respect to the 4 spectral metrics obtained using 4
different weighs for the adjacency matrix.
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Figure 5.2: The grid vulnerability to the N ´ 1 line failures obtained as relative changes in
performance metrics. Comparison between four spectral metrics (µ2, ρG , λG , RG) and different
adjacency matrix weights (wl P t1, Bl, fl, PRlu).

(i.e. voltage magnitudes set to 1 per-unit). This is likely to affect the calculation and
lead to a relevant differences between the DC and AC solutions. Nonetheless, a very
good agreement exists between AC and DC rankings (failure of lines l15´21, l15´24,
l21´22 and l3´24 were identified in both lists). It can be concluded that for the analysed
network the DC method approximates the AC solutions fairly well also for the aim of
contingency ranking. The computational time for the solution for both AC and DC
N ´ 1 contingency is about 0.9 seconds on a typical desktop PC (8.00 Gb RAM and
2.00 GHz processor). The line l15´24 is identified among the 5 most vulnerable by both
µ2 and RG . None of the topological metrics (pure or extended) were able to identify the
vulnerability of line l15´21, which scored highest from the overloading cascading per-
spective. This can be interpreted as a limitation of the topological approaches, which
are unable to capture important features in the network operations.

5.7.1.1 Correlation analysis

An analysis of rank correlations is proposed to assess similarities and differences between
the vulnerability metrics. The Spearman’s correlation coefficient is a non-parametric
measure of rank correlation and it can be used to measure the statistical dependence
between metrics. It is sometimes defined as the Pearson correlation coefficient between
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Rank CEIAC CEIDC
1 l15´21 1.00 l15´21 1.33
2 l21´22 0.17 l15´24 0.64
3 l15´24 0.07 l3´24 0.64
4 l3´24 0.07 l16´19 0.22
5 l20´23 0.02 l21´22 0.21

Table 5.3: The 5 most vulnerable lines from an operational prospective. Comparison between
AC and DC results.

ranked variables [113]. The matrix of Spearman’s rank correlation coefficients is
calculated for 2 CEI indices ( computed using the AC and DC methods) and for
16 spectral graph metrics (the 4 metrics and 4 weights for each metric). Table 5.4
presents the correlation results calculated from the ranking of the 10 most vulnerable
lines. Figure 5.3 displays graphically the correlation matrix. It can be observed, as
expected, a very high positive correlation between the AC and DC cascading indices
(close to 0.8). It can be also observed high/moderate correlations (from 0.6 to 0.9)
between the same spectral vulnerability metric but computed with different weights.
Algebraic connectivity and effective resistance are also highly correlated, which can be
explained as both are computed using the eigenvalues of the Laplacian matrix. Many
pairs of vulnerability metrics are weakly correlated (i.e. coefficients ă0.3). However,
other metrics display a high degree of correlation (i.e. coefficients between 0.6 and 0.9)
or a moderate degree of correlation (i.e. coefficients between 0.3 and 0.6).

5.7.1.2 Uncertainty Quantification

The aleatory uncertainty in the power demand is propagated to the cascading index
and to the extended topological metrics using the MC method. For each MC run, a
random realisation of the load profile is obtained (i.e. a vector containing 17 random
loads PL,i) and forwarded to the N ´1 solver (Algorithm 1). The network vulnerability
is then evaluated using cascading indices computed with the AC and DC power flow
methods. Spectral metrics are computed using 2 different weights for the line (fij and
PRij). The results for the remaining weights (wij “ 1 and wij “ Bij) are not affect
by load variability and thus neglected here. The Monte Carlo method stops when a
predefined number of realisations is reached (set to 500).

Figs. 5.4-5.6 display the uncertainty quantification results for CEI and the spectral
vulnerability metrics, respectively. The red solid lines display the expected vulnerabil-
ity whilst the blue dashed lines show the expectation plus or minus 2 times the sample
standard deviation (ErVplqs ˘ 2 2

a

VarrVplqs). The red markers are the vulnerability
realisations of the MC method (i.e. CEI and V for each line and for each load demand
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Figure 5.3: The matrix of Spearman’s rank correlation coefficients. It can be observed high
correlation between the two CEI indices and between the same topological metric computed
using different weights.
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Table 5.4: The matrix of the Spearman’s rank correlation coefficients. Comparison between
the top 10 most vulnerable lines accordingly to the CEI indices (AC and DC) and to the 16
spectral graph metrics (4 metrics and 4 weights for each metric).
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Figure 5.4: Comparison between AC and DC solver with respect to the variability in the
flow-based vulnerability metric. The analysis is performed for the cascading index due to single
line failure and random load profiles.

sample). A 2-sigma rule has been used to robustly rank the 5 most vulnerable lines un-
der uncertainty the results are compared to the deterministic case. Using of a 2-sigma
rule means that the rank is based on the upper tail of the vulnerability distribution
(i.e. the value selected for the ranking includes 97.73% of the vulnerability realisations
if assumed normally distributed). The result significantly changes if compared to the
deterministic results presented in Table 5.3. Table 5.6 shows the results for the un-
certainty quantification on the cascading index applying the AC and the DC solvers.
Accordingly to the AC results, the 5 most vulnerable lines are l15´21, l15´24, l3´24, l6´10

and l21´22, whilst for the DC result the most vulnerable lines are l15´21, l15´24, l3´24,
l16´19 and l14´16. The overall computational time needed for the power flow analysis
was about 7-8 minutes. On the other hand, the time needed to perform the Topological
Analysis method was significantly lower, just 68 seconds were needed (i.e. about 17
seconds for each line weight).

The effect of parameter imprecision on the vulnerability result is also assessed.
Sources epistemic uncertainty considered are: 10 % imprecision intervals on the 34 lines
susceptances, which are attributable to design tolerances. Both the imprecision on Bl
and the aleatory uncertainty in the load profile are propagated using a double loop MC
approach and without mixing aleatory and epistemic components. Previous analysis
suggested that the metrics adopted to assess the vulnerability of the power grid G vary
monotonically with respect the imprecise parameters Bl. Thus, the upper and lower
bounds on the CDFs can be efficiently approximated by random search within the ver-
tex boundaries of the hyper-rectangle IX “ r0.95B1, 1.05B1s ˆ ...ˆ r0.95B34, 1.05B34s.
Five-hundred random realisations of Bl from the epistemic space are generated in the
outer loop and forwarded to the inner loop where a classical MC samples 500 load
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wij “ fij wij “ PRij wij “ fij wij “ PRij
Rank Expected µ2 +2σ Expected λG +2σ
1 l7´8 l7´8 l16´17 l16´17

2 l15´24 l11´14 l17´18 l14´16

3 l5´10 l14´16 l14´16 l7´8

4 l1´5 l16´19 l17´22 l17´18

5 l3´24 l20´23 l15´16 l6´10

Rank Expected RG +2σ Expected ρG +2σ
1 l15´24 l11´14 l16´17 l16´17

2 l1´5 l14´16 l17´18 l14´16

3 l3´24 l16´19 l14´16 l17´18

4 l5´10 l1´5 l17´22 l17´22

5 l1´3 l20´23 l15´16 l16´19

wij “ fij wij “ PRij wij “ fij wij “ PRij
Rank Expected µ2 +2σ Expected λG +2σ
1 1 1 0.36 0.25
2 0.84 0.82 0.10 0.10
3 0.77 0.81 0.09 0.09
4 0.72 0.77 0.06 0.09
5 0.71 0.72 0.03 0.08

Rank Expected RG +2σ Expected ρG +2σ
1 0.57 0.53 0.35 0.26
2 0.56 0.51 0.09 0.12
3 0.43 0.49 0.08 0.09
4 0.4 0.45 0.05 0.05
5 0.39 0.44 0.03 0.03

Table 5.5: The most vulnerable lines for the IEEE 24 nodes reliability test system accordingly
to the expectations plus 2σ of topological vulnerability measures.

Rank Expected CEIAC+2σ Expected CEIDC+2σ
1 l15´21 1.05 l15´21 1.84
2 l15´24 0.59 l15´24 1.07
3 l3´24 0.57 l3´24 1.02
4 l6´10 0.51 l16´19 0.69
5 l21´22 0.29 l14´16 0.62

Table 5.6: The 5 most vulnerable lines accordingly to the CEI expectations plus 2σ. Com-
parison between AC and DC results.
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Figure 5.5: Quantification of the variability of spectral vulnerability metrics due to N ´1 line
failures and random load profiles.
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Figure 5.6: Quantification of the variability of spectral vulnerability metrics due to N ´1 line
failures and random load profiles.
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Figure 5.7: An example of output P-boxes obtained using advanced UQ methods. The
vulnerability is greatly affected by aleatory uncertainty, but also epistemic uncertainty plays a
role (metrics computed for wij “ PRij).

realisations. The vulnerability is obtained as a P-box and an example is depicted in
Fig.5.7 which presents 4 CDF envelopes (i.e. P-boxes) for the 4 considered metrics and
weight wij “ PRij . For sake of synthesis, only vulnerability scores due to failure of
l11´14 are plotted (other lines produces analogous results). In can be noticed that the
aleatory component is dominating the uncertainty associated to the spectral vulnera-
bility metrics. The effect of parameters imprecision has been quantified and it resulted
small but observable. Same uncertainty sources have been propagated on the cascading
index CEI solving the network using the DC power flow method. The P-boxes of CEI
and for two of the most vulnerable lines have been reported in Fig.5.8. Especially for
the failure of the line connecting node 15 to node 21 the CEI precision results highly
affected by parameter tolerances. This is an interesting result showing that some failure
scenarios are more sensitive to a data deficiency, tolerance imprecision and epistemic
uncertainty.

5.7.2 Results: N-k line failures

Higher order N ´ k contingencies are analysed using the Algorithm 3 presented in
Section 5.6. The contingency analysis is carried out by increasing damage sizes, i.e.
k “ 1, .., 8. The random number of failures NC is set equal to 1000 for each damage
size k. Fig.5.9 shows that the average topological vulnerabilities computed weighting
adjacency elements by susceptances, which result increasing for increasing k. It is
interesting to notice that average drops in spectral radius and the natural connectivity
result very similar and that have the lower gradient with respect to the contingency
size. Conversely, the mean drop in algebraic connectivity has the higher gradient and
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Figure 5.8: An example of output P-boxes for the CEI indices associated to two vulnerable
lines in the system. The index associated to line l15´21 is greatly affected by both epistemic
and aleatory uncertainty.
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Figure 5.9: Comparison between the expected vulnerability when facing anN´k contingencies
using different spectral metrics. Adjacency built using Bij as weights.

for a contingency of type N ´ 8, it results close to 1. This indicates that it is highly
unlikely to face an N ´8 failure which keeps the power grid fully connected (i.e. µ2 ‰ 0

for the damaged network). Furthermore, the relative drop in algebraic connectivity will
be of little use to analyse higher order contingencies (i.e. the vulnerability result will
be likely equal to 1).

5.8 Discussion

The vulnerability of the IEEE 24 nodes reliability test system has been analysed.
Different metrics have been compared in ranking contingencies and the uncertainty

109



due to load demands variability and line parameters imprecision has been quantified.

The comparison between pure topological and extended topological approaches
shows significant correlation (similarities) between the ranking results. Spectral
analysis of the network requires a moderate computational cost for obtaining a full
spectrum of eigenvalues and eigenvectors for each contingency; significantly less than
the cascading indices. The higher computational complexity is attributable to the (at
least two) power flow solutions which have to be computed to obtain the cascading
indices. Of course, the larger the network size the higher will be the computational
cost for the analysis. Nevertheless, adjacency matrices for real world power network
are often sparse matrix and, therefore, dedicated approaches can be used to speed up
the procedure when just few eigenvalues are needed, e.g. spectral radius and algebraic
connectivity. In this case, the on-line applicability of the spectral vulnerability metric
for contingency ranking also accounting uncertainties might be feasible.

However, the spectral vulnerability metrics, even if enhanced by electrical engineer-
ing concepts, seem unable to fully capture the complexity of the network operation,
i.e. major difference has been observed between cascading index results and results
using extended topological approaches. Nevertheless, many of the lines which have
been ranked using cascading indices resulted in a null contribution to the vulnerability
(due to null post-failure overload severity). This might be regarded as a limitation of
the CEI metric which has not been able to fully capture all the relevant consequences
of certain line failures.

The uncertainty in vulnerability metrics, due to the load demands variability
and lines parameters imprecision (tolerances) has been quantified. This provides a
more robust identification of the critical components. The line ranking results under
uncertainty differ from the deterministic results, although some of the most critical
line contingencies have been similarly identified. Analysing the output P-boxes, it has
been observed that the vulnerability computed using spectral vulnerability metrics and
power flow as the weighting factor is greatly affected by the stochastic load profile. Also
tolerance imprecision (epistemic uncertainty) has a non-negligible effect, although its
contribution to the uncertainty seems less significant on spectral vulnerability metrics.
Conversely, some of cascading indices show high sensitivity to parameters imprecision.

As expected, the uncertainty propagation using advanced uncertainty quantification
techniques was very demanding, especially for the power-flow methods. This is a clear
limitation of the advanced UQ approach which makes it difficult to apply to on-line
analysis. Nevertheless, the method is powerful and versatile and can be effectively used
to point out how much of the output uncertainty is reducible by further data collection

110



(i.e. due to lack of information). This can be useful in may ways. For instance, a
decision makers can use the method to to determine if a power grid is robust, if it is
vulnerable, or if the available information is not sufficient to provide a clear answer to
questions relating to the network ability to withstand targeted or random contingencies.

To summarise, select good vulnerability metrics for the identification of relevant
contingencies is not an easy task. Among the different metrics considered in this work,
pure topological metrics present two relevant features: 1) less information is gener-
ally required (only the structure of the grid was needed); 2) uncertainty associated
to operative variables (e.g. load demand) and imprecision associated with power grid
parameters are not affecting the metrics. These may be regarded as positive features,
nonetheless, it might be argued that the pure topological metrics (being less sensitive
to variability) are less effective in capturing complex behaviours which are typical of
varying operative states in power grids. Although a correlation analysis pointed out
some similarity between topological metrics and the cascading indices, their capabilities
for contingency ranking prospects are still questionable. Further comparisons between
graph-theory methods and traditional approaches are necessary.

5.9 Conclusions

In this work, a novel framework for assessing power grids vulnerability has been pre-
sented. The vulnerability assessment framework is embedded to advanced uncertainty
quantification methods used to quantify the level of epistemic and aleatory uncertainty
on the results. Single line and multiple line contingencies have been analysed and
their vulnerability ranked with respect to topology-based metrics, flow-based metrics
and accounting for model imprecision and stochastic loads. Four spectral vulnerability
metrics have been computed using four different weighting factors (taken from litera-
ture and newly defined) and used to assess the robustness of a modified version of the
IEEE 24 nodes RTS. Different effects of epistemic and aleatory uncertainty on network
operational weaknesses (i.e. AC and DC overflow cascading models) and structural
vulnerabilities have been discussed and relevant differences in the contingency ranking
have been pointed out. Major differences in ranking results are attributable to the dif-
ferent vulnerability metrics rather than to different line weights. In case that only one
vulnerability metric is selected, the choice of metric must be done with a high degree
of care and done so whilst accounting for all the relevant sources of uncertainty which
may generate misleading results.
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Chapter 6

Power Grid Resilience:
Weather-Induced Effects, Data
Deficiency and a Power-Flow
Emulator
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6.1 Abstract

A generalised uncertainty quantification framework for resilience assessment of
weather-coupled, repairable power grids is presented. The framework can be used to
efficiently quantify both epistemic and aleatory uncertainty affecting grid-related and
weather-related factors. The power grid simulator has been specifically designed to
model interactions between severe weather conditions and grid dynamic states and
behaviours, such as weather-induced failures or delays in components replacements. A
resilience index is computed by adopting a novel algorithm which exploits a vectorised
emulator of the power-flow solver to reduce the computational efforts. The resilience
stochastic modelling framework is embedded into a non-intrusive generalised stochastic
framework, which enables the analyst to quantify the effect of parameters imprecision.
A modified version of the IEEE 24 nodes reliability test system has been used as
representative case study. The surrogate-based model and the power-flow-based model
are compared, and the results show similar accuracy but enhanced efficiency of the
former. Global sensitivity of the resilience index to increasing imprecision in parameters
of the probabilistic model has been analysed. The relevance of specific weather/grid
uncertain factors is highlighted by global sensitivity analysis and the importance of
dealing with imprecision in the information clearly emerges.
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The power grid is the largest man-made critical infrastructure and is extremely
complex in both its operations and structure. The weather conditions drifting towards
extremes and the increasing use of renewable energy sources are tightening the
interactions between power network states and the external environment. Reliabil-
ity/availability analysis frameworks have, then, to incorporate weather models and
consider interactions between grid states and environmental states, accounting for
relevant sources of randomness (i.e. aleatory uncertainty) but also for parameters
values imprecision (i.e. epistemic uncertainty).

