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Abstract.
Numerical results are presented for two-dimensional vortex-aerofoil interaction using a grid-free 
discrete vortex method. The effects of the passing vortex on the surface pressure distribution 
and hence the aerodynamic force and moment of the aerofoil are examined in detail for a 
variety of interaction geometries. For some head-on interaction cases, vortex-induced local 
flow separation is also predicted on the aft part of the aerofoil surfaces. Extensive comparisons 
are made with other numerical results and the results from the Glasgow University BVI wind- 
tunnel test, which show good agreement.
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1 INTRODUCTION
Blade-vortex interaction (BVI) in the flow field about helicopter rotors is a phenomenon 
in which the rotor blade passes through the tip vortices shed from preceding blades. The 
interaction can occur in forward flight, but more often occurs during manoeuvres and vertical 
descent, and is most severe when the vortex approaches the blade approximately aligned 
with the spanwise axis of the blade (parallel interaction). The BVI event not only drastically 
changes the aerodynamic loads on the rotor, but is also one of the sources of helicopter noise 
and vibration. During the last two decades, a number of experimental studies have been done 
in an attempt to gain a clear understanding of the fluid dynamic mechanisms behind the BVI 
phenomenon [1][2]. In particular, at Glasgow University, a series of parallel BVI data have been
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collected and archived as a result of an experimental research programme [3] [4] [5], providing 
a useful validation tool for analytic and numerical schemes.

Meanwhile, some numerical studies on BVI have also been carried out, mainly based on 
the unsteady panel method and conformal mapping method [6]. In the early studies, a point 
vortex [7] [8] was used to represent the interaction vortex, and its influence on the aerodynamic 
force exerted on the aerofoil was given. More recently, the distributed vortex model [9] [10] [11], 
in which the flnite core of the vortex was discretised into multiple vortex elements or particles, 
was employed to examine the effects of the vortex deformation and splitting during a close 
interaction. However, these methods, which were derived from the theory of potential flow, 
have been restricted by shedding vorticity from the trailing edge only, using the unsteady 
Kutta condition, thereby precluding vortex-induced flow separation and interaction at a high 
angle of incidence. Among others, the grid-based flnite difference method has also been used. 
In [12], the incompressible Navier-Stokes equations were solved for the 2-D BVI problem for 
Reynolds numbers less than 200. Later, to reduce the excessive numerical diffusion of the 
interaction vortex, a high-order space discretisation scheme was applied for the convection 
term in the thin-layer N-S equations [13]. In [14], a 2-D full potential model was also used 
to model parallel BVI in the transonic flow regime. However as stated in a recent review of 
helicopter aerodynamics [15], the grid-based methods currently still suffer from difficulties in 
capturing and subsquently tracking compact vorticity regions, such as the interaction vortex, 
unless more complicated and time-consuming high order space discretisation schemes and 
self-adaptive grid generation systems are used.

In the present study, the grid-free vortex method [16][17] is employed to study the two 
dimensional blade-vortex interaction problem shown in figure 1. The entire vorticity region 
including the oncoming vortex is represented by a finite number of vortex blobs (particles 
with finite core radius) which are tracked through the flow according to the local velocity 
calculated from the Biot-Savart law. The effect of viscous diffusion is modelled by the random 
walk method. The boundary condition at the aerofoil surface is satisfied at each-time step by 
introducing new vortices along the surface which are, in part or in whole, allowed to enter the 
wake from the entire surface. The method thus avoids the need for either a Kutta condition 
to determine vorticity shedding rate or empirical methods to calculate flow separation points. 
The flexibility and robustness of the method make it possible to examine a wide range of BVI 
cases which, in conjunction with the experimental tests, contributes to a better understanding 
of the mechanisms of BVI.

on-coming
vortex

Figure 1. Parallel blade-vortex interaction

In the following sections, the theoretical background of the vortex method is reviewed, fol­
lowed by a detailed description of the numerical implementation. By examining and comparing 
the numerical results for a number of interaction cases with those obtained from other numer­
ical and experimental studies, the mechanisms of the BVI event are analysed. Finally, a brief 
discussion of future work is given.





