
	
	
	
	

Improved	genomic	assembly	and	
genomic	analyses	of	Entamoeba	

histolytica	
	
	
	

	
	

Thesis	submitted	in	accordance	with	the	requirements	of	the	

University	of	Liverpool	for	the	degree	of	Doctor	in	Philosophy	by	

	

	

Amber	Leckenby	

	

	

September	2018	



	 i	

Acknowledgements	
	
	
There	are	many	people	without	whom	this	 thesis	would	not	have	been	possible.	
The	list	is	long	and	I	am	truly	grateful	to	each	and	every	one.		
	
Firstly	 I	have	 to	 thank	my	supervisors	Gareth,	Christiane,	Neil	 and	Steve	 for	 the	
continuous	support	throughout	my	PhD.	Particularly,	I	am	grateful	to	Gareth	and	
Christiane,	for	their	patience,	motivation	and	immense	knowledge	that	helped	me	
through	the	entirety	of	the	project	from	the	initial	research	to	the	writing	of	this	
thesis.	I	cannot	have	imagined	having	better	mentors	and	role	models.	
	
I	also	have	to	thank	the	staff	at	the	CGR	for	their	role	in	the	sequencing	aspects	of	
this	thesis.	My	further	thanks	extend	to	the	CGR	bioinformatics	team,	most	notably	
Richard,	 Matthew,	 Sam	 and	 Luca,	 for	 not	 only	 tolerating	 the	 number	 of	
bioinformatics	 questions	 I	 have	 asked	 them,	 but	 also	 providing	 great	 friendship	
and	warmth	in	the	office.		
	
I	 must	 also	 give	 a	 special	 mention	 to	 Graham	 Clark	 at	 the	 London	 School	 of	
Hygiene	and	Tropical	Medicine	for	sending	cultures	of	Entamoeba	and	providing	
general	advice,	especially	around	the	tRNA	arrays.	I	would	also	like	to	thank	David	
Starns,	 for	 his	 efforts	 troubleshooting	 the	 Companion	 pipeline	 and	 to	 Laura	
Gardiner	for	providing	advice	around	all	things	methylation.	
	
My	gratitude	goes	to	the	members	of	the	many	offices	I	have	moved	around	during	
my	PhD,	many	of	which	have	become	close	friends	who	have	got	me	through	many	
bioinformatics	 conundrums,	 lab	meltdowns	and	 (some	equally	 challenging)	gym	
sessions.	Stef,	Jen,	Charl	and	Dave	–	you	guys	kept	me	sane.		
	
Further,	I	must	also	include	Sophie	and	Grace	who	have	also	made	it	through	the	
past	 seven	 years	 at	 the	 University	 of	 Liverpool.	 From	 the	 first	 day	 of	 being	 an	
undergraduate	 to	 the	 final	 day	 of	 being	 a	 PhD	 student.	 I’m	 so	 grateful	 I	 got	 to	
navigate	the	adventures	of	student	 life	with	you	both	–	 looks	 like	we	all	made	 it	
out	okay	in	the	end,	right?	
	
On	a	personal	note,	I	must	give	my	warmest	thanks	to	my	family,	particularly	my	
parents	for	encouraging	me	in	everything	and	making	this	endeavour	possible.	To	
my	many	sisters	for	being	my	personal	cheerleaders	as	I	made	it	to	the	end	of	this	
thesis.	To	my	housemate,	Adele,	who	was	an	excellent	sounding	board	to	probably	
a	few	too	many	rants.	To	John	Newsham,	the	teacher	who	got	me	so	interested	in	
biology	in	the	first	place.	And	finally,	to	Troy	for	his	unwavering	support	and	belief	
that	I	could	achieve	such	great	things.			
	 	



	 ii	

Abstract	
	

Amoebiasis	is	the	third	most	common	cause	of	mortality	worldwide	from	a	
parasitic	 infection.	 It	 affects	up	 to	50	million	people	annually,	 of	whom	100,000	
will	 die	 from	 the	 disease	 each	 year.	 Amoebiasis	 is	 caused	 by	 the	 amoeba	
Entamoeba	histolytica,	an	obligate	parasite	of	humans.	Our	understanding	of	 the	
biology	 of	 this	 pathogen	 has	 been	 greatly	 advanced	 by	 the	 sequencing	 of	 its	
genome.	 However,	 the	 unusual	 nature	 of	 the	 genome	 (an	 extreme	 nucleotide	
composition	 bias,	 abundant	 repetitive	 elements	 and	 unknown	 chromosome	
structures/ploidy)	made	it	particularly	challenging	to	sequence	and	the	resulting	
reference	 genome	 assembly	 is	 highly	 fragmented	 and	 possibly	 incomplete,	
limiting	 its	 usefulness	 for	 some	 analyses.	 New	 sequencing	 technologies	 can	
overcome	 some	 of	 the	 problems	 of	 the	 previous	 genome	 assembly.	 Here,	 single	
molecule	real	time	(SMRT)	sequencing	was	applied	to	sequence	long	fragments	of	
DNA	and	build	an	improved	reference	genome	for	E.	histolytica.	

This	thesis	describes	the	generation	of	sequence	data	and	a	comprehensive	
comparative	 analysis	 of	 genome	 assembly	 tools	 available	 for	 long-read	 SMRT	
sequencing	 data.	 This	 analysis	 showed	 that	 assembly	 using	 PacBio	 data	 only	
produced	 better	 quality	 genome	 assemblies	 than	 hybrid	 assembly	 approaches	
utilising	both	long-	and	short-read	data	together.	The	PacBio	genome	assembly	is	
significantly	 better	 than	 the	 published	 reference	 genome	 assembly	 based	 on	 a	
range	of	quality	metrics.	

The	 new	 genome	 assembly	was	 annotated,	 revealing	 an	 increase	 in	 gene	
number.	 The	 spatial	 organisation	 of	 key	 virulence	 gene	 families	 (AIG1,	 Ariel-1,	
BspA,	 cysteine	 proteases,	 Gal/GalNAc	 lectins	 and	 STIRP	 families)	was	 analysed,	
revealing	an	association	of	virulence	gene	families	with	transposable	elements.	

The	new	assembly	allowed	analyses	of	two	key,	unusual	features	of	the	E.	
histolytica	 genome:	 the	 long	 arrays	 of	multiple	 tRNA	 genes	 and	 the	multi-copy,	
extra-chromosomal	 molecules	 containing	 the	 ribosomal	 DNA.	 Several	 lines	 of	
evidence	were	consistent	with	 tRNA	arrays	 capping	chromosomes	and	acting	as	
telomeres	in	Entamoeba.	Variation	among	array	units	exists	(relevant	as	they	are	
used	as	population	genetic	markers),	but	the	majority	sequence	was	consistently	
retrieved	 when	 genotyping,	 suggesting	 they	 may	 be	 relatively	 robust	 markers.	
Analysis	of	the	rDNA	episomes	present	in	the	E.	histolytica	strain	sequenced	(the	
HM-1:IMSS	strain	used	for	previous	whole	genome	sequencing)	revealed	that	one	
of	 the	two	rDNA	episome	types	described	in	this	strain	has	apparently	been	lost	
during	in	vitro	culture.	

Genome-wide	5-methylcytosine	methylation	profiles	for	trophozoite	stage	
parasites	 in	culture	were	determined	using	bisulphite	sequencing	 for	 the	new	E.	
histolytica	genome	assembly	and	two	additional	species	(Entamoeba	moshkovskii	
and	 Entamoeba	 invadens).	 The	 analyses	 confirmed	 previous	 reports	 of	 sparse	
methylation	 of	 the	 genome	 as	 a	 whole	 but	 highlighted	 interesting	 patterns	 of	
methylation.	 While	 there	 was	 virtually	 no	 methylation	 of	 genes,	 there	 was	
extensive	methylation	of	transposable	elements	and	tRNA	arrays.	These	patterns	
suggest	 methylation	 functions	 to	 suppress	 active	 transposition	 and	 may	 play	 a	
role	in	the	structural	control	of	tRNA	arrays,	again	consistent	with	telomeric	role.		

The	 work	 presented	 here	 improves	 our	 understanding	 of	 the	 structure,	
content	 and	 regulation	 of	 the	E.	histolytica	genome	 and	 provides	 a	 platform	 for	
improved	future	analyses	for	the	Entamoeba	research	community.		
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Chapter	1	–	Introduction	
	

	1.1.	Entamoeba	phylogeny		
	

The	 genus	Entamoeba	 is	 part	 of	 the	 phylum	Amoebazoa,	which	 forms	 a	 sister	

group	 to	 the	 Opisthokonts	 (animals	 and	 fungi),	 diverging	 from	 it	 after	 the	

divergence	 of	 plants	 [1].	 The	Amoebazoa	are	 separated	 into	 two	 lineages:	 the	

Mycetozoa,	 which	 are	 free-living	 and	 include	 the	 slime-mold	 Dictyostelium	

discoideum;	 and	 the	mitochondria-lacking	Archamoebae	which	 in	 turn	 can	 be	

divided	 into	 Mastigamoeba	 and	 Entamoeba	 lineages	 [1].	 Species	 within	 the	

Amoebazoa	phylum	are	poorly	sampled	and	represent	a	 largely	unknown	part	

of	the	tree	of	life.	They	are	highly	diverse;	for	instance,	the	divergence	between	

the	Archamoebae	and	the	Mycetozoa	may	be	as	great	as	that	observed	between	

animals	and	fungi	[2].	

	

The	 genus	 Entamoeba	 is	 diverse	 and	 many	 of	 its	 species	 parasitize	 a	 broad	

range	of	hosts,	from	reptiles	to	mammals	[3–5]	though	zoonotic	transmission	of	

Entamoeba	 species	 between	 different	 host	 restrictions	 is	 thought	 to	 be	

extremely	 rare.	 Recently	 however,	 there	 has	 been	 a	 reported	 cases	 of	

Entamoeba	nuttalli,	a	parasite	of	wild	macaques,	having	jumped	host	restriction	

into	 humans	 [6];	 Figure	 1.1.1	 highlights	 the	 host	 restriction	 for	 each	 species.	

Different	 species	 are	 also	 able	 to	 parasitize	 different	 niches	 within	 the	 same	

host	 type;	 for	 example	 E.	 gingivalis	 parasitizes	 the	 oral	 cavity	 whereas	 E.	

histolytica	colonises	the	gut	[7–9].	Not	all	species	are	pathogenic	and	some,	such	

as	E.	dispar	and	E.	moshkovskii,	which	both	 infect	the	human	gut,	are	generally	

thought	 to	 be	 harmless	 to	 humans,	 unlike	 the	 pathogenic	 human	 parasite	 E.	

histolytica	[10].	

	

Defining	 species	 within	 the	 Entamoeba	 genus	 is	 difficult;	 as	 with	 many	

unicellular	 organisms,	 it	 is	 hampered	 by	 the	 fact	 that	 many	 species	 are	

morphologically	 indistinguishable.	 In	 some	 cases,	 morphological	 markers	 can	

be	 used	 to	 identify	 different	 species,	 such	 as	 the	 number	 of	 visible	 nuclei	
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present	at	certain	life	cycle	stages.	Briefly,	the	Entamoeba	species	undergo	a	two	

stage	 life	 cycle	 composed	 of	 the	 active	 trophozoite	 stage	 and	 the	 dormant	

(infectious)	cyst	stage	[11].	The	number	of	nuclei	per	cyst,	commonly	one,	four	

or	 eight,	 can	 help	 to	 distinguish	 species	 from	 one	 another.	 However,	 this	

method	is	limited	by	the	observation	that	multiple	species	fit	into	the	different	

nucleus	groups	and	some	species,	like	the	oral	parasite	Entamoeba	gingivalis,	do	

not	 form	 cysts	 and	 therefore,	 are	 indistinguishable	 [12].	 In	 these	 instances,	

species	must	 be	 defined	 by	 genetic	 divergence	 [10].	 Species	 can	 be	 identified	

based	on	their	ribosomal	lineage	whereby	an	individual	can	be	identified	by	its	

18S	small	subunit	ribosomal	RNA	(18S	SSU	rRNA)	sequence	[13].	Utilisation	of	

this	 method	 on	 Entamoeba	 species	 has	 shown	 that	 some	 previously	 defined	

Entamoeba	 species	 show	 diversity	 within	 this	 18S	 SSU	 rRNA	 sequence	

suggesting	 that	 some	 species,	 such	 as	 Entamoeba	 moshkovskii	 [14]	 and	

Entamoeba	coli	[13],	are	in	fact	species	complexes.	

	

Figure	1.1.1.	also	illustrates	the	phylogenetic	relationship	among	a	small	sample	

of	Entamoeba	species	and	indicates	species	for	which	genome	sequence	data	are	

available.	The	phylogeny	of	the	genus	often	shows	large	evolutionary	distances	

between	different	Entamoeba	species,	even	in	those	that	occupy	the	same	host.	

Few	 Entamoeba	 species	 have	 been	 extensively	 studied	 and	 many	 species,	

including	 E.	 bangladeshi	 and	 E.	 nuttalli,	 are	 only	 very	 recently	 identified	 and	

barely	investigated.	The	difficulty	of	culturing	Entamoeba	species	suggests	that	

the	 true	 diversity	 of	 this	 genus	 is	 likely	 vast	 however,	 sequencing	 of	 the	 few	

known	organisms	can	help	to	understand	the	evolution	of	the	genus,	especially	

those	with	the	potential	to	cause	disease.		
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Figure	1.1.1.	Entamoeba	phylogeny	and	host	restriction.	Phylogeny	is	based	

on	 the	 small	 subunit	 rRNA	 sequence.	 At	 the	 time	 of	 its	 original	 publication,	

species	surrounded	by	dashed	boxes	were	due	 to	be	sequenced,	 low	coverage	

shotgun	sequencing	data	existed	for	those	in	dotted	boxes	and	fully	sequenced	

species	are	in	solid	boxes.	Modified	from	Weedall	and	Hall,	2006	[15].	

1.2.	Entamoeba	histolytica	and	other	important	Entamoeba	species	
	

The	species	most	relevant	to	human	health,	Entamoeba	histolytica,	accounts	for	

a	substantial	portion	of	Entamoeba	research.	It	is	an	invasive,	enteric	protozoan	

pathogen	 and	 the	 causative	 agent	 of	 amoebiasis,	 an	 important	 cause	 of	

diarrhoea	and	diarrhoeal	death	 in	developing	countries.	Entamoeba	histolytica	

affects	approximately	500	million	people	worldwide	of	whom	approximately	4-

10%	 will	 develop	 clinical	 symptoms	 within	 one	 year.	 100,000	 cases	 are	
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estimated	 to	be	 fatal	 per	 year,	making	E.	histolytica	the	 third	 leading	 cause	of	

death	 from	 a	 parasitic	 disease	 worldwide	 after	 malaria	 and	 schistosomiasis	

[16,17].	 What	 triggers	 pathogenesis	 in	 a	 small	 subset	 of	 individuals	 is	 still	

unknown.	However,	we	are	becoming	 increasingly	 aware	of	 the	 complexity	of	

host-parasite	interactions	as	drivers	of	virulence	in	Entamoeba	infections.		

	

1.2.1.	The	Entamoeba	histolytica	life	cycle	

	

The	E.	histolytica	 life	 cycle	 is	 completed	within	one	host,	 usually	humans,	 and	

does	not	require	an	intermediate	host.	Its	life	cycle	(Figure	1.2.1)	consists	of	two	

stages,	 infective	 trophozoites	and	dormant	 cysts	 [11].	 In	 the	environment,	 the	

parasite	exists	as	a	quadrinucleate	cyst	that	can	be	ingested	by	the	human	host.	

Once	 in	 the	 small	 intestine,	 the	 parasite	 undergoes	 excystation	 and	 develops	

into	 (potentially)	 pathogenic	 trophozoites	 that	 colonise	 the	 large	 intestine.	

Trophozoites	replicate	via	binary	fission	and	(under	unknown	stimuli)	produce	

cysts	that	are	passed	in	the	faeces.	Unlike	the	cysts,	the	anaerobic	trophozoites	

(sometimes	 passed	 in	 diarrhoea)	 rapidly	 die	 in	 the	 aerobic	 external	

environment.	Nor	would	they	survive	the	gastric	environment	 if	 they	were	re-

ingested.	Cysts	can	exist	in	the	external	environment	for	days	to	weeks	and	are	

responsible	for	further	infections.		
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Figure	1.2.1.	The	life	cycle	of	Entamoeba	histolytica.		The	different	infection	

outcomes	within	the	human	host	are	labelled	A,	B	and	C.	Stages	of	the	life	cycle	

are	number	numerically	(1-5)	in	chronological	order.	Image	taken	by	the	US	

Centers	for	Disease	Control	and	Prevention	(CDC).		 	
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1.2.2.	Pathogenicity	and	treatment	of	amoebiasis		

	

E.	histolytica	 is	 the	 causative	 agent	 of	 amoebiasis,	which	 can	 present	 across	 a	

range	of	severities	from	asymptomatic	to	invasive	and	extra-intestinal	disease.	

Asymptomatic	infections	account	for	the	majority	of	infections	and	are	defined	

as	 the	 presence	 of	E.	 histolytica	cysts	 in	 the	 stool	 in	 the	 absence	 of	 colitis	 or	

extra-intestinal	disease.	These	individuals	do	not	exhibit	clinical	manifestations	

and	 present	 with	 no	 history	 of	 blood	 in	 the	 stools.	 Cysts	 and	 trophozoites	

lacking	 ingested	 red	 blood	 cells	 (RBCs)	 may	 be	 visible	 in	 the	 stool	 under	 a	

microscope	 [18]	 indicating	 that	 asymptomatic	 patients	 can	 still	 be	 infective	

carriers	 of	 E.	 histolytica.	 Most	 individuals	 will	 also	 produce	 serum	 antibody	

responses	 to	 the	 parasite	 even	 in	 the	 absence	 of	 invasive	 disease	 [19].	 It	 is	

important	 that	 asymptomatic	 patients	 are	 also	 treated	 to	 prevent	 spread	 of	

amoebiasis	 from	 these	 carriers.	Untreated	asymptomatic	patients	usually	 self-

resolve	 the	 disease	 over	 time	 until	 full	 clearance	 of	 the	 parasite	 is	 reached	

though,	some	individuals	may	develop	colitis	after	a	period	of	months	[20].		

	

In	 a	 small	 subset	 of	 individuals,	 the	 disease	 can	 persist	 and	 progress	 into	

invasive	 amoebiasis,	 also	 called	 amoebic	 dysentery,	 where	 the	 infective	 E.	

histolytica	 stage	 (trophozoites)	 can	 penetrate	 the	 intestinal	 mucosa	 [21].	 In	

invasive	 disease,	 trophozoites	 damage	 and	 kill	 epithelial	 cells	 and	 invade	 the	

epithelium	that	lines	the	colon	leading	to	abdominal	pain	and	tenderness.	Other	

common	symptoms	of	invasive	amoebiasis	are	watery,	bloody	or	mucous	stools	

with	up	to	10	bowel	movements	per	day,	appetite	loss	followed	by	weight	loss,	

and	 fever	 (in	 one	 third	 of	 patients)	 [22].	 The	 presence	 of	 Charcot-Leyden	

crystals,	 the	 lack	 of	 faecal	 leukocytes,	 and	 blood	 are	 the	 most	 common	 stool	

findings	 in	the	acute	stage	of	amoebic	dysentery.	Detection	of	 the	parasite	can	

be	poor	from	a	single	stool	sample	and	the	best	diagnostic	method	is	detection	

of	 the	 E.	 histolytica	 antigen	 or	 E.	 histolytica	 DNA	 in	 the	 stool	 [23,24].	 Left	

untreated,	 the	disease	 leads	 to	amoebic	colitis	 resulting	 in	 flask	shaped	ulcers	

within	 the	 colon	 in	 which	 trophozoites	 replicate	 at	 a	 high	 rate	 [25].	 The	

incubation	 time	 for	 invasive	 amoebiasis	 is	 variable	 though	 usually	 symptoms	
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appear	one	 to	 four	weeks	after	 ingestion	of	 cysts;	however,	 the	 range	may	be	

from	a	few	days	to	years	[18,22,26].	

	

Occasionally,	E.	histolytica	can	spread	to	other	organs	leading	to	extra-intestinal	

amoebiasis.	 This	 organ	 is	most	 commonly	 the	 liver,	with	 the	 parasite	 gaining	

access	 through	 the	 hepatic	 portal	 venous	 system	 and	 causing	 amoebic	 liver	

abscesses	 (ALA)	 [27].	 The	 incubation	 period	 between	 invasive	 infection	 and	

extra-intestinal	 infection	 is	 not	 well	 documented	 however,	 ALA	 occurs	 more	

commonly	in	adults	than	children.	The	disease	presents	with	similar	symptoms	

to	amoebic	dysentery	with	most	patients	experiencing	abdominal	pain	followed	

by	 fever	 and	 more	 diffuse	 abdominal	 pain	 in	 the	 sub-acute	 phase	 [28].	 In	

addition,	many	 patients	 have	 elevated	 peripheral	white	 blood	 cell	 counts	 and	

alkaline	phosphate	 levels	 [29–31].	Definitive	diagnosis	of	ALA	 is	confirmed	by	

serological	 testing	 for	 antibodies	 against	 E.	 histolytica	 and	 through	 the	

demonstration	 of	 lesions	 to	 the	 liver	 through	 imaging	 techniques	 such	 as	

computed	 tomography	 ultrasonography	 or	 magnetic	 resonance	 imaging	 [22].	

Complications	of	 these	 liver	abscesses	 such	as	abscess	 rupture	and	 secondary	

bacterial	 infections	are	usually	 fatal	 [32].	Spread	of	 trophozoites	to	other	sites	

does	occur	and	has	been	reported	 in	 the	 lungs,	brain	and	skin	however,	 these	

cases	are	much	rarer	than	colonisation	of	the	liver	[33–35].	

	
Vaccines	 using	 native	 and	 recombinant	 forms	 of	 an	 E.	 histolytica	 lectin	 (Gal-

lectin)	can	protect	animals	against	intestinal	amoebiasis	and	ALA	[36].	However	

as	 these	 have	 not	 yet	 been	 developed	 for	 testing	 on	 humans,	 treatment	 of	

amoebiasis	still	heavily	relies	on	drug	therapy.	Treatment	options	for	all	stages	

of	infection	are	limited	and	there	is	a	great	need	to	identify	novel	drug	targets	to	

aid	 new	 drug	 developments.	 Currently,	 asymptomatic	 infections	 are	 treated	

with	paromomycin	(25-35	mg/kg,	3x	daily,	7	days)	followed	by	a	luminal	agent,	

diloxanide	furoate	(500mg,	3x	daily,	10	days)	[37].	When	used	in	combination,	

the	drugs	are	effective	at	clearing	E.	histolytica	from	asymptomatic	individuals,	

however,	 both	 drugs	 can	 cause	 gastrointestinal	 upset,	 nausea,	 vomiting	 and	

diarrhoea,	 which	 can	 make	 it	 hard	 to	 distinguish	 any	 emergence	 of	 invasive	

disease	during	the	treatment	period	as	symptoms	and	side	effects	are	similar.		
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For	invasive	and	extra-intestinal	infection,	metronidazole	(750	mg,	3x	daily,	7-

10	days)	is	the	most	effective	treatment.	How	metronidazole	works	to	resolve	E.	

histolytica	 infections	 is	 unclear.	 However,	 it	 is	 thought	 to	work	 by	 disrupting	

redox	regulation	mechanisms,	specifically	the	thioredoxin	system.	Thioredoxin	

is	 able	 to	 reduce	 metronidazole,	 producing	 highly	 reactive	 molecules	 that	

generate	increasing	levels	of	oxidative	stress	leading	to	cell	death.	When	used	in	

conjunction	 with	 a	 luminal	 amoebacide	 such	 as	 diloxanide	 furoate	 as	 before,	

complete	 clearance	of	 infection	 is	 likely	within	 two	weeks.	 The	 side	 effects	 of	

metronidazole	are	more	severe	than	those	following	treatment	of	asymptomatic	

disease.	 Metronidazole	 side	 effects	 are	 primarily	 gastrointestinal	 and	 include	

anorexia,	nausea,	vomiting,	diarrhoea	and	abdominal	pain	as	well	as	a	metallic	

mouth	 taste	and	an	 intolerance	 reaction	with	alcohol	 [37].	As	before,	 the	 side	

effects	and	the	disease	symptoms	are	very	similar	and	hence,	it	can	be	difficult	

to	observe	whether	a	patient	is	responding	well	to	the	metronidazole	treatment	

and	truly	getting	better.		

	

There	 is	 no	 major	 second-line	 drug	 at	 present;	 this	 becomes	 particularly	

important,	as	metronidazole	is	both	expensive	and	not	easily	available	in	some	

countries.	Many	areas	where	amoebiasis	is	endemic	occur	in	the	tropics	and	the	

rate	of	infection	is	directly	linked	to	socio-economic	factors	such	as	income	and	

access	to	adequate	hygiene	infrastructure.	This	means	that	there	are	situations	

where	patients	simply	do	no	have	access	or	cannot	afford	effective	treatment	of	

the	disease	and	as	a	result,	the	disease	continues	to	spread	within	these	poorer	

areas.	 In	 addition,	 metronidazole-resistant	 E.	 histolytica	 strains	 have	 been	

reported	 in	 vitro	 [38,39],	 highlighting	 that	 metronidazole	 resistance	 could	

emerge	 in	 vivo	 as	 has	 been	 in	 seen	 in	 other	 parasites	 such	 as	 Trichomonas	

vaginalis	[40–43].		

	

Where	 standard	metronidazole	 treatment	 has	 been	 ineffective,	 toxic	 levels	 of	

metronidazole	or	other	drugs	might	be	prescribed	with	dangerous	side	effects.	

Paramomycin,	an	orally	delivered	aminoglycoside	amoebacide,	can	be	used	as	a	

second-line	 treatment	 to	 treat	 invasive	 amoebiasis	 and	 patients	 in	 comas	

resulting	 from	 liver	 damage	 however,	 it	 is	 ineffective	 against	 extra-intestinal	
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disease	 and	 has	 many	 serious	 side	 effects	 [44,45].	 The	 final	 alternative	 is	

dehydroemetine.	 It	 is	 highly	 toxic	 and	 an	 irritant	when	 taken	 orally	meaning	

that	 it	 is	 delivered	 by	 injection	 directly	 into	muscle	 tissue.	 The	 drug	 inhibits	

protein	 synthesis	 and	 can	 cause	 fatal	 myocardial	 toxicity	 in	 sufferers	 with	

cardiac	 problems.	 Chloroquine	 and	 needle	 aspiration	 of	 abscesses	 are	 also	

recommended	 in	 extreme	 cases	 [45,46].	 The	 severity	 of	 the	 side	 effects	

associated	 with	 these	 last	 resort	 treatments	 have	 led	 to	 active	 research	 to	

identify	other	drugs	effective	against	both	E.	histolytica	trophozoites	and	cysts.	

Recently,	drug	screens	have	been	performed	with	some	success.	Auranofin,	a	US	

Food	and	Drug	Administration	(FDA)	approved	drug	used	in	patients	suffering	

from	rheumatoid	arthritis,	was	discovered	to	be	as	active	against	E.	histolytica	

trophozoites	 in	 culture	 as	 metronidazole	 [47].	 It	 is	 yet	 to	 be	 determined	

whether	 auranofin	will	 be	 active	 against	 the	more	 resistant	 cysts	 and	 clinical	

trials	are	being	performed	to	assess	the	effectiveness	of	using	auranofin	to	treat	

amoebiasis	patients	[48].	

	

However,	it	could	be	argued	that	it	is	not	beneficial	to	the	E.	histolytica	species	

to	be	pathogenic	as	by	killing	the	host,	the	parasite	is	unable	to	continue	its	life	

cycle.	Recent	investigations	into	the	prevalence	of	Entamoeba	histolytica	in	the	

rural	African	 gut	microbiome	have	 suggested	 that	E.	histolytica	may	be	better	

termed	 a	 pathobiont	 (i.e.	 a	 potentially	 pathogenic	 organism,	 which	 under	

normal	circumstances,	lives	as	a	symbiont).	The	study	observed	that	the	faecal	

microbiota	of	Pygmy	hunter-gathers	 as	well	 as	Bantu	 individuals	 from	bother	

faming	 and	 fishing	 populations	 in	 Southwest	 Cameroon,	 presence	 of	 E.	

histolytica	in	the	gut	was	significantly	correlated	with	microbiome	composition	

and	increased	diversity	suggesting	E.	histolytica	may	usually	act	as	a	symbiont	

in	 normal	 circumstances	 [49].	 Further,	 the	 study	 noted	 that	 colonisation	 of	

Entamoeba	 in	 the	 gut	 could	 be	 predicted	 with	 79%	 accuracy	 based	 on	 the	

composition	of	an	individuals	gut	microbiome	and	that	several	of	the	taxa	most	

important	 for	 distinguishing	 Entamoeba	 absence	 from	 the	 microbiome	 were	

signature	taxa	for	autoimmune	disorders	[49].		
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Though,	as	described	in	previously	in	Section	1.2.1,	 invasion	of	the	colon	by	E.	

histolytica	 trophozoites	 during	 amoebic	 colitis,	 results	 in	 flask	 shaped	 ulcers	

within	the	colon	 in	which	trophozoites	replicate	at	a	high	rate	 [25].	 It	 is	 likely	

that	 by	 forming	 these	 ulcers,	 the	 trophozoites	 create	 an	 environment	 that	 is	

partly	 shielded	 from	 the	 harsh	 environment	 of	 the	 gut	 and	 under	 these	

conditions	 the	 parasite	 can	 proliferate	 at	 a	 high	 rate	 [25].	 Therefore,	 the	

generation	 of	 these	 flask	 shaped	 ulcers	 could	 perhaps	 be	 beneficial	 to	 the	

survival	and	reproduction	of	the	E.	histolytica	trophozoites	effectively	selecting	

for	 pathogenicity	 during	 the	 evolution	 of	 the	 parasite.	 The	 origins	 of	 these	

virulence	genes	 involved	 in	pathogenicity	of	E.	histolytica	are	unknown.	 It	was	

speculated	that	horizontal	gene	transfer	may	be	responsible	for	the	acquisition	

of	 some	 genes	 important	 in	 virulence	 as	 is	 seen	 the	 evolution	 of	many	 other	

eukaryotic	 pathogens.	 However,	 despite	 22	 transferences	 of	 HGT	 being	

predicted	 in	 E.	 histolytica	 between	 31.45	 Mya	 and	 253.59	 Mya,	 no	 virulence	

factors	have	been	identified	as	being	transferred	[50].		

	

1.2.3.	Epidemiology	of	amoebiasis	

	

Amoebiasis	 is	 a	 major	 cause	 of	 morbidity	 and	 mortality	 worldwide	 and	 the	

disease	can	be	both	endemic	and	epidemic.	Endemic	disease	is	most	prevalent	

in	tropical	and	sub-tropical	countries.	These	settings	are	characterised	by	poor	

sanitation	 infrastructure,	 such	 as	 the	 lack	 of	 access	 to	 clean	 water	 and	 toilet	

systems,	 and	 inadequate	 health	 care	 infrastructure	 [51].	 For	 instance,	

amoebiasis	 is	endemic	 in	regions	of	Mexico	and	the	disease	consistently	ranks	

fifth	 or	 sixth	 in	 the	 list	 of	 the	 20	 major	 causes	 of	 disease	 in	 Mexico	 [52,53].	

Similarly,	high	 instances	of	 endemic	amoebiasis	are	 seen	 in	 the	Hué	 region	 in	
Vietnam,	 where	 approximately	 11%	 of	 the	 population	 are	 estimated	 to	 be	

infected	 [54]	 and	 in	 Bangladesh,	where	 15.6%	of	 tested	 children	 aged	 two	 to	

five	had	an	E.	histolytica	infection,	confirmed	using	an	antigen	detection	kit	[55].	

E.	histolytica,	is	transmitted	between	hosts	via	the	faecal-oral	route	and	as	such,	

the	 majority	 of	 amoebiasis	 deaths	 are	 characterised	 by	 intestinal	 or	 extra-

intestinal	disease.		
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In	addition	to	individuals	who	live	in	areas	where	amoebiasis	is	endemic,	there	

are	other	 groups	of	 individuals	who	are	 at	 a	higher	 risk	of	 becoming	 infected	

with	E.	histolytica.	Outbreaks	have	been	observed	in	individuals	who	engage	in	

oral	 and	 anal	 sex,	 most	 commonly	 homosexual	 men	 [56,57]	 and	 also	 in	

institutionalised	individuals	in	Japan	and	the	Philippines	[58,59].	More	recently,	

a	study	of	346	individuals	suffering	from	amoebic	liver	abscesses	(ALAs),	where	

E.	 histolytica	 trophozoites	 metastasize	 from	 the	 intestine	 to	 the	 liver	 causing	

invasive	liver	disease,	was	performed	in	Sri	Lanka.	The	study	found	that	among	

the	 cohort	 of	 ALA-sufferers,	 almost	 all	 (98.6%)	 were	 male	 and	 all	 (100%)	

reported	 a	 history	 of	 heavy	 alcohol	 consumption,	 especially	 a	 local	 drink	 that	

consists	of	the	fermented	sap	of	the	Palmyra	palm	(called	toddy)	[60].		

	

Amoebiasis	 epidemics	 sometimes	occur	 in	more	 affluent	 countries.	Accidental	

sewage	 contamination	 of	 public	 water	 supplies	 can	 lead	 to	 E.	 histolytica	

outbreaks	as	was	witnessed	in	Sweden	in	1986	[61],	Taiwan	in	1993	[62]	and	in	

the	Republic	of	Georgia	in	1998	[63].	

	

It	was	estimated	in	1986,	that	between	10%	and	20%	of	the	global	population	

were	 infected	with	 the	E.	histolytica	 parasite	of	whom,	1%	would	develop	 the	

invasive	form	of	the	disease	and	100,000	would	die	annually	[7].	99%	of	cases	

were	reported	as	asymptomatic	and	 it	 is	 thought	 that	some	 infections	may	be	

due	to	non-pathogenic	amoebas	such	as	E.	dispar	and	E.	moshkovskii,	which	are	

morphologically	 identical	 to	E.	histolytica	and	were	not	recognised	as	separate	

species	until	1993	[10]	and	1991	[64],	respectively.	As	a	result,	 it	 is	 likely	that	

the	 infection	 rate	 was	 over-estimated	 however,	 as	 these	 other	 Entamoeba	

species	 are	 non-pathogenic,	 it	 is	 likely	 that	 the	 global	 mortality	 remains	 at	

100,000	 people	 annually	 [65].	 More	 recently	 the	 World	 Health	 Organisation	

(WHO)	 has	 revised	 these	 figures	 and	 it	 is	 thought	 E.	 histolytica	 infects	

approximately	500	million	people	per	annum.	Of	 these,	 it	 is	 estimated	 that	50	

million	will	develop	symptomatic	disease	and	100,000	cases	will	result	in	death	

[66].		
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1.2.4.	Other	Entamoeba	species	relevant	to	E.	histolytica	research	

	

Research	into	the	most	closely	related	Entamoeba	species	to	E.	histolytica	can	be	

useful	in	determining	the	evolution	of	pathogenicity	and	the	narrowing	of	host	

range	within	this	part	of	the	Entamoeba	phylum.	These	species	are	E.	nuttalli,	E.	

dispar	and	E.	moshkovskii	(Figure	1.1.1	for	reference).	Comparisons	of	the	gene	

content	 of	 these	 species	 (described	 in	 more	 detail	 in	 section	 1.3.4)	 provides	

insights	 into	 the	 gene	 differences	 (present/absent/polymorphisms)	 between	

pathogenic	 and	 non-pathogenic	 Entamoeba	 spp.	 as	 well	 as	 between	 human-

infecting	and	non-human	primate-infecting	species.		

	

Entamoeba	 nuttalli	 is	 the	 closest	 related	 species	 to	 E.	 histolytica	 that	 has	

currently	been	 identified;	 it	 is	pathogenic	and	 its	main	host	 species	 so	 far	has	

been	 identified	 as	 captive	 and	 wild	 macaques	 including	 Macaca	 mulatta,	 M.	

fasciculalis,	M.	fuscata,	M.	thibetana	and	M.	sinica	[67–74].	Most	macaques	with	

E.	nuttalli	infections	are	asymptomatic,	perhaps	indicating	that	the	host-parasite	

relationship	 in	 macaques	 may	 be	 commensal	 in	 natural	 infection	 [71].	 More	

recently,	 zoonotic	 concerns	 surround	 the	E.	nuttalli	parasite	 have	 been	 raised	

after	cysts	of	E.	nuttalli	were	detected	in	a	care-taker	of	non-human	primates	in	

a	zoo	[6].	

	

Entamoeba	dispar	is	the	closest	related	species	to	E.	histolytica	that	also	infects	

humans	 however,	 E.	 dispar	 has	 a	 wider	 host	 range	 and	 can	 also	 infect	 non-

human	 primates	 [70].	 E.	 dispar	 is	 unlike	 E.	 histolytica	 in	 regards	 to	 its	

pathogenicity;	 E.	 dispar	 is	 non-pathogenic	 in	 humans	 although	 this	 has	 been	

questioned	[75]	as	a	Brazilian	strain	of	E.	dispar	has	been	seen	to	cause	amoebic	

liver	 abscesses	 (ALAs)	 in	 hamsters	 that	 were	 occasionally	 indistinguishable	

from	 ALAs	 produced	 by	 E.	 histolytica.	 This	 and	 other	 findings,	 such	 as	 the	

detection	 of	 DNA	 sequences	 from	 E.	 dispar	 in	 ALA-sufferers,	 has	 revived	 the	

possibility	that	this	species	can	produce	human	lesions	[76].	

 
Entamoeba	moshkovskii	was	long	thought	to	be	a	free-living	amoeba	[14,77,78]	

however,	 the	 observation	 of	 its	 ability	 to	 infect	 humans	has	made	 it	 clinically	
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relevant	 over	 the	 last	 decade.	 It	 has	 frequently	 been	 found	 in	 areas	 where	

amoebiasis	 is	 prevalent	 [79].	 It	 has	 been	 suggested	 that	 E.	 moshkovskii	 is	

associated	 with	 gastrointestinal	 symptoms	 and	 studies	 of	 human-derived	

clinical	 isolates	 and	 cases	 of	 diarrhoea	 have	 been	 directly	 associated	 with	 E.	

moshkovskii	[55,80].	It	has	 the	potential	 to	 infect	 large	numbers	of	people	and	

one	study	 in	Bangladesh	revealed	that	21.1%	of	sampled	children	(two	to	 five	

years	old)	were	infected	with	E.	moshkovskii	[55],	highlighting	the	importance	of	

research	into	this	Entamoeba	species.		

	

Though	 distantly	 related	 to	 E.	 histolytica,	 E.	 dispar	 and	 E.	 moshkovskii	 [79],	

Entamoeba	invadens	 is	one	of	the	more	researched	Entamoeba	species	because	

it	 is	 the	 only	Entamoeba	 species	 that	 can	 be	 induced	 to	 encyst	 and	 excyst	 in	

axenic	 culture	 [81].	This	 unique	 characteristic,	 alongside	 the	 observation	 that	

the	 life	 cycle,	 symptoms	 and	 infection	 caused	 by	E.	 invadens	are	 the	 same	 as	

those	 in	E.	histolytica	[82,83],	has	made	 it	a	model	 for	Entamoeba	encystation;	

gene	 expression	 data	 are	 available	 for	 the	 entirety	 of	 its	 life	 cycle	 [84].	 The	

model	 has	 helped	 to	 elucidate	 the	 genes	 involved	 in	 the	 regulation	 of	 the	

Entamoeba	 life	cycle	and	identify	genes	that	are	differentially	regulated	during	

the	encystation	and	excystation	transition	stages	[84].	The	ability	to	encyst	this	

species	in	vitro	has	also	been	utilised	within	high-throughput	screens	to	identify	

drugs	 effective	 against	 both	 the	 trophozoite	 and	 cyst	 life	 forms	 of	

metronidazole-resistant	E.	invadens	strains	[85].	Compounds	with	good	activity	

against	 E.	 invadens	 were	 tested	 in	 E.	 histolytica	 trophozoites	 resulting	 in	

identification	 of	 five	 compounds	 with	 good	 activity	 	 (EC50	 <25	 μM,	 >50%	

inhibition	of	cysts)	against	both	E.	histolytica	trophozoites	and	E.	invadens	cysts	

[85].		

	

1.3.	The	power	of	genomics	and	comparative	analyses	amongst	Entamoeba	
species	
	

Whole	 genome	 sequencing	 (WGS)	 has	 played	 a	 significant	 role	 in	 tackling	

human	pathogens.	Candidate	targets	for	drugs	or	vaccines	have	been	discovered	

from	the	vast	amount	of	functional	data	that	can	be	derived	from	the	annotation	

of	 these	 pathogen	 genomes.	 Reference	 genome	 assemblies	 that	 have	 been	
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developed	 for	 each	 pathogen	 provide	 a	 vital	 resource	 for	 post-genomic	 data	

analyses	 such	 as	 analyses	 of	 gene	 expression,	 through	 microarrays	 or	 whole	

transcriptome	sequencing,	and	the	identification	of	epigenetic	modifications	to	

DNA	 through	whole	 genome	 bisulphite	 sequencing.	 Underlying	 all	 of	 this,	 the	

genome	provides	 an	 open	 resource	 for	 understanding	 the	 organism’s	 biology.	

EuPathDB	 is	 a	 good	 example	 of	 this,	 and	 acts	 as	 a	 resource	 for	 the	 collective	

storage	 of	 multi-omics	 data	 of	 eukaryotic	 protist	 pathogens,	 including	

Entamoeba,	 and	provides	 integrated	 tools	 that	aid	exploration	and	analyses	of	

these	 numerous	 datasets	 [86].	 The	 growing	 number	 of	 organisms	 in	 this	

database	 includes	 many	 species	 of	 Plasmodium	 [87],	 Trypanosoma	 [88,89],	

Leishmania	[90],	Trichomonas	[91],	Giardia	[92,93],	Cryptosporidium	[94,95]	and	

Neospora	 [96].	 These	 genomes	 have	 provided	 an	 invaluable	 resource	 for	

understanding	 the	 biology	 of	 these	 organisms,	 including	 mechanisms	 of	

virulence,	and	many	of	the	omics	datasets	have	been	utilised	to	understand	the	

organism’s	 biology	 and	 combat	 the	 diseases	 they	 cause.	The	 draft	Entamoeba	

histolytica	genome	 [97,98]	 is	 also	 hosted	 on	 EuPathDB,	 alongside	many	 other	

omics	 datasets,	 including	 those	 for	 other	 members	 of	 the	 Entamoeba	 genus.	

These	genomes	have	facilitated	genomic	and	comparative	genomic	analyses	of	

the	 Entamoeba	 species,	 though	 limitations	 remain.	 These	 limitations	 will	 be	

discussed	in	this	section;	it	is	hoped	that	new	genome	sequencing	(Chapter	2),	

annotation	(Chapter	3)	and	post-genomic	analyses	(Chapter	5)	will	help	to	solve	

some	of	these	problems.	

	

1.3.1.	The	Entamoeba	histolytica	genome	

	

The	 E.	 histolytica	 strain	 sequenced,	 HM-1:IMSS,	 is	 the	 most	 widely	 studied	

culture-adapted	 strain	 and	was	 originally	 isolated	 from	 the	 rectal	 ulcer	 of	 an	

adult	 human	 male	 suffering	 from	 amoebic	 dysentery	 in	 Mexico	 City	 in	 1967	

[99,100].	The	Entamoeba	histolytica	HM-1:IMSS	genome	was	sequenced	prior	to	

the	 arrival	 of	 second	 generation	 (massively	 parallel)	 and	 third-generation	

(single	molecule)	sequencing	technologies	and	as	a	result	the	genome	is	largely	

composed	of	whole-genome	shotgun	(WGS)	Sanger	reads.	The	E.	invadens	and	E.	

dispar	 genomes	 were	 sequenced	 with	 the	 same	 technology.	 At	 the	 time	 of	
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sequencing,	assembling	WGS	Sanger	sequencing	data	was	difficult	for	organisms	

with	complex,	repetitive	genomes	as	the	reads,	around	750	bp	in	length	[101],	

rarely	 spanned	 repetitive	 regions	 of	 the	 genome	 leading	 to	 breaks	 in	 the	

assembly	where	 a	 contig	 could	 no	 longer	 be	 extended.	 As	 a	 result,	 strategies	

were	 developed	 to	 sequence	 chromosomes	 or	 long	 stretches	 of	 DNA	

individually.	 Bacterial	 artificial	 chromosomes	 (BACs)	 or	 yeast	 artificial	

chromosomes	 (YACs)	 can	 aid	 assembly	 processes	 by	 allowing	 the	 isolated	

sequencing	 of	 long	 stretches	 of	 contiguous	DNA	whilst	 retaining	more	 spatial	

information	 than	whole	 shotgun	 sequencing	 alone.	 BACs	 can	 be	 created	with	

inserts	up	to	300	Kbp	and	YACs	are	able	to	incorporate	inserts	of	100-2000	Kbp	

[102].	Markers	or	restriction	digest	patterns	can	be	identified	on	the	assembled	

long	inserts	that	allow	them	to	be	physically	mapped	to	the	chromosomes	of	an	

organism.	 However,	 the	 method	 was	 not	 suitable	 for	 E.	 histolytica	 genome	

sequencing	due	to	the	high	AT	content	that	makes	the	DNA	unstable	in	BACs.	In	

addition,	 the	 process	 relies	 on	 physical	 mapping,	 which	 is	 not	 possible	 in	 E.	

histolytica	as	the	chromosomes	in	E.	histolytica	do	not	condense.		

	

Entamoeba	 histolytica’s	 closest	 fully	 sequenced	 relative,	 Dictyostelium	

discoideum,	also	has	 a	 very	 high	AT	 content	 (77.6	%)	 that	meant	 the	 genome	

was	 unsuitable	 for	 large	 insert	 BAC	 library	 generation.	 To	 overcome	 this	

problem,	 researchers	 used	 pulse-field	 gel	 electrophoresis	 (PFGE)	 to	 separate	

the	 D.	 discoideum	 chromosomes	 so	 they	 could	 be	 individually	 isolated,	

sequenced	and	assembled	[103].	During	PFGE,	genomic	DNA	can	be	separated	

to	 reveal	 distinct	 DNA	 bands	 that	 represent	 whole	 chromosomes.	 These	

chromosomes	 can	 be	 then	 isolated,	 sequenced	 and	 assembled	 separately	 to	

improve	the	likelihood	of	assembling	whole	chromosomes.	This	sequence	data	

was	 combined	with	 HAPPY	mapping	 to	 help	 guide	 the	 sequence	 assembly	 of	

each	chromosome.	This	hybrid	method	of	assembly	produced	six	chromosomes	

of	the	D.	discoideum	genome	consisting	of	34	Mbp	[103].		

Unfortunately,	 a	 similar	 approach	 could	 not	 be	 adopted	 for	 the	 E.	 histolytica	

genome.	The	karyotype	of	E.	histolytica	appears	to	be	very	complex	and	cannot	

clearly	 be	 separated	 using	 PFGE,	 unlike	 many	 other	 organisms	 whose	
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chromosomes	 can	 be	 well	 separated	 using	 this	 method.	 The	 best	 method	 of	

performing	PGFE	on	E.	histolytica	trophozoites	includes	embedding	whole	cells	

into	agarose	plugs	prior	to	digestion	with	proteinase	K	and	separation	of	DNA	

using	rotating	field	gel	electrophoresis	(ROFE).	The	whole	cells	are	required	to	

be	 embedded	 as	 Entamoeba	 contain	 large	 numbers	 of	 endogenous	 nucleases	

which	rapidly	degrade	its	genomic	DNA	upon	lysis	and	result	in	a	smear	of	low	

molecular	weight	DNA	when	used	in	PFGE	[104].	Unfortunately,	as	whole	cells	

are	 required	 to	 be	 embedded,	 only	 1-3x106	 cells	 are	 able	 to	 be	 loaded	 into	 a	

single	agarose	plug	resulting	 in	weak	staining	of	 the	chromosomes.	From	this,	

numerous	faint,	but	visible,	bands	were	observed	ranging	from	0.3	Mbp	and	2.2	

Mbp	(Figure	1.3.1).		

Figure	 1.3.1.	 The	 complex	 karyotype	 of	 Entamoeba	 histolytica.	 PFGE-

separation	of	E.	histolytica	DNA	(Eh)	and	Saccharomyces	cerevisiae	(Sc)	shows	a	

complex	pattern	of	separation	of	E.	histolytica	DNA	and	a	distinct	separation	of	

S.	cerevisiae	DNA.	Figure	adapted	from	Willhoeft	and	Tannich,	1999	[105].		

Staining	 intensity	 is	 not	 constant	 between	 the	different	 bands	 suggesting	 that	

brighter	 bands	 may	 consist	 of	 two	 or	 more	 distinct	 DNA	 structures	

(chromosomes	 or	 plasmid	 molecules)	 or	 represent	 cases	 where	 entire	 DNA	

molecules	 exhibit	 increased	 copy	 number.	 Adding	 to	 this	 complexity,	 it	 is	

Eh        Sc	
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suggested	that	the	E.	histolytica	genome	is	composed	of	a	mixture	of	both	linear	

and	circular	molecules	[106–109].	Circular	molecules	contain	the	rRNA	genes	of	

E.	 histolytica;	 Estimates	 suggest	 approximately	 200	 copies	 of	 these	molecules	

may	occur	per	cell	[110].	

	

HAPPY	 mapping	 could	 not	 be	 used	 to	 complement	 the	 assembly	 of	 the	 E.	

histolytica	genome	as	was	done	for	the	assembly	of	D.	discoideum.	In	genomics,	

HAPPY	mapping	can	be	used	to	assess	the	orientation	of	various	DNA	sequences	

across	 a	 particular	 genome	 and	 generate	 a	 genomic	map	 that	 can	 be	 used	 to	

guide	 the	 assembly	 of	 other	 omics	 sequencing	 datasets.	 The	 process	 defines	

linkage	 groups	 based	 on	 the	 frequency	 or	 co-occurrence	 of	 the	 markers	 in	

samples	generated	by	fragmentation	[111].	The	rationale	being	that	the	closer	

two	markers	are	to	one	another	spatially,	the	less	likely	they	are	to	be	separated	

by	the	fragmentation	stage.	These	markers	can	be	matched	to	those	in	sequence	

data	 and	 those	 reads/contigs	 containing	 markers	 not	 separated	 by	

fragmentation	 can	 be	 assumed	 to	 occur	 close	 together	 in	 the	 genome	 [111].	

HAPPY	mapping	has	been	performed	on	E.	histolytica	DNA	however	the	results	

were	not	very	successful	due	to	the	repetitive	nature	of	the	genome	[112].		

	

Optical	mapping	 is	 another	 technique	 to	 guide	 the	 assembly	of	 sequence	data	

based	 on	 spatial	 information.	 In	 optical	mapping,	 ordered	 restriction	maps	 of	

very	long,	single	DNA	molecules	are	created	[113].	In	silico	restriction	mapping	

of	 assembled	 contigs	 or	 scaffolds	 is	 performed	 and	 the	 restriction	 patterns	

mapped	to	those	created	during	the	optical	mapping.	The	placement	of	contigs	

within	 the	 optical	 map	 can	 bring	 together	 contigs	 close	 enough	 to	 produce	

spatially	 accurate	 scaffolds	 (containing	 variable	 sized	 gaps).	 Optical	 mapping	

has	 also	 been	 performed	 on	 E.	 histolytica	with	 limited	 success	 (Dr.	 Elisabet	

Caler,	 personal	 communications).	 A	 small	 number	 of	 putative	 linkage	 groups	

[14]	were	 produced,	 totaling	 a	 small	 amount	 of	 the	 genome	 size.	 Subsequent	

mapping	of	sequence	scaffolds	to	these	maps	proved	difficult	owing	to	the	short	

scaffold	 lengths	 that	 meant	 unique	 restriction	 mapping	 patterns	 of	 these	

scaffolds	were	difficult	to	produce.	Attempts	to	reproduce	a	newer	optical	map	

utilizing	newer	technologies	are	outlined	in	Chapter	2.		
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As	 a	 result	 of	 these	 complexities,	 the	 E.	 histolytica	 genome	 was	 assembled	

entirely	 from	WGS	 Sanger	 reads	 in	 2005	 without	 any	 spatial	 information	 or	

physical	 mapping	 [97].	 Sequencing	 produced	 around	 580,000	 reads	 of	 which	

around	 170,000	were	 removed	 before	 assembly	 due	 to	 them	being	 episomal-

derived	 or	 tRNA-containing.	 The	 remaining	 ~416,000	 reads	 had	 an	 average	

length	 of	 645	 bp	 and	 were	 assembled	 using	 the	 assembler,	 phusion	 [114].	

Scaffolds	 smaller	 than	2	Kbp	were	 removed	 and	 scaffolds	 smaller	 than	5	Kbp	

that	 shared	 98%	 or	 more	 nucleotide	 sequence	 identify	 over	 >95%	 of	 their	

lengths	were	 also	 removed.	The	 remaining	888	 scaffolds	had	 a	 total	 length	of	

23,751,783	bp.	The	genome	was	annotated	using	the	Combiner	algorithm	using	

two	gene	finder	programs,	Phat	[115]	and	GlimmerHMM	[116],	trained	using	a	

set	 of	 published	 E.	 histolytica	gene	 sequences.	 Functional	 annotations	 for	 the	

predicted	 proteins	 were	 automatically	 generated	 by	 searching	 protein	

sequences	 against	 a	 non-redundant	 protein	 database	 and	 the	 Pfam	 database	

[117].	

	

The	genome	was	re-assembled	and	re-annotated	with	additional	sequence	data	

in	2010	[98].	Assembly	was	performed	in	a	similar	way	as	was	done	previously;	

reads	containing	episomal	DNA	or	tRNA	models	were	removed	before	assembly	

and	remaining	reads	were	assembled	using	UMD	Overlapper	[118]	and	Celera	

Assembler	 [119].	 300	 known	 genes	 and	 60	 full	 length	 cDNAs	 were	 used	 to	

create	 a	 training	 set	 for	 the	 gene	 finder	 programs	 Genezilla	 [120]	 and	

GlimmerHMM	 [116].	 EVidenceModeler	 [121]	 was	 used	 to	 generate	 the	 new	

gene	data	set,	as	a	weighted	consensus	of	all	available	evidence	such	as	proteins	

and	 protein-domains	 alignments,	 cDNAs	 and	 gene	 finder	 output	 predictions	

[98].	 This	 final	 assembly	 consists	 of	 20,800,560	 bp	 assembled	 across	 1,496	

scaffolds.	Sequencing	of	Entamoeba	DNA	was	challenging	owing	 to	 its	high	AT	

content	 (75-80%)	 and	 as	 a	 result,	 the	 assembly	 produced	 remained	 highly	

fragmented	 [97,98].	 This	 meant	 that	 a	 lot	 of	 information	 about	 the	 genome	

structure	was	 lost	 and	 subsequently,	 very	 few	 structural	 features	 are	 defined	

for	 E.	 histolytica.	 There	 is	 no	 evidence	 as	 to	 how	 many	 chromosomes	 the	

genome	 contains	 nor	 is	 there	 any	 information	 as	 to	 what	 the	 telomeric	 or	

centromeric	structures	of	 the	genome	 look	 like.	However,	 it	was	revealed	 that	
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the	 genome	 is	 highly	 repetitive	 and	 transposable	 elements	 accounted	 for	

approximately	 20%	 of	 the	 assembly	 [122].	 This	 observation,	 alongside	 the	

observation	 that	 many	 scaffolds	 in	 the	 assembly	 ended	 with	 transposable	

elements	 (TEs),	 suggests	 that	 the	 repetitive	 nature	 of	 the	 genome	 may	 have	

been	the	major	limiting	factor	in	assembling	the	E.	histolytica	genome.	

	

1.3.2.	 Genome	 structure	 and	 gene	 content	 of	 the	 Entamoeba	 histolytica	

genome	

	

Transfer	RNA	 genes	 show	a	 unique	 organization	within	 the	Entamoeba	genus	

and	 form	 a	 considerable	 portion	 of	 the	 repetitive	 DNA	 in	 the	 E.	 histolytica	

genome.	The	tRNA	genes	occur	in	mixed	structures,	separated	by	spaces	of	DNA	

which	may	or	may	not	 contain	 short	 tandem	repeats	 (STRs)	depended	on	 the	

species.	 These	 units	 are	 then	 tandemly	 duplicated	 to	 form	 large	 stretches	 of	

repetitive	 DNA	 [4,5].	 One	 hypothesis	 is	 that	 these	 structures	 could	 cap	 the	

chromosomes	 and	 act	 as	 telomeres;	 no	 telomeric	 sequences	 have	 so	 far	 been	

identified	 in	 previous	 E.	 histolytica	 sequencing	 attempts	 and	 the	 presence	 of	

tRNA-based	telomeres	would	represent	an	analogous	mechanism	to	that	seen	in	

D.	discoideum	where	 ribosomal	DNA	repeats	 act	 as	 telomeres	 [123].	However,	

there	is	no	evidence	of	linkage	of	these	tRNA	arrays	to	non-repetitive	DNA	and	

hence,	 little	 evidence	 exists	 surrounding	 the	 genomic	 location	 of	 these	

structures.	

	

The	 rRNA	 genes	 within	 the	 E.	 histolytica	genome	 exist	 in	 extra-chromosomal	

molecules	 comprised	 of	 the	 rDNA	 genes	 and	 multiple	 short	 tandem	 repeat	

families	 [110].	 Two	 described	 rDNA	 episomes,	 EhR1	 and	 EhR2,	 differ	 in	 the	

number	 of	 rDNA	 genes	 they	 contain.	 EhR1	 contains	 two	 copies	 of	 the	 rDNA	

genes	 in	 an	 inverted	 orientation	 to	 one	 another	whereas,	 EhR2	 contains	 only	

one	 set	 of	 rDNA	 genes	 and	 likely	 results	 from	genetic	 recombination	 of	 EhR1	

facilitated	 by	 the	 short	 tandem	 repeat	 families	 [124,125].	 In	D.	 discoideum,	a	

chromosomal	region	containing	the	rRNA	genes	appears	to	act	as	a	master	copy	

from	which	 linear	extra-chromosomal	copies	of	 the	rRNA	genes	are	generated	

[103,126].	 No	 chromosomal	 copy	 of	 the	 rRNA	 genes	 has	 been	 identified	 in	E.	
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histolytica	although	 until	 now,	 the	 assembly	 has	 been	 highly	 fragmented	 and	

assumed	to	be	incomplete,	so	the	possibility	of	a	chromosomal	master	copy	of	

rRNA	 genes	 could	 not	 be	 excluded.	 Further	 characterisation	 of	 this	 molecule	

with	regard	to	the	organization	of	the	rRNA	genes	across	the	chromosomal	and	

extra-chromosomal	 portions	 of	 the	 E.	 histolytica	 genome	 is	 performed	 in	

Chapter	Four.	

	

The	 presence	 of	 rDNA	 episomes	 and	 tRNA	 arrays	 causes	 problems	 when	

performing	genome	assembly	as	these	regions	constitute	a	 large	proportion	of	

the	 sequence	 library	 compared	 to	 the	 non-repetitive	 regions	 that	 are	 more	

useful	in	genome	assembly.	However,	Entamoeba	histolytica’s	repetitive	nature	

does	 not	 end	 here;	 its	 genome	 contains	 a	 large	 fraction	 of	 transposable	 and	

repetitive	elements	[98].		Up	to	20%	of	the	genome	was	predicted	as	repetitive	

in	 the	original	 sequencing	attempts	 [97,98]	and	 it	 is	 these	repetitive	elements	

that	 can	 lead	 to	 chromosomal	 instability,	 resulting	 in	 chromosomal	 breaks	

points	where	 breakage	 and	 rejoining	 can	 occur	 [98].	 These	 repetitive	 regions	

and	 associated	 break	 points	 have	 proven	 a	 huge	 problem	 for	 previous	 E.	

histolytica	genome	assembly	attempts	as,	unless	reads	(or	read	pairs)	span	the	

entire	 length	 of	 the	 repetitive	 region,	 regions	 either	 side	 of	 it	 cannot	 be	

unambiguously	linked.	Some	repetitive	elements	are	several	kilobases	long	and	

Chapter	 Four	 highlights	 that	 some	 of	 these	 tRNA	 arrays	 can	 reach	 tens	 of	

kilobases	long.	These	lengths	are	much	longer	than	those	producible	by	Sanger	

and	 NGS	 sequencing	 methods	 that	 have	 previously	 been	 used	 to	 study	 E.	

histolytica	and	as	a	 result,	 the	current	E.	histolytica	reference	genome	remains	

very	fragmented.	Supporting	the	theory	that	it	is	the	repetitive	elements	causing	

this	 fragmentation	 is	 the	 observation	 that	 many	 of	 the	 current	 E.	 histolytica	

genomic	 scaffolds	 end	 in	 repetitive	DNA,	 often	 transposable	 elements,	 further	

suggesting	that	it	is	the	presence	of	these	that	has	caused	the	fragmented	nature	

of	the	current	reference	genome.	

	

The	 genome	was	 reported	 to	 be	 gene	 rich	with	 around	 half	 of	 the	 assembled	

sequence	 corresponding	 to	 predicted	 coding	 sequence.	 In	 total	 8,333	protein-

coding	 genes	 have	 been	 detected	 in	 the	 E.	 histolytica	 genome.	 However,	
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functional	 gene	 annotation	 across	 the	 E.	 histolytica	 genome	 remains	 largely	

incomplete	 owing	 to	 the	 low	 throughput	 nature	 of	 functional	 genetic	 analysis	

and	the	lack	of	researchers	dedicated	to	the	annotation	of	Entamoeba	genomes.	

In	 addition,	 Protist	 genomes	 are	 inherently	 difficult	 to	 annotate,	 as	 they	 are	

highly	 divergent	 from	 the	 well-described	 model	 organisms	 that	 most	 gene	

annotation	programs	are	optimized	for.	Figure	1.3.2	highlights	the	lack	of	gene	

annotation	 across	 the	 Entamoeba	 genus.	 This	 data	 was	 generated	 from	 the	

AmoebaDB	website,	a	database	that	 forms	part	of	 the	EuPathDB	database	that	

hosts	 the	 most	 current	 annotations	 for	 many	 protist	 genomes	 [127].	 The	

majority	 of	 these	 GO	 terms	 were	 assigned	 automatically	 by	 the	 annotation	

software	used	 to	annotate	 the	E.	histolytica	genome	and	as	a	 result,	 very	 little	

human	curation	has	been	performed	on	the	genome;	only	a	few	hundred	genes	

on	AmoebaDB	have	user	 comments	 associated	with	 them	and	 the	majority	 of	

annotated	genes	still	encode	a	“hypothetical	protein”.	Ultimately,	annotation	of	

the	E.	histolytica	genome	will	require	manual	curation	to	ensure	their	accuracy.		

	

Many	genes	are	members	of	multi-gene	families	(Figure	1.3.3)	[98,128],	though	

their	 organization	 is	 unknown.	 The	 fragmented	 nature	 of	 the	 E.	 histolytica	

genome	means	that	many	members	of	the	same	gene	family	are	spread	across	

multiple	scaffolds	with	no	spatial	information	available	that	could	suggest	their	

relative	genomic	positions	to	one	another.	897	protein	families	were	identified	

containing	4,564	proteins	(56%	of	the	proteome).	The	average	gene	family	in	E.	

histolytica	 is	 five	 members	 however	 some	 gene	 families	 in	 the	 E.	 histolytica	

genome	 are	 very	 large	 in	 size	 and	 contain	 more	 than	 50	 members	 [98].	 82	

families	 are	 specific	 to	 E.	 histolytica	 though	 almost	 all	 of	 these	 families	 are	

entirely	 composed	 of	 hypothetical	 or	 functionally	 unannotated	 proteins;	 six	

families	 have	 function	 annotated	 and	 these	 families	 include	 the	 BspA,	

Gal/GalNAc	lectin	and	Ariel	families	which	have	all	been	implicated	in	parasite	

virulence	[105,129,130].		
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	Figure	 1.3.2.	 Functional	 gene	 annotation	 of	 Entamoeba	 histolytica,	

Entamoeba	moshkovskii,	 Entamoeba	dispar	and	 Entamoeba	 invadens.	The	

plot	shows	proportions	of	genes	whose	products	are	annotated	as	“hypothetical	

protein”	 or	 “unspecified	 product”	 however	 this	 does	 not	 include	 genes	

annotated	 with	 less	 informative	 name	 descriptions	 such	 as	 “X-domain-

containing	protein.	The	plot	also	shows	proportions	of	genes	associated	with	at	

least	one	gene	ontology	(GO)	term	of	any	class	(cellular	component,	molecular	

function	 of	 biological	 process);	 and	 genes	 associated	 with	 an	 enzyme	

commission	(EC)	number.	All	statistics	correct	at	time	of	writing	(August	2018).	

Data	collected	from	AmoebaDB	and	plot	based	on	a	previous	publication	[131].			
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Figure	1.3.3.	Size	distribution	of	protein	families	in	Entamoeba	histolytica.	

Recreated	with	data	published	by	Lorenzi	et	al,	2010	[98].	

	

The	majority	of	gene	families	in	E.	histolytica	are	unstudied,	though	some	have	

been	 implicated	 in	 virulence	 in	 E.	 histolytica.	 The	 genome	 contains	 multiple	

multi-gene	 surface	 protein	 families	 that	 have	 been	 associated	 with	 virulence	

however,	 the	 mechanisms	 by	 which	 these	 families	 are	 regulated	 are	 not	 yet	

known.	 At	 the	 beginning	 of	 E.	 histolytica	 infection,	 trophozoites	 must	 first	

degrade	and	cross	the	mucosal	layer	that	covers	and	protects	the	gut	lining.	To	

achieve	this	a	group	of	enzymes	known	a	cysteine	proteases	(CPs)	are	secreted.	

The	CPs	are	a	family	of	at	least	50	endopeptidases,	36	of	which	form	three	major	

clades	 (A/B/C)	 [128,132].	 Although	 the	 family	 is	 collectively	 regarded	 as	

virulent,	 evidence	 suggests	 that	 around	 90%	 of	 the	 CP-derived	 proteolytic	

activity	 is	 provided	 by	 three	 proteins,	 EhCPSA1,	 EhCPSA2	 and	 EhCPSA5	

[133,134].	 EhCPSA5	 is	 particularly	 interesting,	 as	 no	 orthologue	 exists	 in	 the	

non-pathogenic	 E.	 dispar	 [135].	 In	 concert	 with	 amoebic	 glycosidases,	 an	

unknown	 number	 of	 cysteine	 proteases	 degrade	 the	 MUC2	 polymers	 that	

constitute	much	of	the	mucosal	layer	[136,137].	