Power network reliability is a well-defined mathematical concept [67]. Many
frameworks for reliability assessment have been proposed in the past, which generally
focus on known threats such as N ´ 1 or N ´ 2 failures paradigms [160] or on a
predefined contingency set [1]- [98]. System resilience broadens the reliability concept
by accounting for low-probability-high-consequence events (such as severe weather
conditions [102]) and recovery process of the system. A generally accepted definition of
resilience still has to be formulated, an example being ‘the network ability to withstand
high impact low probability events, rapidly recovering and improving operations and
structures to mitigate the impact of similar events in the future’ [104]- [103]. It can be
argued that a main difference between a reliable power grid and a resilient power grid
is that, in the latter, low-probability-high-consequence events (e.g. extreme weather
events) are specifically considered and handled, with the ability to learn from past
occurrences. To achieve this, a comprehensive analysis of the relevant sources of
uncertainty should be performed. In particular, lack of data is generally affecting
low probability events. To improve overall robustness of the analysis, it is uttermost
important to develop and improve frameworks capable of tackling (effectively and
efficiently) data deficiency issues. A rigorous quantification of the lack of data affecting
extreme low-probability-high-consequence events is necessary.

In the last years, many studies have focused on analysing the effect of extreme
weather events on the power grid risk and reliability. Some research was carried out
with the support of international organizations [82]; other focused on different extreme
events such as floods, ice storms, strong wind gusts and more [104]- [82]- [23]- [75]-
[122]- [4]- [152]. More recently, Cadini, Zio and Agliardi [23] proposed a probabilistic
reliability/availability assessment framework extended from Ref. [4]. The framework
incorporates a sampler of severe weather conditions and models weather-induced
effects on the grid’s components failures and replacements. One of the challenges
for the application of the framework is the high computational cost. This is mainly
attributable to the number of calls to the cascading failure model (i.e. the power-flow
solver): ’...analysis of a more realistic grid is probably still feasible, although more
complex analyses, e.g. including uncertainty and sensitivity analyses or optimizations,
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would require either to resort to processor clusters, or to identify strategies for accelerat-
ing the computations, possibly based on the use of surrogate, approximating models’ [23].

In general, the time needed to compute the load curtailed can be quite small (e.g.
that of a single optimal power flow evaluation); this is especially true if the power
network size is modest. Unfortunately, optimisation problems cannot be vectorised
and power flows have to be solved one-at-a-time. Consequently, any analysis for which
a large number of power flow evaluations are needed may result computationally
untreatable. Examples of such costly analysis are global sensitivity analysis [134],
cascading failures analysis [23], or imprecise (generalised) uncertainty quantification
analysis [36]. To perform such computationally demanding analysis, a significant
reduction in the computational complexity (while reducing marginal accuracy) is
needed and emulators can be adequate for this aim. A surrogate model, also known
as emulator or meta-model, is a numerically cheap mathematical approximation of a
computationally expensive realistic model [12]. Some examples of popular meta-models
are Artificial Neural Networks [86]- [6], Poly-Harmonic Splines [78] and Kriging
models [33]. Surrogates have been extensively applied to reduce time expenses of
numerically burdensome models and few works have attempted to use meta-models
to analyse power grids, see for instance [7]- [10]- [5]- [137]- [26]- [162]. N. Amjady et
al. [5] proposed an emulator to assess the power system reliability providing as input
forced outage rates. Silva et al. employed artificial neural networks to monitor voltage
magnitudes [137]. Chen et al. [26] adopted a surrogate-based strategy for optimal
power flow inequality constraints aggregation. To the Authors knowledge, none of the
reviewed papers attempted to mimic the relationship between the grid components
state vector, load profile and power load curtailed within a resiliency assessment
framework.

Probabilistic reliability assessments of power grids are traditionally carried out
with reference to a well-defined probabilistic characterisation of the uncertain output,
whose calculation generally requires a large body of empirical information. A sufficient
amount of samples are necessary to properly estimate the underlying probability
distributions parameters and often, due to technological limits or time/cost constraints,
the available data is not sufficient for accurately estimating all relevant parameters [94].
In those situations, expert assumptions are made on the probabilistic model, which can
lead to erroneous conclusions, overestimation of the system performance and a false
sense of confidence [14]. Data scarcity often affects the analysis of power grid resilience
and safety [2]. In fact, consider the highly reliable components (e.g. transformers,
underground cables, etc.) of which power grids are made. Those components will
likely fail only a few times during their life span (or possibly even never). The
lack of statistical failure data makes it difficult to characterise the failure behaviour
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of these components with confidence. In this situation, a common practice is to
estimate the failure rates of the components by considering the few available failure
occurrences in similar components. This procedure, so-called “data pooling” [94],
assumes similar elements behave as described by the same probabilistic model. This
is a rational assumption, but when (similar) components operate differently (e.g.
close/far from their thermal limits or in harsh/mild environments) or undergo different
maintenance/repairing policies, such assumption is rarely true. In practice, different
factors influence the components, leading to different failure behaviours even for
identical components. In those situations, it is advisable to relax the assumption
of a precise probabilistic model, for instance, by accounting for imprecision in the
distribution parameters (e.g. in the estimation of components failure rates and events
occurrence rates) [14]- [124]. Generally speaking, a set of plausible distribution families
can be considered for describing imprecision (for instance, an envelope of Weibull,
Exponential, Normal, etc. CDFs modelled using a non-parametric P-box). However,
dealing with several distribution families was not the aim of this work. In this research,
the parameters of the probability distribution families (e.g. used to sample the high
wind event duration and intensity) and of the components of the grid-weather model
are assumed affected by an increasing level of imprecision.

In this chapter, a generalised framework is proposed for (imprecise) probabilistic
resilience assessment of power networks. The framework has been designed to capture
complex coupling between weather conditions and power grid operations, by incorpo-
rating weather-influenced failures and repairs of the grid’s components. An Artificial
Neural Network (ANN) is trained to emulate the total load curtailed given specific
lines failures and the load profile, and has been embedded within the framework to
increase computational efficiency. Comparison between the novel surrogate-based
framework and the original solver shows significant improvement in efficiency at the
expense of a small reduction in accuracy. Aleatory uncertainty is accounted for and
epistemic uncertainty is associated with imprecision and lack of knowledge. Both types
of uncertainty are propagated by generalised probabilistic methods based on Credal
sets and Fuzzy sets. The sensitivity of the resilience index to parameters imprecision
is quantified. Aleatory uncertainty propagation and generalised uncertainty propa-
gation (i.e. accounting also for imprecision) are performed and the ANN capabilities
tested against the full power-flow. The results again show that the use of the ANN
meta-model allows advanced sensitivity analysis to be performed on the parameters
of the probabilistic model at the expense of a small reduction in accuracy but with a
significant gain in computational time.

The rest of the chapter is organised as follows. Section 6.2 introduces the probabilis-
tic model for coupling weather conditions and grid states. The emulator is presented in
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Section 6.3. Section 6.4 presents the overall modelling and computational framework.
In Section 6.5 the generalised probabilistic framework based on Credal sets is described.
The case study and results are presented in Section 6.6. Section 6.7 presents a discussion
of the findings from an applicative perspective and Section 6.8 closes the chapter.

6.2 A Probabilistic Model for Weather-Grid Coupling

A power grid topology can be represented by a graph GpN , Eq, where i denotes a node
within the node set N and pi, jq the link between node i and j in the line set E [73]-
[66]- [163]- [74]. Denote with NL the number of loads, with Nl the number of lines and
with Ng the number of generators in G.
Optimal-Power-Flow (OPF) methods can used to solve the network power dispatch
problem [89]- [71]. In the adopted formulation, loads can be curtailed if necessary.
This has indeed very high cost for the grid and will occur only if the cost minimization
problem can not be solved otherwise, for instance, if load demand exceeds power capacity
or to avoid line overloads. Mathematically, the problem is defined as follows:

min
Pg ,Lcut

fpPg, Lcutq (6.1)

where the cost function depends on the power generated and the load curtailed (Lcut).

6.2.1 Power Grid Resilience Index

The Expectation of Energy-not-Supplied (ErENSs), has been commonly used as a reli-
ability index in a number of studies as well is previous chapter of this thesis. Although
initially conceived as a reliability indicator, it has been claimed it is also suitable to the
resilience concept [44]. Indeed, it is worth recalling that ErENSs is not full capable of
capture relevant resilience features, such as how fast the performance of different hazards
in potential future scenarios and lack an economic dimension. The design of compre-
hensive resilience measures capable of capturing all relevant features is a challenging
research topic itself and is further discussed in the concluding session of this thesis. For
the aim of this framework, the ErENSs is a sophisticated enough indicator of resilience
and can be obtained by averaging contributions of Ns independent simulations:

ErENSs “

Ns
ř

i“1
ENSi

Ns
(6.2)
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where the Energy-not-Supplied, ENS, for a given simulation period Tsim, here consid-
ered to be 1 year, is obtained as follows:

ENS “
Tsim
ÿ

t“1

ÿ

iPN
Lcut,i,t ¨ t (6.3)

where Lcut,i,t is the load curtailed at each time t and each node i, obtained solving the
minimisation problem in Eq. (6.1). The ENS due to a failure event f can be obtained

as
Tf
ř

t“1

ř

iPN
Lcut,i,t ¨ t, where Tf is the duration of the failure event.

6.2.2 Weather-Dependent Failures

In this work, weather events can trigger failures in the network. The network state
is therefore identified by the combination of a ‘normal weather’ failure mode and the
‘severe weather’ failure mode. A normal weather model represents weather-independent
effects such as ageing, malicious attacks or manufacturing errors in general. A severe
weather model describes failures which are triggered by extreme weather conditions,
for instance, lightning-induced dielectric breakdowns or wind-driven structural failures.
High winds storms and lightning storms are here considered and, for simplicity but
without loss of generality, the entire network is assumed facing the same weather con-
ditions. The random occurrence of failures in ‘normal’ weather conditions is modelled
as a Homogeneous Poisson process (HPP) [4]:

P pNf ptq “ kq “
rλn ¨ ts

k

k!
e´λn¨t k “ 0, 1, .., N (6.4)

where λn r occh¨km s represents the line failure rate in normal weather conditions,
P pNf ptq “ kq is the probability that k failures occur in the network in the period p0, ts
and Nf ptq is the number of failures per km of grid line occurring in the period p0, ts
and measured in r occkm s.

The severe weather events (e.g. high wind and lightning storms) are affected by
uncertainty due to climate changes and inherent variability. In general, events are more
likely to occur during specific periods of the year. The occurrence of severe weather
events is modelled by a Non-Homogeneous Poisson Process (NHPP) [4]:

P pNeptq “ kq “
rVeptqs

k

k!
e´Veptq k “ 0, 1, .., N (6.5)

where Veptq represents the time dependent occurrence rate of the severe weather event
e, P pNeptq “ kq is the probability that k events occur in the period p0, ts and Neptq is
the number of events of type e occurring in the period p0, ts. The quantity Veptq can be
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obtained as:

Veptq “

ż t

0
vept1qdt1 (6.6)

where vept1q is the time-varying occurrence rate of the event e. In this model, lightning
storms and high wind speeds are considered as threatening environmental conditions
e P tlg, wu. In Ref. [4], the ratios vwptq and vlgptq of occurrence of these conditions
are evaluated on a monthly basis and assumed to be stepwise constants, as depicted in
Fig. 6.1.
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Figure 6.1: The variable occurrence rate of wind storm events, solid line, and lightning events,
dashed line (data taken from [4]).

Once a severe weather scenario occurs (i.e high wind and/or lightning storm), its
intensity and duration are described by characteristic historically fitted, probability
distribution functions. Specifically, the wind storm intensity is obtained as follows [4]:

Wwptq “Wcrt `∆wptq (6.7)

where Wwptq is the wind speed intensity at time t for the wind event w, Wcrt is the
‘critical’ wind speed assumed to be 8 rms s and ∆w is a random surplus of the critical
wind speed threshold. The intensity of a lightning storm is quantified by its lightning
ground strike density Ngptq, measured as the number of ground-flashes (or ground-
strikes) per unit of time and area r occ

h¨km2 s. The variability of the ground flash density
is assumed log-normally distributed, with parameters fitted based on historical records.
The probabilistic model for wind storm duration (Dw), lightning storm duration (Dlg)
and the respective intensities are summarised in Table 6.1.

High wind speeds can directly or indirectly damage the line structure, e.g. by
friction-induced fatiguing of structure’s joints or by moving/breaking trees branches in
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Distribution Scale(a) Shape(b)
Dw Weibull 9.89 1.17
Dlg Weibull 0.96 0.85
∆wptq Weibull 1.23 1.05

Mean(µNg) Standard Deviation(σNg)
Ngptq log-Normal -5.34 1.07

Table 6.1: Probability distributions for intensity and duration of severe weather events [4].

the proximity of the line. Lightning strikes can damage lines, for instance triggering
insulator dielectric breakdown. By considering an overhead line as made of subcom-
ponents in series (the insulation and the mechanical structure) and assuming that the
individual subcomponent failure depends on different physical phenomena, the total
failure rate can be obtained as follows [4]:

λptq “ λn ` λwpWwptqq ` λlgpNgptqq (6.8)

were λw is the contribution to the total line failure rate per km due to high wind speed
at time t and λlg the lightning storms contribution. Note that it is possible, although
very unlikely, to face the simultaneous occurrence of a lightning storm and a high wind
event.
The contribution to the line failure rate due to high wind is expressed as follows [4]:

λwpWwptqq “ λn

ˆ

Wwptq
2

W 2
crt

´ 1

˙

αw (6.9)

were αw is a regression parameter obtained from failure data. The failure rate due
to a wind event has a strong relation with the wind intensity, following a quadratic
law. It can be observed that for wind speed less or equal to the critical wind speed
(Wwptq ďWcrt) the wind contribution to the failure rate is null.
The contribution to the line failure rate due to lightning is obtained as follows [4]:

λlgpNgptqq “ λnβlgNgptq (6.10)

βlg is a regression coefficient fitted on historical data and the line failure rate is linearly
related to the lightning event intensity. According to [23], the failure rate of the generic
line λiptq expressed in [occh ] can be obtained from the total failure rate by multiplying
it by the line length (li).

6.2.3 Weather-Dependent Repairs

Delays in the repair of power grid components can be caused by, for instance, ineffective
communication between all of the parties involved (e.g. non-cooperative landowner) or
harsh weather which slows down the identification of the trouble location (e.g. heli-
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copters can not be sent to find the fault location and report back). Recently a weather-
dependent repair model has been proposed, reflecting the realistic sense that the effi-
ciency of repairing crews is strongly affected by the external weather conditions [23].
The model assumes that: (1) a crew of repairmen is dispatched with no delay as soon
as a failure in one line occurs, (2) the network becomes fully functional as soon as
failed lines are replaced, (3) the time of the failure transient is negligible with respect
to the time to repair. It is clear that the time needed to fully replace an overhead line
increases if the crew operates in harsh weather conditions. In particular if wind and/or
lightning events occur, the normal average repair speed (νnorm) is assumed to decrease
accordingly to the intensity of the severe weather condition. The repair speed can be
defined as follows [23]:

νrepair “

$

’

’

’

&

’

’

’

%

νnorm
1`η¨pWwptq´Wcrtq

, if Wwptq ěWcrt & Ng “ 0

νnorm
1`ψ¨Ng

, if Wwptq ăWcrt & Ng ą 0

νnorm
r1`η¨pWwptq´Wcrtqs`r1`ψ¨Ngs

, if Wwptq ěWcrt & Ng ą 0

(6.11)

where ψ and η are positive parameters. The normal speed νnorm is set equal to 20 [%h ]
(i.e. 5 [h] are needed to replace a line in normal weather conditions), whilst ψ and η
are set to 40 and 0.4 following engineering judgement [23]. Also in this work, a line
under repair is not subject to further failures (i.e. its time-to-replacement monotonically
decreases) whilst repaired/working lines are subject to failures.

6.2.4 Probabilistic Load Demand

Load demands generally display time and space correlations, i.e. the variability of the
different power demands depends on the time of the day and their relative position
within the network. Stochastic models for load demand have been designed to account
for time correlation, e.g. [87]. The model employed here considers daily variability of
the average load demand and neglects seasonal and holiday effects. The aggregated load
connected to a node i at a time t (Liptq) can be described by a Normal distribution
with parameters fitted on historical data [122]:

fpLiptqq “
1

a

p2πqσLiptq
e
´
Liptq´µLi

ptq

2σLi
ptq2 (6.12)

where Liptq is the load demand at node i at hour of the day t, µLiptq is the load mean
value and σLiptq is the standard deviation at node i P N and time t.