2 MATHEMATICAL FORMULATION
Two-dimensional incompressible viscous flow can be described by the vorticity(o;)-stream 
function(’0) form of the Navier-Stokes equations together with the boundary conditions, which 
consist of::
vorticity transport equation:

continuity equation:

far-field boundary condition:

duj du> _ 2
——— +u ■ S7^ =u sy u) 
dt dt

S/2'tp=-uj

(1)

(2)

(3)u—Uqq or ^ *000

and the no-slip and no penetration conditions at the surface of a stationary body:
u=ub{xs,t)=0 or \/tp=sy 0b(^)t)=O (4)

The Poisson equation for 0 can be solved in terms of uj by using Green’s identity and the 
boundary conditions given in eq.(3) and eq.(4), which gives

,ip{x,t)= - f ln\x- -I- Uooy - VoqJ: -|- c (5)
Z7T Jd

where c is a constant. Accordingly, the velocity at any point x in the flowfield is

SR()=-L (J-7) ■dS + u0 (6)
\x-^\2

where the integral over area D in both eq.(5) and eq.(6) is taken over the portion of the fluid 
region containing non-zero vorticity. Eq.(6) is a particular application of the Biot-Savart Law.

Based on eq.(l) and eq.(5) or eq.(6), which represent the kinetic and kinematic aspects of the 
entire flow problem respectively, vorticity based methods, including discrete vortex methods, 
can be constructed. For unbounded flow problems, only the initial distribution of the vorticity 
is needed for its subsquent development. For bounded flow, however, the fact that vorticity 
will be created at the body surface should be taken into account. In the present method this 
is achieved by splitting the area integral in eq.(5) or eq.(6) into two parts:

ip{x,t)———[ ln\x-x\u}{x,t)dS + u00y-v00x + c (7)
ZTT Jd'+D"

and
,t)k X {x — 5?)

I'+D"ZTT Jd'-
■ dS u0 (8)[3c — 3?|2

where the zone D' is a thin strip encompassing the body surface, while the zone D" is the 
rest of the integral area D. For each time-step, the vorticity (or circulation) distribution in 
zone D', which includes both vorticity newly generated during the timestep and the residual 
vorticity from the previous timestep, is calculated by satisfying the boundary conditions. In 
the context of vortex methods, it can be shown [17] that the no-slip condition and the no­
penetration condition are equivalent. In the present study, only the no-penetration condition 
is used, which will be discussed in detail later.

3 NUMERICAL IMPLEMENTATION - DISCRETE VORTEX METHOD 

3.1 Discretisation and evolution of the vorticity field
In the discrete vortex method, the continuous vorticity field is approximated by a set of 
overlapping vortex blobs (particles with a finite core radius a):

UJ{^=J2rj6<r{x-Xj) (9)
;=i
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where Tj is the strength (circulation) of the vortex particle located at xj and the smooth core 
function 6a{x-Xj) is usually radially symmetric, i.e. and 2-k rf{r) dr=l.
Although a number of choices are available in selecting the core function, such as the Gaussian 
and Rankine models, a simple vortex model, which is usually referred to as the Scully model 
with /(r)=|:^r2^1^2 has been implemented.

In accordance with the vorticity distribution represented by eq.(9), the velocity at any point 
X in the flow fleld, particlarly at the center of each particle xj, can be calculated using the 
Biot-Savart law, which gives

27T 7=1 X — Xj\
(10)

where F is deflned by F{r)=2-jr J0r //(/) dr1.
At each time step, by convecting each vortex with the local velocity using the Adams- 

Bashforth second order scheme and applying the random walk method [18] to mimic the 
effects of viscous diffusion, the new position of the vortex at xj after time interval At is given 
by

Xj{t + At) ~ Xj(t) + At[^u{xj,t) - ^Uixj,t - Af)j + ffj (11)

where ffj are a pair of independent random numbers with zero mean and variance 2uAt.

Figure 2. Discretisation of the core of the interaction vortex rc=ri l+12n2
6n

For the problem of blade vortex interaction, the entire vorticity in the flow fleld comes from 
two sources: the interaction vortex which is released into the flow from the upstream of the 
aerofoil; the aerofoil surface where the new vorticity is created at each time step. Figure 2 
shows how the initial vorticity fleld of the interaction vortex is discretised into a number of 
discrete vortex particles by overlaying the vortex with a system of patches of equal area A=nrf. 
Each vortex particle is placed at the centroid rc of the patch and has strength F=a;(rc) -A. The 
core radius of the discrete vortices ensures overlapping cores, i.e. a/n > 1.