	

The	 E.	 histolytica	 trophozoites	 utilise	 surface-bound	 proteins	 to	 bind	 to	 host	

mucins	and,	once	the	mucosal	layer	has	been	degraded,	the	epithelial	cells	that	

line	the	gut.	Two	major	gene	families	involved	in	this	are	the	Gal/GalNAc	lectins	
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and	 the	 serine,	 threonine	 and	 isoleucine	 rich	 proteins	 (EhSTIRPs).	 The	

Gal/GalNAc	lectin	is	a	heterodimer,	comprised	of	a	170	kDa	heavy	subunit	and	a	

35	kDa	light	subunit,	associated	with	a	150	kDa	intermediate	subunit	[130].	The	

lectin	 binds	 to	 galactose	 and	 N-acetyl-galactosamine	 on	 host	 cell	 membranes	

and	without	it,	the	ability	for	E.	histolytica	to	adhere	to	host	cells	is	significantly	

reduced.	 E.	 histolytica’s	 cytotoxic	 impact	 upon	 the	 host	 cells	 is	 also	 reduced	

without	 the	 Gal/GalNAc	 lectin	 leading	 to	 the	 understanding	 that	 the	 cytokine	

cascade	 by	 which	 E.	 histolytica	 degrades	 cells	 is	 contact-dependent	 [11,138–

140].	 Down-regulation	 of	 EhSTIRP,	which	 is	 expressed	 exclusively	 in	 virulent	

strains	 of	 E.	 histolytica,	 was	 also	 linked	 to	 a	 reduction	 in	 adherence	 and	

cytotoxicity	 in	Chinese	hamster	 ovary	 cells	 [141],	 implying	 that	 both	proteins	

play	a	key	role	in	amoebiasis.		

 

Other	gene	families	implicated	in	E.	histolytica	virulence	include	the	BspA,	Ariel-

1	 and	 AIG-1	 gene	 families.	 The	 BspA-like	 proteins	 [98],	 which	 number	 more	

than	100	members	and	form	the	BspA	family,	are	thought	to	localise	to	the	cell	

surface.	 [129].	 One	 member	 of	 this	 BspA-like	 family	 has	 been	 proven	 to	 be	

expressed	 at	 the	 parasite	 surface	 [129]	 and	BspA	proteins	 are	 known	 to	 play	

roles	 in	 adhesion	 to	 extracellular	 membranes	 in	 Bacteroides	 forsythus	 and	

Trichomonas	vaginalis	[142–144].	As	such,	the	family	has	a	clear	potential	role	

in	 amoebiasis,	 which	 could	 explain	 why	 the	 virulent	 E.	 histolytica	 has	 such	 a 

uniquely	expanded	set	of	BspA	genes.		

 

The	 smaller	 E.	 histolytica	 specific	 surface	 protein	 family,	 Ariel-1,	 contains	 15	

genes	[105].	The	family	encodes	asparagine-rich	Entamoeba	histolytica	antigens	

(Ariel-1),	 which	 are	 constitutively	 expressed	 by	 trophozoites.	 The	 family	 also	

belongs	 to	 the	 same	 large	 family	 as	 the	 serine-rich	 Entamoeba	 histolytica	

protein	 (SREHP),	 which	 has	 been	 shown	 to	 have	 some	 use	 in	 immunising	

against	 amoebic	 infection	 [145].	 It	 is	 interesting	 to	 note	 that	 the	 avirulent	E.	

dispar	does	not	have	any	unique	copies	of	the	surface-bound	BspA	and	Ariel-1	

families,	 which	 supports	 the	 theory	 that	 proteins	 involved	 in	 adhesion	 play	

essential	 roles	 in	 causing	 the	 invasive	 infections	 that	 distinguish	E.	histolytica	

from	E.	dispar. 
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Finally,	 the	 large	AIG-1	 family	 in	E.	histolytica	 contains	 49	AIG1-like	 GTPases.	

This	gene	family	is	not	specific	to	E.	histolytica	like	the	BspA	family,	though	12	

members	 in	 the	 family	 are	 E.	 histolytica	 specific	 [98,146,147].	 AIG	 genes	 are	

small	 GTPases,	 originally	 identified	 in	 Arabidopsis	 thaliana	 where	 they	 are	

thought	 to	 be	 associated	 with	 resistance	 to	 bacterial	 infections	 [148].	 Their	

function	in	Entamoeba	is	less	well	understood	however,	studies	have	suggested	

that	 they	 may	 be	 involved	 in	 virulence	 or	 the	 adaption	 to	 the	 intestinal	

environment	 of	 the	 host	 [146,147]	 perhaps	 through	 the	 formation	 of	

protrusions	 on	 the	 plasma	membrane	 that	 help	 with	 adherence	 to	 host	 cells	

[149].	 Further	 supporting	 this	 is	 the	 observation	 that	 the	 AIG1	 proteins	 are	

more	highly	expressed	in	more	virulent	E.	histolytica	cell	lines	compared	to	less	

virulent	lines	[146].	

	

1.3.3.	Gene	regulation	mechanisms	in	Entamoeba	histolytica	

	

Annotation	 of	 the	 E.	 histolytica	 genome	 revealed	 that	 introns	 and	 upstream	

open	reading	 frames	 in	 the	3’-untranslated	regions	(UTRs)	of	genes	were	rare	

and	hence,	alternative	splicing	was	an	unlikely	facilitator	of	gene	regulation	in	E.	

histolytica	 [128].	Further	supporting	 this,	UTRs	of	E.	histolytica	genes	are	very	

short	(<20	bp)	[150,151]	and	subsequent	whole	transcriptome	sequencing	of	E.	

histolytica	confirmed	the	lack	of	alternative	splicing	[152].		

RNA	 interference	 (RNAi)	 is	 an	 important	 biological	 process	 involved	 in	 gene	

regulation	and	genome	stability,	it	has	also	been	used	by	researchers	as	a	robust	

tool	for	manipulation	of	gene	expression	[153–155].	Many	pathways	have	been	

identified	 as	 being	 involved	 with	 the	 biogenesis	 and	 function	 of	 small	 RNAs	

though	 ultimately,	 all	 mature	 small	 RNAs	 associate	 with	 Argonaute	 (Ago)	

protein	 to	 produce	 an	 RNA-induced	 silencing	 complex,	 which	 mediates	 gene	

silencing	 [156–158].	 Silencing	 occurs	 through	 transcriptional	 gene	 silencing	

(TGS),	 repression	 of	 translation	 or	 RNA	 cleavage	 [159].	 During	 TGS,	 RNAi	

components	 recruit	 histone	 modification	 enzymes	 to	 target	 loci	 to	 induce	

silencing.	 Post-translational	 modifications	 to	 amino	 terminal	 tails	 of	 histones	

promote	 a	 change	 in	 the	 condensation	 state	 of	 the	 chromatin,	 regulating	 the	
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accessibility	 of	 DNA-binding	 sites	 where	 transcriptional	 machinery	 can	 bind	

[160].	

E.	histolytica	 regulates	 gene	 expression	 through	 its	 non-canonical	 endogenous	

RNAi	 pathway	 [161,162].	 Entamoeba	 have	 an	 abundant	 population	 of	 27nt	

small	RNAs	that	have	5’-polyphosphate	(PolyP)	termini,	indicating	that	they	are	

not	Dicer	products	and	mimics	an	observation	only	seen	in	the	other	amoebae,	

Caenorhabditis	elegans	and	 parasitic	 nematodes	 [161,163,164].	More	 recently,	

the	 repertoire	 of	 non-canonical	 RNAi	 proteins	 in	 E.	 histolytica	was	 expanded	

with	the	characterization	of	EhRNaseIII,	a	minimal	and	non-canonical	Dicer-like	

protein.	 Having	 a	 single	 RNaseIII	 domain	 and	 devoid	 of	 all	 domains	 typically	

associated	 with	 Dicer	 enzymes	 in	 other	 systems,	 EhRNaseIII	 is	 capable	 of	

processing	double-stranded	RNA	into	smaller	RNA	fragments	that	productively	

contribute	 to	 gene	 silencing	 [165].	 It	 has	been	 shown	 that	E.	histolytica	genes	

are	 targeted	 by	 these	 small	 RNAs	 and	 are	 effectively	 silenced,	 although	 the	

mechanism	by	which	TGS	is	initiated	and	maintained	in	Entamoeba	species	are	

unclear,	 though	 it	 may	 include	 chromatin	 remodeling	 to	 regulate	 gene	

expression	 [166].	 Investigations	 into	 endogenous	 RNAi	 in	 Entamoeba	

discovered	that	genes	to	which	abundant	small	RNAs	map	can	induce	silencing	

of	genes	fused	to	it	[167,168].	The	biological	significance	of	RNAi	in	E.	histolytica	

also	 remains	 unclear;	 studies	 have	 found	 that	 small	 RNA	populations	 and	 the	

genes	 they	 target	 did	 not	 change	 in	 abundance	 or	 expression	 under	 various	

stress	conditions	(heat	shock	and	oxidative	stress)	nor	do	they	change	between	

life	cycle	stages	suggesting	that	the	genes	regulated	by	RNAi	are	not	associated	

with	 stage	 conversion	 [169].	 The	 RNAi	 pathway	 has	 been	 reported	 to	 silence	

genes	 relevant	 to	 virulence	 and	 this	 contributes	 to	 strain-specific	 virulence	

profiles	[170].	

	

The	 Entamoeba	RNAi	 pathway	 is	 not	 responsible	 for	 the	 regulation	 of	 many	

genes,	 hence	 other	 regulation	 mechanisms	 must	 be	 involved.	 Epigenetic	

regulation	 of	 protein	 expression	 has	 been	 long	 recognized	 to	 be	 a	 key	

component	 in	 cellular	 development,	 adaptability	 and	 physiology	 of	 all	 living	

things,	 ranging	 from	simple	prokaryotes	and	Archaea	 to	plants	and	mammals.	
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Epigenetics	refers	to	chemical	or	structural	modifications	of	DNA	that	ultimately	

result	 in	 altered	 RNA	 transcription	 and	 protein	 expression.	 The	most	 studied	

epigenetic	 modification	 is	 DNA	 methylation	 and	 covalent	 modifications	 of	

histone	proteins	such	as	acetylation	and	phosphorylation.	These	modifications	

result	 in	 changes	 to	 the	 chromatin	 structure	 and	 accessibility	 of	 the	 DNA	 to	

transcription	factors	[171]	and	other	nuclear	proteins	including	methyl-binding	

domain	proteins	[172].	Recently,	high-pressure	 liquid	chromatography	(HPLC)	

coupled	 to	mass	 spectrometry	 revealed	 low	amounts	of	5-Methylcytosines	 (5-

Me)	 in	 E.	 histolytica	 corresponding	 to	 around	 0.05%	 of	 the	 genome	 [173],	

though	 the	 distribution	 of	 this	 methylation	 is	 unknown.	 Some	 evidence	 has	

suggested	 that	 DNA	 methylation	 in	 Entamoeba	 histolytica	 occurs	 in	 the	

repetitive	DNA	elements	 that	 litter	 the	genome	as	a	method	of	 silencing	 these	

regions	[174].	

	

1.3.4.	Comparative	genomics	among	Entamoeba	species	

	

The	arrival	of	next	generation	sequencing	(NGS)	revolutionised	many	areas	of	

biology	 and	 enabled	 rapid	 sequencing	 of	 entire	 genomes,	 transcriptomes	 and	

epigenomes.	 Few	 comparative	 genomic	 studies	 of	 Entamoeba	 species	 exist.	

Large	 structural	 comparisons	 of	Entamoeba	species	 have	 been	 limited	 by	 the	

fragmented	 nature	 of	 the	 E.	 histolytica	 reference	 genome.	 For	 example,	

sequencing	of	Entamoeba	nuttalli,	the	most	closely	related	known	species	to	E.	

histolytica,	revealed	that	the	E.	nuttalli	genome	is	smaller	however	it’s	assembly	

is	more	 fragmented	 than	E.	histolytica	and	hence,	 it	 cannot	 be	 confirmed	 that	

this	observation	is	due	to	real	genomic	differences	between	the	two	species	or	

whether	 the	 sequencing	 technologies	used	 to	produce	 these	 genomes	 (Sanger	

for	 E.	 histolytica	 and	 Illumina	 100	 bp	 paired-end	 reads	 for	 E.	 nuttalli)	 are	

unsuitable	for	the	assembly	of	such	repetitive	genomes.		

	

As	 structural	 comparisons	 between	Entamoeba	species’	 genomes	 are	 difficult,	

most	 comparative	 genomics	 studies	 have	 focused	 on	 the	 comparison	 of	 gene	

content	and	single	nucleotide	differences	among	different	Entamoeba	species.	A	

few	 studies	 of	 this	 kind	 exist	 however,	most	 of	 these	have	 investigated	 single	
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nucleotide	 polymorphisms	 (SNPs)	 present	 in	 small	 numbers	 of	 loci	 in	 two	 or	

more	 species	 [112,131].	 Genome-wide	 comparisons	 have	 still	 not	 been	

comprehensively	performed.	 Intraspecific	genomic	diversity	of	 the	Entamoeba	

histolytica	strains	has	been	performed	as	multiple	other	Entamoeba	histolytica	

strains	and	Entamoeba	species	have	been	sequenced	using	NGS	[175,176].	SNPs	

have	 been	 identified	 between	 strains,	 as	well	 as	 polymorphisms	 in	 gene	 copy	

numbers.	 The	 evidence	 of	 differential	 gene	 duplications	 [175]	 and	 the	

duplications	 of	 large	 chromosomal	 regions	 [98]	 among	 E.	 histolytica	 strains	

suggests	the	E.	histolytica	genome	is	very	dynamic.		

	

RNA-seq	 data	 exist	 for	 several	 Entamoeba	 species	 and	 comparisons	 of	 gene	

expression	 have	 also	 been	 performed	 [131].	 It	 is	 possible	 that	 epigenetic	

differences	among	Entamoeba	strains	may	be	 important	 in	driving	differential	

gene	 expression	 between	 species.	 However,	 no	 genome-wide	 methylation	

profiles	 exist	 for	 any	Entamoeba	species.	 The	 development	 and	 sequencing	 of	

bisulphite	libraries	of	Entamoeba	species	(Chapter	5)	would	enable	detection	of	

any	differential	methylation	between	Entamoeba	species	 and	 strains	 that	may	

drive	infection	outcome.		

	

An	 improved	 E.	 histolytica	 reference	 genome	 would	 significantly	 aid	 such	

comparative	 studies	by	providing	a	high	quality	genome	 that	 is	 rich	 in	 spatial	

information	 on	 genes	 and	 other	 sequences,	 on	 to	 which	 other	 Entamoeba	

species/strain	 sequence	 data	 can	 be	 mapped	 to	 reveal	 structural	 variations	

between	different	species	and	strains.		

	

1.4.	Improvements	to	the	assembly	of	repetitive,	complex	genomes	
	

When	assembling	repetitive	and	complex	genomes,	fragmented	assemblies	are	

often	 produced.	 This	 usually	 results	 from	 the	 technical	 difficulties	 in	

reconstructing	 the	 genome	 sequence	 and	 is	 a	 feature	 observed	 in	 the	 highly	

fragmented	E.	histolytica	genome	 assembly.	 Single	molecule	 real	 time	 (SMRT)	

sequencing,	which	 produces	 significantly	 longer	 reads	 than	 current	 platforms	

may	 provide	 a	 solution	 to	 assembly	 problems	 by	 producing	 reads	 that	 are	



	 29	

longer	than	the	repetitive	regions	of	the	E.	histolytica	genome,	producing	reads	

whose	ends	contains	unique	sequences	to	which	other	reads	can	be	confidently	

joined.	 Incorporating	 these	 reads	 with	 complementary	 techniques	 such	 as	

optical	mapping	and	chromosome	conformation	capture	techniques	such	as	Hi-

C	to	guide	assembly	of	the	raw	reads	further	promises	to	produce	a	E.	histolytica	

reference	 genome	 that	 is	 more	 contiguous	 and	 information-rich	 than	 the	

existing	reference	genome.	Alongside	this,	bisulphite	sequencing	of	Entamoeba	

species	 allows	 methylation	 in	 Entamoeba	 genomes	 to	 be	 quantified	 and	

compared.	

	

1.4.1.	Single	Molecule	Real	Time	(SMRT)	sequencing	

	

Accurate	assemblies	of	the	genomes	of	organisms	are	crucial	to	understanding	

organism	diversity,	 speciation,	evolution	of	species	and	the	 impact	of	genomic	

diversity	 on	 health	 and	 disease.	 Prior	 to	 the	 recent	 development	 of	 single	

molecule	sequencing,	the	most	advanced	methods	of	DNA	sequencing	involved	

amplification	 of	 template	 DNA.	 These	 methods	 often	 referred	 to	 as	 second	

generation	sequencing,	generally	use	massively	parallel	methods	for	amplifying	

and	 then	 sequencing	 by	DNA	 synthesis.	 This	 new	 third	 generation	method	 of	

sequencing	 allows	 longer	 sequenced	 read	 lengths	 of	 up	 to	 10,000	 bases	 long	

and	produces	 these	reads	more	quickly	 than	second	generation	sequencing	as	

the	reaction	is	observed	in	real	time	[177,178].	

	

SMRT	 sequencing	 has	 been	 used	 to	 improve	 the	 genome	 assemblies	 of	many	

organisms	whose	 genomes	 have	 already	 been	 sequenced.	High	 quality,	 highly	

contiguous	assemblies	have	proven	invaluable	for	population	genomic	studies,	

most	notably	in	humans.	SMRT	sequencing	of	the	first	Chinese	[179]	and	Korean	

[180]	human	reference	genomes	have	led	to	the	discovery	of	population-specific	

sequences	 in	 these	 populations	 compared	 to	 the	 human	 reference	 genome,	

which	is	largely	derived	from	European	individuals.	Further,	SMRT	sequencing	

of	 human	 genomes	 has	 revealed	 structural	 variation	 that	 was	 undetected	 by	

NGS	data	suggesting	that	long-read	sequencing	data	and	associated	assemblies	
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significantly	 increase	 the	 sensitivity	 when	 detecting	 structural	 variations	

between	two	individuals	or	populations	[181].	

	

SMRT	 sequencing	 has	 also	 improved	 the	 research	 into	 other	 protists.	 SMRT	

sequencing	was	used	to	 improve	the	genome	assembly	of	 the	monkey	malaria	

parasite,	 Plasmodium	 cynomolgi.	 SMRT	 sequencing	 produced	 a	 genome	

assembly	of	significantly	higher	quality	than	the	existing	reference,	comprising	

56	 contigs,	 no	 gaps	 and	 an	 improved	 average	 gene	 length.	 1,000	more	 genes	

were	 annotated	 and	 the	 new	 assembly	 improved	 understanding	 of	 the	 sub-

telomeric	sequence	of	P.	cynomolgi,	which	constitutes	nearly	40%	of	the	genome	

sequence.	 The	 new	 assembly	 revealed	 a	 novel	 expansion	 of	 36	

methyltransferase	 pseudogenes	 in	 the	 sub-telomeric	 regions	 from	 what	 was	

thought	to	be	a	single	copy	gene	in	the	previous	reference	assembly	[182].	

	

The	 ability	 to	 accurately	 reconstruct	more	 complete	 genomes	 and	 unlock	 the	

comparative	 genomics	 capabilities	 that	 comes	 with	 more	 complete	 genomes	

makes	the	Pacific	Biosciences	RSII	platform	(PacBio)	desirable	for	the	assembly	

of	 genomes,	 especially	 those	 which	 are	 highly	 fragmented	 and	 require	 long	

reads	 to	 span	 arrays	 of	 repetitive	 elements.	 This	 is	why	PacBio	 sequencing	 is	

suitable	 for	 sequencing	 the	 highly	 fragmented	 and	 repetitive	 E.	 histolytica	

genome.	 The	 process	 by	which	 PacBio	was	 used	 and	 the	 subsequent	 genome	

reconstructed	in	described	in	Chapter	2.			

	

1.4.2.	BioNano	optical	mapping	

	

Often	when	 constructing	de	novo	genome	 assemblies,	 short-read	 or	 long-read	

sequence	 alone	 is	 not	 enough	 to	 produce	 a	 chromosome	 level	 assembly.	 As	 a	

result,	sequence	data	is	often	combined	with	complementary	technologies	such	

as	 optical	 mapping	 to	 produce	 a	 physical	 map	 that	 can	 be	 used	 to	 guide	 the	

assembly	of	sequencing	reads	produced	by	NGS	and/or	SMRT	sequencing.	

	

BioNano	 maps	 have	 been	 used	 to	 improve	 the	 assembly	 of	 many	 repetitive	

genomes,	 including	plant	genomes	that	are	notoriously	repetitive	and	complex	
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to	assemble.	BioNano	genome	maps	have	been	used	in	a	hybrid	approach	with	

long-read	 read	 data	 to	 improve	 the	 genome	 of	 Zea	 mays	 (maize)	 [183]	 and	

Trifolium	subterraneum	L.	 (clover)	 [184].	 In	 both	 cases,	 the	 genome	 assembly	

aided	by	BioNano	mapping	resolved	previously	uncharacterized	regions	of	the	

genome	and	novel	genes,	transposable	elements	and	structural	variations.	

	

1.5.	Gaps	still	remaining	in	Entamoeba	knowledge	
	

Previous	sequencing	attempts	have	been	 invaluable	 in	 contributing	 to	 current	

knowledge	 of	 Entamoeba	 histolytica	 biology.	 However,	 a	 large	 amount	 of	

knowledge	 surrounding	 the	 genome	 of	 E.	 histolytica,	 and	 other	 Entamoeba	

species,	remains	elusive.	Some	of	this	is	a	result	of	the	current	quality	of	the	E.	

histolytica	reference	genome,	which	remains	 largely	 fragmented	owning	to	the	

repetitive	nature	of	the	genome.	

	

1.5.1.	Organisation	of	genes	and	gene	families	

	

The	 repetitive	 nature	 of	 the	 genome	 has	 meant	 that	 despite	 continuous	

sequencing	efforts,	 the	assembly	remains	 fragmented	and	a	chromosome	level	

assembly	is	yet	to	be	reached.	The	utilisation	of	single	molecule	sequencing,	as	

previously	 described,	 promises	 improved	 contiguity	 of	 the	 E.	 histolytica	

assembly.	 Currently,	 however,	 very	 little	 is	 known	 about	 the	 organisation	 of	

genes	 within	 the	 E.	 histolytica	 genome.	 No	 information	 on	 gene	 family	

organisation	is	available,	as	often	members	of	the	same	gene	family	occur	over	

multiple	 scaffolds	 (AmoebaDB	 data).	 In	 addition,	 the	 lack	 of	 information	

regarding	 the	 wide-scale	 structure	 of	 E.	 histolytica	has	made	 it	 impossible	 to	

understand	the	evolution	of	large	gene	families	and	it	still	remains	unclear	how	

such	 families	 have	 expanded	 throughout	 the	 genome.	 Understanding	 the	

organisation	of	gene	families	has	been	important	in	understanding	the	biology	

of	other	parasites.		For	example,	single-copy	expression	of	gene	family	members	

has	 been	 shown	 to	 regulate	 variation	 of	 surface	 proteins	 in	 a	 process	 called	

antigen	switching.	P.	falciparum	differentially	expresses	genes	from	the	var	gene	

family	[185,186],	which	are	involved	in	evasion	of	the	host	immune	system	and	
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cytoadhesion	 of	 infection	 erythrocytes	 [87,187–189].	 The	majority	 of	 the	 var	

genes	 are	 located	 in	 gene	 clusters	 in	 the	 sub-telomeric	 regions	 where	

recombination	 between	 different	 var	 paralogues	 produces	 novel	 var	 genes	

[87,190].	In	addition,	the	close	proximity	of	the	genes	to	one	another	is	thought	

to	facilitate	antigen	switching	which	is	mediated	epigenetically	[191].	Similarly,	

antigen	 switching	 is	 observed	 in	 Trypanosoma	 brucei	 in	 the	 Variant	 Surface	

Glycoproteins	 (VSGs),	 which	 mediate	 immune	 evasion.	 The	 VSGs	 are	 mono-

allelically	expressed	from	expression	sites	(ES)	in	the	sub-telomere	[192–194],	

and	VSG	switching	exploits	subtelomere	plasticity	[195].		

	

1.5.2.	Structural	features	of	the	E.	histolytica	genome	and	associated	genes	

	

Many	structural	features	of	the	E.	histolytica	genome	remain	unresolved;	these	

include	 information	 about	 the	 chromosome	 number,	 ploidy	 and	 the	 structure	

and	sequence	of	the	telomeres	of	this	species.	Related	to	these	structures,	 it	 is	

unknown	what	genes	occur	 in	close	proximity	 to	 the	 telomeres.	Research	 into	

other	protists	has	shown	that	the	sub-telomeric	regions	are	often	enriched	for	

virulence	genes	(see	above).	As	previously	mentioned,	the	E.	histolytica	genome	

contains	 a	 variety	 of	 multi-gene	 families,	 some	 of	 which	 encode	 surface	

proteins.	Many	of	these	have	been	shown	to	be	expressed	on	the	cell	surface	but	

the	regulation	of	individual	gene	family	members	is	not	understood	and	hence,	

it	 is	 unknown	 whether	 any	 surface	 protein-based	 virulence	 mechanisms,	

analogous	to	those	seen	in	Trypanosoma	and	Plasmodium,	exist	in	Entamoeba.	

	

Complicating	 this	 analysis	 further	 is	 the	 poor	 annotation	 of	 the	 Entamoeba	

genomes.	Even	if	the	telomeric	and	sub-telomeric	regions	had	been	resolved	by	

previous	sequencing	projects,	the	majority	of	annotated	genes	encode	proteins	

of	unknown	function	(53.8%)	making	functional	studies	difficult.	Methods	for	in	

vitro	down-regulation	 of	 genes,	 for	 use	 in	 functional	 studies	 in	 E.	 histolytica,	

have	been	limited	by	the	unknown	ploidy	of	the	parasite	and	the	lack	of	robust	

homologous	recombination.	RNAi	approaches	that	include	‘feeding’	the	parasite	

bacteria	 expressing	 double-stranded	 RNA	 to	 a	 gene	 of	 interest	 or	 soaking	

parasites	 in	small	RNAs	(sRNAs)	have	shown	some	success	[196,197].	Though	
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these	 techniques	 vary	widely	 in	 their	 efficiency	 of	 down-regulation	 and	 long-

term	 silencing	 stability,	 as	 loss	 of	 silencing	 has	 been	 observed	 [198].	

Additionally,	achieving	silencing	using	shRNA	is	 labour-intensive	 [199].	Owing	

to	the	lack	of	a	method	for	stable	down-regulation	of	genes	of	interest,	very	few	

experimental	functional	studies	have	been	performed	on	E.	histolytica	and	many	

of	the	genes	remain	functionally	uncharacterised.	

	

1.5.3.	Distribution	of	DNA	methylation	across	the	E.	histolytica	genome	

	

As	previously	mentioned,	DNA	methylation	 is	present	 in	E.	histolytica	in	 small	

amounts.	Its	distribution	is	largely	unknown.	Epigenetics	is	an	important	factor	

in	 the	 virulence,	 differentiation	 and	 lifecycle	 control	 of	 a	 range	 of	 protists	

including	 Toxoplasma	 gondii,	 Plasmodium	 falciparum	 and	 Trypanosoma	 brucei	

[200–203].	 Evidence	 of	 alternate	 transcriptomes	 has	 also	 been	 obtained	 for	

Entamoeba	 histolytica	 HM-1:IMSS	 and	 the	 avirulent	 Entamoeba	 histolytica	

Rahman,	with	differential	expression	profiles	for	key	virulence	genes	including	

the	cysteine	proteases	(CPs)	and	Gal/GalNAc	lectins	[204].	Explanations	behind	

these	differential	expression	profiles	have	been	suggested	as	being	mediated	by	

differential	DNA-methylation	between	the	two	species	[205].	Although	many	of	

the	fundamental	principles	of	epigenetic	gene	regulation	in	protists	are	similar	

to	 those	 observed	 in	mammals,	 the	 protist	 parasites	 demonstrate	 unique	 and	

diverse	mechanisms	of	epigenetic	gene	regulation.	DNA	methylation	 is	also	an	

essential	 virulence	 regulation	 mechanism	 in	 several	 pathogenic	 bacteria	

[206,207].	 For	 example	 in	 Salmonella	enterica,	 the	 lack	 of	Dam	(DNA	 adenine	

methyltransferase)	 methylation	 causes	 reduced	 mobility	 and	 an	 impaired	

ability	to	invade	the	host	intestinal	epithelium	[208].		

	

The	observation	of	differential	expression	profiles	between	Entamoeba	species	

suggest	there	may	be	an	important	role	of	DNA	methylation	in	the	regulation	of	

genes	 that	 distinguish	 the	 virulent	 E.	 histolytica	 from	 the	 avirulent	 E.	 dispar.	

This	information	cannot	be	obtained	from	the	current	HPLC	data	and	a	whole-

genome	 approach,	 such	 as	 whole-genome	 bisulphite	 sequencing,	 will	 be	
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required	 before	 the	 identification	 of	 genes	 that	 are	 methylated	 can	 be	

performed.		

	
1.6.	Aims	of	thesis	
	

This	 thesis	describes	 the	re-sequencing	and	assembly	of	 the	E.	histolytica	HM-

1:IMSS	 genome	 using	 third	 generation	 sequencing	 technology	 in	 a	 bid	 to	

improve	 understanding	 of	 genome	 structure	 and	 gene-family	 organisation.	 In	

addition,	 bisulphite	 sequencing	 has	 been	 utilised	 to	 study	 the	 pattern	 of	

methylation	across	the	E.	histolytica	genome	(and	two	other	Entamoeba	species)	

with	 the	 aim	 of	 understanding	 the	 role	 that	 low-level	 epigenetic	modification	

plays	 in	Entamoeba	 genomes.	 It	 is	 hoped	 these	 analyses	will	 help	 explain	 the	

mechanisms	of	expansion	of	gene	 families,	elucidate	unknown	structures	such	

as	telomeres	and	their	associated	sub-telomeric	regions,	and	reveal	the	pattern	

and	role	of	DNA	methylation	across	the	E.	histolytica	genome.	

	

Chapter	 Two	 describes	 the	 production	 the	 improved	 reference	 genome	 and	

comprehensively	compares	the	assembly	methods	currently	available	for	long-

read	data.	E.	histolytica	HM-1:IMSS	is	sequenced	and	assembled	using	a	variety	

of	the	available	long-read	assemblers.	At	the	time	of	sequencing,	comparisons	of	

long-read	genome	assemblers	were	not	available	so	this	chapter	compares	four	

publicly	 available	 assembly	 programs:	 Canu,	 HGAP,	 Falcon	 and	Miniasm.	 The	

results	of	this	technical	evaluation	offer	guidance	for	future	similar	assemblies	

whilst	also	producing	a	better	quality	E.	histolytica	reference	genome.	Chapter	2	

also	 highlights	 how,	 even	 with	 more	 advanced	 sequencing	 technologies,	

assembly	of	 the	Entamoeba	histolytica	genome	remains	challenging	due	 to	 the	

complex	nature	of	the	genome.		

	

Chapter	 Three	 describes	 the	 genome-wide	 annotation	 of	 genes	 and	 other	

features	within	 the	new	reference	assembly.	This	 is	compared	 to	 the	previous	

reference	 genome	 to	 identify	 novel	 genes	 and	 investigate	 novel	 gene	 family	

expansions	(whether	a	result	of	biological	or	technical	differences).	The	chapter	

describes	 the	 expansion	 of	 a	 previously	 reported	 single	 copy	 gene.	 Further	

analysis	is	performed	into	the	identification	of	gene	families	and	investigations	



	 35	

into	 their	 structure	 and	 organisation.	 The	 hypothesis	 that	 expansion	 of	

virulence	gene	families	has	been	facilitated	by	the	propagation	of	transposable	

elements	 throughout	 the	E.	histolytica	HM-1:IMSS	 is	 investigated	and	evidence	

presented.	 Investigation	 of	 gene	 enrichment	 of	 sub-telomeric	 regions	 of	 the	

genome	is	also	performed	with	the	aim	of	determining	whether	any	analogous	

virulence	mechanisms	to	 those	observed	 in	 the	sub-telomeric	regions	of	other	

eukaryotic	parasites	are	present	in	E.	histolytica.	Overall,	Chapter	Three	aims	to	

identify	 novel	 genes,	 gene	 family	 expansions	 or	 unique	 organisations	 of	 gene	

families	 that	may	be	 related	 to	 the	outcome	of	E.	histolytica	 infections	 and/or	

can	explain	virulence	within	the	parasite.	

	

Chapter	 Four	 explores	 the	 repetitive	 features	 of	 the	 E.	 histolytica	HM-1:IMSS	

genome.	First	this	chapter	explores	the	tRNA	array	structures	that	are	unique	to	

Entamoeba	 species	 in	 an	 attempt	 to	 determine	 their	 genomic	 location	 and	

function.	This	chapter	presents	evidence	to	suggest	that	the	tRNA	arrays	are	the	

telomeres	 in	Entamoeba	species,	 analogous	 to	 the	 rRNA-based	 telomeres	 seen	

in	Dictyostelium	discoideum	 [103].	 The	 identification	 of	 the	 telomeres	 enables	

the	analyses	of	gene	enrichment	in	sub-telomeric	regions	performed	in	Chapter	

Three.	The	tRNA	arrays	are	currently	used	for	genotyping	Entamoeba	parasites,	

as	the	genus	does	not	contain	generic	microsatellites.	Further	analyses	of	these	

tRNA	arrays	are	performed	to	identify	the	efficiency	and	accuracy	of	using	these	

sequences	 as	 genotyping	 markers.	 The	 analysis	 reveals	 some	 tRNA	 arrays	

contain	significant	sequence	variation	while	others	appear	extremely	stable	and	

the	 chapter	 provides	 guidance	 as	 to	 which	 tRNA	 arrays	 should	 be	 used	 for	

detection	 of	 the	 E.	 histolytica	 infections.	 Chapter	 Four	 also	 investigates	 the	

extra-chromosomal	rDNA	episomes	that	exist	in	hundreds	of	copies	per	cell.	The	

full	 sequence	 of	 the	 EhR2	 episome	 is	 assembled	 in	 the	 SMRT	 sequencing	

assembly,	a	feat	that	could	not	be	performed	using	short	read	sequencing	due	to	

the	 repetitive	 nature	 of	 the	 rDNA	 episomes.	 The	 chapter	 reports	 the	 loss	 of	

EhR1,	 thought	 to	 be	 the	 main	 rDNA-carrying	 episome	 in	 E.	 histolytica	 HM-

1:IMSS.	 The	 Chapter	 also	 reports	 the	 absence	 of	 a	 chromosomal	 copy	 of	 the	

rDNA	genes.		
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Chapter	 Five	 explores	 the	 epigenetic	 landscape	 of	 three	Entamoeba	genomes.	

Firstly,	 the	 DNA	 methylation	 pattern	 of	 E.	 histolytica	HM-1:IMSS	 is	 explored	

with	the	aim	of	defining	5-Methyl	cytosine	methylation	(5-MeC)	throughout	the	

genome	 and	where	 this	methylation	 occurs.	 The	 chapter	 further	 develops	 the	

analyses	 of	 methylated	 genes	 through	 examining	 correlations	 between	

methylated	 genes	 and	 gene	 expression	 utilizing	 existing	 RNA-seq	 data.	 A	 tiny	

proportion	of	genes	are	methylated	in	the	E.	histolytica	genome	and	the	function	

of	these	genes	is	investigated	to	assess	if	any	obvious	importance	exists	for	the	

methylation	 of	 these	 specific	 genes	 (e.g.	 are	 any	 of	 the	 methylated	 genes	

involved	 in	 virulence	 as	 observed	 in	 other	 protists?).	 Most	 methylation	 is	

detected	 in	repetitive	regions	of	 the	genome	such	as	 in	 transposable	elements	

and	in	the	tRNA	arrays	and	Chapter	Five	aims	to	determine	the	function	of	the	

methylation	 of	 these	 regions	 and	 hypothesises	 that	 DNA	 methylation	 is	 a	

protective	 mechanism	 in	 Entamoeba	 species,	 protecting	 the	 genome	 from	

deleterious	 expansion	 of	 transposable	 elements	 and	 stabilising	 the	 telomeric	

tRNA	arrays.	Finally,	 the	chapter	 investigates	 the	extent	of	methylation	 in	 two	

other	Entamoeba	species,	E.	moshkovskii	and	E.	invadens,	to	determine	whether	

it	is	a	species-specific	phenomenon	or	whether	methylation	of	particular	genes	

and/or	genome	features	is	conserved	among	Entamoeba	species.		
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Chapter	 2	 –	 SMRT	 sequencing	 and	
assembly	 of	 the	 Entamoeba	
histolytica	HM-1:IMSS	genome	
	
2.1	Introduction	
	

As	outlined	in	Chapter	1,	single	molecule	real	time	(SMRT)	sequencing	using	the	

Pacific	 Biosciences	 RS	 II	 (PacBio	 sequencing)	 generates	 long	 reads	 capable	 of	

spanning	repetitive	regions	that	cannot	be	spanned	by	short	read	technologies	

and	so	are	capable	of	producing	more	contiguous	assemblies.	This	made	it	very	

desirable	 as	 a	 method	 to	 re-sequence	 the	 Entamoeba	 histolytica	 HM-1:IMSS	

genome	 as	 it	was	 reported	 previously	 as	 being	 approximately	 20%	 repetitive	

[97,98].	 Consequently,	 the	 previous	 sequencing	 attempts	 using	 Sanger	

sequencing,	 and	 some	 further	 attempts	 using	 454	 sequencing,	 have	 produced	

highly	 fragmented	 assemblies	 arranged	 in	 relatively	 small	 scaffolds	 and	

therefore,	 there	 is	 currently	 little	 knowledge	 of	 the	 genome	 structure	 and	

organisation	 of	E.	histolytica	HM-1:IMSS	 (technologies	 producing	 approximate	

read	 lengths	 up	 to	 1Kbp,	 but	 generally	 shorter;	 Assembly	 unpublished;	 Data	

available	from	EuPathDB).	

	

2.1.1.	Assembling	long	single	molecule	real	time	(SMRT)	sequence	reads	

	

PacBio	 sequencing	 and	 other	 long-read	 sequencing	 platforms	 are	 known	 to	

produce	 reads	 with	 a	 high	 rate	 of	 error	 (around	 11%-15%)	 in	 a	 single	

continuous	long	read	(CLR)	[178,209].	Producing	circular	consensus	sequences	

(CCS)	can	mitigate	 these	errors	with	sufficient	passing	of	a	CLR.	However,	 the	

length	of	a	CLR	is	limited	by	the	lifetime	of	a	polymerase	molecule	therefore	the	

number	 of	 sequencing	 passes	 and	 the	 CCS	 read	 lengths	 are	 negatively	

correlated.	That	 is,	shorter	sequences	yield	more	passes	 in	a	CLR,	and	hence	a	

higher	 accuracy	 and	 vice	 versa	 [210].	 Therefore,	 errors	 can	 remain	 in	 the	

assembled	reads	if	coverage	is	low	and	CCS	read	lengths	are	long.	
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Previous	programs	developed	for	genome	assembly	have	been	designed	to	cope	

with	 short	 next	 generation	 sequencing	 (NGS)	 reads	 with	 a	 high	 level	 of	

accuracy.	 PacBio	 sequencing	 produces	 the	 opposite	 type	 of	 reads	 and	 hence,	

new	programs	needed	to	be	developed	to	cope	with	the	long,	error-prone	reads.	

At	the	time	of	assembly,	 few	of	these	had	been	developed	and	even	fewer	had	

been	 compared	 to	 one	 another	 to	 determine	 which	 of	 these	 new	 assemblers	

performed	 the	 best.	 To	 carry	 out	 such	 a	 comparison,	 four	 assemblers	 were	

selected	 for	 analysis:	 HGAP	 [211],	 Canu	 [212,213],	 Falcon	 [214]	 and	Miniasm	

[215].		

	

The	SMRT	portal	is	an	open-source,	browser-based	program	provided	by	Pacific	

Biosciences	 that	 can	 directly	 interpret	 the	 raw	 output	 data	 produced	 by	 the	

Pacific	 Biosciences	 RS	 II	 instrument.	 It	 offers	 a	 suite	 of	 analysis	 applications	

optimised	 for	 single-molecule	 sequencing	 data,	 including	 de	 novo	 assembly,	

variant	detection	and	epigenetic	motif	detection	[211].	The	suite	provides	two	

main	 SMRT	 analysis	 applications	 for	 de	 novo	 assembly.	 These	 are	 RS_HGAP	

Assembly.2	 (HGAP2)	 and	 RS_HGAP	 Assembly.3	 (HGAP3).	 Both	 use	 the	

Hierarchical	 Genome	 Assembly	 Process	 (HGAP)	 SMRT	 Analysis	 algorithm	 to	

generate	de	novo	genome	assemblies	using	a	single	library	type.	HGAP	follows	a	

pipeline	comprising:	(i)	pre-assembly	(mapping	single	pass	reads	to	seed	reads,	

which	represent	the	longest	portion	of	the	read	length	distribution);	(ii)	de	novo	

assembly;	 (iii)	 assembly	 polishing	 (correcting	 miscalled	 bases	 and	 erroneous	

indels	 using	 read	 coverage)	 [211].	 The	 main	 difference	 between	 HGAP2	 and	

HGAP3	is	the	assembler	used	in	the	de	novo	assembly	step.	HGAP3	is	optimised	

for	 speed	 and	 therefore	 carries	 out	 de	 novo	 assembly	 with	 PacBio’s	

AssembleUnitig	 whereas	 HGAP2	 performs	 de	 novo	assembly	 using	 the	 Celera	

Assembler	 [216].	 The	 AssembleUnitig	 assembler	 replaces	 the	 most	 time-

consuming	step	in	the	genome	assembly	process,	which	is	the	Celera	Assembler	

step.		

	

Three	 other	 assemblers	 tested	 were	 open-source,	 long	 read	 assemblers	

designed	to	cope	with	the	noisy,	error-prone	raw	reads	produced	by	PacBio	and	
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Oxford	Nanopore	technologies.	Falcon	is	based	on	the	HGAP	assembly	process.	

However,	 it	 is	 able	 to	 split	 haplotypes	 in	 a	 way	 that	 is	 more	 reflective	 of	 a	

diploid	genome	 [214].	The	Canu	assembler	 is	different	 to	HGAP	and	Falcon	 in	

that	 it	 incorporates	 a	novel	 overlapping	and	assembly	 algorithm	based	on	 it’s	

predecessor,	Celera	[212].	Miniasm	is	another	long-read	de	novo	assembler	but	

differs	from	the	previous	assemblers	in	that	it	does	not	have	a	consensus	step.	

The	Miniasm	 program	 produces	 final	 contigs	 by	 concatenating	 pieces	 of	 read	

sequences.	As	a	result,	 the	per-base	error	rate	 in	 the	 final	contigs	 is	similar	 to	

that	seen	in	the	raw	input	reads	[215].		

	

2.1.2.	Metrics	used	to	compare	assemblies	produced	by	different	long	read	

assemblers	

	

A	 perfect	 genome	 assembly	 would	 be	 an	 assembly	 with	 fully	 contiguated,	

telomere-to-telomere,	 chromosomes,	 to	 allow	 for	 accurate	 gene	 model	

annotation	 and	 analysis	 of	 genome	 organisation.	 Virtually	 no	 eukaryotic	

genome	assemblies	meet	 this	 ideal,	 so	 it	 is	 important	 to	quantify	what	a	good	

quality	 (and	biologically	useful)	assembly	 looks	 like.	 	A	good	quality	assembly	

should	 have	 the	 following	 features;	 a	 total	 assembly	 length	 close	 to	 the	

estimated	 genome	 size	 assembled	 into	 a	 reasonable	 number	 of	 contigs	 or	

scaffolds	that	is	manageable	for	downstream	analyses.	These	contigs	should	be	

larger	 than	 the	 average	 gene	 size	 of	 the	 organism	 in	 question	 to	 allow	

downstream	gene-annotation	of	all	possible	genes.		

	

A	 number	 of	 papers	 have	 discussed	 the	 problems	 associated	 with	 trying	 to	

determine	metrics	for	assessing	the	quality	of	an	assembly	[217–219].	No	single	

parameter	 is	 universally	 agreed	 upon	 as	 an	 accurate	 predictor	 of	 a	 ‘good’	

genome	 assembly.	 Assembly	 quality	 and	 the	 performance	 of	 an	 assembler	 is	

dependent	 on	 the	 genome	 in	 question,	 as	 some	 are	 inherently	 much	 more	

difficult	 to	 assemble	 due	 to	 their	 highly	 repetitive	 nature	 or	 low	 complexity	

(genomes	with	high	GC%	or	AT%).	However,	a	range	of	metrics	can	be	applied	

to	get	an	overall	 idea	of	 the	quality	 the	genomes	produces	by	each	assembler.	

Key	metrics	are	described	below.	
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2.1.2.1.	N	Statistics	

	

One	of	 the	parameters	often	used	as	a	measure	of	a	good	assembly	 is	 the	N50	

The	N50	is	a	weighted	median	statistic	such	that	50%	of	the	entire	assembly	can	

be	 contained	 in	 contigs	 or	 scaffolds	 equal	 to	 or	 larger	 than	 this	 value	 (Figure	

2.1.1	A-B).	Comparing	N50s	across	a	range	of	different	assemblies	can	be	used	

to	give	relative	merit	to	one	assembly	over	another.	A	similar	metric,	and	often	

argued	as	a	more	useful	metric,	 is	 the	NG50	 length.	The	NG50	 is	 calculated	 in	

the	 same	way	 as	 the	 N50	 except	 the	 total	 assembly	 size	 is	 replaced	with	 the	

estimated	genome	size	when	making	the	calculation,	meaning	that	comparison	

of	assemblies	is	standardised	(Figure	2.1.1	A/C).		

	

The	idea	of	using	N50/NG50	as	a	measure	of	assembly	quality	has	come	under	

scrutiny.	 	If	the	majority	of	contigs/scaffolds	in	an	assembly	are	short,	ranking	

assemblies	by	their	N50/NG50	size	can	be	very	inaccurate	and	misleading.	This	

is	because	an	assembly	that	contains	a	few	very	large	contigs/scaffolds,	despite	

having	a	large	majority	of	smaller	contigs/scaffolds,	can	still	produce	the	largest	

N50/NG50	 when	 compared	 to	 better	 quality	 assemblies	 (Figure	 2.1.1	 D).	

Therefore,	 it	has	been	recommended	that	the	N50/NG50	metric	 is	much	more	

informative	 when	 used	 in	 comparison	 with	 other	 metrics	 [220].	 	 Alongside	

analysing	N50	values	that	has	been	proposed	incorporates	other	NG(X)	values	

(e.g.	 N25	 and	 N75	 values)	 to	 display	 a	 more	 representative	 contig	 length	

distribution	 rather	 then	 relying	 on	 a	 single	 N50/NG50	 value	 to	 compare	

genome	assemblies	[218].	
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Figure	 2.1.1.	 Calculating	 and	 comparing	 N50	 and	 NG50	 values.	 A)	 To	

calculate	N50	and	NG50,	 contigs/scaffolds	are	 first	ordered	by	 length	 (high	 to	

low).	B)	To	calculate	N50,	contig	lengths	are	consecutively	added	together	from	

longest	to	shortest	until	50%	of	the	total	assembly	size	is	reached.	The	N50	is	the	

length	of	 the	 last	 contig	 to	be	added.	C)	To	 calculate	NG50,	 contig	 lengths	are	

consecutively	 added	 together	 from	 longest	 to	 shortest	 until	 50%	 of	 the	

estimated	genome	size	is	reached.	The	NG50	is	the	length	of	the	last	contig	to	be	
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added.	D)	Comparing	N50	and	NG50	across	 assemblies.	N50	values	can	be	

poor	 indicators	 of	 demonstrating	 the	 distribution	 of	 sizes	 of	 contigs	 in	 an	

assembly.	Assemblies	with	a	few	long	contigs	and	many	small	contigs	(Assembly	

2)	 can	 produce	 the	 similar	 N50/NG50	 values	 as	 an	 assembly	 composed	 of	 a	

more	even	distribution	of	contig	lengths	(Assemblies	1	and	3).	

	

2.1.2.2.	The	proportion	of	‘gene-sized’	scaffolds	

	 	

The	 normal	 progression	 upon	 completion	 of	 a	 genome	 assembly	 is	 genome	

annotation	using	ab	initio	or	de	novo	methods	of	 gene	prediction	 [221,222].	A	

metric	 of	 assembly	 quality	 directly	 relevant	 to	 this	 is	 the	 proportion	 of	

contigs/scaffolds	that	are	longer	than	the	average	gene	size	of	the	organism.	It	

has	been	proposed	that	an	assembly	with	a	large	proportion	of	scaffolds	longer	

than	 the	 average	 gene	 size	 may	 be	 an	 indicator	 of	 a	 genome	 assembly	 of	

sufficient	quality	to	carry	out	gene	annotation	[223].	

	

2.1.2.3.	Gene	content-based	assembly	completeness	

	

To	measure	 the	completeness	of	a	genome	assembly,	Benchmarking	Universal	

Single-Copy	Orthologues	(BUSCOs)	have	been	generated	from	large	collections	

of	 sequenced	 genomes.	 These	 are	 sets	 of	 single-copy	 orthologous	 genes	

conserved	throughout	a	phylogenetic	clade	(BUSCO	sets	have	been	determined	

for	Bacteria,	Eukaryotes,	Protists,	Metazoa,	Plants	and	Fungi)	[224].		

	

The	 BUSCO	 program	 for	 assessing	 genome	 assembly	 completeness	 uses	

tBLASTn	 [225],	 Augustus	 [226]	 and	HMMER	 3	 [227]	 to	 determine	whether	 a	

conserved	 gene	 set	 is	 present	 in	 a	 genome.	 The	 identified	 orthologues	 are	

defined	 as	 single-copy,	 fragmented	 or	 duplicated.	 The	 total	 number	 of	

orthologues	can	give	a	measure	of	how	complete	a	genome	 is	and	also	can	be	

used	 between	 genome	 assemblies	 to	 identify	 which	 assembly	 has	 the	 most	

complete	 gene	 set.	 A	 large	 number	 of	 duplicated	 BUSCOs	 can	 indicate	 ‘over-

assembly’:	 the	 representation	 of	 haplotypes	 that	 should	 have	 been	 collapsed	
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multiple	times	in	the	assembly.	This	is	because	the	real	duplication	of	BUSCOs	is	

expected	to	be	rare	as	they	tend	to	occur	as	single	copy	genes	[228].		

	

2.1.3.	Aims	of	chapter	

	

Previous	 sequencing	 attempts	 have	 been	 unable	 to	 assemble	 a	 chromosome-

level,	 gold	 standard	 genome	 for	 Entamoeba	 histolytica;	 new	 long-read	

sequencing	 technology	may	help	 to	overcome	 this	problem	and	cope	with	 the	

repetitive	 nature	 of	 the	 genome.	 At	 the	 time	 of	 sequencing	 the	 E.	 histolytica	

genome	 using	 PacBio	 sequencing,	 few	 long-read	 assemblers	 had	 been	

rigorously	tested	and	good	practice	procedures	were	still	yet	to	be	defined	for	

long-read	data.	This	chapter	aims	to	assemble	a	new	E.	histolytica	genome	that	

can	used	as	a	tool	for	the	remaining	chapters	whilst	also	bench-marking	some	of	

the	available	long-read	assemblers	available	at	the	time	of	assembly.	Specifically	

the	chapter	aims	to:	

• Produce	a	range	of	PacBio	assemblies	to	benchmark	assembler	programs	

for	long-read	data	

• Conclude	whether	utilising	old	assembly	data	with	PacBio	data	generates	

a	better	assembly	

• Improve	PacBio	sequencing	attempts	with	additional	technologies	(Hi-C,	

Optical	mapping).	
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2.2.	Materials	and	methods	
	

2.2.1.	Origins	and	growth	of	Entamoeba	histolytica	HM1:IMSS	trophozoites	

	

Entamoeba	 histolytica	 HM-1:IMSS	 is	 a	 long-established	 laboratory	 strain,	

originally	 isolated	 in	1967	from	a	patient	suffering	from	amoebic	dysentery	 in	

Mexico	 City	 [100].	 HM-1:IMSS	 trophozoites	 were	 cultured	 in	 LYI-S-2	 (liver	

extract,	 yeast	 extract,	 iron,	 serum	 growth	 medium)	 with	 15%	 adult	 bovine	

serum	(PAN-Biotech,	Aidenbach,	Germany)	as	described	[229].		

	

Trophozoites	 were	 grown	 in	 15	 mL	 borosilicate	 tubes	 (Fisher	 Scientific,	

Hampton,	NH,	USA)	with	screw	caps,	 filled	with	13	mL	of	LYI-S-2	 to	minimise	

the	 amount	 of	 oxygen	 in	 the	 culture.	 Cultures	were	 kept	 upright	 at	 36°C	 and	

sub-cultured	into	new	tubes	every	3-4	days	with	an	inoculum	of	150	µL	-	250	µL	

taken	and	added	to	fresh	media.	The	inoculum	was	increased	to	1.5	mL	–	2.5	mL	

when	adapting	cells	to	a	new	batch	of	serum	and	progressively	decreased	to	the	

normal	 inoculum	 volume	 over	 several	 weeks.	 	 High	 cell	 density	 was	 usually	

reached	between	72-96	hours	growth	at	36°C	and	cells	were	harvested	at	this	

point.		

	

2.2.2.	 Purifying	 high	 molecular	 weight	 genomic	 DNA	 for	 whole	 genome	

sequencing	

	

Entamoeba	spp	can	be	difficult	organisms	extract	large	quantities	of	high	quality	

genomic	DNA	from;	this	is	for	a	number	of	reasons.	There	is	little	DNA	per	cell	

and	one	13	mL	culture	tube	can	support	only	up	to	around	100,000	cells	(Clark,	

G.,	2015,	Pers.	Comms.);	many	lytic	enzymes	are	released	when	cells	are	lysed,	

degrading	 the	 DNA;	 and	 cells	 are	 rich	 in	 polysaccharides	 that	 co-precipitate	

with	DNA,	meaning	several	rounds	of	DNA	purification	are	required,	with	loss	of	

DNA	 and	 degradation	 with	 each	 round.	 Therefore,	 three	 DNA	 extraction	

methods	 were	 tested	 before	 large-scale	 DNA	 extraction	 for	 sequencing.	 Cell	

cultures	 were	 centrifuged	 (1,000	 rpm,	 10	 mins)	 and	 medium	 removed,	 then	

cells	were	washed	twice	in	phosphate-buffered	saline	(PBS)	and	resuspended	in	



	 45	

a	 50	 µL	 of	 PBS	 in	 DNA	 LoBind	 1.5	 mL	 microcentrifuge	 tubes	 (Eppendorf,	

Hamburg,	 Germany).	 Samples	were	 subjected	 to	 one	 of	 three	 DNA	 extraction	

methods.	

	

2.2.2.1.	QIAGEN	DNeasy	Blood	and	Tissue	Kit	

	

DNA	 was	 extracted	 using	 the	 spin-column-based	 QIAgen	 DNeasy	 Blood	 and	

Tissue	 kit	 (QIAgen,	 Crawley,	 UK)	 as	 per	 the	 manufacturer’s	 protocol	 for	 cell	

culture	samples.	Mixing	by	vortexing	was	avoided	at	all	steps	except	the	initial	

lysis	 stage;	 instead	 mixing	 was	 done	 by	 pipetting.	 Purified	 DNA	 was	 re-

suspended	in	nuclease-free	water.			

	

2.2.2.2.	QIAGEN	Gentra	Puregene	Cell	Kit	

	

DNA	was	extracted	using	the	QIAgen	Gentra	Puregene	Cell	Kit	(QIAgen)	as	per	

the	manufacturer’s	protocol	for	cell	culture	samples.		This	method	uses	high	salt	

buffers	 to	 precipitate	 proteins,	 separating	 them	 from	 the	 DNA.	 	 Purified	 DNA	

was	re-suspended	in	nuclease-free	water.	

	

2.2.2.3.	CTAB:Phenol:Chloroform	DNA	purification		

	

Washed	cell	cultures	were	lysed	in	300	µL	of	QIAgen	cell	lysis	buffer	(QIAgen).	A	

modified	 version	 of	 a	 phenol:chloroform	 extraction	 using	 cetyl	

trimethylammonium	 bromide	 (CTAB)	 to	 remove	 polysaccharides,	 described	

elsewhere	(Ali	et	al.,	2005;	Clark	&	Diamond,	1991;	Clark,	2015a),	was	used	to	

isolate	genomic	DNA.	 	 Specifically,	250	µL	of	 lysis	buffer	 (0.25%	SDS	 in	0.1	M	

EDTA,	pH	8.0)	and	Proteinase	K	(QIAgen)	to	100	µg/mL	was	added	to	washed	

cell	cultures.	Samples	were	vortexed	and	incubated	at	55°C	for	20	minutes.	75	

µL	of	 3.5	M	NaCl	 and	42	µL	of	 CTAB	 solution	 (10%	w/v	CTAB	 in	0.7	M	NaCl,	

preheated	to	65°C)	was	added	to	samples	and	incubated	for	10	minutes	at	65°C.	

At	 room	 temperature,	 500	 µL	 of	 Chloroform	 (Sigma-Aldrich,	 MI,	 USA)	 was	

added;	 samples	were	mixed	by	 inversion	and	centrifuged	at	13,000	rpm	 for	5	

minutes.	Supernatant	was	transferred	to	a	new	DNA	LoBind	1.5	mL	tube,	500	µL	
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of	 Phenol:Chloroform:Isoamyl	 Alcohol	 25:24:1	 (Sigma-Aldrich)	 was	 added,	

mixed	by	inversion	and	centrifuged	as	before.	Supernatant	was	transferred	to	a	

new	 DNA	 LoBind	 1.5	 mL	 tube,	 2	 volumes	 of	 ethanol	 (100%	 EtOH,	 room	

temperature)	 were	 added	 and	 samples	 incubated	 overnight	 at	 -20°C	 before	

being	centrifuged	as	before.	The	supernatant	was	discarded	and	the	DNA	pellet	

washed	 with	 200	 µL	 of	 room	 temperature	 70%	 ethanol	 then	 centrifuged	 as	

before	 (this	 was	 repeated	 twice).	 The	 DNA	 pellet	 was	 air-dried	 before	 being	

resuspended	 in	 50	 µL	 of	 sterile	 water.	 Vortexing	 was	 avoided	 at	 all	 stages,	

except	initial	lysis,	to	avoid	shearing	the	DNA.		

	

2.2.3.	Further	DNA	purification	and	DNA	quality	assessment	

	

Extracted	 DNA	 was	 subjected	 to	 RNase	 treatment	 using	 QIAgen	 RNase	 A	

solution	 (QIAgen).	 3%	 (v/v)	 RNase	 A	 solution	 was	 added	 to	 samples	 and	

incubated	 at	 37°C	 for	 30	 minutes	 before	 RNase	 was	 removed	 using	 QIAGEN	

protein	precipitation	 solution	and	 subsequently	washed	with	 rounds	of	100%	

and	70%	ethanol.	 Samples	were	 stored	 in	nuclease-free	water,	 ready	 for	DNA	

clean	up.	

	

A	 Solid	 Phase	 Reversible	 Immobilization	 (SPRI)	 based	method,	 which	 utilises	

paramagnetic	carboxyl	coated	beads,	was	used	for	DNA	clean	up	opposed	to	a	

column	based	clean	up,	to	minimise	shearing	of	DNA.	The	bead	mix	(known	as	

MagNA)	was	made	following	a	protocol	described	elsewhere	[232].		

	 	

1.8	volumes	of	MagNA	were	added	to	RNase	treated	DNA,		mixed	and,	incubated	

at	 room	 temperature	 for	 5	 minutes,	 to	 allow	 DNA	 to	 bind	 to	 the	 beads.	

Separation	was	carried	out	using	a	magnetic	Eppendorf	rack	for	approximately	

two	minutes,	until	the	solution	had	cleared.	Supernatant	was	removed	and	500	

µL	of	freshly	made	70%	ethanol	added.	The	solution	was	incubated	for	1	minute	

before	ethanol	was	removed	and	another	ethanol-wash	carried	out.	Beads	were	

then	air-dried	on	the	magnet	at	room	temperature	for	5-10	minutes.	Elution	of	

DNA	was	carried	out	by	the	addition	of	nuclease-free	water.	This	MagNA-water	

solution	was	mixed	and	incubated	(off	 the	magnet)	at	room	temperature	for	5	
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minutes	 to	 elute	 DNA.	 The	 solution	 was	 returned	 to	 the	 magnet	 for	

approximately	 two	 minutes,	 until	 the	 solution	 had	 cleared.	 The	 supernatant,	

containing	 purified	 DNA,	 was	 then	 removed	 and	 stored	 for	 DNA	 library	

preparation,	unless	further	clean	up	was	required	as	indicated	by	poor	260:230	

ratios.	

	

DNA	 concentration	 was	 determined	 using	 a	 Qubit	 fluorometer	 (Invitrogen,	

Carlsbad,	 CA,	 USA)	 as	 per	 the	 manufacturer’s	 instructions.	 DNA	 purity	 was	

assessed	 by	 analysis	 of	 260:280	 and	 260:230	 ratios	 as	 determined	 by	 a	

NanoDrop	spectrophotometer	(Thermo	Scientific,	Wilmington,	DE,	USA).	2	µL	of	

sample	were	 loaded	onto	 the	NanoDrop	 instrument	 and	 the	absorption	 ratios	

measured	 as	 per	 the	 manufacturer’s	 instructions.	 Pure,	 clean	 DNA	 was	

determined	 as	 having	 a	 260:280	 ratio	 of	 1.8-2.0	 and	 a	 260:230	 ratio	 of	 >2.0.	

Agarose	 gel	 electrophoresis	 was	 used	 to	 assess	 the	 size	 (i.e.	 integrity)	 of	 the	

DNA.	Samples	were	run	on	a	1.0%	w/v	agarose	gel	for	16-18	hours	at	30V	with	

a	high	molecular	weight	ladder	for	size	reference.	Ethidium	bromide	was	used	

to	visualise	the	DNA	fragments	using	a	transilluminator.		

	

2.2.4.	Library	preparation	and	SMRT	sequencing	of	Entamoeba	histolytica	

HM-1:IMSS	DNA	

	

CTAB:phenol:chloroform-based	 DNA	 purification	 was	 found	 to	 be	 the	 only	

method	to	produce	high	quantity,	high	quality,	high	molecular	weight	DNA	and	

these	samples	were	used	for	PacBio	sequencing.	10	μg	of	DNA	was	submitted	to	

The	 Centre	 for	 Genomic	 Research	 (CGR,	 Liverpool,	 UK)	 for	 PacBio	 library	

generation	and	sequencing	using	the	following	protocol.		

	

DNA	 was	 purified	 once	 more	 using	 the	 AMPure	 XP	 purification	 system	

(Agencourt,	Brea,	CA,	USA),	using	a	1:1	volume	ratio	of	sample	to	AMPure	beads	

as	 per	 the	 manufacturer’s	 instructions.	 DNA	 quantity	 and	 quality	 were	 again	

assessed	 using	NanoDrop	 and	Qubit	 assays,	 as	well	 as	 an	Agilent	 Bioanalyser	

(Agilent	 Technologies,	 Santa	 Clara,	 CA,	 USA),	 using	 a	 high	 sensitivity	 kit,	 to	

determine	the	average	size	of	the	DNA.	DNA	was	sheared	using	a	Covaris	G	tube	



	 48	

with	the	S2	focused-ultrasonicator	(Covaris,	Woburn,	MA,	USA)	to	generate	10	

Kbp	fragments,	and	the	sample	cleaned	again	using	the	AMPure	XP	purification	

system.	

	

DNA	was	treated	with	Exonuclease	V11	at	37	°C	for	15	minutes.	The	ends	of	the	

DNA	were	repaired;	the	sample	was	incubated	for	20	minutes	at	37°C	with	the	

damage	repair	mix	supplied	in	the	SMRTbell	library	kit	(Pacific	Biosciences,	CA,	

USA).	This	was	followed	by	a	5	minute	incubation	at	25	°C	with	end	repair	mix.	

DNA	was	 cleaned	 using	 1:1	 volume	 ratio	 of	 AMPure	 beads	 and	 70%	 ethanol	

washes.	

	

DNA	 was	 ligated	 to	 adapters	 overnight	 at	 25	 °C.	 Ligation	 was	 terminated	 by	

incubation	at	65°C	for	10	minutes	followed	by	exonuclease	treatment	for	1	hour	

at	37°C.	The	SMRTbell	 library	was	purified	with	a	1:1	volume	ratio	of	AMPure	

beads.	The	quantity	of	 library,	and	 therefore	 the	recovery,	was	determined	by	

Qubit	 assay	 and	 the	 average	 fragment	 size	 determined	 by	 the	 Agilent	

Bioanalyser.	 Size	 selection	 was	 performed	 on	 a	 Sage	 Blue	 Pippin	 Prep	 (Sage	

Science	Inc.,	Beverly,	MA,	USA)	using	a	0.75%	agarose	cassette	and	S1	marker.	

The	final	SMRT	bell	was	recovered	as	before	and	quantified.	

	

The	 SMRTbell	 library	 was	 annealed	 to	 the	 sequencing	 primer	 at	 values	

predetermined	 by	 the	 Binding	 Calculator	 (Pacific	 Biosciences,	 CA,	 USA)	 and	 a	

complex	made	with	the	DNA	Polymerase	(P6/C4	chemistry).	The	complex	was	

bound	to	Magbeads	and	this	was	used	to	set	up	the	SMRT	cells.	Sequencing	was	

done	using	360	minute	movie	times.	

	

2.2.5.	 Library	 preparation	 and	 Illumina	 sequencing	 of	 Entamoeba	

histolytica	HM1:IMSS	

	

DNA	was	harvested	as	described	in	section	2.2.2.3.	400	ng	of	high	quality	DNA	

was	 submitted	 to	 The	 Centre	 for	 Genomic	 Research	 (CGR,	 Liverpool,	 UK)	 for	

Illumina	library	generation.	Libraries	were	generated,	assessed	for	quality	and	

sequenced	using	the	following	protocols.		
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200	ng	of	 this	DNA	was	 sheared	with	 the	 S2	Focused-Ultrasonicator	 (Covaris,	

Woburn,	 MA,	 USA)	 to	 generate	 fragments	 approximately	 350	 bp	 in	 length,	

following	 the	 manufacturer’s	 guidelines.	 The	 sample	 was	 cleaned	 using	 the	

AMPure	XP	purification	system	(Agencourt,	Brea,	CA,	USA)	using	a	1:1	volume	

ratio	 of	 sample	 to	 AMPure	 beads	 as	 per	 the	manufacturer’s	 instructions.	 The	

sample	was	end-repaired	and	size	selected	to	retrieve	~350	bp	fragments.	The	

sample	was	A-tailed	and	adapter	ligated	before	being	amplified	with	8	cycles	of	

PCR.	The	library	was	cleaned	with	a	1:1	volume	ratio	of	AMPure	beads.		