122



6.3 Artificial Neural Networks: OPF Load Curtailed Em-
ulator

A reliable estimation of the Energy-Not-Supplied requires a high number of simulations
to be performed, i.e. many ENS have to be computed over the simulation time Tsim
and even more OPF solved (one for each failure). In general, the time needed to solve
a OPF is not too large, which is especially true if the size of the network is modest. If
necessary, the solution can be fastened by employing parallel computing strategies, i.e.
distributing the OPF to several cores in a computer cluster. Unfortunately, the optimi-
sation problem cannot be vectorised and the OPF has to be solved one-at-a-time. This
can be computationally time-costly if a large number of model evaluations are necessary.

To address the computational challenge, an Artificial Neural Network (ANN) is
trained to emulate the power flow solution. The jth ANN input vector assembles the
loads demanded in the nodes and the state vector of the lines connecting the nodes
Ij “ rL,Xsj . The load vector for the failure state f is Lf “ rL1, ..., LNLsf , whilst
the lines states vector is Xf “ rX1, ..X|E|sf , where L1 P R` and Xi P t0, 1u and
the cardinality of the link set is the number of lines in the grid Nl “ |E |. The jth

input vector Ij is associated to a positive real valued output, the total load curtailed
Yj “

ř

iPN Lcut,i,j , obtained solving the minimisation problem in Equation 6.1 (i.e.
solving optimal power flow as described in Section 3.3).

6.4 The Proposed Efficient Framework

Fig. 6.2 presents the flow chart of the proposed framework, where the Artificial Neural
Network is employed to speed up the calculations. The algorithm starts by inputting
parameters of the stochastic model (e.g. shape and scale parameters, critical wind speed,
failure rates, etc.) and two main blocks can be seen. The first block is, in essence, an
event sampler whilst the second uses the emulator to calculate the load curtailed for
each sampled failure event f . Then, the ENS is obtained by Eq. 6.3.

First, ‘normal’ time to failures and occurrence time of severe weather events are
sampled using HPP and NHPP, respectively. Then, a vector of Times-to-Events (TTEs)
is obtained by sorting the occurrence times and recording the type of event (i.e. normal
failure, lighting and/or strong wind). Then, a sequential Monte Carlo (S-MC) starts,
see as example Refs. [23]- [143]. This iterative procedure terminates if the maximum
simulation time is reached (t ą 8760 [h]) or all the sampled events (normal failure and
severe weather) have been analysed. The S-MC procedure is summarised as follows:
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t=MU e=cU f=M

+HPP> Sample Normal failure Events in [M U Tsim]
+NHPP> Sample Extreme Weather Events in [M U Tsim]
and sort the Time to Events +TTE>

Set t equal to TTE+e>
Is the event i
a normal Failure?
yes

no Sample Extreme Weather
Intensity and Duration +Td>

Compute failure rates
and Sample TTF

Is tATTF+f>> tATd ?
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Sample line failures Xf
and load profile Lf for t

set t=tATdU f=fAc

Update Repair Speed
and Time to Repair +TTR>

Is t> Tsim ?
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no

Compute Load Curtailed
using Surrogate Model

Compute ENS+f> using
Lcut+f> and TTR+f> and
sum each contribution

Output: EnergyRNotRSupplied in [MUTsim]

Update Repair Speed
and Time to Repair +TTR>

Input:

f=fAc

Is e the last event ?
ore=eAc

Figure 6.2: A simplified flow-chart for the resilience analysis by sequential Monte Carlo
simulation. The probabilistic model is used to sample failures and repairs whilst the Artificial
Neural Network is used to compute load curtailments.
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1 Set t equal to the occurrence time of first event, TTE(e “ 1) and failure index
f “ 0. If e is a ‘normal’ failure, go to point 2 otherwise go to point 3.

2 Set f “ f ` 1 and sample a line i from the probability mass distribution with
values λn¨li¨Xf,i

řNl
l“1 λn¨li¨Xf,i

and l “ 1, .., Nl. Set Xf,i “ 0, sample a load profile (Lf )

accordingly to t. Set the failed line replacement to 100 % and save Xf and Lf
for f . Update % from full replacement using TTE(e ` 1)-TTE(e) and normal
replacement speed. Then, go to point 5.

3 Sample the severe weather duration (Te) and intensity (Ng, ∆w), compute the
increased total failure rate λptq using Eq.6.8. Sample time-to-failure using the
HPP, and by inputting λptq and the interval [t t ` Te]. If at least one failure
event is sampled, set t equal to the next failure occurrence and proceed to step 4,
otherwise go to step 5.

4 Set f “ f ` 1, sample one failed line using the probability mass function
λptq¨li¨Xf,i

řNl
l“1 λptq¨li¨Xf,i

and l “ 1, .., Nl. Sample a load profile (Lf ) accordingly to t. Set

the failed line replacement to 100 % and save the lines states vector Xf and load
profile Lf for failure f . Update lines % from full replacement, using the reduced
repairing speed computed as in Eq. 6.11. If the severe weather failures are all
evaluated go to step 5, otherwise set t equal to the occurrence time of the next
failure and repeat point 4.

5 If t ą Tsim or e is the last event in the TTE list, stop simulation. Otherwise, set
e “ e ` 1 and t “ TTEpeq. If it is a ‘normal’ failure, go to point 2 otherwise go
to point 3.

The first unit is used to produce a set of Xf and Lf to be used as vectorised input
to a previously trained ANN. The ANN input is an pNl ` NLq ˆ F matrix of load
profiles and state vectors, where F is the total number of failures faced by the grid in
1 year. A total of Ns independent histories (Ns S-MC) are simulated until convergence
of the ErENSs is obtained.

Fig.6.3 displays a simplified version of the methods used within the framework. The
procedure used to simulate Ns independent grid years is displayed in the top panel on
the left-hand side. The method run by first selecting the OPF solver or the efficient
method based on the ANN emulator (i.e. presented in Fig.6.2). If the (time costly)
S-MC optimal power flow solver is selected, the procedure displayed in the top panel
on the right-hand side run Ns times (the diagram has been adapted from [23]). If the
efficient method is selected, the procedure displayed in Fig.6.2 run Ns times.
The bottom panel in Fig.6.3 summarises the overall work flow for the analysis. This is
used to present, from an intuitive point of view, how the efficient resilience assessment
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Figure 6.3: A diagram for the overall work flow of the analysis (in the bottom panel). The
procedure to compute the ErENSs using the S-MC (in top panel on the left-hand side) and the
(computationally demanding) algorithm adapted from [23] (in the top panel on the right-hand
side).
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method is embedded within an advanced uncertainty quantification framework to assess
effects of imprecision (i.e. introduced in Section 6.5). The analysis starts by simulating
Ns grid years using the S-MC OPF solver. Then, the ANN is trained as explained in
Section 6.3 and its results are validated against the original model (S-M OPF). Once
the emulator is validated, the imprecision affecting the poorly known parameters of the
grid and weather models is characterised using Credal sets. To conclude, the effect of
imprecision on the grid resilience is quantified using advanced uncertainty propagation
methods and global sensitivity analysis.

6.5 A Generalised Framework for Uncertainty Quantifica-
tion

The assessment of power grid reliability indices is traditionally based on well-defined
probabilistic models. The definition of these models may require a large body of empir-
ical information to estimate the parameters of the underlying probability distributions.
This is not always available in practice and imprecision in the parameters of the
deterministic and probabilistic models must be accounted for [14]. Bayesian methods
and set-theoretical methods are two of the most widely applied paradigms to deal
with epistemic uncertainty. The formers are entirely based on probability theory and
use probability distributions to describe lack of knowledge (e.g. uniform probability
distributions). The set-theoretical models [91] use set-valued descriptors (e.g. intervals)
to model epistemic uncertainty, e.g. intervals [93], random sets [146] or fuzzy sets [92].
Intervals are used when variables are only known to be bounded within lower and upper
limits whereas Fuzzy Sets can be used to simultaneously analyse different bounded
sets. This is particularly helpful if the bounds are not precisely known [124]- [36].
Credal sets theory [63] provides strong mathematical foundation to express sets
of probability distributions and is for this reason employed in this work to explore
different levels of imprecision, which can affect the parameters of the probabilistic model.

In this work, the parameters of the coupled grid-weather model are considered af-
fected by imprecision and the ErENSs bounds are approximated by searching its min-
imum and maximum values within the hyper-parameter space. Credal sets (C) are
defined for the imprecisely defined model parameters to express sets of probability dis-
tribution functions. Given the imprecision affecting the problem, the expectation of the
Energy-not-Supplied becomes imprecise and can be obtained as follows:

«

ErENSs
ErENSs

ff

“

»

—

–

sup
păpăp

inf
păpăp

fi

ffi

fl

ż

Θppq
FXpx;pqdx (6.13)
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Figure 6.4: The mean of the load value per node and hour of the day, µLiptq, for the modified
IEEE-RTS [140].

6.6 A Case Study

The framework has been applied on a modified version of the IEEE-RTS 24 nodes
power grid [140], which counts 24 nodes, 17 loads, 32 generating units, 33 transmission
lines, 5 transformer links and a total installed capacity of 3.405 GW. The adopted line
failure rates in normal weather conditions and lengths are presented in Tab. 6.2, the
transformers branches have been assumed fully reliable, i.e. λn,l “ 0 where lines l are
10-11, 10-12, 9-11, 9-12 and 3-24. The mean load per hour of the day and node is
presented in Fig. 6.4, the standard deviation σLiptq is assumed to be 10 % of the mean
for each t and node.

6.6.1 Results: OPF Sequential Monte Carlo

Depending on the number of failures sampled within each simulated year, sequential
Monte Carlo analysis requires between 4 seconds and 10 seconds on a standard desktop
machine (8.0 GB RAM and 2 GHz processors) using the full OPF model. Fig.6.5 shows
9 failure events randomly occurred between hours 27 and 293. The first 3 lines failures
(displayed by thicker lines) occur independently and in either normal or severe weather
conditions. The time needed to replace the line increases due to high wind, 5.3 [h] for
the first event and 6.2 [h] for the second, without additional failures. Conversely, the
failures of lines 15-24, 12-13, 8-9 and 15-16 are driven by a common generating event
(high wind), which occurs at hour 177 and with random duration of 3 hours. It can
be observed that the repair crew is unable to restore the lines in such a small time
window.
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Multiple Failures due to Strong Wind Occurance

Figure 6.5: An example of 9 sequential failure events extracted from a simulated year for
the grid. Strong Wind occurrence (from hour 177 to hour 180) increase line failure rates and
decrease the repair speed, hence, leading to 4 common cause outages.
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Line i li [km] λn,i [ occ
km¨year ] Line i li [km] λn,i [ occ

km¨year ]

1- 2 4.8 1.24 ¨10´3 11-13 53.1 0.19 ¨10´2

1- 3 88.5 0.144 ¨10´2 11-14 53.1 0.19 ¨10´3

1- 5 35.4 0.233 ¨10´3 12-13 53.1 0.19 ¨10´3

2- 4 53.1 0.184 ¨10´3 12-23 107.8 0.121 ¨10´3

2- 6 80.4 0.149 ¨10´3 13-23 96.5 0.126 ¨10´3

3- 9 49.8 0.19 ¨10´3 14-16 43.4 0.218 ¨10´3

4- 9 43.4 0.2 ¨10´3 15-16 19.3 0.42 ¨10´3

5-10 37.0 0.23 ¨10´3 15-21 54.7 0.19 ¨10´3

6-10 25.7 0.32 ¨10´3 15-21 54.7 0.19 ¨10´3

7- 8 25.7 0.29 ¨10´3 15-24 57.9 0.177 ¨10´3

8- 9 69.2 0.16 ¨10´3 16-17 28.9 0.3 ¨10´3

8-10 69.2 0.16 ¨10´3 16-19 25.7 0.33 ¨10´3

21-22 75.6 0.15 ¨10´3 17-18 16.0 0.5 ¨10´3

20-23 24.1 0.35 ¨10´3 17-22 117.4 0.115 ¨10´3

20-23 24.1 0.35 ¨10´3 18-21 28.9 0.3 ¨10´3

19-20 44.2 0.215 ¨10´3 18-21 28.9 0.3 ¨10´3

19-20 44.2 0.215 ¨10´3

Table 6.2: The line failure rates in normal weather conditions and line lengths. The trans-
formers links are assumed perfectly reliable and not reported within the Table.

6.6.2 Results: Traditional UQ and Artificial Neural Network Perfor-
mance

A parallel computing strategy has been used to solve 15000 independent years; the
computational time required for its completion is about 1 hour and 15 minutes on a 20
cores machine cluster with 8.00 Gb ram and a 2.00 GHz Intel Core i5-4590T processor.
The average number of failure events per each Tsim “ 8760 [h] (1 year) is estimated to
be 311, of which 73 normal failures 223 wind-induced failures and 15 lightning-induced
failures. The ErENSs is 147.5 [MWh/yr] with coefficient of variation (CoV) 0.175, and
slowly converges after about 2000 simulations.

A total of 100 years worth of failures (about 31000 events) are randomly selected.
For each failure event f , the lines state vector (Xf ) and load samples (Li,f ptq) are
assembled and 70 % are used as training set for an ANN. The remaining samples
are used for validation (15 %) and testing (15 %). The network architecture consist
of 1 input layer counting 50 nodes, 2 hidden layers (45 and 35 nodes) and 1 single
node output layer. The architectural selection was done by trial and error of hidden
layers and number of neurons per layer. The topology with lowest mean squared
error between the emulator output and the original model target was selected. The
regression plot is presented in the top panel of Fig. 6.6 and the regression coefficient is
about 0.98-0.99. This is considered a satisfactory result and no further optimization of
the ANN architecture was performed. In the bottom panel of Fig.6.6, a comparison
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Figure 6.6: The regression plots for the ANN (top panels) and an example of load curtailed
computed using the OPF compared to the ANN result (bottom panel).
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between the total load curtailed
ř

iPN Lcut,i,t computed using the OPF and the ANN
(diamonds marked line) is reported.

The algorithm displayed by Fig.6.2 has been run 15000 times (i.e. 15000 simulated
years). The ANN has been used to calculate the load curtailed for each failure event
and the ENS is obtained. In Fig. 6.7, the ErENSs computed is displayed by the
dotted line and converges to 145.5 [MWh/yr] with CoV 0.185. Compared to the OPF
result (solid line) the error of the ANN is just 0.5 % but the reduction in computational
time is remarkable 98.8%: in fact, just 58.4 seconds were needed to solve the 15000
independent S-MC histories (on the 20 workers cluster).
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Figure 6.7: Comparison between ErENSs computed using ANN and the OPF solver.

6.6.3 Results of the Generalised Uncertainty Quantification

The probabilistic model describing the uncertainty affecting the grid and weather is
extended to include the Credal set

C “ tFXpx;pq|p P R45 p ă p ă pu (6.14)

The imprecise parameters p accounted in the analysis are:

p “ rβlg, αw,Wcrt, aDw , bDw , aDlg , bDlg , a∆w , b∆w , νnorm, µNg , σNg , λn,is

The parameters uncertainty (intervals) are characterised using the quantity ι which
quantifies the extent of the imprecision. Defining the estimated values of the pa-
rameters as pest, lower and upper bounds are defined as p “ pestp1 ´ ιq and
p “ pestp1 ` ιq, respectively. The levels of imprecision considered in this analysis
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Figure 6.8: Comparison between Fuzzy ErENSs computed using the original OPF model and
the ANN surrogate.

are ι “ t0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06u. A value of ι=0 means that the probabilistic
analysis is performed assuming a perfect estimation of the parameters and equal to
pm. If ι=0.06, the true value of the parameters is ˘6 % imprecise. Based on previous
analysis, the number of samples used to compute ErENSs is set equal to 5000 and
each Credal set is propagated by minimising (inf) and maximising (sup) the ErENSs
expectation within the bounds p P rp,ps. In this work, inf ErENSs and supErENSs
are obtained using a derivative-free stochastic optimiser, which constrains p within the
hypercube rp,ps [110]- [36]. Fig.6.8 shows the nested bounds for the ErENSs displayed
as a Fuzzy set. The model based on power-flow (dashed line) and the surrogate model
(solid line) are compared. The ANN was effective in capturing the imprecision trend
expected from the original model. It is clear that the larger is the imprecision in the
parameters, the wider the bounds of the resilience index are. The analysis performed
using the original OPF model were very time consuming, thus, for comparison purposes
just two ι “ t0, 0.06u were considered. It is also interesting to notice that, although
the level of imprecision for each input was relatively modest (maximum of 6 %), it
produces a severe imprecision on the model expectation (21-29 %). This is partially
confirming earlier results in the structural reliability analysis context [36], where sensi-
tivity of the system reliability to the imprecision in the probabilistic model parameters
has been pointed out. This issue has proven to be particularly relevant if many im-
precise variables are involved. In those cases, a solution based on double loop Monte
Carlo would have been infeasible, or extremely time consuming. The proposed approach
and obtained results are indeed useful from a decision maker perspective, for instance,
to identify the maximum level of input imprecision (e.g. tolerances) in order to as-
sure a minimum power grid resilience standard (i.e. ErENSs less than a predefined
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Input OPF ANN Output (ANN)
ι r%s ErENSs ErENSs ErENSs ErENSs ι r%s E ι r%s E
0 146.9 146.9 145.5 145.5 0 0
1 n.a. n.a. 139.9 151.7 3.8 4.3
2 n.a. n.a. 135.0 158.5 7.2 8.9
3 n.a. n.a. 129.8 163.4 10.7 12.4
4 n.a. n.a. 123.9 172.3 14.8 18.4
5 n.a. n.a. 119.8 177.2 17.6 21.8
6 116.7 185.3 114.5 187.3 21.3 28.8

Table 6.3: Comparison between upper and lower ErENSs bounds obtained using the ANN
(6 Credal sets) and the OPF (2 Credal sets). The levels of imprecision in the input model
parameters and corresponding imprecision in the expectation upper and lower bounds is also
presented.

threshold level). Considering for example a minimum allowed resilience level, set to be
ErENSs ď 1.6 105 [ Wh

year ], then, the maximum level of tolerance imprecision for the
considered parameters has to be limited to just 2%.