As far as the surface vorticity is concerned, the contour of the aerofoil is divided into a 
number of panels - the polygonal representation of a closed curve; and a thin strip near the 
body surface, which is also divided into the same number of trapezoids (control volume) as that 
of the panels, is set up as illustrated in figure 3. The density of the circulation 7(s)= Jq uj{s,n) dn, 
which includes both the newly generated vorticity during the current time step and the residual 
vorticity from the previous timestep, is assumed to vary linearly along the surface coordinate 
s within each control volume. The 7 value at the node points (interfaces of the control zone) 
are unknowns. The no-penetration condition, implemented here in the zero mass flux form 

for the panel with nodes x]+i and xj, is enforced for each panel to determine these 
7 values, which leads to a linear algebraic system to be solved at each time step. However,
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for N panels, it is easy to show that only N —1 equations are independent. A further equation 
is needed to make the solution unique, which is achieved by using the vorticity conservation 
law. For the present method, we have

E (r.), + E (r.). = r. (12)

where Fw and r„ are the circulations of each vortex particle in the wake and within the control 
zone (nascent vortices) respectively, and Fv is the total vorticity of the initial interaction 
vortex.

Once the 7 values at node points are known, the vorticity in each panel is then approximated 
by evenly positioned and overlapping vortex particles, each of strength ri=-/{s,)As/Ns, i=l,2,..Ns.

Like the vortices in the wake, the vortices in the control zone are also convected and diffused 
at each time step. Depending on their new positions (in or out of the outer border of the 
control zone), they are released into the wake or absorbed as residual vorticity.

Although the velocity of the vortices in the control zone can also be calculated using eq.(lO), 
this approach leads to an oscillating velocity distribution due to the fact that the boundary 
condition implemented cannot guarantee cancellation of the normal velocity at every point 
along the surface. The resulting transport of the vortex particles can lead to an unrealis­
tic shedding of surface vorticity into the wake. Because the control zone is very thin, it is 
appropriate to assume the boundary-layer approximation there, namely to= - dujdn, thus 
ri{s)= - u{s)n=h. Hence the vorticity weighted average velocity across the control zone, which 
is also used for the tangential velocity of the nascent vortices, is given by

u(s)av = fo ucj dn _ u{s)n=h 
/o udn 2

_ l{s) 
2 (13)

which is independent of the specific profile of a;()>). For a stationary body, using the continuity 
equation in each control volume, the normal velocity of the nascent vortices created above the 
panel with nodes j and 7 -|- 1 is

V 2
This is consistent with the 7 distribution within the control zone and the exact boundary 
condition at the body surface, hence there is no oscillation within each panel.

3.2 Calculation of the surface pressure
Of particular interest in the study is an examination of the effect of the interaction vortex 
on the aerodynamic performance of the aerofoil, which requires the calculation of the surface 
pressure distribution. This, in turn, can be integrated into the aerodynamic coefficents such 
as ChCt and Cmi.

m 4
For the body-oriented local orthogonal coordinate system (?,«), the tangential momentum 

equation can be written at the surface of a stationary body:

(15)

(16)
which can be reduced to

1 dp du)
pds U dn

The term on the right-hand side of the equation represents the rate of vorticity creation per 
unit length at the body surface[17].

Considering a control volume with node points 7 and y -l-1 shown in figure 3 , the circulation 
at time t—At is assumed to be 7,As. After convection and diffusion through the interfaces (not
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including the new vorticity generated at the body surface) during a time interval At, which is 
represented by the symbols —> and <—> respectively, the residual circulation will be 7” As. 
If the circulation of nascent vortices in the control volume at time t is calculated as 7AS, then 
the newly created circulation from the body surface during the time interval At should be 
7As — 7” As. Thus for this panel we have

pj^=2^ (17)
As At y J

Once the pressure value at a reference point is known, the entire pressure distribution along 
the body surface can be easily calculated by integrating eq(16).

t-At

Y’As

t
t"

t Y"As

WmMW/M

yAs

' As

Figure 3. Surface pressure calculation

3.3 Controlling the total number of particles
The computational cost of evaluating the velocity of the system of vortices using the Biot- 
Savart Law is proportional to the square of the number of vortices {0{N^)). Therefore when 
the total number of vortices in the flow becomes very large, the CPU time needed to carry 
out the computation will be prohibitive. Two measures are adopted in this study to limit the 
number of vortices in the wake.

