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Abstract
This paper reports on numerical results for supersonic 
and hypersonic steady flows over axisymmetric blunt 
bodies. Two-dimensional compressible Navier- Stokes 
equations are solved using a high- resolution upwind 
Roe’s scheme. A modification to the boundary condi­
tions and the implementation of Harten’s entropy fix is 
proposed to improve the robustness of the code, which 
is then tested on an axisymmetric spike, cone and cyl­
inder at freestream Mach numbers of 2.21, 6.00 and 
30.00.

Nomenclature
D non-dimensional blunt body diameter

S^[1]
d non-dimensional spike diameter

^[1]
Mach number [1]
Reynolds’ number, based on blunt body 
diameter [1]
Courant-Friedrichs-Lewy number [1] 
non dimensional velocity

non-dimensional blunt body radius 
^[1]
pressure coefficient [1] 
ratio of pressures in firont of and behind 
a shock wave [1] 
non-dimensional pressure

blunt body half-cone angle [°] 
non-dimensional shock detachment distance 
^[1]
specific heat ratio [1]

Suflfices
*
00

1,2
G1,G2

non-dimensional density

dimensional quantities 
free-stream value
first and second cell values next to a wall 
first and second ghost cell values outside 
the computational domain

M
Re

CFL
V

$
s

1 Introduction
Computational Fluid Dynamics offers new perspect­
ives in examining flow situations demanding high-level 
experimental facilities. One of the features which is 
of particular interest in numerical investigations is the 
simulation of high-speed reentry configurations involving 
unsteady flows [1] [2] [3].

The computational solution of such flows requires 
robustness from the numerical method which must have 
the ability to simulate the very strong bow shocks and 
strong expansions arising in hypersonic flow near the 
large angle comer of blunt bodies. The PMB2D 1 code, 
which has been widely used and validated for a range of 
supersonic freestream velocities, had encountered diffi­
culties when solving flows with freestream Mach num­
bers greater than 5.

In order to identify the problems causing this, simple 
bodies of revolution are examined in the present invest­
igation. The chosen bodies, a spike, a cone and a flat­
nosed cylinder, ranging from a sharp-nosed to a totally 
blunt body, cover the whole spectrum of the flow types 
arising at high speeds. Their simplicity also faciht- 
ates the identification of problems, and furthermore, 
are representative of spiked blunt body configurations 
suitable for the investigation of unsteady flows.

Therefore, the present paper’s aim is to report on
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numerical results for supersonic/hypersonic steady flows 
past single blunt bodies of revolution, and through this 
to extend the range of problem solvable by PMB2D to 
very high Mach numbers.

2 Test Cases
The choice of the three simple bodies is based on tests 
done in [4], in which the freestream Mach numbers were 
2.21 and 6.00 at a Reynolds’ numbers (based on the 
cone/cyhnder diameter) of 0.12 and 0.13 milUon, re­
spectively.

The d = 0.0065 diameter spike with a 15° half-angle 
cone forebody is a sharp nosed body and results in 
attached shocks and weak expansions at the shoulder at 
all speeds. The 50° half-angle cone with the diameter of 
D = 1.0 results in detached shock-waves at low Mach 
numbers and attached at high Mach numbers, while 
the expansion taking place after the body shoulder is 
of medium strength. The flat-nosed cylinder {D = 1.0 
again) represents the most difficult case to be solved, 
as it should result in a detached, very strong bow shock 
and strong expansion at aU Mach numbers. In all cases 
the flow was axisymmetric at zero angle of incidence.

3 Simulation Method 

3.1 Grid Generation
Two-dimensional multiblock grids for the three bodies 
were generated (Figs.l, 2, 3). The grid for the spike 
has 100x100 cells in 4 blocks, while for the cone and 
cylinder there are 200x50 cells chosen in 3 blocks. The 
gridlines are clustered towards the wall of the bodies 
enabling both inviscid and viscous calculations. Only 
every second gridline is shown in the figures.
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Figure 1: Grid of the spike: Detail for the spike tip

3.2 Numerical Method
The PMB2D code was used for the numerical calcula­
tions. This employs a cell-centered finite volume dis­
cretisation method to solve the Euler and Navier-Stokes

Figure 2: Grid for the 50° cone

Figure 3: Grid for the cylinder

equations. A multiblock structured grid framework is 
applied to enable complex configuration to be tackled. 
An axisymmetric version of the code was used in this 
study. Roe’s scheme with MUSCL variable interpola­
tion is employed to discretise the convective terms and 
central differencing for the diffusive terms. A steady 
state calculation proceeds in two phases, where the 
freestream starting solution is smoothed out using an 
explicit scheme and then an implicit scheme is used to 
obtain rapid convergence. The linear system arising at 
each implicit time step is solved using a Generalised 
Conjugate Gradient method and a BILU factorisation 
is used as a preconditioner. An important feature of 
the code is the use of approximate Jacobian matrices 
for the left hand side of the linear system. The k-tu tur­
bulent model is also implemented. The unsteady part 
of the code, not used in this study, employs a time- 
accurate pseudo time method. More details are given 
in [5] [6] [7].