6.6.4 Variance-Based Global Sensitivity

Variance-based sensitivity aims at quantifying the importance of a model input by
assessing the expected reduction in model output variance induced by a reduction in
input variances (e.g. knowing the value of the model input with certainty). The total
effect sensitivity index, i.e. the first order (additive) and higher order (interactions)
effects of factor i, can be expressed as 1 ´ V arrErY |Xi“xiss

V arrY s , where the variance of the
expectation of the output Y when fixing the input Xi to the value xi is divided by the
total variance of the output. Similarly, the first order sensitivity index can be obtained
as V arrErY |Xi“xiss

V arrY s and it quantifies the additive effects in the model [134].

Figure 6.9: Total sensitivity indices.
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Global sensitivity analysis has been performed using Y “ ErENSs and assuming
uniform distributions for the imprecise parameters in the range rpestp1´ 0.1q,pestp1`
0.1qs. For simplicity, the normal failure rates of the lines are set constant to the nominal
value parameters. The analysis is performed using the method proposed in Ref. [134]
and employing the surrogate-based Sequential Monte Carlo (see flow chart in Fig. 6.2).
The results are presented in Fig. 6.9. It can be observed that the model is more sensitive
to changes in the replacement speed in normal weather conditions and to changes in
the wind duration scale parameter (aDw), and to wind events over lightnings events in
general.

6.7 Discussion on the use of the framework in a practical
context

In real situations, power grid analysts have to complete the needed assessments
quickly, with a limited amount of time. Unavoidably, the information available for the
assessment will be limited and in some cases, when the data does not suffice, expert
judgment elicitation is the only viable way for carrying out the assessment.
Both problems of computational efficiency and limited data availability have been
discussed and tackled in this work. To overcome lack of data issues, a generalised
uncertainty quantification framework has been adopted. Computational efficiency
has been greatly improved by using a novel emulator of the optimal power flow and
a simulation tool allows the impact of extreme weather on the power grid to be assessed.

When the information is poor, inconsistent or limited, it is common in practice
to proceed with some (strong or weak) assumptions based on expert judgement. In
the power grid reliability assessment context, a typical situation is to have just a few
available failure samples for a given (reliable) component type. Similarly, in a weather
modelling context, few samples of a (rare) weather event will be available and it will
be difficult to assess with confidence its occurrence rates. In those cases, the lack of
data is probably a most relevant source of uncertainty. Nevertheless, it is common to
assume a well-defined probability model to describe the component failure behaviour
(e.g. precise point-valued failure rates) or the weather occurrence (e.g. precise events
occurrence rates). These assumptions will likely lead to an underestimation of the
effect of the uncertainty. To improve the overall robustness of the analysis, it is
necessary to rigorously assess the effect of lack of data on the results. Within an
imprecise-information scenario (e.g. few samples, probability distribution not specified
or unknown, or known but with vague parameters, conflicting and limited knowledge,
linguistic incomprehension, single or multiple intervals, etc.), generalised (imprecise)
probabilistic approaches can be employed to model lack of information with fewer
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constraining assumptions. Once the uncertainty is propagated through the model, the
result will discriminate between the non-reducible uncertainty (aleatory components,
randomness, variability) and reducible uncertainty (epistemic component, lack of
information). This can trigger a discussion on whether it is necessary to collect more
data (which can be costly) to guarantee a probabilistic standard, for instance, the
1-day-in-10-years loss of load probability standard or an expected energy not supplied
less than a predefined threshold level.

The proposed framework can be used to tackle those types of issues and within
reasonable time thanks to the improvement in computational efficiency by the emula-
tor. As an additional example, consider the sensitivity results. The results show that
the lack of data on the repairing crew speed in normal weather conditions and for the
probabilistic model of the wind is affecting the most the grid resilience precision. Con-
sequently, a decision-maker which recommends an imprecision reduction strategy (i.e.
reduce the tolerance intervals on the parameters) would suggest starting the data col-
lection to refine the wind model and the repairing crews model first. In this way, the
assessment would profit the most in term of resilience index imprecision reduction and,
if the score is not satisfactorily low, a strategy to enhance the network resilience can be
discussed (e.g. by reducing the average repairing crew intervention time).

6.8 Conclusion

A generalised uncertainty quantification framework for power grid resilience assessment
has been presented. A power grid stochastic model accounts for interactions between
severe weather conditions, transmission line failures and repairing crew working effi-
ciency. The stochastic model needs accurate estimation of its parameters and data is
often insufficient or limited. Thus, the framework has been extended adopting a gener-
alised, non-intrusive uncertainty quantification method. An efficient solution has been
proposed employing a vectorisable Artificial Neural Network to emulate the relation
between load curtailments, lines states vectors and load profiles. The proposed surro-
gate reduces the computational time of about 99 % although a small error is inevitably
introduced in the results. The surrogate accuracy was tested against the original model
based on OPF; both classical and generalised stochastic framework were tested and
pointed out the goodness of the emulator. The effect of imprecision was tested by prop-
agating nested Credal sets to the Expected-Energy-Not-Supplied. Results pointed out
that the precision of the estimator decreases rapidly for increasing imprecision in the
model parameters. To conclude, a global sensitivity analysis pointed out which among
the wind, lightning and replacement related parameters are key drivers for the uncer-
tainty in the proposed power grid resilience index.
The main contributions of this work can be summarised as follow:
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1 A novel simulation method based on a computationally cheap emulator of the
optimal power flow is presented and used to speed up the computation of the
expected energy not supplied by the network;

2 The method greatly reduces the computational cost of the time-demanding anal-
ysis (up to a 99% reduction);

3 Problems of lack of data are discussed and the efficient simulator, embedded within
a generalised uncertainty quantification framework, allows the effect of lack of data
to be quantified;

4 Sensitivity analysis has allowed to point out which among the imprecise parame-
ters have to be prioritised if further data were collected (for highest reduction of
the imprecision in the resilience index);
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Chapter 7

Effect of Load-Generation
Variability on Power Grid
Cascading Failures
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7.1 Abstract

Cascading failures events are major concerns for future power grids and are generally not
treatable analytically. For realistic analysis of the cascading sequence, dedicated models
for the numerical simulation are often required. These are generally computationally
costly and involve many parameters and variables. Due to uncertainty associated with
the cascading failures and limited or unavailable historical data on large size cascading
events, several factors turn out to be poorly estimated or subjectively defined. In order
to improve confidence in the model, sensitivity analysis is applied to reveal which among
the uncertain factors have the highest influence on a realistic DC overload cascading
model. The 95th percentile of the demand not served, the estimated mean number of
line failures and the frequency of line failure are the considered outputs. Those are
obtained by evaluating random contingency and load scenarios for the network. The
approach allows to reduce the dimensionality of the model input space and to identifying
inputs interactions which are affecting the most statistical indicators of the demand not
supplied.
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7.2 Introduction

Assure high-reliability of electric power supply is a major concern for next-generation
power grid. Power grid should have the ability to withstand know threats, such as N-1
and N-2 contingencies, but also poorly understood low-probability-high-consequence
events such as N-k contingencies leading to cascading sequences. Due to the inherent
complexity of cascading failure events, associated mathematical models are, generally,
analytically not solvable. This is mainly due to the high dimensionality of the problem
and to the complex, non-linear and dynamic behaviour characterizing domino failures.

Computational models for the simulation of the cascading sequences are used
to provide a solution to the cascade problem. A wide variety of models have been
proposed in the past, aiming at analysing different system behaviours and with
several different objectives. For instance, models employing the AC power flow (PF)
equations, such as the Manchester model [96] or the linearized AC PF model [70], the
ORNL-PSerc-Alaska (OPA) model [39] and DC PF-based models have been developed
to simulate realistically cascading failures sequences.

Numerical models for cascading simulation have to be adequately designed, cali-
brated and validated [18]. Calibration and validation should use available historical
cascading data, which is (in particular for large size cascade events) quite limited [133]
or affected by imprecision [131]. Consequently, the resulting model verification and
calibration is very challenging and affected by high level of uncertainty. Uncertainty
will result particularly prominent when the model is used to simulate rare events
leading to very severe consequences.
To increase confidence in the cascading model results and better understand the
relation between its inputs and outputs, all the relevant sources of uncertainty affecting
the analysis should be quantified. Dimensionality and complexity issues are often
involved in cascades analysis problems and the numerical simulators generally reflect
these problems. In fact, the simulators often are time costly and involve a large number
of uncertain variable and parameters.

Sensitivity analysis methods are useful to deal with both dimensionality and
uncertainty issues. These methods can be used to reveal which sources of uncertainty
are affecting the most the model output and can be used to reduce the dimensionality
of the aleatory space by prioritizing only the most important factors. This is indeed a
useful information, necessary to better comprehend inputs-outputs relations otherwise
hidden within the complexity of the model.
Global sensitivity analysis methods are often employed by uncertainty analysts to
sharpen the view of the problem. Sensitivity analysis is sometimes regarded as a
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fundamental part of works that involves the assessment and propagation of uncertainty.
Applying global sensitivity analysis methods, insights can be gained regarding the
input-output mapping and the key drivers of uncertainty can be clearly revealed.

In this chapter, an integrated framework for sensitivity analysis and power grids
cascading analysis is proposed. The framework can be used to identify and prioritize
the most relevant uncertain input factors by revealing their effect on different cascading
failures indicators. Both system-level indicators, describing the overall impact of
cascading failures, and component-level indicator, focusing on a single component per-
formance, are considered. One of the aims of this work is to provide some guidance for
the application of given data sensitivity analysis and screening methods to engineering
practitioners, promoting their potential.

The framework is tested on a modified version of the RTS96 IEEE system.
Two uncertainty cases are analysed, first accounting for only the uncertainty in
the load demand. Then, a more complex and realistic case has been considered by
accounting for randomness in the generators costs, thus inflating the dimensionality
of the input space, i.e. more flexibility for the generators outputs. The analysis
allows to point out which among loads and generator costs uncertainties is affecting
the most the outputs of cascading failures model and for a modest computational effort.

The rest of the chapter is organized as follows: In Section 7.3 the algorithm for
cascading failure simulation and the performance indicators are introduced. A bench-
mark case study, the RTS96 system, tests the framework in Section 7.4, 2 uncertainty
cases are analysed. Section 7.5 closes the analysis with a discussion on the results and
conclusions.

7.3 The cascading model

A model for the simulation of steady-state operations of electric networks has been
developed and calibrated in [19]. It can be used to simulate the initial contingencies
that trigger the cascading events and estimate the post-contingency system states.
The initial generation dispatch for each load demand is computed with a Security
Constrained Optimal Power Flow, which takes into account the generators constraints,
line flow constraints, voltage angles constraints and, optionally, the N-1 security
constraints. After line tripping, DC power flow is used to evaluate the post-contingency
power flow. The failures propagate in the grid through line over loading. Frequency
control and protections, voltage protections and a variety of other automatic and
realistic regulations and remedial actions are also included in the model.
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A simplified flow chart of the cascading failures analysis is presented in Figure 7.1
which have been adapted from Ref [19]. The algorithm starts by loading power grid
data, selecting the steady-state solver (e.g. DC-SCOPF) and a list of N-k contingencies.
Then, for each contingency N-k, islands are identified, frequency deviation assessed and
under frequency load shedding performed if necessary. Once power balance is restored,
line flows are evaluated using the power flow solver and the lines exceeding their flow
limit are removed from the grid topology. This process is repeated until grid stability
is reached. The considered outputs are the total Demand-Not-Served (DNS) due to
contingency N-k and lines failure indicator functions indicating if a line tripped during
the simulation of the N-k contingency.

For simplicity, the contingency list has been obtained by random sampling N-1, N-
2 and N-k line contingencies. To better identify and select critical failure scenarios,
methods such as the N-2 contingency screening, eg. the method presented in [62], could
have been employed. However, a smart exploration of the contingency space was not
the main aim of this work. Once the list is obtained, repeated N-k contingency analysis
are performed as presented in Algorithm [19].

7.3.1 System and components performance indicators

Several output measures can be obtained from the cascades model. In this work, we
focus on 2 system-level indicators, which provide insights on the grid performance as a
whole, and on Nl components performance indicators, one for each line in the system.

The indicators are the 95th percentile of the DNS cumulative distribution function
p95pDNSq, the average total number of lines tripped µpNf q and the line outage fre-
quency Pf,l, defined as follows:

µpNf q “

Nc
ř

c“1

Nl
ř

l“1

Il,c

Nc
; Pf,l “

Nc
ÿ

c“1

Il,c
Nc

;

where Nc is the total number of contingencies listed, Nl is the total number of lines in
the system and Il,c is the indicator function for line l and contingency c. The indicator
function will result 0 if the line survived the cascading propagation initiate by contin-
gency c or 1 if the line failed, e.g. due to flows redistribution leading to an overload.

7.4 A case study

The IEEE RTS96 power grid is used to test the methods and the cascading model
and Figure 7.2 displays the grid layout. The power grid data can be found in [53]
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Figure 7.1: The flow chart of the algorithm for cascading failures analysis developed in Zurich
ETH by Li Bing and Giovanni Sansavini [19].
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and are not reported here for sake of synthesis. In this analysis, two representative
uncertainty cases, named Case A and B, are considered. In Case A, the uncertainty
associated with the load demand is explicitly modelled. In the second case, CASE B,
also random generation costs are accounted for, thus introducing uncertainty in the
power dispatch and increasing the dimensionality of the random input space. The DC
cascading model presented in section 7.3, is employed for the solution of the cascading
problem. A predefined contingency list is selected and includes 2444 line contingencies.
The list counts the full set of N-1 and N-2 line failures and a set of 1000 random
N-3 line failures. To simplify comparison between uncertainty cases and the different
sensitivity analysis methods, the contingency list has been kept the same throughout
all the analysis (i.e. the random set of N-3 contingencies has been sampled just once).

7.4.1 CASE A: Random loads

The first uncertainty case A assumes that uncertainty affects the 17 loads in the system
due to inherent variability. The analysts lack better information regarding the vari-
ability affecting the load at each node, thus, the uncertainty in Li is simply modelled
by assuming uniform distributions. The distribution parameters have been selected to
cover a range of values around the design loads and based on experts opinion:

Li „ Up0.5Ld,i, 1.2Ld,iq i “ 1, .., Nl

where Ld,i is the design load of node i as presented in [53] and the number of lines is
Nl “ 17.