	

The	quantity	of	library,	and	therefore	the	recovery,	was	determined	by	a	Qubit	

assay	 (Invitrogen)	 and	 the	 average	 fragment	 size	 determined	 by	 Agilent	

Bioanalyser	(Agilent	Technologies).		

	

A	 quantitative	 real-time	 PCR	 (qPCR)	 assay,	 designed	 to	 specifically	 detect	

adapter	 sequences	 flanking	 the	 Illumina	 libraries,	 was	 performed	 using	 an	

Illumina	KAPA	Library	Quantification	Kit	(Kapa	Biosystems,	Wilmington,	USA).		

Quantification	of	cDNA	templates	containing	adaptor	sequences	on	both	ends	of	

the	template	was	determined	using	the	qPCR	output.		

Following	 calculation	 of	 the	 molarity	 using	 qPCR	 data,	 template	 DNA	 was	

diluted	 to	3	nM	concentration	using	 the	 resuspension	buffer.	5	µL	 of	 the	3nM	

stock	 DNA	 was	 denatured	 for	 8	 minutes	 at	 room	 temperature	 using	 5	 µL	 of	

freshly	 diluted	 0.1	 N	 sodium	 hydroxide	 (NaOH)	 and	 the	 reaction	 was	

subsequently	terminated	by	the	addition	of	the	5	µL TrisCl	(pH	8.0,	0.5M).	35	µL	

enzyme	mix	was	added	 to	 the	denatured	DNA	 library	so	 that	 the	 final	 loading	

concentration	 was	 300	 pM	 and	 cBot	 clustering	 started	 immediately.	 During	

clustering,	the	templates	were	immobilized	onto	a	proprietary	flow	cell	surface,	

designed	 to	present	 the	DNA	 in	such	a	manner	 to	 facilitate	access	 to	enzymes	

whilst	maintaining	 high	 stability	 of	 the	 surface-bound	 template	 and	 low	 non-

specific	binding	of	fluorescently	labelled	nucleotides.		
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The	pooled	libraries	were	sequenced	on	an	Illumina	HiSeq	4000	platform	using	

sequencing	 by	 synthesis	 (SBS)	 technology	 to	 generate	 2	 x	 150	 bp	 paired-end	

reads.		

2.2.6.	De	novo	assembly	of	the	Entamoeba	histolytica	HM-1:IMSS	genome	

	

Raw	PacBio	reads	were	processed	into	filtered	sub-reads	by	the	CGR	(Liverpool,	

UK)	by	breaking	the	polymerase	reads	into	single	passes	and	removing	adapter	

sequences.		

	

These	 PacBio	 sub-reads	 were	 used	 as	 an	 input	 to	 a	 range	 of	 assemblers,	

assemblers	without	 their	 own	 polishing	 step	were	 polished	 using	 Pilon	 [233]	

and	the	paired-end	reads	produced	 from	the	 Illumina	TruSeq	 library.	Analysis	

of	assembly	metrics,	using	custom	perl	 scripts	 (assemblyStats.pl,	Appendix	2),	

followed	to	compare	assembly	quality.	Assemblies	that	passed	this	test	(HGAP2	

and	Canu)	were	analysed	to	determine	differences	in	the	assembly.	tRNA	arrays	

and	rDNA	episomes	represented	a	large	number	of	contigs	therefore	these	were	

masked	 from	the	assembly.	The	remaining	assemblies	showed	 little	difference	

once	 these	 regions	 were	 removed	 and	 it	 was	 decided	 to	 merge	 the	 best-

assembled	regions	from	the	HGAP	and	Canu	assemblies.	The	final	assembly	was	

polished	 using	 Pilon	 and	 the	 paired-end	 reads	 produced	 from	 the	 Illumina	

TruSeq	library.	This	process	is	outlined	in	Figure	2.2.1.	 	
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	 2.2.6.1.	 Pacific	 Biosciences	 SMRT	 portal	 HGAP2	 and	 HGAP3	

assemblers		

	

The	 HGAP	 assemblers	 work	 using	 three	 steps	 [211].	 First,	 preassembly	 is	

performed	 to	 generate	 long,	 highly	 accurate	 sequences.	 This	 step	maps	 single	

pass	reads	to	seed	reads,	which	represent	the	longest	portion	of	the	read	length	

distribution.	 After	mapping,	 a	 consensus	 sequence	 is	 generated	 for	 each	 seed	

read.	Second,	assembly	is	performed	using	an	overlap	layout	consensus	(OLC).	

OLC	 generally	works	 in	 three	 stages:	 initial	 overlaps	 (O)	 among	 all	 reads	 are	

identified;	a	layout	(L)	of	all	the	reads	and	overlap	information	is	represented	as	

a	 graph;	 finally,	 the	 consensus	 (C)	 sequence	 is	 inferred	 [234].	 At	 this	 stage,	

HGAP2	uses	the	Celera	assembler	whereas	HGAP3	uses	the	Pacific	Biosciences	

AssembleUnitig	 assembler.	 Finally,	 the	 assembly	 is	 polished	 to	 reduce	 the	

remaining	indel	and	base	substitution	errors	in	the	draft	assembly.		

	

Filtered	PacBio	 sub-reads	were	assembled	using	 the	Pacific	Biosciences	SMRT	

portal	HGAP3	assembler	[211]	using	standard	options	with	an	expected	genome	

size	 of	 24	Mbp.	 The	 filtered	 PacBio	 sub-reads	were	 also	 assembled	 using	 the	

Pacific	 Biosciences	 SMRT	 Portal	 HGAP2	 assembler	 [211]	 using	 the	 following	

non-standard	assembly	options	 to	create	a	 range	of	preliminary	assemblies.	A	

range	of	expected	genome	sizes	were	set,	ranging	from	20	to	30	Mbp	in	2	Mbp	

intervals.	Assemblies	were	also	 tested	using	an	 increased	minimum	seed	read	

length	from	9-14	Kbp	(default:	auto-calculated).	

	

2.2.6.2.	Canu	assembler		

	

The	 Canu	 assembler	 consists	 of	 three	 steps:	 correct,	 trim	 and	 assemble	

[212,213].	 At	 all	 stages,	 the	 first	 step	 constructs	 an	 indexed	 store	 of	 input	

sequences,	generates	a	k-mer	histogram	and	constructs	an	indexed	store	of	all-

vs-all	 overlaps.	 The	 correction	 stage	 selects	 the	 best	 overlaps	 to	 use	 for	

corrections,	 estimates	 corrected	 read	 lengths	 and	 generates	 corrected	 reads.	

The	 trimming	 stage	 identifies	 unsupported	 regions	 in	 the	 input	 and	 trims	 or	

splits	reads	to	their	longest	supported	range.	The	assembly	stage	makes	a	final	
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pass	 to	 identify	 sequencing	 errors,	 constructs	 the	 best	 overlap	 graph	 and	

outputs	contigs.			

	

Filtered	 PacBio	 sub-reads	 were	 assembled	 using	 Canu	 [212],	 using	 default	

parameters	with	an	estimated	genome	size	of	26,	28.5	and	30	Mbp	based	on	the	

general	consensus	on	genome	size	produced	from	the	HGAP2	outputs.	

	

2.2.6.3.	Miniasm	assembler	

	

Miniasm	is	another	OLC-based	assembler	that	uses	a	four-stage	process:	crude	

read	selection,	 fine	read	selection,	 string	graph	generation	and	merging	 [215].	

During	crude	read	selection	each	read	is	analysed	to	find	the	longest	contiguous	

region	covered	by	three	good	mappings.	This	step	also	predicts	read	coverage.	

Fine	read	selection	builds	on	the	first	stage	and	uses	the	coverage	information	

to	 find	 the	 good	 regions	 again	 but	 with	 more	 stringent	 thresholds.	 A	 string	

graph	 is	 then	 generated	 to	 remove	 any	 weak	 overlaps	 and	 collapse	 short	

bubbles	 in	 the	 assembly.	 Finally	merging	 of	 unambiguous	 overlaps	 is	 used	 to	

produce	unitig	sequences.	The	Miniasm	assembler	uses	no	consensus	step	and	

therefore,	 the	 final	 unitig	 sequences	 have	 a	 similar	 per-base	 error	 rate	 as	 the	

raw	reads.			

	

Filtered	PacBio	 sub-reads	were	 assembled	using	Miniasm	 [215],	 using	default	

parameters.	Unitigs	were	error-corrected	as	follows:	

	

The	 Burrows-Wheeler	 Aligner	 (BWA)	 [235]	was	 used	 to	map	 the	 short	 reads	

generated	from	the	Entamoeba	histolytica	350bp	insert	paired	end	library	to	the	

Miniasm	unitigs.	Mapping	was	performed	using	default	parameters	to	produce	

BAM	alignment	files.	Determination	of	mapping	statistics	was	carried	out	using	

the	SAMTools	view	function	[236].	

	

The	BAM	alignment	file	and	the	final	genome	FASTA	file	were	used	as	input	for	

the	error-correcting	program,	Pilon	[233]	following	the	pipeline	outlined	in	the	
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Pilon	manual.	The	consensus	sequence	generated	by	Pilon	was	used	as	the	final	

Miniasm	assembly.	

	

2.2.6.4.	Falcon	assembler	

	

Like	HGAP2	and	HGAP3,	Falcon	uses	a	hierarchical	genome	assembly	process.	

However,	it	can	identify	haplotypes	and	cope	with	assemblies	of	organisms	that	

are	 diploid	 [214].	 An	 initial	 assembly	 is	 computed	 by	 Falcon,	 which	 error-

corrects	 the	 raw	 reads	 and	 assembles	 them	 using	 a	 string	 graph	 of	 the	 read	

overlaps.	 The	 assembled	 contigs	 are	 further	 refined	 into	 a	 final	 set	 of	 contigs	

and	haplotigs.	Phasing	of	heterozygous	SNPs	is	performed	and	reads	grouped	by	

haplotype.	The	phased	reads	are	used	to	open	up	the	haplotype-fused	regions	of	

the	 genome	 and	 generate	 as	 output	 a	 set	 of	 primary	 contigs	 and	 associated	

haplotigs.	

	

Filtered	 PacBio	 sub-reads	 were	 assembled	 using	 Falcon	 [214],	 using	 default	

parameters	and	an	estimated	genome	size	of	28	Mbp.	

	

2.2.6.5.	Estimating	N	statistics	and	gene-sized	scaffolds	

	

N50	values	were	calculated	using	custom	written	perl	scripts	that	calculated	a	

range	of	assembly	metrics	(S2.1,	Appendix	2).	NG10-NG100	values	(in	intervals	

of	10)	were	 calculated	manually	 for	each	assembly	and	plotted	 in	R	using	 the	

ggplot2	package	[237,238].	For	example,	to	calculate	a	NG50	value,	contigs	were	

consecutively	 added	 together	 from	 longest	 to	 shortest	 until	 50%	 of	 the	

estimated	 genome	 size	 was	 assembled.	 The	 smallest	 contig	 required	 to	

reconstitute	 50%	 of	 the	 genome	 size	 was	 categorised	 as	 the	 NG50.	 The	

estimated	genome	size	used	when	calculating	the	NG50	for	all	assemblies	was	

28	Mbp.		
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2.2.6.6.	Estimating	gene	content-based	assembly	completeness	

	

In	order	to	gain	an	insight	into	how	the	well	the	different	assemblers	assembled	

the	 core	 genome,	 the	 assemblies	 were	 processed	 using	 BUSCO	 v3.0.1	

(Benchmark	Universal	Single-Copy	Orthologues)	 [224].	The	program	assigns	a	

score	 to	 an	 assembled	 genome	 based	 on	 its	 BUSCO	 content.	 The	 Eukaryota	

dataset	of	conserved	orthologues,	available	in	the	BUSCO	package,	was	used	as	

the	reference	set	of	core	genes	to	be	searched	by	the	program.	The	content	for	

each	 assembler	 was	 manually	 inspected	 and	 results	 plotted	 for	 comparison	

using	R	[237].	

	

2.2.6.7.	 Creating	 an	 optimal	 assembly	 that	 best	 represents	

chromosomal,	episomal	and	repetitive	DNA	

	

The	 Canu-produced	 rDNA	 episome	 sequence	 was	 merged	 with	 the	 modified	

HGAP2	genome	contigs	to	produce	a	final	assembly.	This	was	necessary	as	the	

HGAP2	 assembly	 failed	 to	 assemble	 the	 rDNA	 episomes	 and	 instead	 split	 the	

episomal	 sequence	 across	many	 contigs.	 A	 FASTA	 file	was	 created	 containing	

the	 finalised	 PacBio	 genome	 assembly.	 The	 fully	 assembled	 rDNA	 episome	

sequence	 was	 isolated	 from	 the	 Canu	 assembly	 output.	 This	 rDNA	 episome	

sequence	was	used	as	a	query	in	a	BLASTn	search	against	the	contigs	assembled	

using	the	HGAP2	assembler.	An	exponent	value	(E-value)	threshold	of	0.01	was	

applied	to	the	BLAST	query.	BLAST	[239]	is	available	from	the	National	Center	

for	 Biotechnology	 Information	 (NCBI).	 Contigs	 containing	 rDNA	 episome	

sequence	were	removed	from	the	HGAP2	assembly.		

	

2.2.6.8.	Error	correction	of	the	final	genome	assembly	

	

The	Burrows-Wheeler	Alignment	Tool	(BWA)	[235]	was	used	to	map	the	short	

reads	generated	from	the	Entamoeba	histolytica	350bp	insert	paired	end	library	

to	 the	 final	 assembly.	 Mapping	 was	 performed	 using	 default	 parameters	 to	

produce	BAM	alignment	 files.	Determination	of	mapping	statistics	was	carried	

out	using	the	SAMTools	flagstats	function	[236].	
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The	BAM	alignment	file	and	the	final	genome	FASTA	file	were	used	as	input	for	

error	 correction	using	Pilon	 [233]	 following	 the	pipeline	outlined	 in	 the	Pilon	

manual.	 The	 consensus	 sequence	 output	 from	 the	 Pilon	 pipeline	 was	

determined	as	the	frozen	assembly	and	was	used	for	all	further	analyses.		

	

2.2.7.	Identification	of	arrays	of	tRNA	genes	and	ribosomal	DNA	episomes	

in	the	assembly	

	

2.2.7.1.	tRNA	array	identification	

	

Transfer	RNAs	 (tRNAs)	were	detected	using	 tRNAscan-SE	 [240],	 using	default	

parameters.	The	main	default	parameters	used	the	eukaryotic	 tRNA	model	 for	

tRNA	analysis	and	allowing	for	pseudogene	checking.	

	

2.2.7.2.	rDNA	episome	identification	

	

Entamoeba	 histolytica	 ribosomal	 RNA	 (rRNA)	 genes	 have	 previously	 been	

published	[241]	and	are	accessible	from	NCBI	[Acc:	X65163].	This	(rRNA)	gene	

sequence	 was	 used	 a	 query	 in	 a	 BLASTN	 search	 against	 the	 new	 genome	

assembles	 generated	 by	 the	 single	 molecule	 sequencing	 data.	 An	 E-value	

threshold	of	0.01	was	applied	to	the	BLAST	query.		

	

2.2.8.	Additional	approaches	to	scaffold	the	PacBio	genome	assembly	

	

2.2.8.1.	 Scaffolding	 of	 published	 Entamoeba	 histolytica	HM-1:IMSS	

assembly	with	long	PacBio	reads	

	

A	 crude	 hybrid	 assembly	 was	 also	 performed	 using	 SSPACE-Long	 Read,	 a	

program	 designed	 to	 improve	 inaccurate	 draft	 assemblies	 produced	 by	 next	

generation	 sequencing	 [242].	 Scaffolding	 of	 the	 published	 reference	 assembly	

[98]	 was	 performed	 in	 an	 iterative	 manner	 using	 the	 PacBio	 RS	 II	 long	 read	

information	as	a	backbone.	
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2.2.8.2.	 Alignment	 of	 existing	 Entamoeba	 histolytica	 HM1:IMSS	

optical	map	data	

	

Previous	 unpublished	 optical	 mapping	 data	 were	 obtained	 from	 Dr	 Elisabet	

Caler	(Caler,	E.,	2015,	Pers.	Comms.).	This	data	had	being	generated	as	follows	-	

HindIII	was	used	 to	digest	 high	molecular	weight	E.	histolytica	DNA	using	 the	

OpGen	Argus	optical	mapping	platform.	21	linkage	groups	were	generated	from	

this	data	and	strings	of	lengths	(kbp)	between	digestion	sites	were	provided	for	

these	groups	ranging	from	0.47-2.08	Mbp.	

	

The	 final	 E.	 histolytica	 PacBio	 assembly	 was	 digested	 in	 silico	 using	 HindIII.	

These	restriction	digestion	patterns	were	 then	reformatted	and	aligned	 to	 the	

original	optical	map	using	Soma,	an	optical	map	aligning	software	which	aligns	

sequence	 contigs	 and/or	 scaffolds	 from	 de	 novo	 genome	 assembly	 against	 a	

restriction	 map	 [243].	 All	 original	 optical	 map	 restriction	 maps	 were	

concatenated	before	HGAP	contigs	or	 scaffolds	were	aligned	 to	 the	 restriction	

map.	 An	 error	 rate	 of	 1%	 was	 assumed	 for	 the	 optical	 map	 data	 to	 allow	

leniency	in	the	alignment	of	de	novo	contigs	to	the	restriction	map,	resulting	in	

more	contigs	to	be	mapped.	

	

2.2.8.3.	Attempts	to	generate	a	BioNano	optical	map	

	

An	attempt	was	made	to	produce	a	new	optical	map	using	the	BioNano	optical	

mapping	 pipeline	 [244–246].	 E.	 histolytica	 trophozoites	 were	 cultured	

axenically	 as	described	previously	 (2.2.1)	 and	DNA	extracted	 in	agarose	plugs	

using	 the	 BioNano	 animal	 cell	 culture	 DNA	 extraction	 protocol	

[64,230,231,247].	Agarose	plugs	were	processed	and	loaded	onto	the	BioNano	

Irys	instrument	in	line	with	the	BioNano	Irys	Processing	and	User	Guide	[248].	

Nicking	of	the	DNA	was	done	using	the	single-strand	restriction	enzyme,	BspQ1.	

Before	loading	of	DNA,	DNA	quality	was	assessed	using	an	OpGen	Argus	Q-card,	

produced	using	the	standard	usage	guide	(OpGen,	Maryland,	USA).	
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2.2.8.4.	 Attempts	 to	 scaffold	 assembled	 PacBio	 contigs	 using	 Hi-C	

data	

	

A	Hi-C	dataset	generated	at	the	Institut	Pasteur,	Paris	by	the	Gullién	Lab	using	

the	Illumina	HiSeq	2000	platform	(Gullién,	N.	&	Koszul,	R.,	2017,	Pers.	Comms.)	

was	 used	 in	 an	 attempt	 to	 scaffold	 the	 final	 PacBio	 assembly	 using	 the	 long-

range	 sequence	 information	provided	by	 the	Hi-C	 sequencing.	 The	 scaffolding	

attempt	was	performed	externally	at	the	Pasteur	Institut	(Paris,	France)	by	Dr	

Romain	Koszul	using	GRAAL	[249],	a	Hi-C	data	based	reassembler.	
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2.3.	Results	
	

2.3.1.	 Growth	 of	 Entamoeba	 histolytica	 HM1:IMSS,	 DNA	 extraction	 and	

purification	of	genomic	DNA	for	whole	genome	sequencing	

	

Entamoeba	 histolytica	 HM-1:IMSS	 can	 be	 grown	 in	 axenic	 culture	 (in	 the	

absence	of	bacteria).	After	an	initial	inoculum	of	trophozoite	cells	is	added	to	a	

culture	 tube	 containing	 growth	 medium,	 growth	 follows	 a	 sigmoidal	 pattern	

with	a	long	lag	phase	followed	by	logarithmic	growth	until	a	finite	population	is	

reached	in	the	stationary	phase	at	3-4	days	at	which	point	cells	are	sub-cultured	

into	a	new	culture	tube	containing	growth	medium.	DNA	was	harvested	at	mid-

log	stage,	to	ensure	minimal	degraded	DNA	from	dead	cells	was	collected,	which	

is	an	important	consideration	for	SMRT	sequencing.	

	

The	only	time	this	pattern	was	not	observed	was	during	adaptation	of	the	cells	

to	LYI-S-2	media	completed	with	a	new	batch	of	adult	bovine	serum.	During	this	

period	of	adaptation,	the	initial	inoculating	volume	needed	to	enable	survival	of	

the	 subsequent	 culture	 had	 to	 be	 significantly	 increased	 up	 to	 10x	 the	 usual	

volume	 and	 cultures	 showed	 an	 increased	 lag	 phase	 meaning	 the	 stationary	

phase	was	reached	at	120-168	hours.	This	 initial	 increase	 in	 inoculum	volume	

decreases	 throughout	 subsequent	 cultures	 and	 showed	 full	 adaptation	 to	 the	

new	 serum	within	 approximately	 60	days	 and	 around	16	 subcultures.	 By	 day	

60,	 cultures	 present	 cells	 with	 normal	 morphology	 and	 are	 motile,	 with	 no	

rounding	 of	 the	 cells,	 which	 further	 supports	 the	 evidence	 of	 complete	

adaptation	 to	new	 sera.	 They	 also	 generally	 grow	 to	 a	 high	density	within	72	

hours	and	require	an	initial	inoculum	of	150-300	µL.	

	

DNA	 extraction	 trials	 showed	 that	 the	QIAGEN	Gentra	 Puregene	 kit	 produced	

the	lowest	DNA	yield	per	13	mL	culture	with	an	average	of	34.24	ng.	This	was	

followed	 by	 the	 QIAGEN	 DNeasy	 Blood	 and	 Tissue	 Kit	 method	 and	 then	 the	

CTAB:Phenol:Chloroform	method	with	 average	 yields	 of	 157	 ng	 and	 282.4	 ng	

per	culture	respectively.	Pairwise	comparisons	of	the	purified	DNA	produced	by	

the	 three	 different	 extraction	 methods	 (Section	 2.2.2-2.2.3)	 were	 performed	
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using	a	paired	t-test	(t-test	of	difference	of	means).	A	significant	difference	(p-

value	 <	 0.001)	 was	 seen	 between	 all	 pairwise	 comparisons	 with	 the	

CTAB:Phenol:Chloroform	method	yielding	a	significantly	larger	amount	of	DNA	

per	13	mL	culture,	 followed	by	 the	QIAGEN	DNeasy	Blood	and	Tissue	Kit	 and	

lastly,	 the	 QIAGEN	 Gentra	 Puregene	 Kit.	 No	 significant	 differences	 in	 DNA	

quality	 (as	 determined	 by	 260:230	 absorption	 ratios)	were	 detected	 between	

the	different	extraction	methods.	

	

2.3.2.	Analysis	of	sequence	data	generated	from	the	Entamoeba	histolytica	

HM-1:IMSS	sequencing	using	the	PacBio	and	Illumina	platforms	

	

Entamoeba	histolytica	HM-1:IMSS	was	re-sequenced	to	provide	a	better	quality	

reference	genome	for	the	species,	 from	which	comparative	analysis	with	other	

Entamoeba	 species	 and	 E.	 histolytica	 strains	 could	 be	 carried	 out.	 A	 PacBio	

sequencing	 library	was	 produced	 from	 10	 μg	 of	 clean,	 high	molecular	weight	

genomic	DNA	and	sequenced	across	eight	SMRT	cells	on	a	Pacific	Biosciences	RS	

II.	2,613,934	filtered	sub-reads	were	produced	from	the	eight	SMRT	cells.	These	

ranged	 from	35	 to	63,710	bp,	with	an	average	 length	of	3,891	bp	and	an	N50	

length	of	5,761	bp	(Figure	2.3.1).	A	more	comprehensive	breakdown	of	the	N25	

–	N95	distribution	can	be	seen	in	Table	2.3.1.		

	

To	 error-correct	 the	 de	 novo	 PacBio	 genome	 assemblies	 of	 Entamoeba	

histolytica	HM-1:IMSS,	 a	 paired-end	 Illumina	 library	was	 produced.	 250	 ng	 of	

clean	genomic	DNA	was	used	to	create	a	TruSeq	library.	The	DNA	required	for	

Illumina	sequencing	is	much	less	than	was	required	for	the	PacBio	sequencing	

due	 to	 the	 DNA	 being	 sheared	 in	 to	 smaller	 read	 lengths	 and	 then	 clonally	

amplified	 before	 sequencing.	 Therefore,	 the	method	 of	 error	 correcting	 using	

shorter	 Illumina	 reads	was	more	 desirable	 than	 further	 PacBio	 sequencing	 to	

produce	 a	 deeper	 coverage	 and	 hence,	 a	more	 confident	 sequence	 consensus.	

Further,	 the	 PacBio	 reads	 are	 error-prone	 (~10%	 error	 rate)	 whereas	 the	

Illumina	reads	are	much	less	error	prone	and	therefore,	more	suitable	for	error-

correction.	At	the	same	time	as	generating	the	350	bp-insert	paired-end	library,	

a	 subset	 was	 isolated	 and	 bisulphite	 treated	 to	 generate	 a	 MethylSeq	 library	
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that	could	be	used	to	detect	any	methylation	within	the	E.	histolytica	HM-1:IMSS	

genome	 (described	 and	 analysed	 in	 Chapter	 5).	 The	 Illumina	 HiSeq	 4000	

generated	both	of	these	E.	histolytica	HM-1:IMSS	Illumina	data	sets	on	a	single	

lane	of	an	Illumina	FlowCell.	3.81	x	108	pairs	of	reads	were	produced	from	the	

Truseq	 library,	 producing	 a	 sequencing	 depth	 of	 ~3600x	 (Table	 2.3.2).	 After	

trimming,	the	median	length	of	R1	reads	was	147.4	bp	(close	to	the	maximum	

150	bp),	but	it	was	shorter	for	R2	reads	(~110	bp	for	the	TruSeq	and	~120	bp	

for	the	MethylSeq	library).	
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Table	2.3.1.	Sequence	 length	distribution	and	nucleotide	composition	(%	

GC)	 of	 reads	 from	 PacBio	 and	 Illumina	 sequencing	 of	 Entamoeba	

histolytica	HM-1:IMSS	gDNA.		

	

Feature	
PacBio	RS	II	10Kb	insert	

library	
Illumina	Truseq	
paired-end	library	

Total	read	sequences	 2,613,934	 774,434,170	

Number	of	R1/R2	pairs	 N/A	 380,931,829	

Number	of	R0	reads	 N/A	 12,570,512	

Total	bases	(Gbp)	 10.1	 102.5	

Min.	read	length	(bp)	 35	 19	

Max.	read	length	(bp)	 63,714	 150	(R0/R1/R2)	

Mean	read	length	(bp)	 3,864	 -	

Mean	R0	length	(bp)	 N/A	 139.19	

Mean	R1	length	(bp)	 N/A	 147.40	

Mean	R2	length	(bp)	 N/A	 117.21	

N50	read	length	(bp)	 5,761	 -	

N50	R0	length	(bp)	 N/A	 150	

N50	R1	length	(bp)	 N/A	 150	

N50	R2	length	(bp)	 N/A	 139	

N90	length	(bp)	 1,554	 -	

N90	R0	length	(bp)	 N/A	 123	

N90	R1	length	(bp)	 N/A	 147	

N90	R2	length	(bp)	 N/A	 85	

GC	Content	(%)	 26.31	 24.0	
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Table	2.3.2.	 Comparison	of	data	 from	PacBio	and	 Illumina	 sequencing	of	

Entamoeba	histolytica	HM-1:IMSS	gDNA.	

*Estimated	genome	coverage	=	Total	bases/estimated	genome	size	(28Mbp)	

Sequence	

library	type	

Read	

Type	

Number	

of	reads	

Mean	read	

length	(bp)	

Equivalent	

genome	coverage*	

Pacific	

Bioscience	RS	II	

Sub-

reads	
2.61	x	106	 3,864	 360.2x	

Illumina	HiSeq	

paired-end	

R0	reads	 1.26	x	107	 139.19	 62.6x	

R1	reads	 3.81	x	108	 147.40	 2005.7x	

R2	reads	 3.81	x	108	 117.21	 1594.9x	

	

	

2.3.3.	De	novo	assembly	 of	 the	Entamoeba	histolytica	HM-1:IMSS	 genome	

using	PacBio	Single	Molecule	Real	Time	(SMRT)	sequence	reads	

	

Having	 determined	 that	 the	 PacBio	 data	 contained	 a	 large	 number	 of	 long	

(multi-kilobase)	 reads,	 these	were	used	 to	assemble	 the	genome.	Determining	

the	 ‘best’	 assembler	 to	 use	 is	 not	 a	 trivial	 task;	 at	 the	 time	of	 analysis,	 only	 a	

handful	 of	 genome	 assemblers	 existed	 which	 could	 produce	 de	 novo	 genome	

assemblies	 from	 sequence	data	produced	by	 third-generation	 technologies.	Of	

these,	 few	had	 been	 comprehensively	 compared	 or	 rigorously	 tested	 across	 a	

range	 of	 taxa.	 These	 were	 HGAP,	 Canu,	 Falcon	 and	 Miniasm	 [211,213–215].	

They	were	 all	 run	 using	 the	 same	 set	 of	 reads	 and	 an	 estimated	 genome	 size	

(required	by	HGAP,	Canu	and	Falcon)	of	28	Mbp.	In	addition,	 initial	tests	were	

performed	 using	 HGAP2	 and	 HGAP3	 and	 a	 range	 of	 estimated	 genome	 sizes.	

Then	the	best	of	these	was	tested	against	the	other	assemblers.	

	

2.3.3.1.	SMRT	Portal	HGAP	optimisation	

	 	

Initial	assemblies	were	performed	using	HGAP2	and	HGAP3	to	determine	which	

produced	the	highest	quality	reference.	Both	HGAP2	and	HGAP3	were	run	using	

default	 parameters	 and	 an	 estimated	 genome	 size	 of	 24	 Mb,	 the	 estimated	

genome	size	reported	previously	[97,98].		However,	previous	genome	assembly	
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attempts	omitted	reads	matching	tRNA	arrays	and	multi-copy	rDNA	episomes,	

so	were	likely	to	under-estimate	the	true	genome	size.		

	

HGAP3	assembled	the	sub-reads	into	924	contigs	with	an	N50	of	97,055	bp	and	

a	maximum	contig	 length	of	976,537	bp.	HGAP2	produced	an	assembly	of	712	

contigs	with	an	N50	of	105,410	bp	and	a	maximum	contig	 length	of	1,014,864	

bp.	From	these	preliminary	assemblies	it	was	decided	that,	although	HGAP3	was	

the	 faster	 of	 the	 two,	 more	 and	 longer	 contigs	 were	 produced	 by	 HGAP2.	

Therefore,	HGAP2	was	chosen	for	further	analyses.		

	

As	 the	 true	 genome	 size	 is	 probably	 larger	 than	 previous	 reported	 estimates	

(see	above),	the	effect	of	different	estimated	genome	sizes	on	the	final	assembly	

was	tested.		A	range	of	expected	genome	sizes	from	20	Mbp	to	30	Mbp	in	2	Mbp	

intervals	were	 specified.	 The	new	HGAP2	genome	assemblies	 produced	 range	

from	26.8	to	29.8	Mbp	arranged	in	611	to	804	contigs	(Table	2.3.3.).	

	

Table	2.3.3.	Effect	of	predicted	genome	size	on	HGAP2	assembly	

Data	 were	 assembled	 using	 HGAP2	with	 default	 assembly	 parameters	 except	

predicted	genome	size,	which	was	varied	from	20	to	30	Mbp	in	2	Mbp	intervals.		

	

Predicted	Genome	Size	

(Mbp)	

Genome	

Size	(Mbp)	

Number	of	

Contigs	

Max	Contig	

(Kbp)	

N50	(Kbp)	

20		 26.8	 611	 489	 91.0	

22		 27.8	 653	 514	 94.4	

24		 28.7	 728	 654	 89.8	

26		 28.5	 682	 578	 108.7	

28		 29.0	 712	 1015	 105.4	

30		 29.0	 804	 1091	 102.0	

	

	

The	assembly	created	specifying	a	predicted	genome	size	of	28	Mbp	was	used	in	

further	 analyses.	 It	 was	 chosen	 as	 it	 produced	 a	 genome	most	 similar	 to	 the	

estimate	 the	program	was	given,	 arranged	 in	 a	 reasonable	number	of	 contigs.	
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These	contigs	also	had	the	second	largest	N50	and	maximum	contig	length	of	all	

of	the	assemblies.	

	

By	 default,	 HGAP2	 automatically	 calculates	 the	minimum	 seed	 read	 length	 to	

ensure	30X	target	genome	coverage	by	the	longest	sub-reads.	By	lowering	both	

the	minimum	seed	read	length	and	target	genome	coverage,	 it	was	hoped	that	

an	 improved	 PreAssembly,	 onto	 which	 the	 remaining	 reads	 are	 assembled,	

could	be	generated.	Conversely,	 increasing	the	minimum	seed	read	 length	and	

target	 genome	 coverage	 makes	 PreAssembly	 more	 stringent	 creating	 a	 more	

confident	 final	genome,	at	 the	cost	of	 reduced	genome	size	and	assembly	N50	

values.		

	

This	 automatically-calculated	 minimum	 seed	 length	 calculated	 for	 the	 final	

HGAP2	assembly	was	11,504	bp.	To	 test	 for	 the	optimum	minimum	seed	read	

length,	input	seed	lengths	from	10	to	14	Kbp	were	tested	using	a	target	genome	

coverage	of	15X	(Table	2.3.4).	

	

The	resulting	assemblies	ranged	from	19.1	to	30.8	Mbp,	assembled	across	662	

to	910	contigs;	N50	ranged	from	106.9	to	40.7	Kbp	with	the	N50	read	lengths	of	

assemblies	 produced	 with	 a	 seed	 of	 10	 to	 12	 Kbp	 showing	 large	 N50	 values	

around	 the	100	Kbp	mark.	Assemblies	with	 a	minimum	seed	higher	 than	 this	

(13	–	14	Kbp)	showed	smaller	N50	lengths,	suggesting	that	these	assemblies	did	

not	have	a	sufficient	number	of	reads	over	the	seed	length	threshold	to	produce	

a	 contiguous,	 high-quality	 PreAssembly.	 This	 trend	was	 also	 observed	within	

the	 genome	 sizes	 of	 the	 assemblies.	 The	 genome	 size	 of	 the	 assemblies	

generated	with	minimum	seed	 lengths	of	13	 to	14	Kbp	were	 smaller	 than	 the	

assemblies	generated	with	a	minimum	seed	of	10	to	12	Kbp,	further	supporting	

predictions	that	these	larger-seed	assemblies	did	not	have	sufficient	numbers	of	

reads	 to	 generate	 a	 high-quality,	 contiguous	 PreAssembly	 and	 hence,	 the	

downstream	 processes	 in	 the	 HGAP2	 assembly	 pipeline	 performed	 poorly,	

producing	 assemblies	 with	 low	 N50s	 and	 an	 underestimated	 genome	 size.	

Therefore,	these	assemblies	were	rejected	from	further	analyses.		
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Table	2.3.4.	Effect	of	seed	size	on	the	HGAP2	assembly	Data	were	assembled	

using	HGAP2	with	default	assembly	parameters	and	an	estimated	genome	size	

of	 28	 Mbp.	 Non-default	 parameters	 were	 a	 coverage	 target	 of	 15X	 and	 a	

minimum	 seed	 read	 length	 from	 10	 to	 14	 Kbp,	 in	 1	 Kbp	 intervals.	 The	

automatically	 calculated	data	 from	 the	28	Mbp	HGAP2	 assembly	 is	 shown	 for	

comparison.	

	

The	 10	 Kb	minimum	 seed	 assembly	 produced	 the	 largest	 N50	 but	 generated	

~200	contigs	more	than	the	other	assemblies,	suggesting	over-assembly	of	the	

genome	 may	 have	 occurred	 whereby	 erroneous	 assembly	 of	 multiple	

haplotypes	had	resulted	in	extra	contigs	being	represented	in	the	assembly.	The	

increase	in	contig	number	is	also	represented	by	little	increase	in	genome	size	

when	 compared	 to	 the	 next	 largest	 seed	 input	 (11	 Kbp).	 This	 could	 indicate	

many	smaller	contigs	being	added	to	the	assembly.	On	this	basis,	this	assembly	

was	 rejected	 from	 analysis.	 The	 remaining	 two	 assemblies	 (11	Kbp	 –	 12	Kbp	

minimum	 seed)	 generated	 genomes	 very	 similar	 to	 the	 one	 with	 an	

automatically	generated	(11.5	Kbp)	seed.	The	11	Kbp	minimum	seed	assembly	

was	rejected	on	the	basis	 that	 it	had	an	N50	10	Kbp	smaller	 than	those	 in	 the	

automatically	generated	assembly	and	the	12	Kbp	minimum	seed	assembly.	The	

remaining	 two	 assemblies	 (automatically	 generated	 seed	 and	 12	 Kbp	 seed)	

were	 very	 similar	with	 the	 12	Kbp	 seed	 assembly	 generating	 5	 fewer	 contigs	

and	 a	 41	 Kbp	 smaller	 genome.	 These	 analyses	 showed	 that	 the	 automatically	

calculated	 seed	 provided	 a	 good	 result	 that	 was	 not	 substantially	 improved	

upon	by	setting	the	seed	manually,	therefore	this	assembly	was	chosen.		

Seed	Input	(Kbp)	

Genome	

Size	

(Mbp)	

Number	

of	Contigs	

Max	

Contig	

(Kbp)	

N50	(Kbp)	

10	 30.8	 910	 503.512	 106.9	

11	 28.6	 715	 527.9	 93.8	

11.5	(automatically	calculated)	 29	 712	 1014.9	 105.4	

12	 29	 707	 1014.9	 105.4	

13	 22.4	 617	 662.3	 58.6	

14	 19.1	 662	 290	 40.7	



	 68	

	

The	 final	 HGAP	 assembly,	 here	 on	 in	 referred	 to	 as	 the	 HGAP	 assembly,	 was	

generated	by	HGAP2	using	default	parameters	with	a	expected	genome	size	of	

28	Mbp.		

	

2.3.3.2.	Comparison	of	four	long	read	assembler	outputs	

	

Four	 assembler	 programs	 were	 chosen	 to	 assemble	 the	 PacBio	 reads:	 HGAP,	

Canu,	Falcon	and	Miniasm.	 	The	trimmed	sub-reads	produced	from	the	PacBio	

sequencing	were	 used	 as	 the	 input	 for	 each.	With	 the	 exception	 of	 the	 HGAP	

assembler,	 which	 was	 run	 multiple	 times	 as	 outlined	 in	 section	 2.3.3.1,	 all	

assemblers	were	run	using	default	parameters	and	with	an	estimated	genome	

size	of	28	Mbp	(if	this	parameter	was	required).	The	HGAP2	assembly	run	with	

default	 parameters	 and	 an	 estimated	 genome	 size	 of	 28	Mbp	 (section	2.3.3.1)	

was	 compared	 to	 the	 other	 three	 assemblers	 (hence	 setting	 the	 estimated	

genome	size	to	28	Mbp	for	the	other	assemblers,	to	aid	comparison).	

	

Assemblies	are	summarised	in	Table	2.3.5.	They	ranged	from	19.7	to	29.1	Mbp,	

assembled	 in	 between	 314	 and	 803	 contigs.	 	 N50s	 varied	 across	 the	 four	

assemblers	with	HGAP,	Canu	and	Falcon	producing	similar	N50s	of	105.4	Kbp,	

97.2	Kbp	and	138.6	Kbp,	respectively	and	Miniasm	producing	a	much	lower	N50	

of	 57	Kbp.	 	 The	 largest	 contig	 produced	by	 the	 assemblers	 followed	 a	 similar	

pattern	with	HGAP,	Canu	and	Falcon	producing	maximum	contigs	of	1.02	Mbp,	

732.5	Kbp	and	759.5	Kbp,	respectively	and	Miniasm	producing	a	much	smaller	

longest	contig	of	288.9	Kbp.	
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Table	2.3.5.	Comparison	of	gene	metrics	produced	by	different	 long	read	
assemblers	
Data	 were	 assembled	 using	 four	 assemblers	 (HGAP,	 Canu,	 Falcon,	 Miniasm),	

with	default	assembly	parameters	and	an	estimated	genome	size	of	28	Mbp.	

Feature	 HGAP	

Assembly	

Canu		

Assembly	

Falcon	

Assembly	

Miniasm	

Assembly	

Contigs	 712	 432	 314	 803	

Size	(bp)	 29,007,650	 25,984,130	 19,690,672	 29,062,976	

GC	Content	

(%)	

24.2	 24	 24.23	 25.13	

N50	Length	

(bp)	

105,410	 97,159	 138,598	 56,960	

Mean	Length	

(bp)	

40,741	 60,148	 62,709	 36,193	

Longest	

Sequence	

(bp)	

1,014,864	 732,495	 759,500	 288,800	

Shortest	

Sequence	

(bp)	

1,991	 8,657	 125	 18	

Gaps	 0	 0	 0	 0	

	

	

2.3.4.	Assessing	the	quality	of	de	novo	whole	genome	assemblies	produced	

by	different	assemblers	

	

Having	 created	 a	 range	 of	 de	 novo	 assemblies,	 criteria	 for	 defining	 the	 best	

overall	Entamoeba	histolytica	HM-1:IMSS	 assembly	were	 required.	 A	 range	 of	

metrics	 used	 as	measures	 of	 genome	quality	were	 calculated	 for	 the	different	

assemblies.		
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2.3.4.1.	Analysing	the	distribution	of	assembled	contig	sizes	

	

The	 N50	 and	 NG50	 values	 of	 the	 different	 assemblies	 were	 calculated	 to	

determine	which	were	composed	of	more	large	contigs,	which	would	be	useful	

downstream	 when	 analysing	 gene	 organisation	 and	 the	 structure	 of	 gene	

families	(Fig	2.3.2).		

	

N50	 and	 NG50	 values	 varied	 across	 and	 within	 the	 assemblies.	 N50	 values	

ranged	 from	 138.6	 Kbp	 in	 the	 Falcon	 assembly	 to	 57.0	 Kbp	 in	 the	 Miniasm	

assembly	with	the	HGAP	and	Canu	assemblies	in	the	middle	of	this	range	with	

N50s	of	105.4	Kbp	and	97.2	Kbp	respectively.	NG50	values	ranged	from	117.0	

Kbp	in	the	HGAP	assembly	to	59.0	Kbp	in	the	Miniasm.	The	Canu	assembly	had	

an	 NG50	 of	 116.9	 Kbp,	 similar	 to	 that	 produced	 by	 HGAP.	 Falcon	 performed	

poorly,	with	an	NG50	value	of	77.1	Kbp.		

	

Generally,	 N50	 and	 NG50	 values	 of	 the	 same	 assembly	 did	 not	 differ	

dramatically.	 The	 exception	 was	 the	 Falcon	 assembly,	 which	 had	 a	 61.5	 Kbp	

difference	between	the	N50	and	NG50	value	due	to	the	assembler	producing	an	

assembly	much	smaller	than	the	estimated	genome	size.	A	lesser	extreme	is	the	

Canu	assembly	where	there	is	a	19.6	Kbp	difference	between	these	two	values.	

In	both	cases,	N50	was	greater	than	the	NG50	value.		
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Figure	 2.3.2.	 Comparison	 of	 N50	 and	 NG50	 across	 different	 assemblies.	

N50	 and	 NG50	 values	 were	 calculated	 for	 assemblies	 produced	 by	 different	

assembler	programs.	NG50	values	were	calculated	using	an	estimated	genome	

size	of	28	Mbp.	

	

To	observe	 the	distribution	of	contig	 lengths	across	 the	assemblies,	 the	NG(X)	

length	(using	an	estimated	genome	size	of	28Mb)	was	calculated	for	a	range	of	

values	(NG10	to	NG100	 in	10%	intervals)	 in	each	assembly,	 to	produce	an	NG	

graph	(Figure	2.3.3).	This	NG	graph	allowed	visual	comparison	of	contig	length	

distribution	 among	 the	 assemblies.	 The	 graph	 shows	 that	HGAP	 and	Miniasm	

assemblies	 were	 larger	 than	 the	 estimated	 genome	 size	 and	 that	 Canu	 and	

Falcon	assemblies	were	smaller	than	the	estimated	genome	size.	The	Falcon	and	

Canu	 assemblies	 meet	 the	 x-axis	 at	 70.36%	 and	 92.86%,	 respectively	 (not	

shown)	 and	 this	 directly	 represents	 how	 long	 the	 assemblies	 were	 as	 a	

proportion	 of	 estimated	 genome	 size.	 NG(X)	 values	 for	 the	 HGAP	 and	 Canu	

assemblies	 were	 consistently	 higher	 than	 those	 of	 Falcon	 and	 Miniasm	

assemblies,	which	is	indicative	of	HGAP	and	Canu	assemblies	being	composed	of	

longer	contigs	across	the	entire	assembly.		
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Figure	 2.3.3.	 NG	 graph	 comparing	 assembly	 contig/scaffold	 length	

distribution.	The	NG	contig/scaffold	 length,	calculated	 in	 integer	values	of	10	

(10%-100%)	 and	 the	 contig/scaffold	 length	 that	 each	 particular	 threshold	 is	

passed	 on	 the	 y-axis	 (bp).	 For	 example,	 to	 calculate	 the	 NG50	 value	 for	 an	

assembly,	 all	 contig/scaffold	 lengths	 are	 cumulatively	 added	 together	 from	

longest	 to	 shortest.	 The	 NG50	 value	 is	 that	 length	 at	 which	 the	 sum	 length	

accounts	 for	50%	of	 the	estimated	genome	size	(28	Mbp).	The	 first	data	point	

displays	the	longest	scaffold	in	the	assembly	and	where	a	series	touches	the	x-

axis	 (contig	NG(X)	 length	=	0),	 this	 is	 indicative	of	 the	assembly	being	smaller	

than	 the	 estimated	 genome	 size.	 If	 a	 series	 never	 touches	 the	 x-axis,	 this	 is	

indicative	of	an	assembly	being	larger	than	the	estimated	genome	size.	
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2.3.4.2.	 The	 proportion	 of	 assemblies	 represented	 by	 gene-sized	

scaffolds	

	

To	discover	which	assembly	would	be	most	useful	in	downstream	applications	

such	as	gene	prediction	and	annotation,	the	proportion	of	‘gene-sized	scaffolds’	

in	 each	 assembly	 was	 calculated.	 A	 gene-sized	 scaffold	 was	 determined	 as	 a	

contig/scaffold	 equal	 to,	 or	 longer	 than,	 the	 average	 gene	 size	 reported	 for	

Entamoeba	histolytica	HM-1:IMSS	(1,280	bp).		All	of	the	assemblies	were	almost	

entirely	composed	of	gene-length	scaffolds	with	100%	of	 contigs	generated	 in	

the	HGAP	and	Canu	assemblies	and	99.8%	and	97.5%	of	contigs	in	the	Miniasm	

and	Falcon	assemblies,	respectively,	meeting	this	criterion.		

	

2.3.4.3.	Identifying	the	presence	of	Benchmarking	Universal	Single-

Copy	Orthologues	(BUSCOs)	

	

To	assess	the	‘completeness’	of	the	assemblies,	BUSCO	[224]	was	applied	using	

the	 publicly	 available	 Eukaryota	 data	 set	 within	 the	 BUSCO	 package	 (Figure	

2.3.4	and	Table	2.3.6).	 	BUSCO	identified	177	(58.4%)	genes	 in	both	the	CANU	

and	HGAP	assembly.	159	(52.5%)	genes	and	142	(46.9%)	genes	were	identified	

in	 the	 Miniasm	 and	 Falcon	 assemblies,	 respectively.	 The	 Canu	 and	 HGAP	

assemblies	 had	 slightly	 fewer	 missing	 BUSCOs	 than	 the	 published	 assembly	

however,	 they	 also	 had	 slightly	 fewer	 single	 copy	 BUSCOs	 too.	 This	 could	

suggest	that	the	Canu	and	HGAP	genomes	are	more	repetitive;	this	could	be	real	

and	 the	published	 assembly	has	 collapsed	 repeated	 regions.	Alternatively,	 the	

new	HGAP	and	Canu	assemblers	could	be	over-splitting	alleles	 leading	to	false	

gene	duplications.	 In	addition	the	missing	BUSCOs	in	both	the	HGAP	and	Canu	

assemblies	are	the	same	as	those	missing	from	the	published	assembly.		
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Table	2.3.6.	Number	of	BUSCOs	 identified	 in	 the	HGAP,	Canu,	 Falcon	and	
Miniasm	 Entamoeba	 histolytica	 HM-1:IMSS	 assemblies.	 The	 full	 list	 of	
Eukaryota	orthologues	contains	303	genes.	
	

Assembler	 BUSCOs	

identified	

Complete	

Single	Copy	

BUSCOs	

Duplicated	

BUSCOs	

Fragmented	

BUSCOs	

Missing	

BUSCOs	

HGAP	 177	 112	 50	 15	 126	

Canu	 177	 110	 53	 14	 126	

Falcon	 142	 96	 27	 19	 161	

Miniasm	 159	 108	 19	 32	 144	

Published	

Assembly	

171	 123	 30	 18	 132	
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Figure	2.3.4.	BUSCO	scores	of	the	assemblies.	BUSCO	scores	were	calculated	

for	each	assembly	using	the	Eukaryota	data	set	available	within	the	BUSCO	v3	

package.	Different	assemblers	are	shown	on	the	x-axis.	The	maximum	number	

of	 genes	 available	 for	 detection	 is	 303.	 Genes	 detected	 by	 BUSCO	 are	 those	

represented	by	 the	Complete	 Single	Copy,	Duplicated	 and	Fragmented	BUSCO	

proportions	and	missing	genes	are	represented	by	the	Missing	BUSCOs	section	

of	each	stack	(purple).	

	

2.3.5.	Producing	a	final	de	novo	Entamoeba	histolytica	HM-1:IMSS	assembly	

	

Based	 on	 the	 comparative	 analyses	 outlined	 in	 2.3.4,	 the	 HGAP	 and	 Canu	

assemblies	were	 chosen	as	 the	best	 assemblies.	 Further	 comparisons	of	 these	

two	 assemblies	 were	 carried	 out	 to	 determine	 how	 to	 create	 a	 final	 genome	

assembly	for	downstream	applications	and	analysis.		

126 126 
161 

144 132 

15 14 

19 
32 

18 

50 53 

27 
19 

30 

112 110 96 108 123 

0 

50 

100 

150 

200 

250 

300 

HGAP Canu Falcon Miniasm Published 
Assembly 

BU
SC
Os
	

Assembler 

Missing BUSCOs Fragmented BUSCOs 

Duplicated BUSCOs Complete Single Copy BUSCOs 

BUSCOs: 



	 76	

2.3.5.1.	Identifying	repetitive	features	in	the	genome	assembly	

	

Transfer	RNAs	 (tRNAs)	arrays	were	detected	using	 tRNA-scan-SE.	 Subsequent	

manual	 inspection	 identified	 tRNA	 genes	 arranged	 in	 array	 units,	which	 have	

been	described	previously	[4].	Likewise,	the	rDNA	sequence	[241]	was	used	in	a	

BLASTN	 search	 to	 identify	 putative	 rDNA	 episomes.	 Contigs	 containing	 the	

rDNA	sequence	were	manually	inspected	to	check	length	and	in	silico	restriction	

mapping	 confirmed	 that	 the	 restriction	 digestion	 pattern	 of	 these	 molecules	

were	consistent	with	that	previously	reported	[241].	A	 large	proportion	of	the	

contigs	 in	 both	 assemblies	 comprised	 repetitive	 tRNA	 sequence	 or	 rDNA	

episomes.	 These	 were	 initially	 removed	 from	 both	 assemblies	 to	 allow	 for	 a	

more	accurate	comparison	of	the	contigs	comprising	the	core	genome	(though	

they	were	included	in	the	final	assembly).	

	

Both	 assemblies	 contained	 contigs	 entirely	 composed	 of	 tRNA	 array	 units	

(called	 ‘tRNA-only	 contigs’).	 They	both	 also	 contained	 contigs	with	both	 tRNA	

arrays	 and	 other,	 non-repetitive,	 sequence	 (called	 ‘tRNA-genic’	 contigs).	 The	

HGAP	 assembly	 contained	 137	 tRNA-only	 contigs	 and	 21	 tRNA-genic	 contigs.	

The	 Canu	 assembly	 contained	 only	 14	 tRNA-only	 contigs	 and	 21	 tRNA-genic	

contigs.	The	HGAP	assembly	also	contained	more	contigs	representing	the	rDNA	

episomes	(150	contigs)	than	did	the	Canu	assembly	(9	contigs).		

	
When	tRNA	arrays	and	rDNA	episomes	were	removed	from	the	two	genomes	to	

produce	a	 ‘core	genome’	assembly,	both	assemblies	became	more	comparable.	

The	 HGAP	 ‘core’	 assembly	 consisted	 of	 25.5	Mbp	 across	 425	 contigs	 and	 the	

Canu	 ‘core’	 assembly	 consisted	 of	 25.5	 Mbp	 across	 409	 contigs.	 A	 more	

thorough	 comparison	 of	 the	 original	 and	 ‘core’	 assemblies	 is	 shown	 in	 Table	

2.3.7.	
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Table	 2.3.7.	 Assembly	 statistics	 of	 the	 total	 and	 ‘core’	 HGAP	 and	 Canu	

assemblies.		

*-Refined	assemblies	have	had	tRNA	and	rDNA	regions	removed.	 

Feature	 HGAP	

Assembly	

Refined	HGAP	

Assembly*	

Canu	

Assembly	

Refined	Canu	

Assembly*	

Contigs	 712	 425	 432	 409	

Size	(bp)	 29,007,650	 25,643,432	 25,984,130	 25,513,136	

GC	Content	

(%)	

24.2	 24	 24	 24	

N50	Length	

(bp)	

105,410	 136,819	 97,159	 98,095	

Mean	Length	

(bp)	

40,741	 60,337	 60,148	 62,379	

Longest	

Sequence	

(bp)	

1,014,864	 1,014,864	 732,495	 732,495	

Shortest	

Sequence	

(bp)	

1,991	 1,991	 8,657	 8,657	

Gaps	 0	 0	 0	 0	

	

	 2.3.5.2.	Merging	of	the	HGAP2	and	Canu	assemblies	

	

Based	 on	 the	 outcomes	 of	 section	 2.3.5.1,	 it	 was	 determined	 that	 the	 best	

approach	 in	 creating	 a	 final	 assembly	would	be	 to	merge	 the	Canu	 and	HGAP	

assemblies	 together.	 The	 HGAP	 assembly	 managed	 to	 assemble	 more	 of	 the	

tRNA	 array	 units	 whereas	many	 reads	 containing	 tRNA	 array	 sequence	were	

unassembled	 in	 the	 Canu	 assembly.	However,	 the	 Canu	 assembly	managed	 to	

assemble	 a	 contiguous	 rDNA	 episome	 sequence	whereas	 this	 sequence	 in	 the	

HGAP	assembly	was	fragmented.	
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The	nine	putative	rDNA	episome	contigs	in	the	Canu	assembly	were	comprised	

of	 near	 identical	 sequence	 repeated	 tandemly	 in	 a	 range	 of	 different	 lengths.	

This	was	thought	to	result	from	the	episomal	DNA	being	circular,	so	each	contig	

was	split	 into	individual	complete	and	partial	rDNA	episome	sequences.	These	

sequences	were	then	aligned	and	a	consensus	determined.	This	consensus	rDNA	

episome	sequence	was	added	to	the	‘core’	HGAP	assembly	(with	putative	rDNA	

episome	 contigs	 of	 the	 HGAP	 assembly	 removed).	 The	 merged	 assembly	 is	

summarised	in	Table	2.3.8.	

	

Table	 2.3.8.	 Assembly	 statistics	 of	 the	 Entamoeba	 histolytica	HM-1:IMSS	

genome	 assembly	 produced	 by	HGAP,	 Canu	 and	 the	merged	HGAP/Canu	

assembly.	 Comparison	 of	 the	 merged	 HGAP/Canu	 assembly	 to	 the	 original	

HGAP	and	Canu	assemblies.		

	

The	merged	assembly	 contains	27.4	Mbp	of	 sequence	across	563	contigs.	 It	 is	

almost	entirely	 comprised	of	 the	HGAP	assembly	however,	 is	1.6	Mbp	smaller	

and	has	149	fewer	contigs.	The	removed	sequence	represents	the	misassembled	

rDNA	 episomal	 sequences.	 Consequently,	 it	 has	 an	 N50	 that	 is	 12	 Kbp	 larger	

than	the	original	HGAP	assembly.	The	only	non-HGAP	produced	sequence	is	the	

rDNA	episomal	sequence,	which	was	entirely	assembled	by	the	Canu	assembler;	

contigs	 comprised	 entirely	 of	 tRNA	 arrays	 are	 those	 produced	 by	 the	 HGAP	

assembly.		

	

Feature	 HGAP	

Assembly	

Canu	Assembly	 Merged	HGAP	and	

Canu	Assembly	

Contigs	 712	 432	 563	

Size	(bp)	 29,007,650	 25,984,130	 27,452,180	

GC	Content	(%)	 24.2	 24.0	 24.1	

N50	Length	(bp)	 105,410	 97,159	 117,635	

Mean	Length	(bp)	 40,741	 60,148	 48,762	

Longest	Sequence	(bp)	 1,014,864	 732,495	 1,014,895	

Shortest	Sequence	(bp)	 1,991	 8,657	 1,991	

Gaps	 0	 0	 0	
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2.3.5.3.	Error	correction	of	the	final	assembly		

	

The	 merged	 assembly	 was	 processed	 using	 Pilon	 [233]	 to	 correct	 any	

uncorrected	 errors	 in	 the	 PacBio	 assembly.	 Reads	 produced	 from	 the	

Entamoeba	histolytica	HM-1:IMSS	Illumina	TruSeq	library	were	used	to	correct	

the	more	error-prone	PacBio	data.		

	

Pilon	 made	 2,618	 changes	 to	 the	 merged	 assembly:	 146	 deletions,	 908	

insertions	 and	 1,564	 single	 base	 substitutions,	 which	 are	 described	 in	 Table	

2.3.10.	 Single	 base	 substitutions	 made	 up	 the	 majority	 of	 the	 changes	

introduced	 by	 Pilon	 with	 1,526	 incidences.	 Differences	 to	 the	 assembly	 are	

summarised	in	Table	2.3.9.	It	is	important	that	any	errors,	especially	indels,	are	

corrected	prior	to	annotation	(Chapter	3)	as	they	can	produce	false	frame	shifts	

in	coding	sequence	and	cause	changes	to	the	predicted	protein	sequence	during	

gene	annotation.		

	

Table	 2.3.9.	 Pilon-induced	 changes	 to	 assembly	 metrics	 of	 the	 merged	

assembly.	The	merged	HGAP/Canu	assembly	was	processed	using	Pilon.	Gene	

metrics	were	altered	and	differences	between	the	assemblies	were	summarised	

using	custom	perl	scripts.	

	

Feature	 Merged	

Assembly	

Error	Corrected	

Merged	Assembly	

Difference	

Contigs	 563	 563	 0	

Size	(bp)	 27,453,180	 27,437,923	 -15,257	

GC	Content	(%)	 24.1	 24.1	 0	

N50	Length	(bp)	 117,635	 117,638	 +3	

Mean	Length	(bp)	 48,762	 48,735	 -28	

Longest	Sequence	(bp)	 1,014,864	 1,014,864	 0	

Shortest	Sequence	(bp)	 1,991	 1,991	 0	

Gaps	 0	 0	 0	
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Table	 2.3.10.	 Summary	 of	 changes	 introduced	 by	 Pilon	 to	 the	 merged	

assembly.	 The	merged	HGAP/Canu	 assembly	was	 processed	using	Pilon.	 350	

bp	paired-end	Illumina	reads	for	Entamoeba	histolytica	HM-1:IMSS	were	used	as	

input.		

*	N(>1)	 represents	 a	 string	 of	 nucleotides	 (A/T/G/C)	 greater	 than	 1	 bp.	 A	 dot	

indicates	that	no	sequence	is	present.	

	

	

Correction	type	
Original	
Sequence	

Corrected	
Sequence	

Frequency	

Insertion	 .	

A	 380	
C	 62	
G	 61	
T	 357	

N(>1)	 48	

Deletion	

A	

.	

20	
C	 12	
G	 6	
T	 19	

N(>1)	 89	

Substitution	

A	
C	 95	
G	 168	
T	 235	

C	
A	 79	
G	 31	
T	 150	

G	
A	 198	
C	 22	
T	 62	

T	
A	 221	
C	 173	
G	 92	

A/C/G/T	 N(>1)	 0	
N(>1)	 A/C/G/T	 0	
N(>1)	 N(>1)	 38	

	 		 Total	 2,618	
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Pilon	removed	~15	Kbp	of	sequence	from	the	merged	assembly.	Though	some	

of	 this	was	comprised	of	 single	nucleotide	deletions	and	some	small	deletions	

(up	 to	 3	 nucleotide	 deletions),	 the	 majority	 of	 deletions	 to	 the	 assembly	

occurred	 across	 28	 of	 the	 contigs	 comprised	 entirely	 of	 tRNA	 arrays.	 The	

structure	 and	 variation	 of	 the	 tRNA	 arrays	 in	 E.	 histolytica	 are	 explored	 in	

Chapter	 4	 however	 briefly,	 the	 tRNA	 genes	 occur	 in	 mixed	 sets,	 each	 gene	

separated	 by	 DNA	 that	 contains	 short	 tandem	 repeats	 (STRs);	 the	 entire	 set	

forms	 a	 repeat	 unit	 that	 is	 tandemly	 duplicated	 in	 many	 copies	 [4].	 The	

deletions	represented	situations	where	an	entire	tRNA	array	unit	was	removed	

from	a	tRNA	array.	

	

2.3.6.	 Attempts	 to	 scaffold	 the	 Entamoeba	histolytica	HM-1:IMSS	 genome	

assembly	

	

Though	 using	 third	 generation	 sequencing	 technologies	 has	 largely	 improved	

the	 Entamoeba	 histolytica	 reference	 genome,	 the	 assembly	 was	 still	 not	 a	

complete,	 whole	 chromosome-scale	 assembly.	 Therefore,	 further	 approaches	

were	 used	 in	 an	 attempt	 to	 scaffold	 the	 assembly	 into	 larger	 scaffolds	

approaching	whole	chromosomes.	

		

2.3.6.1.	 Scaffolding	 of	 the	 current	 published	 reference	 assembly	

using	SSPACE	

	

An	attempt	to	utilise	the	PacBio	assembly	and	the	existing	reference	assembly	

[98]	was	performed.		SSPACE-Long	Read	was	used	in	an	attempt	to	scaffold	the	

published	 assembly	 scaffolds	 together	 using	 the	 HGAP	 assembly	 from	 the	

PacBio	 sequencing	 as	 pseudo-reads.	 Any	 gaps	 that	 were	 introduced	 in	 this	

process	were	attempted	to	be	filled	using	PB	Jelly	[250].			

	

The	resulting	assembly	was	compared	to	the	previous	published	assembly	and	

the	de	novo	PacBio	Assembly	in	Table	2.3.11.		

	

	



	 82	

Table	2.3.11.	Hybrid	approach	to	assemble	the	Entamoeba	histolytica	HM-

1:IMSS	genome.	Comparison	to	the	original	E.	histolytica	reference	genome	and	

the	new	assembly	produced	using	only	third-generation	sequence	data.		

	

The	hybrid	assembly	approach	produced	an	assembly	of	24.6	Mbp	arranged	in	

1,014	 scaffolds.	 1,153	 gaps	 were	 introduced	 into	 the	 assembly	 amounting	 to	

3.26	Mbp	of	Ns	(13.3%	of	the	assembly).	The	assembly	had	an	N50	of	180.8	Kbp,	

an	improvement	of	131.7	Kbp	over	the	original	Lorenzi	assembly	and	increased	

the	largest	contig	from	530.6	Kbp	to	643.2	Kbp.		

	

2.3.6.2.	Scaffolding	the	assembly	using	optical	map	data		

	

The	 final	HGAP	 assembly	was	mapped	 to	 an	 existing	 optical	map	 using	 Soma	

(version	 2.0)	 [243].	 The	 existing	 optical	 map	 contained	 21	 linkage	 groups	

ranging	from	0.3	Mbp	to	2.08	Mbp	totalling	a	small	amount	of	the	genome	size.	

The	map	was	generated	with	the	restriction	enzyme,	HindIII.	

	

Feature	

SSPACE	

assembly	

(Sanger/PacBio	

data:	2016)	

Published	

assembly	[98]	

(Sanger	data:	

2010)	

Merged	HGAP	

and	Canu	

Assembly	

(PacBio	data:	

2016)	

Contigs	 1014	 1496	 563	

Size	(bp)	 24,579,421	 20,799,072	 27,452,180	

GC	Content	(%)	 21.1	 24.2	 24.1	

N50	Length	(bp)	 180,785	 49,118	 117,635	

Mean	Length	(bp)	 24,240	 13,903	 48,762	

Longest	Sequence	

(bp)	
643,157	 530,629	 1,014,895	

Shortest	Sequence	

(bp)	
235	 235	 1,991	

Gaps	 1,153	 643	 0	
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271	contigs	 from	the	HGAP	assembly	contained	2	HindIII	 restriction	sites	and	

34	 contigs	 contained	 >2	 HindIII	 restriction	 sites.	 These	 contigs	were	 deemed	

suitable	for	mapping.	Of	these,	57	contigs	were	placed	onto	the	optical	map	with	

a	total	length	of	2.61	Mbp	combined.		These	contigs	covered	10%	of	the	optical	

map	 and	were	 generally	 not	 distributed	 in	 clusters.	 There	were	 3	 incidences	

where	two	contigs	were	placed	within	10	Kbp	of	each	other	and	no	incidences	

where	three	or	more	contigs	were	aligned	next	to	one	another	with	gaps	of	<10	

Kbp	between	neighbouring	contigs.		

	

Owing	 to	 the	 difficulties	 encountered	 using	 the	 existing	 optical	 map,	 it	 was	

decided	 a	 new	 optical	 map	 would	 be	 generated	 using	 the	 newer	 BioNano	

technology	 and	using	 two	 restriction	 enzymes	 to	 improve	placing	 accuracy	 of	

contigs.	 In	 silico	 digestion	 of	 the	 final	 PacBio	 assembly	 with	 the	 enzymes	

available	 on	 the	 BioNano	 platform	 indicated	 that	 only	 one	 enzyme,	 BspQ1,	

produced	a	nicking	density	within	the	recommended	range.	DNA	extracted	from	

agarose	 plugs	 did	 not	 pass	 the	 QC	 length	 threshold	 of	 100-200	 Kbp.	 Most	

molecules	 of	 DNA	 extracted	 from	 the	 agarose	 plugs	 measured	 around	 30-50	

Kbp.	Also,	the	quantity	threshold	of	4-8	μg	of	sample	material	per	plug	was	not	

met.	Five	E.	histolytica	plugs	were	processed	together	producing	a	1	μg	of	DNA	

for	 processing.	Despite	 this,	DNA	was	 loaded	 on	 to	 the	 instrument	 for	 optical	

map	 generation	 however	 no	 molecules	 passed	 through	 the	 channels	 of	 the	

BioNano	chip	and	no	data	were	generated.		