Firstly, a different, usually larger, core radius is used when discretising the interaction vortex 
than that employed for the vortices shed from the aerofoil surface. To simulate high Reynolds 
number flow around the aerofoil, the control zone should be very thin, of order 0{-^), to reflect 
the boundary layer near the body surface. Hence the core radius for the nascent vortices should 
also be of the order of the control zone height. If this core radius was to be used to discretise 
the interaction vortex with relatively large radius, then the number of the vortices would be 
excessively large.

Secondly, an amalgamation scheme is used for vortices in the wake which are far from the 
surface. Any two vortices with locations xj, xk and strengths Fj, P* respectively are merged into 
a new vortex with strength F' = r; + rt and located at:? = (rjjj^ + ri3tit)/r', provided the effect 
of merging on the induced velocity at the body surface is very small[17], i.e.

lr;r*l \xj-xk\
< € (18)\Fj + Pii (Do + d1)1-5(Z)o + ./2)1-5

This scheme conserves both the total vorticity and linear moment of vorticity 
Another possible method to further reduce the computational cost of the vortex method is 

to employ a fast summation algorithm, which has operational count 0{NV) or 0{NvbgNv) rather 
than 0(N^) [19]. Such a scheme will be incorporated into the code in the near future.
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4 RESULTS AND DISCUSSION
To show the feasibility and accuracy of the method, a number of BVI test cases have been 
calculated and the results compared with those obtained from other numerical and exprimental 
studies. The dominant mechanisms during a BVI event are also analysed and presented through 
illustration of the unsteady surface pressure distribution and loads, as well as the trajectory 
of the interaction vortex. For all the cases discussed here, the interaction vortex is introduced 
five chord lengths upstream of the leading edge and 160 surface panels are used to represent 
the contour of the aerofoil.

4.1 Comparison with other numerical results
Two typical cases with the same parameters as given in [10] are calculated for the interaction 
between a NACA 0012 aerofoil and a vortex modelled by the Rankine core. The strength Fv 
and the core radius Rv of the clockwise vortex are 0.2 and 0.1 respectively. For the first case, 
the interaction vortex is positioned slightly below the aerofoil (yv=-0.26), while for the second 
test case, the vortex approaches the aerofoil along the chordline (yv=0 or head-on case).

Figure 4. Surface pressure distribution

Figure 4 shows the development of the unsteady pressure distribution along the lower surface 
of the aerofoil for both cases, which indicates two distinct effects of the interaction vortex. 
Firstly, due to the effective incidence induced by the approaching vortex, a leading edge 
suction peak develops on the lower surface, reaching a maximum just before the vortex passes





the leading edge. Subsequently a rapid collapse of this peak occurs; while the magnitude of 
the suction peak is also affected by vortex induced changes in the local speed of the leading 
edge flow. Secondly, in these cases, as the vortex convects downstream along the surface of 
the aerofoil, it accelerates the flow close to the surface, and the resulting low pressure ridge is 
clearly visible.

- Yv/oO.O present 
+ Yv/c-0.0 RefllO]
•• Yv/o-0.26 present
O Yv/c—0.26 Ret[10]

- -a*10 Yv/c—0.26
•• -a*10 Yv/c-0.0
O Cm*10 Yv/c—0.26 
+ Cm* 10 Yv/c-0.0

Figure 5. Evolution of the aerodynamic coefficients during the BVI

Figure 5 illustrates the integrated forces and quarter chord moment on the aerofoil during 
the interaction. The development and collapse of the Cn and Ct as well as the first peak in 
Cmi can be explained by the effective incidence induced by the vortex, while the second and 
opposite peak in Cmi is due to the extended moment arm as the low pressure wave travels 
along the aerofoil surface. In figure 5, the normal force coefficients from the unsteady panel 
method for both cases are also given, indicating good agreement between the two methods.

Another phenomenon associated with the close interaction, particularly for the head-on case, 
is the vortex striking the leading edge of the aerofoil and subsequently deforming and splitting 
into two fragments, see figure 6. The two separate parts of the vortex convect along the upper 
and lower surfaces with different velocities due to the mutual interaction between the passing 
vortex and the induced surface vorticity [20]. Moreover, due to the strong interaction between 
the oncoming vortex and the surface vorticity, a small local separation is predicted on the aft 
part of both surfaces where the adverse pressure gradient dominates. This phenomenon could 
not be predicted in the panel method, in which the vorticity is shed from the trailing edge





only, and is probably responsible for the small discrepancy in C„ between the two methods as 
the vortex travels off the aerofoil.