Once the uncertainty sources are characterized, a preliminary uncertainty analysis
is performed. Monte Carlo method is used to propagate 5e4 samples of the load profile.
For each load sample, the cascading failure model is solved 2444 times, one for each
contingency listed. The percentile of the demand not served, the average number
of failed lines and the line outage frequencies are computed for each load sample as
described in Section 7.3.1. The p95pDNSq results are summarised in Figure 7.3. This
figure presents a so-called cobweb plot, also known as parallel coordinates plot. It
is a simple and effective way of visualising random input and output spaces in high
dimensions. The X-axis reports the inputs loads and the percentile of the DNS (on
the far right). The Y-axis reports the normalized inputs and output realisations of the
Monte Carlo method. Each one of the dark dashed line in the background corresponds
to one load profile realisation and corresponding p95pDNSq obtained through Nc model
evaluations. Red solid lines are conditional samples, which highlight only the load
combinations leading to the highest p95pDNSq. It can be observed, later confirmed
by Morris’ and Sobols’ analysis, that there is a strong influence of some of the loads
(e.g. in nodes 15 and 18) on the extremes of the DNS. In particular, when the power
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Figure 7.2: The IEEE RTS96 system, the connections between the 24 nodes, the lumped
generators (32 generators) and the location of the aggregated loads (17 arrows).
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demanded in nodes 15 and 18 is small, the risk of facing severe DNS scenarios increases.

Morris and Sobol’s indices have been computed aiming at better investigating which
among the uncertain factors are key drivers for the output uncertainty. The Morris
indices are obtained by selecting 250 random input vector realisations (saved from the
MC) and computing incremental ratios δ as described in section 2.8.1. The Sobol’s
first order coefficents are obtained using given data sensitivity approaches, see ref. [114]
for further details. This is a very convenient approach as for calculations, as the data
from the MC run can be used for this and with essentially no-extra computational
cost. On the other hand, total Sobol’s indices require higher computational cost and
in this work the Liu and Owen method [117] is used for their computation.

The result relative to the DNS percentile and the average total number of line
failed are presented and compared in Table 7.1. The Morris statistics and Sobol’s
main and total effect indices are also graphically presented in the µ´ σ plot in Figure
7.4 and in Figure 7.5, respectively. Both methods identify L18 and L15 as the most
influencing factors for the DNS and average number of line failures. Less relevant but,
not to be neglected, is the effect of loads in nodes 8, 19 and 16. Morris analysis has the
advantage of revealing an inverse relation between L18, L15, L19 and the outputs (see
figure 7.4) which could not be revealed only using Sobol’s indices. On the other hand,
an increment in load 8 lead to higher risk of extreme DNS.

This result can be explained looking at the generators production profile, which is
obtained solving the pre-contingency DC-SCOPF with objective of minimizing genera-
tion costs. The generators in nodes 18, 22 are associated with lower generation costs.
This lead to the maximum exploitation of their production capacity, independently from
the load profile realisation. Consequently, when electrical power is consumed in loco
(e.g. the loads close to these generators as in 15 and 18), less power will be flowing
from the ’northern’ area to the ’southern’ area of the network. On the other hand, if
less power is demanded in, for instance, nodes 18 and 15 (or more power in 8), this
increases the risk of higher loads on line such as 24, 25 and 26 which connecting the
upper part of the grid with the lower part, and with it the risk of facing more severe
post-contingency scenarios.

7.4.2 CASE B: Random loads and generator costs

The second uncertainty case B extends case A by accounting for generators costs un-
certainties. The generation cost variability is characterised by uniform probability dis-
tributions as follows:

Cg,i „ Up0.9, 1.1q i “ 1, .., Ng
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Figure 7.3: The parallel plot of the Monte Carlo loads and p95pDNSq realizations. In red
solid line the conditional samples which lead to the highest p95 and in the background (black
dashed lines) all the MC realisations.
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Figure 7.4: The Morris diagram for uncertainty case A and for the DNS percentile output.
The mean and standard deviation of the EEs are reported on the X and Y axis, respectively.
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Table 7.1: Sobol’s main and total effect mean and standard deviation for the elementary
effects for the uncertainty case A for the DNS percentile and average total failed lines outputs.

p95pDNSq µpNf q

Sobol Morris Sobol Morris
Si ST i µpδiq σpδiq Si STi µpδiq σpδiq

L1 0.01 0.00 0.01 0.03 0.01 0.00 -0.1 0.4
L2 0.01 0.00 0.01 0.03 0.00 0.00 -0.1 0.4
L3 0.02 0.02 0.02 0.08 0.02 0.01 -0.5 0.7
L4 0.01 0.00 0.01 0.03 0.01 0.00 -0.1 0.3
L5 0.01 0.00 0.02 0.03 0.01 0.00 0.0 0.3
L6 0.01 0.02 0.03 0.05 0.01 0.00 0.0 0.4
L7 0.01 0.03 -0.01 0.06 0.01 0.01 0.0 0.7
L8 0.04 0.03 0.06 0.08 0.03 0.05 0.4 0.7
L9 0.01 0.02 0.02 0.05 0.01 0.01 -0.2 0.7
L10 0.02 0.03 0.04 0.06 0.01 0.01 0.0 0.5
L13 0.01 0.04 -0.01 0.09 0.01 0.03 -0.4 0.9
L14 0.02 0.02 0.02 0.09 0.01 0.01 0.0 0.7
L15 0.29 0.40 -0.18 0.20 0.33 0.33 -2.1 1.7
L16 0.04 0.06 -0.05 0.09 0.03 0.02 -0.5 0.6
L18 0.39 0.44 -0.20 0.20 0.47 0.54 -2.7 1.9
L19 0.06 0.12 -0.08 0.13 0.03 0.05 -0.6 0.8
L20 0.03 0.06 -0.04 0.08 0.02 0.02 -0.5 0.7
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Table 7.2: Comparison between the top 5 most influencing factors according to the Sobol’s
main index and Morris mean and standard deviation. The output considered is the DNS
percentile.

rank Si |µpδq| σpδq

1 L8 L8 G18p1q

2 L3 G18p1q G13p2q

3 G18p1q L3 L8

4 G21p1q L6 G7p1q

5 L18 L18 L7

where Cg,i is the cost of the generating unit i and the number of generators Ng is equal
to 32. By assuming costs Cg,i distributed uniformly between 0.9 and 1.1, the economic
viability of the generators drastically changes if compared to case A. This lead to a
higher variability in the economic dispatch, i.e. generators in nodes from 18 to 22
will sometime produce less than their maximum capacity. This case study shows the
applicability of the method to larger input spaces and larger power grids. Furthermore
it shows the impact of different generation profiles, in combination with load demands,
on the cascading failures.

Similarly to the uncertainty case A, a Monte Carlo uncertainty propagation is
performed and the Sobol’s Si indices and Morris µpδq and σpδq have been calculated.
The 5 most influencing factors (among the 17 loads and 32 generator costs) affecting
the 95th percentile of the DNS are reported in Table 7.2. Multiple generators can be
found in the same bus and to simplify the notation, the relevant costs are presented
using the symbol Gkpjq, where j is the machine reference number within the bus k
where the generator is installed. Differently from case A, load in node 8 emerged as
the most relevant factor for the DNS percentile.

Figure 7.7 presents the mean of the EEs for the 17 loads and the 32 generators
costs. Similarly to case A, a reduction in loads 18 and 15 increase the risk of extreme
DNS. Conversely, a reduction of power demanded in nodes 3, 6 and 8 reduces the risk
of high DNS. Generators costs sensitivities result in similar trends. Specifically, an
increment in the costs of the generators in the lower part of the system increases the
risk of facing high DNS, this is primarily attributable to a penalisation of the power
production due to higher costs of e.g. nodes 16 and 21.

Uncertainty in the loads and generator costs has been propagated to the line outage
frequency indicator Pf,l. The resulting MC realisations are displayed using a box plot
in Figure 7.6. The X-axes shows the lines identification number and the Y-axes presents
the Pf,l values (red markers). Each box indicates the median (the central mark) and the
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Figure 7.6: The box plot of the Pf,l realisations corresponding to different load and generation
cost samples.

bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. It
can be observed that the line connecting node 7 to node 8 results in the higher failure
frequency and that lines in the lower voltage area of the grid (ID from 1 to 13) are more
prone to failure. This result is probably due to the lower thermal limit (175 MW) and
to the specific combination of grid topology, design load demanded in node 7 and 8 (125
and 171 MW, respectively) and generators in node 7 maximum lumped capacity (300
MW). Thanks to the sensitivity analysis, it has been possible to clarify which are the
factors responsible for this peculiar behaviour, i.e. better understanding which are the
variables which are contributing the most to Pf,7´8.
Main effect sensitivity indices have been computed for each line Pf,l to reveal which of
the input factors is affecting the most their variability. Results are presented graphically
with a bar plot in Figure 7.8 and reported in Table 7.3. Table 7.3 presents only the
factors leading to relatively high Si, i.e. greater than 0.08, and the corresponding
components. It can be observed that the variability in the line 7-8 outage frequency
is mainly affected by uncertainty in node 7 (generators and load). On the other hand,
uncertainty in L8 is not affecting much the variance of Pf,7´8 but it is the most relevant
factor for Pf,8´9, Pf,8´10.

7.5 Discussion

In this chapter, the sensitivity of a cascading failures model for power grids has been
analysed. Variance-based global sensitivity analysis indices, i.e. Sobol’s indices, have
been computed to reveal which among the uncertainty sources is affecting the most the
variances of the cascading failure model output. The Morris screening indices are also
obtained and compared to variance based indices to improve confidence in the results
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Figure 7.7: The tornado diagram presenting the mean o the elementary effects for the uncer-
tain factors considered in case B.

Table 7.3: The most influencing factors for the line failure probability. Factors leading to a
Si ą 0.08.

From To node Factors
7 8 L7 , G7p1q, G7p2q

8 9 L8

8 10 L8

15 21 L18, G18p1q, G21p1q

15 21 L18, G18p1q, G21p1q

16 17 L18

17 18 L18, G18p1q, G21p1q

17 22 L18, G18p1q, G21p1q

21 22 L18, G18p1q, G21p1q

and better understand dependencies between output and factors.

Different system-level and component-level indicators have been evaluated using
the cascading model. The selected metrics were the 95th percentile of the DNS, the
average total number of line failed and the frequency of line failure for each line. The
IEEE RTS96 power grid has been selected as a representative case study and used to
test the applicability of the methods to a real-world system. Two uncertainty cases
(Case A and Case B) have been investigated, which were characterised by an increasing
dimensionality of the aleatory space.

In the Case A, only load variability has been accounted for and the result suggested
that two uncertainties in the loads in node 15 and 18 are the major contributors to the
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Figure 7.8: The Si indices calculated for the 49 input factors and for the Pf,l outputs. The
factors from 1 to 17 are loads at different locations and last 32 are the generator costs.

extremes of the demand not served. A similar result is obtained for the average total
number of line failed. Morris had the advantage of showing a negative relationship
between the DNS and loads in nodes 15 and 18. In reality prices are indeed affected
by uncertainty, so a sensitivity analysis that assumes fixed prices (and therefore fixed
generator dispatch) might be misleading in identifying critical components in the
power grid. Thus, in the uncertainty Case B, the variability of the generator costs and
loads variability are both considered. The new economic setting changed the underling
behaviour of the network and, consequently, of the cascading evaluation process. The
Sobol’s and Morris’ analysis are fairly consistent in pointing out which among the
load and generators costs are the most relevant for the system output. The results are
quite different compared to case A, due to the difference in the economic setting of the
generators. In addition, the sensitivity of the lines outage frequency has been computed.

This analysis was performed to investigate more in detail some cascading-relevant
relationships between input loads, generators costs and line failures. The results are
very interesting from an engineering perspective and at least 2 results can be highlighted
which are helpful in a practical context:

• The vulnerable lines (i.e. prone to failure) and the most relevant factors affecting
Pf,l are identified (using sensitivity indices). This information can be helpful to
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support reliability-related decision, for instance, in deciding on weather it is better
to replace the line with one having higher capacity (i.e. if Pf,l high and is similarly
affected by all the input factor), or if it may be more useful to intervene on the
factors affecting Pf,l (i.e. if Pf,l high and sensitive to just few factors);

• When the uncertainty in the loads is identified as highly relevant for a system-
level indicator, it is advisable to consider actions such as allocation of distributed
generators or adopt peak-shaving (load variance reduction) control methods. This
can be beneficial to reduce the uncertainty in the reliability performance of the
network (reducing its variance).

The framework proved to be flexible and computationally quite cheap which is a re-
quirement for its application to more realistic large size power networks. This will be
the focus of future analysis.
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Chapter 8

Reinforcement Learning for
Optimisation of Power Grid
Operations and Maintenance
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8.1 Abstract

In this chapter, we investigate Reinforcement Learning (RL) for managing Operation
and Maintenance (O&M) of power grids equipped with Prognostic and Health Manage-
ment (PHM) capabilities, which allow tracking the health state of the grid components.
RL exploits this information to select optimal O&M actions on the grid components
giving rise to state-action-reward trajectories maximising the expected profit. A scaled-
down case study is solved for a power grid, and strengths and weaknesses of the frame-
work are discussed.
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8.2 Introduction

Modern power grids are complex systems, including many highly interconnected com-
ponents. Maximising the grid productivity while ensuring a safe and reliable delivery
of power is of uttermost importance for grid operators. This requires developing robust
decision-making frameworks, which give account to both the complexity of the asset
and the uncertainties on its operational conditions, component degradation, failure
behaviours, external environment, etc.

Nowadays, the grid management issue is further challenged by the possibility of
equipping grid elements with Prognostics and Health Management (PHM) capabilities,
which allow tracking the health state evolution. This information can be exploited by
grid operators to further increase the profitability of their assets [61,68,79,105,151,159].

Reinforcement Learning (RL) [142, 144] has been used in the last decades to
solve a variety of realistic control and decision-making issues in the presence of
uncertainty, including power grid management. In the RL paradigm, a controller (i.e.
the decision maker) learns from the interaction with the environment (e.g. the grid)
by observing states, collecting rewards and selecting actions to maximise the future
revenues, considering the aleatory uncertainties in the environment behavior. The
state-action-reward trajectories [42] can be gathered from direct interaction with the
real system (e.g. [17]), or from its realistic simulation [142]. This makes RL suitable to
power grid management optimization, as it can cope with both the complexity of the
asset and the unavoidable uncertainties related to its operation.

In [151], an RL framework based on Q-learning is proposed to solve constrained
load flow and reactive power control problems in power grids. Kuznetsova et al. [68]
develop an optimisation scheme for consumers actions management in the microgrid
contest and accounting for renewable volatility and environmental uncertainty. In [42],
a comparison between RL and a predictive control model is presented for a power
grid damping problem. In [79], the authors review recent advancements in intelligent
control of micro grids including few attempts using RL methods. However, none of
the revised works employs RL to find optimal combined Operation and Maintenance
(O&M) policies for power grids with degrading elements.

We present an RL framework to support O&M decisions for power grids equipped
with PHM systems, which seeks for the settings of the generator power outputs and
the scheduling of preventive maintenance actions that maximize the grid load balance
and expected profit over an infinite time horizon, while considering the uncertainty of
power production from Renewable Energy Sources (RES), power loads and component
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failure behaviors.

The rest of this work is organized as follows: Section 8.3 presents the RL framework
for optimal decision making under uncertainty. A scaled-down power grid application
is proposed in Section 8.4, whereas the results and limitations of RL are discussed in
Sections 8.5 and 8.6, respectively. Section 8.8 closes the chapter.

8.3 Modelling framework for optimal decision making un-
der uncertainty

As anticipated above, developing a RL framework for power grid O&M management
requires defining the environment, the actions that the agent can take in every state
of the environment, the state transitions the actions lead to and, finally, the rewards
associated to each state-action-transition step.

8.3.1 State space

Consider a power grid made up of elements C “ t1, ..., Nu, physically and/or
functionally interconnected, according to the given grid structure. Similarly to [30],
the features of the grid elements defining the environment are the Nd degradation
mechanisms affecting the degrading components d P D Ď C and the Np setting
variables of power sources p P P Ď C. For simplicity, we assume D “ t1, ..., |D|u,
P “ t|D| ` 1, ..., |D| ` |P |u and |D| ` |P | ď N .

The degradation processes evolve independently on each other according to a Markov
process defining the transition probability from state sdi ptq at time t to the next state
sdi pt ` 1q, where sdi ptq P t1, ..., S

d
i u @t, d P D, i “ 1, ..., Nd. Similarly, for the power

sources production, a Markov process defines the probabilistic dynamic of power setting
variables from spj ptq at time t to the next state spj pt` 1q, where spj ptq P t1, ..., S

p
j u @t,

p P P, j “ 1, ..., Np. Then, system state vector S P S at time t reads:

Sptq “
”

s1
1ptq, s

1
2ptq, . . . , s

|P |`|D|

N |P |`|D|
ptq

ı

P S (8.1)

8.3.2 Actions

Actions can be performed on the grid components g P G Ď C at each t. The system
action vector a P A at time t is:

aptq “
”

ag1ptq, . . . , ag%ptq, . . . , a|g||G|ptq
ı

P A (8.2)
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were action ag%ptq is selected for component g% P G among a set of mutually exclusive
actions ag% P Ag. The action set Ag% can include operational actions (e.g. closure
of a valve, generator power ramp up, etc.) and maintenance actions (e.g. preventive
and corrective). Constraints can be defined for reducing Ag% to a subset Âg% Ď Ag% .
For example, Corrective Maintenance (CM), cannot be taken on As-Good-As-New
(AGAN) components and, similarly, it is mandatory action for failed components.
In an optimistic view [30], both Preventive Maintenance (PM) and CM actions are
assumed to restore the AGAN state for each component. An example of Markov
process for a 4 degradation state component is presented in Fig.8.1, where circle
markers indicate maintenance actions and squared markers indicate other actions, i.e.
operational actions.