	

	 2.3.6.3.	Scaffolding	of	the	assembly	using	Hi-C	data		

	

A	Hi-C	dataset	generated	at	the	Institut	Pasteur,	Paris	by	the	Gullién	Lab	using	

the	Illumina	HiSeq	2000	platform	(Gullién,	N.	&	Koszul,	R.,	2017,	Pers.	Comms.)	

and	was	used	in	an	attempt	to	scaffold	the	final	PacBio	assembly	using	the	long-

range	 sequence	 information	provided	by	 the	Hi-C	 sequencing.	 Scaffolding	 and	

analyses	were	performed	at	 the	Pasteur	 Institut	 (Paris,	France)	by	Dr	Romain	

Koszul	using	software	developed	internally.	The	Hi-C	data	produced	very	 little	

signal	 and	not	 enough	3D	 contacts	 between	 the	PacBio	 contigs	were	made	 to	

allow	for	successful	scaffolding	(Koszul,	K.,	2017,	Pers.	Comms.).		 	
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2.4	Discussion	
	

2.4.1.	 The	 HGAP2	 and	 Canu	 assemblers	 outperformed	 other	 assemblers	

and	 merging	 the	 outputs	 of	 each	 produced	 an	 assembly	 that	

balanced	 the	 assembly	 of	 non-repetitive	 and	 repetitive	 and	 extra-

chromosomal	sequences	

	

HGAP2	 and	 Canu	 produced	 assemblies	 that	 consistently	 performed	 well	

compared	to	other	assemblers	across	a	variety	of	quality	indicators.		

	

The	 Falcon	 assembly	 was	 discarded	 from	 further	 analysis	 due	 to	 its	 small	

assembly	 size.	 The	 Falcon	 assembler	 produced	 a	 genome	 approximately	 two-

thirds	the	size	of	the	genomes	produced	by	other	assemblers.	This	may	indicate	

approximately	one	third	of	the	genome	is	difficult	to	assemble	and	is	consistent	

with	previous	estimates	which	predict	that	upwards	of	20%	of	the	Entamoeba	

histolytica	HM-1:IMSS	genome	is	repetitive	[97,98].	This	is	supported	further	by	

our	own	analysis	that	approximately	6.2%	of	the	genome	assembly	is	comprised	

of	repetitive	tRNA	arrays	and	23.61%	of	the	genome	is	identified	as	transposons	

(Chapter	4).		

	

The	assembly	produced	by	Miniasm	was	discarded	due	 to	 low	N50	and	NG50	

values.	When	compared	to	HGAP	and	Canu	assemblies,	these	were	consistently	

>40	 Kbp	 smaller	 in	 length	 and	 therefore,	 would	 be	 less	 useful	 downstream	

when	analysing	gene	structure	and	organisation	of	the	genome.	 	The	assembly	

produced	 by	Miniasm	 also	 contained	 fewer	 BUSCOs	 than	 the	HGAP	 and	 Canu	

assemblies	 suggesting	 that	 it	 is	 less	 complete	 despite	 its	 similar	 genome	 size.	

This	may	be	due	to	the	assembler	not	containing	a	consensus	step	and	relying	

solely	on	one	round	of	read/sequence	correction	leading	to	fewer	errors	being	

corrected.	 If	 these	 errors,	 especially	 indels,	 occur	 in	 a	 region	where	 a	 BUSCO	

lies,	it	is	possible	that	the	error	may	cause	the	gene	not	to	be	detected.	Another	

possibility	is	that	Miniasm	has	over-assembled	regions	of	the	genome	leading	to	

a	similar	genome	size	to	those	produced	by	HGAP	and	Canu.	It	 is	also	possible	

that	owing	to	the	nature	of	the	Miniasm	assembler	(i.e.	no	consensus	correction	
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step),	assembly	is	less	stringent	and	two	reads	representing	the	same	region	of	

the	 genome	 may	 be	 assembled	 into	 two	 separate	 contigs	 if	 indels	 or	 other	

errors	are	present	in	one,	or	both,	of	the	reads.		

	

Ultimately,	 the	 HGAP	 and	 Canu	 assemblers	 both	 produced	 good	 quality	

assemblies,	 with	 large	 N50	 and	 NG50,	 a	 large	 proportion	 of	 BUSCOs	 and	 a	

reasonable	total	genome	size.		

	

The	~3	Mbp	 genome	 size	 difference	 between	 the	HGAP	 and	 Canu	 assemblies	

was	 due	 to	 different	 handling	 of	 repetitive	 tRNA	 and	 rDNA	 episomes	 by	 the	

assemblers.	 If	 these	were	removed,	both	performed	similarly	(section	2.3.5.1).	

This	suggests	that	both	assemblers	produce	fairly	consistent	reconstructions	of	

the	 core,	 non-repetitive	 portion	 of	 the	 genome	 and	 give	 fairly	 consistent	

estimates	 of	 the	 size	 of	 this	 portion	 of	 the	 genome	 (i.e.	 excluding	 extra-

chromosomal	 contigs	 and	 tRNA	 array	 structures),	 that	 broadly	 match	 the	

previous	 estimates	 [97,98]	 of	 approximately	 24	Mbp.	 Further	 supporting	 this	

consistency	 is	 the	 BUSCO	 analysis	 (Section	 2.3.4.2)	 in	 which	 both	 assemblies	

contained	the	same	177	BUSCOs.		

	

Both	HGAP	and	Canu	assemblies	had	different	strengths.	HGAP	was	better	able	

to	 assemble	 contigs	 that	 terminated	with	 large	 strings	 of	 repetitive	 sequence	

such	 as	 the	 tRNA	 arrays	 whereas	 Canu	 was	 better	 able	 to	 assemble	 circular	

molecules	into	a	single	sequence	such	as	the	rDNA	episome.	For	this	reason,	the	

episomal	 rDNA	sequence	 from	 the	CANU	assembly	was	used	 in	place	of	 those	

from	the	HGAP	assembly.	The	final	assembly	is	almost	entirely	composed	of	the	

HGAP	 assembly,	 with	 the	 misassembled	 rDNA	 episomes	 replaced	 by	 a	 fully	

assembled	rDNA	episome	from	the	Canu	assembly.	

	

The	 assembly	 produced	 is	 a	 major	 improvement	 upon	 the	 previous	 genome	

assembly.	 However,	 the	 assembly	 does	 not	 yet	 have	 telomere-to-telomere	

contiguity.	 Subsequent	 improvements	 to	 the	 Pacific	 Biosciences	 sequencing	

chemistry	have	been	released	since	E.	histolytica	was	sequenced	for	this	thesis	

and	therefore,	it	is	possible	that	further	PacBio	sequencing	could	produce	a	20	
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Kbp	insert	library	(double	the	size	of	the	10	Kbp	insert	library	generated	for	this	

PacBio	 sequencing	 of	 E.	 histolytica).	 Although,	 this	 would	 still	 remain	 a	

challenge	for	E.	histolytica	owing	to	the	difficulties	involved	in	extraction	of	high	

molecular	weight	genomic	DNA	from	this	organism.	Improvements	to	assembly	

algorithms	and	the	emergence	of	new	software	may	also	ultimately	improve	the	

output	 of	 the	 raw	 PacBio	 data.	 However,	 at	 the	 time	 of	 sequencing	 few	

programs	were	available	to	assemble	long	sequencing	reads	and	therefore,	only	

a	limited	number	of	assemblers	could	be	tested.	Comparing	the	output	of	these	

long-read	 assemblers	 can	 also	 be	 challenging.	 Metrics	 useful	 for	 comparing	

assemblies	 produced	 by	 short	 read	 technologies	 might	 not	 be	 directly	

transferable	into	analysis	of	long-read	assemblies.	The	most	evident	of	these	is	

the	 comparison	 of	 gene-sized	 scaffolds	 across	 the	 assemblies.	 The	 reason	 for	

this	being	the	majority	of	reads	produced	by	third–generation	technologies	can	

be	longer	than	the	average	gene	length	meaning	that	the	majority	of	all	contigs,	

regardless	of	assembler,	are	also	longer	than	this	value	making	it	hard	to	draw	

comparisons	 between	 different	 assemblers.	 This	 is	 observed	 in	 our	 dataset	

where	90.1%	(2,355,043/2,613,934	reads)	of	the	reads	produced	by	the	PacBio	

sequencing	 are	 longer	 than	 average	 gene-size	 and	 as	 a	 result,	 the	 different	

assemblies	show	little	difference	in	their	proportions	of	gene-sized	scaffolds.	It	

is	 possible	 though,	 that	 this	 metric	 may	 still	 be	 useful	 for	 third-generation	

sequencing	 and	 assembly	 of	 large	 vertebrates	 and	 also	 invertebrates,	 such	 as	

mammals	and	 insects,	whose	genomes	are	 large	and	complex.	However,	when	

assembling	 single	 cell	 eukaryote	 genomes	 such	 as	 that	 of	 E.	 histolytica,	 it	

becomes	 more	 relevant	 to	 compare	 the	 N50	 and	 NG50	 values	 of	 resulting	

assemblies,	 especially	 if	 subsequent	 analyses	 regarding	 the	 structure	 and	

organisation	of	genes	and	gene	families	are	likely	to	be	performed	(Chapter	3).	

This	 is	 because	 spatial	 organisation	 of	 genes	 to	 one	 another	 (or	 to	 certain	

structural	features)	relies	on	them	being	placed	on	the	same	contig	or	scaffold.	

For	example,	genes	in	close	proximity	to	the	telomeres	can	only	be	assessed	if	

an	assembly	contains	telomeric	sequence	and	gene	sequences	within	the	same	

contiguous	sequence.		
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2.4.2.	 Hybrid	 assembly	 approaches	 produced	 poorer	 assemblies	 than	

those	produced	with	PacBio	data	alone	

	

Scaffolding	 of	 the	 previous	 reference	 assembly	 of	 Entamoeba	 histolytica	HM-

1:IMSS	with	 the	assembly	produced	by	 the	PacBio	 sequencing	did	produce	an	

improved	 genome	 when	 compared	 to	 the	 published	 assembly;	 The	 scaffold	

number	was	reduced	by	approximately	a	third	and	increases	in	N50	length	and	

genome	 size	 were	 observed.	 This	 is	 perhaps	 unsurprising	 as	 the	 long	 read	

information	 that	 third-generation	 reads	 provide	 may	 span	 repetitive	 regions	

that	are	longer	than	reads	produced	by	Illumina	sequencing.	As	the	Entamoeba	

genomes	 are	 highly	 repetitive,	 many	 repeats	 are	 likely	 to	 be	 resolved	 and	

therefore,	 there	 is	 a	 large	 improvement	 to	 the	 original	 assembly	 when	

scaffolded	with	the	PacBio	assembly.		

	

More	surprising	is	the	observation	that	a	hybrid	approach	utilising	both	Sanger	

and	 PacBio	 data	 did	 not	 outperform	 assemblies	 produced	 using	 PacBio	 data	

alone.	The	hybrid	 assembly	 contained	nearly	double	 the	number	of	 contigs	of	

the	 final	 PacBio	 assembly	 and	 also	was	missing	~3	Mbp	of	 sequence	 that	 the	

non-hybrid	assembly	contained;	this	 is	consistent	with	other	reports	that	non-

hybrid	assemblies	outperform	hybrid	assemblies	at	higher	coverages	above	50X	

[216,251,252].	It	was	concluded	that	this	could	be	due	to	errors	in	the	original	

E.	histolytica	HM-1:IMSS	assembly.	Large	regions	of	existing	assembly	had	been	

scaffolded	 together	 and	 therefore,	 it	 is	 likely	 that	 some	 incorrect	 joins	 were	

made	 (evidence	of	 this	 is	presented	 in	Chapter	3).	 If	 these	 joins	were	close	 to	

the	end	of	a	published	assembly	scaffold	 it	 is	not	unlikely	that	 it	would	not	be	

scaffolded	by	the	PacBio	data.	This	is	because	the	order	of	the	joined	contigs	in	a	

published	 assembly	 scaffold	 may	 not	 match	 the	 corresponding	 region	 in	 the	

contiguous	 and	 more	 accurate	 PacBio	 contigs	 and	 therefore,	 scaffolding	 is	

prohibited	as	SSPACE	is	not	aware	that	these	two	sequences	are	in	reality,	the	

same	region	of	the	genome.		
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2.4.3.	Error-correction	of	the	assembly	made	few	corrections	to	the	third-

generation	sequence	data.	

	

Despite	 PacBio	 sequencing	 being	 regarded	 as	 an	 error-prone	 and	 many	

approaches	 recommending	 polishing	 of	 a	 PacBio	 genome	with	more	 accurate	

short	 NGS	 reads,	 polishing	 of	 the	 Entamoeba	 histolytica	HM-1:IMSS	 assembly	

resulted	in	changes	to	only	a	small	proportion	of	the	genome.	Assuming	all	the	

errors	 corrected	 by	 polishing	 were	 in	 fact	 real	 errors,	 17,643	 bp	 of	 original	

sequence	(0.06%)	was	corrected	to	a	different	base	pair,	or	removed,	indicating	

99.94%	 of	 the	 assembly	 produced	 by	 PacBio	 data	 alone	 was	 accurate	 before	

polishing.	This	most	likely	owed	to	the	assembly	having	deep	coverage	(~200x)	

meaning	 the	alignment	of	 reads	already	produced	an	accurate	 consensus.	The	

changes	introduced	by	polishing	were	largely	made	up	of	deletions	of	singular	

tRNA	array	units	from	long	tRNA	arrays	and	it	is	possible	that	these	represent	

real	 differences	 between	 the	 PacBio	 library	 (used	 for	 assembly)	 and	 the	

Illumina	paired	end	library	(used	for	genome	polishing).	The	PacBio	dataset	and	

NGS	 Illumina	 dataset	 were	 produced	 at	 different	 time	 points	 almost	 12-18	

months	apart.	Both	libraries	were	produced	from	a	number	of	pooled	organisms	

and	 therefore,	 the	variation	 in	 the	PacBio	and	NGS	sequence	data	may	be	real	

and	not	indicative	of	original	errors	in	the	PacBio	sequencing.	

	

Single	base	pair	insertions	to	the	assembly	are	indicative	of	the	original	PacBio	

read	 containing	 a	 single	 base	 pair	 deletion.	 The	 observation	 of	 these	 is	

consistent	with	other	findings	that	claim	insertions	and	deletions	are	the	most	

common	 errors	 found	 in	 PacBio	 reads	 [178,253]	 and	 can	 most	 likely	 be	

explained	by	incorporation	errors	in	two	ways.	Firstly,	incorporation	events,	or	

the	interval	between	them,	can	be	too	short	to	be	reliably	detected	resulting	in	

no	 base	 being	 called.	 Secondly,	 errors	 can	 be	 introduced	 by	 unlabelled	

nucleotide	 contamination	 (dark	 nucleotides)	 whereby	 a	 nucleotide	 is	

introduced	 without	 emitting	 a	 detectable	 signal	 and	 therefore,	 the	 output	

sequence	 does	 not	 include	 this	 base.	 	 Deletion	 rate	 in	 PacBio	 reads	 has	 been	

reported	 as	 up	 to	 7.8%	 in	 raw	 PacBio	 reads	 [178]	 however,	 the	 final	 E.	

histolytica	HM-1:IMSS	assembly	only	contained	a	deletion	error	rate	of	0.003%,	
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supporting	 the	 idea	 that	 corrected	 reads	 produced	 for	 the	 assembly	 had	

eliminated	 the	majority	 of	 deletion	 and	 insertion	 errors	without	 the	 need	 for	

polishing	with	NGS	reads.		

	

In	 conclusion,	 it	 was	 determined	 that	 PacBio	 sequencing	 alone	 is	 able	 to	

produce	a	highly	accurate	assembly	if	coverage	is	deep	and	circular	consensus	

sequencing	is	utilised.	Overall,	the	PacBio-only	assembly	produced	a	high	rate	of	

accuracy	and	it	is	debatable	whether	polishing	using	a	NGS	dataset	is	required	

especially	 as	 the	 majority	 of	 changes	 to	 the	 PacBio	 genome	 assembly	 after	

polishing	were	regarding	the	structure	of	these	tRNA	repeats	and	did	not	largely	

affect	 the	core	genome,	 including	gene	coding	 regions.	This	 is	 in	keeping	with	

the	 recent	 observation	 that	 Illumina-polished	 long-read	 assemblies	 have	 a	

reduced	 number	 of	 structural	 variants	 compared	 to	 non-polished	 long-read	

assemblies	[254].	

	

2.4.4.	 Acquisition	 of	 high	 quality	 gDNA	 is	 a	 limiting	 factor	 in	 further	

improving	the	Entamoeba	histolytica	HM-1:IMSS	genome	

	

Despite	 the	 PacBio	 data	 producing	 a	 longer,	 more	 contiguous	 assembly,	 the	

Entamoeba	 histolytica	 HM-1:IMSS	 genome	 was	 still	 not	 assembled	 into	 a	

telomere-to-telomere,	 whole-chromosome	 assembly.	 Further	 techniques	 such	

as	optical	mapping	and	Hi-C	were	applied,	though	largely	these	were	limited	by	

the	 ability	 to	 collect	 large	 amounts	 of	 high	 molecular	 weight	 DNA	 from	 E.	

histolytica	HM-1:IMSS	trophozoites.			

	

To	generate	both	an	optical	map	and	Hi-C	data,	a	large	amount	of	concentrated	

high	molecular	 weight	 DNA	 is	 required.	 This	 is	 very	 difficult	 to	 achieve	 with	

Entamoeba	 DNA	 for	 many	 reasons.	 Firstly,	 Entamoeba	 trophozoites	 are	

exceedingly	 large	 for	 the	 amount	 of	 DNA	 they	 contain	 and	 a	 single	 15	 mL	

culture	containing	~	100,000	cells	will	only	yield	~100	ng	of	DNA	(~1	pg	per	

cell).	As	a	 result,	 the	DNA	needs	extensive	processing	 to	 concentrate	 the	DNA	

and	as	a	result,	DNA	can	become	fragmented.	This	was	the	biggest	problem	in	

creating	the	optical	map;	Pooling	of	many	plugs	meant	the	final	volume	needed	
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to	 be	 reduced	 using	 a	 SpeedVac	 and	 this	 agitation	 of	 the	 DNA	 may	 have	

contributed	 to	 the	DNA	degradation.	 It	 is	 hypothesized	 that	 this	 factor	 is	 also	

the	reason	for	poor	Hi-C	outcome.	The	Hi-C	library	was	generated	during	early	

emergence	of	 the	 technology	and	 little	was	known	about	 the	amounts	of	DNA	

that	would	be	needed	to	create	high	quality	Hi-C	libraries	(Marbouty,	M.,	2017,	

Pers.	 Comms.).	 As	 such,	 the	 Hi-C	 library	 was	 created	 from	 approximately	

200,000	–	300,000	cells.	It	is	now	known	that	the	library	ideally	would	need	to	

be	 generated	 from	 10	 million	 cells	 (Koszul,	 R.,	 2017,	 Pers.	 Comms.)	 and	 the	

reason	the	Hi-C	data	yielded	low	results	was	likely	to	have	been	directly	due	to	

the	difficulty	in	generating	enough	Entamoeba	gDNA.		

	

It	 is	 also	 predicted	 that	 the	 high	 levels	 of	 lytic	 enzymes	 in	 E.	 histolytica	

trophozoites	 are	 released	 when	 cells	 are	 lysed	 during	 DNA	 extraction.	 These	

enzymes	 may	 have	 degraded	 long	 fragments	 of	 DNA	 resulting	 in	 a	 reduced	

fragment	length	in	both	the	optical	mapping	and	Hi-C	attempts.	

	

Further	contributing	to	these	difficulties,	Entamoeba	cells	are	carbohydrate	rich,	

necessitating	 additional	 DNA	 clean	 up,	 processing	 that	 can	 cause	 further	

degradation	of	genomic	DNA.		
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2.5.	Conclusions		
	

This	 chapter	presents	 a	new	 reference	 genome	 for	Entamoeba	histolytica	HM-

1:IMSS	 and	 comparisons	 of	 the	 different	 assembly	 tools	 and	 approaches	 for	

assembling	long-read	sequencing	data.	No	single	assembler	was	able	to	produce	

a	final	assembly	that	managed	to	both	assemble	extra-chromosomal	molecules	

and	assemble	 long	stretches	of	 repetitive	 sequences.	The	Canu	assembler	was	

the	 only	 assembler	 that	 managed	 to	 fully	 assemble	 the	 well-characterised	

circular	rDNA	episome	of	E.	histolytica.	However,	 it	struggled	to	assemble	 long	

repetitive	structures	within	the	genome	such	as	the	tRNA	arrays.	On	the	other	

hand,	 HGAP2	 assembled	 long	 stretches	 of	 these	 tRNA	 array	 units	 but	 was	

unable	 to	 assemble	 complete	 episomal	 molecules.	 It	 was	 decided	 that	

complementing	 the	 HGAP2	 assembly	 with	 the	 rDNA	 episome	 assembled	 by	

Canu	would	produce	the	most	balanced,	representative	assembly	that	would	be	

most	useful	for	downstream	analysis	of	genome	structure.		

	

Assemblies	 produced	 by	 all	 the	 programs	 tested	 (HGAP2,	 Canu,	Miniasm	 and	

Falcon)	 vary	 dramatically	 in	 genome	 size	 and	 N50	 lengths,	 as	 well	 an	 in	 the	

number	 of	 core	 genes	 (BUSCOs)	 identifiable.	 	 This	 emphasizes	 the	 need	 to	

explore	 assembler	 options	 when	 assembling	 long	 read	 data	 as	 not	 all	

assemblers	 perform	 equally	well	 for	 a	 given	 genome.	 It	 is	 not	 possible	 to	 say	

whether	the	best	performing	assemblers	in	this	analysis	(HGAP2	and	Canu)	are	

the	best	performing	in	general	but	it	can	confidently	be	concluded	that	at	least	

for	highly	repetitive,	small,	single-cell	eukaryote	genomes,	it	would	appear	that	

these	 are	 the	 best	 contenders	 of	 those	 tested.	As	 third-generation	 sequencing	

becomes	 more	 affordable,	 and	 with	 the	 development	 of	 other	 long-read	

sequencing	methods	such	as	Nanopore	sequencing,	more	tools	and	assemblers	

are	becoming	available	(that	were	not	available	at	the	time	of	this	analysis).	 It	

would	 be	 useful	 to	 reassemble	 the	 data	 using	 newer	 versions	 of	 HGAP2	 and	

Canu	alongside	new	programs	such	as	MECAT	[255].	MECAT	has	been	reported	

as	 performing	 very	 well	 when	 assembling	 Plasmodium	 falciparum	 long	 read	

data	despite	the	highly	biased	(AT-rich)	nucleotide	composition,	as	also	seen	in	

E.	histolytica	[256].	
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Comparisons	of	 the	assemblies	also	highlighted	 the	 lack	of	BUSCOs	present	 in	

both	 the	 existing	 published	 reference	 and	 the	 new	 PacBio	 assembly	 of	 the	E.	

histolytica	 genome.	 Though	 the	 analysis	 highlights	 how	 identifying	 and	

comparing	 the	 number	 BUSCOs	 present	 between	 different	 assembler	 outputs	

can	be	a	useful	metric,	 its	raises	the	question	as	to	whether	using	BUSCOs	is	a	

good	 indicator	 of	 predicting	 genome	 completeness	 in	 highly	 divergent	

eukaryotes.	 Only	 58.4%	 (177	 genes)	 of	 the	 core	 gene	 set	 for	 Eukaryota	were	

represented	 in	 the	 HGAP2	 and	 Canu	 assemblies	 which	 means	 the	 remaining	

31.6%	(or	126	genes)	are	either	absent	from	the	assembly	or	do	not	exist	in	the	

E.	histolytica	genome.	It	is	hard	to	determine	which	is	correct,	however	it	is	clear	

from	 a	 range	 of	 other	 protist	 genomes	 that	 the	 pattern	 is	 not	 unique	 for	

Entamoeba	 histolytica.	 Other	 intestinal	 protists	 genomes	 such	 as	 those	 for	

Giardia	 intestinalis	 and	 Cryptosporidium	 parvum	 are	 missing	 57.4%	 (174	

BUSCOs)	 and	 34.7%	 (105	 BUSCOs)	 of	 the	 core	 set	 of	 conserved	 Eukaryota	

genes,	 respectively	 (Data	 not	 shown).	 It	 should	 be	 noted	 here	 that	 the	

Entamoeba	genomes	are	very	fluid	and	it	is	not	rare	to	find	large	regions	of	the	

genome	that	have	been	duplicated	[98]	and	therefore,	duplicated	BUSCOs	may	

not	 always	 be	 representative	 of	 over-assembly	 or	 erroneous	 assembly	 of	

haplotypes.		

	

Further	to	this,	the	Eukaryote	BUSCO	gene	set	is	also	troublesome	as	the	point	

at	which	the	set	was	defined	was	after	the	point	of	divergence	of	the	Entamoeba	

lineage	and	hence	the	genomes	of	many	basal	organisms,	including	Entamoeba	

and	 other	 parasites	 such	 as	 the	 Giardias	 and	 Trypanosomas,	 have	 not	 been	

included	when	determining	orthologous	gene	sets	which	have	been	conserved.	

As	 such,	 BUSCO	 scores	 cannot	 be	 used	 for	 scoring	 genome	 completeness	 and	

instead,	can	only	be	used	as	a	metric	to	rapidly	compare	assemblies	to	conclude	

which	contains	the	most	representative	gene	set.	

	

The	 BUSCO	 results	 for	 the	E.	histolytica	genomes	 also	 highlight	 high	 levels	 of	

BUSCOs	 that	are	apparently	duplicated;	 it	 is	 largely	regarded	 that	BUSCOs	are	

single	 copy	 genes.	 Analysis	 of	 other	 amoeba	 genomes	 (Data	 not	 shown),	
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including	 the	 high	 quality	 genome	 for	 the	 model	 organism,	 Dictyostelium	

discoideum,	 shows	 similar	 levels	 of	 BUSCO	 duplication.	 The	 D.	 discoideum	

genome	 contains	 43	 duplicated	 BUSCOs	 (14.2%	 of	 BUSCOs)	 and	 the	

Acanthamoeba	 castellanii	 genome	 (of	 much	 poorer	 assembly	 quality	 then	 D.	

discoideum)	 contains	 65	 duplicated	 BUSCOs	 (21.5%	 of	 BUSCOs);	 the	 50	

duplicated	 BUSCOs	 in	 the	 HGAP	 assembly	 and	 53	 duplicated	 BUSCOs	 in	 the	

Canu	assembly	are	in	line	with	the	levels	of	duplication	in	these	other	amoeba	

species.	 Both	 the	 observation	 of	 low	 levels	 of	 BUSCOs	 across	 other	 intestinal	

protists	 and	 the	 higher	 levels	 of	 BUSCO	 duplication	 amongst	 other	 amoeba	

species	support	the	idea	that	the	BUSCOs	identified	in	the	new	PacBio	assembly	

are	a	realistic	 representation	of	 the	E.	histolytica	genome	and	that	 the	missing	

BUSCOs	may	in	fact	not	be	present	in	the	genome.		

	

Finally,	 polishing	 of	 the	 final	 assembly	 with	 high-coverage,	 accurate	 Illumina	

short	 reads	 made	 some	 corrections	 to	 the	 sequence,	 though	 these	 largely	

affected	 repetitive,	 non-protein-coding	 regions	 of	 the	 genome	 and	 raises	 the	

questions	of	whether	true	structural	variants	are	been	masked	by	this	process,	

as	has	been	suggested	elsewhere	[254]	and	explained	in	section	2.4.3.	It	would	

appear	that	the	high	PacBio	coverage	(~200x)	produces	a	high	level	of	accuracy	

in	 the	 final	 assembly,	 largely	obviating	 the	need	 for	polishing	with	 short-read	

data.		

	

Overall,	the	genome	produced	is	a	valuable	resource	and	forms	the	basis	for	the	

work	described	in	Chapters	3,	4	and	5.	



	 94	

Chapter	 3:	 Genome	 Annotation	 of	
the	 new	Entamoeba	histolytica	HM-
1:IMSS	 genome	 assembly	 and	
analysis	 of	 virulence	 gene	 families	
in	their	genomic	context	
	

3.1.	Introduction	
	

Genome	 structure	 and	 organisation	 is	 very	 important	 in	 understanding	 how	

genes	 (and	 gene	 families)	 have	 evolved	 and	 how	 they	 are	 regulated.	 As	

mentioned	in	Chapter	1,	the	structure	of	gene	families	and	their	regulation	can	

confer	an	advantage	to	the	survival	of	the	organism;	mono-allelic	expression	of	

genes	 families	 is	 used	by	many	organisms	 to	 regulate	 the	 variation	of	 surface	

proteins	 and	 is	 often	 facilitated	 by	 gene	 families	 being	 situated	 in	 the	 sub-

telomeric	regions	of	a	genome.		

	

The	 Apicomplexan	 parasite	 Plasmodium	 falciparum	 utilises	 mono-allelic	

expression	 in	 a	 highly	 effective	 immune	 evasion	 mechanism	 by	 differentially	

expressing	 different	 surface	 proteins	 known	 as	 P.	 falciparum	 erythrocyte	

membrane	 protein	 1	 (PfEMP1)	 [185,186].	 PfEMP1s	 are	 encoded	 by	 the	

(approximately)	60-member	var	gene	family	and	are	associated	with	virulence	

due	 to	 their	 role	 in	 immune	 evasion	 and	 intravascular	 parasite	 sequestration	

[87,187–189].	These	var	genes	are	categorised	into	three	types	determined	by	

which	upstream	sequence	(upsA,	upsB	or	upsC)	they	are	associated	with.	UpsA	

and	upsB-type	var	genes	are	 located	 in	sub-telomeric	regions	while	upsC-type	

var	genes	are	located	in	chromosomal	clusters	[87].	In	all	types	of	var	genes	the	

close	 proximity	 of	 the	 genes	 to	 one	 another	 is	 thought	 to	 facilitate	 antigen	

switching,	which	is	mediated	epigenetically	[191].		
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Another	 antigen	 switching	mechanism	 is	 observed	 in	 the	Kinetoplast	 parasite	

Trypanosoma	 brucei,	 in	 which	 Variant	 Surface	 Glycoproteins	 (VSGs)	 are	

differentially	regulated	to	mediate	 immune	evasion.	They	provide	a	protective	

cell	 surface	 coat	 to	 the	 parasite	 throughout	 the	 mammalian	 infectious	 cycle	

[192–194].	The	underlying	mechanism	of	 successful	 immune	evasion	 is	 clone-

specific,	singular	VSG	expression	combined	with	regular	switching	of	one	VSG	to	

another	 to	 continuously	 expose	 the	 host	 immune	 system	 to	 novel	 surface	

antigens	[257].		The	expressed	VSG	genes	(VSG	expression	sites)	are	found	to	be	

adjacent	 to	 a	 telomere	 [258,259].	 It	 is	 thought	 that	 ~80%	 of	 the	 VSG	 genes	

reside	 on	 the	 telomeres	 of	 Trypanosoma	 brucei’s	multiple	 mini	 chromosomes	

which	appear	 to	be	almost	exclusively	dedicated	 to	containing	 these	VSG	gene	

‘reservoirs’	 [259–261].	 The	 remaining	 VSG	 genes	 are	 thought	 to	 be	 located	

adjacent	 to	 telomeres	 of	 the	 intermediate	 and	 megabase	 chromosomes	 that	

compromise	 the	T.	brucei	genome	 [262].	 The	VSG	genes	 are	 flanked	 by	 70-bp	

repeats	 upstream	 and	 highly	 conserved	 elements	 within	 the	 3’-untranslated	

Region	(3’-UTR)	[88].	These	sequences	facilitate	recombination	of	unexpressed	

VSG	 genes	 in	 the	 VSG	 expression	 sites	 resulting	 in	 a	 constant	 turnover	 of	

different	surface	proteins	on	the	cell	surface	[97,98].		

	

3.1.1.	Problems	with	the	current	Entamoeba	histolytica	gene	set	

	

In	the	first	published	Entamoeba	histolytica	HM-1:IMSS	genome	assembly	9,938	

genes	were	predicted	within	the	genome	[97].	Subsequent	re-assembly	and	re-

annotation	reduced	this	to	8,333	genes	[98].		The	majority	(55%)	of	annotated	

genes	encode	proteins	of	unknown	function.	This	is	not	uncommon	in	protists.	

Two	 other	 gut	 parasites,	 Cryptosporidium	 parvum	 and	 Giardia	 lamblia,	 both	

have	 large	 portions	 of	 their	 gene	 content	 annotated	 as	 ‘hypothetical	 protein’	

(40%	of	4,367	genes	and	75%	of	9,747	genes,	respectively).	This	large	number	

of	uncharacterised	genes	presents	a	problem	for	genome-wide	analyses	(e.g.	of	

gene	 expression)	 because	 the	 majority	 of	 genes	 of	 interest	 are	 of	 unknown	

function.		
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In	addition	to	this,	very	little	is	known	about	the	organisation	of	genes	and	the	

expansions	 of	 gene	 families	 within	 the	 E.	 histolytica	HM-1:IMSS	 genome.	 The	

repetitive	nature	of	the	genome	has	meant	that	despite	continuous	sequencing	

efforts,	the	assembly	remains	fragmented	and	a	chromosome	level	assembly	is	

yet	 to	 be	 reached.	 The	 current	 published	 reference	 assembly	 contains	 1,496	

scaffolds.	 Single	 molecule	 sequencing	 and	 assembly	 (described	 in	 Chapter	 2)	

has	improved	the	E.	histolytica	HM-1:IMSS	assembly.		

	

E.	 histolytica	 contains	 a	 range	 of	 virulence	 gene	 families	 that	 have	 been	

previously	identified	however,	no	information	on	gene	family	organisation	has	

been	 performed	 as	 often	members	 of	 the	 same	 gene	 family	 occur	 in	multiple	

scaffolds	 (AmoebaDB,	 release	 35	 data).	 In	 addition,	 the	 lack	 of	 information	

regarding	 the	 wide-scale	 structure	 of	 E.	 histolytica	HM-1:IMSS,	 including	 the	

structure	 of	 the	 telomeres,	 has	 made	 it	 impossible	 to	 understand	 whether	

telomeres	 are	 enriched	 for	 particular	 gene	 families	 or	 gene	 function	 as	 is	

observed	in	P.	falciparum	and	T.	brucei.	Further,	little	is	known	about	how	gene	

families	 have	 become	 expanded	 in	 the	 E.	 histolytica	 genome.	 Expanded	 gene	

families	 are	often	associated	with	 important	 functions	 and	 complex	processes	

within	organisms.	Entamoeba	histolytica	contains	a	large	number	of	multi-gene	

families	 [98].	 Specifically,	 this	 chapter	 will	 focus	 on	 a	 number	 of	 those	 gene	

families	 that	 have	 been	 associated	 with	 virulence	 in	 E.	 histolytica	HM-1:IMSS	

and	 were	 described	 in	 Chapter	 1.	 Specifically	 the	 organisation	 of	 the	 AIG-1,	

Ariel-1,	BspA,	cysteine	protease	(CP),	Gal/GalNAc	lectin	and	STIRP	families	has	

been	investigated.		

	

3.1.2.	Annotation	of	eukaryotic	pathogen	genomes	

	

Reliably	 identifying	 coding	 regions	within	de	novo	assembled	 genomes	 can	be	

difficult.	 Gene	 finding	 is	 usually	 facilitated	 through	 known	 orthologues,	

properties	indicative	of	a	genic	sequence,	or	a	combination	of	the	two	[263].	If	

the	organism	has	already	been	sequenced	or	has	a	sequenced	close	relative,	it	is	

possible	to	transfer	annotation	by	aligning	protein	sequences	from	that	genome	

to	the	new	genome	assembly.		
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However,	when	 a	 genome	 is	 re-sequenced	 to	 a	 higher	 quality	 it	 is	 likely	 that	

novel	 genes	 will	 also	 be	 present	 in	 the	 new	 assembly,	 especially	 if	 the	 new	

assembly	is	larger	than	the	previous	one.	In	these	cases,	ab	initio	gene	finding	is	

also	required.		Algorithms	such	as	Genscan	[264]	detect	genomic	regions	likely	

to	 contain	 coding	 sequences	 based	 on	 detection	 of	 both	 signals	 and	 content	

properties.	 Such	 signals	 can	 include	 transcription/translation	 start	 and	

termination	 sites	 and	 donor/acceptor	 splice	 sites	 [265].	 Compositional	

properties	 that	 can	 indicate	 genic	 regions	 include	 those	 shared	 by	 exons,	

introns	 and	 intergenic	 regions	 [263].	Many	 programs,	 such	 as	 Ensembl	 [266]	

and	AUGUSTUS	[226],	are	able	to	synthesise	orthologue	alignments	to	inform	ab	

initio	predictions,	further	improving	their	accuracy	and	reliability.	

	

Despite	 these	 available	 tools,	 annotation	 of	 non-model	 organisms	 remains	

difficult.	 Until	 recently,	 very	 few	 tools	 were	 dedicated	 to	 the	 annotation	 of	

eukaryotic	parasites	 and	 few	pipelines	were	written	 for	 eukaryote	annotation	

[267].	 Companion	 (COMprehensive	 Parasite	 ANnotatION)	 has	 been	 recently	

developed	 solely	 for	 the	 purpose	 of	 annotating	 eukaryotic	 pathogen	 genomes	

using	 a	 reference-based	 approach	 [267].	 Companion	 delivers	 a	 usable	

annotation	of	features	in	the	target	genome,	formatted	for	submission	to	public	

databases.	 It	 also	 contains	 several	 extra	 features	 for	 identifying	 differences	

between	 the	 reference	 and	 the	 new	 assembly,	 such	 as	 orthologous	 clusters,	

species	 specific	 singleton	 genes	 and	 missing	 core	 genes	 present	 in	 larger	

reference	species	sets	[267].	

	

The	Companion	workflow	uses	a	combination	of	homology-based	and	ab	initio	

methods	 to	 produce	 a	 set	 of	 protein-coding	 genes.	 Transferring	 of	 highly	

conserved	 gene	models	 with	 no	modification	 to	 the	 reference	 set	 is	 done	 by	

RATT	 [268].	 Further	 gene	 models	 are	 predicted	 by	 ab	 initio	 gene	 prediction	

programs	 SNAP	 [269]	 and	 AUGUSTUS	 [226].	 	 This	 process	 utilises	 extrinsic	

evidence	 such	 as	 ESTs	 and	 RNA-seq	 data.	 At	 the	 end	 of	 the	 structural	

annotation,	a	final	set	of	gene	models	is	determined	by	merging	the	outputs	of	

the	 gene	 finding	 software.	 Functional	 annotation	 of	 the	 genes	 is	 transferred	

from	annotations	associated	with	orthologous	genes	 in	 the	 reference	gene	 set	
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that	have	function	defined	by	OrthoMCL	[270].	If	no	orthologues	are	found	for	a	

query	gene,	 the	best	Pfam-A	 [117]	hit	 is	used	 to	predict	 function.	 If	GO-terms	

are	available,	these	are	also	transferred	to	the	annotation.	Non-coding	RNAs	are	

identified	ab	initio	by	ARAGORN	(tRNAs)	[271]	and	INFERNAL	[272]	(rRNA	and	

other	ncRNAs	from	the	Rfam	database)	[273].	

	

3.1.3.	Aims	of	Chapter	

	

The	published	reference	assembly	for	E.	histolytica	was	highly	fragmented	and	

as	a	 result	 the	 structure	and	organisation	of	genes	and	gene	 families	 in	 the	E.	

histolytica	 genome	 remains	 unknown.	 Similarly,	 the	 genes	 that	 are	 in	 close	

proximity	 to	 features	 such	 as	 the	 telomeres	 and	 transposable	 elements	 could	

not	 be	 identified	 using	 the	 published	 assembly.	 This	 is	 important	 as	 the	

enrichment	 of	 genes	 in	 the	 subtelomeric	 regions	 in	 other	 protists	 has	 been	

associated	with	virulence	and	parasite-host	 interactions.	Further,	owing	to	the	

fragmented	 nature	 of	 the	 assembly	 means	 that	 it	 is	 likely	 the	 genome	 is	

incomplete	 and	 genes	were	missing	when	 annotating	 the	 assembly	 produced	

using	short	Sanger	reads.	This	chapter	specifically	aims	to:	

• Produce	 a	 high	 quality	 annotation	 of	 the	 PacBio	Entamoeba	histolytica	

HM-1:IMSS	assembly	using	Companion.		

• Compare	 gene	 content	 between	 the	 PacBio	 assembly	 and	 the	 existing	

reference	assembly	to	identify	missing	and	novel	genes		

• Analyse	the	predicted	functions	of	novel	genes	to	identify	new	members	

of	existing	genes	families,	as	well	as	single-copy	novel	genes.	

• Investigate	 the	 organisation	 of	 genes	 within	 a	 range	 of	 virulence	 gene	

families.	

• Investigate	gene	content	and	predicted	function	of	all	genes	within	close	

proximity	 to	 structural	 features	 such	 as	 transposable	 elements	 and	

putative	telomeres	
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3.2	Materials	and	Methods	
	

3.2.1.	Comparison	of	the	new	PacBio	assembly	and	published	assemblies	

	

Details	of	how	the	new	PacBio	assembly	was	generated	are	described	in	Chapter	

2.	 For	 comparison,	 the	 published	Entamoeba	histolytica	 genome	 assembly	 (in	

FASTA	format)	and	annotation	(in	GFF3	format)	were	obtained	from	AmoebaDB	

(Release	35,	released	November	2017).	Genome	metrics	were	determined	using	

custom	perl	scripts	(described	in	Chapter	2.2.6).	Gene	annotation	of	the	PacBio	

genome	is	described	in	section	3.2.2.	

	

As	an	illustrative	example,	the	longest	contig	from	the	published	assembly	was	

aligned	to	the	PacBio	assembly	using	BLASTn,	to	produce	a	’crunch’	format	file	

that	 was	 visualised	 using	 the	 Artemis	 Comparison	 Tool	 (ACT;	 release	 16.0.0)	

[274],	with	 GFF3	 tracks	 displayed.	 This	was	 inspected	manually	 for	 assembly	

and	gene	content	differences.	

	

3.2.2.	Companion	annotation	

	

The	 PacBio	 assembly	 described	 in	 Chapter	 2	 was	 annotated	 using	 the	

Companion	web	platform	[267].	The	current	genome	annotation	for	Entamoeba	

histolytica	HM-1:IMSS	on	AmoebaDB	(Release	35)	was	used	as	a	reference	from	

which	to	transfer	the	annotation	to	the	new	assembly	via	the	Rapid	Annotation	

Transfer	Tool	(RATT)	[268]	step	within	the	Companion	pipeline.	Aside	from	this	

specification,	all	other	parameters	were	left	as	default.		

	

The	 largest	 contig	 in	 the	 new	 Entamoeba	 histolytica	HM-1:IMSS	 genome	 was	

manually	 inspected	 in	 Artemis	 [275]	 with	 predicted	 genes	 displayed	 to	

manually	 inspect	 any	 obvious	 defects	 in	 the	 gene	 models	 predicted	 by	

Companion.		
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3.2.3.	 Identification	 of	 missing	 and	 novel	 genes	 in	 the	 new	 Entamoeba	

histolytica	HM-1:IMSS	genome	assembly	

	

The	companion	GFF3	output	was	parsed	to	extract	successfully	transferred	gene	

IDs	from	the	AmoebaDB	annotation	(v35).	This	list	was	compared	to	the	full	list	

of	 E.	 histolytica	 HM-1:IMSS	 gene	 IDs	 from	 AmoebaDB	 to	 identify	 non-

transferred	genes	(i.e.	missing	from	the	new	assembly).		

	

To	ensure	none	of	the	non-transferred	genes	has	been	incorrectly	annotated	as	

novel	genes,	novel	genes	predicted	by	 the	Companion	pipeline	were	extracted	

from	the	Companion	GFF3	file.	These	were	used	in	a	BLASTN	search	against	the	

non-transferred	 genes.	 Any	 de	 novo	 annotated	 genes	 that	 matched	 a	 non-

transferred	 AmoebaDB	 gene	 were	 identified	 and	 a	 true	 version	 of	 non-

transferred	(missing)	genes	in	the	new	assembly	was	produced.	

	

3.2.4.	Determining	 the	genomic	distribution	of	 large	gene	 families	 in	 the	

Entamoeba	histolytica	HM-1:IMSS	genome	

	

Gene	sequences	for	a	set	of	virulence	gene	families	in	Entamoeba	histolytica	HM-

1:IMSS	 (AIG-1,	 Ariel,	 Amoebapore,	 BspA,	 Cysteine	 protease,	 Gal/GalNAc	 lectin	

and	 STIRP	 gene	 families)	were	 obtained	 from	AmoebaDB	 (v35)	 and	 split	 into	

family-specific	 FASTA	 files.	 For	 each	 gene	 family,	 the	 AmoebaDB	 sequences	

were	 used	 in	 a	 BLASTN	 search	 against	 the	 new	 E.	 histolytica	 HM-1:IMSS	

genome.	An	e-value	of	0.05	and	a	query	cut	off	length	was	used.	Any	identified	

regions	were	cross-referenced	against	 the	Companion	 file	 to	ensure	 that	all	of	

the	genes	had	been	detected	and	annotated	by	Companion.	The	Companion	file	

was	 also	 parsed	 for	 any	 orthologous	 genes	 to	 the	 AmoebaDB	 IDs	 and	 any	de	

novo	annotated	genes	that	had	been	annotated	as	being	part	of	the	same	family.	

Contig	 co-ordinates	were	extracted	 for	 the	genes	within	each	gene	 family	and	

manually	inspected	to	determine	the	distribution	of	each	gene	family.	
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3.2.5.	 Identification	 of	 genes	 distributed	 within	 putative	 sub-telomeric	

regions	or	close	to	transposable	elements	

	

In	Chapter	4,	 evidence	was	presented	 to	 support	 the	 theory	 that	 tRNA	arrays	

form	 the	 telomeres	 in	Entamoeba	species.	 In	 this	 chapter,	 tRNA:genic	 contigs	

were	also	identified	(i.e.	contigs	that	contains	a	tRNA	array	that	terminates	the	

chromosome	at	one	end	and	genic	content	at	the	other).	The	gene	information	

for	 the	 100	 Kbp	 flanking	 region	 of	 the	 tRNA	 arrays	 on	 these	 contigs	 was	

extracted	 from	 the	 Companion	 GFF3	 output	 and	 manually	 inspected	 for	 any	

gene	 families	 that	 contained	 two	 or	 more	 members	 in	 the	 putative	 sub-

telomeres.	GO	terms	for	the	genes	were	extracted	from	the	Companion	output	

and	summarised	and	visualised	using	REVIGO	[276].		

	

Retro-transposons	 and	 other	 transposable	 elements	 in	 the	 new	 E.	 histolytica	

HM-1:IMSS	 genome	were	 identified	using	RepeatMasker	 (Version	4.0.7)	 [277]	

specifying	 crossmatch	 for	 the	 search	 engine	 flag.	 Annotated	 Entamoeba	

elements	already	exist	in	the	RepeatMasker	database	and	therefore,	the	species	

flag	was	used	specifying	Entamoeba	as	the	target	species.	

	

BED	files	were	created	specifying	coordinates	1	Kbp	upstream	and	downstream	

of	detected	transposable	elements	(TEs).	These	sequences	were	extracted	from	

the	new	E.	histolytica	HM-1:IMSS	genome	assembly	using	the	BEDtools	getfasta	

tool	[278].	Sequences	were	used	in	a	BLASTN	search	against	E.	histolytica	HM-

1:IMSS	 coding	 sequences	 (CDS)	 available	 on	 AmoebaDB	 (v35).	 Manual	

inspection	of	the	gene	functions	associated	in	these	regions	was	used	to	identify	

any	 gene	 family	 enrichment	 in	 these	 areas.	 The	 BED	 files	 specifying	 the	 co-

ordinates	1	Kbp	upstream	and	downstream	of	putative	TEs	were	used	as	input	

for	Homer	[279]	to	extract	any	annotation	of	 the	regions	 from	the	Companion	

GFF3	output.	The	genes	 identified	were	cross-referenced	with	 those	 identified	

through	the	BLASTN	search	to	compile	a	list	of	genes	associated	with	(within	1	

Kbp	of)	TEs.	
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To	assess	clustering	of	 the	gene	 families	 identified	based	on	contig	number	or	

TE	 type	 they	 were	 associated	 with,	 phylogenetic	 analysis	 was	 performed	 on	

gene	 families	which	were	enriched	 in	 the	regions	surrounding	the	TEs	(AIG-1,	

Cysteine	Protease,	Ariel-1	gene	families).	For	each	gene	family,	sequences	were	

aligned	 in	 the	 SeaView	 GUI	 (Version	 4.6)	 [280]	 using	 the	MUSCLE	 algorithm.	

BMGE	 (Block	 Mapping	 and	 Gathering	 with	 Entropy;	 Version	 1.12)	 [281]	 was	

used	 to	 remove	 ambiguously	 aligned	 regions	 from	 the	 alignment,	 effectively	

trimming	 the	 alignment	 into	 conserved	 blocks	 of	 sequence.	 To	 determine	 the	

best	model	 of	 protein	 evolution	of	 the	 alignment,	 the	 trimmed	alignment	was	

then	 used	 as	 the	 input	 for	 ProtTest3	 (Version	 3.2)	 [282]	 using	 default	

parameters	 and	using	 the	 all-distributions	 flag	 to	 display	how	 the	best	model	

selection	is	affected	under	different	scenarios.	Once	the	most	appropriate	model	

was	identified,	PhyML	(Version	20120412)	[283]	was	used	to	determine	a	gene	

phylogeny	of	members	of	the	gene	family.	The	parameters	used	by	PhyML	are	

displayed	in	Appendix	3	(Table	S3.1.).	

	

The	 output	 form	 PhyML	 was	 visualised	 in	 MEGA7	 (Release	 #7180411-i386)	

[284].	Phylogenetic	trees	were	manually	inspected	for	quality	and	for	any	clades	

specific	 to	 contig	 number	 or	 to	 a	 single	 type	 of	 transposable	 element.	 Trees	

were	 also	 inspected	 for	 any	 distinct	 separation	 of	 gene	 family	 members	 that	

occur	 in	 association	 with	 a	 transposable	 element	 with	 those	 that	 are	 not	

associated	with	transposable	elements.	
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3.3.	Results		
	
3.3.1.	The	new	Entamoeba	histolytica	reference	 genome	 improves	on	 the	

existing	reference	assembly	

	
The	 Entamoeba	 histolytica	 genome	 produced	 using	 PacBio	 sequencing	 in	

Chapter	2	is	a	major	improvement	on	the	existing	reference	genome	assembly.	

The	PacBio	assembly	contains	933	 fewer	contigs	 than	 the	published	assembly	

and	has	an	N50	over	double	its	size	(Table	3.3.1).	The	PacBio	assembly	contains	

an	 extra	 6.7	Mbp	 of	 sequence	 compared	 to	 the	 published	 assembly,	 although	

approximately	 1.4	Mbp	 of	 this	 sequence	 is	 comprised	 of	 tRNA	 sequences	 and	

rDNA	 episomal	 sequence	 (removed	 from	 previous	 published	 assemblies).	

Removal	of	 these	 regions	 from	 the	PacBio	assembly	 leaves	a	 ‘core’	 genome	of	

approximately	~26	Mbp,		~5	Mbp	larger	than	the	published	assembly.	

	
Table	 3.3.1.	 Comparison	 of	 the	 published	 and	 the	 PacBio-produced	

Entamoeba	histolytica	genome	assemblies.		
A	Core	genome	size	=	Total	genome	excluding	telomeric	and	episomal	sequences	

		
Feature	 Published	Assembly	

(Lorenzi,	2010)	

PacBio	Assembly	

(2018)	

Contigs	 1,496	 563	

Size	(bp)	 20,799,072	 27,407,923	

Core	genome	sizeA	(bp)	 20,799,072	 25,984,130	

GC	content	(%)	 24.2	 24.1	

N50	length	(bp)		 49,118	(scaffolds)	 117,638	(contigs)	

Mean	length	(bp)	 13,903	(scaffolds)	 48.682	(contigs)	

Coverage		 12.5x	 200x	

Longest	sequence	(bp)	 530,629	(scaffold)	 1,014,895	(contig)	

Shortest	sequence	(bp)	 235	 1,991	

	
To	 identify	 some	 specific	 differences	 between	 the	 new	 and	 the	 published	

assemblies,	 the	 largest	 scaffold	 of	 the	 published	 assembly	was	 aligned	 to	 the	

new	 assembly	 and	 manually	 inspected	 to	 identify	 differences.	 The	 published	
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assembly	 consists	 of	 scaffolds	 created	 from	many	 contigs,	 joined	by	 ‘N’	 bases.	

The	 new	 PacBio	 assembly	 contains	 no	 such	 gaps.	 	 In	 addition,	 it	 resolved	

regions	 where	 the	 published	 assembly	 scaffold	 had	 incorrectly	 joined	 two	

smaller	contigs	together	(Figure	3.3.1).	

	

	
	

Figure	 3.3.1.	 Assembly	 differences	 between	 the	 published	 assembly	 and	

the	PacBio	assembly.	The	longest	scaffold	in	the	published	assembly	consists	

of	several	contigs	scaffolded	together	using	Ns.	The	corresponding	region	in	the	

PacBio	 sequence	 is	 a	 single	 contig	 and	 highlights	 a	 scaffolding	 error	 in	 the	

published	assembly.		

	

The	 PacBio	 assembly	 contains	 a	 single	 contig	 (contiguous	 sequence)	

corresponding	 to	 the	 longest	 scaffold	 in	 the	 published	 assembly.	 The	 PacBio	

contig	does	not	contain	one	of	the	contigs	 in	the	published	scaffold.	The	genes	

on	this	contig	are	found	elsewhere	in	the	PacBio	assembly,	suggesting	that	the	

published	scaffold	contained	a	misassembly.		

	

	 	

Published	Assembly	Scaffold	

Published	Assembly	Genes	

PacBio	Assembly	Genes	

PacBio	Assembly	Contig	

Contig	 Contig	 Contig	

Scaffolding	of	sequence	(Ns)	

Contig	
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3.3.2.	Companion	annotated	more	genes	than	previously	identified	in	the	

reference	Entamoeba	histolytica	HM-1:IMSS	genome	

	

The	 Companion	 software	 predicted	 10,164	 protein-coding	 genes	 in	 the	 new	

Entamoeba	 histolytica	 HM-1:IMSS	 genome	 assembly	 (Table	 3.3.2).	 Of	 these	

1,889	 genes	 were	 predicted	 de	 novo	 by	 AUGUSTUS	 and	 the	 remainder	

transferred	 from	 the	 previous	 annotation.	 In	 addition	 to	 these	 genes,	 373	

pseudogenes,	 3,946	 tRNA	 genes,	 230	 rRNA	 genes	 and	 6	 snRNA	 genes	 were	

identified;	 rRNA	 and	 tRNA	 genes	 were	 not	 extensively	 annotated	 in	 the	

published	 assembly	 as	 reads	 containing	 ribosomal	 or	 tRNA	 sequences	 were	

removed	before	assembly	[97,98].	

	

Table	 3.3.2.	 Genome	 statistics	 and	 gene	 comparison.	 Comparison	 of	

previous	Entamoeba	histolytica	HM-1:IMSS	genome	assemblies	compared	to	the	

new	PacBio	assembly.	

Genome	 Loftus	et	al	

(2005)	[97]	

Lorenzi	et	al	

(2010)	[98]	

PacBio		

(2017)	

Size	 23,361,983	 20,799,072	 27,407,923	

Number	of	Genes	 9,985	 8,333	 10,164	

Mean	Gene	Length	(bp)	 1,170.7	 1,260.9	 1,216.3	

Gene	 Density	 (Genes/10	

Kbp)	

4.3	 3.9	 3.94	

Longest	Gene	(bp)	 15,210	 15,210	 15,210	

Shortest	Gene	(bp)	 96	 147	 123	

Percent	Coding	(%)	 50	 49.7	 47.5	

	
An	increase	in	gene	number	was	observed	in	the	new	assembly	compared	to	the	

reference	assembly	(A.K.A.	Lorenzi	assembly).	1,831	more	genes	were	identified	

in	 the	 new	 PacBio	 assembly	 than	 the	 currently	 used	 reference	 assembly	

however	other	metrics	remain	relatively	consistent.	The	average	gene	length	is	

~1,200	bp	with	an	average	gene	density	of	four	genes	per	10	Kbp	of	sequence.	

The	 longest	 gene	 remains	 consistent	 at	 15,210	bp	 and	 the	 shortest	 gene	now	

becomes	 123	 bp	 in	 length	 based	 on	 a	 100	 bp	 cut-off.	 The	 percentage	 of	 the	
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genome	 that	 encodes	 for	 genes	 has	 decreased	 slightly	 compared	 to	 previous	

estimates	of	~50%	of	the	genome.		

	
3.3.3.	A	small	subset	of	genes	were	not	transferred	to	the	new	Entamoeba	

histolytica	HM-1:IMSS	genome	assembly	

	 	
As	part	of	the	Companion	pipeline,	reference	gene	sequences	are	transferred	to	

the	 new	 genome.	 Gene	 sequences	 for	 Entamoeba	 histolytica	 HM-1:IMSS,	

available	from	AmoebaDB	(v35)	were	transferred	to	the	new	genome	assembly.	

58	 genes	 were	 not	 transferred	 to	 the	 PacBio	 assembly	 from	 the	 published	

reference	assembly.	38	of	 the	58	missing	genes	are	annotated	as	hypothetical	

genes	with	no	InterProScan	annotation	so	it	is	hard	to	infer	their	function	or	if	

they	are	real	genes.	The	remaining	20	missing	genes	with	functional	annotation	

are	outlined	in	Table	3.3.3.	
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Table	 3.3.3.	 Missing	 AmoebaDB	 genes	 in	 the	 new	 Entamoeba	 histolytica	

HM-1:IMSS	 single	 molecule	 assembly.	 58	 genes	 were	 identified	 as	missing	

from	the	new	assembly	that	were	annotated	in	previous	assembly	attempts.	20	

of	these	genes	have	an	assigned	function.	

AmoebaDB	

Gene	ID	

Product	Description	

EHI_046900	 4-alpha-glucanotransferase	

EHI_075660	 CAAX	prenyl	protease	

EHI_075700	 Casein	kinase	II	regulatory	subunit	family	protein	

EHI_077260	 DNA	repair	helicase	

EHI_076880	 DNA	replication	licensing	factor	

EHI_073780	 DNAJ	homolog	subfamily	A	member	2	

EHI_077230	 Geranylgeranyl	transferase	beta	subunit	

EHI_053090	 Leucine	 rich	 repeat	 and	 phosphatase	 domain	 containing	

protein	

EHI_130360	 Modulator	of	drug	activity	B	homolog	

EHI_077000	 Pre-mRNA	cleavage	factor	|	25	kDa	subunit	

EHI_077220	 Pre-mRNA	cleavage	factor	|	25	kDa	subunit	

EHI_053130	 Protein	kinase	2	

EHI_026690	 Protein	kinase	domain	containing	protein	

EHI_115050	 Protein	kinase	

EHI_075640	 Protein	phosphatase	domain-containing	protein	

EHI_053150	 Rab	family	GTPase	

EHI_185010	 Ribosomal	protein	L10	

EHI_053170	 RNA-binding	protein	

EHI_077240	 Transcription	initiation	factor	TFIID	family	protein	

EHI_167840	 WH2	motif	domain	containing	protein	

	

Non-transferred	 genes	 occur	 on	 27	 scaffolds	 of	 the	 published	 assembly.	 Of	

these,	19	are	small	scaffolds	(1.0	to	2.7	Kbp)	where	the	non-transferred	gene	is	

the	 only	 annotated	 gene	 on	 the	 scaffold.	 Three	 scaffolds	 in	 the	 published	

assembly	 contain	 the	 majority	 of	 the	 non-transferred	 genes;	 DS571229,	

DS571238	and	DS571394	contain	10,	9	and	9	of	the	missing	genes,	respectively.	
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The	non-transferred	genes	appear	as	three	clusters	across	the	three	published	

scaffolds	and	therefore,	to	check	whether	regions	of	these	scaffolds	are	missing	

in	 the	 new	 assembly	 the	 published	 and	 new	 assemblies	 were	 aligned	 using	

Mummer	and	visualised	for	areas	of	no	alignment.	The	sequence	corresponding	

to	these	three	clusters	did	not	align	to	any	sequence	in	the	new	PacBio	genome	

(Figure	3.3.2A).	To	further	validate	the	absence	of	 these	regions	from	the	new	

PacBio	assembly,	short-read	paired	end	sequencing	data	(described	in	Chapter	

2)	was	mapped	 to	 the	published	assembly	with	duplicate	 reads	 removed.	The	

genes	clusters	were	inspected	for	mapping;	reads	were	found	to	map	uniquely	

to	 all	 three	 non-transferred	 clusters	 from	 the	 old	 assembly	 with	 an	 average	

depth	 of	 ~300x	 (Figure	 3.3.2B).	 However,	 regions	 of	 missing	 genes	 often	

contained	 drops	 in	 coverage	 indicative	 of	 where	 contigs	 had	 been	 scaffolded	

together	on	either	side	of	the	non-transferred	gene	clusters.		

	
To	 ensure	 that	 the	missing	 genes	were	 not	 present	 in	 the	 PacBio	 sequencing	

data	but	not	assembled	into	the	genome,	a	tBLASTn	search	was	performed.	The	

missing	 gene	 sequences	were	 used	 in	 a	 tBLASTn	 query	 against	 the	 corrected	

PacBio	 reads.	None	of	 the	58	non-transferred	genes	were	detected	 in	 the	 raw	

PacBio	 reads	 indicating	 these	 gene	 sequences	 were	 either	 present	 in	 the	

genome	but	not	sequenced	or	the	that	these	genes	genuinely	do	not	exist	in	the	

E.	histolytica	HM-1:IMSS	strain	that	is	kept	at	University	of	Liverpool.		 	

	

It	 is	 worth	 noting	 here	 that	 the	 Illumina	 paired	 end	 sequencing	 data	 was	

generated	 from	E.	histolytica	HM-1:IMSS	 cell	 stocks	maintained	 at	 the	London	

School	of	Hygiene	and	Tropical	Medicine	(LSHTM)	and	the	discrepancies	in	the	

presence	of	the	missing	genes	between	the	PacBio	reads	and	the	Illumina	reads	

may	indicate	real	biological	differences	between	the	two	cell	stocks.	
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Figure	 3.3.2.	 Example	 of	 assessment	 of	missing	 gene	 regions	 in	 the	 new	

PacBio	Entamoeba	histolytica	HM-1:IMSS	 genome.	Genes	that	were	present	

in	the	current	E.	histolytica	HM-1:IMSS	reference	genome	but	were	missing	from	

the	new	PacBio	 reference	 genome	were	 identified.	 10/59	missing	 genes	were	

present	in	a	region	from	a	single	scaffold	in	the	reference	assembly	(DS571229).	

A.	 Structure	 of	 DS571229.	The	 scaffold	 is	displayed	 schematically	with	 grey	

regions	representing	strings	of	 ‘Ns’	where	contigs	had	been	 joined	together	 to	

create	the	scaffold.	Genes	present	and	absent	in	the	PacBio	assembly	are	shown	

in	 green	 and	 red,	B.	 Alignment	 of	 DS571229	 to	 the	 PacBio	 assembly.	The	

region	of	genes	in	DS571229	that	are	absent	in	the	PacBio	assembly	do	not	align	

to	 any	 contigs	 in	 the	 PacBio	 assembly.	 The	 remaining	 regions	 align	 to	 two	

separate	 contigs	 in	 the	PacBio	 assembly.	C.	 Alignment	 of	 short-read	 paired	

end	Illumina	data	 to	DS571229.	High-depth	short-read	data,	generated	from	

the	 same	 strain	 of	 E.	 histolytica,	 was	 mapped	 to	 the	 published	 assembly.	

Mapping	was	observed	across	the	missing	gene	regions.		 	
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3.3.4.	 A	 set	 of	 genes	 was	 identified	 in	 the	 PacBio	 assembly	 that	 were	

absent	from	the	published	assembly	

	

Companion	 identified	 1,889	 de	 novo	 predicted	 genes	 in	 the	 PacBio	 genome	

assembly.	The	GFF3	file	produced	by	Companion	was	parsed	to	identify	which	

novel	genes	had	an	orthologue	available	in	AmoebaDB	(v35).	Putative	functions	

were	 assigned	 to	 genes	 during	 annotation	 with	 Companion.	 Genes	 generally	

could	 be	 separated	 into	 2	 groups,	 those	 with	 an	 orthologue	 in	 the	 published	

reference	 assembly	 and	 those	 without.	 Those	 gene	 sets	 could	 be	 split	 again	

based	on	whether	they	had	a	putative	function	assigned	to	them	or	not	during	

the	annotation	step	(Table	3.3.4).	

	

Table	3.3.4.	Classification	of	novel	gene	predicted	in	the	E.	histolytica	HM-

1:IMSS	 PacBio	 genome.	Novel	 genes	 predicted	 by	 Companion	were	 grouped	

into	four	categories	as	displayed	in	the	matrix.	AmoebaDB	version:	v35.	

	 Number	of	genes	with	

putative	function	

assigned	by	Companion	

Number	of	genes	with	

no	functional	

information	assigned	

by	Companion	

Novel	genes	with	

AmoebaDB	orthologue	
937	 399	

Novel	genes	without	

AmoebaDB	orthologue	
147	 406	

	

1,336/1,889	(70.7%)	of	novel	genes	were	orthologous	to	at	least	one	gene	in	the	

published	 assembly.	 937	 novel	 genes	 with	 an	 orthologue	 in	 the	 published	

assembly	 were	 assigned	 a	 putative	 function	 during	 the	 annotation	 process.	

These	 genes	 were	 grouped	 by	 function	 and	 functions	 represented	 by	 five	 or	

more	 genes	 are	 shown	 in	 Table	 3.3.5.	 399	 novel	 genes	 with	 an	 orthologue	

present	in	the	published	assembly	were	not	assigned	any	functional	information	

during	 the	 annotation	 step	 and	 these	 genes	 remain	 hypothetical.	 Of	 these,	
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358/399	were	orthologous	to	a	single	copy		gene	in	the	published	assembly	and	

41/399	were	orthologous	to	two	of	more	genes	in	the	published	assembly.		