Figure 6. The trajectory of vortex particles for Yv/c=0.0 case 

4.2 Comparison with experimental data

vortex generator

wind tunnel 
flow directionrotor blade

rectfllnear vortex

Figure 7. The set-up of the BVI test

The set up of the Glasgow BVI experiment [3] [4] [5] is sketched in figure 7. The interaction 
vortex is generated by two adjoining wings of NACA 0015 aerofoil section set at equal but 
opposite incidence, with the magnitude of the incidence controlling the vortex strength. The 
circumferential velocity distribution in the isolated interaction vortex is measured using both 
hot wire and PIV techniques, which gives an average value of the vortex strength rv=5.8m2/s 
and core radius /?v=25mm. These data are then used as the input parameters for the present 
simulation by employing the Scully vortex model. Although the fiow around the rotating rotor 
is generally three-dimensional, it could be considered approximately two-dimensional as the 
rotor blade at zero angle of attack approaches and passes through the interaction region near 
the center line of the wind tunnel. In the following discussion, the data collected from the 
blade at r//?=0.785 are used for the comparison. The pressure and the integrated aerodynamic 
forces and moment are nondimensionalised using the tip velocity of the rotor which gives a 
nominal Reynolds number of 600,000.

Figure 8 illustrates the results for three typical BVI cases with different interaction heights, 
from which it can be seen that Cn and C, agree well with the experiments, whereas there 
are some discrepancies in the Cmi data for all cases as the vortex passes the aft part of the 
aerofoil surface. Due to the fact that the present prediction gives results consistent with the





mechanisms discussed in the previous section, the difference in Cmi may be due to the relatively 
small number of pressure transducers (only twenty-six for this case) used for measuring the 
pressure distribution around the aerofoil, while the Cmi value itself is very small and is therefore 
sensitive to the resolution of the pressure measuring points. Another possibility is the physical 
restrictions in placing the transducers at the trailing edge of the blade [5]. Nevertheless, further 
study is needed to clarify this aspect.

- Yv/o«0.0 present
O Yv/c-0.0 RefI5]
•• Yv/c=0.2 present
* Yv/c-0.2 Ref[5] 

Yv/c=0-1 present 
+ Yv/o-0.1 RetlSJ

- Yv/o=0.0 present
O Yv/OaO.O RefI5]
•• Yv/o»0.2 present
♦ Yw/omO.2 RefI5] 

Yv/c«0.i present
♦ Yv/c=0.1 Ref[5]

— Yv/OtO.O present 
O Yv/c-0.0 Ref(5] 

Yv/c»0.2 present 
• Yv/o-0.2 Ref(5]

Yv/oO.1 present 
+ Yv/oO.1 Ref[5]

Figure 8. Evolution of aerodynamic coefficients during the BVI

In figure 9, two snapshots of the vortex passage for the head-on case are given, which also 
show that the interaction vortex is deformed and split into two parts which convect along the 
upper and lower surface at different speeds. On the aft part of the aerofoil surface, the vortex
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induced local flow separation is clearly visible, which is consistanf with the PIV results[4] for 
the same case.

Figure 9. Trajectory of the vortex particles

Figure 10. Surface pressure distribution

Finally, figure 10 gives the upper surface pressure distribution for the rv/c=0.1 case, which 
compares well with the experimental result given in [5]. The leading edge pressure suction 
peak and low pressure convection ridge are also well predicted.

5 CONCLUSIONS
This paper has presented numerical results for the parallel blade-vortex interaction problem, 
which shows the feasibility and flexibility of the grid-free discrete vortex method. A new 
method has been developed for calculating the velocity of the nascent vortices to avoid oscil­
lations in the normal component. The dominant mechanisms during a BVI event, namely the 
effective angle of attack induced by the approaching vortex and the local effect due to passage 
of the vortex close by or around the surface, have been analysed using the unsteady Cp distri­
bution together with images of the passing interaction vortex. For relatively strong BVI, such 
as the head-on interaction case, vortex-induced local flow separation, a phenomenon which 
has not been well documented in most BVI studies, has also been predicted in the present 
study.

Future work will include simulation of the interaction between an oncoming vortex and 
an aerofoil at high incidence and/or during dynamic stall, which represents a more complex 
vortex-vortex and vortex-body interaction problem.
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