Operation Actions

Mainteinance Actions

 

AGAN

Deg1

Deg2

Fail

PM

PM

CM

PM

Figure 8.1: The Markov Decision Process associated to the health state of a degrading com-
ponent.
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8.3.3 Transition probabilities

Transition probability matrices are associated to each feature f of each component
c P P YD and to each action a P A, where f P t1, .., Ndu if c P D and f P t1, .., Npu

otherwise, as follows:

Pa
c,f “

»

—

—

—

—

—

–

p1,1 p1,2 ¨ ¨ ¨ p1,Scf

p2,1 p2,2 ¨ ¨ ¨ p2,Scf
...

...
. . .

...
pScf ,1 pScf ,2 ¨ ¨ ¨ pScf ,S

c
f

fi

ffi

ffi

ffi

ffi

ffi

fl

a

c,f

(8.3)

where pi,j represents the probability of transition from state i to state j of feature f of
component c and conditional to the action a in a time varying setting, i.e. Pa

c,f psj |a, siq.

The normalization propriety holds, i.e.
n
ř

j“1
pi,j “ 1. In practice, element pi,j of the

transition probability matrix Pa
c,f can be estimated as the relative frequency of the

measured component state to fall into the jth state at time t ` 1 provided that it was
at the ith state in the previous time step when the action a was taken.

8.3.4 Rewards

Numerical rewards are case-specific and obtained by solving a physic-economic model
of the system, which evaluates how good is the transition from one state to another
given that a is taken:

Rptq “ F pSpt` 1q , aptq , Sptqq P R

Generally speaking, there are no restriction on the definition of a reward function.
However, a well-suited reward function will indeed help the agent converging faster to
an optimal solution [141]. Further specifications will depend strongly on the specific RL
problem at hand and, thus, will be provided in section 8.4.3.

8.3.5 Reinforcement Learning and SARSA(λ) method

Generally speaking, the goal of RL methods for optimal control is to find the optimal
action-value function Qπ˚pS,aq, which provides an estimation of future revenues when
an action a is taken in state S, following the optimal policy π˚:

Qπ˚pS,aq “ Eπ˚

«

8
ÿ

t“0

Rptq|Sptq, aptq

ff

(8.4)

Among the wide range of RL algorithms, we adopt SARSA(λ), which is a temporal
difference learning methods (i.e. it changes an earlier estimate of Q based on how it
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differs from a later estimate) employing eligibility traces to carry out backups over n-
steps and not just over one step [142]. Details on SARSA(λ) are provided in Algorithm
4 in the Appendix.

8.4 Case study

A scaled-down power grid case study is used to test the RL decision making framework.
The grid includes: 2 controllable generators; 5 cables for the power transmission; 2
non-controllable RES which are connected to 2 loads and provide them electric power
depending on random weather conditions (Fig. 8.2). Then, |C|=11. Two traditional
generators (Gen1 and Gen2) are installed as displayed in Fig. 8.2 and controlled to min-
imize power unbalances on the grid. We assume that the 2 controllable generators and
links 3 and 4 are affected by degradation and, thus, are equipped with PHM capabilities
to inform the decision-maker on their degradation states, then D “ t1, 2, 3, 4u. The two
loads and the two renewable generators define the grid power setting, P “ t5, 6, 7, 8u

 

Gen 2

1

2

3 4

Gen 1

RES 2RES 1

Load 1 Load 2

PHM System 

6

7 8

5

Figure 8.2: The power grid structure and the position of the 4 PHM capabilities, 2 renewable
sources, 2 loads and 2 controllable generators.
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8.4.1 States and actions

In the case study, we consider Nd “ 1 degradation features, d “ 1, .., 4 and Np “ 1

power features p “ 1, .., 4. We consider 4 degradation states for the generators, sd1 “
t1, .., Sd1 “ 4u for d “ 1, 2, whereas three states are associated to the power lines
sd1 “ t1, .., S

d
1 “ 3u, d “ 3, 4. State 1 refers to the AGAN conditions, state Sd1 to the

failure state and states 1 ă sd1 ă Sd1 to degraded states in ascending order. For each
load, we consider 3 states of increasing power demand sp1 “ t1, .., S

p
1 “ 3u for p “ 5, 6

and three states of increasing power production are associated to renewable sources,
sp1 “ t1, .., S

p
1 “ 3u for p “ 7, 8. Then, the total number of state vectors combinations

is 11664 and the grid state vector at time t is defined as follows:

Sptq “ ts1
1, s

2
1, s

3
1, s

4
1, s

5
1, s

6
1, s

7
1, s

8
1u

The agent can operate both generators with the aim to maximise the system revenue by
minimizing unbalance between demand and production, while preserving the structural
and functional integrity of the system, g P G “ t1, 2u. Other actions can be performed
by other agents on other components (e.g. transmission lines), but being outside from
the control domain of the first agent those are assumed included in the environment.
Then, the action vector reads a “ ra1, a2s. Five O&M actions can be performed on
each controllable generator, for a total of 25 combinations, thus giving rise to a 291600
state-action pairs. The action set for each generator is the following:

Ag “ t1, .., 5u g P t1, 2u

where the first 3 (operational) actions affect the power output of the generator, changing
it to one of the 3 allowed power levels. The last 2 actions are preventive and corrective
maintenance actions, respectively. It is assumed that CM is mandatory for failed gen-
erators. Furthermore, highly degraded generators (i.e. Sdg “ 3, d “ 1, 2) are assumed
degraded in their operational performance and only the lower power output can be ob-
tained (only ag “ 1 action is allowed). Tables 8.1-8.3 display the costs for each action
and the corresponding power output of the generator, the line electric parameters and
the relation between state indices sp1 and the power variable settings, respectively.

8.4.2 Probabilistic model

State transitions may occur from time t to the next time step t ` 1 and are specifi-
cally defined for each feature of each component. The 2 loads have identical transition
probability matrices and also the degradation of the transmission cables and generators
are described by the same Markov process. Thus, for ease of notation, the component
subscripts have been dropped. Each action a P A is associated to a specific transition
probability matrix Pa

g describing the evolution of the generator health state conditioned
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Table 8.1: The power output of the 2 generators in [MW] associated to the 5 available actions
and action costs in monetary unit [m.u.].

Action: 1 2 3 4 5
Pg“1 [MW] 40 50 100 0 0
Pg“2 [MW] 50 60 120 0 0
Ca,g [m.u.] 0 0 0 10 500

Table 8.2: The transmission lines proprieties.
From To Am [A] X
Gen 1 Load 1 125 0.0845
Gen 1 Load 2 135 0.0719
Gen 1 Gen 2 135 0.0507
Load 1 Gen 2 115 0.2260
Load 2 Gen 2 115 0.2260

Table 8.3: The physical values of the power settings in [MW] associated to each state Sp1 of
component p P P .

State index sp1 1 2 3
p “ 5 Demanded [MW] 60 100 140
p “ 6 Demanded [MW] 20 50 110
p “ 7 Produced [MW] 0 20 30
p “ 8 Produced [MW] 0 20 60

by its operative state or maintenance action. It can be noticed that probabilities asso-
ciated to operational actions, namely ag “ 1, 2, 3, affect differently the degradation of
the component. For those actions, the bottom row corresponding to the failed state has
only zero entries. This is to indicate that operational actions cannot be taken for failed
generators, but only CM is allowed. The transition matrices for the considered features
are defined as follows:

Pad“1
d “

»

—

—

—

–

0.98 0.02 0 0

0 0.95 0.05 0

0 0 0.9 0.1

´ ´ ´ ´

fi

ffi

ffi

ffi

fl

d “ 1, 2 Pad“2
d “

»

—

—

—

–

0.97 0.03 0 0

0 0.95 0.05 0

´ ´ ´ ´

´ ´ ´ ´

fi

ffi

ffi

ffi

fl

d “ 1, 2

Pad“3
d “

»

—

—

—

–

0.95 0.04 0.01 0

0 0.95 0.04 0.01

´ ´ ´ ´

´ ´ ´ ´

fi

ffi

ffi

ffi

fl

d “ 1, 2

Pad“4
d “

»

—

—

—

–

1 0 0 0

0.5 0 0.5 0

0.5 0 0 0.5

´ ´ ´ ´

fi

ffi

ffi

ffi

fl

d “ 1, 2 Pad“5
d “

»

—

—

—

–

´ ´ ´ ´

´ ´ ´ ´

´ ´ ´ ´

0.15 0 0 0.85

fi

ffi

ffi

ffi

fl

d “ 1, 2
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Pa
d “

»

—

–

0.9 0.08 0.02

0 0.97 0.03

0.1 0 0.9

fi

ffi

fl

@ a, d “ 3, 4 Pa
p “

»

—

–

0.4 0.3 0.3

0.3 0.3 0.4

0.2 0.4 0.4

fi

ffi

fl

@ a, p “ 5, 6

Pa
7 “

»

—

–

0.5 0.1 0.4

0.3 0.3 0.4

0.1 0.4 0.5

fi

ffi

fl

@ a
Pa

8 “

»

—

–

0.5 0.2 0.3

0.4 0.4 0.2

0 0.5 0.5

fi

ffi

fl

@ a

8.4.3 Reward model

When the agent performs an action at time t; the environment provides a reward and
leads the system to its state at time t ` 1. The reward is calculated as the sum of 4
different terms: (1) the revenue from selling electric power, (2) the cost of producing
electric power by traditional generators, (3) the cost associated to the performed actions
and (4) the cost of not serving energy to the customers. Mathematically, the reward
reads:

Rptq “
6
ÿ

p“5

pLpptq´ENSpptq{∆tq¨Cel´
2
ÿ

g“1

Pg ¨Cg´
2
ÿ

g“1

Ca,g´
6
ÿ

p“5

ENSppT q¨CENS (8.5)

where Lp is the power demanded by component p, Cel is the price paid by the loads
for per-unit of electric power, Pg is the power produced by the generators, Cg is the
cost of producing the unit of power, Ca,g is the cost of the action a on the generator
g, ∆t is the time difference between the present and the next system state and it is
assumed to be 1 h, ENSp is the energy not supplied to the load p and is a function of
the grid state vector and lines and generators electrical proprieties and availability, i.e.
ENSptq “ GpS,Am,Xq where G defines the constrained DC power flow solver [132].
CENS is the cost of the energy not supplied. The costs CENS , Cg and Cel are set to 5,
4 and 0.145 monetary unit (m.u.) per-unit of energy or power, respectively.

8.5 Results and discussions

The SARSA(λ) algorithm (Algorithm 4 in the Appendix) has been used to provide
an approximate solution to the decision problem. The stochastic grid model is used
to sample control trajectories only, i.e. it provides a reward and a new state when
an action and the old state is provided as input. The SARSA method has been run
changing parameters setting and accumulating eligibility traces. The initial state
s “ Spt “ 0q has been selected for the episodic loop randomly, using a degradation-
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weighted probability mass function fSpsq9
|D|
ř

d“1

sd1. This sampling scheme is used to

better estimate action-value functions in rarely visited sates (i.e. low-probability states
with many failed/highly degraded components), which speeds up the convergence of
the SARSA method. For validation, Bellman’s optimality [15]- [54] has been solved to
provide a reference optimal action-value function. The Bellman’s results are in good
agreement with the SARSA results, as it can be seen from Fig. 8.3.
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Figure 8.3: The plot shows a comparison of the maximum Qπ˚pS,aq for 3 states indicative
of the different state-action value levels, obtained by SARSA(0.5) algorithm and T “ 50 (solid
lines) and the reference Bellman’s solution of the underlying Markov Decision Process (dashed
lines).

The SARSA(λ) results are summarised in Fig. 8.4, where the curves provide a
compact visualization of the distribution of Qπ˚pS,aq over the states for the available
25 combinations of actions. Three clusters can be identified: on the far left, we find
the set of states from which CM on both generators is performed; being CM a costly
action, this leads to a negative expectation of the discounted reward. The second
cluster (C 2 ) corresponds to the 8 combination of one CM and any other action on
the operating generator. The final cluster (C 1 ) of 16 combinations of actions includes
only PM and operational actions. If corrective maintenance is not performed, higher
rewards are expected.

In Fig. 8.5, each sub-plot shows the the highest expected discounted power grid
return, Qπ˚pS, aq, adopting the optimal policy, conditional to a specific degradation
states of the generators and for increasing electric load demand. It can be noticed
that if the generators are both healthy or slightly degraded (i.e.

ř2
d“1 s

d
1 “ 2, 3, 4) an

increment in the overall load demand leads to an increment in the expected reward,
due to the larger revenues from selling more electric energy to the customers. On the
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Figure 8.4: The Qps, aq values displayed using ECDFs and the 3 clusters.

other hand, if the generators are highly degraded or failed (i.e.
ř2
d“1 s

d
1 “ 7, 8), an

increment in the load demand leads to a drop in the expected revenue. This is due
to the increasing risk of load curtailments and associated cost (i.e. cost of energy not
supplied), and to the impacting PM and CM actions costs.

Figure 8.5: The maximum Qπ˚pS,aq (i.e. maximum expected discounted cumulative reward)
for increasing total load and different degrading condition of the generators.

8.5.1 Policies comparison

We have empirically found that SARSA(0.5) policies outperform SARSA(λ), λ “ 0 and
λ “ 1. Thus, two SARSA(0.5) have been further investigated, by setting the truncation
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Table 8.4: The MDP Bellman’s optimality and the RL results compared with suboptimal
policies.

MDP SARSA(0.5) Q50rnd Q100rnd

QS1 5719 5511 5555 4191 2028
QS2 2898 2577 2664 1297 -1229
QS3 -1721 -1816 -1813 -2956 -4288
Act top1 100 % 48.8 % 49.1 % 62.1% 24.8%
Act top3 100 % 66.5 % 66.5 % 71.4% 43.1%
ErRptqs 529.8 478.8 488.1 370.3 190.4
Ne - 5e5 5e5 - -
T - 50 250 - -

windows T to 50 and 250 time steps for each episode, respectively. Table 8.4 shows the
results of the SARSA(λ) algorithms (columns 3 and 4, respectively) and compares them
with the MDP (Bellman’s optimality) solution (column 2) and 2 artificial suboptimal
policies: Q50rnd (column 5), which is artificially obtained randomizing the action to be
selected in 50 % of the states and selecting the MDP optimal action for the remaining
states and Q100rnd (column 6), where all states have a random action associated with.
Three representative system states S1 “ r1, 1, 1, 1, 1, 1, 1, 1s, S2 “ r4, 1, 1, 1, 1, 1, 1, 1s

and S3 “ r4, 4, 3, 3, 3, 3, 3, 3s are used to compare the expected discounted returnQ. The
3 states are associated with substantially different rewards as they have been selected
from the 3 clusters C 1, C 2 and C 3, respectively (see Fig. 8.4): S1 has both generators
in the AGAN state, S2 has on generator out of service whilst S3 has both generators
failed. Act is defined as the portion of actions taken from the SARSA(λ) policies that are
equal to those taken using the reference MDP optimal policy in the corresponding states;
ErRptqs is the expected averaged non-discounted return, i.e. E

”
řT
t“1Rptq
T

ı

, independent
from the initial state of the system. It is interesting to notice that SARSA(0.5) provides
better policies (i.e. higher expected discounted and non-discounted returns) compared
to Q50rnd and Q100rnd. This is true even if Q50rnd has higher Act compared to the
SARSA policies, i.e. more than 60 % of the Q50rnd actions are equal to the MDP
actions whilst less than 50 % for the SARSA. This points out that the optimal policy
is very sensitive to some of the state-action combinations and less to others. In other
words, taking the wrong action in some states can lead to a catastrophic drop in the
expected return, whilst in other cases a sub-optimal action affects less the expected
revenue (e.g. making generator 1 produce power rather than generator 2 or vice versa).