	

Many	 virulence	 gene	 families	 (BspA,	 DEAD/DEAH	 box	 helicases,	 heat	 shock	

proteins)	 and	 groups	 of	 genes	 with	 other	 functions	 (Protein	 kinase,	 Protein	

kinase	domain	 containing	protein,	Rab	 family	GTPase)	are	 represented	by	 the	

gene	 functions	 of	 the	 novel	 genes.	 168	 novel	 genes	 were	 annotated	 as	 being	

orthologous	 to	 Trichohyalin,	 which	 is	 annotated	 as	 a	 single-copy	 gene	 in	

published	 assembly.	 These	 genes	 all	 form	 one	 gene	 family	 and	 are	 located	

across	 123	 contigs,	 all	 of	 which	 contain	 functionally	 annotated	 E.	 histolytica	

genes,	with	a	maximum	number	of	four	trichohyalin	genes	located	on	a	singular	

contig;	copies	do	not	appear	 to	be	 tandemly	arrayed.	The	 trichohyalin	protein	

sequences	identified	in	the	E.	histolytica	PacBio	genome	were	used	in	a	tBLASTn	

search	against	the	published	reference	to	check	whether	they	had	been	missed	

during	 the	 published	 annotation	 attempt.	 107/168	 PacBio	 trichohyalin	

sequences	matched	a	 region	of	 the	published	assembly	 (%	 identity	>	95%,	%	

length	>	95%).	Analysis	of	these	regions	in	the	published	assembly	annotation	

GFF	 file	revealed	no	annotation	of	 these	regions.	61	PacBio	trichohyalin	genes	

did	not	produce	a	hit	against	the	published	assembly.		
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Table	 3.3.5.	 Functional	 analysis	 of	 novel	 genes	 with	 an	 available	

AmoebaDB	 orthologue	 in	 the	 new	 Entamoeba	 histolytica	 reference	

genome.	 Novel	 genes	 were	 extracted	 from	 the	 Companion	 annotation	 novel	

genes	with	an	available	AmoebaDB	orthologue	were	extracted	and	grouped	by	

predicted	protein	function.		

	

	 Gene	Function	 Genes	in	

published	

assembly	

(values	from	

AmoebaDB	v.35)	

Number	of	novel	

genes	annotated	

with	function	

Trichohyalin	 1	 168	

Leucine	rich	repeat	protein,	BspA	family	 109	 17	

Domain	 of	 unknown	 function	 containing	

protein	

4	 16	

Protein	kinase	domain	containing	protein	 95	 12	

WD	domain	containing	protein	 50	 11	

DEAD/DEAH	box	helicase	 24	 8	

Protein	kinase	 233	 8	

RNA	 recognition	motif	 domain	 containing	

protein	

36	 7	

Heat	shock	protein	101	 6	 6	

Rab	family	GTPase	 82	 5	

Nucleosome	assembly	protein	 10	 5	

Ubiquitin	 carboxyl-terminal	 hydrolase	

domain	containing	protein	

23	 5	

	

553/1,889	 novel	 genes	 were	 not	 orthologous	 to	 any	 genes	 in	 the	 published	

assembly.	To	ensure	none	of	 these	genes	had	been	previously	 identified,	 gene	

sequences	 for	 E.	 histolytica	 HM-1:IMSS	 were	 extracted	 from	 NCBI.	 The	 553	

novel	non-orthologous	genes	were	used	in	a	Blast	search	against	the	NCBI	gene	

set.	 No	 hits	were	 identified	 for	 the	 novel	predicted	 genes	 and	 therefore,	 they	

were	assumed	to	be	truly	novel.	The	function	of	 these	genes	was	predicted	by	



	 113	

Companion.	 147	 novel,	 non-orthologous	 genes	 had	 functional	 annotation	

predicted	 and	 these	 genes	 were	 grouped	 by	 function.	 Table	 3.3.6	 displays	

functions	represented	by	five	or	more	genes.	406	novel,	non-orthologous	genes	

had	 no	 functional	 information	 assigned	 to	 them	 during	 annotation	 and	 were	

defined	as	hypothetical.		

	

Table	 3.3.6.	 Functional	 analysis	 of	 novel	 genes	 with	 no	 AmoebaDB	

orthologue	 in	 the	 new	 Entamoeba	 histolytica	 reference	 genome.	 Novel	

genes	were	 extracted	 from	 the	 Companion	 annotated.	De	novo	genes	with	 no	

available	 AmoebaDB	 orthologue	 were	 extracted	 and	 grouped	 by	 predicted	

protein	function	(as	produced	by	Companion).		

	

Gene	Function	
Number	of	novel	genes	

annotated	with	function	

Reverse	transcriptase	(RNA-dependent	DNA	

polymerase)	
57	

AIG1	family/50S	ribosome-binding	GTPase	 12	

Leucine	 Rich	 Repeat	 (LRR)	 containing	

protein	
10	

Domain	 of	 unknown	 function	 containing	

protein	
9	

RNA	recognition	motif	containing	protein	 5	

StAR-related	 lipid-transfer	 (START)	 domain	

containing	protein	
5	

	
A	 large	 family	of	retro-transposon	reverse	 transcriptases	was	 identified	 in	 the	

new	 genome	 that	 were	 probably	 masked	 in	 the	 published	 assembly	 (as	

transposable	element	 sequences	were	masked	before	gene	annotation).	There	

are	a	number	of	novel	genes	predicted	as	being	part	of	the	AIG1	family	despite	

these	 members	 not	 having	 an	 orthologue	 to	 an	 existing	 AIG1	 gene	 in	 the	

published	 assembly.	 In	 addition,	 two	 domain-containing	 sets	 of	 genes	 were	

identified	 in	 the	 novel	 gene	 set.	 Five	 novel	 genes	 formed	 were	 annotated	 as	

StAR-related	lipid-transfer	(START)	domain	containing	proteins	and	nine	genes	
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were	 annotated	 as	 possessing	 a	 ‘domain	 of	 unknown	 function’.	 Five	 proteins	

were	also	annotated	as	RNA	recognition	motif	domain	containing	proteins.	Five	

START-domain	 containing	 proteins	 and	 36	 RNA-recognition	 motif-containing	

proteins	already	exist	in	the	AmoebaDB	reference	set	of	genes.	

	

3.3.5.	 Virulence	 gene	 families	 are	 largely	 not	 organised	 within	 close	

proximity	to	one	another	

	
A	 number	 of	 Entamoeba	 histolytica	HM-1:IMSS	 virulence	 gene	 families	 have	

been	previously	identified	during	the	original	sequencing	project	[98,131].	The	

most	 highly	 studied	 of	 these	 virulence	 families	 include	 the	 surface	 antigens	

(Ariel-1,	 BspA	 and	 STIRPs),	 GTPases	 (AIGs)	 and	 other	 proteins	 that	 interact	

with	 the	 host	 cell	 (Cysteine	 proteases	 degrade	 host	 cell	 extracellular	 matrix,	

Gal/GalNAc	 lectins	 are	 involved	 in	 host	 cell	 adhesion	 and	 Amoebapores	 are	

associated	with	lysis	of	host	cells).	Almost	all	virulence	gene	families	that	have	

previously	been	identified	in	E.	histolytica	HM-1:IMSS	appear	more	expanded	in	

the	new	PacBio	genome	assembly	(Table	3.3.7).	 	The	cysteine	proteases	(CPs),	

AIG	and	BspA	gene	 families	are	 the	most	expanded	out	of	 the	seven	virulence	

gene	families	being	analysed.	The	number	of	CP	genes	has	doubled	in	size	from	

43	members	to	87	members.	The	AIG1	gene	 family	also	more	than	doubled	 in	

size	in	the	new	assembly	and	the	BspA	family	increased	by	20%.	 	
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All	of	the	virulence	gene	families	under	analysis	showed	very	little	clustering	of	

gene	 families	 within	 one	 contig	 or	 a	 particular	 region	 of	 the	 genome.	 The	

smallest	gene	 families,	STIRPs	and	Amoebapores,	showed	no	cases	of	multiple	

gene	family	members	located	on	the	same	contig	in	the	new	assembly.			

	

The	remaining	gene	families	contained	small	numbers	of	members	in	the	same	

contig.	 For	 each	 of	 these	 families,	 the	 contig	 containing	 the	 most	 family	

members	was	analysed	to	identify	if	members	shared	sequence	similarity	and	to	

assess	the	distribution	of	the	genes	along	the	contig,	to	determine	whether	they	

resulted	from	tandem	duplication.		In	all	five	families,	gene	length	varies	across	

members	of	the	same	family	on	a	single	contig	(Figure	3.3.3;	Contigs	containing	

the	largest	numbers	of	BspA	genes	and	Gal/GalNAc	genes	not	visualised	due	to	

size	of	the	contig).	The	sequence	is	also	not	highly	conserved	outside	of	domain	

regions.	 The	 gene	 members	 are	 not	 organised	 within	 close	 proximity	 to	 one	

another	or	 form	clusters.	 Instead,	 it	 appears	 that	 length	of	 a	 contig	 correlates	

with	an	increased	number	of	genes	from	a	particular	family;	this	suggests	that	

more	members	of	a	gene	family	occur	on	particular	contigs	due	to	their	contig	

length,	not	due	to	any	pattern	of	distribution.		

	

Protein	 sequences	 for	 each	 gene	 family	were	 also	 aligned	 and	 a	 phylogenetic	

tree	was	created	for	each	gene	family.	In	all	cases,	gene	family	members	on	the	

same	 contig	 did	 not	 cluster	 together	 or	 form	 contig-specific	 clades	 (Data	 not	

shown;	Trees	presented	in	3.3.5/3.3.6).		
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EHIS_000656800/EHIS_000656800.1

EHIS_000657500/EHIS_000657500.1

EHIS_000657600/EHIS_000657600.1

EHIS_000658300/EHIS_000658300.1

EHIS_000658400/EHIS_000658400.1

EHIS_000658500/EHIS_000658500.1

EHIS_000658600/EHIS_000658600.1

ehis34.gff3|polypeptide
EHIS_000654400.1:pep EHIS_000655900.1:pep EHIS_000657900.1:pep EHIS_000659100.1:pep EHIS_000660200.1:pep EHIS_000660900.1:pep

EHIS_000654500.1:pep EHIS_000656000.1:pep EHIS_000658000.1:pep EHIS_000659300.1:pep EHIS_000660300.1:pep EHIS_000661100.1:pep

EHIS_000654600.1:pep EHIS_000656200.1:pep EHIS_000658100.1:pep EHIS_000659400.1:pep EHIS_000660400.1:pep EHIS_000661300.1:pep

EHIS_000654700.1:pep EHIS_000656300.1:pep EHIS_000658300.1:pep EHIS_000659500.1:pep EHIS_000660500.1:pep

EHIS_000654800.1:pep EHIS_000656400.1:pep EHIS_000658400.1:pep EHIS_000659600.1:pep EHIS_000660600.1:pep

EHIS_000654900.1:pep EHIS_000656500.1:pep EHIS_000658500.1:pep EHIS_000659700.1:pep EHIS_000660700.1:pep

EHIS_000655000.1:pep EHIS_000656600.1:pep EHIS_000658600.1:pep EHIS_000659800.1:pep EHIS_000660800.1:pep

EHIS_000655100.1:pep EHIS_000656700.1:pep EHIS_000658700.1:pep EHIS_000659900.1:pep EHIS_000661200.1:pep

EHIS_000655200.1:pep EHIS_000656800.1:pep EHIS_000658800.1:pep EHIS_000660000.1:pep

EHIS_000655300.1:pep EHIS_000656900.1:pep EHIS_000659200.1:pep

EHIS_000655400.1:pep EHIS_000657000.1:pep EHIS_000660100.1:pep

EHIS_000655600.1:pep EHIS_000657100.1:pep

EHIS_000655700.1:pep EHIS_000657200.1:pep

EHIS_000655800.1:pep EHIS_000657500.1:pep

EHIS_000656100.1:pep EHIS_000658200.1:pep

EHIS_000657300.1:pep

EHIS_000657400.1:pep

EHIS_000657600.1:pep

EHIS_000657700.1:pep

EHIS_000657800.1:pep

ehis34.gff3|pseudogene
EHIS_000654600:pseudogene EHIS_000660100:pseudogene

EHIS_000655800:pseudogene

ehis34.gff3|pseudogenic_exon
EHIS_000654600.1/EHIS_000654600.1:pseudogenic_exon:1 EHIS_000660100.1/EHIS_000660100.1:pseudogenic_exon:1

EHIS_000655800.1/EHIS_000655800.1:pseudogenic_exon:1

ehis34.gff3|pseudogenic_transcript
EHIS_000654600:pseudogene/EHIS_000654600.1 EHIS_000660100:pseudogene/EHIS_000660100.1

EHIS_000655800:pseudogene/EHIS_000655800.1

ehis34.gff3|snRNA
EHIS_000655500/EHIS_000655500:snRNA

ehis34.gff3|tRNA
EHIS_000659000/EHIS_000659000:tRNA EHIS_000661000/EHIS_000661000:tRNA

100kbp

5' 3'

ehis70.gff3|contig
Ehis_70:100919_CTG000531

ehis70.gff3|gene
EHIS_001337800 EHIS_001338400 EHIS_001338900 EHIS_001339400 EHIS_001339700 EHIS_001340200 EHIS_001340700

EHIS_001337900 EHIS_001338500 EHIS_001339000 EHIS_001339500 EHIS_001339800 EHIS_001340400

EHIS_001338000 EHIS_001338600 EHIS_001339100 EHIS_001339600 EHIS_001339900 EHIS_001340500

EHIS_001338100 EHIS_001338700 EHIS_001339200 EHIS_001340000 EHIS_001340600

EHIS_001338200 EHIS_001338800 EHIS_001339300 EHIS_001340100

EHIS_001338300 EHIS_001340300

ehis70.gff3|mRNA
EHIS_001337800/EHIS_001337800.1 EHIS_001338900/EHIS_001338900.1 EHIS_001339700/EHIS_001339700.1

EHIS_001337900/EHIS_001337900.1 EHIS_001339000/EHIS_001339000.1 EHIS_001339800/EHIS_001339800.1

EHIS_001338000/EHIS_001338000.1 EHIS_001339200/EHIS_001339200.1 EHIS_001339900/EHIS_001339900.1

EHIS_001338100/EHIS_001338100.1 EHIS_001339300/EHIS_001339300.1 EHIS_001340100/EHIS_001340100.1

EHIS_001338300/EHIS_001338300.1 EHIS_001339400/EHIS_001339400.1 EHIS_001340200/EHIS_001340200.1

EHIS_001338400/EHIS_001338400.1 EHIS_001339500/EHIS_001339500.1 EHIS_001340300/EHIS_001340300.1

EHIS_001338500/EHIS_001338500.1 EHIS_001339600/EHIS_001339600.1 EHIS_001340400/EHIS_001340400.1

EHIS_001338600/EHIS_001338600.1 EHIS_001340500/EHIS_001340500.1

EHIS_001338800/EHIS_001338800.1 EHIS_001340600/EHIS_001340600.1

ehis70.gff3|polypeptide
EHIS_001337800.1:pep EHIS_001338600.1:pep EHIS_001339200.1:pep EHIS_001339700.1:pep EHIS_001340300.1:pep EHIS_001340700.1:pep

EHIS_001337900.1:pep EHIS_001338700.1:pep EHIS_001339300.1:pep EHIS_001339800.1:pep EHIS_001340500.1:pep

EHIS_001338000.1:pep EHIS_001338800.1:pep EHIS_001339400.1:pep EHIS_001339900.1:pep

EHIS_001338100.1:pep EHIS_001338900.1:pep EHIS_001339500.1:pep EHIS_001340000.1:pep

EHIS_001338200.1:pep EHIS_001339000.1:pep EHIS_001339600.1:pep EHIS_001340100.1:pep

EHIS_001338300.1:pep EHIS_001340200.1:pep

EHIS_001338400.1:pep EHIS_001340400.1:pep

EHIS_001338500.1:pep EHIS_001340600.1:pep

A)	AIG1	Family:	5	AIG1	genes	on	Con-g	70	(100,919	bp)		

AIG1	gene	

100kbp

5' 3'

ehis70.gff3|contig
Ehis_70:100919_CTG000531

ehis70.gff3|gene
EHIS_001337800 EHIS_001338400 EHIS_001338900 EHIS_001339400 EHIS_001339700 EHIS_001340200 EHIS_001340700

EHIS_001337900 EHIS_001338500 EHIS_001339000 EHIS_001339500 EHIS_001339800 EHIS_001340400

EHIS_001338000 EHIS_001338600 EHIS_001339100 EHIS_001339600 EHIS_001339900 EHIS_001340500

EHIS_001338100 EHIS_001338700 EHIS_001339200 EHIS_001340000 EHIS_001340600

EHIS_001338200 EHIS_001338800 EHIS_001339300 EHIS_001340100

EHIS_001338300 EHIS_001340300

ehis70.gff3|mRNA
EHIS_001337800/EHIS_001337800.1 EHIS_001338900/EHIS_001338900.1 EHIS_001339700/EHIS_001339700.1

EHIS_001337900/EHIS_001337900.1 EHIS_001339000/EHIS_001339000.1 EHIS_001339800/EHIS_001339800.1

EHIS_001338000/EHIS_001338000.1 EHIS_001339200/EHIS_001339200.1 EHIS_001339900/EHIS_001339900.1

EHIS_001338100/EHIS_001338100.1 EHIS_001339300/EHIS_001339300.1 EHIS_001340100/EHIS_001340100.1

EHIS_001338300/EHIS_001338300.1 EHIS_001339400/EHIS_001339400.1 EHIS_001340200/EHIS_001340200.1

EHIS_001338400/EHIS_001338400.1 EHIS_001339500/EHIS_001339500.1 EHIS_001340300/EHIS_001340300.1

EHIS_001338500/EHIS_001338500.1 EHIS_001339600/EHIS_001339600.1 EHIS_001340400/EHIS_001340400.1

EHIS_001338600/EHIS_001338600.1 EHIS_001340500/EHIS_001340500.1

EHIS_001338800/EHIS_001338800.1 EHIS_001340600/EHIS_001340600.1

ehis70.gff3|polypeptide
EHIS_001337800.1:pep EHIS_001338600.1:pep EHIS_001339200.1:pep EHIS_001339700.1:pep EHIS_001340300.1:pep EHIS_001340700.1:pep

EHIS_001337900.1:pep EHIS_001338700.1:pep EHIS_001339300.1:pep EHIS_001339800.1:pep EHIS_001340500.1:pep

EHIS_001338000.1:pep EHIS_001338800.1:pep EHIS_001339400.1:pep EHIS_001339900.1:pep

EHIS_001338100.1:pep EHIS_001338900.1:pep EHIS_001339500.1:pep EHIS_001340000.1:pep

EHIS_001338200.1:pep EHIS_001339000.1:pep EHIS_001339600.1:pep EHIS_001340100.1:pep

EHIS_001338300.1:pep EHIS_001340200.1:pep

EHIS_001338400.1:pep EHIS_001340400.1:pep

EHIS_001338500.1:pep EHIS_001340600.1:pep

100kbp

5' 3'

ehis70.gff3|contig
Ehis_70:100919_CTG000531

ehis70.gff3|gene
EHIS_001337800 EHIS_001338400 EHIS_001338900 EHIS_001339400 EHIS_001339700 EHIS_001340200 EHIS_001340700

EHIS_001337900 EHIS_001338500 EHIS_001339000 EHIS_001339500 EHIS_001339800 EHIS_001340400

EHIS_001338000 EHIS_001338600 EHIS_001339100 EHIS_001339600 EHIS_001339900 EHIS_001340500

EHIS_001338100 EHIS_001338700 EHIS_001339200 EHIS_001340000 EHIS_001340600

EHIS_001338200 EHIS_001338800 EHIS_001339300 EHIS_001340100

EHIS_001338300 EHIS_001340300

ehis70.gff3|mRNA
EHIS_001337800/EHIS_001337800.1 EHIS_001338900/EHIS_001338900.1 EHIS_001339700/EHIS_001339700.1

EHIS_001337900/EHIS_001337900.1 EHIS_001339000/EHIS_001339000.1 EHIS_001339800/EHIS_001339800.1

EHIS_001338000/EHIS_001338000.1 EHIS_001339200/EHIS_001339200.1 EHIS_001339900/EHIS_001339900.1

EHIS_001338100/EHIS_001338100.1 EHIS_001339300/EHIS_001339300.1 EHIS_001340100/EHIS_001340100.1

EHIS_001338300/EHIS_001338300.1 EHIS_001339400/EHIS_001339400.1 EHIS_001340200/EHIS_001340200.1

EHIS_001338400/EHIS_001338400.1 EHIS_001339500/EHIS_001339500.1 EHIS_001340300/EHIS_001340300.1

EHIS_001338500/EHIS_001338500.1 EHIS_001339600/EHIS_001339600.1 EHIS_001340400/EHIS_001340400.1

EHIS_001338600/EHIS_001338600.1 EHIS_001340500/EHIS_001340500.1

EHIS_001338800/EHIS_001338800.1 EHIS_001340600/EHIS_001340600.1

ehis70.gff3|polypeptide
EHIS_001337800.1:pep EHIS_001338600.1:pep EHIS_001339200.1:pep EHIS_001339700.1:pep EHIS_001340300.1:pep EHIS_001340700.1:pep

EHIS_001337900.1:pep EHIS_001338700.1:pep EHIS_001339300.1:pep EHIS_001339800.1:pep EHIS_001340500.1:pep

EHIS_001338000.1:pep EHIS_001338800.1:pep EHIS_001339400.1:pep EHIS_001339900.1:pep

EHIS_001338100.1:pep EHIS_001338900.1:pep EHIS_001339500.1:pep EHIS_001340000.1:pep

EHIS_001338200.1:pep EHIS_001339000.1:pep EHIS_001339600.1:pep EHIS_001340100.1:pep

EHIS_001338300.1:pep EHIS_001340200.1:pep

EHIS_001338400.1:pep EHIS_001340400.1:pep

EHIS_001338500.1:pep EHIS_001340600.1:pep

B)	Cysteine	Protease	(CP)	Family:	3	CP-1	genes	on	Con-g	34	(181,184	bp)		

CP	gene	

100kbp

5' 3'

ehis34.gff3|contig
Ehis_34:181184_CTG000277

ehis34.gff3|gene
EHIS_000654400 EHIS_000655900 EHIS_000657200 EHIS_000658600 EHIS_000659400 EHIS_000660200 EHIS_000660700

EHIS_000654500 EHIS_000656000 EHIS_000657300 EHIS_000658700 EHIS_000659500 EHIS_000660300 EHIS_000660800

EHIS_000654700 EHIS_000656100 EHIS_000657400 EHIS_000658800 EHIS_000659600 EHIS_000660400 EHIS_000661000

EHIS_000654800 EHIS_000656200 EHIS_000657500 EHIS_000658900 EHIS_000659800EHIS_000660500 EHIS_000661100

EHIS_000654900 EHIS_000656300 EHIS_000657700 EHIS_000659000 EHIS_000659900 EHIS_000660600 EHIS_000661200

EHIS_000655000 EHIS_000656400 EHIS_000657900 EHIS_000659100 EHIS_000660000 EHIS_000660900

EHIS_000655100 EHIS_000656500 EHIS_000658000 EHIS_000659200 EHIS_000661300

EHIS_000655200 EHIS_000656600 EHIS_000658100 EHIS_000659300

EHIS_000655300 EHIS_000656700 EHIS_000658200 EHIS_000659700

EHIS_000655400 EHIS_000656800 EHIS_000658300

EHIS_000655500 EHIS_000656900 EHIS_000658400

EHIS_000655600 EHIS_000657000 EHIS_000658500

EHIS_000655700 EHIS_000657100

EHIS_000657600

EHIS_000657800

ehis34.gff3|mRNA
EHIS_000654400/EHIS_000654400.1 EHIS_000656900/EHIS_000656900.1 EHIS_000659300/EHIS_000659300.1 EHIS_000660700/EHIS_000660700.1

EHIS_000654500/EHIS_000654500.1 EHIS_000657000/EHIS_000657000.1 EHIS_000659400/EHIS_000659400.1 EHIS_000660800/EHIS_000660800.1

EHIS_000654700/EHIS_000654700.1 EHIS_000657100/EHIS_000657100.1 EHIS_000659500/EHIS_000659500.1 EHIS_000660900/EHIS_000660900.1

EHIS_000654800/EHIS_000654800.1 EHIS_000657200/EHIS_000657200.1 EHIS_000659600/EHIS_000659600.1 EHIS_000661100/EHIS_000661100.1

EHIS_000654900/EHIS_000654900.1 EHIS_000657300/EHIS_000657300.1 EHIS_000659700/EHIS_000659700.1 EHIS_000661200/EHIS_000661200.1

EHIS_000655000/EHIS_000655000.1 EHIS_000657400/EHIS_000657400.1 EHIS_000659800/EHIS_000659800.1 EHIS_000661300/EHIS_000661300.1

EHIS_000655100/EHIS_000655100.1 EHIS_000657700/EHIS_000657700.1 EHIS_000659900/EHIS_000659900.1

EHIS_000655200/EHIS_000655200.1 EHIS_000657800/EHIS_000657800.1 EHIS_000660000/EHIS_000660000.1

EHIS_000655300/EHIS_000655300.1 EHIS_000657900/EHIS_000657900.1 EHIS_000660200/EHIS_000660200.1

EHIS_000655400/EHIS_000655400.1 EHIS_000658000/EHIS_000658000.1 EHIS_000660300/EHIS_000660300.1

EHIS_000655600/EHIS_000655600.1 EHIS_000658100/EHIS_000658100.1 EHIS_000660400/EHIS_000660400.1

EHIS_000655700/EHIS_000655700.1 EHIS_000658200/EHIS_000658200.1 EHIS_000660500/EHIS_000660500.1

EHIS_000655900/EHIS_000655900.1 EHIS_000658700/EHIS_000658700.1 EHIS_000660600/EHIS_000660600.1

EHIS_000656000/EHIS_000656000.1 EHIS_000658800/EHIS_000658800.1

EHIS_000656100/EHIS_000656100.1 EHIS_000659100/EHIS_000659100.1

EHIS_000656200/EHIS_000656200.1 EHIS_000659200/EHIS_000659200.1

EHIS_000656300/EHIS_000656300.1

EHIS_000656400/EHIS_000656400.1

EHIS_000656500/EHIS_000656500.1

EHIS_000656600/EHIS_000656600.1

EHIS_000656700/EHIS_000656700.1

EHIS_000656800/EHIS_000656800.1

EHIS_000657500/EHIS_000657500.1

EHIS_000657600/EHIS_000657600.1

EHIS_000658300/EHIS_000658300.1

EHIS_000658400/EHIS_000658400.1

EHIS_000658500/EHIS_000658500.1

EHIS_000658600/EHIS_000658600.1

ehis34.gff3|polypeptide
EHIS_000654400.1:pep EHIS_000655900.1:pep EHIS_000657900.1:pep EHIS_000659100.1:pep EHIS_000660200.1:pep EHIS_000660900.1:pep

EHIS_000654500.1:pep EHIS_000656000.1:pep EHIS_000658000.1:pep EHIS_000659300.1:pep EHIS_000660300.1:pep EHIS_000661100.1:pep

EHIS_000654600.1:pep EHIS_000656200.1:pep EHIS_000658100.1:pep EHIS_000659400.1:pep EHIS_000660400.1:pep EHIS_000661300.1:pep

EHIS_000654700.1:pep EHIS_000656300.1:pep EHIS_000658300.1:pep EHIS_000659500.1:pep EHIS_000660500.1:pep

EHIS_000654800.1:pep EHIS_000656400.1:pep EHIS_000658400.1:pep EHIS_000659600.1:pep EHIS_000660600.1:pep

EHIS_000654900.1:pep EHIS_000656500.1:pep EHIS_000658500.1:pep EHIS_000659700.1:pep EHIS_000660700.1:pep

EHIS_000655000.1:pep EHIS_000656600.1:pep EHIS_000658600.1:pep EHIS_000659800.1:pep EHIS_000660800.1:pep

EHIS_000655100.1:pep EHIS_000656700.1:pep EHIS_000658700.1:pep EHIS_000659900.1:pep EHIS_000661200.1:pep

EHIS_000655200.1:pep EHIS_000656800.1:pep EHIS_000658800.1:pep EHIS_000660000.1:pep

EHIS_000655300.1:pep EHIS_000656900.1:pep EHIS_000659200.1:pep

EHIS_000655400.1:pep EHIS_000657000.1:pep EHIS_000660100.1:pep

EHIS_000655600.1:pep EHIS_000657100.1:pep

EHIS_000655700.1:pep EHIS_000657200.1:pep

EHIS_000655800.1:pep EHIS_000657500.1:pep

EHIS_000656100.1:pep EHIS_000658200.1:pep

EHIS_000657300.1:pep

EHIS_000657400.1:pep

EHIS_000657600.1:pep

EHIS_000657700.1:pep

EHIS_000657800.1:pep

ehis34.gff3|pseudogene
EHIS_000654600:pseudogene EHIS_000660100:pseudogene

EHIS_000655800:pseudogene

ehis34.gff3|pseudogenic_exon
EHIS_000654600.1/EHIS_000654600.1:pseudogenic_exon:1 EHIS_000660100.1/EHIS_000660100.1:pseudogenic_exon:1

EHIS_000655800.1/EHIS_000655800.1:pseudogenic_exon:1

ehis34.gff3|pseudogenic_transcript
EHIS_000654600:pseudogene/EHIS_000654600.1 EHIS_000660100:pseudogene/EHIS_000660100.1

EHIS_000655800:pseudogene/EHIS_000655800.1

ehis34.gff3|snRNA
EHIS_000655500/EHIS_000655500:snRNA

ehis34.gff3|tRNA
EHIS_000659000/EHIS_000659000:tRNA EHIS_000661000/EHIS_000661000:tRNA
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Figure	 3.3.3.	 Gene	 organisation	 of	 the	 multi-gene	 virulence	 families	 in	

Entamoeba	histolytica	HM-1:IMSS.	Gene	families	are	distributed	across	many	

contigs	 in	 the	 E.	 histolytica	HM-1:IMSS	 genome.	 The	 contig	 with	 the	 largest	

number	 of	 members	 for	 each	 virulence	 gene	 family	 (AIG1,	 Ariel-1,	 Cysteine	

Protease)	are	displayed	in	each	panel.		 		

100kbp 200kbp 300kbp

5' 3'

ehis6.gff3|contig
Ehis_6:395765_CTG000530

ehis6.gff3|gene
EHIS_001324100EHIS_001325200 EHIS_001326200 EHIS_001328200 EHIS_001329900 EHIS_001331400 EHIS_001332400

EHIS_001324200 EHIS_001325500 EHIS_001326300 EHIS_001328300 EHIS_001330200 EHIS_001331500 EHIS_001332500

EHIS_001324300 EHIS_001325700 EHIS_001326700 EHIS_001328500 EHIS_001330400 EHIS_001331600 EHIS_001332600

EHIS_001324400 EHIS_001326000 EHIS_001327300 EHIS_001329200 EHIS_001331000 EHIS_001331700 EHIS_001332700

EHIS_001324500 EHIS_001326400 EHIS_001328400 EHIS_001330300 EHIS_001331800 EHIS_001332900

EHIS_001324600 EHIS_001326800 EHIS_001328600 EHIS_001330500 EHIS_001331900

EHIS_001324700 EHIS_001326900 EHIS_001328700 EHIS_001330600 EHIS_001332200

EHIS_001324800 EHIS_001327000 EHIS_001328800 EHIS_001330700 EHIS_001332300

EHIS_001324900 EHIS_001327100 EHIS_001329000 EHIS_001330800

EHIS_001325100 EHIS_001327200 EHIS_001329100 EHIS_001330900

EHIS_001325300 EHIS_001327400 EHIS_001329300 EHIS_001331100

EHIS_001325400 EHIS_001327500 EHIS_001329400 EHIS_001331200

EHIS_001325600 EHIS_001327600 EHIS_001329500 EHIS_001331300

EHIS_001327700 EHIS_001329700

EHIS_001327800 EHIS_001329800

EHIS_001327900 EHIS_001330000

EHIS_001328000 EHIS_001330100

EHIS_001328100

EHIS_001328900

ehis6.gff3|mRNA
EHIS_001324100/EHIS_001324100.1 EHIS_001326200/EHIS_001326200.1 EHIS_001330100/EHIS_001330100.1 EHIS_001332400/EHIS_001332400.1

EHIS_001324200/EHIS_001324200.1 EHIS_001326700/EHIS_001326700.1 EHIS_001330600/EHIS_001330600.1 EHIS_001332500/EHIS_001332500.1

EHIS_001324300/EHIS_001324300.1 EHIS_001326800/EHIS_001326800.1 EHIS_001330800/EHIS_001330800.1 EHIS_001332700/EHIS_001332700.1

EHIS_001324400/EHIS_001324400.1 EHIS_001326900/EHIS_001326900.1 EHIS_001330900/EHIS_001330900.1 EHIS_001332900/EHIS_001332900.1

EHIS_001324500/EHIS_001324500.1 EHIS_001327000/EHIS_001327000.1 EHIS_001331000/EHIS_001331000.1

EHIS_001324600/EHIS_001324600.1 EHIS_001327100/EHIS_001327100.1 EHIS_001331100/EHIS_001331100.1

EHIS_001324700/EHIS_001324700.1 EHIS_001327300/EHIS_001327300.1 EHIS_001331200/EHIS_001331200.1

EHIS_001324800/EHIS_001324800.1 EHIS_001327700/EHIS_001327700.1 EHIS_001331400/EHIS_001331400.1

EHIS_001324900/EHIS_001324900.1 EHIS_001327900/EHIS_001327900.1 EHIS_001331500/EHIS_001331500.1

EHIS_001325100/EHIS_001325100.1 EHIS_001328000/EHIS_001328000.1 EHIS_001331600/EHIS_001331600.1

EHIS_001325200/EHIS_001325200.1 EHIS_001328100/EHIS_001328100.1 EHIS_001331700/EHIS_001331700.1

EHIS_001325300/EHIS_001325300.1 EHIS_001328200/EHIS_001328200.1 EHIS_001331800/EHIS_001331800.1

EHIS_001325400/EHIS_001325400.1 EHIS_001328300/EHIS_001328300.1 EHIS_001331900/EHIS_001331900.1

EHIS_001325500/EHIS_001325500.1 EHIS_001328400/EHIS_001328400.1 EHIS_001332200/EHIS_001332200.1

EHIS_001325600/EHIS_001325600.1 EHIS_001328500/EHIS_001328500.1 EHIS_001332300/EHIS_001332300.1

EHIS_001325700/EHIS_001325700.1 EHIS_001328600/EHIS_001328600.1

EHIS_001326000/EHIS_001326000.1 EHIS_001329500/EHIS_001329500.1

EHIS_001326300/EHIS_001326300.1 EHIS_001330200/EHIS_001330200.1

EHIS_001326400/EHIS_001326400.1 EHIS_001330300/EHIS_001330300.1

EHIS_001327200/EHIS_001327200.1 EHIS_001331300/EHIS_001331300.1

EHIS_001327400/EHIS_001327400.1

EHIS_001327500/EHIS_001327500.1

EHIS_001327600/EHIS_001327600.1

EHIS_001327800/EHIS_001327800.1

EHIS_001328700/EHIS_001328700.1

EHIS_001328800/EHIS_001328800.1

EHIS_001328900/EHIS_001328900.1

EHIS_001329000/EHIS_001329000.1

EHIS_001329100/EHIS_001329100.1

EHIS_001329200/EHIS_001329200.1

EHIS_001329300/EHIS_001329300.1

EHIS_001329400/EHIS_001329400.1

EHIS_001329700/EHIS_001329700.1

EHIS_001329800/EHIS_001329800.1

EHIS_001329900/EHIS_001329900.1

EHIS_001330000/EHIS_001330000.1

EHIS_001330400/EHIS_001330400.1

EHIS_001330500/EHIS_001330500.1

EHIS_001330700/EHIS_001330700.1

ehis6.gff3|polypeptide
EHIS_001324100.1:pep EHIS_001325800.1:pep EHIS_001327200.1:pep EHIS_001329900.1:pep EHIS_001331500.1:pep EHIS_001332500.1:pep

EHIS_001324200.1:pep EHIS_001325900.1:pep EHIS_001327700.1:pep EHIS_001330200.1:pep EHIS_001331600.1:pep EHIS_001332700.1:pep

EHIS_001324300.1:pep EHIS_001326000.1:pep EHIS_001328200.1:pep EHIS_001330600.1:pep EHIS_001331800.1:pep EHIS_001332800.1:pep

EHIS_001324400.1:pep EHIS_001326100.1:pep EHIS_001328400.1:pep EHIS_001330900.1:pep EHIS_001332200.1:pep EHIS_001332900.1:pep

EHIS_001324500.1:pep EHIS_001326200.1:pep EHIS_001328600.1:pep EHIS_001331000.1:pep EHIS_001332300.1:pep

EHIS_001324600.1:pep EHIS_001326300.1:pep EHIS_001328700.1:pep EHIS_001331100.1:pep EHIS_001332400.1:pep

EHIS_001324700.1:pep EHIS_001326400.1:pep EHIS_001328800.1:pep EHIS_001331200.1:pep

EHIS_001324800.1:pep EHIS_001326500.1:pep EHIS_001329000.1:pep EHIS_001331300.1:pep

EHIS_001324900.1:pep EHIS_001326600.1:pep EHIS_001329100.1:pep EHIS_001331400.1:pep

EHIS_001325000.1:pep EHIS_001326700.1:pep EHIS_001329200.1:pep EHIS_001331700.1:pep

EHIS_001325100.1:pep EHIS_001326800.1:pep EHIS_001329500.1:pep EHIS_001331900.1:pep

EHIS_001325200.1:pep EHIS_001326900.1:pep EHIS_001329600.1:pep EHIS_001332000.1:pep

EHIS_001325300.1:pep EHIS_001327000.1:pep EHIS_001329700.1:pep EHIS_001332100.1:pep

EHIS_001325400.1:pep EHIS_001327100.1:pep EHIS_001329800.1:pep

EHIS_001325500.1:pep EHIS_001327300.1:pep EHIS_001330000.1:pep

EHIS_001325600.1:pep EHIS_001327400.1:pep EHIS_001330100.1:pep

EHIS_001325700.1:pep EHIS_001327500.1:pep EHIS_001330300.1:pep

EHIS_001327600.1:pep EHIS_001330400.1:pep

EHIS_001327800.1:pep EHIS_001330500.1:pep

EHIS_001327900.1:pep EHIS_001330700.1:pep

EHIS_001328000.1:pep EHIS_001330800.1:pep

EHIS_001328100.1:pep

EHIS_001328300.1:pep

EHIS_001328500.1:pep

EHIS_001328900.1:pep

EHIS_001329300.1:pep

EHIS_001329400.1:pep

ehis6.gff3|pseudogene
EHIS_001325000:pseudogene EHIS_001329600:pseudogene EHIS_001332000:pseudogene

EHIS_001325800:pseudogene EHIS_001332100:pseudogene

EHIS_001325900:pseudogene EHIS_001332800:pseudogene

EHIS_001326100:pseudogene

EHIS_001326500:pseudogene

EHIS_001326600:pseudogene

ehis6.gff3|pseudogenic_exon
EHIS_001325000.1/EHIS_001325000.1:pseudogenic_exon:1 EHIS_001332000.1/EHIS_001332000.1:pseudogenic_exon:1

EHIS_001325800.1/EHIS_001325800.1:pseudogenic_exon:1 EHIS_001332100.1/EHIS_001332100.1:pseudogenic_exon:1

EHIS_001325900.1/EHIS_001325900.1:pseudogenic_exon:1 EHIS_001332800.1/EHIS_001332800.1:pseudogenic_exon:1

EHIS_001326100.1/EHIS_001326100.1:pseudogenic_exon:1

EHIS_001326500.1/EHIS_001326500.1:pseudogenic_exon:1

EHIS_001326600.1/EHIS_001326600.1:pseudogenic_exon:1

EHIS_001329600.1/EHIS_001329600.1:pseudogenic_exon:1

ehis6.gff3|pseudogenic_transcript
EHIS_001325000:pseudogene/EHIS_001325000.1 EHIS_001329600:pseudogene/EHIS_001329600.1 EHIS_001332800:pseudogene/EHIS_001332800.1

EHIS_001325800:pseudogene/EHIS_001325800.1 EHIS_001332000:pseudogene/EHIS_001332000.1

EHIS_001325900:pseudogene/EHIS_001325900.1 EHIS_001332100:pseudogene/EHIS_001332100.1

EHIS_001326100:pseudogene/EHIS_001326100.1

EHIS_001326500:pseudogene/EHIS_001326500.1

EHIS_001326600:pseudogene/EHIS_001326600.1

ehis6.gff3|tRNA
EHIS_001332600/EHIS_001332600:tRNA

C)	Ariel-1	Family:	3	Ariel-1	genes	on	Con/g	6	(395,765	bp)	

Ariel-1	gene	
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3.3.6.	 Sub-telomeric	 genes	 have	 a	 wide	 range	 of	 functions	 and	 are	

expressed	at	a	variety	of	life	cycle	stages	

	

Arrays	 of	 tRNA	 genes	 separated	 by	 short	 tandem	 repeats	 (STRs)	 may	 act	 as	

Entamoeba	telomeres	(see	Chapters	4	and	5).	21	contigs	in	the	PacBio	assembly	

are	 comprised	 of	 genic	 content	 and	 tRNA	 arrays	 (tRNA-genic	 contigs);	 in	 all	

cases	the	contigs	are	terminated	by	the	tRNA	array	and	tRNA	arrays	are	never	

seen	 between	 two	 genic	 regions	 (Chapter	 4).	 As	 such,	 it	 is	 assumed	 that	 the	

tRNA	arrays	in	Entamoeba	species	act	as	telomeres	in	an	analogous	mechanism	

to	 what	 are	 seen	 in	 Drosophila	 and	 Dictyostelium	 where	 arrays	 of	 retro-

transposons	and	rRNA	genes	form	telomeres,	respectively.		

	

The	 gene	 content	was	 extracted	 from	 the	 annotation	output	 corresponding	 to	

the	 100	 Kbp	 of	 sequence	 that	 directly	 flanks	 the	 tRNA	 on	 these	 tRNA:genic	

contigs.	A	100	Kbp	cut	off	was	chosen	as	the	sub-telomeric	regions	of	other	well	

studied	 protozoans	 are	 reported	 to	 be	 up	 to	 this	 length.	 In	 Plasmodium	

falciparum,	the	sub-telomeric	regions	are	reported	as	stretching	larger	than	100	

Kbp	[285].	If	the	contig	was	smaller	than	100	Kbp,	then	all	genic	information	for	

this	 contig	 was	 extracted.	 327	 genes	 were	 annotated	 in	 the	 sub-telomeric	

regions	of	 the	21	 contigs.	The	putative	 function	of	 the	genes	 annotated	 in	 the	

sub-telomeric	regions	were	analysed	to	detect	any	enrichment	for	gene	families.	

164	 genes	 (50%)	 were	 annotated	 as	 hypothetical	 with	 no	 InterProScan	

information	 and	 hence	 no	 function	 for	 these	 genes	 can	 be	 inferred	 Of	 the	

remaining	163	genes,	five	gene	families	had	more	than	five	members	in	putative	

sub-telomeric	regions	(Table	3.3.8).		
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Sub-telomeric	gene	families	were	analysed	to	determine	whether	they	occurred	

at	a	higher	frequency	in	the	sub-telomeric	regions	compared	to	other	genomic	

regions.	All	of	the	gene	families	found	in	the	sub-telomeric	regions	were	found	

to	 occur	 at	 a	 higher	 frequency	 in	 the	 sub-telomeric	 regions	 compared	 to	 the	

remaining	 genome	 regions.	 The	 Trichohyalin	 and	 AIG-1	 gene	 families	 show	 a	

significantly	 greater	 density	 in	 the	 putative	 sub-telomeric	 regions	 (Fisher’s	

exact	 test,	 p<0.05).	 Notably,	 the	 AIG-1	 genes	 had	 a	 density	 of	more	 than	 five	

times	in	the	sub-telomeric	regions	than	in	the	rest	of	the	genome.		

	

Genes	in	the	sub-telomeric	regions	were	analysed	to	see	if	they	were	enriched	

for	 any	 broad	 functions,	 processes	 or	 cellular	 locations	 using	 Gene	 Ontology	

(GO)	 enrichment	 analysis.	 GO-terms	 for	 the	 annotated	 ‘sub-telomeric	 genes’	

were	 available	 for	 275/327	 (84.1%)	 genes.	 These	 were	 summarised	 and	

visualised	using	REVIGO	(Figure	3.3.4).		
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Figure	3.3.4.	GO	term	enrichment	of	genes	in	sub-telomeric	regions	of	the	

Entamoeba	 histolytica	 HM-1:IMSS	 genome.	 GO	 terms	 for	 genes	 were	

extracted	 from	 genes	 found	 in	 sub-telomeric	 regions,	 summarised	 and	

visualised	using	REVIGO	[276].	

Semantic Space X 

S
em

an
tic

 S
pa

ce
 Y

 
Log Ratio 
 

A. Biological Process  
 

Semantic Space X 

S
em

an
tic

 S
pa

ce
 Y

 

Log Ratio 
 

B) Molecular Function 
 

Log Ratio 

Log	Ratio	

GO	term	per	100	Kbp	in	sub-

telomeric	region	

GO	term	per	100	Kbp	in	non-

telomeric	region	

Log	Ratio	

GO	term	per	100	Kbp	in	sub-

telomeric	region	

GO	term	per	100	Kbp	in	non-

telomeric	region	

A)	Biological	Process	

B)	Molecular	Function	



	 123	

In	 REVIGO,	 the	 x	 and	 y	 co-ordinates	 are	 derived	 from	 a	 multi-dimensional	

scaling	and	acts	so	that	similar	GO	terms	cluster	close	together.	The	colour	scale	

represents	a	custom	calculated	metric	to	determine	enrichment	of	a	specific	GO	

term	 in	 the	 sub-telomeric	 region	 (GO	 term	 per	 100	 Kbp	 in	 sub-telomeric	

region/GO	term	per	100	kbp	in	non-telomeric	region).	The	frequency	of	each	GO	

term	 was	 calculated	 for	 both	 the	 sub-telomeric	 region	 and	 the	 remaining	

genomic	region	(instances	of	GO	term/100	Kbp).	A	ratio	was	calculated	between	

the	 two	 regions	 and	 log-transformed	 to	 aid	 visualisation.	 Red	 represents	 GO-

terms	 more	 frequently	 seen	 in	 the	 sub-telomeric	 regions,	 green	 represents	

those	 equally	 likely	 to	 occur	 in	 both	 regions	 and	 blue	 represent	 those	which	

occur	at	higher	frequency	in	non-telomeric	regions.		

	

The	analysis	showed	enrichment	for	endocytosis,	transmembrane	transport	and	

protein	 ADP-ribosylation.	 Analysis	 of	 cellular	 component	 showed	 enrichment	

for	 the	proton-transporting	 two-sector	ATPase	complex.	Analysis	of	molecular	

function	revealed	enrichment	 for	NAD+	binding,	NAD+	ADP-ribosyltransferase	

activity,	 metalloendopeptidase	 activity,	 deaminase	 activity	 and	 tRNA	

dihydrouridine	synthase	activity.		

	

3.3.7.	A	number	of	protein	families	commonly	occur	in	close	proximity	to	

transposable	elements	in	the	genome		

	

RepeatMasker	 was	 used	 to	 identify	 retrotransposons	 and	 other	 transposable	

elements	 in	 the	PacBio	E.	histolytica	HM-1:IMSS	assembly.	The	1	Kbp	 flanking	

sequence	 on	 either	 side	 of	 each	 transposable	 element	was	 used	 in	 a	 BLASTn	

search	against	the	Entamoeba	histolytica	HM-1:IMSS	gene	set	from	AmoebaDB.	

The	 output	 was	 inspected	 to	 remove	 overlapping	 hits	 resulting	 from	 closely	

located	TEs	containing	the	same	flanking	sequence.		

	

For	a	number	of	protein	families,	large	numbers	of	their	members	occur	in	close	

proximity	 to	 transposable	 elements	 in	 the	 new	 E.	 histolytica	 HM-1:IMSS	

genome.	 Table	 3.3.9	 shows	 gene	 families	 with	 >30%	 of	 members	 associated	

with	TEs.	
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For	some	gene	families,	 including	elongation	factors	1	and	2,	Ariadne	proteins	

and	 Chitobiosyldiphosphodolichol	 beta-mannsyltransferase	 families,	 all	

members	occurred	in	close	proximity	to	a	TE.	Several	gene	families	associated	

with	 virulence,	 including	 AIG-1,	 BspA,	 Ariel-1	 and	 Cysteine	 protease	 families,	

also	show	a	high	proportion	of	genes	associated	with	TEs.		

	

Generally,	members	of	the	same	gene	family	were	associated	with	the	same	type	

of	 repetitive	 element.	 For	 example,	 all	 members	 of	 the	

Chitobiosyldiphosphodolichol	 beta-mannsyltransferase	 family	were	 associated	

with	the	Entamoeba	specific	repetitive	element,	ERE1,	whereas	all	members	of	

the	 elongation	 factor	1	 and	2	 families	were	associated	with	 the	Dong-R4	 type	

LINEs	(EhRLE2/EhRLE3).	Eight	of	the	nine	members	of	the	 ‘regulators	of	non-

sense	transcript	family	were	also	associated	with	EhRLE2/EhRLE3	LINEs.	Some	

of	 the	 larger	 gene	 families	 appear	 to	 be	 associated	with	 a	 range	 of	 elements.	

AIG1	 members	 associated	 with	 a	 repetitive	 element	 were	 mostly	 associated	

with	 ERE1	 (35/51	 genes)	 followed	 by	 EhRLE2/EhRLE3	 (12/51).	 However,	

ERE2,	EhSINE1	and	EhAPT2	elements	were	 associated	with	one,	 two	and	one	

AIG1	genes,	respectively.		

	

To	test	whether	AIG1	genes	clustered	on	the	basis	of	the	repetitive	element	they	

were	 associated	with,	 a	 phylogenetic	 tree	was	 produced	 (Figure	 3.3.5).	 Three	

distinct	AIG1	clusters	can	be	seen	in	the	new	Entamoeba	histolytica	HM-1:IMSS	

genome.	 In	 all	 clusters,	 clades	 largely	 cluster	 based	 on	 the	 type	 of	 repetitive	

element	 the	 members	 are	 associated	 with.	 Generally,	 members	 with	 no	

associated	repetitive	element	cluster	together	or	appear	as	singletons,	forming	

their	own	clade/group.		
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Figure	 3.3.5.	 Phylogeny	 of	 the	 AIG1	 gene	 family	 in	 the	 Entamoeba	

histolytica	HM-1:IMSS	genome.	A)	Protein	domain	structure	of	AIG1	genes.	

B&C)	 Phylogenetic	 trees	 of	 the	 two	 AIG1	 gene	 family	 clusters.	 Gene	

members	 associated	with	 repetitive	 elements	 are	 shown	by	 a	 coloured	 circle;	

members	 with	 no	 coloured	 circle	 represent	 AIG1	 members	 that	 are	 not	

associated	 with	 repetitive	 elements.	 Bootstrapping	 was	 performed	 for	 1,000	

replicates	 and	 values	 are	 shown.	 204	 amino	 acids	 were	 aligned	 across	 the	

conserved	AIG1	type	G	domain	and	transmembrane	domain.	

	 	

Repetitive Elements: 
 
ERE1 (Eh specific repeat) 
EhRLE2/3 (LINE) 
EhAPT2 (Eh specific repeat) 
EhSINE (SINE) 
ERE2 (Eh specific repeat) 

C. 
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A	 similar	 pattern	 is	 seen	 for	 the	 Ariel-1	 family	 (Figure	 3.3.6),	 where	 12	

members	 form	4	main	groups	with	 the	 largest	having	all	members	 associated	

with	 an	 EhSINE1	 element.	 Copies	 of	 the	Ariel-1	 genes	 that	 are	 not	 associated	

with	a	TE	cluster	away	from	the	EhSINE1	group.	It	is	worth	noting	that,	in	this	

family,	 members	 on	 the	 same	 contig	 do	 not	 cluster	 close	 together	 and	 this	

reflects	a	pattern	seen	in	all	of	the	gene	families	analysed.		
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Figure	 3.3.6.	 Phylogeny	 of	 the	 Ariel-1	 gene	 family	 in	 the	 Entamoeba	

histolytica	HM-1:IMSS	genome.	Genes	associated	with	repetitive	elements	are	

shown	 by	 a	 coloured	 circle;	 those	 with	 no	 coloured	 circle	 are	 not	 associated	

with	 a	 repetitive	 element.	 Genes	 on	 the	 same	 contig	 are	 represented	 by	 a	

dashed	border.	Bootstrap	branch	support	(1,000	replicates)	values	are	shown.	
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3.4.	Discussion	
	
3.4.1.	 The	 Entamoeba	 histolytica	HM-1:IMSS	 genome	 assembly	 produced	

using	 single-molecule	 sequencing	 contains	 more	 genes	 than	 the	

published	genome	assembly	

	

The	 new	 Entamoeba	 histolytica	HM-1:IMSS	 reference	 genome	 contains	 1,831	

more	 genes	 than	 previously	 reported	 [98].	 The	majority	 of	 these	 novel	 genes	

(70.7%)	consist	of	additional	copies	of	known	genes	or	new	members	of	known	

gene	 families.	 This	 is	 unsurprising	 as	 the	 majority	 (55%)	 of	 Entamoeba	

histolytica	genes	form	part	of	one	of	897	gene	families.	The	expansion	of	these	

families	in	the	new	assembly	is	likely	a	result	of	more	accurate	assembly	of	the	

genome,	resulting	in	a	larger	genome	size	than	previously	reported.	The	smaller	

gene	family	sizes	in	the	published	assembly	suggest	that	these	genes	may	have	

been	unassembled	or	that	true	homologues	were	collapsed.	Collapsing	of	genes	

in	 the	 older	 assembly	 is	 more	 likely	 for	 tandemly	 duplicated	 genes.	 The	

previous	Sanger	reads	may	not	have	been	 long	enough	to	span	each	copy	of	a	

gene	 in	 regions	where	 tandem	 duplications	 have	 occurred.	 It	 is	 also	 possible	

that	 there	 has	 been	 a	 real	 biological	 change	 in	 the	 gene	 content	 of	 the	 E.	

histolytica	HM-1:IMSS	 cell	 line	 over	 time.	 The	 strain	was	 sequenced	 13	 years	

ago	 and	 it	 is	 possible	 that	 the	 cell	 line	 has	 undergone	 gene	 loss	 or	 gene	 gain	

during	 this	 time.	 Organisms	 grown	 in	 vitro	are	 subject	 to	 increased	 selection	

pressures	 of	 some	 genes	 and	 loss	 of	 constraint	 on	 others,	 and	 differences	 in	

gene	content	could	reflect	this.	For	instance,	in	Salmonella,	gene	loss	in	cultured	

populations	may	be	adaptive	as	 superfluous	genes	 confer	 a	 fitness	 cost	 [286].		

Similarly,	 the	Plasmodium	falciparum	 laboratory	strain	3D7	has	 lost	 the	ability	

to	differentiate	 into	 its	 sexual	 forms	 (gametocytes),	which	are	not	 required	 to	

complete	 the	 life	 cycle	 in	 continuous	 blood-stage	 culture,	 suggesting	 a	 lack	 of	

selective	 constraint	 to	 maintain	 functional	 copies	 of	 these	 genes	 [287,288].	

However,	these	examples	would	suggest	gene	loss	is	more	likely	than	gene	gain,	

as	seen	here.		Therefore,	technical	improvements	in	assembly	are	more	likely	to	

account	for	the	differences	seen.	
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A	 small	 subset	 of	 novel	 genes	 (29.3%	 of	 1,889	 novel	 genes)	 contain	 no	

orthologues	 to	 any	 known	 gene	 in	 the	 E.	 histolytica	 genome	 although	 some	

definitely	contain	Pfam	domains	and	InterPro	identifiers	which	allow	for	them	

to	 be	 identified	 as	 members	 of	 existing	 gene	 families.	 For	 example,	 10	 novel	

genes	 with	 no	 E.	 histolytica	 ‘orthologue’	 were	 annotated	 by	 InterPro	 as	 AIG1	

family/50S	 ribosome-binding	 GTPases.	 The	 AIG1	 family	 in	 E.	 histolytica	 is	

diverse	 in	 sequence	 and	 members	 can	 differ	 greatly	 in	 size	 whilst	 still	

containing	 the	 defining	 domains	 of	 the	 AIG1	 family.	 These	 novel	 AIG1	 genes	

without	 a	 published	 orthologue	 also	 occur	 on	 the	 same	 contig	 as	 known	

published	genes	suggesting	they	are	part	of	the	E.	histolytica	genome	and	not	a	

result	of	contamination.	It	is	likely	that	these	novel	genes	form	part	of	the	AIG1	

family	despite	not	having	an	orthologue	present	 in	 the	published	assembly.	 In	

addition,	four	of	the	ten	genes	form	their	own	clade	that	is	nested	in	the	middle	

of	 one	 of	 the	 AIG1	 clusters,	 further	 suggesting	 these	 genes	 are	 genuinely	

members	of	the	AIG1	family.	It	is	likely	that	there	are	novel	singleton	genes	too	

however,	 a	 large	 proportion	 of	 novel	 genes	 that	 were	 identified	 were	

characterised	 as	 hypothetical	 as	 the	 annotation	 pipeline	 could	 not	 detect	 any	

putative	function	for	these	genes.	It	would	be	interesting	to	look	at	each	of	these	

novel	genes,	as	well	as	the	large	amount	of	hypothetical	genes	that	also	exist	in	

the	published	assembly,	to	experimentally	predict	the	function	or	pathways	that	

these	genes	are	involved	in.		

	

In	 one	 striking	 example,	 a	 single	 gene,	 Trichohyalin	 (EHI_077870),	 in	 the	 old	

assembly	 appears	 massively	 expanded	 (to	 168	 copies)	 in	 the	 new	 assembly.	

This	 suggests	 that	 expansion	 has	 occurred	 since	 the	 published	 E.	 histolytica	

genome	was	sequenced.	None	of	the	members	have	orthologues	to	hypothetical	

proteins	 in	 the	old	assembly,	 ruling	out	 the	prospect	 that	 the	gene	 family	had	

been	 previously	 identified	 but	 functionally	 unannotated.	 107/170	 (64%)	

trichohyalin	 genes	 in	 the	 PacBio	 assembly	 can	 be	 identified	 in	 the	 published	

assembly	 sequence,	 however	 they	 have	 not	 been	 annotated,	 suggesting	 that	

their	 existence	 is	 real	 and	 not	 result	 of	 a	 technical	 assembly	 error.	 Further	

suggesting	 their	 genuine	 existence	 is	 the	observation	 that	 the	members	occur	

across	123	contigs	and	are	positioned	on	contigs	with	functionally	annotated	E.	
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histolytica	 genes	 suggesting	 they	 are	 not	 resultant	 of	 contamination.	

Trichohyalin	 is	 an	 intermediate	 filament-associated	protein	 involved	 in	 cross-

linking.	 In	 humans,	 this	 protein	 associates	 between	 keratin	 intermediate	

filaments	 (KIFs)	 in	 the	 hair	 follicle	 and	 the	 granular	 layer	 in	 the	 epidermis	

[289].	 Interestingly,	 trichohyalin-like	 proteins	 are	 expressed	 in	 Trypanosoma	

cruzi	during	the	infective	trypomastigote	life	stage,	where	they	are	predicted	to	

reflect	 specialised	 capacities	 linked	 to	 host-cell	 recognition,	 signalling	 and	

invasion	[290–292].	Further	work	should	be	performed	on	the	E.	histolytica	HM-

1:IMSS	 trichohyalins	 to	 determine	 at	what	 life	 cycle	 stages	 these	 proteins	 are	

expressed	and	to	test	for	any	interaction	between	trichohyalin	and	the	host	cell.	

Nevertheless,	 this	 trichohyalin	 gene	 family	 in	 E.	 histolytica	HM-1:IMSS	 is	 an	

interesting	candidate	for	further	investigation.		

	

Although	 99.3%	of	 genes	 from	 the	 old	 assembly	were	 transferred	 to	 the	 new	

assembly,	58	genes	remain	absent	from	the	new	assembly.	It	appears	that	this	is	

not	 a	 result	 of	 errors	 in	 the	 annotation	 pipeline.	 	 Instead,	 analysis	 of	 where	

these	genes	occur	 in	 the	old	assembly	points	 to	regions	of	 three	scaffolds	 that	

are	not	present	in	the	new	PacBio	assembly.	The	absent	genes	were	not	present	

in	 the	 raw	PacBio	 reads,	 suggesting	 that	 the	missing	genes	do	not	 result	 from	

the	genome	assembly	process	but	that	they	did	not	exist	in	the	genome	to	begin	

with	(i.e.	a	biological	difference).	However,	mapping	of	short-read	Illumina	data	

across	the	absent	gene	regions	in	the	published	assembly	provided	an	average	

coverage	depth	of	~300x	suggesting	that	these	regions	do	indeed	exist	in	the	E.	

histolytica	genome.	This	discrepancy	may	reflect	genuine	biological	differences	

between	 the	 organisms	 used	 for	 the	 PacBio	 and	 Illumina	 sequencing.	 The	 E.	

histolytica	cell	used	for	the	PacBio	sequencing	were	revived	from	cell	stocks	at	

the	University	of	Liverpool	whereas,	the	E.	histolytica	cells	used	for	the	Illumina	

sequencing	were	 revived	 from	 cell	 stocks	 from	 the	London	 School	 of	Hygiene	

and	 Tropical	 Medicine.	 It	 is	 possible	 that	 the	 gene	 differences	 represent	 real	

biological	 differences	 between	 the	 E.	 histolytica	HM-1:IMSS	 cell	 lines	 held	 at	

each	institution,	which	would	highlight	the	high	levels	of	genome	plasticity	that	

have	previously	been	reported	within	E.	histolytica	[175].	Another	explanation	

for	the	missing	genes	in	the	PacBio	reads	is	that	these	genes	were	present	in	the	
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genomic	 DNA	 but	 coverage	 was	 not	 high	 enough	 to	 cover	 all	 regions	 of	 the	

genome.	This	 is	highly	unlikely	as	average	coverage	depth	of	 the	genome	was	

200x.			

	

3.4.2.	 Entamoeba	 histolytica	 HM-1:IMSS	 sub-telomeric	 regions	 are	 not	

enriched	 for	 the	virulence	AIG-1	gene	 family	and	 the	Trichohyalin	

gene	family	

	

Assuming	 that	 the	 tRNA	 arrays	 (Chapter	 4)	 form	 a	 telomere	 analogue	 in	

Entamoeba,	 the	 genes	 flanking	 these	 regions	 do	 not	 appear	 to	 contain	 larger	

numbers	of	members	of	 the	known	gene	 families	associated	with	virulence	 in	

Entamoeba	species.	 Though	 the	 AIG-1	 and	 trichohyalin	 gene	 families	 form	 an	

exception	to	this	observation	as	these	two	families	were	significantly	enriched	

in	 the	 putative	 sub-telomeric	 regions.	 Further	 to	 this,	 gene	 families	 do	 not	

appear	to	have	members	within	close	proximity	to	each	other	across	the	entire	

genome;	 few	members	of	 the	same	 family	occur	on	 the	same	contig	and	often	

when	they	appear	on	the	same	contig	the	gene	sequences	can	be	divergent	and	

occur	 far	 away	 from	 one	 another.	 This	 mirrors	 a	 recent	 report	 on	 the	 AIG1	

virulence	gene	family,	where	AIG1	genes	close	together	spatially	clustered	into	

different	phylogenetic	clades	based	on	sequence	similarity	[149].		

	

GO	term	enrichment	analysis	of	the	genes	present	in	the	sub-telomeric	regions	

suggests	 a	 range	 of	 functions	 is	 represented	 in	 these	 regions.	 These	 include	

metabolism	of	various	compounds	and	DNA/RNA	interactions,	however	some	of	

the	 enriched	 functions	 could	 be	 associated	 with	 virulence	 of	 the	 parasite.	

Biological	 processes	 that	 are	 most	 enriched	 include	 endocytosis	 and	 protein	

ADP-ribosylation.	 Interestingly,	 ADP-ribosylation	 has	 been	 implicated	 as	 an	

important	process	 for	bacterial	 toxicity.	Protein	ADP-ribosylation	 involves	 the	

addition	of	 an	ADP-ribose	moiety	 to	 a	protein	 involved	 in	 cell	 signalling,	DNA	

repair	 or/and	 gene	 regulation.	 This	 process	 forms	 the	 basis	 of	 toxicity	 in	

bacterial	 compounds	 such	 as	 the	 cholera	 toxin,	 diphtheria	 toxin	 and	 other	

bacterial	 ADP-ribosylating	 exotoxins	 (bAREs).	 Further,	 ADP-ribosylated	
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proteins	have	been	implicated	as	playing	an	important	role	in	the	survival	of	the	

Entamoeba	histolytica	parasite	and	interaction	with	host	molecules	[293]	.		

	

Metalloendopeptidase	 activity	was	 an	 enriched	molecular	 function.	 The	major	

surface	 proteins	 (MSPs)	 in	Leishmania	are	 enriched	 for	metalloendopeptidase	

activity	 and	 contribute	 significantly	 to	 virulence	 [294].	 In	E.	histolytica	strains	

that	 show	 resistance	 to	 Metronidazole,	 the	 main	 drug	 used	 to	 treat	 amoebic	

dysentery,	 show	 increased	 expression	 of	 genes	 with	 metalloendopeptidase	

activity	 [295].	 This	 suggests	 that	 metalloendopeptidase	 proteins	 may	 be	

involved	 in	 drug	 resistance.	 A	 metalloendopeptidase	 surface	 protein	 gene	

family,	 similar	 to	 those	 seen	 in	 Leishmania,	 could	 exist	 in	 the	 Entamoeba	

histolytica	genome.		

	

Overall,	 the	majority	 of	 the	 genes	 found	 in	 the	 sub-telomeric	 regions	were	 of	

unknown	function,	mirroring	the	genome	as	a	whole.	Further	functional	studies	

of	 some	 of	 the	 vast	 number	 of	 hypothetical	 genes	 in	 the	 Entamoeba	genome	

could	go	some	way	to	helping	elucidate	the	functions	of	the	sub-telomeric	genes	

and	reveal	any	functional	enrichment	of	genes	in	these	regions.		

	

3.4.3.	 A	 large	 number	 of	 virulence	 gene	 families	 are	 associated	 with	

repetitive	elements	in	the	Entamoeba	histolytica	HM-1:IMSS	genome	

	

Transposable	 elements	 (TEs)	 are	 dynamic	 elements	 that	 can	 reshape	 host	

genomes	by	generating	rearrangements	with	the	potential	to	create	or	disrupt	

genes,	shuffle	existing	genes	and	modulate	their	expression	pattern	[296–298].	

In	 the	 genomes	 of	 parasites,	 TEs	 have	 been	 identified	 that	 are	 likely	 to	 have	

been	maintained	throughout	evolution	as	they	confer	some	benefit	to	organism	

through	their	contribution	to	gene	function	or	gene	expression.		In	parasite,	TEs	

can	 frequently	 be	 inserted	 inside	 a	 coding	 sequence	 or	 within	 the	 3’-

untranslated	regions	(UTR)	of	genes	and	domestication	of	these	TEs	has	proven	

beneficial	 to	a	 range	of	parasites.	For	example,	 in	Plasmodium	yoelii	yoelii,	 the	

insertion	 of	 a	 TE	 into	 the	 open	 reading	 frame	 (ORF)	 of	 a	 putative	 yir3	 is	

suggested	as	being	associated	with	immune	evasion	of	the	human	host.	This	is	
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because,	 the	 yir3	 family	 in	 P.	 y.	 yoelii	 is	 analogous	 to	 the	 var	 genes	 in	 P.	

falciparum	(Chapter	1),	which	play	an	important	role	the	antigen	switching	that	

generates	the	antigenic	diversity	of	the	parasite	infective	schizont	stage	[299].	

	

In	 addition	 to	 regulating	 gene	 expression,	 models	 of	 transposable	 elements	

mediating	gene	 family	expansion	and	diversification	have	been	suggested.	TEs	

are	 substrates	 for	 recombination	 events	 that	 can	 generate	 genomic	

rearrangements	 and	 duplications.	 Significant	 associations	 between	

retrotransposons	 (LINEs	 and	LTRs)	 and	 the	 expansion	of	 gene	 families	 in	 the	

mouse	and	human	genomes	have	been	identified	with	the	LINEs	associated	with	

gene	duplication	[300].	For	example,	LTRs	and	LINEs	are	implicated	in	the	gene	

expansion	 of	 the	 mouse	 Androgen-binding	 protein	 (Abp)	 gene	 family.	 The	

presence	of	ERVII	(LTR)	and	L1	(LINE)	repeat	 families	 in	high	densities	 in	the	

mouse	and	rat	Abp	gene	regions	with	corresponding	depletion	of	other	families	

suggested	 a	 functional	 role	 for	 ERVII	 and	 L1	 in	 the	 two	 Abp	 gene	 family	

expansions	[301].	

	

	A	 number	 of	 protein	 families	 appear	 to	 be	 physically	 linked	 to	 transposable	

elements	in	the	PacBio	genome.	Many	of	these	genes	are	members	of	previously	

identified	 virulence	 gene	 families	 in	E.	histolytica	and	 include	members	 of	 the	

surface	protein	virulence	 families	 (Ariel-1,	BspA),	 the	GTPase	virulence	 family	

AIG1,	the	proteolytic	cysteine	protease	(CP)	enzyme	virulence	gene	family	and	

the	virulence	heat	shock	70	gene	 family.	For	example,	43%	of	 the	58	member	

Hsp70	 protein	 family	 have	 a	 transposon	within	 1	 Kbp	 of	 the	 gene.	 All	 of	 the	

Hsp70	gene	associated	with	a	transposon	are	of	the	cytosolic	Hsp70	type	and	no	

mitochondrial	or	endoplasmic	reticulum	(ER-like)	Hsps	appear	to	be	associated	

with	a	transposon.	The	Hsp70s	act	as	molecular	chaperones	and	aid	a	range	of	

protein	 folding	processes.	The	 family	 is	highly	conserved	and	gene	expression	

induced	 under	 stress	 conditions	 [302].	 In	 Drosophila,	 the	 insertion	 of	

transposable	 elements	 near	 Hsp70	 gene	 promoters	 has	 been	 associated	 with	

attenuated	 expression;	 insertions	 occur	 frequently	 and	 it	 is	 thought	 the	

sequence	 of	 the	 Drosophila	Hsp70	 promoter	 regions	 is	 a	 suitable	 target	 for	

transposon	 insertion	 [303].	However,	while	most	 insertions	 result	 in	 reduced	
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thermo-tolerance	of	the	Drosophila,	cases	of	exceptional	thermo-tolerance	have	

been	reported	despite	reduced	Hsp70	expression	[304]	suggesting	the	insertion	

of	 TEs	 could	 be	 playing	 an	 adaptive	 role	 in	 producing	 novel	 alleles	 and	

manipulating	the	expression	of	genes	critical	for	parasite	fitness	[304].		

	

Another	 gene	 family	with	 associated	 transposable	 elements	 is	 the	 large	 AIG1	

GTPase	family.	 It	comprises	73	members	distributed	across	two	large	and	one	

small	 sequence	 similarity-based	 clusters,	 of	 which	 51	 are	 within	 1	 Kbp	 of	 a	

repetitive	element.	AIG1	genes	within	E.	histolytica	are	 thought	 to	be	 involved	

with	 adaption	 to	 the	 host	 environment	 [146,147]	 and	 adherence	 to	 host	 cells	

[149].	In	comparison	to	E.	histolytica,	the	expression	of	AIG1	proteins,	as	well	as	

heat	 shock	 proteins,	 is	 significantly	 lower	 in	 E.	 dispar	 (E.	 histolytica’s	 non-

virulent	 sister	 species	 that	 also	 parasitizes	 the	 human	 gut)	 [141].	 	 LINEs	 and	

SINEs	have	already	been	proven	to	be	involved	in	genome	rearrangements	that	

catalyse	 genomic	 evolution	 [122]	 and	 from	 this	 observation	 it	 could	 be	

hypothesised	 that	 the	 insertion	 of	 these	 repetitive	 elements	 into	 the	

neighbouring	 regions	 of	 the	 E.	 histolytica	 AIG1	 genes	 could	 lead	 to	 further	

expansion	of	the	AIG1	family	in	the	genome.	This	is	because	as	the	transposable	

elements	(TEs)	propagate	themselves,	the	flanking	sequence	can	also	be	copied.	

If	 this	 flanking	 sequence	 includes	 an	AIG1	 gene,	 this	 gene	 can	 become	 copied	

across	the	genome.	In	addition,	it	is	also	possible	that	the	close	proximity	of	the	

TEs	to	the	AIG1	genes	may	effect	gene	expression	of	these	genes	and	could	lead	

to	altered	expression	and	hence	virulence	in	E.	histolytica	compared	to	E.	dispar.	

AIG1	 genes	 exist	 as	 a	 gene	 family	 in	E.	dispar	 however,	 fewer	members	 have	

been	annotated	compared	to	those	found	in	the	PacBio	E.	histolytica	genome.	It	

remains	unresolved	whether	the	further	expansion	of	AIG1	in	E.	histolytica	HM-

1:IMSS	has	 been	 propagated	 by	 the	 presence	 of	 repetitive	 elements	 however,	

the	 evidence	 that	 similar	AIG1	 sequences	 are	 often	 accompanied	by	 the	 same	

repetitive	element	type	suggests	that	this	could	be	the	case.		

	

The	E.	 histolytica	 specific	 family,	 Ariel-1,	 is	 not	 found	 in	E.	 dispar	 [105].	 This	

family	 occurs	 as	 12	 members	 in	 the	 new	 reference	 genome,	 8	 of	 which	 are	

associated	 with	 a	 repetitive	 element,	 6	 of	 these	 with	 EhSINE1.	 Ariel-1	 genes	
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encode	 surface	 proteins,	 but	 their	 function	 is	 unknown.	 Nonetheless,	 it	 is	

interesting	 that	 the	majority	 of	members	 are	 associated	with	 EhSINE1	 and	 it	

raises	 the	 question	 whether	 TEs	 are	 responsible	 for	 the	 existence	 of	 Ariel-1	

genes	through	their	ability	to	produce	novel	paralogues	and	also	through	their	

ability	 to	 amplify	 gene	 families	 throughout	 a	 genome.	 	 The	 phylogeny	 of	 the	

Ariel-1	 family	would	definitely	support	 the	 theory	 that	EhSINE1	has	catalysed	

amplification	 of	 the	 family,	 as	 the	 Ariel-1	 genes	 associated	 with	 this	 element	

appear	 the	 most	 similar	 in	 sequence	 when	 compared	 to	 Ariel-1	 singletons.	

Clustering	of	members	based	on	the	contig	they	occur	on	suggests	members	are	

not	being	propagated	by	tandem	repeat	events	but	instead	members	have	been	

transposed	with	a	EhSINE1	at	different	time	points	during	the	evolution	of	the	

E.	histolytica	genome.	It	would	be	interesting	in	the	future	to	perform	functional	

analysis	to	determine	if	Ariel-1	plays	a	role	in	host-parasite.		

	

Similarly,	the	cysteine	protease	gene	family	members	and	the	BspA	gene	family	

members	that	are	associated	within	1	Kbp	of	a	TE	also	cluster	based	on	the	TE	

type	they	are	associated	with.	This	again,	suggests	that	virulence	gene	families	

are	 associated	 with	 TE	 propagation.	 Alternatively,	 it	 is	 possible	 that	 the	

expansion	of	the	TE-associated	gene	families	occurred	prior	to	the	insertion	of	

the	TE	sequences	 in	 these	regions.	 If	 this	 is	 the	case,	 the	TEs	may	be	affecting	

the	expression	of	the	nearby	gene	families	producing	differential	expression	of	

key	virulence	genes	between	different	Entamoeba	species.		 	
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3.5.	Conclusions	
	

This	 chapter	 presents	 an	 overview	 of	 the	 improvements	 made	 to	 the	 E.	

histolytica	 reference	genome	and	 its	 annotation.	The	 larger	assembly	 contains	

more	genes	than	the	published	assembly.	This	is	largely	due	to	more	members	

of	gene	families	being	annotated,	though	a	small	number	of	genes	appear	to	be	

truly	 novel.	 The	 most	 striking	 observation	 in	 the	 new	 annotation	 is	 the	

expansion	of	 the	 trichohyalin	gene	 family,	which	had	only	a	single	copy	 in	 the	

previous	assembly.	

	

A	 small	 number	 of	 genes	 previously	 present	 are	 absent	 from	 the	 new	PacBio	

assembly.	While	 these	 appear	 not	 to	 exist	 in	 the	E.	histolytica	HM-1:IMSS	 cell	

lines	at	the	University	of	Liverpool	(used	for	PacBio	sequencing),	Illumina	data	

generated	 from	the	same	cell	 line	stored	at	 the	London	School	of	Hygiene	and	

Tropical	 Medicine	 (LSHTM)	 suggests	 they	 exist	 in	 that	 one.	 This	 indicates	

genuine	differences	between	these	two	different	cell	lines	and	should	be	tested	

for	the	two	cell	lines.	

	

The	assembly	of	 fewer,	 larger	 contigs	has	helped	 facilitate	 the	analyses	of	 the	

genomic	 distribution	 of	 virulence	 gene	 families	 and	 has	 linked	 putative	

telomeric	 sequences	 to	 the	 core	 genome	 such	 that	 putative	 sub-telomeric	

regions	 could	 be	 identified.	 Genes	 in	 these	 sub-telomeric	 regions	 could	 be	

analysed	and	GO	term	enrichment	performed	on	the	genes	that	have	functional	

annotation	assigned.		

	

Analysis	 into	 the	genes	present	 in	 the	putative	sub-telomeric	regions	revealed	

that	 AIG1,	 BspA	 and	 trichohyalin	 gene	 family	 members	 occurred	 at	 a	 higher	

frequency	 in	 the	 sub-telomeres	 compared	 to	 the	 core	 genome	 (result	 only	

significant	 for	 the	 AIG1	 and	 trichohyalin	 gene	 families,	 p<0.05).	 Further	 life	

cycle	 stage	 analysis	would	 be	 useful	 to	 determine	whether	members	 of	 these	

families	are	expressed	 together	or	mono-allelically	as	 is	 seen	 in	 sub-telomeric	

gene	 families	 of	 P.	 falciparum	and	T.	 brucei.	 However,	 this	 analysis	 is	 limited	

currently	as	an	in	vitro	for	the	full	life	cycle	of	E.	histolytica	HM-1:IMSS	does	not	
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yet	exist	as	E.	histolytica	trophozoites	cannot	be	made	to	encyst	in	culture.	As	a	

result,	 life-cycle	 analyses	 can	only	be	performed	 in	E.	 invadens,	 an	Entamoeba	

species	 that	causes	amoebiasis	 in	reptiles.	E.	invadens	is	distantly	related	 to	E.	

histolytica	and	not	all	E.	histolytica	genes	have	an	orthologue	 in	E.	invadens.	Of	

these	 orthologous	 genes,	 only	 a	 few	 show	 synteny	 between	 the	 two	 species.	

Therefore,	 it	 is	 likely	 that	 the	 expression	 pattern	 in	E.	histolytica	may	not	 the	

same	 in	 E.	 invadens	and	 therefore,	 it	 is	 hard	 to	 perform	 life-cycle	 expression	

analysis	of	E.	histolytica	despite	the	existence	of	the	E.	invadens	life-cycle	model.		

	

Transposable	 elements	 occur	 in	 close	 proximity	 to	 many	 genes.	 Members	 of	

several	 gene	 families	 cluster	 based	 on	 the	 transposable	 element	 they	 are	 in	

close	proximity	to	suggesting	that	propagation	of	these	virulence	gene	families	

in	 E.	 histolytica	 could	 result	 from	 transposable	 element	 translocation	 events.	

Members	of	virulence	genes	families	rarely	appear	on	the	same	contig	and	those	

on	 the	 same	 contig	 vary	 in	 length	 suggesting	 that	 gene	 family	 expansions	 of	

these	families	are	not	catalysed	by	tandem	duplication	events.		

	

Overall,	the	gene	annotation	demonstrates	an	increase	in	gene	number,	largely	

facilitated	by	the	 increase	 in	genome	size	of	the	PacBio	assembly	compared	to	

the	 published	 assembly.	 A	 large	 number	 of	 these	 genes	 remain	 functionally	

unannotated	and	large	numbers	of	functional	studies	and	manual	curation	will	

be	 required	 to	 bring	 the	 E.	 histolytica	 HM-1:IMSS	 genome	 up	 to	 the	 same	

standard	as	other	protists	such	as	P.	falciparum	[305].		
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Chapter	 4:	 Analysis	 of	 Entamoeba	
histolytica	repetitive	DNA	features	
	
4.1	Introduction	
	
4.1.1.	Entamoeba	transfer	RNA	genes	occur	in	long	multi-gene,	multi-copy	

arrays	
	
The	 transfer	 RNA	 (tRNA)	 genes	 in	 Entamoeba	 histolytica	 show	 an	 unusual	

organisation.	 The	 genes	 occur	 in	 sequence	 units	 containing	 one	 to	 five	 tRNA	

genes,	each	separated	by	DNA	that	contains	short	 tandem	repeats	(STRs).	The	

tRNA	genes	and	STRs	form	a	unit	that	is	tandemly	duplicated	in	many	copies,	to	

form	 a	 tRNA	 array.	 25	 different	 tRNA	 array	 units	 have	 been	 detected	 in	

Entamoeba	histolytica	HM-1:IMSS.	Four	of	these	units	also	contain	copies	of	the	

5S	small	ribosomal	subunit	gene	alongside	the	tRNA	genes	[4,5].	The	25	array	

types	are	named	according	 to	 the	 tRNA	 isoacceptor	genes	and	5S	 rRNA	genes	

present.	 For	 example,	 the	 [R5]	 array	 contains	 one	 arginine	 tRNA	 isoacceptor	

and	 one	 5S	 rRNA	 gene,	 while	 the	 [SPPCK]	 array	 unit	 contains	 single	 serine,	

cysteine	 and	 lysine	 isoacceptor	 genes	 and	 two	 proline	 tRNA	 isoacceptors	

(though	 the	 codons	 these	 correspond	 to	 are	 different).	 A	 list	 of	 all	 25	

isoacceptor	types	in	E.	histolytica,	and	the	tRNA	and	5S	rRNA	genes	they	contain,	

can	be	found	in	the	appendix	(S4.1,	Appendix	4).	Schematic	representations	of	

four	examples	are	shown	in	Figure	4.1.1.		
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Figure	 4.1.1.	 Schematic	 representations	 of	 Entamoeba	 histolytica	 tRNA	

array	 units.	 Four	 representative	units	 are	 shown.	Orientation	 is	 indicated	by	

arrow	direction.	STRs	are	indicated	by	coloured	boxes,	each	colour	indicating	a	

distinct	 STR	 sequence.	 STR	 copy	 number	 is	 as	 shown	but	 size	 is	 not	 to	 scale.	

Figure	redrawn	from	Clark	et	al,	2006	[4].	

	

Though	clustering	of	tRNA	genes	has	been	observed	in	a	number	of	eukaryote	

genomes,	 this	 tandem	 array	 structure	 appears	 unique	 to	 E.	 histolytica.	 In	

Dictyostelium	 discoideum,	 the	 closest	 sequenced	 relative	 of	 Entamoeba	

histolytica	 (though	 still	 distantly	 related),	 tRNA	 genes	 are	 distributed	

throughout	the	genome	[103].	The	origin,	evolution	and	function	of	these	arrays	

are	not	yet	known,	but	they	appear	to	be	common	to	species	in	the	Entamoeba	

genus	and	have	been	observed	in	E.	nuttalli,	E.	dispar,	E.	moshkovskii,	E.	invadens	

and	E.	 terrapinae.	Some	 tRNA	 array	 units	 are	 shared	 between	 closely	 related	

species	but	 generally,	 each	Entamoeba	species	has	 its	 own	 set	 of	 tRNA	arrays	

and	in	E.	moshkovskii	these	do	not	contain	STRs	[306].	A	structural	role	has	been	

predicted	for	the	tRNA	arrays;	all	but	nine	of	the	E.	histolytica	tRNA	arrays	have	

been	 identified	 as	 containing	 Scaffold/Matrix	 Attachment	 Regions	 (S/MARs)	

and	have	been	implicated	in	nuclear	matrix	binding	and	providing	a	structural	

role	in	the	nucleus	[306].	However,	these	S/MAR	sequences	are	not	conserved	

between	 species	 and	 hence	 doubt	 has	 been	 cast	 on	 their	matrix-binding	 role.	

HisGTG	

ArgACG	 5S	RNA	

ValGAC	 PheGAA	

LysTTT	CysGCA	ProCGG	ProAGG	SerAGA	

[	

[	

[	

[	

]	

]	

]	

]	

[HGTG]	

[R5]	

[VF]	

[SPPCK]	
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Where	 the	 arrays	 are	 located	 in	 the	 genome	 is	 not	 known	but	 some	evidence	

suggests	 that	 they	occur	 in	 sub-telomeric	or	 telomeric	 regions	 [306]	and	 they	

have	been	hypothesised	as	acting	as	telomeres	in	an	analogous	mechanisms	to	

those	 seen	 in	 Dictyostelium	 [103]	 and	 Drosophila	 [307,308]	where	 tandemly	

repeated	rDNA	genes	and	retro-transposons,	 respectively,	 form	the	 telomeres.	

No	 evidence	 of	 classical	 telomere	 sequence,	 or	 sequences	 present	 in	 other	

organisms,	 emerged	 from	 the	 original	 sequencing	 of	 the	E.	histolytica	 genome	

[97].	

	

4.1.2.	 Entamoeba	 ribosomal	 DNA	 occurs	 on	 extra-chromosomal	 circular	

DNA	episomes	 

	

The	 Entamoeba	 histolytica	 rDNA	 genes	 are	 carried	 on	 circular	 episomes,	

multiple	 copies	 of	 which	 exist	 in	 the	 nucleus	 [110].	 Two	 different	 circular	

episomes	have	been	described.	EhR1,	 an	 rDNA	 circle	 of	Entamoeba	histolytica	

HM-1:IMSS	 is	 24.5	 Kbp	 in	 size	 and	 contains	 two	 inverted	 copies	 of	 an	 rDNA	

transcription	unit	(Figure	4.1.2A).	The	rDNA	transcription	unit	encodes	the	18S,	

5.8S	and	28S	rRNAs.	Several	short	tandem	repeats	are	located	in	the	intergenic	

spacers	(IGS)	upstream	and	downstream	of	 the	rDNA	[110].	EhR2	 is	14.1	Kbp	

derivative	 of	 EhR1	 formed	 by	 intra-chromosomal	 recombination	 (marked	 by	

arrows	in	Figure	4.1.2B).	EhR2	contains	a	single	rDNA	transcription	unit	and	a	

range	 of	 short	 tandem	 repeat	 families	 in	 the	 IGS	 [124].	 The	 promoter	 of	 the	

rDNA	 genes	 has	 been	mapped	 to	 2.6	 Kbp	 upstream	 of	 the	mature	 18S	 rRNA	

between	the	AvaII	and	Hinf1	repeats	[309].	

	

Extra-chromosomal	 rDNAs	 are	 seen	 in	 some	 other	 species.	 In	 Dictyostelium	

discoideum,	 a	 chromosomal	 ‘master-copy’	 of	 the	 rDNA	 genes	 generates	 many	

linear	 extra-chromosomal	 molecules	 encoding	 these	 genes	 [103,126].	 A	

chromosomal	 rDNA	 master-copy	 remains	 to	 be	 found	 in	 Entamoeba.	 No	

chromosomal	 rDNA	 genes	were	 identified	 in	 the	 published	 genome	 assembly	

but,	given	the	 incompleteness	of	 the	assembly,	 their	existence	cannot	be	ruled	

out.	 	
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4.1.3.	 tRNA	 array	 STRs	 and	 rDNA	 episomes	 are	 phylogenetic	 and	

population	genetic	markers	

	

Accurate	 genotyping	methods	 are	 crucial	 for	 correctly	 identifying	 species	 and	

strains	 of	 Entamoeba,	 to	 distinguish	 between	 virulent	 (E.	 histolytica)	 and	

avirulent	(E.	dispar)	species	or	to	identify	virulent	strains	within	a	species.		

	

The	rDNA	episome	has	been	used	for	genotyping	different	Entamoeba	species.	

As	well	 as	 containing	 the	 rDNA	genes,	 the	 rDNA	episomes	also	 contain	 the	Tr	

region,	which	occurs	in	the	upstream	region	of	the	episome	and	is	transcribed	

into	a	polyadenylated	0.7	Kbp	RNA	[125,241,310–312].	This	gene	is	absent	from	

Entamoeba	dispar	and	is	useful	marker	for	usage	in	the	Tr-present	E.	histolytica.	

The	Tr	 region	 contains	 tandem	 repeats	which	differ	 in	 copy	number	between	

strains	 and	 can	be	detected	using	PCR	amplification	 [313].	 	The	18	SSU	 rRNA	

gene	can	be	used	to	differentiate	between	different	Entamoeba	species.	PCR	and	

sequencing	 of	 specific	 18S	 rRNA	 gene	 regions	 can	 identify	 the	 Entamoeba	

species	 found	 in	 stools	 [314].	However,	 this	method	 assumes	 that	 there	 is	 no	

differentiation	 between	 the	 many	 hundreds	 of	 copies	 of	 the	 RNA	 episomes	

present	in	each	Entamoeba	cell.		

	

Genotyping	 Entamoeba	 strains	 has	 been	 hampered	 by	 a	 general	 lack	 of	

microsatellites	in	the	genome.	A	few	PCR-based	DNA	typing	methods	have	been	

developed	which	utilise	the	existence	of	polymorphic	repeats	in	coding	regions.	

The	repeat-containing	protein-coding	chitinase	 [315–317]	and	 the	Gal/GalNAc	

lectin	 [318]	 demonstrate	 polymorphic	 repetitive	 regions	 between	 different	

strains	but	the	extent	of	polymorphisms	is	 limited.	Similarly,	 the	serine	rich	E.	

histolytica	protein	 (SREHP)	 gene	 contains	 tandemly	 repeated	 12	 bp	 and	 8	 bp	

sequences	that	differ	in	copy	number	between	strains	[319,320].	Further	to	this,	

sequence	 polymorphisms	 and	 altered	 restriction	 sites	 have	 been	 observed	

between	E.	histolytica	strains	 [315,316,321–323]	 and	 one	 study	 has	 observed	

that	 these	polymorphic	patterns	 are	different	between	 intestinal	 and	amoebic	

liver	abscess	strains	[321].		
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PCR	amplification	of	tRNA	array	STRs	is	currently	widely	used	for	genotyping	E.	

histolytica.	 This	 is	 because	 the	 STR	 sequences	 differ	 between	 different	

Entamoeba	strains.	 	 Species	 specific	 primers	 exist	 that	 amplify	 selected	 tRNA	

array	unit	 STRs	however,	 this	method	does	not	 consider	 any	 variation	within	

the	STRs	in	a	single	population	[230].	Variation	between	single	tRNA	array	units	

in	 a	 tandem	 array	 have	 not	 yet	 been	 studied	 as	 the	 sequencing	 technologies	

were	 not	 able	 to	 produce	 long	 contiguous	 sequences	 that	 span	 the	 length	 of	

multiple	 tRNA	 array	 units.	 As	 such,	 it	 is	 possible	 that	 there	may	 be	 variation	

present	 in	 the	 STR	 sequences	 within	 a	 population	 that	 have	 not	 yet	 been	

detected.	 These	 variations	 may	 interfere	 with	 the	 tRNA-based	 genotyping	

method	as	expansions	or	contractions	of	STR	copy	number	could	result	in	a	PCR	

product	that	is	larger	or	smaller	than	expected	and	lead	to	incorrect	genotyping.	

	

4.1.4.	Aims	of	chapter	

	

Sequences	within	 tRNA	array	units	and	 the	rDNA	episomes	play	an	 important	

role	 in	genotyping	and	distinguishing	Entamoeba	species	and	strains	 from	one	

another.	Though	 this	 relies	on	 their	 stable	presence	 in	 the	genome.	Currently,	

analyses	 in	 to	 the	 variation	within	 copies	 of	 these	 structures	 in	 a	 population	

have	 been	 prohibited	 owing	 to	 the	 lack	 of	 long-read	 technologies	 and	 no	

contiguous	 assembly	 of	 multiple	 tRNA	 arrays	 or	 entire	 rDNA	 episome	

molecules.	 In	 addition,	 the	 tRNA	 arrays	 have	 been	 implicated	 in	 having	 a	

structural	role	though,	their	large-scale	structure	and	position	in	the	genome	is	

unknown.	 Again	 this	was	 a	 result	 of	 the	 lack	 of	 long	 reads	 technology	 in	 the	

published	 assembly,	 which	 meant	 the	 tRNA	 array	 lengths	 could	 not	 be	

determined	 nor,	 could	 the	 genomic	 location	 of	 these	 structures	 be	 resolved.	

Specifically	 this	 chapter	 aims	 to	 elucidate	 some	 of	 these	 unknowns	 by	

performing	the	following:	

• Identify	genomic	locations	of	tRNA	arrays	

• Identify	 putative	 function	 as	 to	 why	 the	 tRNA	 genes	 are	 arrayed	 in	

tandemly	duplicated	structures		
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• Identify	 variation	 between	 tRNA	 array	 repeat	 units	 within	 the	 same	

array	 and	 evaluate	 the	 effectiveness	 of	 using	 tRNA	 STR	 as	 genotyping	

markers	

• Identify	rDNA	episomes	in	the	new	assembly	and	assess	the	core	genome	

for	the	existence	of	a	master-copy	of	rDNA	genes,	which	may	be	acting	as	

a	master	copy	to	produce	extra-chromosomal	rDNA	molecules	(as	is	seen	

in	Dictyostelium	discoideum)	
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4.2.	Materials	and	Methods	
	

4.2.1.	Alignment	and	visualisation	of	repeat	units	of	tRNA	arrays	

	

Identification	 of	 transfer	 RNA	 genes	 (tRNAs)	 was	 described	 in	 section	 2.2.7.	

Contigs	were	grouped	based	on	the	tRNA	array	unit	 they	contained.	The	tRNA	

arrays	were	extracted	 from	the	assembly	using	custom-made	BED	 files.	These	

arrays	were	 then	split	 into	 individual	 tRNA	array	units,	 that	were	aligned	and	

visualised	 in	 the	 sequence	 alignment	 editor,	 SeaView	 (version	 4.6),	 using	 the	

MUSCLE	 alignment	 algorithm	 [280].	 Alignments	 were	 inspected	 to	 identify	

variation	within	the	tRNA	gene	and	the	STRs	of	each	array	type. 

	

4.2.2.	 PCR	 amplification	 and	 sequencing	 of	 short	 tandem	 repeats	

separating	tRNA	genes	in	tRNA	arrays	

	

To	 see	 if	 the	 inter-unit	 variability	 seen	 in	 the	 PacBio	 data	 was	 visible	 using	

standard	 methods	 used	 for	 distinguishing	 species,	 standard	 PCR	 and	 Sanger	

sequencing	were	carried	out	on	DNA	from	the	same	source.	DNA	was	isolated	as	

described	in	section	2.2.2.3.	Polymerase	chain	reaction	(PCR)	amplification	was	

performed	using	published	primers	designed	to	amplify	the	tRNA	Short	Tandem	

Repeats	 (STRs)	 [324].	 Target	 STRs	 were	 split	 into	 two	 PCR	 groups	 based	 on	

annealing	temperature.	All	PCRs	were	carried	out	using	KAPA	Biosystems	HiFi	

Hotstart	PCR	ReadyMix	(KAPA	Biosystems,	Massachusetts,	USA)	with	5	ng	of	E.	

histolytica	HM-1:IMSS	genomic	DNA.	Temperature	for	annealing	was	reduced	by	

5	 °C	 as	 per	 the	 PCR	 ReadyMix	 instructions.	 PCR	 group	 1	 (Average	 annealing	

temperature:	61	°C,	STRs:	R-T,	M-E,	P-P)	and	PCR	group	2	(Average	annealing	

temperature:	55	°C,	STRs:	A-A,	H-H,	R-M,	R-R,	Y-E,	N-K	were	subjected	to	98	°C	

for	 2	 minutes	 followed	 by	 20	 cycles	 of	 95	 °C	 for	 20	 seconds,	 group-specific	

annealing	temperature	minus	5	°C	for	15	seconds	and	70	°C	for	30	seconds.		

	

PCR	products	were	separated	by	electrophoresis	on	1.5%	agarose	gels	(150V,	1	

hour).	Gels	were	stained	using	ethidium	bromide	(1	uL	per	100	mL	of	gel)	and	

visualised	 using	 a	UV	 transilluminator.	 PCR	 product	 bands	were	 cut	 from	 the	
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gels	and	purified	using	the	ThermoFisher	GeneJET	PCR	Purification	Kit	(Thermo	

Scientific,	 Wilmington,	 DE,	 USA)	 following	 the	 manufacturer’s	 instructions.	

Purified	 PCR	 products	 were	 Sanger	 sequenced	 (GATC	 Biotech,	 Konstanz,	

Germany)	 and	 electropherograms	 inspected	 visually	 for	 evidence	 of	 sequence	

variation	(mixed	electropherogram	peaks).		

	

4.2.3.	Short	tandem	repeat	(STR)	and	codon	usage	identification	

	

Tandem	Repeat	Finder	 [325]	was	used	 to	 identify	 the	 STRs	between	adjacent	

tRNAs	within	an	array	unit.		

	

To	 calculate	 codon	 usage	 in	 the	 PacBio	 Entamoeba	 histolytica	 HM-1:IMSS,	

predicted	 CDSs	 (Chapter	 3)	 were	 processed	 on	 the	 command	 line	 (S4.2,	

Appendix	4)	to	identify	the	abundance	of	each	codon.		

	

Mapping	of	 the	 Illumina	Truseq	350	bp	paired	end	 library	 to	 the	E.	histolytica	

HM-1:IMSS	 tRNA	 genes	 was	 performed	 using	 the	 Burrows	 Wheeler	 Aligner	

(BWA	version	7.12)	 [235].	Strict	mapping	parameters	were	applied	and	reads	

with	 only	 100%	 sequence	 identity	 were	 mapped	 to	 eliminate	 inaccurate	

mapping	of	reads	 to	similar	 tRNA	gene	sequences.	Average	sequencing	depths	

for	 each	 tRNA	 gene	 were	 calculated	 using	 the	 SAMTools	 pileup	 tool	 [236].	

Average	 sequencing	 depth	 of	 each	 tRNA	 gene	 was	 plotted	 against	 the	

abundance	of	 the	 corresponding	 codon	 in	 the	CDS	 sequences	 and	an	R2	 value	

calculated	using	the	Pearson	correlation	coefficient.		

	

4.2.4.	Identification	of	the	ProTGG	array	unit	

	

Entamoeba	 histolytica	 transfer	 RNA	 (tRNA)	 array	 units	 have	 previously	 been	

published	 [241].	 The	 ProTGG	 array	 gene	 sequence	 (accession	 number	

BK005669)	 was	 used	 as	 a	 query	 in	 a	 BLASTn	 search	 against	 the	 PacBio	

assembly	 generated	 by	 the	 single	 molecule	 sequencing	 data.	 An	 E-value	

threshold	 of	 0.01	 was	 applied	 to	 the	 BLAST	 query	 [239].	 BLAST	 alignments	

were	visualised	and	manually	inspected	in	SeaView	(version	4.6)	[280].			
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To	confirm	ProTGG	array	units	occur	in	strings	of	more	than	one	unit,	PacBio	sub-

reads	were	processed	using	tRNAScan-SE	[240]	to	identify	tRNA	genes	on	single	

sub-reads.	AWK	and	Grep	were	used	to	extract	sub-reads	containing	>5	ProTGG	

array	units	and	these	were	manually	inspected.		

	

4.2.5.	Identification	of	putative	telomeric	repeat	sequence	

	

The	 first	 150	 bp	 and	 last	 150	 bp	 of	 every	 contig	 in	 the	 E.	 histolytica	 PacBio	

assembly	 was	 extracted	 using	 custom	 made	 BED	 files	 followed	 by	 BEDTools	

(version	 2.16.2)	 getfasta	 function	 [278].	 Sequences	were	 then	 analysed	 using	

Tandem	Repeat	Finder	(version	4.07b)	to	identify	repeat	sequences	[325].	The	

output	was	manually	inspected	to	identify	any	common	repeat	units.		

	

4.2.6.	Analysis	of	the	EhR2	episome	

	

Identification	 of	 rDNA	 episomal	 sequences	 has	 been	 previously	 described	 in	

section	2.2.7.	Contigs	with	BLAST	hits	(section	2.2.7)	to	the	previously	identified	

E.	 histolytica	 HM-1:IMSS	 rDNA	 sequence	 were	 extracted.	 A	 14	 Kbp	 repeat	

containing	 the	 rDNA	 sequence	was	 identified	 across	multiple	 contigs.	 The	 14	

Kbp	repeat	arrays	were	split	into	individual	repeat	units	and	aligned	using	the	

Cyclic	 DNA	 Sequence	 Aligner	 (http://kdbio.inesc-id.pt/~csa/).	 The	 consensus	

alignment	was	digested	in	silico	using	NEBCutter	[326]	with	restriction	enzymes	

previously	 reported	 in	 the	 rDNA	 restriction	 maps	 of	 the	 E.	 histolytica	 rDNA	

episomes	[241].	

	

4.2.7.	Confirmation	of	the	absence	of	EhR1	episome	

	

Previous	 restriction	 maps	 for	 EhR1	 and	 EhR2	 were	 manually	 inspected	 to	

identify	unique	regions	in	the	EhR1	episome	that	would	distinguish	it	from	the	

EhR2	 episome.	 The	 restriction	 sequence	 for	 PvuI	 was	 identified	 as	 only	

occurring	in	the	EhR1	episome.	The	restriction	site	for	PvuI	(CGATCG)	was	used	

as	a	query	in	a	string	match	search	against	the	original	PacBio	sub-reads	
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4.3.	Results	
	

4.3.1.	 tRNA	 genes	 are	 abundant	 in	 the	 new	 E.	 histolytica	 HM:1-IMSS	

genome	assembly	

	

tRNAscan-SE	 was	 used	 to	 scan	 the	 new	 Entamoeba	 histolytica	 HM-1:IMSS	

genome	 assembly.	 4,436	 tRNA	 genes	 were	 identified	 with	 213/563	 of	 the	

contigs	 containing	 at	 least	 one	 tRNA	 gene.	 333	 Kbp	 of	 the	 genome	 (1.2%)	 is	

made	up	solely	of	 tRNA	gene	sequence	with	an	average	 tRNA	 length	of	75	bp.	

These	tRNA	genes	are	largely	arranged	into	25	distinct	array	units,	with	a	small	

number	 dispersed	 as	 individual	 genes	 within	 the	 genome.	 The	 tRNA	 arrays	

account	for	1.9	Mbp	of	the	genome	assembly	(7.2%)	and	occur	across	two	types	

of	contigs	defined	as	tRNA-only	contigs	(n=137)	and	tRNA-genic	contigs	(n=21).	

tRNA-only	contigs	are	entirely	composed	of	 tRNA	array	units	 from	end-to-end	

whereas	contigs	in	which	tRNA	arrays	are	present	with	non-array	sequence	are	

referred	to	as	tRNA-genic	contigs.	

	

Most	 tRNA	 isoacceptor	 genes	 occur	 as	 single-exon	 genes.	 LeuAAG,	 IleTAT,	 and	

TyrGTA	all	have	 two	exons	and	one	 intron.	AsnGTT	and	LeuTAA	both	exist	as	 two	

forms	 in	 the	genome;	one	 copy	contains	one	exon	and	 the	other	 contains	 two	

exons	with	an	intron.	

	

tRNA	abundance	(i.e.	depth	of	mapping	of	reads	to	tRNA	genes)	is	not	correlated	

with	 codon	 usage	 in	 the	 Entamoeba	 histolytica	HM-1:IMSS	 genome	 (R2=0.01,	

p=0.45).		One	of	the	most	abundant	tRNA	isoacceptor	types,	IleTAT,	accounts	for	

3.41%	of	codons	in	CDSs	however	only	exists	as	a	few	dispersed	copies	across	

the	assembly	and	has	an	average	coverage	depth	of	397x.	Conversely,	one	of	the	

least	used	tRNA	isoacceptors,	AspCGC,	accounts	for	only	0.09%	of	codons	in	CDSs	

but	exists	as	multiple	copies	within	an	array	and	has	an	average	coverage	depth	

of	4018x.		

	

For	 many	 amino	 acids,	 the	 corresponding	 codon	 can	 exist	 in	 multiple	 forms	

(synonymous	 codons).	 These	 synonymous	 codons	 usually	 have	 different	
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nucleotides	 at	 the	 last	 base	 pair	 position	 (degenerate	 positions).	 As	 the	 E.	

histolytica	genome	 is	very	AT–rich,	degenerate	 third	codon	positions	are	often	

biased	towards	A	or	T	bases.	This	is	observed	in	the	CDSs	where	86.0%	of	the	

codons	end	in	one	of	these	bases.	It	may	be	expected	that	due	to	this,	there	may	

be	 a	 bias	 in	 the	 number	 of	 tRNA	 isoacceptor	 genes	 that	 associate	with	 these	

codons.	 tRNA	 isoacceptors	 that	 correspond	 to	 codons	 with	 an	 A	 or	 T	 in	 a	

degenerate	position	have	an	average	coverage	of	2,459x	and	tRNA	isoacceptors	

that	 correspond	 to	 codons	 with	 a	 G	 or	 T	 in	 a	 degenerate	 position	 have	 an	

average	 coverage	 of	 2,620x,	 suggesting	 no	 correlation	 between	 the	 copy	

number	 of	 the	 tRNA	 isoacceptor	 genes	 and	 the	 base	 pair	 present	 in	 the	

degenerate	site	of	a	codon.	

	

4.3.2.	Dispersed	tRNA	genes	are	more	abundant	than	previously	reported	

	

Previous	 estimates	 reported	 that	 30	 tRNA	 genes	were	 present	 in	 the	 genome	

without	 forming	 part	 of	 an	 array	 unit	 and	 no	 tRNAs	 that	 appeared	 within	 a	

tRNA	 array	 also	 appeared	 dispersed	 in	 the	 genome	 [4].	 In	 the	 new	 PacBio	

assembly,	 seven	 tRNA	 isoacceptor	 types	were	 found	 to	 be	 dispersed	 in	 small	

numbers	 throughout	 the	genome	 totalling	63	dispersed	 tRNA	genes.	 	Of	 these	

seven	tRNA	isoacceptor	types	(Table.	4.3.1.),	three	were	also	encoded	in	a	tRNA	

array.	Generally,	the	tRNA	genes	that	occur	as	part	of	an	arrayed	unit	elsewhere	

appear	 at	 a	 lower	 frequency	 than	 those	 tRNA	 genes	 that	 exist	 solely	 as	

dispersed	copies	(Table.	4.3.1.).		
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Table	 4.3.1.	 Dispersed	 tRNA	 isoacceptor	 types	 in	 the	 PacBio	 Entamoeba	

histolytica	HM-1:IMSS	 genome	 assembly.	 tRNAscan-SE	was	used	 to	 identify	

tRNA	 genes	 in	 the	 genome	 assembly.	 Manual	 inspection	 of	 the	 output	

determined	which	tRNA	genes	were	encoded	in	a	non-arrayed	unit.	

A	 tRNA	 isoacceptor	 types	 that	 do	 not	 have	 an	 intron-containing	 sequence	

variant	are	denoted	as	a	dash	(-)	
B	tRNA	isoacceptor	types	that	do	not	exist	as	an	arrayed	unit	are	denoted	by	a	

hash	(#)	

	

As	 previously	mentioned,	 two	 isoacceptor	 types	 (AsnGTT,	 and	 LeuTAA)	 exist	 as	

two	 distinct	 sequence	 types	 with	 one	 containing	 an	 intron.	 In	 both	 of	 these	

cases,	 the	dispersed	copies	of	 the	 tRNA	contain	an	 intron.	The	52	other	exon-

only	copies	of	LeuTAA	gene	and	 the	96	remaining	copies	of	 the	AsnGTT	gene	are	

arranged	 in	 arrayed	 units.	 None	 of	 these	 contain	 an	 intron,	meaning	 that	 the	

intron-containing	 versions	 of	 these	 two	 genes	 are	 exclusive	 to	 the	 non-array	

regions	of	the	genome.		

	 	

	 	

tRNA	

isoacceptor	

type	

Number	dispersed	in	

E.	histolytica	HM-

1:IMSS	PacBio	

assembly	

Number	

containing	an	

intron	A	

Array	type	B	

LeuTAG	 13	 -	 #	

IleTAT	 35	 35	 #	

GlyCCC	 7	 -	 #	

ArgCCG	 1	 -	 #	

ArgACG	 2	 -	 R5	

LeuTAA	 1	 1	 ALL	

AsnGTT	 2	 2	 NK	

	Total	 63	 	 	
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4.3.3.	 Genetic	 variability	 among	 tRNA	 array	 repeat	 units	 in	 the	 same	

genome	

	
The	remaining	4,436	 tRNA	genes	are	arranged	 in	arrays	of	units	 consisting	of	

one	or	more	tRNA	separated	by	short	tandem	repeats	(STRs).	Several	different	

STRs	 can	 occur	 between	 adjacent	 tRNA	 genes	 in	 a	 unit.	 Units	 are	 repeated	 in		

tandem	to	create	long	arrays	(the	longest	assembled	being	43,389	bp).	25	array	

unit	 types	 have	 been	 previously	 identified	 [4,306].	 The	 PacBio	 assembly	

contained	all	25	of	 these,	with	no	new	 tRNA	array	 types	 identified.	 Individual	

array	unit	lengths	varied	between	471	bp	and	1,777	bp,	arranged	into	arrays	of	

up	 to	 43,389	 bp	 (excluding	 the	 ProTGG	 array	which	 did	 not	 form	 a	multi-unit	

array).	

	

Most	of	the	arrays	showed	evidence	of	variation	among	units	in	the	same	array	

(expanded	 in	 4.3.2).	 The	 modal	 length	 for	 each	 array	 was	 calculated	 and	

compared	to	the	array	unit	lengths	previously	report	by	Clark	et	al	[4]	and	are	

reported	 in	 Table	 4.3.2.	 They	 were	 largely	 consistent	 with	 those	 previously	

reported,	with	 two	exceptions:	 the	ASD	array	units	are	generally	9	bp	smaller	

than	has	been	previously	reported	and	the	WI	array	units	are	generally	24	bp	

larger.	This	is	due	to	differences	in	the	STR	regions.	In	the	case	of	the	ASD	array,	

the	previously	reported	ASD	sequence	contains	an	extra	copy	of	an	8	bp	tandem	

repeat	sequence	followed	by	a	1bp	indel	in	the	STR	region	between	the	AspGTC	

and	SerGCT	 tRNA	 isoacceptor	genes.	The	PacBio	assembled	WI	array	contained	

one	extra	copy	of	two	separate	STR	sequences	of	8	bp	and	16	bp,	respectively	

(Figure	4.3.1).		 	

	

The	 ProTGG	 array	 was	 not	 assembled	 into	 a	 multi	 unit	 array	 in	 the	 new	 E.	

histolytica	 HM-1:IMSS	 genome.	 tRNAscan-SE	 identified	 only	 one	 full-length	

ProTGG	 isoacceptor	 gene	 and	 one	 partial	 ProTGG	 isoacceptor	 gene.	 These	 were	

positioned	 at	 the	 end	 of	 a	 contig	 with	 the	 partial	 ProTGG	 isoacceptor	 gene	

terminating	the	contig	sequence.	The	two	genes	were	761	bp	apart,	consistent	

with	 the	 ProTGG	array	 unit	 length	 reported	 previously	 [4].	 The	 putative	 array	

unit	was	aligned	to	the	published	ProTGG	array	unit	sequence	(accession	number	
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BK005669)	 and	 visualised	 using	 SeaView	 [280].	 Sequences	 showed	 100%	

identity.	The	existence	of	 the	ProTGG	was	confirmed	using	PCR	amplification	of	

the	array	unit.	To	confirm	that	the	ProTGG	array	units	exist	as	array	structures	in	

the	 new	 PacBio	 assembly,	 unassembled	 reads	 generated	 from	 the	 PacBio	

sequencing	 were	 analysed	 using	 tRNAscan-SE	 [240]	 to	 identify	 tRNA	 genes.	

2,013	 ProTGG	 isoacceptor	 genes	 were	 identified	 across	 489	 reads.	 The	 largest	

number	of	ProTGG	isoacceptor	genes	on	a	single	read	was	16	copies,	positioned	

at	 intervals	 of	 761	 bp.	 This	 confirmed	 that	 the	 ProTGG	 isoacceptor	 array	 unit	

found	 in	 the	 assembly	 also	 exists	 as	 tandemly	 arrayed	 units	 in	 the	 PacBio	

genome.	A	product	approximately	800	bp	in	length	was	visualised	before	being	

extracted	and	sequenced	using	Sanger	sequencing.	The	sequence	was	identified	

as	 the	Entamoeba	histolytica	ProTGG	array	unit	using	BLASTn	(BK005669,	99%	

identity,	e-value	=	0.0).	 	
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Variation	in	unit	 length	among	array	repeat	units	was	seen	in	nearly	all	of	 the	

array	 types	 though	 some	 array	 units	 showed	 more	 variation	 in	 length	 than	

others.	A	variation	 index	was	calculated	 for	each	array	 type	using	 the	 formula	
!
!

 × 100,	where	R	 is	 the	range	 in	 length	among	the	different	array	units	and	L	

the	 modal	 length	 of	 the	 array	 units.	 Variation	 was	 classified	 into	 three	

categories	 based	 on	 how	 much	 variation	 was	 observed	 when	 multiple	 array	

units	from	the	same	array	were	aligned.	Array	units	with	a	variability	index	of	

0-5,	5-10	and	10-15	were	classified	as	having	low,	medium	and	high	variability,	

respectively	(Table	4.3.2).	The	majority	of	array	types	(14/25)	show	low	inter-

unit	variation.	Of	the	remaining	11,	seven	showed	medium	variation	and	three	

showed	high	variation.	Variation	for	the	ProTGG	array	could	not	be	calculated	as	

only	one	copy	of	the	array	was	assembled	into	the	PacBio	genome.	

	

Inter-unit	 variation	 occurs	 almost	 exclusively	 in	 the	 STR	 regions	 between	 the	

tRNA	genes.	The	length	variation	in	the	all	of	the	arrays	classified	as	having	low	

variation	(Table	4.3.2)	was	explained	by	small	indels	(1-3	bp)	in	regions	of	the	

STR	where	 a	 string	 of	 adenines	 (poly-A	 regions)	 occurs.	 Arrays	with	medium	

and	 high	 variation	 also	 contain	 these	 small	 indels.	 However,	 the	 arrays	 with	

higher	 variation	 also	 have	 different	 STR	 copy	 numbers	 between	 units	 in	 the	

same	array.	On	three	occasions,	the	deletion	or	partial	deletion	of	a	whole	tRNA	

gene	was	observed.	This	was	observed	once	in	the	WI,	ASD	and	V5	arrays	and	

however,	the	deletion	of	tRNA	gene	was	not	correlated	with	the	variation	index	

as	 the	 WI,	 ASD	 and	 V5	 array	 units	 were	 classified	 as	 all	 having	 a	 medium	

variation	 index.	 With	 the	 exception	 of	 these	 rare	 deletions,	 the	 tRNA	 gene	

sequences	were	highly	conserved	between	array	units.	

	

Despite	some	variation	among	STR	regions	within	a	single	array	type,	alignment	

of	multiple	reads	from	the	same	array	and	manual	inspection	showed	that	most	

copies	 of	 an	 array	 unit	 are	 homogenous	 in	 length	 and	 sequence.	 This	 was	

confirmed	by	PCR	amplification	across	a	range	of	different	array	types	(2	low,	2	

medium	 and	 3	 high	 variability	 arrays)	 followed	 by	 Sanger	 sequencing	 of	 the	

PCR	product.	Manual	 inspection	of	 the	 Sanger	 chromatograms	 showed	 evenly	

spaced	single	peaks	and	did	not	show	any	instances	of	mixed	peaks	indicative	of	
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SNPs	or	indels	in	the	tRNA	array	units	(Figure	4.3.2).	 	This	suggests	that	inter-

unit	variability	 is	below	the	level	that	 it	can	be	detected	by	Sanger	sequencing	

and	 the	 majority	 unit	 type	 determines	 the	 genotype	 measured	 by	 PCR	 and	

sequencing.	
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Figure	 4.3.2.	 Sanger	 sequencing	 of	 intergenic	 STR	 regions	 in	 the	 tRNA	

array	 units.	 tRNA	 arrays	 were	 classified	 as	 having	 low,	 medium	 or	 high	

sequence	 variability	 ( !"#$% !"#$""% !"#$%&' !"# !!!"#$%# !""!# !"#$
!"#$% !"#$%!

 × 100)) .	 The	

intergenic	regions	of	a	range	of	arrays	were	sequenced	using	Sanger	sequencing	

and	analysed	 to	determine	 if	 sequence	variability	could	be	detected.	Traces	of	

STR	sequences	from	each	variability	category	are	shown	(Low	=	[RT],	Medium	=	

[RTCT],	High	=	[VME5]).	No	variation	or	mixed	bases	were	detected	in	any	of	the	

STR	traces.	 	

[	 ]	ArgCCT	 ThrAGT	

A)	[RT]	Array	(Low	Variability)	

[	 ]	ArgTCT	

B)	[RTCT]	Array	(Medium	Variability)	

[	 ]	ValCAC	

C)	[VME5]	Array	(High	Variability)	

MetCAT	 GluCTC	
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4.3.4.	Sequence	evidence	is	consistent	with	the	occurrence	of	tRNA	arrays	

at	the	end	of	chromosomes	

	

It	has	been	suggested	that	tRNA	arrays	act	as	telomeres,	capping	the	

chromosomes	in	an	mechanism	analogous	to	that	seen	in	Dictyostelium	

discoideum	[306].	Manual	inspection	of	contigs	containing	tRNA	array	sequence	

and	genic	sequence	(tRNA-genic	contigs)	were	analysed	to	identify	where	the	

arrays	were	located	within	the	contigs.	21	tRNA-array	contigs	were	identified	

and	are	summarised	in	Table	4.3.3.	

	

All	of	the	tRNA	arrays	within	the	tRNA-contigs	were	flanked	exclusively	at	one	

end	of	the	array.	There	were	no	occasions	where	a	tRNA	array	was	flanked	on	

both	ends	by	genic	sequence.	Nearly	all	of	the	21	tRNA-genic	contigs	contained	a	

distinct	tRNA	array	with	the	only	exception	to	this	being	contigs	Ehis_175	and	

Ehis_212	 that	 are	 both	 terminated	 by	 a	 VF	 array	 orientated	 in	 opposite	

directions,	meaning	the	array	could	occur	within	a	chromosome	(Figure	4.3.3).		

	
Five	tRNA	array	types		(LS,	NK1,	RTCT,	TQ	and	TX)	were	identified	only	in	contigs	

entirely	comprised	of	tRNA	array	units.	Therefore,	the	genomic	location	of	these	

arrays	could	not	be	determined.		

	

In	other	protists,	the	repeat	unit	that	forms	the	telomeres	is	often	a	5-8	bp	unit	

similar	to	the	telomeric	sequence	identified	in	humans	(TTAGGG,	Data	from	the	

Telomerase	Database,	http://telomerase.asu.edu).	The	repeat	is	common	to	all	

the	telomeres	in	an	organism	however,	the	length	of	these	repeats	can	vary.	To	

test	 whether	 any	 repetitive	 sequences	 (outside	 of	 those	 that	 exist	 as	 tRNA	

arrays)	were	present	at	the	terminal	ends	of	the	contigs	in	the	PacBio	assembly,	

150	bp	sequences	from	both	ends	of	every	contig	were	analysed	using	Tandem	

Repeat	 Finder.	 25	 sequences	 contained	 a	 small	 repeat	 (<20	 bp	 per	 unit)	

however,	none	of	these	repeats	occurred	at	the	end	of	two	or	more	contigs.	
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Table	4.3.3.	tRNA-genic	contigs	summary.	tRNAscan-SE	was	used	to	identify	

tRNA	 genes	 in	 the	 genome	 assembly.	 Manual	 inspection	 of	 the	 output	

determined	which	 contigs	 contained	 both	 genic	 sequence	 and	 tRNA	 sequence	

(tRNA-genic	contigs).	

A	tRNA	array	location	was	determined	as	being	terminal	(i.e.	tRNA	array	flanked	

at	one	end	only	by	genic	sequence)	or	 intergenic	(tRNA	array	 flanked	on	both	

ends	by	genic	sequence)	
B	 Two	 arrays	 were	 found	 to	 contain	 the	 same	 tRNA	 type	 (VF).	 These	 are	

highlighted	in	the	table	

Contig	

Contig	
Length	
(bp)	

tRNA	array	type	
terminating	the	

contig	

Length	of	
terminating	

tRNA	array	(bp)	

tRNA	Array	
location	A	

Ehis_002	 486,879	 SPPCK	 9,419	 Terminal	

Ehis_013	 274,584	 WI	 27,459	 Terminal	

Ehis_044	 159,583	 V5	 36,008	 Terminal	

Ehis_064	 108,674	 VME5	 9,757	 Terminal	

Ehis_071	 99,721	 SD	 3,981	 Terminal	

Ehis_119	 61,257	 ALL	 12,267	 Terminal	

Ehis_130	 53,025	 PTGG	 795	 Terminal	

Ehis_164	 40,748	 YE	 11,091	 Terminal	

Ehis_175B	 38,079	 VF	 7,785	 Terminal	

Ehis_187	 34,451	 SQCK	 11,104	 Terminal	

Ehis_190	 34,029	 AAGC	 861	 Terminal	

Ehis_212B	 28,385	 VF	 16,174	 Terminal	

Ehis_222	 25,995	 GGCC	 5,965	 Terminal	

Ehis_224	 25,606	 GTCC	 11,100	 Terminal	

Ehis_234	 23,661	 HGTG	 6,058	 Terminal	

Ehis_241	 23,049	 ASD	 1,757	 Terminal	

Ehis_253	 21,689	 LT	 16,985	 Terminal	

Ehis_255	 21,287	 RT	 12,683	 Terminal	

Ehis_295	 15,011	 NK2	 11,799	 Terminal	

Ehis_334	 11,898	 MR	 1,013	 Terminal	

Ehis_405	 5,311	 R5	 1,859	 Terminal	
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Figure	 4.3.3.	 The	 ‘VF’	 tRNA	 array	may	 be	 a	 single	 array	 flanked	 by	 non-

repetitive	 chromosomal	 sequence.	 Two	 tRNA-genic	 contigs	 terminate	 with	

the	VF	array:	Ehis_175	(Panel	A)	and	Ehis_212	(Panel	B).	The	VF	arrays	of	these	

two	scaffolds	are	orientated	 in	directions	that	would	allow	them	to	be	aligned	

such	that	the	resulting	contig	would	contain	an	internalised	VF	array	(Panel	C).	

The	true	size	of	the	resultant	internalised	VF	array	cannot	be	determined.	 	

				 		 		 				 		 		 		 		 				 		

VF	Array	Units	(7,785	bp)	 Non-repe99ve	sequence	(30,294	bp)	

A)	

Ehis_175	
(38,079	bp)	

VF	Array	Units	(16,174	bp)	 Non-repe99ve	sequence	(12,211	bp)	

		

		 		 		 				 		 		 		 		 				 		

				 		 		 				 		 		 		 		 				 		

		

								 												 				

				 		 		 				 		 		 		 		 				 		

		

								 												 				

Collapsed	VF	repeat	units	
(True	length	of	the	VF	region	is	unknown)	

B)	

Ehis_212	
(28,385	bp)	

C)	



	 163	

4.3.5.	Sequence	evidence	suggests	loss	of	the	EhR1	rDNA	episome	from	the	

E.	histolytica	HM-1:IMSS	cell	line	sequenced	in	this	study	

	

The	rDNA	genes	have	been	previously	found	exclusively	on	extra-chromosomal	

plasmids	 that	 contain	 either	1	 (EhR2)	or	2	 transcriptional	 rDNA	units	 (EhR1)	

[125,241,311].	 To	 detect	 these	 sequences	 in	 the	 new	E.	histolytica	HM-1:IMSS	

genome	assembly,	the	rDNA	sequence	was	used	in	a	BLASTN	search	to	identify	

contigs	containing	rDNA	genes.	These	were	then	restriction	digested	in	silico	to	

check	 if	 the	 restriction	 pattern	 corresponded	 with	 the	 patterns	 observed	 in	

EhR1	and	EhR2	[110].		

	

No	chromosomal	rDNA	genes	were	found	in	the	new	PacBio	assembly.	Multiple	

contigs	 were	 assembled	 in	 the	 preliminary	 assemblies	 containing	 a	 14	 Kbp	

section	of	sequence	repeated	multiple	times.	Splitting	the	contigs	into	individual	

14	 Kbp	 repeats	 and	 then	 aligning	 these	 to	 create	 a	 consensus	 sequence	 was	

used	for	analysis.	All	of	the	rDNA	genes	were	found	in	this	14	Kbp	sequence	in	

the	same	orientation	and	distance	 from	each	other	seen	 in	 the	reported	EhR2	

episome.	In	silico	digestion	of	the	14	Kbp	sequence	also	identified	that	the	same	

short	 tandem	 repeat	 families	 found	 in	 the	 published	 EhR2	 episome	 were	

present	 in	 the	14	Kbp	sequence	 fragment	(in	 the	same	orientation).	Finally,	 in	

silico	digestion	 of	 the	 14	Kbp	 fragment	 using	HindIII	 and	EcoR1	 resulted	 in	 a	

very	 similar	 restriction	 enzyme	 digestion	 pattern	 that	 has	 previously	 been	

determined	(Figure	4.3.4),	further	suggesting	the	14	Kbp	fragment	is	the	EhR2	

episome.	
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Figure	 4.3.4.	 Sequence	 organization	 of	 the	 Entamoeba	 histolytica	 HM-

1:IMSS	 EhR2	 episomes	 as	 previously	 identified	 EhR2	 (Panel	 A)	 and	

characterized	 from	 PacBio	 sequencing	 (Panel	 B).	Restriction	enzyme	sites	

indicated	on	the	circles	are	EcoR1	(E),	HindIII	(H)	and	BamHI	(B).	Short	tandem	

repeat	 families	 are	 marked	 as	 PvuI,	 ScaI,	 HinfI,	 AvaII,	 74	 bp	 and	 DraI	 with	

orientation	indicated	by	arrows.	 	

S3	
HinfI	

E(1)	

B(2.3)	

AvaII	

74	bp	
H(4.8)	

361	bp	

E(7.2)	
E(8.0)	

E(8.9)	
rDNA	

E(9.8)	

H(11.2)	S1	

S2	

DraI	

ScaI	

Published	EhR2	
14,100	bp	

A)	Published	EhR2	episome	

S3	
HinfI	

E(1)	

AvaII	

74	bp	

H(4.5)	
361	bp	

E(6.8)	
E(7.6)	

E(8.6)	
rDNA	

E(9.4)	

H(10.8)	
S1	

S2	

DraI	

ScaI	

PacBio	assembly	EhR2	
14,522	bp	

B)	PacBio	assembly	EhR2	episome	
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The	 EhR1	 episome	 could	 not	 be	 found	within	 the	 new	 PacBio	 assemblies.	 To	

ensure	that	sequence	reads	from	the	EhR1	episome	were	not	misassembled	into	

the	 similar	 EhR2	 episome,	 raw	 reads	 from	 the	 PacBio	 were	 used	 in	 a	 string	

match	query	on	 command	 line	 search	using	 a	unique	 region	of	 the	EhR1	as	 a	

query.	The	EhR1	episome	contains	a	PvuI	short	tandem	repeat	 family	that	has	

been	lost	from	the	EhR2	episome	during	recombination.	This	restriction	site	(5’-

CGAT^CG-3’)	 was	 not	 found	 within	 the	 raw	 reads,	 suggesting	 that	 the	 EhR1	

episome	really	was	absent	from	the	cell	line.	

Mapping	 of	 short	 paired	 end	 Illumina	 reads	 generated	 for	 E.	 histolytica	HM-

1:IMSS	 revealed	 an	 average	 depth	 of	 coverage	 across	 the	 extra-chromosomal	

EhR2	episome	to	be	approximately	530,000x	compared	to	an	average	depth	of	

coverage	across	the	genomic	portion	of	the	genome	of	2,579x.	This	suggests	that	

the	 EhR2	 episome	 has	 a	 relative	 copy	 number	 of	 approximately	 200	 copies	

(530000/2579	=	205.5).	
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4.4.	Discussion	
	

4.4.1.	Intra-genome	variation	occurs	within	the	tRNA	short	tandem	repeat	

(STR)	sequence	

	

The	 tRNA	 STRs	 are	 used	 as	 population	 genetic	 markers	 for	 strain	 typing	 of	

Entamoeba	 species	 [230].	Researchers	have	attempted	 to	 identify	specific	STR	

genotypes	 linked	 to	 phenotypes,	 such	 as	 virulence.	 Such	 work	 relies	 on	 STR	

markers	 that	 consistently	 produce	 a	 single	 signal	 for	 an	 individual	

genome/strain.	 A	mixed	 signal	 for	 an	 STR	within	 a	 strain	 would	 invalidate	 a	

marker	 for	genotyping	analyses.	 	The	tRNA	STRs	are	potentially	poor	markers	

because	 they	 exist	 in	 multiple	 copies	 per	 genome,	 so	 that	 appreciable	

differences	 among	 different	 copies	 could	 create	 a	 mixed	 signal	 for	 a	 marker.	

Previous	analysis	predicted	that	most	copies	of	an	array	unit	are	homogenous	in	

length	and	sequence	[4].	Here,	it	was	possible	to	investigate	this	further,	owing	

to	the	 long	reads	produced	from	SMRT	sequencing	and	the	assembly	of	multi-

unit	tRNA	arrays.		

Intra-genome,	and	intra-array,	variation	among	the	tRNA	STRs	was	observed,	to	

different	degrees	for	different	arrays.	Variation	among	array	units	on	the	same	

read	 is	 evidence	 of	 intra-genome	 variation	 (within	 a	 single	 trophozoite).		

Variation	 seen	 among	 reads	 (and	 among	 assembled	 contigs)	 could	 indicate	

inter-genome	 variation,	 as	 the	 assembly	 was	 generated	 from	 a	 pool	 of	

trophozoites.	 Despite	 the	 variation	 observed,	 PCR	 and	 Sanger	 sequencing	

showed	 that	 it	was	not	sufficient	 to	have	an	effect	on	 the	consensus	sequence	

produced	 (producing	 a	 mixed	 genotype),	 meaning	 that	 the	 tRNA	 STRs	 are	

probably	 reliable	markers	 (in	 this	 case).	 However,	 the	 arrays	 are	 likely	 to	 be	

evolving	by	concerted	evolution,	whereby	duplications	of	a	STR	sequence	that	is	

different	 from	 the	 majority	 sequence	 occurs	 and	 eventually	 replaces	 the	

majority	 sequence	 by	 slipped-strand	 mis-pairing	 and	 gene	 conversion	 to	

become	 the	 new	 stable	 STR	 sequence.	 Given	 that	 this	 is	 a	 different	molecular	

evolutionary	process	than	both	the	stepwise	mutation	of	microsatellites	and	the	

mis-incorporation	and	substitution	of	 single	nucleotides,	 care	 should	be	 taken	

in	how	the	markers	are	used.	
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4.4.2.	Frequencies	of	 tRNA	genes	 in	arrays	are	not	correlated	with	codon	

usage	bias	

	

The	PacBio	Entamoeba	histolytica	HM-1:IMSS	genome	assembly	suggests	that	at	

least	 some	 copies	 of	 each	distinct	 tRNA	gene	within	 the	 tRNA	arrays	must	 be	

functional.	 This	 is	 because	 only	 seven	 distinct	 tRNA	 isoacceptor	 genes	 are	

assembled	outside	of	the	tRNA	arrays.	The	tRNA	genes	within	the	tRNA	arrays	

are	also	highly	conserved	and	show	almost	no	variation	between	copies	of	the	

same	 tRNA	 gene	 within	 and	 between	 array	 units	 suggesting	 that	 selection	 is	

occurring	on	these	genes	to	conserve	their	sequence	and	function.		

	

The	tRNAs	genes	that	exist	 in	arrays	occur	in	huge	numbers	(~4300	genes)	 in	

the	 array	 units	 and	 evidence	 large	 sequence	 depth	when	 reads	were	mapped	

back	 the	gene	sequences	of	 the	 tRNA	genes.	The	 few	 tRNA	genes	 that	exist	as	

dispersed	 copies	 on	 the	 genome	 exist	 as	 far	 fewer	 copies	 and	 have	 lower	

coverage	depth.	Despite	 the	range	 in	abundances	of	 individual	 tRNA	genes,	no	

correlation	exists	with	the	codon	usage	in	protein	coding	sequences.	Further,	no	

bias	was	observed	in	coverage	of	those	tRNA	genes	that	encode	codons	with	an	

adenine	or	thymine	at	 the	degenerate	base	position	(wobble	base)	despite	the	

genome	being	very	AT-rich.	Owing	 to	 the	 redundancy	 seen	 in	 the	 tRNA	genes	

and	 the	 observation	 of	 no	 correlation	 between	 abundance	 and	 usage,	 means	

there	is	no	evidence	for	strong	selection	on	copy	number	caused	by	codon	usage	

bias	 (or	 selection	 on	 codon	 usage	 caused	 by	 the	 copy	 number	 of	 tRNA	 gene	

types).	 The	 lack	 of	 strong	 selection	 may	 suggest	 that	 the	 tRNA	 arrays	 serve	

another	purpose	within	 the	Entamoeba	histolytica	HM-1:IMSS	genome	such	as	

providing	 a	 structural	 role	 or	 regulatory	 role	 as	 was	 suggested	 through	

previous	identification	of	S/MARs	in	many	of	the	tRNA	arrays	[306].	