Fig. 8.6 presents in details 2 control trajectories obtained selecting greedily actions
with the MDP Bellman’s policy (top plot) and the SARSA(λ) policy (bottom plot),
rewards are displayed on the y-axis and actions and states (see Table 8.5) are associated
to each time step. It is interesting to observe that by following an optimal policy, PM
actions are sometimes recommended even if the generators are As-Good-As-New. This
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might seem counter intuitive, but it can be explained considering the degradation model
settings. A PM action taken in an AGAN degradation state will assure a transition to
the AGAN state. In this sense, the MDP policy is ready to accept a slightly lower
revenue (due to PM costs), but with the advantage of suspending the degradation
process, especially when the power produced by RES can be used to minimise unbalances
between power production and the 2 loads are small.
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Figure 8.6: Actions taken in 2 separate control trajectories using MDP and SARSA policies.
Initial state s1 and next states are randomly generated by the underlying probabilistic model
(see Table 8.5).

Table 8.5: The state vectors for the MDP and SARSA control trajectories in Figure 8.6.
MDP states trajectory

Gens Loads RES Lines
s1

1 s2
1 s5

1 s6
1 s7

1 s8
1 s3

1 s4
1

1 1 1 1 1 1 1 1
1 1 1 1 3 1 1 1
1 1 1 2 2 3 1 1
1 1 2 1 3 2 1 1
1 1 1 2 3 1 1 1
1 1 3 1 3 3 3 1
2 1 2 1 3 2 1 1
2 2 2 3 1 2 1 1
2 2 2 2 1 1 1 1
2 2 1 3 1 2 1 1

SARSA states trajectory
Gens Loads RES Lines
s1

1 s2
1 s5

1 s6
1 s7

1 s8
1 s3

1 s4
1

1 1 1 1 1 1 1 1
1 1 3 1 3 1 1 1
1 1 3 3 2 1 1 1
1 1 2 3 2 1 1 1
1 1 2 1 1 1 3 3
1 1 1 1 1 2 1 3
1 1 1 1 1 2 2 3
1 1 3 3 3 3 2 3
1 1 1 3 2 2 2 1
1 1 2 1 3 2 2 1

8.6 Limitations and extension to non-tabular method

While RL, like stochastic dynamic programming (DP), has in principle a very broad
scope of application, it has to face computational issues when the state-action spaces of
the control problem are very large. In such a case, RL has to be combined with regres-
sion techniques capable of interpolating over the state-action space the data obtained
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from (relatively) few control trajectories [42]. Most of the research in this context has
focused on parametric function approximators, representing either some (state-action)
value functions or parameterized policies, together with some stochastic gradient de-
scent algorithms (see e.g. [144] or [72]). The appendix presents an extension of the
framework recently submitted for journal publication.
Further research work will focus on the development of enhanced RL algorithms, ca-
pable of dealing with imprecise rewards (e.g. due to unavailable/unreliable models),
partial observability and issues related to scarcity of samples due to low-probability of
specific state-action pairs.

8.7 Discussion on the uncertainty associated to PHM de-
vices

Prognostics health management devices deal with predicting the health state of
components and, possibly, future failures. The development of robust PHM devices
is a challenging problem and is often device-dependent. Many authors developed
computational methods for prognostics, both in the context of testing-based health
management and condition-based health management. Robust systems will have to
identify and explicitly account for various sources of uncertainty. Uncertainties in PHM
systems are potentially very large and, although an in-depth discussion is beyond the
scope of this work, a few examples of sources of uncertainty are reported here.

A robust condition-based health monitoring system will include a comprehensive list
of failure mechanisms which are potentially harmful to the device. Indeed, each model
will be subject to modeling uncertainty and there is always a potential risk of having
identified just some of the most relevant mechanisms. Perhaps, multiple sensors and
multiple signals can be collected from the device and their information content ana-
lyzed to extract useful health performance indicators. However, uncertainty will likely
affect the signals and perhaps different signals might provide conflicting sources of evi-
dence regarding the device health state. Once the signals are collected and uncertainty
evaluated, a model-based, data-driven or hybrid procedure can be used to identify ab-
normality, e.g. degrading/warning states (i.e. outliers). Those will then be used, for
instance, assign likelihood to the relevant failure mechanisms (damage classification)
finally attempting to predict the remaining useful life.

8.8 Conclusion

A framework based on Reinforcement Learning for optimal decision making of power
grid systems affected by uncertain operations and degradation mechanisms has been
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investigated. Power grid models can include PHM devices, which are used to inform
the agent about the health state of the system components. This information helps to
select optimal O&M actions on the system components.
The SARSA(λ) method was used to solve a control problem for a scale down power
grid with renewable and PHM capabilities. The RL results have been compared to the
reference Bellman’s optimality solution and are in good agreement, although inevitable
approximation errors have been observed.
The framework proved to be flexible and effective in tackling a small but representative
case study and future works will test its applicability to more realistic (larger) state-
action spaces. To this aim, artificial neural networks will be used in future research work
for state-action space regression to scale up to larger grids. This necessary verification
for a possible future applicability of the method.

Appendix

Formally, a MDP is a tuple xS,A,R,Py, where S is a finite state set, Apsq is a finite
action set with s P S, R is a reward function such that Rps, aq P R,@s P S, a P Apsq and
P is a probability function mapping the state action space:

Ps,a,s1 : S ˆAˆ S ÞÑ r0, 1s

A specific policy π is defined as a map from the state space to the action space π : S ÞÑ A

with πpsq P Apsq @s P S and it belongs to the set of possible policies Π. The action-value
function Qπps, aq is mathematically defined as [141]:

Qπps, aq “ Eπ

«

8
ÿ

t“0

γtRpst, πpstqq|S0 “ s,A0 “ πps0q

ff

s P S

where γ P r0, 1s is the discount factor and a γ ă 1 is generally employed to avoid
divergence of the cumulative rewards as well as to reflects the fact that is some cases
earlier rewards are more valuable than future rewards. The Bellman’s optimality equa-
tion provides an analytical expression for Qπ˚ps, aq, which is the ation-value function
for optimal policy π˚. The Bellman’s optimality is defined by a recursive equation as
follows [54]- [141]:

Qπ˚pst, atq “
ÿ

st`1

Ppst`1|st, atq

„

Rpst`1, a, stq `max
at`1

γQπ˚pst`1, at`1q



(8.6)

Equation 8.6 can be solved by Dynamic Programming such as policy iteration or value
iteration [141].
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The SARSA(λ) algorithm starts initializing the action-value function Q and
eligibility traces Z tables. Then, the values for the learning rate α, the discount factor
γ, the decay rate of the traces λ P r0, 1s and the greediness factor ε (or a policy π to be
evaluated) are selected. After this initialization, the episodic loop starts with a random
sample (or selection) of an initial state st, then, an action at is selected based on the
adopted policy, e.g. ε-greedy or πp¨|stq. A ε-greedy policy consists of random actions,
taken with probability ε, or greedy actions taken with probability 1-ε (i.e. actions for
which Q is maximised). Once the initial state-action pair is obtained, the episode
e is evaluated (i.e. a sequence of action-rewards-state-actions). Temporal difference
errors δt at the time step t are calculated, traces replaced or accumulated andQ updated.

The episode terminates when a predefined truncation horizon T is reached (i.e.
maximum time length of the episode). The procedure is iterated until a predefined
number of events NE is obtained. The SARSA(0) is guaranteed to convergence to
an optimal action-value function for a Robbins-Monro sequence of step-sizes αt, for
further details regarding stopping criteria and convergence the reader is referred
to [139]. RL approaches can tackle control problems with infinite optimisation horizon
by approximating the solution with a T-stage approach. In this sense, windows of T
time steps are used to truncating the time horizon, thus reducing the computational
burdens [42]. The traditional SARSA method is sometimes referred as SARSA(0) as it
corresponds to the SARSA(λ) algorithm when the decay rate of the traces λ “ 0 (i.e.
back up over 1-step). The SARSA(λ) with λ “ 1 will perform complete backups over
the full T of the episode (analogously to Monte Carlo learning).

The on-policy SARSA(λ) and the off-policy Q-learning algorithms work as follows
[142]:

A non-tabular Reinforcement Learning algorithm

Generally speaking, the goal of Reinforcement Learning for strategy optimization is to
maximize the action-value function Qπ˚pS,aq, which provides an estimation of cumu-
lated discounted future revenues when action a is taken in state S, following the optimal
policy π˚:

Qπ˚pS,aq “ Eπ˚

«

8
ÿ

t“0

γtRptq|S,a

ff

(8.7)

We develop a Reinforcement Learning algorithm which uses an ensemble of ANNs
to interpolate between state-action pairs, which helps to reduce the number of episodes
needed to approximate the Q function. Figure 8.7 graphically displays an episode run
within the algorithm.
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Algorithm 4 The SARSA(λ) algorithm adopting replacing or accumulating eligi-
bility traces settings.

Set e “ 1, NE , ε (or a policy π to be evaluated), α, γ, λ
Initialize Qps, aq, for all s P S and a P A, arbitrarily (e.g. Q “ 0)
Initialize traces Zps, aq “ 0, for all s P S and a P A
while e ă NE (Episodic Loop) do

Set t “ 1 Initialize starting state st e.g. randomly
Select action at P Apstq using policy derived from Q (e.g. ε-greedy) or πp¨|stq
while t ă T (run an episode) do

Take action at, observe st`1 and reward Rt
Select action at`1 P Apst`1q using policy derived from Q (e.g. ε-greedy) or

πp¨|st`1q

Compute temporal difference δt and update traces:
δt “ Rt ` γQpst`1, at`1q ´Qpst, atq
Zpst, atq “ Zpst, atq ` 1 (accumulate traces) or
Zpst, atq “ 1 (replace traces)
Update Q and Z for each s and a:
Qps, aq “ Qps, aq ` αδtZps, aq
Zps, aq “ γλZps, aq
Set t “ t` 1

end while
go to next episode e “ e` 1

end while

Algorithm 5 The Q-learning algorithm.
Set e “ 1, NE , ε, α, γ;
Initialize Qps, aq, for all s P S and a P A, arbitrarily (e.g. Q “ 0)
while e ă NE (Episodic Loop) do

Set t “ 1 Initialize starting state st e.g. randomly
Select action at P Apstq using policy derived from Q (e.g. ε-greedy) or πp¨|stq
while t ă T (run an episode) do

Take action at, observe st`1 and reward Rt
Compute temporal difference δt:
δt “ Rt ` γmaxaQpst`1, at`1q ´Qpst, atq
Update Qpst, atq:
Qpst, atq “ Qpst, atq ` αδt
Set t “ t` 1

end while
go to next episode e “ e` 1

end while
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Figure 8.7: The flow chart displays an episode run and how the learning agent interacts
with the environment (i.e. the power grid equipped with PHM devices) in the developed
Reinforcement Learning framework; dashed-line arrows indicate when the learning agent takes
part in the episode run.
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In details, we estimate the value of QπpSt,atq using a different ANN for each action,
with network weights µ1, . . . ,µ|A|, respectively. Network Nl, l “ 1, ...|A|, receives in
input the state vector St and returns the approximated value q̂lpSt|µlq of QπpSt,at “
alq. To speed up the training of the ANNs , we initially apply a standard supervised
training over a batch of relatively large size nei, to set weights µ1, . . . ,µ|A|. To collect
this batch, we randomly sample the first state S1 and, then, move nei`Φ steps forward
by uniformly sampling from the set of applicable actions and collecting the transitions
St,at Ñ St`1,at`1 with the corresponding rewards Rt, t “ 1, ..., nei ` Φ ´ 1. These
transitions are provided by a model of the grid behavior.
Every network Nl, l P t1, . . . , |A|u, is trained on the set of states tSt|t “ 1, ..., nei,at “ lu

in which the l-th action is taken, whereas the reward that the ANN learns is the Monte-
Carlo estimate Yt of QπpSt,atq:

Yt “
t`Φ
ÿ

t1“t

γt
1´t ¨Rt1 (8.8)

After this initial training, we apply Q-learning (e.g., [141], [144]) to find the ANN
approximation of the optimal Qπ˚pSt,atq. Namely, every time the state St is visited,
the action at is selected among all available actions according to the ε´greedy policy
π: the learning agent selects exploitative actions (i.e., the action with the largest value,
maximizing the expected future rewards) with probability 1´ ε, or exploratory actions,
randomly sampled from the other feasible actions, with probability ε.

The immediate reward and the next state is observed, and weights µat of network
Nat are updated: a single run of the back-propagation algorithm is done using Rt `
γ ¨ maxlPt1,...,|A|u q̂lpSt`1|µlq as target value (Equation 8.9). This yields the following
updating:

µat Ð µat ` αat ¨ rRt ` γ ¨ max
lPt1,...,|A|u

q̂lpSt`1|µlq ´ q̂atpSt|µatqs ¨∇q̂atpSt|µatq (8.9)

where αat ą 0 is the value of the learning rate associated to Nat ( [141]).
Notice that the accuracy of the estimates provided by the proposed algorithm strongly
depends on the frequency at which the actions are taken in every state: the larger the
frequency, the larger the information from which the network can learn the state-action
value [141]. In real industrial applications, where systems spend most of the time
in states of normal operation, this may entail a bias or large variance in the ANN
estimations of QπpSt,atq for rarely visited states. To overcome this issue, we increase
the exploration by dividing the simulation of the system, and its interactions with the
environment and O&M decisions, into episodes of fixed length T . Thus, we run Nei

episodes, each one entailing T decisions; at the beginning of each episode, we sample
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the first state uniformly over all states. This procedure increases the frequency of
visits to highly degraded states and reduces the estimation error. At each episode
ei P t1, . . . , Neiu, we decrease the exploration rate ε “ εei according to ε “ ε0 ¨ τ

ei
ε , and

the learning rate αl “ α0 ¨ p
1

1`Kα¨tl
q, where α0 is the initial value, Kα is the decay

coefficient and tl counts the number of times the network Nl has been trained ( [141]).

The QL+ANN algorithm 7 consists of two phases: (1) an initialization phase of
the ANNs ensemble and (2) the learning phase, where Q-learning algorithm is used in
combination to the ANNs to learn an optimal decision-making policy.In phase (1) an
ANN is associated with each action vector a and its architecture, i.e. number of layers
and nodes per layer, is defined by the Nlayers vector. Each network is first trained
using the Levenberg-Marquardt algorithm, providing as input the state vectors and as
output the estimator of Q obtained from the future rewards. In phase (2) the Rein-
forcement Learning algorithm run, Artificial Neural Networks select the actions and the
ensemble is incrementally trained to improve its predictive performance. Notice that,
whilst tabular Reinforcement Learning methods are guaranteed to convergence to an
optimal action-value function for a Robbins-Monro sequence of step-sizes αt, a general-
ized convergence guarantee for non-tabular methods has not been provided yet and an
inadequate setup can lead to suboptimal, oscillating or even diverging solutions.Thus,
an empirical convergence test has been designed to assess the the reliability of the re-
sults. For further details, please refer to Sutton98reinforcementlearning.

Algorithm 6 The value iteration algorithm (Bellman’s optimality)
Initialize Q arbitrarily (e.g. Qps, aq “ 0 @s P S, a P A)
Define tolerance error θ P R` and ∆ “ 0
while ∆ ě θ do

for each s P S do
get constrained action set As in s
for each a P As do
q “ Qps, aq

Qps, aq “
ř

s1 Pps1|s, aq
”

Rps1, a, sq `max
a1

γQps1, a1q
ı

∆ “ maxp∆, |q ´Qps, aq|q
end for

end for
end while
Output a deterministic policy π « π˚

πpsq “ argmax
aPAs

Qps, aq @s P S
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Algorithm 7 The QL+ANN Algorithm.
Set ei “ 1, nei Nei, Kα, ε0, α0, γ, Nlayers;
Phase 1: Off-Line Training
Initialize Networks Nl and tl “ 1, l “ 1, ...|A| with architecture Nlayers;
Sample transitions St,at Ñ St`1,at`1 and observe rewards Rt, t “ 1, ..., nei;
Approximate Q by the MC estimate Yt “

řt`Φ
t1“t γ

t1´t ¨Rt1

Train each Nl using tSt|t “ 1, ..., nei,at “ lu and the estimated Yt (output);

Phase 2: Learning
while ei ă Nei (Episodic Loop) do

Set t “ 1 initialize state St randomly
ε “ ε0 ¨ τ

ei
ε

while t ă T (episode run) do
if randpq ă 1´ ε (exploit)
at “ arg max

lPt1,...,|Âg% |u
q̂lpSt|µlq

else (explore)
Select at randomly s.t. at P Âg%

end
Take action at, observe St`1 and reward Rt
Update network Nat weights, ε and α
µat Ð µat ` αat ¨ rRt ` γ ¨ max

lPt1,...,|A|u
q̂lpSt`1|µlq ´ q̂atpSt|µatqs ¨∇q̂atpSt|µatq

αat “ α0 ¨ p
1

1`Kα¨tat
q

Set t “ t` 1 and tat “ tat ` 1
end while
go to next episode ei “ ei` 1

end while
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Chapter 9

Conclusions and Future Work

In this dissertation, we presented novel computational frameworks for the assessment
of the power grid reliability, vulnerability, and resilience by a rigorous quantification
of all the relevant uncertainties. Several research questions motivated this work and
each chapter presents an attempt to provide answer to those questions: When the
available information suffice to answer a basic reliability, vulnerability and resilience
question? How to assure computational tractability when advanced uncertainty
quantification methods are adopted? What is the role of a vulnerable network topology
and operations in the overall power grid security? How to properly select quantitative
metrics for reliability, vulnerability and resilience assessment? How to realistically
model cascading failures and domino effects? How to model extreme environmental
conditions and interaction to the power grid resilience? How these environmental
conditions link to components failures? How to learn better policies when gathering
new data from a stochastic system-environment?
Those challenging questions have been addressed and novel computational frameworks,
dedicated to analyse and quantify the uncertainty of power grid reliability, vulnerability
and resilience metrics have been proposed. These models have been embedded within
a generalized uncertainty quantification framework with the aim to better cope with
situations affected by severe uncertainty, i.e. situations in which data is scarce, limited,
qualitative or inconsistent. The proposed frameworks can be employed to assess the
effect of extreme weather and cascading failures on the power grid resilience. These
can be used also to identify outstanding sources of uncertainty which most heavily
prevent a clear, well-defined quantification of security-related power grid metrics and
they can be extremely valuable when computational time limitations prevent advanced
uncertainty quantification analysis to be performed.