	

4.4.3.	tRNA	array	sequence	data	is	consistent	with	the	evidence	that	tRNA	

arrays	act	as	telomeres	

	

It	has	been	proposed	that	tRNA	arrays	may	act	as	telomeres,	capping	the	ends	of	

chromosomes	and	protecting	them	from	degradation	[306].	The	PacBio	genome	
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assembly	and	annotation	is	consistent	with	this	model.	No	telomerase	gene	was	

identified	 during	 gene	 annotation	 of	 the	 PacBio	 genome	 (Chapter	 3)	 and	 no	

common	repeat	was	identified	within	the	first	or	last	150	bp	of	sequence	across	

any	 of	 the	 contigs	 in	 the	 PacBio	 assembly,	 suggesting	 that	 a	 short	 (<20bp)	

repeat	does	not	form	the	telomeres	in	E.	histolytica.	The	assembled	tRNA	arrays	

were	 never	 flanked	 on	 both	 ends	 by	 non-repetitive	 DNA,	 but	 a	 small	 set	

(21/563)	of	contigs	was	flanked	on	one	end	by	non-repetitive	DNA	(tRNA-genic	

contigs).	 	With	the	exception	of	 two	of	 these	contigs,	all	are	terminated	with	a	

different	array	type.	If	this	was	due	to	the	assembler	being	unable	to	assemble	a	

complete	internal	array	and	both	flanking,	non-array	regions,	we	would	expect	

to	 see	 more	 cases	 like	 that	 of	 the	 VF	 array,	 where	 two	 different	 tRNA-genic	

contigs	end	with	 the	same	 tRNA	array	 type,	 in	orientations	which	could	allow	

them	to	be	scaffolded	in	such	a	way	that	an	internalised	tRNA	array	exists.		We	

see	 this	 only	 once,	 suggesting	 that	 the	 other	 19	 arrays	 occur	 at	 the	 ends	 of	

chromosomes.	 It	 is	 proposed	 that	 the	 E.	 histolytica	 HM-1:IMSS	 contains	 14	

chromosomes	 (hence,	 28	 telomeric	 ends).	 25	 tRNA	 array	 units	 have	 been	

previously	 identified	 (all	 of	 which	 were	 confirmed	 in	 the	 PacBio	 assembly),	

potentially	accounting	for	12	chromosomes	(+1	end).		The	new	assembly	has	21	

tRNA-genic	 contigs	 that	 could	 account	 for	 9	 chromosomes	 (+1	 end)	 and	 one	

internal	array,	or	10	chromosomes	(+1	end).	It	remains	to	be	seen	if	the	4	arrays	

that	do	not	occur	in	tRNA-genic	contigs	are	anchored	to	the	non-array	genome,	

or	 possibly	 occur	 as	 episomes	 or	 mini-chromosomes.	 A	 final	 piece	 of	

circumstantial	evidence	for	a	telomeric	role	 is	that	many	of	the	STRs	and	DNA	

regions	surrounding	the	tRNA	genes	are	highly	methylated,	accounting	 for	 the	

majority	 of	 methylation	 in	 the	 E.	 histolytica	 genome	 (Chapter	 5).	 DNA	

methylation	 has	 been	 associated	 with	 telomere	 length	 and	 stability	 and	 may	

contribute	 to	 the	 formation	 of	 heterochromatic	 regions	 in	 the	 genome	 and	

transcriptional	 silencing	 [327].	 Telomeres	 are	 constitutively	 heterochromatic,	

and	 the	 presence	 of	DNA	methylation	 of	 the	 tRNA	 STRs	may	 suggest	 that	 the	

tRNA	 arrays	 are	 organised	 into	 a	 similar	 heterochromatic	 state	 [328].	

Methylation	of	the	tRNA	array	units	is	discussed	in	greater	detail	in	Chapter	5.		
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4.4.4.	rDNA	episome	sequences	differ	 from	those	previously	 identified	 in	

Entamoeba	histolytica	HM-1:IMSS	

	

The	absence	of	the	any	PvuI	cut	sites	in	any	of	the	sequence	reads	indicates	that	

EhR1	has	been	lost	from	the	Entamoeba	histolytica	HM-1:IMSS	genome	whilst	it	

has	been	in	culture.	This	is	because	both	the	strain	cultured	at	the	University	of	

Liverpool	 and	 the	 strain	 analysed	 for	 rDNA	 sequence	 at	 Jawaharlal	 Nehru	

University	 (where	much	 of	 the	work	 on	 the	 rDNA	 episomes	 has	 been	 carried	

out)	 are	 from	 the	 same	 original	 HM-1:IMSS	 strain.	 This	 is	 significant	 as	 it	

highlights	 the	 plasticity	 of	 the	 rDNA	 episomes,	 suggesting	 that	 the	 rDNA	

episomes	may	be	redundant	and	the	loss	of	one	of	these	from	E.	histolytica	is	not	

detrimental	 to	 the	 survival	 of	 E.	 histolytica	 trophozoites	 in	 vitro.	 This	 is	 of	

particular	 importance	 as	 often	 regions	 from	 EhR1	 are	 used	 to	 screen	 for	

Entamoeba	histolytica	positive	samples	 [329,330].	Though	some	of	 the	marker	

and	probes	generated	from	EhR1	are	represented	in	the	EhR2	episomes,	some	

markers	are	not	such	as	those	generated	from	the	upstream	region	of	the	rDNA	

that	is	lost	when	EhR2	is	generated	from	recombination	of	EhR1.	This	upstream	

region	 contains	 many	 unique	 sequences	 including	 the	 Tr	 region	 that	 is	

transcribed	 into	 a	 polyadenylated	 0.7	 Kbp	 RNA	 detectable	 by	 northern	 blots	

[110].	Detection	of	this	Tr	region	using	PCR	has	been	suggested	as	a	method	for	

diagnosis	of	E.	histolytica	in	a	clinical	setting	[331].		If	the	loss	of	EhR1,	and	the	

Tr	region,	in	vitro	is	not	an	adaptation	to	culture	and	is	resultant	of	rDNA	gene	

redundancy	between	EhR1	and	EhR2,	it	is	not	unrealistic	to	assume	that	rDNA	

episomes	 can	 be	 lost	 from	 populations	 in	 vivo.	 If	 the	 EhR1	 episome	was	 lost	

from	populations	in	vivo	they	would	not	be	detected	using	Tr-based	genotyping	

leading	 to	 false-negative	 diagnoses	 and	 under-reporting	 of	 E.	 histolytica	

infections.	

	

The	working	model	 of	 how	EhR2	was	produced	 suggests	 that	 intra-molecular	

recombination	of	direct	repeats	in	EhR1	resulted	in	two	half	molecules	of	which	

only	one	was	retained	by	the	cell	(EhR2).		EhR1	contains	two	copies	of	the	rDNA	

(rDNA	 I	 and	 rDNA	 II)	 of	 which	 only	 rDNA	 I	 is	 retained	 in	 EhR2	 after	

recombination.	The	EhR2	molecule	 contains	all	of	 the	DNA	sequence	 required	
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for	 successful	 transcription	 of	 the	 rDNA	 genes	 including	 the	 rDNA	 sequence	

itself	as	well	as	promoters	and	enhancer	sequences	 that	have	been	previously	

determined	[332].	The	lost	PvuI	short	tandem	repeat	family	occurs	upstream	of	

the	rDNA	II	transcriptional	unit	on	EhR1	and	a	HinfI	short	tandem	repeat	family	

occurs	upstream	of	 the	rDNA	I	unit.	The	HinfI	repeats	have	been	suggested	as	

acting	as	enhancers	which	may	be	required	for	the	efficient	transcription	of	the	

rDNA	 I	 unit	 [241,333].	 This	 suggests	 that	 the	majority	 of	 the	 rDNA	molecules	

transcribed	in	the	Entamoeba	cell	may	arise	from	the	transcription	of	rDNA	I.	As	

it	is	rDNA	I	and	HinfI	repeats	that	are	maintained	in	the	EhR2	episome	it	could	

be	 hypothesised	 that	 EhR2	 has	 the	 capacity	 to	 produce	 enough	 copies	 of	 the	

rDNA	genes	 to	 support	 the	cell	despite	only	 containing	one	copy	of	 the	 rDNA.	

This	is	because	it	has	retained	the	more	transcriptionally	active	copy.		
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4.5	Conclusions	
	

In	this	chapter,	 the	repetitive	DNA	features	(tRNA	arrays	and	rDNA	episomes)	

have	 been	 analysed	 in	 the	 new	 PacBio	 assembly.	 There	 was	 previously	 no	

knowledge	of	the	lengths	of	the	tRNA	arrays	and	no	quantitative	information	on	

variation	 between	 units	 in	 the	 same	 arrays.	 This	 was	 because,	 before	 SMRT	

sequencing,	 the	 longest	 sequence	 reads	 producible	 were	 limited	 to	 around	 1	

Kbp,	not	long	enough	to	span	multiple	array	units.	PacBio	assembly	allowed	for	

array	units	to	be	assembled	into	longer	array	structures	(up	to	43.3	Kbp	here),	

which	 allows	 for	 variation	 between	 units	 in	 a	 single	 array	 to	 be	 quantified.	

Variation	 was	 quantified	 for	 each	 array	 type	 and	 demonstrated	 that	 the	

different	tRNA	arrays	show	variable	levels	of	 intraspecific	variation	in	the	STR	

regions.	 However,	 amplification	 of	 these	 variable	 regions	 followed	 by	 Sanger	

sequencing	suggested	that	one	major	STR	type	is	present	within	each	array	and	

therefore,	markers	that	are	designed	to	target	these	STR	regions	are	most	likely	

accurate.		

	

Further	 investigation	 into	 the	 function	of	 the	 arrayed	 structure	was	 explored,	

building	 on	 the	 hypothesis	 that	 the	 tRNA	 arrays	 act	 as	 telomeres	 in	 the	

Entamoeba	 genomes.	 No	 telomerase	 or	 common	 short	 repeat	 (indicative	 of	

telomeric	 sequence)	 was	 observed	 in	 the	 PacBio	 genome,	 suggesting	 an	

alternative	telomere	structure	is	present	in	E.	histolytica.	Before	the	generation	

of	 the	 PacBio	 genome,	 tRNA	 array	 structures	 had	 not	 been	 linked	 to	 any	

sequence	 from	the	 ‘core’	genome.	The	PacBio	assembly	 linked	21	tRNA	arrays	

directly	to	non-array	regions	of	the	genome	providing	a	set	of	genes	that	occur	

in	close	proximity	to	the	tRNA	arrays	and	facilitated	analyses	in	Chapter	3.	The	

tRNA	arrays	that	were	attached	to	protein	coding	sequences	were	always	found	

to	 terminate	 the	 contigs	 and	 there	 was	 only	 one	 occasion	 where	 two	 tRNA	

arrays	could	be	orientated	in	such	a	way	that	would	facilitate	scaffolding	of	an	

internalised	 tRNA	array.	 This	 novel	 discovery	provides	 further	 support	 to	 the	

tRNA	telomere	theory	previously	proposed	and	is	explored	further	in	Chapter	5.		
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Analyses	of	 the	 rDNA	episomes	performed	on	 the	PacBio	 assembly	 concluded	

that	 one	 of	 the	 rDNA	 episomes	 has	 been	 lost	 in	 vitro.	 Only	 EhR2	 was	 fully	

assembled	in	the	PacBio	assembly	and	no	EhR1-specific	sequences	were	found,	

further	 confirming	 the	 loss	 of	 EhR1	 in	 vitro.	 Relative	 copy	 number	 analyses	

determined	that	the	depth	of	coverage	of	the	EhR2	episome	was	~200	times	as	

deep	as	the	coverage	for	the	chromosomal	portion	of	the	genome,	 indicating	a	

relative	 copy	number	of	~200	 for	 the	EhR2	episome	which	 is	 consistent	with	

previous	reports.		
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Chapter	 5	 –	Genome-wide	 study	 of	
5-Methyl-cytosine	 methylation	 in	
Entamoeba		
	

5.1	Introduction	
	

5.1.1.	Epigenetics	

	

Epigenetics	 is	 the	 study	 of	 heritable	 changes	 to	 DNA	 that	 do	 not	 involve	 a	

sequence	change	but	do	alter	 transcription	and	protein	expression.	Epigenetic	

modifications	 have	 been	 identified	 in	 a	 wide	 range	 of	 living	 organisms	 from	

simple	prokaryotes	and	eukaryotes	to	multicellular	organisms	including	plants,	

animals	 and	 humans.	 Epigenetic	 modifications	 (or	 ‘marks’)	 include	 DNA	

methylation	 [334]	 and	 modifications	 (phosphorylation,	 ubiquitination,	

acetylation	 and	 methylation)	 to	 histone	 proteins,	 which	 condense	 the	 DNA	

[335,336].	Collectively,	 these	modifications	 result	 in	 changes	 to	 the	 chromatin	

structure	 that	 affect	 its	 accessibility	 to	 transcription	 factors	 (TFs)	 [171]	 and	

other	proteins,	 such	as	methyl-binding	domain	proteins	 that	 interact	with	 the	

DNA	[172],	to	modify	gene	transcription.		

	

DNA	 methylation	 is	 the	 addition	 of	 a	 methyl	 group	 (-CH3)	 to	 a	 cytosine	 or	

adenine	base	in	DNA.	It	occurs	in	bacteria,	plants,	fungi	and	animals	[327,337].	

Cytosine	methylation	(commonly	5-methylcytosine,	 in	which	the	methyl	group	

is	 added	 to	 the	 5th	 atom	 of	 6	 in	 the	 cytosine	 ring)	 represents	 an	 important	

epigenetic	mark	 that	 affects	 gene	 expression	 in	 a	 range	 of	 species	 [327,338].	

Although	DNA	methylation	is	phylogenetically	widespread,	genomic	patterns	of	

methylation	 (a	 possible	 function)	 show	 considerable	 variation	 [337].	 For	

example,	 vertebrate	 genomes	 show	 extensive	 DNA	 methylation;	 3-8%	 of	

cytosines	in	mammals	are	normally	methylated,	generally	these	occur	in	a	CpG	

context,	 where	 a	 methylated	 cytosine	 is	 followed	 by	 a	 guanine	 [339].	

Conversely,	 many	 invertebrate	 genomes	 display	 low	 or	 no	 DNA	 methylation	



	 174	

[327,337,340].	This	variation	 in	genome	methylation	patterns	across	different	

taxa	suggests	that	the	role	of	DNA	methylation	may	vary	among	species.		

	

DNA	methylation	has	 largely	been	associated	with	gene	silencing	and	with	the	

control	 of	 transposons	 [341,342].	 DNA	 methylation	 can	 silence	 genes	 (and	

transposons)	 by	 recruiting	 methylated	 CpG	 binding	 domain	 (MBD)	 proteins	

which	interact	with	histone	deacetylase	to	condense	chromatin	around	the	gene	

(or	 transposon),	 repressing	 gene	 expression	 [343].	 In	 some	 species,	 novel	

functions	 have	 been	 suggested	 for	 DNA	methylation.	 DNA	methylation	 in	 the	

Honey	 Bee,	 Apis	 mellifera	 [344],	 appears	 to	 be	 directly	 associated	 with	 the	

differentiation	of	castes	in	this	social	species	[345,346]	and	the	down-regulation	

of	a	key	DNA	methyltransferase	 (Dnmt3)	 results	 in	profound	changes	 in	caste	

development	 trajectories	 in	 this	 organism.	 As	 such,	 DNA	 methylation	 may	

represent	an	important	mechanism	in	facilitating	the	evolution	of	certain	social	

systems	[347].	

	

Recent	work	in	protist	parasites	has	suggested	that	epigenetics	is	an	important	

factor	 in	 virulence,	 differentiation	 and	 lifecycle	 control	 in	 Toxoplasma	 gondii,	

Plasmodium	 falciparum	 and	 Trypanosoma	 brucei	 [200–203].	 It	 has	 been	

hypothesised	 that	 DNA	 methylation	 could	 be	 responsible	 for	 the	 different	

transcriptomic	 profiles	 seen	 in	 virulent	 (e.g.	 HM-1:IMSS)	 and	 avirulent	 (e.g.	

Rahman)	E.	histolytica	strains	[205].	

	

5.1.2.	Identification	of	5-methylcytosine		

	

5-cytosine	methyltransferase	proteins	(m5C-MTase)	catalyse	the	attachment	of	

a	methyl	 group	 to	 the	 5th	 atom	of	 6	 in	 the	 cytosine;	 the	 resulting	molecule	 is	

known	 as	 5-methylcytosine	 (5-MeC).	 The	 mammalian	 DNA	 methylation	

machinery	consists	of	three	DNA	methyltransferases	(MTases),	Dnmt1,	Dnmt3a	

and	 Dnmt3b.	 Dnmt1	 acts	 as	 a	 maintenance	 DNA	 MTase,	 maintaining	 the	

methylation	 of	 hemi-methylated	 DNA	 regions	 following	 mitotic	 events	

[348,349].	 	 Dnmt3a	 and	 Dnmt3b	 are	 de	 novo	 DNA	 MTases	 and	 act	 on	

unmethylated	DNA	[339].	A	fourth	DNA	MTase,	Dnmt2,	is	the	most	conserved	of	
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all	 the	 MTases	 and	 has	 been	 identified	 in	 all	 species	 from	 yeasts	 to	 humans	

[350].	It	is	generally	considered	as	having	weak	DNA	methylating	activity	and	is	

regarded	 as	 an	 RNA	 methyltransferase	 (RNA	 MTase)	 [351]	 however,	 more	

recently	it	has	been	discovered	that	Dnmt2	catalyses	all	of	the	DNA	methylation	

in	Dnmt2-only	organisms	such	as	Drosophila	and	Dictyostelium	[352–355].		

	

Bisulphite	sequencing	(Figure	5.1.1)	is	a	useful	tool	for	studying	the	methylation	

status	of	5-MeCs	and	is	the	gold	standard	for	analysing	5-MeC	DNA	methylation.	

Sodium	 bisulphite	 treatment	 of	 the	 DNA	 deaminates	 unmethylated	 cytosine	

residues	 converting	 then	 to	 uracils.	 Methylated	 cytosines	 are	 unaffected	 and	

therefore	when	 amplified	 using	 PCR	 and	 subsequently	 sequenced,	 these	 sites	

are	represented	by	a	cytosine	whereas	unmethylated	cytosines	are	represented	

by	a	thymine	[356].	This	allows	effective	discrimination	of	each	cytosine	residue	

by	analysing	the	proportion	of	mapped	reads	that	contains	either	a	cytosine	(a	

methylated	site)	or	a	thymine	(an	unmethylated	site)	at	each	cytosine	site	in	the	

reference.		

Figure	 5.1.1.	 Bisulphite	 conversion	 of	 DNA	 and	 subsequent	 analyses.	

Treatment	of	DNA	with	sodium	hydroxide	converts	unmethylated	cytosines	to	

uracils.	Methylated	 cytosines	 remain	 unchanged.	 Following	 PCR	 amplification,	

unmethylated	cytosines	are	represented	by	a	thymine	and	methylated	cytosines	

remain	as	cytosines.		 	
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The	 bisulphite	 treated	 DNA	 can	 be	 used	 as	 a	 template	 for	 PCR	 and	 Sanger	

sequencing	 to	 identify	 DNA	 methylation	 in	 the	 specific	 region	 amplified	 or,	

whole	 genome	 sequencing	 (WGS)	 of	 the	 bisulphite	 treated	 DNA	 can	 be	

performed	to	attain	a	global	picture	of	genome	methylation.	

	

SMRT	sequencing	allows	the	detection	of	DNA	methylation	without	the	need	for	

bisulphite	conversion	[177,357].	In	PacBio	SMRT	sequencing,	DNA	polymerase-

catalysed	incorporation	of	fluorescently	labelled	nucleotides	is	recorded	in	real	

time,	 so	 the	 arrival	 times	 and	 durations	 of	 the	 resulting	 fluorescence	 pulses	

yield	 information	 about	 polymerase	 kinetics.	 This	 allows	 direct	 detection	 of	

modified	 nucleotides	 in	 the	DNA	 template,	 as	 different	modified	 bases	 have	 a	

distinct	 effect	 on	 these	 kinetics.	 Detectable	 modifications	 include	 5-

methylcytosine,	N6-methyladenine	and	5-hydroxymethylcytosine	[177,357].	

	

5.1.3.	Epigenetics	in	Entamoeba		

	

As	mentioned	 above,	 the	mammalian	 DNA	methylation	machinery	 consists	 of	

four	 DNA	 methyltransferases,	 each	 with	 distinct	 roles.	 However,	 some	

organisms	have	the	entirety	of	their	DNA	methylation	catalysed	by	a	single	DNA	

methyltransferase,	 Dnmt2,	 despite	 this	 being	 largely	 regarded	 as	 an	 RNA	

methyltransferase.		

	

E.	histolytica	 is	 thought	 to	 belong	 to	 this	 group	 of	Dnmt2-only	 organisms	 and	

not	contain	any	of	the	canonical	DNA	methyltransferases	(Dnmt1	and	Dnmt3).	

The	Dnmt2	in	Entamoeba	histolytica	(EhMeth)	has	been	identified	as	a	genuine	

DNA	 MTase	 and	 methylated	 DNA	 has	 been	 identified	 via	 methylated	 DNA	

immunoprecipitation	 (MedIP)	 using	 5-MeC	 antibodies	 [173].	 More	 recently,	

high	pressure	liquid	chromatography	(HLPC)	and	mass	spectrometry	(MS)	has	

estimated	 low	 levels	 of	 5’-methylcytosines	 (5-MeCs)	 at	 around	 0.05%	 of	 E.	

histolytica	 DNA	 [173].	 Results	 from	 the	 MedIP	 suggested	 some	 of	 the	

methylated	 sequences	were	 ribosomal	DNA	 (rDNA),	 heat-shock	 genes	 (HSP70	

and	 HSP100),	 and	 retro-transposons	 [358,359].	 The	 effect	 of	 EhMeth	 DNA	

methylation	on	gene	expression	 is	 still	not	understood.	A	correlation	between	
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DNA	methylation	 of	HSP100	 and	 gene	 silencing	was	 reported	 [359]	 however,	

treatment	 of	 the	 parasite	 with	 5-azacytidine	 (a	 compound	 that	 blocks	MTase	

proteins)	 had	 little	 effect	 on	 gene	 expression	 of	 E.	 histolytica	 [360].	

Interestingly,	 the	 treatment	 of	E.	histolytica	with	 5-azacytidine	 did	 reduce	 the	

trophozoite’s	 ability	 to	 form	 liver	 abscesses	 in	 infected	 hamsters,	 suggesting	

that	EhMeth	may	have	a	role	in	controlling	virulence	of	the	parasite	[361].		

	

One function of DNA methylation in higher eukaryotes is to protect the 

organism from transposable elements [362]. DNA methylation is thought to 

occur in the transposable elements that litter the E. histolytica genome [97,98]. It is 

known from the original sequencing efforts that many of the transposable 

elements have lost their transcriptase ability and it has been suggested that the 

accelerated deamination that occurs to methylated cytosines may accelerate 

this process	 [174]. Dnmt2-mediated control of retro-transposons has already 

been demonstrated in other Dnmt2-only organisms such as Entamoeba’s 

closest sequenced relative, Dictyostelium discoideum [123], as well as in 

Schistosoma mansoni [363] and Drosophila spp [354].  

	

5.1.4.	Aims	of	Chapter		

 

Although methylation is believed to be a functional mechanism in Entamoeba 

histolytica and is thought to be similar to those seen in mammalian cells and 

model systems, protozoan parasites have consistently shown diverse and 

unique mechanisms that control epigenetic gene regulation [364–366]. This 

chapter will build on previous observations of low levels of DNA methylation 

in E. histolytica by determining where specifically this 5-methylcytosine 

methylation occurs in the genome. Specifically this chapter aims to: 

• Detect the level of 5-methylcytosine methylation and characterize its 

distribution across the E. histolytica genome. 



	 178	

• Determine if any correlation exists between methylation and gene 

expression utilizing E. histolytica RNA-seq data and life cycle RNA-

seq data from Entamoeba invadens IP-1. 

• Identify if any methylated genes are involved in virulence of the 

parasite 

• Determine if methylation is protective to the genome by methylating 

the abundant transposable elements. 

• Identify if DNA methylation occurs in other Entamoeba spp (E. 

moshkovskii and E. invadens) and if so, to what level does this occur 

and are orthologous genes across Entamoeba spp differentially 

methylated?  
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5.2	Materials	and	Methods	
	

5.2.1	 Generation	 of	 gDNA,	 library	 preparation	 and	 sequencing	 of	 E.	

histolytica	HM-1:IMSS,	E.	invadens	IP-1	and	E.	moshkovskii	Laredo		

	

Entamoeba	 histolytica	HM-1:IMSS	 genomic	 DNA	 was	 isolated	 as	 described	 in	

section	2.2.2.3.	E.	invadens	IP-1	genomic	DNA	was	prepared	from	trophozoites	

by	 Dr.	 Gretchen	 Ehrenkaufer	 (Singh	 Lab,	 Stanford	 University,	 USA)	 and	

permission	 to	 use	 this	 DNA	 in	 bisulphite	 sequencing	 was	 granted	 by	 Prof.	

Upinder	Singh	(Stanford	University,	USA).	E.	moshkovskii	Laredo	genomic	DNA	

was	prepared	from	trophozoites	by	Dr.	Gareth	Weedall	(Liverpool	John	Moores	

University,	Liverpool,	UK)	and	he	granted	permission	for	use.		

	

Genomic	DNA	 (E.	histolytica,	E.	 invadens	and	E.	moshkovskii)	was	 submitted	 to	

the	CGR	(Liverpool,	UK)	for	library	preparation	and	sequencing.	Briefly,	samples	

were	 subjected	 to	 bisulphite	 conversion	 using	 Zymo	 EZ	 DNA	 Methylation-

GoldTM	Kit	 (Irvine,	 CA,	USA).	 The	product	was	used	 to	 produce	 a	 sequencing	

library	 using	 an	 Illumina	 DNA	 methylation	 kit	 (San	 Diego,	 CA,	 USA).	 This	

converts	 the	 single	 stranded	DNA	 (ssDNA)	 into	 a	 next	 generation	 sequencing	

(NGS)	 library	 for	 sequencing.	 Bisulphite	 treated	 ssDNA	 is	 randomly	 primed	

using	 a	 polymerase	 able	 to	 read	uracil	 nucleotides	 to	 synthesize	DNA	 strands	

with	 a	 specific	 tag	 sequence.	The	3’-ends	 are	 tagged	with	 another	 specific	 tag	

sequence.	 These	 tags	 enable	 enrichment	 of	 sequences	 through	 polymerase	

chain	 reaction	 (PCR)	 (10	 cycles).	 The	 final	 library	 was	 checked	 for	 quantity,	

purity	and	size	before	being	pooled	and	sequenced	on	an	Illumina	HiSeq4000	to	

generate	2	x	150	bp	paired-end	reads.		

	

Truseq	Nano	paired	end	libraries	for	Entamoeba	invadens	IP-1	and	Entamoeba	

moshkovskii	 Laredo	 with	 an	 insert	 size	 of	 350	 bp	 were	 also	 produced	 and	

sequenced	as	a	comparison	for	the	bisulphite-treated	libraries	(one	had	already	

been	 sequenced	 for	E.	 histolytica).	 Sequencing	was	 performed	 on	 an	 Illumina	

HiSeq4000	to	generate	2	x	150	bp	paired-end	reads.	The	protocol	is	outlined	in	

section	2.2.5.	
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Sequence	 reads	 were	 initially	 processed	 by	 CGR.	 Illumina	 adapter	 sequences	

were	 trimmed	 from	 the	 raw	 reads	 using	 Cutadapt	 (Version	 1.2.1.)	 [367].	 The	

option	 -O	 3	 was	 used,	 so	 the	 3'-end	 of	 any	 reads	 that	 match	 the	 adapter	

sequence	 for	 3	 bp	 or	 more	 are	 trimmed.	 Reads	 were	 further	 trimmed	 using	

Sickle	(Version	1.200)	[368]	with	a	minimum	window	quality	score	of	20.	Reads	

shorter	than	20	bp	after	trimming	were	removed.	

	

5.2.2.	Mapping	methyl-seq	reads	and	bias	detection	using	Bismark	

	

Mapping	 of	 the	 bisulphite	 reads	 to	 the	 references	 were	 performed	 using	

Bismark	 (Version	 0.18.1)	 [369],	 SAMTools	 (Version	 0.1.18-r580)	 [236]	 and	

Picard	 Tools	 (Version	 1.85)	 [370].	 Formatting	 of	 the	 output	 was	 performed	

using	Perl	scripts	(provided	by	Dr.	Laura	Gardiner,	Earlham	Institute,	Norwich,	

UK)	 and	Awk	 commands	on	 the	 command	 line	 and	 is	 outlined	 in	Figure	5.2.1	

(Command	 line	 details	 in	 S5.2.	 Methylation_protocol.sh,	 Appendix	 5).	 The	 E.	

histolytica	 HM-1:IMSS	 bisulphite	 reads	 were	 mapped	 to	 the	 new	 PacBio	

reference	 described	 in	 Chapter	 2.	 The	 E.	 invadens	 IP-1	 and	 E.	 moshkovskii	

datasets	 were	 mapped	 to	 the	 latest	 version	 of	 each	 genome	 available	 on	

AmoebaDB	(AmoebaDB.org)	at	the	time	of	mapping	(AmoebaDB,	Release	35	for	

both	species).			

	

Reference	genomes	were	indexed	using	the	Bismark	Genome	Preparation	step.	

Bismark	was	then	run	with	default	parameters,	using	Bowtie2	as	the	specified	

mapping	program.	The	BAM	 file	produced	was	 sorted	and	 indexed	using	SAM	

Tools	 and	 duplicate	 reads	 removed	 using	 the	 Picard	 Toolkit	 Markduplicates	

program	to	produce	a	new	BAM	file	with	duplicate	reads	removed.	This	 file	 is	

sorted	 and	 indexed	 as	 before	 and	 used	 as	 input	 to	 the	 Bismark	 Methylation	

Extractor.	

	

The	Bismark	Methylation	 extractor	was	 run	using	default	 parameters	 and	 the	

sensitivity	 flag	 (-s)	as	 ‘comprehensive’	 to	 identify	 the	state	of	each	cytosine	 in	

each	read.	Cytosines	are	divided	into	three	files	based	on	flanking	nucleotides;	
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these	 are	 CpG_sites.out,	 CHG_sites.out	 and	 CHH_sites.out	 where	 H	 represents	

any	non-G	base	(A,	T,	C)	and	CpG	represents	cases	were	a	methylated	cytosine	is	

followed	by	a	guanine	(CG).	The	Methylation	Extractor	also	produced	an	M-bias	

plot.	 The	M-bias	 plot	 shows	 the	methylation	 proportion	 across	 each	 possible	

position	 in	 the	 read.	 Library	 construction	 of	 standard	 directional	 BS-Seq	

samples	consists	of	several	steps	including	sonication,	end-repair,	A-tailing	and	

adapter	 ligation.	 End	 repair	 of	 directional	 BS-Seq	 libraries	 results	 in	 artificial	

hypermethylation	at	the	end	of	read	2	of	paired-end	BS-Seq	libraries.	This	will	

add	spurious	hypomethylated	calls	if	not	removed.	The	M-bias	plots	display	any	

hypermethylation	across	 the	reads.	M-bias	plots	were	manually	 inspected	and	

the	Methylation	Extractor	rerun	using	the	–ignore	flag	if	any	bias	was	detected	

to	the	ends	of	the	read.	For	all	three	BS-Seq	libraries,	the	Methylation	Extractor	

was	 re-run	 using	 this	 flag	 (–ignore	 8)	 to	 ignore	 the	 first	 8	 bp	 of	 the	 reads	 as	

these	showed	bias	when	calling	methylated	cytosines.	

	

Perl	 scripts	 produced	 by	 Laura	 Gardiner	 (IBM	 Research,	 Daresbury,	 UK)	was	

used	to	quantify	the	number	of	5-methylated	cytosines	mapped	to	each	cytosine	

in	the	reference	(S5.3.	Are_SNP_reads_methylated.pl,	Appendix	5).	AWK	scripts	

were	then	used	to	extract	cytosines	that	had	a	coverage	depth	of	at	least	10x	for	

E.	histolytica	HM-1:IMSS	and	E.	 invadens	IP-1	 cytosines	 and	5x	 coverage	 for	E.	

moshkovskii.	The	coverage	threshold	for	E.	moshkovskii	was	lowered	to	5x	owing	

to	the	library	output	being	smaller	leading	to	lower	average	mapped	coverage.	
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Figure	 5.2.1.	 Pipeline	 for	 mapping	 bisulphite	 treated	 reads	 to	 the	

reference	 genome.	 Bisulphite	 reads	 were	 mapped	 to	 the	 reference	 genome	

using	 Bismark	 [369],	 SAMTools	 [236]	 and	 the	 Picard	 Toolkit	 [370].	 The	

alignment	was	formatted	for	analysis	using	Perl	scripts	and	AWK	commands.	 	
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5.2.3.	Setting	methylation	thresholds	and	detecting	methylated	regions	

	

Frequency	 charts	 were	 produced	 using	 R	 (Version	 3.1.1.)	 plotting	 the	

percentage	 of	 methylated	 cytosines	 mapped	 to	 each	 cytosine	 in	 the	 genome.	

These	were	inspected	to	determine	the	thresholds	for	methylation	calling.	If	75-

100%	 of	 reads	 mapped	 to	 a	 cytosine	 in	 the	 reference	 were	 methylated	 the	

cytosine	 was	 classified	 as	 highly	 methylated.	 If	 50-75%	 or	 25-50%	 or	 reads	

mapped	were	methylated	the	site	was	classified	as	medium	or	low	methylated,	

respectively.	If	0-25%	of	reads	mapped	to	a	cytosine	were	methylated,	the	site	

was	 called	as	un-methylated	 to	account	 for	 incomplete	 cytosine	 conversion	 in	

the	 library	 preparation	 step	 and	 to	 avoid	 inaccurate	 calling	 of	 methylated	

cytosines	 due	 to	 this	 incomplete	 conversion.	 AWK	 commands	 were	 used	 to	

create	files	containing	lists	of	cytosines	in	each	category.		

	

The	 highly	 methylated	 cytosines	 for	 each	 species	 were	 extracted	 and	

corresponding	 regions	 in	 the	 genome	 identified	 using	Homer	 (AnnotatePeaks	

tool)	 [279].	 GTF	 files	 for	 genes	 in	E.	histolytica	HM-1:IMSS	were	 produced	 by	

Companion	 (Chapter	 3).	 Gene	 GTF	 files	 for	 E.	 moshkovskii	 Laredo	 and	 E.	

invadens	 IP-1	 were	 downloaded	 from	 AmoebaDB	 (Release	 35).	 E.	 histolytica	

HM-1:IMSS	GTF	files	were	manually	curated	for	the	tRNA	genes	and	rDNA	using	

the	output	of	 the	 tRNA	and	rDNA	gene	 identification	(Chapter	4).	 tRNA	arrays	

for	 Entamoeba	 invadens	 IP-1	 were	 obtained	 from	 NCBI	 (EF421262-80)	 and	

identification	of	tRNA	arrays	for	E.	moshkovskii	Laredo	was	carried	out	using	the	

same	methods	outlined	in	section	4.2.1.	The	output	was	then	manually	curated	

into	 species-specific	 GTF	 files	 in	 the	 same	way	 as	 those	 for	E.	histolytica	HM-

1:IMSS.	 Homer	 was	 used	 to	 cross-reference	 the	 location	 of	 a	 methylated	

cytosine	with	 the	 location	 of	 a	 feature	 in	 the	 GTF	 files.	 Homer	was	 run	 using	

default	 parameters	 specifying	 the	 species-specific	 GTF	 files	 as	 the	 feature	

databases	for	each	species.		

	

To	 create	 a	 transposable	 element	 GTF	 file	 for	 E.	 histolytica	 HM-1:IMSS,	

Entamoeba	 transposable	 element	 sequences	 were	 obtained	 from	 RepBase	

[371,372].	 Sequences	were	downloaded	 in	FASTA	 format	 and	used	 as	queries	
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for	BLASTN	searches	of	 the	PacBio	E.	histolytica	HM-1:IMSS	assembly.	Default	

parameters	 were	 used	 with	 an	 E-value	 cut-off	 of	 0.05.	 Output	 was	 then	

organised	into	GTF	format	for	use	in	Homer	searches	as	previously	described.	

	

5.2.4.	Mapping	RNA-seq	data	

	

An	RNA-seq	 library	 has	 previously	 been	 generated	 and	permission	 to	 use	 the	

data	 was	 provided	 by	 Dr	 Kanok	 Preativatanyou	 (Chulalongkorn	 University,	

Bangkok,	Thailand).	Reads	were	mapped	using	STAR,	an	RNA-seq	aligner,	using	

default	 parameters	 [373].	 Counting	 of	 reads	 mapped	 to	 each	 gene	 was	

performed	 using	 the	 HTSeq	 [374]	 with	 default	 parameters.	 The	 GFF3	 file	

produced	from	Companion	(Chapter	3)	was	used	as	the	list	of	genes	provided	to	

HTSeq.	FPKM	values	were	calculated	using	the	formula:		
𝑅𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐾𝑏 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠)	

	

Histograms	 of	 FPKM	 values	 were	 produced	 with	 R	 [237]	 using	 the	 ggplot2	

package	[238].	

	

5.2.5.	Life	cycle	expression	analyses	of	methylated	genes	

	

Life	cycle	expression	data	only	exists	for	E.	invadens,	as	this	species	is	the	only	

species	 that	 can	 be	 made	 to	 perform	 its	 entire	 life	 cycle	 in	 vitro.	 Methylated	

genes	detected	in	E.	invadens	were	analysed	on	the	AmoebaDB	platform	(which	

hosts	the	life	cycle	expression	data	for	Entamoeba	species).		

	

To	investigate	whether	the	expression	of	any	methylated	genes	in	E.	histolytica	

or	E.	moshkovskii	changes	over	 the	 course	of	 the	 life	 cycle,	 lists	 of	methylated	

gene	 were	 created	 for	 Entamoeba	 histolytica	 HM-1:IMSS	 and	 Entamoeba	

moshkovskii	were	searched	on	AmoebaDB	(AmoebaDB.org)	and	 the	 record	 for	

each	gene	manually	inspected.	Known	orthologues	are	listed	on	the	gene	record	

page.	 These	 invadens	 orthologues	 were	 also	 analysed	 on	 AmoebaDB	 and	
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transcription	 information	across	 the	 life	 cycle	 stages	was	accessed	 from	 these	

gene	record	pages.	

	

5.2.6	 Identification	of	de	novo	and	maintenance	DNA	methyl-transferases	

in	Entamoeba	histolytica	HM-1:IMSS		

	

The	PacBio	Entamoeba	histolytica	HM-1:IMSS	assembly	annotation	(Chapter	3)	

was	 searched	 for	 any	 reference	 to	 DNA	 methyltransferases,	 methylating	

domains	or	hits	to	EhMeth	(known	Dnmt2	homolog	in	Entamoeba	spp).	Putative	

DNA	MTase	sequences	were	validated	using	BLAST.	Sequences	for	Homo	sapiens	

and	Arabidopsis	thaliana	DNA	methyltransferases	(DNA	MTases)	were	obtained	

from	 UniProt	 (accession	 numbers	 in	 Table	 S5.1,	 Appendix	 5;	 Uniprot.org;	

Accessed:	 August	 2017).	 These	 were	 Dnmt1,	 Dnmt2,	 Dnmt3a	 and	 Dnmt3b.	

These	 were	 used	 in	 a	 tBLASTn	 search	 against	 the	 new	 PacBio	 genome	 for	

Entamoeba	 histolytica	generated	 in	 Chapter	 2.	 An	 e-value	 cut	 off	 of	 0.05	 was	

applied	 and	 any	 hits	 were	 cross-referenced	 to	 the	 output	 of	 the	 companion	

genome	annotation	GFF	produced	in	Chapter	3.		
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5.3	Results	
	
5.3.1	Cytosine	methylation	across	the	Entamoeba	genomes	is	sparse	

	

For	 each	 BS-seq	 library,	 the	 number	 of	 reads	 produced	 and	 mapped	 using	

Bismark	can	be	seen	in	Table	5.3.1.	90.1%	of	bisulphite	treated	reads	mapped	to	

the	E.	histolytica	PacBio	genome,	consistent	with	previous	estimates	of	Bismark	

mapping	efficiency	[375].	58.4%	of	reads	mapped	uniquely	(to	a	single	genome	

location).	 Bisulphite	 sequencing	 reads	 often	 contain	 high	 levels	 of	 duplicate	

reads	owing	to	a	large	loss	of	DNA	during	library	preparation	followed	by	PCR	

amplification	 [376].	 Consistent	 with	 this,	 after	 duplicate	 removal	 only	 5%	 of	

reads	 remained	 uniquely	 aligned.	 Cytosines	 in	 the	 reference	 genome	 with	 at	

least	 10x	 coverage	 were	 analysed	 to	 identify	 5-methyl	 cytosines	 (5-MeC).	

Cytosines	 were	 considered	 highly	 methylated	 if	 more	 than	 75%	 of	 reads	

contained	 a	 cytosine	 at	 this	 position	 (i.e.	 methylation	 at	 this	 position	 had	

inhibited	C	to	U	conversion).	By	this	criterion,	only	0.4%	of	cytosines	with	10x	

coverage	were	highly	methylated	in	E.	histolytica	HM-1:IMSS	(Table	5.3.1).	Even	

lower	 proportions	 of	 methylated	 cytosines	 were	 detected	 in	 E.	 invadens	 IP-1	

and	 E.	 moshkovskii	 Laredo,	 with	 0.006%	 and	 0.03%	 of	 cytosines	 with	 10x	

coverage	 classified	 as	 highly	 methylated	 in	 each	 species,	 respectively	 (Table	

5.3.1).		

	

To	 check	 that	 complete	 conversion	of	 the	DNA	had	 taken	place,	 each	 cytosine	

position	 was	 analysed	 to	 calculate	 how	 many	 of	 the	 reads	 contained	 an	

untransformed	 (i.e.	 methylated)	 cytosine	 and	 the	 frequencies	 of	 methylated	

reads	plotted	(Figure	5.3.1).	A	bimodal	distribution	was	observed.	The	majority	

of	 cytosines	 were	 <25%	 methylated,	 with	 a	 much	 smaller	 peak	 at	 100%	

methylated.	 This	 bimodal	 distribution	 is	 indicative	 of	 complete	 bisulphite	

conversion	of	the	DNA	and	accurate	calling	of	methylated	cytosines	(incomplete	

bisulphite	 conversion	 produces	 a	 flattened	 distribution	 without	 the	 bimodal	

distribution).	
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Cytosines	 with	 <25%	 methylation	 were	 determined	 as	 being	 effectively	

unmethylated	 to	 account	 for	 noise.	 Cytosines	 with	 >75%	 methylation	 were	

classified	 as	 highly	 methylated.	 These	 highly	 methylated	 cytosines	 were	

observed	 in	 CpG,	 CHG	 and	 CHH	 sites	 (C=cytosine,	 G=guanine,	 H=non-guanine	

nucleotide).	Only	 0.76%	 (47/6211)	 of	 5-MeCs	 occurred	 in	 CpG.	 This	 accounts	

for	 0.06%	 of	 the	 total	 CG	 sites	 in	 the	 genome	 surveyed	 with	 10x	 coverage.	

0.96%	(60/6211	of	5-MeCs	occurred	in	CHG	cites	where	a	methylated	cytosine	

is	 followed	 by	 a	 non-G	 base	 then	 a	 guanine	 and	 the	 remaining	 98.3%	

(6104/6211)	of	5-MeCs	occurs	at	CHH	sites	where	H	 is	 equivalent	 to	a	non-G	

base.	

	

5.3.2.	Methylation	 of	 genes	 is	 limited	 to	 a	 few	 genes	 in	 each	Entamoeba	

species	

	

Highly	methylated	 cytosines	were	 analysed	 to	 identify	 those	 occurring	within	

the	 protein	 coding	 regions	 of	 genes.	 The	 Homer	 AnnotatePeaks	 function	was	

used	to	compare	a	list	of	methylated	cytosine	positions	to	a	GTF	file	of	genomic	

features	 to	 determine	 where	 the	 methylated	 cytosines	 occur	 [279].	 Highly	

methylated	 cytosines	 in	 the	 regions	upstream	and	downstream	of	 genes	were	

not	analysed	unless	these	occurred	<21	bp	upstream	of	an	exon.	This	is	owing	to	

the	fact	that	5’	untranslated	regions	(5’UTR)	in	E.	histolytica	are	very	short	(0-

21	bp)	 [151].	 The	promoter	 regions	 of	Entamoeba	are	 not	well	 characterised,	

with	 only	 very	 few	promoter	 sequences	 determined,	 therefore	methylation	 of	

these	features	was	not	analysed	[377].		

	

Nine	genes	within	the	E.	histolytica	HM-1:IMSS	genome	contained	one	or	more	

5-MeCs	within	an	exon	(Table	5.3.2.).	Seven	of	these	genes	encode	hypothetical	

proteins	 and	 two	 have	 functional	 annotation:	 one	 encodes	 a	 papain	 family	

cysteine	 protease	 and	 another	 a	 cysteine	 protease	 binding	 protein.	 No	 genes	

were	associated	with	5-MeCs	in	a	putative	5’-UTR.	Four	of	the	methylated	genes	

in	E.	histolytica	contained	an	orthologous	gene	in	E.	moshkovskii	and	E.	invadens.	

However,	none	of	the	methylated	genes	in	E.	histolytica	were	also	methylated	in	

E.	moshkovskii	or	E.	invadens.	
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RNA-seq	 data	 for	 E.	 histolytica	 HM-1:IMSS	 (Dr	 Kanok	 Preativanyou.	 Pers.	

Comms.)	was	mapped	to	the	new	PacBio	E.	histolytica	HM-1:IMSS	reference	and	

FPKMs	 calculated	 for	 each	 gene.	 Methylated	 genes	 were	 assessed	 to	 identify	

how	highly	 expressed	 they	were	 in	 comparison	 to	 other	 genes	 in	 the	 genome	

(Figure	 5.3.2A-B).	 	 The	 median	 FPKM	 value	 for	 the	 gene	 set	 was	 13.92.	 The	

majority	of	methylated	genes	(6/9)	had	FPKMs	lower	than	the	median	(Figure	

5.3.2C-K).		

	

Life	cycle	RNA-seq	data	has	been	previously	collected	 for	Entamoeba	invadens	

IP-1	as	it	is	the	only	Entamoeba	species	that	can	be	induced	into	encystation	in	

culture	 [84].	 To	 determine	whether	 the	methylation	 of	 the	 nine	E.	 histolytica	

HM-1:IMSS	genes	was	correlated	with	stage-specific	expression	(i.e.	repression	

in	trophozoites,	expression	during	encystation),	E.	invadens	orthologues	for	the	

highly	 methylated	 E.	 histolytica	 genes	 were	 identified.	 Six	 of	 the	 methylated	

genes	 have	 an	 orthologue	 in	 E.	 invadens	 IP-1	 (AmoebaDB,	 May	 2018).	 The	

expression	 profiles	 of	 these	 six	 orthologues	 were	 examined	 on	 AmoebaDB	

(Figure	 S5.4,	 Appendix	 5).	 Three	 of	 the	 six	 orthologues	were	 associated	with	

lower	 expression	 during	 the	 trophozoite	 life	 stage	 compared	 to	 the	 encysting	

and	 excysting	 time	 points.	 The	 three	 remaining	 orthologues	 showed	 a	 wide	

range	of	expression	at	the	trophozoite	stage	therefore	in	some	trophozoites	the	

transcript	expression	was	reduced.		 	
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Five	 genes	 in	 the	 Entamoeba	 moshkovskii	 Laredo	 genome	 were	 detected	 as	

containing	 one	 or	more	 5-MeCs	 in	 an	 exon	 (Table	 5.3.3).	Most	 of	 these	 genes	

contained	one	or	two	methylated	sites.	The	exception	to	this	was	EMO_133490	

that	 contained	 14	methylated	 sites	 at	 a	 density	 of	 3.56	 per	 100	 bp.	 The	 gene	

function	is	unknown,	it	has	no	orthologues	identified	within	AmoebaDB	and	no	

functional	annotation	existed.	

	

Table	5.3.3.	Methylated	genes	in	the	Entamoeba	moshkovskii	genome.	

Ei:	Entamoeba	invadens	Eh:	Entamoeba	histolytica	

	

Gene	ID	 Gene	
Length	
(bp)	

Methylated	
sites	

Methylated	
Cs	in	gene	

(%)	

Putative	
function	

Protein	
features	

EMO_133490	 393	 14	 4.67	 Unspecified	
product	

-	

EMO_011960	 1682	 2	 1.30	 Unspecified	
product	

Orthologous	
to	

serine/threon
ine	kinase	in	
Eh	and	Ei	

EMO_052010	 2814	 2	 0.67	 Hypothetical	
protein	

-	

EMO_037420	 1616	 1	 0.43	 Hypothetical	
protein	

Interpro	ID:	
IPR001849	
(PH	domain	
profile)	

EMO_128410	 1209	 1	 0.41	 RhoGAP	
domain	
containing	
protein	

Interpro	ID:	
IPR000198	
(Rho	GTPase-
activating	
proteins	
domain)	
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Four	 of	 the	 five	 methylated	 E.	 moshkovskii	 Laredo	 genes	 contained	 an	

orthologue	 in	E.	 invadens	IP-1	and	 the	expression	profile	of	 these	orthologues	

across	 the	 life	 cycle	 was	 observed	 in	 AmoebaDB	 (Figure	 S5.5,	 Appendix	 5).	

Three	 of	 these	 orthologues	 were	 associated	 with	 reduced	 expression	 in	 E.	

invadens	 IP-1	 trophozoites	 when	 compared	 to	 other	 life	 cycle	 stages.	 The	

remaining	 orthologue	 showed	 variable	 expression	 in	 trophozoites	 with	

evidence	 of	 a	 wide	 range	 of	 expression	 across	 replicate	 experiments	 in	 the	

trophozoite	stage.	No	methylation	was	detected	in	the	21	bp	upstream	region	of	

any	genes	suggesting	no	methylation	of	5’UTRs	is	present	in	this	species.		

	

Only	one	gene	was	detected	as	being	methylated	in	the	Entamoeba	invadens	IP-1	

genome.	 The	 gene	 (EIN_282370)	 contained	 one	methylated	 site	 in	 its	 703	 bp	

gene	 length	 (accounting	 for	 0.93%	 of	 cytosines	 in	 the	 gene).	 The	 gene	 is	

functionally	unannotated	however	orthologues	suggest	it	may	encode	a	myosin	

heavy	chain	gene.	Expression	of	the	transcript	was	analysed	on	AmoebaDB	but	

it	was	difficult	to	assess	true	expression	as	few	reads	map	to	the	gene	uniquely.	

The	gene	appears	to	form	part	of	a	myosin	heavy	chain	orthologue	group	in	E.	

invadens	IP-1	whose	expression	is	associated	with	encystation	and	transcription	

is	significantly	reduced	in	the	trophozoite	stage.		

	

5.3.3.	tRNA	arrays	are	methylated	in	three	Entamoeba	species	

	

The	 largest	proportion	of	 5-MeCs	 in	 the	E.	histolytica	HM-1:IMSS	genome	was	

observed	in	the	tRNA	array	units,	with	1,858/6,211	(30%)	5-MeC	occurring	in	

these	 regions.	 The	 methylation	 occurred	 largely	 in	 the	 short	 tandem	 repeats	

(STRs)	 between	 the	 tRNA	genes	 in	 the	 array	units	 (Initially	 outlined	 in	 figure	

4.3.1).	 19	 highly	 methylated	 cytosines	 were	 observed	 within	 the	 tRNA	 genes	

themselves	across	all	of	the	arrays	(Figure	5.3.3-5.3.8).	These	methylated	sites	

within	the	tRNA	genes	were	always	located	at	the	end	of	the	gene	and	as	part	of	

a	 cluster	 of	 high	methylated	 cytosines	 upstream	 or	 downstream	 of	 the	 tRNA	

gene.	 Similarly	 in	 E.	 moshkovskii	 Laredo	 and	 E.	 invadens	 IP-1	 few	 cytosines	

within	 the	 tRNA	 genes	 themselves	were	methylated	 and	 the	methylation	was	

mostly	within	the	spacer	regions	between	the	tRNA	genes	(in	E.	invadens	these	
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are	 STRs,	 in	E.	moshkovskii	 they	 are	 non-repetitive)	 however,	 these	 cytosines	

were	 not	 as	 highly	 methylated	 as	 observed	 in	 E.	 histolytica	HM-1:IMSS.	 In	 E.	

moshkovskii	 Laredo	 tRNA	 arrays,	 most	 5-MeC	 were	 up	 to	 80%	 methylated	

(Figures	S5.6-S5.8,	Appendix	5)	and	in	E.	invadens	IP-1,	most	5-MeC	were	only	

around	 30-40%	 methylated	 (Figures	 S5.9-S5.13,	 Appendix	 5),	 suggesting	 E.	

invadens	 has	 a	 considerably	 lower	 level	 of	 methylation	 of	 the	 tRNA	 arrays	

compared	with	E.	histolytica	HM-1:IMSS	and	E.	moshkovskii	Laredo.		
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Figure	5.3.3.	Methylation	of	Entamoeba	histolytica	HM-1:IMSS	 tRNA	array	

units	 AAGC,	 ALL,	 ASD	 and	 GGCC.	 Total	%	methylation	 of	 cytosine	 bases	 in	 all	

array	units	is	shown	for	a	single	tRNA	array	unit	in	each	case.	Points	represent	

the	 percentage	 of	 methylated	 reads	 at	 cytosine	 positions	 (with	 at	 least	 10X	

coverage).	
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Figure	5.3.4.	Methylation	of	Entamoeba	histolytica	HM-1:IMSS	tRNA	array	

units	GTCC,	HGTG,	LT	and	LS.	Total	%	methylation	of	cytosine	bases	in	all	array	

units	is	shown	for	a	single	tRNA	array	unit	in	each	case.	Points	represent	the	

percentage	of	methylated	reads	at	cytosine	positions	(with	at	least	10X	

coverage).	
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Figure.X.X	Methyla0on	of	tRNA	array	units.	Differen0al	methyla0on	of	cytosine	bases	along	the	tRNA	
arrays	was	observed.	Tracks	show	a	singular	tRNA	array	unit	with	the	graph	demonstra0ng	the	
posi0on	of	cytosines	and	the	percentage	of	reads	that	mapped	to	the	posi0on	with	a	methylated	
cytosines.	All	cytosines	presented	had	at	least	10X	coverage.	
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Figure	5.3.5.	Methylation	of	Entamoeba	histolytica	HM-1:IMSS	 tRNA	array	

units	MR,	NK1,	NK2	and	R5.	Total	%	methylation	of	cytosine	bases	in	all	array	

units	 is	 shown	 for	 a	 single	 tRNA	array	unit	 in	 each	 case.	 Points	 represent	 the	

percentage	 of	 methylated	 reads	 at	 cytosine	 positions	 (with	 at	 least	 10X	

coverage).	
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Figure.X.X	Methyla0on	of	tRNA	array	units.	Differen-al	methyla-on	of	cytosine	bases	along	the	tRNA	
arrays	was	observed.	Tracks	show	a	singular	tRNA	array	unit	with	the	graph	demonstra-ng	the	
posi-on	of	cytosines	and	the	percentage	of	reads	that	mapped	to	the	posi-on	with	a	methylated	
cytosines.	All	cytosines	presented	had	at	least	10X	coverage.	
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Figure	5.3.6.	Methylation	of	Entamoeba	histolytica	HM-1:IMSS	 tRNA	array	

units	 SD,	 SPPCK,	 SQCK	and	TQ.	Total	%	methylation	of	cytosine	bases	 in	all	

array	units	is	shown	for	a	single	tRNA	array	unit	in	each	case.	Points	represent	

the	 percentage	 of	 methylated	 reads	 at	 cytosine	 positions	 (with	 at	 least	 10X	

coverage).	
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arrays	was	observed.	Tracks	show	a	singular	tRNA	array	unit	with	the	graph	demonstra,ng	the	
posi,on	of	cytosines	and	the	percentage	of	reads	that	mapped	to	the	posi,on	with	a	methylated	
cytosines.	All	cytosines	presented	had	at	least	10X	coverage.	
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Figure	5.3.7.	Methylation	of	Entamoeba	histolytica	HM-1:IMSS	 tRNA	array	

units	TQ,	VME5,	WI	and	YE.	Total	%	methylation	of	cytosine	bases	in	all	array	

units	 is	 shown	 for	 a	 single	 tRNA	array	unit	 in	 each	 case.	 Points	 represent	 the	

percentage	 of	 methylated	 reads	 at	 cytosine	 positions	 (with	 at	 least	 10X	

coverage).	
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	Figure	5.3.8.	Methylation	of	Entamoeba	histolytica	HM-1:IMSS	tRNA	array	

units	RT,	VF	and	V5.	Total	%	methylation	of	cytosine	bases	in	all	array	units	is	

shown	for	a	single	tRNA	array	unit	in	each	case.	Points	represent	the	percentage	

of	methylated	reads	at	cytosine	positions	(with	at	least	10X	coverage).	
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Spikes	of	methylation	are	observed	both	upstream	and	downstream	of	the	tRNA	

genes	 however	 for	 the	majority	 of	 tRNA	 genes	 the	most	 extreme	methylation	

occurs	 immediately	downstream	of	 the	tRNA	genes.	The	extent	of	methylation	

differs	between	the	flanking	regions	of	individual	tRNA	genes	in	the	same	array	

units	and	between	array	units,	with	some	array	types	(V5,	LT,	RT)	showing	low	

levels	 of	 methylation	 and	 others	 (SPPCK,	 NK2,	 WI)	 showing	 high	 levels	 of	

methylation	in	the	STRs.		

	

To	test	if	these	methylation	patterns	are	associated	with	the	copy	number	of	the	

large	number	of	 tRNA	array	genes,	 the	E.	histolytica	HM-1:IMSS	TruSeq	paired	

end	 library	 was	 mapped	 to	 a	 single	 copy	 of	 each	 tRNA	 gene	 sequence.	 No	

mismatches	were	allowed,	to	eliminate	mapping	of	reads	to	similar	tRNA	gene	

sequences.	 It	was	 hypothesised	 that	 tRNA	 genes	with	 high	mapping	 coverage	

(i.e.	 more	 copies	 in	 the	 genome)	would	 be	more	 likely	 to	 be	methylated	 and	

therefore	 repressed,	 as	 over-expression	 of	 these	 redundant	 genes	 could	 be	

wasteful	to	the	organism.	No	such	correlation	was	observed;	the	tRNA	genes	in	

the	tRNA	arrays	with	the	highest	level	of	methylation,	V5,	LT	and	RT,	are	in	the	

top	25%	of	tRNA	genes	when	ranked	by	coverage.		

	

An	alternative	theory	is	that	methylation	may	be	correlated	with	codon	usage	as	

the	most	commonly	used	codons	need	to	be	transcribed	more	often	than	rarely	

used	codons.	Hence,	it	could	be	hypothesised	that	rarely	used	codons	would	be	

associated	 with	 the	 higher	 levels	 of	 methylation	 to	 repress	 transcription	 of	

these	sequences.		This	correlation	was	also	not	observed;	the	some	of	the	most	

commonly	 used	 tRNA	 isoacceptor	 types	 (LysTTT,	 GluTTC,	 IleAAT)	 are	 associated	

with	highly	methylated	flanking	regions	in	their	specific	tRNA	array	(SPPCK,	YE	

and	WI	respectively).	Conversely,	 the	some	of	 the	most	 rare	 tRNA	 isoacceptor	

types	(ProCGG	and	SerCGA)	occur	in	tRNA	arrays	(SQCK	and	LS	respectively)	with	

lower	levels	of	methylation	in	the	flanking	regions.	
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5.3.4.	 Methylation	 occurs	 in	 other	 repetitive	 regions	 of	 the	 Entamoeba	

histolytica	HM-1:IMSS	genome,	including	transposable	elements	

	

In	 other	 eukaryotes,	 CHH	 and	 CHG	methylation	 has	 been	 associated	with	 the	

methylation	 of	 non-coding	 regions	 and	 involved	 in	 roles	 such	 as	 silencing	

transposable	 elements	 [378].	 The	 Entamoeba	 histolytica	 genome	 contains	 a	

large	 number	 of	 transposable	 elements	 (TEs)	 including	 SINEs,	 LINEs	 and	

unclassified	 transposable	 elements.	 To	 test	 for	 methylation	 in	 these	 regions,	

sequences	for	11	well-characterised	transposable	elements	were	used	to	detect	

copies	in	the	E.	histolytica	HM-1:IMSS	PacBio	genome	(Table	5.3.4).	In	total,	894	

copies	 of	 these	 transposable	 elements	 were	 detected	 accounting	 for	

approximately	~2	Mbp	 (~6%)	of	 the	genome	sequence.	The	average	depth	of	

BS-seq	coverage	for	these	elements	was	low,	at	5.8x.	Therefore,	cytosines	with	

at	least	5x	coverage	were	analysed	to	detect	methylation.	
	

Table	5.3.4.	Methylation	of	transposable	elements	(TEs)	in	the	Entamoeba	

histolytica	HM-1:IMSS	 genome.	 Cytosines	 in	 each	 TE	were	 analysed	 for	 the	

percentage	 of	 reads	 mapping	 that	 contained	 a	 methylated	 cytosine	 at	 that	

position	(Coverage	threshold:	5x).		

TE	type	 Total	
copies	

Copies	with	
≥1	low	
methylated	
siteA	

Copies	with	
≥1	medium	
methylated	
siteA	

Copies	with	
≥1	high	
methylated	
siteA	

Total	
copies	
with	5-
MeCsB	

Proportion	
of	TE	type	
methylated	
(%)	

EHAPT2		 125	 3	 3	 9	 13	 10.40	
EhINV1	 7	 0	 1	 2	 2	 28.57	
EhINV2	 7	 0	 0	 1	 1	 14.29	
EhRLE2	 22	 6	 7	 17	 18	 81.82	
EhRLE3	 142	 69	 54	 112	 119	 83.80	
ERE1	 50	 17	 29	 49	 49	 98.00	
ERE2	 316	 16	 27	 246	 247	 78.16	
RLEEh2	 151	 42	 45	 78	 89	 58.94	
RLEEh3	 70	 14	 12	 23	 27	 38.57	
RLEEh4	 3	 0	 0	 1	 1	 33.33	
RLEEh5	 1	 1	 1	 1	 1	 100	
Total	 894	 168	 179	 539	 567	 63.42	
A	 Levels	 of	 methylation	 are	 defined	 by	 the	 percentage	 of	 reads	 mapped	 to	 a	 cytosine	 are	

methylated	at	that	position	(25-50%	=	Low,	50-75%	=	medium,	75-100%	=	high)	
B	Total	copies	does	not	equal	 the	sum	of	 low,	medium	and	high	methylated	sites	as	some	TEs	

have	multiple	categories	of	methylated	cytosines	in	the	same	TE.	
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567	 TEs	 contain	 at	 least	 one	 methylated	 site	 (regardless	 of	 methylation	

classification:	 low,	medium	 or	 high),	 accounting	 for	 63.42%	 off	 all	 TEs	 in	 the	

genome.	 All	 types	 of	 elements	 contain	 some	 methylation	 however	 the	

proportion	of	each	type	that	is	methylated	differs.	High	proportions	of	the	ERE1,	

ERE2	and	RhRLE2/3	elements	are	methylated	(>75%	of	elements	in	each	family	

are	 methylated).	 Lower	 levels	 of	 methylation	 are	 observed	 in	 the	

RLEEh2/3/4/5	elements,	the	EhINV1/2	elements	and	the	EHAPT2	element.		

	

5.3.5.	No	de	novo	or	maintenance	DNA	methyl-transferases	were	detected	

in	the	Entamoeba	histolytica	HM-1:IMSS	genome		

	

Entamoeba	histolytica	contains	 the	Dnmt2	DNA	MTase	 (EhMeth)	but	 no	other	

DNA	 MTases	 have	 been	 annotated	 in	 the	 genome.	 As	 the	 previous	 reference	

genome	 was	 fragmented	 and	 incomplete	 [97,98],	 the	 existence	 of	 other	 DNA	

MTase	genes	could	not	be	ruled	out.	Some	eukaryotes	possess	only	Dnmt2	and	

lack	the	other	DNA	methyltransferases	(DNA	MTase)	often	associated	with	the	

methylation	machinery	(Dnmt1,	Dnmt3a	and	Dnmt3b).	These	so	called	Dnmt2-

only	 organisms	 have	 all	 of	 their	 methylation	 performed	 and	 maintained	 by	

Dnmt2	and	include	the	amoeba	Dictyostelium	discoideum	and	Drosophila	[352–

355].	

	

Annotation	 of	 the	 new	 Entamoeba	 histolytica	 HM-1:IMSS	 genome	 was	

performed	 using	 Companion	 (Chapter	 3).	 This	 program	 performs	 both	

annotation	 transfer	 of	 already	 known	 genes	 and	 ab	 initio	prediction	 of	 novel	

genes	 in	 the	 genome.	 The	 companion	 annotation	 confirmed	 one	 copy	 of	 the	

EhMeth	 gene	 (EHI_069140)	 in	 the	 new	 assembly,	 but	 no	 additional	DNA	MTs	

(Dnmt1,	Dnmt3a	or	Dnmt3b)	were	found,	nor	any	proteins	with	putative	DNA	

MTase	domains.	These	results	were	confirmed	using	tBLASTn.	As	DNA	MTases	

tend	 to	 be	 relatively	 well	 conserved	 across	 the	 eukaryotes,	 human	 and	 plant	

DNA	MTases	were	 used	 to	 detect	 the	 presence	 of	 DNA	MTases	 in	 the	 new	E.	

histolytica	HM-1:IMSS	genome	assembly.	Aside	from	the	one	copy	of	EhMeth,	no	
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other	regions	of	the	genome	shared	significant	(e-value	<	0.05)	homology	with	

Dnmt1,	Dnmt2.	Dnmt3a	or	Dnmt3b.		 	
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5.4	Discussion	
	
5.4.1.	Sparse	methylation	of	genic	regions	suggests	methylation	does	not	

play	a	large	role	in	the	control	of	gene	expression	

	

A	 very	 small	 proportion	 of	 cytosines	 in	 the	Entamoeba	histolytica	HM-1:IMSS	

genome	 are	 methylated,	 with	 only	 0.4	 %	 of	 cytosines	 methylated	 across	 the	

entire	genome.	Though	it	should	be	noted	that	this	number	may	also	include	a	

number	of	false	positive	5-MeC	reads	arising	from	incomplete	conversion	of	un-

methylated	 cytosines	 to	 uracils	 in	 the	 library	preparation	 and	 therefore,	 even	

this	 small	 number	 of	 5-MeCs	 may	 be	 an	 overestimate.	 This	 low	 level	 of	

methylation	is	not	distributed	randomly	across	the	genome	but	mainly	occurs	in	

distinct	regions	such	the	tRNA	arrays,	suggesting	that	the	bisulphite	conversion	

of	 the	 DNA	 was	 successful	 and	 the	 methylation	 was	 real	 (as	 incomplete	

conversion	 would	 affect	 all	 unmethylated	 cytosines,	 resulting	 in	 a	 signal	 of	

‘partial	methylation’	throughout	the	genome).	As	E.	histolytica	does	not	contain	

a	 known	 unmethylated	 region	 (e.g.	 a	 mitochondrial	 genome)	 a	 thorough	

assessment	of	the	extent	of	conversion	could	not	be	carried	out.		

	

Despite	this,	the	large	majority	of	methylation	occurs	at	CHH	sites	(where	H	is	

equivalent	 to	 a	 non-guanine	 base)	 and	 very	 few	 5-MeCs	 occur	 at	 CpG	 sites	

(0.06%	of	the	CpG	sites	covered	by	10x	coverage);	a	stark	inversion	of	the	trend	

seen	in	other	eukaryotes.	Up	to	60-90%	of	CpG	sites,	which	often	occur	as	CpG	

islands,	 can	 be	methylated	 in	mammals	 [378]	while	 in	 hymenopteran	 insects,	

around	 0.5-0.7%	 of	 CpGs	 are	 methylated	 [379,380].	 The	 sparse	 0.06%	 of	

methylated	CpG	sites	detected	in	Entamoeba	histolytica	HM-1:IMSS	is,	therefore,	

at	least	one	order	of	magnitude	lower	than	the	methylation	levels	found	in	some	

eukaryotes.	Not	all	organisms	have	genomes	 that	contain	CpG	 islands	 that	are	

methylated,	as	seen	in	mammals.	Unlike	vertebrates,	most	invertebrates	exhibit	

mosaically	 methylated	 genomes	 comprising	 alternating	 methylated	 and	 non-

methylated	 domains	 [381,382].	 Though	 DNA	 methylation	 is	 not	 always	

necessary	 for	 transcriptional	 silencing,	 it	 is	 generally	 thought	 to	 render	 the	

methylated	 region	 transcriptionally	 inactive.	 In	 particular,	 DNA	 methylation	
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appears	critical	for	regulating	gene	expression,	in	particular	gene	silencing,	and	

has	been	demonstrated	in	fungi,	plants	and	animals	[383,384].	The	observation	

of	few	methylated	CpGs	and	the	fact	that	only	a	handful	of	genes	are	methylated	

suggests	 that	 5-MeC	 in	Entamoeba	histolytica	may	not	 play	 a	 large	 role	 in	 the	

regulating	the	expression	of	genes	as	a	whole.	 	However,	most	of	E.	histolytica	

HM-1:IMSS	methylated	genes	are	associated	with	down-regulated	expression	in	

Entamoeba	 invadens	 IP-1	 orthologues	 and	 also	 are	 less	 expressed	 than	 the	

majority	 of	 genes	 in	 the	 transcriptome	 and	 therefore,	 methylation	 may	 be	

involved	 in	 transcription	 repression	 of	 the	 small	 number	 of	 genes	 that	 are	

methylated.		

	

5.4.2.	 No	 association	 can	 be	 drawn	 between	 DNA	 Methylation	 and	

virulence	as	seen	in	other	protists		

	

Of	 the	 small	 number	 of	 methylated	 genes	 in	 the	 Entamoeba	 histolytica	HM-

1:IMSS	genome,	only	one	could	be	associated	with	parasite	virulence.	This	gene,	

EHIS_00035000	(equivalent	to	EHI_138460	in	AmoebaDB),	is	a	part	of	a	family	

of	cysteine	proteases	 in	 the	E.	histolytica	genome	that	have	been	 implicated	 in	

the	virulence	of	the	parasite	[385].	A	further	methylated	gene	was	annotated	as	

a	cysteine	protease	binding	protein	however,	if	this	gene	is	involved	in	virulence	

is	unknown	though,	 it	does	 interact	with	 the	virulent	cysteine	protease	genes.	

The	remaining	genes	could	not	be	associated	with	any	function.	The	observation	

of	 signal-peptides	 in	 the	many	 of	 the	methylated	 genes	 suggests	 these	 genes	

may	be	secreted	or	exported	to	the	cell	membrane.	Secreted	proteins	have	been	

implicated	with	virulence	and	 the	defence	mechanisms	of	a	 range	of	parasites	

including	 Entamoeba	 species.	 Ultimately,	 further	 validation	 of	 the	 function	 of	

these	 methylated	 genes	 needs	 to	 be	 done	 before	 DNA	 methylation	 in	 E.	

histolytica	HM-1:IMSS	can	be	associated	with	any	specific	function	or	phenotype	

though	the	concentration	of	5-MeCs	in	these	select	genes	suggest	they	are	not	a	

result	of	random	noise	from	sequencing	but	instead,	genuinely	are	targeted	for	

methylation.			
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However,	 that	 is	 not	 to	 say	 that	 the	 methylation	 of	 virulence	 genes	 isn’t	

associated	 with	 their	 gene	 expression,	 it	 just	 suggests	 that	 5-MeC	 DNA	

methylation	 may	 not	 be	 the	 main	 mechanism	 controlling	 the	 expression	 of	

virulence	genes.	Other	types	of	methylation	exist	and	it	would	be	interesting	to	

look	 at	 levels	 of	 4-Methyl-cytosine	 (4-MeC)	 and	 6-Methyl-Adenine	 (6-MeA)	

methylation	 which	 have	 been	 associated	 with	 virulence	 attenuation	 when	

blocked	in	other	pathogens	(both	prokaryotes	and	eukaryotes)	[386,387].		

	

5.4.3.	 Dense	methylation	 of	 the	 tRNA	 array	 units	 suggests	 a	 role	 for	 the	

tRNA	arrays	in	telomere	formation		

	

The	 methylation	 of	 tRNA	 array	 units	 was	 proven	 not	 to	 be	 associated	 with	

either	 codon	 usage	 (i.e.	 tRNA	 demand)	 or	 with	 putative	 copy	 number	 and	

therefore,	it	seems	unlikely	that	the	DNA	methylation	is	involved	in	the	dynamic	

regulation	of	tRNA	gene	transcription.	This	 is	consistent	with	previous	studies	

that	have	proven	 that	 treatment	of	Entamoeba	histolytica	trophozoites	with	5-

azacytidine	 (an	 agent	 that	 blocks	 DNA	 methylation)	 does	 little	 to	 affect	 the	

levels	 of	 transcription	 of	most	 genes	 and	 suggests	 that	DNA	methylation	may	

not	play	an	important	role	in	the	transcriptional	regulation	of	genes	[360].				

	

Alternatively,	 DNA	 methylation	 may	 serve	 another	 purpose.	 High	 levels	 of	

methylation	in	the	tRNA	arrays	is	consistent	with	a	putative	role	of	these	arrays	

as	telomeres	in	the	Entamoeba	genomes	(Chapter	4).	DNA	methylation	can	lead	

to	 the	 condensation	 of	 chromatin.	 If	 this	 is	 occurring	 in	 the	 tRNA	 arrays,	 the	

majority	of	the	tRNA	genes	are	likely	being	repressed	by	Dnmt2	(EhMeth),	the	

sole	methyltransferase	in	E.	histolytica	[364].	Dnmt2-mediated	methylation	has	

been	 implicated	 in	 controlling	 telomere	 length	 in	 other	 eukaryotic	 species,	

where	down-regulation	of	Dnmt2	results	in	the	shortening	or	loss	of	telomeres	

in	mice	and	Drosophila	[354,388].	Dnmt2	plays	a	similar	role	in	both	Drosophila	

and	 mice	 despite	 them	 having	 very	 different	 telomere	 sequences:	 mice	

telomeres	 consisting	 of	 the	 hexamer	 ‘TTTAGG’	 and	 Drosophila	 telomeres	

consisting	 of	 tandemly	 repeated	 retro-transposons.	 An	 analogous	 mechanism	

could	 be	 occurring	 in	 E.	 histolytica	 HM-1:IMSS,	 whereby	 Dnmt2-mediated	
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cytosine	methylation	of	tRNA	arrays	confers	stability	to	the	DNA	by	modifying	

the	tRNA	STRs	in	a	way	that	allows	them	to	act	as	telomeres.	The	observation	of	

increased	levels	of	methylation	in	the	tRNA	arrays	of	other	Entamoeba	species	

(E.	 moshkovskii	 Laredo	 and	 E.	 invadens	 IP-1)	 suggests	 this	 mechanism	 may	

common	to	multiple	species	within	the	Entamoeba	genus.	

	

5.4.4.	The	presence	of	DNA	methylation	suggests	a	protective	role	against	

retro-transposons	and	other	mobile	elements	

	

63%	 of	 the	 transposable	 elements	 (567/894	 TEs)	 contain	 some	 level	 of	

methylation,	 with	 nearly	 all	 (539/567	 TEs)	 of	 these	 methylated	 elements	

containing	 at	 least	 one	 highly	 methylated	 site.	 Many	 of	 the	 transposable	

elements	demonstrated	low	alignment	coverage	with	BS-seq	reads,	most	likely	

due	 to	 their	 highly	 repetitive	 nature	 that	 makes	 unique	 mapping	 of	 reads	

difficult.	 The	 average	 mapping	 depth	 of	 the	 most	 abundant	 TE	 group,	 ERE2	

(35%	of	all	TE	sequences),	was	5.97x	and	therefore,	the	majority	of	cytosines	in	

these	sequences	would	have	been	lost	 in	the	10x	coverage	cut-off	used	for	the	

main	methylation	analysis.	To	 include	these	regions,	cytosines	with	at	 least	5x	

coverage	were	 analysed.	 Despite	 lower	 coverage,	 a	 large	 number	 of	 elements	

were	 detected	 as	 being	 methylated	 and	 therefore,	 it	 is	 highly	 likely	 that	

transposable	elements	are	being	silenced	by	the	DNA	methylation	machinery	to	

prevent	disruption	of	genes	caused	by	 the	 integration	of	mobile	elements	 into	

coding	regions.	The	number	of	methylated	transposable	elements	is	likely	to	be	

even	 larger,	 as	 some	 were	 omitted	 from	 analysis	 due	 to	 low	 coverage	 depth	

(<5x	 coverage).	 To	 address	 this	 problem,	 further	 bisulphite	 sequencing,	

possibly	with	longer	read	lengths,	may	be	required	to	increase	the	coverage	of	

these	regions	and	other	mapping	algorithms	may	need	to	be	explored	to	ensure	

the	maximum	number	of	reads	are	being	mapped	to	the	genome.		

	

Contrary	to	this,	some	groups	of	TEs	showed	good	mapping	coverage,	EhRLE2	

for	example	had	an	average	mapping	depth	of	127x.	In	these	groups,	not	all	of	

the	 TE	 copies	were	methylated	 suggesting	 some	 copies	 of	 these	 elements	 are	

genuinely	 unmethylated.	 The	 outcome	 of	 the	 original	 genome	 sequencing	
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reported	 that	many	 of	 the	 transposable	 element	 sequences	 in	 the	Entamoeba	

histolytica	HM-1:IMSS	 genome	 were	 degenerate	 and	 had	 lost	 their	 ability	 to	

transpose	themselves	[97,98].	However,	some	copies	do	remain	with	functional	

transposase	ability	and	it	would	be	interesting	in	the	future	to	check	whether	it	

is	 these	 functional	 copies	 that	 are	 being	 methylated	 in	 order	 to	 effectively	

silence	 them	within	 the	 genome	and	whether	degenerate	 sequences	have	 lost	

their	methylation.		

	

5.4.5.	 The	 absence	 of	 de	 novo	 or	 maintenance	 DNA	 methyltransferases	

suggests	 the	 RNA	 methyltransferase	 EhMeth	 may	 be	 able	 to	

methylate	DNA	

	

DNA	methylation	of	Entamoeba	histolytica	HM-1:IMSS,	Entamoeba	invadens	IP-1	

and	Entamoeba	moshkovskii	Laredo	has	been	proven	to	exist	despite	not	having	

the	 DNA	 methyltransferases	 (DNA	 MTases)	 supposedly	 required	 for	 DNA	

methylation.	 E.	 histolytica	 contains	 only	 a	 Dnmt2	 gene	 (‘EhMeth’),	 which	 has	

been	reported	to	be	an	RNA	MTase.	Nevertheless,	DNA	methylation	does	occur	

Therefore,	 it	 is	proposed	 that	EhMeth	 is	a	methyltransferase	of	both	DNA	and	

RNA,	 a	 phenomenon	 proposed	 for	 other	 Dnmt2-only	 organisms	 such	 as	

Drosophila	and	the	amoeba	Dictyostelium	[339,389].		
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5.5.	Conclusions	
	

The	lack	of	studies	investigating	the	DNA	methylation	of	Entamoeba	species	has	

prohibited	 a	 detailed	 understanding	 of	 the	 evolution	 and	 function	 of	 early	

eukaryotic	DNA	methylation.	Entamoeba	histolytica	 has	 a	unique	phylogenetic	

position;	 that	 is,	 it	 diverged	 soon	 after	 the	 plant	 and	 animal	 lineages	 split	 [2]	

and	 as	 such,	 is	 closely	 related	 to	 both	 animal	 and	 plant	 kingdoms	 that	 have	

organisms	with	 largely	 present	 or	 absent	methylation	 systems	 (For	 example,	

mammals	 and	 fungi,	 respectively).	 Bisulphite	 sequencing	 has	 shown	 that	

Entamoeba	histolytica	HM-1:IMSS	had	a	 rudimentary	DNA	methylation	 system	

as	evidenced	by	low	levels	of	genome	methylation.	The	findings	support	earlier	

observations	 that	 the	Entamoeba	histolytica	genome	 is	 largely	 devoid	 of	 DNA	

methylation	[364,390].		This	work	extends	these	previous	studies	by	identifying	

the	locations	of	methylated	cytosines,	genome-wide.	It	showed	that	a	very	small	

number	 of	 genes	 show	 high	 levels	 of	 methylated	 sites,	 but	 that	 many	

transposons	 are	methylated.	 Extensive	methylation	 of	 the	 tRNA	 arrays	 is	 also	

observed	 and	 this	 may	 play	 a	 role	 in	 telomere	 formation	 and	 protection	 of	

chromosomes	 ends.	 The	 distribution	 of	 methylated	 cytosines	 was	 broadly	

similar	 in	 Entamoeba	 moshkovskii	 (Laredo)	 and	 Entamoeba	 invadens	 (IP-1)	

although	to	a	lesser	extent.		

	

63.4%	 of	 transposable	 elements	 appear	 to	 be	 methylated	 suggesting	 a	

methylation-mediated	 mechanism	 of	 protecting	 the	 DNA	 from	 deleterious	

mutations	 caused	 by	 the	 transposition	 of	 the	 retro-transposons	 and	 mobile	

genetic	 elements	 that	 litter	 the	 Entamoeba	 histolytica	 HM-1:IMSS	 genome.	

However,	 this	 analysis	 was	 limited	 by	 the	 poor	 coverage	 of	 these	 repetitive	

areas.		

	

It	has	been	suggested	that	the	expression	of	EhMeth	can	become	decreased	over	

several	generations	of	sub-culturing	[173].	Therefore,	DNA	methylation	may	be	

more	 active	 during	 actual	 infections	 of	 individuals.	 It	 would	 be	 useful	 to	

bisulphite-sequence	 trophozoites	directly	 from	 infections,	 or	 after	 as	 few	sub-

cultures	as	possible,	 to	elucidate	a	better	picture	of	DNA	methylation	 in	 these	
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species.	This	is	limited	largely	by	the	fact	large	numbers	of	trophozoites	need	to	

be	 collected	 in	 order	 to	 generate	 enough	 genomic	DNA	 for	 sequencing,	which	

would	be	difficult	to	collect	from	one	individual.	Also,	purifying	only	Entamoeba	

from	the	gut/stool	would	be	a	great	challenge.		

	

Overall,	 combining	 these	 new	 data,	 with	 the	 observation	 that	 there	 is	 a	

functional	 Dnmt2	 homolog	 (EhMeth),	 possibly	 with	 both	 DNA	 and	 RNA	

methylating	capacity,	opens	up	many	exciting	questions	about	DNA	methylation	

in	Entamoeba.	Is	the	DNA	methylation	system	being	lost	from	some	species	such	

as	 E.	 invadens?	 Are	 methylation	 patterns	 conserved	 across	 generations	 of	

trophozoites?	 Are	 any	methylated	 genes	 associated	with	 specific	 phenotypes?	

How	can	an	active	mechanism	of	transposon	repression	be	reconciled	with	the	

huge	number	of	transposons	in	Entamoeba	genomes?	
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Chapter	6	–	General	Discussion	
	

Entamoeba	 histolytica	 is	 an	 obligate	 parasite	 of	 humans	 and	 is	 the	 causative	

agent	 of	 the	 disease	 amoebiasis	 [7].	 The	 genome	 of	 E.	 histolytica	 has	 been	

studied	 in	 depth	 over	 the	 past	 decade	 with	 much	 being	 learned	 about	 its	

structure,	 as	 well	 as	 the	 genes	 and	 proteins	 it	 contains	 [4,97,98].	 However,	

genomic	 studies	 have	 been	 limited	 in	 Entamoeba	 species	 owing	 to	 the	

fragmented	and	 incomplete	nature	of	 the	 reference	assembly	 for	E.	histolytica	

HM-1:IMSS	and	 the	 large	number	of	 functionally	unannotated	genes	 and	gene	

families	[98,112].	This	project	sought	to	utilize	SMRT	sequencing	and	improved	

genomic	 assembly	 and	 gene	 annotation	 techniques	 to	 produce	 an	 improved	

reference	 genome	 from	 which	 further	 analyses	 regarding	 genome	 structure,	

gene	content,	and	gene	organisation	and	regulation	could	be	performed.		

	

6.1.	SMRT	sequencing,	assembly	and	annotation	of	the	Entamoeba	

histolytica	reference	genome	

	

A	telomere-to-telomere	contiguous	genome	assembly	is	the	goal	of	any	genome	

assembly	 project.	 In	 common	 with	 most	 eukaryote	 genome	 assemblies,	 the	

current	published	 reference	genome	 for	E.	histolytica	falls	 a	 long	way	short	of	

this	 gold	 standard.	 It	 consists	 of	 1,498	 scaffolds	with	 a	 large	majority	 ending	

with	 repetitive	 sequence,	 indicative	 of	 assembly	 problems	 associated	 with	

short-read	 lengths.	 A	 new	 assembly	 and	 annotation	 of	 the	 genome	 of	 E.	

histolytica	HM-1:IMSS	was	presented	in	this	thesis.	The	new	PacBio	E.	histolytica	

genome	is	approximately	29	Mbp	in	563	contigs	(i.e.	fully	contiguous	sequence	

not	 containing	 assembly	 gaps).	 Excluding	 contigs	 containing	 tRNA	 arrays	 and	

rDNA	arrays	(these	were	excluded	from	the	published	reference	assembly)	the	

number	of	contigs	is	432,	representing	a	decrease	in	contig	number	of	over	two	

thirds	 in	comparison	with	 the	published	assembly.	This	 large	 improvement	 to	

the	reference	genome	is	reflected	in	an	increased	N50	and	average	contig	length	

in	the	PacBio	assembly.		
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Though	SMRT	sequencing	of	the	E.	histolytica	genome	has	greatly	improved	the	

genome	assembly,	the	gold	standard	of	telomere-to-telomere	contiguity	is	yet	to	

be	 reached	 and	 further	 work	 to	 improve	 the	 assembly	 will	 need	 to	 be	

performed.		

	

6.1.1.	 Utility	 of	 existing	 and	 emerging	 long	 read	 assemblers	 on	 a	

challenging	genome	

	

Chapter	2	demonstrated	the	differences	in	assembly	quality	that	can	result	from	

different	 assembler	 programs	 and	 highlighted	 how	 the	 assembly	 of	 long-read	

data	 was	 still	 in	 relative	 infancy	 at	 the	 time	 of	 the	 SMRT	 sequencing	 of	 E.	

histolytica.	 Guidelines	 on	 best	 practice	 when	 assembling	 long	 read	 data	 and	

thorough	comparisons	of	 the	genome	assembly	software	were	not	available	at	

the	 time	 of	 assembling	 the	 E.	 histolytica	HM-1:IMSS	 reference	 genome.	 Long	

read	assemblers	have	rapidly	evolved	in	the	time	since	this	assembly	was	done	

and	 it	 is	 likely	 that	 reassembly	 of	 the	E.	 histolytica	genome	 using	 the	 newest	

releases	of	the	assemblers	outlined	in	Chapter	2,	as	well	as	testing	some	of	the	

newer	 emerging	 long-read	 assemblers,	may	 produce	 an	 even	more	 improved	

assembly.	

	

6.1.2.	 Improvements	 to	 extraction	 of	 high	 molecular	 weight	 gDNA	 from	

Entamoeba	

	

Many	of	the	contigs	produced	in	the	final	PacBio	genome	still	 terminated	with	

repetitive	sequence,	suggesting	that	read-length	may	still	be	a	limiting	factor	in	

assembling	 the	 E.	 histolytica	 genome.	 The	 genome	 is	 largely	 repetitive	 and	

contains	 a	 variety	 of	 repetitive	 elements	 such	 as	 transposable	 elements	 and	

tRNA	arrays,	some	of	which	span	lengths	up	to	40	Kbp	(Chapter	4).	The	average	

insert	size	of	the	PacBio	assembly	was	3.8	Kbp,	which	is	much	longer	than	the	

average	read	 length	of	750	bp	in	the	published	assembly,	but	still	 too	short	to	

span	 all	 of	 the	 repetitive	 regions	 of	 the	 E.	 histolytica	 genome	 and	 facilitate	

construction	of	a	fully	contiguous	genome	assembly.	Further	investigation	into	

the	 generation	 of	E.	histolytica	genomic	DNA	may	 prove	 useful	 before	 further	
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SMRT	sequencing	of	the	parasite	is	performed.	Entamoeba	genomic	DNA	is	very	

carbohydrate-rich	 (akin	 to	 plant	 DNA)	 and	 contains	 an	 abundance	 of	 lytic	

enzymes	 that	 make	 extraction	 of	 high	 molecular	 weight	 DNA	 a	 challenge.	 As	

SMRT	sequencing	becomes	ever	more	popular,	protocols	describing	 improved	

DNA	 isolation	methods	 are	 emerging	 [391]	 and	 those	 designed	 especially	 for	

the	extraction	of	 carbohydrate-rich	plant	DNA	may	be	useful	 to	 explore	 for	E.	

histolytica	cells	[392,393].	The	generation	of	high	molecular	weight	DNA	for	E.	

histolytica	 would	 likely	 improve	 the	 genome	 assembly	 quality	 as	 it	 could	

facilitate	further	PacBio	sequencing	with	a	longer	insert	sizes	(20	kb	inserts	and	

longer	are	possible,	but	require	a	 lot	of	gDNA)	or	facilitate	genome	scaffolding	

technologies	such	as	optical	mapping	or	Hi-C	sequencing	(Chapter	2).		

	

6.1.3.	Validation	of	gene	models	and	assigning	putative	gene	function	

	

The	 PacBio	 E.	 histolytica	 HM-1:IMSS	 genome	 contained	 10,164	 genes,	 an	

increase	of	1,831	genes	compared	to	the	current	published	reference	assembly	

([98];	AmoebaDB	data	–	Release	39;	August	2018).	It	is	likely,	as	was	concluded	

in	the	previous	sequencing	attempts	[97],	 that	 this	number	of	predicted	genes	

may	 be	 an	 over-estimate	 of	 the	 true	 number.	 Manual	 inspection	 of	 the	 gene	

models	 contained	 on	 the	 longest	 contig	 of	 the	 PacBio	 assembly	 (~1	 Mbp)	

revealed	no	obvious	errors	 in	 the	gene	annotation	however,	 gene	models	will	

need	 to	 be	 inspected	 further	 before	 official	 release	 of	 the	 assembly	 and	

annotation.	 Putative	 gene	 function	 for	 many	 genes	 (both	 existing	 and	 novel)	

remains	 unknown	 and	 further	 experimental	 investigation	 into	 the	 function	 of	

these	genes	will	need	to	be	performed.		

	

6.1.4.	 Further	 comparative	 analyses	 of	 E.	 histolytica	 with	 avirulent	

Entamoeba	species	

	

The	 E.	 histolytica	 PacBio	 genome	 produced	 by	 SMRT	 sequencing	 allowed	

analyses	of	the	structure	and	wide-scale	organisation	of	this	parasite	including	

analysis	in	to	the	organisation	of	a	range	of	gene	families	previously	associated	

with	virulence	(Chapter	3).	This	analysis	was	permitted	owing	to	an	improved	
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assembly	produced	by	the	long	read	sequencing	outlined	in	Chapter	2.	Previous	

studies	 into	 the	 existing	 Entamoeba	 genomes	 revealed	 large	 differences	 in	

coverage	 depth	 among	 genes,	 indicating	 differences	 in	 copy	 number	 between	

genomes.	Of	particular	note	is	the	observation	that	a	 large	proportion	of	these	

genes	that	showed	differential	copy	number	were	implicated	in	virulence	in	the	

Entamoeba	parasites	[175].		

	

The	new	PacBio	E.	histolytica	genome	resolved	previously	collapsed	regions	of	

the	genome	revealing	 tandem	duplications	of	 regions	of	 the	genome	 including	

tandem	duplication	of	a	range	of	genes.	Further	interrogation	into	the	function	

of	 these	 genes	will	 be	 needed	 in	 the	 future	 to	 confirm	whether	 the	 tandemly	

duplicated	 genes	 that	 have	 been	 resolved	 are	 associated	 with	 virulence	 or	

members	of	existing	virulence	gene	families.		Further	long	read	sequencing	of	a	

non-virulent	 Entamoeba	 species	 would	 also	 complement	 this	 analysis	 by	

allowing	an	 in-depth	comparison	of	not	only	CNVs	between	virulent	and	non-

virulent	E.	histolytica	species,	 but	would	 also	permit	 further	 research	 into	 the	

importance	of	 the	organisation	of	 virulence	 gene	 families.	 	An	 ideal	 candidate	

for	long	read	sequencing	would	be	E.	moshkovskii	or	E.	dispar	due	to	their	close	

evolutionary	 relationship	 to	 E.	 histolytica,	despite	 these	 two	 organisms	 being	

largely	accepted	as	avirulent.		

	

The	 existing	 genomes	 for	E.	moshkovskii	and	E.	dispar	are	 both	 challenging	 to	

perform	research	on	owing	to	their	 fragmented	nature	with	4,607	contigs	and	

3,312	contigs,	respectively	(AmoebaDB	data	–	Release	39,	August	2018).	It	has	

already	 been	 proven	 that	 gene	 prediction	 on	 fragmented	 draft	 genomes	 can	

produce	 extensive	 errors	 [394]	 and	 therefore,	 it	 is	 possible	 that	 the	 current	

annotation	 of	 these	 two	 species	 could	 be	 flawed.	 New	 E.	 moshkovskii	 and	 E.	

dispar	 genomes	 produced	 by	 long-read	 sequencing	 would	 improve	 the	

fragmented	 nature	 of	 these	 genomes	 and	 aim	 to	 produce	 a	 more	 contiguous	

assembly	on	which	gene	prediction	can	be	performed	more	accurately.	Once	an	

accurate	 gene	 set	 has	 been	 produced	 for	 E.	 moshkovskii	 and	 E.	 dispar,	 RNA	

sequencing	 could	 be	 performed	 on	 these	 two	 species	 (existing	 data	 also	

available)	 to	analyse	 the	differential	expression	of	orthologous	genes	between	
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the	 virulent	 and	 avirulent	Entamoeba	species.	 Current	 analyses	 suggest	 a	 low	

level	of	nucleotide	diversity	between	these	three	species	[175]	and	therefore,	it	

would	 be	 interesting	 to	 analyse	 any	 differential	 expression	 between	 the	

avirulent	 species	 and	 the	 parasitic	 E.	 histolytica	 to	 understand	 whether	 the	

emergence	 of	 virulence	 in	 E.	 histolytica	 is	 due	 to	 transcriptional	 changes	

between	the	species	rather	than	changes	at	the	nucleotide	level. 
	

6.2.		Genome	structure	and	organization	of	genes	within	the	Entamoeba	
histolytica	genome	
	

The	presence	of	 gene	 families	has	previous	been	 reported	 in	 the	E.	histolytica	

genome,	however	many	of	 these	remain	 functionally	unannotated	[97,98,112].	

Many	virulence	gene	families	have	been	identified	and	characterised	though	the	

organisation	of	members	of	these	families	 in	the	genome	is	poorly	understood	

resulting	 from	 the	 fragmented	published	genome	assembly.	Chapter	3	utilised	

the	 new	 genome	 produced	 in	 Chapter	 2	 to	 investigate	 the	 organisation	 of	 a	

range	of	virulence	gene	families.	Members	of	the	same	virulence	families	were	

not	 seen	 to	 form	 tandemly	 duplicated	 arrays	 but	 instead,	 the	 organisation	 of	

many	gene	families	was	associated	with	the	location	of	transposable	elements	in	

the	genome.	 In	addition,	 some	enrichment	was	 seen	 for	virulence	gene	 family	

members	 in	the	putative	sub-telomeric	regions	(formed	by	the	tRNA	arrays	as	

described	in	Chapter	4).	Though	the	organisation	of	a	select	few	virulence	gene	

families	was	determined,	questions	still	remain	surrounding	the	organisation	of	

other	gene	families	as	well	as	the	regulation	of	those	associated	with	virulence.	

	

6.2.1.	Entamoeba	histolytica	gene	families	

	

Gene	annotation	of	 the	PacBio	genome	generated	for	E.	histolytica	annotated	a	

large	 number	 of	 novel	 genes,	 as	 well	 as	 transferring	 the	 annotation	 of	 genes	

predicted	 in	 the	 published	 assembly.	 Many	 of	 the	 annotated	 genes	 were	

characterised	as	hypothetical	(i.e.	functionally	unannotated).	583	gene	families	

in	 the	 new	PacBio	 genome	 are	 functionally	 unannotated	 and	 the	 organisation	

and	function	of	these	families	were	not	explored	in	this	thesis.	Characterisation	

of	the	function	and	organisation	of	these	gene	families	will	be	important	in	fully	
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understanding	the	biology	of	E.	histolytica,	especially	as	expanded	gene	families	

have	 long	 been	 reported	 to	 play	 an	 important	 role	 in	 the	 biology	 of	 other	

parasitic	protists	such	as	Trypanosoma	and	Plasmodium	[87,259,285,395].		

	

6.2.2.	Regulation	of	virulence	gene	families	

	

The	 PacBio	 genome	 determined	 that	 the	 putative	 subtelomeres	 are	 slightly	

enriched	 for	 virulence	 gene	 families	 and	 the	 flanking	 regions	 of	 the	 TEs	 are	

extremely	 enriched	 for	 virulence	 genes	 (Chapter	 3).	 However,	 very	 little	

methylation	 was	 observed	 in	 these	 genes	 (Chapter	 5)	 suggesting	 that	 DNA	

methylation	 is	not	 a	major	mechanism	controlling	 the	 expression	of	 virulence	

genes.	 It	 is	 therefore	 likely	 that	another	mechanism	controls	 the	 regulation	of	

the	virulence	gene	families.	Investigations	into	alternative	mechanisms	of	gene	

regulation	in	E.	histolytica	will	help	to	elucidate	how	the	virulence	gene	families	

are	 regulated.	 In	 addition,	 experimental	 studies	may	 help	 to	 determine	 if	 the	

individual	 proteins	 encoded	 by	 virulence	 gene	 families	 are	 differentially	

expressed	across	the	 life	cycle	of	 the	parasite	 in	a	mono-allelic	way,	similar	 to	

those	observed	in	Plasmodium	var	genes	and	the	Trypanosoma	VSG	genes.		

	

However,	 investigations	 into	 virulence	 genes	 assume	 all	 E.	 histolytica	

trophozoites	 have	 the	 ability	 to	 cause	 invasive	 disease.	 Evidence	 is	 emerging	

that	E.	histolytica	may	in	fact	be	better	termed	a	pathobiont,	that	is,	an	organism	

that	 has	 the	 ability	 to	 be	 parasitic	 but	 under	 normal	 circumstances	 is	 a	

symbiont.	 Supporting	 this	 theory	 is	 the	 observation	 that	 the	 presence	 of	 E.	

histolytica	in	the	microbiome	of	pygmy	hunter	gatherers	from	both	farming	and	

fishing	populations	 in	Southwest	Cameroon	was	correlated	with	 increased	gut	

diversity	and	reduced	signatures	for	autoimmune	disorders	[49].	The	study	also	

observed	that	grazing	style	and	diet	played	a	key	role	in	whether	E.	histolytica	

infections	 became	 invasive	 in	 certain	 populations	 in	 Peru	 and	 Tanzania	 [49].		

Observations	 of	 this	 kind	 suggest	 that	 the	 presence	 of	 E.	 histolytica	 under	

normal	conditions	could	be	protective,	or	in	fact	a	symbiont,	and	that	it	is	only	

under	abnormal	conditions	that	the	parasite	takes	the	opportunity	to	parasitise	

its	host.	Investigations	into	the	microbiomes	of	affected	individuals	may	help	to	
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understand	whether	 this	 hallmark	 of	 increased	 gut	 diversity	 is	maintained	 in	

individuals	with	invasive	amoebiasis.	A	large	proportion	of	individuals	infected	

with	invasive	E.	histolytica	infections	are	prone	to	re-infection.	Observations	of	

infected	 individuals	microbiome	after	 successful	 treatment	of	 amoebiasis	may	

also	 help	 to	 understand	 how	 the	 host	 environment	 can	 influence	 such	 a	 high	

rate	of	re-infection	in	populations	prone	to	E.	histolytica	infections.		

	

Investigations	 into	 how	 diet	 affects	 the	 microbiome	 of	 populations	 where	

invasive	 E.	 histolytica	 infections	 are	 endemic	 may	 also	 be	 helpful.	 By	

investigating	any	differential	compositions	of	gut	diversity	between	populations	

where	 E.	 histolytica	 causes	 a	 high	 proportion	 of	 symptomatic	 disease	 and	

populations	where	most	E.	histolytica	infections	are	asymptomatic,	the	role	the	

host	environment	plays	in	activating	the	switch	of	asymptotic	to	symptomatic	E.	

histolytica	colonization	may	be	revealed.	

	

6.2.3.	Support	for	the	tRNA	array	telomere	hypothesis	

	

Chapter	4	provides	evidence	to	support	the	tRNA	array	telomere	hypothesis	[4]	

in	 the	 E.	 histolytica	 genome.	 The	 tRNA	 arrays	 were	 exclusively	 observed	 to	

occur	 at	 the	 end	 of	 contigs	 with	 only	 one	 instance	 where	 contigs	 could	 be	

orientated	 in	 such	 a	 way	 as	 to	 facilitate	 the	 internal	 scaffolding	 of	 the	 array	

(Chapter	4).	Future	work	would	ideally	experimentally	validate	the	existence	of	

the	 tRNA	 arrays	 at	 the	 end	 of	 the	 chromosomes.	 The	 observation	 that	 the	

chromosomes	of	Entamoeba	species	do	not	condense	has	prohibited	the	use	of	

conventional	 fluorescent	 in-situ	hybridization	 (FISH)	experiments.	Techniques	

such	as	fiber-FISH	[396]	may	provide	an	alternative	for	imaging	the	tRNA	arrays	

experimentally.	Fiber-FISH	on	deproteinized,	stretched	DNA	prepared	by	in	situ	

extraction	 of	 whole	 cells	 immobilized	 on	 microscope	 glass	 slides	 allows	 the	

visualization	of	individual	genes	or	other	small	DNA	elements	on	chromosomes.	

If	 a	 protocol	 for	 the	 extraction	 of	 high	molecular	 weight	E.	 histolytica	 can	 be	

developed	 (Section	 6.1.2.)	 it	 is	 possible	 that	 fiber-FISH	 could	 experimentally	

demonstrate	the	location	of	the	tRNA	arrays	along	stretches	of	DNA	and	validate	

the	findings	of	Chapter	4.		
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6.2.4.	 Confirmation	 of	 the	 loss	 of	 the	 rDNA	 episome	 EhR1	 from	 the	 E.	

histolytica	genome	in	axenic	culture	

	

The	 rDNA	 genes	 of	 Entamoeba	 species	 are	 known	 to	 exist	 on	 extra-

chromosomal	molecules	called	EhR1	and	EhR2,	differentiated	by	the	number	of	

copies	 of	 the	 rDNA	 gene	 they	 contain	 (EhR1	 has	 two	 copies,	 EhR2	 has	 one)	

[110,125].	The	PacBio	E.	histolytica	assembly	contained	a	fully	assembled	EhR2	

(Chapter	 2)	 however,	 no	 sequence	 was	 identified,	 in	 both	 the	 assembled	

genome	 or	 the	 raw	 reads,	 that	 corresponded	 to	 the	 unique	 regions	 of	 EhR1,	

suggesting	 it	has	been	 lost	 from	the	E.	histolytica	HM-1:IMSS	cell	 stocks	at	 the	

University	of	Liverpool.	The	experimental	validation	of	this	loss,	using	PCR	and	

restriction	 digestion,	 will	 determine	 definitively	 whether	 this	 is	 the	 case.	 If	

experimentally	 validated,	 the	 findings	 will	 contribute	 to	 how	 the	 community	

genotypes	stool	samples	when	performing	epidemiological	studies	as	currently,	

unique	 regions	 from	 the	 EhR1	 episome	 (including	 the	Tr	 region)	 are	 used	 in	

epidemiological	surveys	for	the	disease	[329,330].	

	

6.3.	Genome-wide	bisulphite	sequencing	of	Entamoeba	histolytica	HM-
1:IMSS	
	

Only	 a	 small	 proportion	 of	 the	 E.	 histolytica	 genome	 is	 methylated,	 as	

determined	 by	 HPLC	 coupled	 with	 mass	 spectrometry	 [364].	 Chapter	 5	

presented	whole	genome	bisulphite	sequencing	and	genome-wide	identification	

of	methylated	regions	of	 three	Entamoeba	species;	E.	histolytica	HM-1:IMSS,	E.	

moshkovskii	Laredo	and	E.	invadens	IP-1.	All	 three	genomes	demonstrated	 low	

levels	 of	methylation,	with	 very	 few	 genes	 being	methylated	 in	 each	 genome;	

the	 orthologues	 of	 these	 genes	were	 never	 observed	 to	 be	methylated	 in	 the	

other	 Entamoeba	 species	 analysed.	 The	 majority	 of	 the	 methylation	 was	

targeted	 to	 the	 non-coding	 portion	 of	 the	 genomes	 in	 all	 three	 species.	 In	 E.	

histolytica,	 the	 tRNA	 arrays	 showed	 high	 levels	 of	 methylation	 in	 the	 STR	

regions	 that	 separate	 the	 tRNA	 genes	 in	 the	 tRNA	 arrays.	 This	 pattern	 of	

methylation	was	 also	 observed	 in	E.	moshkovskii	and	E.	 invadens	however	 the	

levels	of	methylation	were	not	as	extreme	 in	 these	other	species.	This	may	be	

explained	by	the	 lower	depths	of	BS-seq	coverage	obtained	for	the	E.	invadens	
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and	E.	moshkovskii,	compared	to	E.	histolytica.	The	lower	level	of	coverage	in	the	

non-histolytica	species	meant	that	a	lower	proportion	of	cytosines	were	covered	

by	10x	coverage	and,	as	a	result,	genome-wide	methylation	in	these	two	species	

may	be	underestimated.	Further	bisulphite	sequencing	of	E.	moshkovskii	and	E.	

invadens	would	allow	for	a	greater	coverage	depth	and	improved	confidence	in	

the	identification	of	methylated	sites	in	these	species.		

	

6.3.1.	Methylation	of	transposable	elements	in	Entamoeba	histolytica		

	

Transposable	elements	(TEs)	within	the	E.	histolytica	HM-1:IMSS	genome	were	

found	 to	 be	 highly	methylated,	 with	 a	 large	 number	 of	 the	 TEs	 containing	 at	

least	 one	 highly	 methylated	 site.	 The	 analysis	 was	 not	 extended	 to	 E.	

moshkovskii	and	E.	invadens,	as	 the	 transposable	elements	of	 these	species	are	

not	 so	well	 characterised.	Methylation	 is	 assumed	 to	 silence	 the	 harmful	 TEs	

that	 can	 disrupt	 the	 genome	 however,	 if	 the	 virulence	 gene	 families	 are	

expanded	through	the	propagation	of	TEs	throughout	the	E.	histolytica	genome	

(Chapter	 3)	 then	 some	 copies	 of	 the	 TEs	must	 not	 be	 silenced	 or	 at	 least,	 be	

allowed	to	exist	unmethylated	in	the	genome	for	long	enough	for	expansion	to	

occur.	 It	 would	 be	 interesting	 to	 determine	 if	 the	 same	 pattern	 of	 TE	

methylation	is	present	across	all	 three	species	especially	as	the	observation	of	

many	 virulence	 gene	 families	 are	 suggested	 as	 being	 propagated	 by	 the	 TEs	

moving	around	the	genome	(Chapter	3).			

	

6.4.	Concluding	remarks	
	

Although	a	telomere-to-telomere	genome	assembly	was	not	produced	from	the	

PacBio	 sequencing	 of	 E.	 histolytica,	 the	 new	 PacBio	 genome	 is	 a	 major	

improvement	 on	 the	 published	 assembly.	 This	 new	 assembly	 and	 subsequent	

annotation	 (Chapter	2	and	3)	allowed	 for	 further	analyses	of	 the	genome	 that	

were	performed	in	Chapters	4	and	5.	The	analyses	revealed	a	lot	of	information	

regarding	the	structure	of	the	E.	histolytica	genome	as	well	as	the	organisation	

of	 virulence	 gene	 families	 and	 a	 genome-wide	 study	 of	 methylation.	 The	

analysis	of	virulence	gene	 families	revealed	their	correlation	with	the	position	
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of	 TEs	 in	 the	 genome.	 The	 analyses	 reported	 that	 many	 gene	 families	 had	

increased	 in	 size,	 but	 perhaps	 most	 striking	 was	 the	 observation	 that	 the	

trichohyalin	 gene,	which	 exists	 as	 a	 single	 copy	 in	 the	 published	 reference,	 is	

expanded	 in	 the	 PacBio	 genome	 assembly	 and	 forms	 a	 gene	 family	with	 over	

100	 members.	 This	 observation	 highlights	 how	 third	 generation	 sequencing	

allows	 for	better	understanding	of	 genome	organisation	 (though	 it	 is	 possible	

this	gene	family	underwent	expansion	within	culture,	subsequent	to	the	original	

sequencing	attempt).		

	

The	analyses	of	variation	in	the	tRNA	arrays	provided	a	novel	insight	in	to	the	

length	and	structure	of	these	arrays	and	provided	additional	evidence	that	these	

structures	 form	 the	 telomeres	 in	E.	histolytica.	 The	 genome-wide	methylation	

analysis	also	confirmed	that	these	regions	were	highly	methylated	and	this	DNA	

hyper-methylation	 may	 contribute	 to	 changing	 the	 conformation	 of	 these	

regions	 into	 condensed	 protective	 structures,	 though	 this	 will	 need	 to	 be	

experimentally	 validated.	 The	 sparse	 DNA	 methylation	 across	 the	 protein-

coding	 regions	 of	 the	 three	 representative	 Entamoeba	 species’	 genomes	

suggests	DNA	methylation	may	not	be	a	major	regulator	of	gene	expression,	as	

has	previously	been	suggested.		

	

Overall,	 the	 new	 PacBio	 reference	 genome	 provides	 a	 platform	 for	 future	

studies	of	the	biology,	genetics	and	evolution	of	Entamoeba	parasites.		
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Appendix	2	

	

S2.1.	assemblyStats.pl	

	
#! /usr/bin/perl 
 
##USAGE: perl assemblyStats.pl [FASTA file] 
 
use strict; 
use warnings; 
use List::Util qw(sum min max); 
use Getopt::Long; 
use File::Basename; 
 
#Define basetype variables 
my $A = 0; 
my $T = 0; 
my $G = 0; 
my $C = 0; 
my $N = 0; 
 
# Define file variables 
my $file=shift; 
my $outFile = ""; 
 
 
my ($fileName, $filePath) = fileparse($file); 
$outFile = $file . "_n50_stat"; 
 
 
#Open files 
 
open(I, "<$file") or die "Can not open file: $file\n"; 
open(O, ">$outFile") or die "Can not open file: $outFile\n"; 
 
 
my @len = (); 
 
my $prevFastaSeqId = ""; 
my $fastaSeqId = ""; 
my $fastaSeq = ""; 
 
while(my $line = <I>) { 
 chomp $line; 
 if($line =~ /^>/) { 
  $prevFastaSeqId = $fastaSeqId; 
  $fastaSeqId = $line; 
  if($fastaSeq ne "") { 
   push(@len, length $fastaSeq); 
   baseCount($fastaSeq); 
  } 
  $fastaSeq = ""; 
 } 
 else { 
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  $fastaSeq .= $line; 
 } 
} 
if($fastaSeq ne "") { 
 $prevFastaSeqId = $fastaSeqId; 
 push(@len, length $fastaSeq); 
 baseCount($fastaSeq); 
} 
 
my $totalReads = scalar @len; 
my $bases = sum(@len); 
my $minReadLen = min(@len); 
my $maxReadLen = max(@len); 
my $n25 = calcN50(\@len, 25); 
my $n50 = calcN50(\@len, 50); 
my $n75 = calcN50(\@len, 75); 
my $n90 = calcN50(\@len, 90); 
my $n95 = calcN50(\@len, 95); 
 
printf O "%-25s %d\n" , "Total sequences", $totalReads; 
printf O "%-25s %d\n" , "Total bases", $bases; 
printf O "%-25s %d\n" , "Min sequence length", $minReadLen; 
printf O "%-25s %d\n" , "Max sequence length", $maxReadLen; 
printf O "%-25s %0.2f\n", "Average sequence length", 
$avgReadLen; 
printf O "%-25s %0.2f\n", "Median sequence length", 
$medianLen; 
printf O "%-25s %d\n", "N25 length", $n25; 
printf O "%-25s %d\n", "N50 length", $n50; 
printf O "%-25s %d\n", "N75 length", $n75; 
printf O "%-25s %d\n", "N90 length", $n90; 
printf O "%-25s %d\n", "N95 length", $n95; 
printf O "%-25s %0.2f %s\n", "A", $A/$bases*100, "%"; 
printf O "%-25s %0.2f %s\n", "T", $T/$bases*100, "%"; 
printf O "%-25s %0.2f %s\n", "G", $G/$bases*100, "%"; 
printf O "%-25s %0.2f %s\n", "C", $C/$bases*100, "%"; 
printf O "%-25s %0.2f %s\n", "(A + T)s", ($A+$T)/$bases*100, 
"%"; 
printf O "%-25s %0.2f %s\n", "(G + C)s", ($G+$C)/$bases*100, 
"%"; 
printf O "%-25s %0.2f %s\n", "Ns", $N/$bases*100, "%"; 
 
print "N50 Statisitcs file: $outFile\n"; 
 
exit; 
 
sub calcN50 { 
 my @x = @{$_[0]}; 
 my $n = $_[1]; 
 @x=sort{$b<=>$a} @x; 
 my $total = sum(@x); 
 my ($count, $n50)=(0,0); 
 for (my $j=0; $j<@x; $j++){ 
        $count+=$x[$j]; 
        if(($count>=$total*$n/100)){ 
            $n50=$x[$j]; 
            last; 
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        } 
 } 
 return $n50; 
} 
 
 
sub baseCount { 
 my $seq = $_[0]; 
 my $tA += $seq =~ s/A/A/gi; 
 my $tT += $seq =~ s/T/T/gi; 
 my $tG += $seq =~ s/G/G/gi; 
 my $tC += $seq =~ s/C/C/gi; 
 $N += (length $seq) - $tA - $tT - $tG - $tC; 
 $A += $tA; 
 $T += $tT; 
 $G += $tG; 
 $C += $tC; 
} 
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Appendix	3	

	

Table	 S3.1.	 Non-default	 parameters	 used	 when	 running	 PhyML	 on	 gene	

families	 in	 close	 proximity	 to	 transposable	 elements.	 PhyML	 version	

20120412	was	used	from	command	line.	

	

Parameter	 Value	

Data	Type	 aa	

Sequence	Format		 sequential	

Number	of	bootstrapped	datasets	 1,000	

Model	Name	 [Best	model	produced	by	ProtTest3]	

Proportion	of	invariable	sites	 [P-inv	value	produced	by	ProtTest3]	

Gamma	distribution	parameter	 [alpha	value	produced	by	ProtTest3]	

Tree	topology	search	 SPR	(Subtree	pruning	and	regrafting)	
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Appendix	4	

	

Table	S4.1.	Full	list	of	tRNA	array	types	in	the	E.	histolytica	genome	

tRNA	isoacceptor	types	are	given	with	their	anti-codon.	

	

Array	Name	 Isoacceptor	Types	 GenBank	Accession		

[AAGC]	 AlaAGC	 BK005648	

[ALL]	 AlaCGC,	LeuTAA,	LeuCAA	 BK005649	

[ASD]	 AlaTGC,	SerGCT,	AspGTC	 BK005650	

[GGCC]	 GlyGCC	 BK005662	

[GTCC]	 GlyTCC	 BK005663	

[HGTG]	 HisGTG	 BK005654	

[LS]	 LeuCAG,	SerCGA	 BK005667	

[LT]	 LeuAAG,	ThrAGT	 BK005666	

[MR]	 eMetCAT,ArgTCG	 BK005653	

[NK1]	 AsnGTT,LysCTT	 BK005655	

[NK2]	 AsnGTT,LysCTT	 BK005656	

[PTGG]	 ProTGG	 BK005669	

[RTCT]	 ArgTCT	 BK005654	

[R5]	 ArgACG	 BK005651	

[RT]	 ArgCCT,	ThrAGT	 BK005652	

[SD]	 SerTGA,	AspGTC	 BK005657	

[SPPCK]	 SerAGA,	ProAGG,	ProCGG,	CysGCA,	LysTTT	 BK005659	

[SQCK]	 SerAGA,	GlnCTG,	CysGCA,LysTTT	 BK005658	

[TQ]	 ThrCGT,	GlnTTG	 BK005660	

[TX]	 ThrTGT	 BK005670	

[V5]	 ValTAC	 BK005671	

[VF]	 ValGAC,	PheGAA	 BK005668	

[VME5]	 ValCAC,	iMetCAT,	GluCTC	 BK005672	

[WI]	 TrpCCA,	IleAAT	 BK005665	

[YE]	 TyrGTA,	GluTTC	 BK005661	
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S4.2.	Extracting	codons	from	CDS	sequences	
 

cat input.fasta|\ 

awk '/^>/ {printf("%s%s\n",(N==0?"":"\n"),$0);N++;next;} 

{printf("%s",$0);}END{printf("\n");}' |\ 

sed -e $'/^[^>]/s/\([A-Z][A-Z][A-Z]\)/\\1\\\n/g' 
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Appendix	5	

	

Table	S5.1.	UniProt	accession	numbers	of	DNA	methyltransferases	(Dnmt)	

in	Homo	Sapiens	and	Arabidopsis	thaliana	

	

Organism	 Dnmt	type	 UniProt	Accession	Number	

Homo	Sapiens	

Dnmt1	 P26358	

Dnmt2	 Q61C57	

Dnmt3a	 Q946K1	

Dnmt3b	 Q2PJ58	

Arabidopsis	thaliana	

Dnmt1	 P34881	

Dnmt2	 F4JWT7	

Dnmt3a	 Q9T0I1	

Dnmt3b	 O23273	

	

	

S5.2.	Methylation_protocol.sh	

	
#!/bin/bash 
 
 
echo "Enter name and location of Reference genome folder, 
followed by [ENTER]:" 
read reference_genome_folder 
echo "Enter name and location of Reference genome fasta file, 
followed by [ENTER]:" 
read reference_genome_fasta 
echo "Enter name and location of one zipped fastq file (not 
whole path make sure in same directory), followed by [ENTER]:" 
read fastq1 
echo "Enter name and location of one zipped fastq file (not 
whole path make sure in same directory), followed by [ENTER]:" 
read fastq2 
echo "Enter name only of fastq1 (without .fastq.gz) folowed by 
enter:" 
read fastq3 
echo "Enter study name, followed by [ENTER]:" 
read name 
 
echo "Number of reads R1:" >> $name"_Coverage_stats" 
gunzip -c $fastq1 | grep "^+$" | wc -l >> 
$name"_Coverage_stats" 
echo "Number of reads R2:" >> $name"_Coverage_stats" 
gunzip -c $fastq2 | grep "^+$" | wc -l >> 
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$name"_Coverage_stats" 
/pub34/laura/bismark_v0.18.1/bismark_genome_preparation --
bowtie2 $reference_genome_folder 
 
/pub34/laura/bismark_v0.18.1/bismark --bowtie2 --
non_directional $reference_genome_folder -1 $fastq1 -2 $fastq2 
2> Bismark_stout 
 
cp $fastq3"_bismark_bt2_pe.bam" 
$name"_1.fastq_bismark_bt2_pe.bam" 
samtools sort $name"_1.fastq_bismark_bt2_pe.bam" 
$name"_fastq_bismark_sort" 
samtools index $name"_fastq_bismark_sort.bam" 
 
java -jar -Xmx10g /pub35/xliu/software/picard-tools-
1.85/MarkDuplicates.jar I= $name"_fastq_bismark_sort.bam" O= 
$name"_remdups.bam" M=duplication.txt REMOVE_DUPLICATES=true 
AS=true 
 
samtools sort $name"_remdups.bam" $name"_remdups_sort" 
samtools index $name"_remdups_sort.bam" 
 
perl /pub34/laura/coverageStatsSplitByChr_v2.pl -i 
$name"_remdups_sort.bam" > $name"_coverage" 
 
awk '{sum=sum+$4} END {print "Average % coverage of reference 
contigs=\t" sum/NR}' $name"_coverage" >> 
$name"_Coverage_stats" 
awk '{sum=sum+$5} END {print "Average depth of coverage of 
reference contigs=\t" sum/NR}' $name"_coverage" >> 
$name"_Coverage_stats" 
echo "Number of mapped contigs:" >> $name"_Coverage_stats" 
wc -l $name"_coverage" >> $name"_Coverage_stats" 
 
echo "Number of mapped reads:" >> $name"_Coverage_stats" 
samtools view $name"_1.fastq_bismark_bt2_pe.bam" | grep -v 
"^@" | wc -l >> $name"_Coverage_stats" 
echo "Number of mapped reads after duplicate removal:" >> 
$name"_Coverage_stats" 
samtools view $name"_remdups_sort.bam" | grep -v "^@" | wc -l 
>> $name"_Coverage_stats" 
 
/pub34/laura/bismark_v0.18.1/bismark_methylation_extractor -s 
-comprehensive $name"_remdups_sort.bam" 
 
perl 
/pub34/laura/Watkins_collection/CS_bis/Map_direct_to_TGAC/Are_
SNP_reads_methylated.pl "CpG_context_"$name"_remdups_sort.txt" 
"CHG_context_"$name"_remdups_sort.txt" 
"CHH_context_"$name"_remdups_sort.txt" > 
$name"_%_C_sites_meth.txt" 
echo "Number of cytosines to analyze:" >> 
$name"_Coverage_stats" 
wc -l $name"_%_C_sites_meth.txt" >> $name"_Coverage_stats" 
 
awk '($3 >= 10) { print $0}' $name"_%_C_sites_meth.txt" > 
$name"_%_C_sites_meth_g10x.txt" 
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echo "Number of cytosines to analyze 10x:" >> 
$name"_Coverage_stats" 
wc -l $name"_%_C_sites_meth_g10x.txt" >> 
$name"_Coverage_stats" 
	
	

	

S5.3.	Are_SNP_reads_methylated.pl	Perl	script	provided	by	Dr	Laura	Gardiner	

(IBM	Research,	Daresbury,	UK).	
 

#!/usr/bin/perl 
use strict; 
my $line; 
my @temp; 
my $ref_contig; 
my %hash3; 
my $counter=0; 
my $line2; 
my @temp2; 
my %hash2; 
my @array; 
my $ratio; 
use Bio::SeqIO; 
my %hash1; 
my @array2; 
my @array3; 
my %hash_CS; 
my %hash_CHH; 
my %hash_CHG; 
 
##Usage ./Are_SNP_reads_methylated.pl 
Bismark_CpG_methylation_file Bismark_CHH_methylation_file 
Bismark_CHG_methylation_file Output1 > Output2 
 
#open (INPUT, $ARGV[0]); 
open(INPUT,"/pub9/laura/Indian_wheat_grant/CS_new/CS_new_SPLIT
_TREATED/CpG_context_CS_new_split_treated.fastq.gz_bismark_rem
dups_sort.txt") || die "cannot open file\n"; 
while($line=<INPUT>){ 
chomp $line; 
my @array=split(/\t/,$line); 
my $seq_read = $array[0]; 
my $pos=$array[3]; 
my $meth=$array[1]; 
my $contig=$array[2]; 
my $detail=($contig . ":" . $pos . ":" . "Z" . ":" . $meth); 
 push @{$hash_CS{$seq_read}}, $detail; 
 } 
close INPUT; 
 
#open (INPUT, $ARGV[1]); 
open(INPUT,"/pub9/laura/Indian_wheat_grant/CS_new/CS_new_SPLIT
_TREATED/CHH_context_CS_new_split_treated.fastq.gz_bismark_rem
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dups_sort.txt") || die "cannot open file\n"; 
while(my $line2=<INPUT>){ 
chomp $line2; 
my @array2=split(/\t/,$line2); 
my $seq_read2 = $array2[0]; 
my $meth2=$array2[1]; 
my $pos2=$array2[3]; 
my $contig2=$array2[2]; 
my $detail2=($contig2 . ":" . $pos2 . ":" . "H" . ":" . 
$meth2); 
        push @{$hash_CS{$seq_read2}}, $detail2; 
        } 
close INPUT; 
 
#open (INPUT, $ARGV[2]); 
open(INPUT,"/pub9/laura/Indian_wheat_grant/CS_new/CS_new_SPLIT
_TREATED/CHG_context_CS_new_split_treated.fastq.gz_bismark_rem
dups_sort.txt") || die "cannot open file\n"; 
while(my $line3=<INPUT>){ 
chomp $line3; 
my @array3=split(/\t/,$line3); 
my $seq_read3 = $array3[0]; 
my $meth3=$array3[1]; 
my $pos3=$array3[3]; 
my $contig3=$array3[2]; 
my $detail3=($contig3 . ":" . $pos3 . ":" . "X" . ":" . 
$meth3); 
        push @{$hash_CS{$seq_read3}}, $detail3; 
        } 
close INPUT; 
 
 
print 
"Probe\tPosition\tRef\tAlt\tVarfreq\tSeq_read_ID\tMapping_orie
ntation\tLeftmost_mapping_pos\tCigar\tRightmost_mapping_positi
on\tSNP_position_on_read\tSNP_allele_in_read\tSequencing_read\
tNumber_of_C's_hit_by_read\tListed_C's_hit_by_read(Probe:Pos:t
ype_of_C:meth(+)unmeth(-
))\tMeth_Cs_hit_by_read\tunmeth_Cs_hit_by_read\n";
 #\tMethylation_site_on_read(Probe:Position_on_probe:Type)
\n"; 
#open (INPUT, $ARGV[3]); 
open(INPUT,"/pub9/laura/Indian_wheat_grant/CS_new/CS_new_SPLIT
_TREATED/CS_new_split_treated_reads_mapping_homoeologous.snp") 
|| die; 
while(my $liner=<INPUT>){ 
chomp $liner; 
@temp=split(/\t/,$liner); 
my $read_ID=$temp[3]; 
 if(exists($hash_CS{$read_ID})){ 
 my $value=$hash_CS{$read_ID}; 
 my @val=@$value; 
   
 my $sites=@val; 
 print "$liner\t$sites\t"; 
   my @metharray; 
   my @unmetharray;  
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 foreach my $element(@val){ 
   if($element =~ /:\+/){ 
   push (@metharray, $element); 
   print "$element "; 
   } 
   elsif($element =~ /:\-/){  
   push(@unmetharray, $element); 
   print "$element "; 
   } 
   } 
   my $ll=@metharray; 
   my $tt=@unmetharray; 
   print "\t$ll\t$tt\t"; 
   print "\n"; 
   } 
   else{ 
   print "$liner\t0\n"; 
   } 
} 
close INPUT; 
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Figure	 S5.6.	 Methylation	 of	 Entamoeba	 moshkovskii	 Laredo	 tRNA	 array	

units	YE,	AAGC,	RT	and	WI.	Differential	methylation	of	cytosine	bases	along	the	

tRNA	 arrays	was	 observed.	 Tracks	 show	 a	 singular	 tRNA	 array	 unit	 with	 the	

points	 demonstrating	 the	 position	 of	 cytosines	 and	 the	 percentage	 of	

methylated	reads	that	mapped	to	the	each	position.	All	cytosines	presented	had	

at	least	5X	coverage.	
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Figure.X.X Methylation of Entamoeba moshkovskii Laredo tRNA array units. Differential methylation 
of cytosine bases along the tRNA arrays was observed. Tracks show a singular tRNA array unit with the 
graph demonstrating the position of cytosines and the percentage of reads that mapped to the 
position with a methylated cytosines. All cytosines presented had at least 5X coverage.
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Figure	 S5.7.	 Methylation	 of	 Entamoeba	 moshkovskii	 Laredo	 tRNA	 array	

units	 NK,	 VF,	 SPPPC	 and	 VME5.	 Differential	 methylation	 of	 cytosine	 bases	

along	 the	 tRNA	arrays	was	observed.	Tracks	 show	a	 singular	 tRNA	array	unit	

with	 the	points	demonstrating	 the	position	of	 cytosines	and	 the	percentage	of	

methylated	reads	that	mapped	to	the	each	position.	All	cytosines	presented	had	

at	least	5X	coverage.	
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Figure.X.X Methylation of Entamoeba moshkovskii Laredo tRNA array units. Differential methylation 
of cytosine bases along the tRNA arrays was observed. Tracks show a singular tRNA array unit with the 
graph demonstrating the position of cytosines and the percentage of reads that mapped to the 
position with a methylated cytosines. All cytosines presented had at least 5X coverage.
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Figure	 S5.8.	 Methylation	 of	 Entamoeba	 moshkovskii	 Laredo	 tRNA	 array	

units	ALL,	SQCK	and	ADSSD.	Differential	methylation	of	cytosine	bases	along	

the	tRNA	arrays	was	observed.	Tracks	show	a	singular	tRNA	array	unit	with	the	

points	 demonstrating	 the	 position	 of	 cytosines	 and	 the	 percentage	 of	

methylated	reads	that	mapped	to	the	each	position.	All	cytosines	presented	had	

at	least	5X	coverage.	
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graph demonstrating the position of cytosines and the percentage of reads that mapped to the 
position with a methylated cytosines. All cytosines presented had at least 5X coverage.
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Figure	S5.9.	Methylation	of	Entamoeba	invadens	IP-1	tRNA	array	units	AAGC,	

ALI,	FVDTX	and	RTCT.	Differential	methylation	of	cytosine	bases	along	the	tRNA	

arrays	was	observed.	Tracks	 show	a	 singular	 tRNA	array	unit	with	 the	points	

demonstrating	the	position	of	cytosines	and	the	percentage	of	methylated	reads	

that	 mapped	 to	 the	 each	 position.	 All	 cytosines	 presented	 had	 at	 least	 10X	

coverage.	
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Figure.X.X Methylation of Entamoeba invadens tRNA array units. Differential methylation of cytosine 
bases along the tRNA arrays was observed. Tracks show a singular tRNA array unit with the graph 
demonstrating the position of cytosines and the percentage of reads that mapped to the position with 
a methylated cytosines. All cytosines presented had at least 10X coverage.
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Figure	 S5.10.	 Methylation	 of	 Entamoeba	 invadens	 IP-1	 tRNA	 array	 units	

EIDLLL,	FVV5,	GGCC	and	HGTG.	Differential	methylation	of	cytosine	bases	along	

the	tRNA	arrays	was	observed.	Tracks	show	a	singular	tRNA	array	unit	with	the	

points	 demonstrating	 the	 position	 of	 cytosines	 and	 the	 percentage	 of	

methylated	reads	that	mapped	to	the	each	position.	All	cytosines	presented	had	

at	least	10X	coverage.	
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Figure.X.X Methylation of Entamoeba invadens tRNA array units. Differential methylation of cytosine 
bases along the tRNA arrays was observed. Tracks show a singular tRNA array unit with the graph 
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Figure	 S5.11.	 Methylation	 of	 Entamoeba	 invadens	 IP-1	 tRNA	 array	 units	

NKCQK,	MR,	NK	and	SPP.	Differential	methylation	of	cytosine	bases	along	the	

tRNA	 arrays	was	 observed.	 Tracks	 show	 a	 singular	 tRNA	 array	 unit	 with	 the	

points	 demonstrating	 the	 position	 of	 cytosines	 and	 the	 percentage	 of	

methylated	reads	that	mapped	to	the	each	position.	All	cytosines	presented	had	

at	least	10X	coverage.	
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Figure.X.X Methylation of Entamoeba invadens tRNA array units. Differential methylation of cytosine 
bases along the tRNA arrays was observed. Tracks show a singular tRNA array unit with the graph 
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Figure	 S5.12.	 Methylation	 of	 Entamoeba	 invadens	 IP-1	 tRNA	 array	 units	

PPTRL,	ASS,	TWW	and	VMEDR5E.	Differential	methylation	of	cytosine	bases	

along	 the	 tRNA	arrays	was	observed.	Tracks	 show	a	 singular	 tRNA	array	unit	

with	 the	points	demonstrating	 the	position	of	 cytosines	and	 the	percentage	of	

methylated	reads	that	mapped	to	the	each	position.	All	cytosines	presented	had	

at	least	10X	coverage.	
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Figure	S5.13.	Methylation	of	Entamoeba	invadens	IP-1	tRNA	array	units	WI	

and	 YE.	Differential	methylation	of	 cytosine	bases	along	 the	 tRNA	arrays	was	

observed.	 Tracks	 show	 a	 singular	 tRNA	 array	 unit	 with	 the	 points	

demonstrating	the	position	of	cytosines	and	the	percentage	of	methylated	reads	

that	 mapped	 to	 the	 each	 position.	 All	 cytosines	 presented	 had	 at	 least	 10X	

coverage.	
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a methylated cytosines. All cytosines presented had at least 10X coverage.
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