• When the available information suffice to answer a basic reliability, vulnerability
and resilience question? How to assure computational tractability when advanced
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uncertainty quantification methods are adopted?

In Chapter 4 we discussed limitations of ‘exact’ probabilistic model which gener-
ally requires a lot of data (possibly infinite) to be characterised. Unfortunately,
a lack of information always affects engineering analysis and its extent cannot
be quantified a priori. In general, the quality of the available information is
context and scope-dependent, e.g. different systems performance indicators may
react very differently to the same lack of data. The adopted methods provide
a simple but effective way to assess a data deficiency by comparing the system
reliability bounds (obtained through generalised probabilistic approaches) against
single-valued probability indicators (obtained adopting classical probabilistic
methods). If the lack of knowledge is not too large, the system reliability
will result in relatively narrow bounds and always include the point reliability
estimator. In this case, classical approaches will be well-suited to tackle the
problem. Conversely, if the lack of data is severe, the reliability bounds will
result very wide or, for extreme cases, even non-informative ([0,1]). Combination
of pure probabilistic approaches (e.g. Monte Carlo Simulation) and generalised
uncertainty quantification approaches (e.g. based on Dempster-Shafer structures
and probability boxes), implemented in a common computational framework,
are unavoidable tools for the industry which may rely on multiple accurate
information qualification approaches. This will aid understanding if the data is
of high quality or poor quality, with the aim of designing safer and more reliable
systems and components. Two representative case study have been selected
to showcase the capability of the adopted methods. Essential information was
provided and the quality of the available data assessed.

• What is the role of a vulnerable network topology and operations in the overall
power grid security? How does the choice of a specific vulnerability metric affect
the result of power grid robustness analysis? What is the uncertainty associated
with this selection and what are the effects on the contingency ranking results?

In Chapter 5 we examined the role of topology and operations in defining vul-
nerability metrics for power grids. A novel framework for assessing power grids
vulnerability has been presented. The vulnerability assessment framework was em-
bedded to advanced uncertainty quantification methods used to quantify the level
of epistemic and aleatory uncertainty on the results. Multiple line failures have
been analysed and their vulnerability ranked with respect to topology-based met-
rics, flow-operations-based metrics and accounting for model tolerance imprecision
and stochastic loads. Four spectral vulnerability metrics have been computed us-
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ing four different weighting factors (taken from literature and newly defined) and
used to assess the robustness of a modified version of the IEEE 24 nodes RTS.
Different effects of epistemic and aleatory uncertainty on network operational
weaknesses (i.e. AC and DC overflow cascading models) and structural vulner-
abilities have been discussed and relevant differences in the contingency ranking
have been pointed out. Major differences in ranking results are attributable to the
different vulnerability metrics rather than to different line weights. In case that
only one vulnerability metric have to be selected, the choice of metric must be
done with a high degree of care and done so whilst accounting for all the relevant
sources of uncertainty which may generate misleading results.

• How to properly select quantitative metrics for reliability, vulnerability and
resilience assessment? How to realistically model cascading failures and domino
effects? How to model extreme environmental conditions and interaction to the
power grid resilience? How these environmental conditions link to components
failures?

In Chapters 6 and 7 addressed the above mentioned research questions. In
Chapters 6 we presented a generalised uncertainty quantification framework
for power grid resilience assessment. The grid stochastic model accounts for
interactions between severe weather conditions, transmission line failures and
repairing crew working efficiency. One of the issue we faced in the proba-
bilistic model design phase was the need to accurately estimate the model
parameters as the data associated with rare weather conditions and failures
was often limited or unavailable. Thus, the framework was extended adopting
a generalised, non-intrusive uncertainty quantification method. An efficient
solution has been proposed employing an Artificial Neural Network to emu-
late the grid solver. The surrogate accuracy was tested against the original
model and pointed out its goodness. The effect of imprecision was tested by
propagating nested Credal sets to the Expected-Energy-Not-Supplied. Results
pointed out that the precision of the estimator decreases rapidly for increasing
imprecision in the model parameters. To conclude, a global sensitivity analysis
pointed out which among the wind, lightning and replacement related parame-
ters are key drivers for the uncertainty in the proposed power grid resilience index.

In Chapters 7 variance-based global sensitivity analysis indices, i.e. Sobol’s in-
dices, have been computed to reveal which among the uncertainty sources is af-
fecting the most the output variances of a realistic cascading failure model. The
Morris screening indices were also obtained and compared to variance based in-
dices to improve confidence in the results and better understand dependencies

179



between output and factors. This analysis was performed to investigate more in
detail some cascading-relevant relationships between input loads, generators costs
and line failures. The results pointed out some interesting features of the system.
For instance, when the uncertainty in the loads was identified as highly relevant
for cascading indicator, it is advisable to consider actions such as allocation of
distributed generators or adopt peak-shaving (load variance reduction) control
methods. This can be beneficial to reduce the uncertainty in the reliability per-
formance of the network (i.e. reducing its variance). The framework proved to be
flexible and computationally quite cheap which is a requirement for its applica-
tion to more realistic large size power networks. This will be the focus of future
analysis.

• How to learn better policies when gathering new data from a stochastic system-
environment?

In order to investigate the learning capability of complex stochastic systems, the
conference paper presented in Chapter 8 was developed and future extensions and
developments are expected. The framework, based on Reinforcement Learning,
was developed for searching optimal decision-making policies for power grid sys-
tems affected by uncertain operations and degradation mechanisms. Power grid
models can include prognostic health management devices, which are used to in-
form the agent about the health state of the system components. This information
helps to select optimal Operational and Maintenance actions on the system com-
ponents.
The SARSA(λ) method was used to solve a control problem for a scale down
power grid with renewable and PHM capabilities. The RL results have been com-
pared to the reference Bellman’s optimality solution and are in good agreement,
although inevitable approximation errors have been observed.
The framework proved to be flexible and effective in tackling a small but repre-
sentative case study and future works will test its applicability to more realistic
(larger) state-action spaces. To this aim, artificial neural networks will be used in
future research work for state-action space regression to scale up to larger grids.
This necessary verification for a possible future applicability of the method and
can be considered the topic for further research.

9.1 Future Work

During my PhD, I contributed to the development of advanced uncertainty quantifica-
tion frameworks which can work on top of any computational models. The applicability
of this framework to power systems vulnerability, reliability and resilience assessment
framework have been investigated but further work is necessary to enable the every-day
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use of those powerful techniques. In these years, I also had the chance of working
with some of the most recent and advanced machine learning methods such as, for
instance, Deep Neural Networks and Reinforcement Learning. The applicability of
these methods to complex systems and critical infrastructures have been investigated
with the final goal of enhancing the overall reliability, robustness and resilience of the
system, while and at the same time reducing operative and maintenance costs.

In this work, I adopted power grids as representative examples of complex systems
and critical infrastructures due to their large size, many uncertainties associated, the
complex interaction between components and the spatial and dynamic correlations
between many uncertain factors/variables. However, the developed techniques are not
limited to power grid systems and can find general applicability to a variety of cases,
e.g. networked infrastructures such as heat district networks, transportation networks,
gas networks, power plants, which are safety-critical systems and suffer from very
similar uncertainty-related issues when compared to power grid systems. Uncertainties
are ubiquitously affecting simulation models of systems, the available data and external
environment often plays a key role (e.g. external weather conditions leading to load
variability, failures, etc.). I believe further work has to be devoted to big data and
also lack of data issues, such as e.g. data imprecision, poor design, expert judgement,
missing information, censored data, tolerance imprecision.

To provide enhanced vulnerability/reliability/resilience models and better simula-
tion tools and control policies, cope with uncertainty is uttermost important. This
requires a robust characterization of the input uncertainty and a continuous updating
of the model to embed new sources of information and evidence. For the quantifica-
tion of the uncertainty in the output, advanced methods can be adopted which allow
differentiating between what is considered lack of data (thus reducible uncertainty in
principle) and what is considered aleatory uncertainty (i.e. inherent variability thus just
quantifiable and not reducible). This is necessary to understand better, which are the
risks and criticality of the system and networks. However, one of the main drawbacks of
those methods is the lack of a common theoretical foundation, although some attempts
to unify different mathematical theories have been made, and the limited practical use
of these methods in everyday life situations. Limited practical applicability can be
probably explained by the limited availability of easy-to-use software which allows the
calculation to be performed efficiently and effectively on different cases and systems.
Also, some misconception in the interpretation of the result can play a role. Further
work should be dedicated to the development of computational tools and this can be
considered part of my future research plan.

In classical probabilistic studies, sensitivity analysis methods have been widely
applied with the aim of revealing key factors driving the aleatory uncertainty of the
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output. Similarly, sensitivity analysis can be proposed to spot key drivers of epistemic
uncertainty. However, just a few, although robust methods are nowadays available
for this specific task. Novel methods for epistemic space sensitivity analysis should
be proposed as this will help developing better decision-making policies and better
understanding which factors have to be prioritised for data collection to obtain a
substantial reduction in the output uncertainty. Also, non-probabilistic treatment
of epistemic uncertainty can be very demanding computationally speaking, thus,
methodological developments which allow reducing the computational effort of those
demanding analysis will provide a valuable contribution to this research filed.

In my future research plan we can identify the following key elements:

1 Networks Vulnerability, Reliability and Resilience as a unifying concept
Reliability is a well-defined concept for a power grid and it is used to assess the
power grid long-run performance given that known disturbances can affect the
system. For instance, the effect of a predefined list of N-k contingencies should be
evaluated, where k is small (e.g. k=1,2,3) and defines the number of failed com-
ponents out of the N available in a non-damaged situation. Reliability can be as-
sessed using classical probabilistic methods and standard reliability indices. With
similar aims, but differently for the reliability concept, power network vulnera-
bility assessments try to analyse the impact of low-probability-high-consequence
events, such as for instance a large disruption of the grid structure caused by ex-
treme weather conditions or targeted malicious attacks. Vulnerability assessments
generally require to evaluate the consequence of the most severe N-k contingencies,
where the number of failed components k is relatively high. This type of anal-
ysis is generally supported by graph theory and complex network theory which
provides a theoretical grounding for the analysis of the grid structure and its un-
derlying graphical model. Differently, the resilience concept is relatively new in
the power grids field and a generalised, well-accepted definition still has to be
formulated. One example is ‘the network ability to withstand high impact low
probability events, rapidly recovering and improving operations and structures
to mitigate the impact of similar events in the future’. I believe that future re-
search should focus on providing a robust, widely accepted definition of network
resilience. Furthermore, comprehensive metrics for the resilience quantification
should be defined and account for the following key features:

1. Include a robust quantification of all the relevant sources of uncertainty, from
inherently variable inputs to small sample sizes (e.g. rare events), qualita-
tive, vague and incomplete information (e.g. due to data protection, expert
opinions or non-collaborative agents);
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2. Distinguish between epistemic and aleatory uncertainty, therefore highlight-
ing how much of the uncertainty on the resilience metric is reducible;

3. Include an evaluation of structural vulnerability and the consequence of low-
probability-high-consequence events such as multiple-components outages,
domino (network and network-network) cascading failures and account for
weather-related effects and interconnected network of networks interactions;

4. Present and cost dimension, i.e. it should be conveniently adopted in cost-
based optimisation problems by embedding an economic dimension;

5. Account for the system capacity to learn new optimal policies given that
new data is made available (i.e. it should identify a system as more resilient
if, given comparable vulnerability, reliability and self-healing performance,
it displays a faster and/or better learning curve;

2 Advanced imprecise probabilistic frameworks for the quantification of
uncertainty
Develop methods for a rigorous and efficient propagation of different forms of
uncertainty through computational models was a fundamental task in this PhD
work. In general, classical probabilistic methods rely upon a good characterisation
of the uncertain factors and this usually requires a considerable body of empirical
information to define well e.g. probability distributions, expectation, variance
or higher moments. If the data is limited, prior assumptions on the distribution
family may be required, which are generally hard to justify and can alter the
quality of the available information and the final results of the analysis. More
importantly, probability theory provides only a single measure for the uncertainty.
This makes the uncertainty analyst unable to grasp how much of the uncertainty
is due to inherent variability and to what extent the uncertainty is due to
poor data quality (therefore reducible in principle). Advanced methods such
as imprecise probabilistic methods allow epistemic uncertainty to be managed
without the need for artificial probabilistic assumptions. However, many analysis
tools which are based on probability theory do not simply translate to generalised
probabilistic frameworks. Further research is needed to develop new tools (e.g.
sensitivity analysis, uncertainty propagation, model updating, etc.) for robust
and efficient analysis when the information is scarce or limited.

3 Network-network inter-dependency and networks-environment cou-
pling
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Future grids, also known as the smart grid, should provide reliable power
supply at lower achievable cost, mitigating power losses and overall negative
environmental impact. The present view on Smart Grid projects generally rates
the power grid as the most prominent infrastructure whilst different systems
(e.g. transportation and heat district networks) received a relatively limited
consideration. In the last years, however, several researchers pointed out the
benefits of combining analysis of power grids to different networked systems,
which are inevitably linked and interconnected. For instance, integrated analysis
of interconnected heat and power networks can provide better insights on systems
collective behaviours and interactions. Similar conclusions can be obtained by
analysis of the so-called multi-energy-systems (i.e. systems for which electricity,
heating, cooling, fuels, transport optimally interact with each other at various
levels). More research should be focused on improving and developing stochastic
frameworks for combined multi-energy-systems analysis. Uncertain weather
conditions deeply link to those critical infrastructures (e.g. renewable sources,
extreme weather-induced failures, replacements delays). Their contribution can
be extremely relevant for the overall multi-energy-system resilience and thus has
to be properly modelled and quantified.

4 Learning capability in a stochastic environment, Reinforcement Learn-
ing and Bayesian Model Updating

Reinforcement Learning (RL) has been used in the last decades to solve a variety
of realistic control and decision-making issues in the presence of uncertainty, in-
cluding power grid management and robotics. In the RL paradigm, a controller
(i.e. the decision maker) learns from the interaction with the environment (e.g.
the grid) by observing states, collecting rewards and selecting actions to maximise
the future revenues, considering the aleatory uncertainties in the environment be-
haviour. The state-action-reward trajectories can be gathered from direct interac-
tion with the real system, from its realistic simulation or by a combination of both.
This makes RL suitable to power grid management optimization, as it can cope
with both the complexity of the asset and the unavoidable uncertainties related
to its operation. In my research plan, I would like to further investigate network
systems equipped with learning (e.g. Reinforcement Learning) capabilities. In-
deed many are the challenges involved, for instance, the high dimensionality of
the system will require some sort of regression function (e.g. Artificial Neural
Networks) to be embedded within the RL framework. Also, partial observability
of the underlying Markovian Process describing the system dynamic, i.e. the in-
ability to fully characterize the state of the system due to missing information lack
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of knowledge of relevant factors, is a challenging aspect. RL combined with re-
gression tools (e.g. ANN) allows solving larger and more realistic decision-making
problems in stochastic environments and I am planning to dedicate research time
to explore more this topic in the future.
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