The computations were carried out on a single 200 
MHz Pentium Pro 686 processor.





3.3 Modification of the Boundary Con­
ditions

Preliminary calculations of the supersonic flow around 
sharp-comer single bodies failed in the inviscid case but 
converged in the viscous. The failure appeared as neg­
ative pressure immediately after the body shoulder in 
the cells adjacent to the wall. This suggested, that the 
problem is associated with the boundary conditions, 
which differ for the inviscid and viscous cases and with 
the strong expansion taldng place immediately after 
the shoulder of the sharp-corner bodies.

In the inviscid case, where a slip boundary condi­
tion is applied at the sohd wall this expansion appears 
as a fan of expansion waves. The pressure gradient 
inside this fan can become very large in the direction 
perpendicular to the freestream velocity, the pressure 
gradually decreasing to almost zero in the cells adja­
cent to the wall. As the values of the ghost cells (which 
are outside the computational domain and are used by 
the upwind scheme - Fig.4) are calculated by a linear 
extrapolation of the first two ceU values, they may res­
ult in significantly negative pressures because of this 
large gradient. When the scheme starts to calculate 
the new values for the computational domain, the neg­
ative ghost cell pressures involved in the computation 
may easily cause negative values in the first ceU adja­
cent to the wall. The code then fails because of the 
negative pressure in the computational domain.

computational
domain Pi

^ost ceDs PG1

Pea

distance from 
the wall J

modiRed

Figure 4: Modified extrapolation of the ghost cell val­
ues

On the other hand, the no-shp boundary condition 
at the wall employed for the viscous calculations results 
in low speed and therefore higher pressure values in the 
cells adjacent to the wall. This yields a smaller pressure 
gradient inside the expansion fan and thus the failure 
caused by a negative pressure is avoided. However, the 
problem encountered for inviscid flows could arise for 
viscous flows at very high Mach numbers.

There are two possibilities to avoid the above prob­
lem. First is the movement of points G1 and G2 into 
the region AB, where the pressure/density is already 
positive. This could be achieved by using ghost cell 
sizes small enough to fit into the region of height OB.

As the current method creates the ghost cells by mir­
roring the first two cells of the computational domain 
just over the boundary, the desired sizes could be ob­
tained only by a more intense clustering of the grid near 
the wall. However, as the resolution of the rest of the 
computational domain requires still the same spacing 
as before, it would imply the need for more cells in the 
boundary region. This, in turn, would result in overall 
more cells than before and therefore longer calculation 
times.

Tests showed that using an order of magnitude smal­
ler spacing (10 cells instead of the previously used 1) 
allows the calculations to run without failure, but with 
negative values in the second ghost cells (G2 in Fig.4) 
which remain there during the whole computation. Fur­
ther clustering of the grid, using 40 cells instead of the 
originally used 1, leads to negative ghost cell values in 
the initial phases of the calculations only (at around 
100-200 explicit steps).

The second solution is to modify the negative ghost 
cell values to small positive ones. This can be achieved 
by taking 5% of the neighbouring value instead of the 
value from Hnear extrapolation. Namely, if pG1 < 0, 
then pc;i = 0.05pi and to calculate pc2 we continue 
with the linear extrapolation. If this results in po2 < 0 
then we similarly set po2 = O-Oopoi- As the density 
usually changes in the same way as the pressure, we 
apply the same modification method.

The advantage of the second method is that there is 
no need to increase the number of cells in the grid thus 
not increasing the computational time. In the following 
calculations, therefore, the method of ghost cell values 
modification is used and its performance monitored.

3.4 The Entropy Fix
Although the modification of the boundary conditions 
made the code more robust, failure caused by negative 
pressure appeared again at the preliminary hypersonic 
calculations of the above bodies, this time located ap­
proximately after the strong bow shock. This seemed 
due to the treatment of the transient movement of this 
strong shock wave at the initial phases of the calcula­
tion, and therefore an entropy fix suggested in [8] was 
implemented in the code.

4 Verification of the Numerical 

Method
Grid dependence tests were carried out in order to en­
sure the reliability of the results. A coarse (number of 
gridpoints in each direction is halved) and a fine (num­
ber of gridpoints in each direction is doubled) grid were 
created for each case and the Cp distributions along the 
cyhnder and the Mach contour plots were compared.
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Figure 5: Grid dependence test for the inviscid flat­
nosed cylinder, M=2.21 Figure 8: Mach contours obtained on coarse grid for 

the Mach 6.00 inviscid cylinder
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Figure 6: Grid dependence test for the inviscid flat­
nosed cylinder, M=6.00 Figure 9: Mach contours obtained on medium grid for 

the Mach 6.00 inviscid cylinder
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Figure 7: Grid dependence test for the inviscid flat­
nosed cylinder, M=30.00 Figure 10; Mach contours obtained on fine grid for the 

Mach 6.00 inviscid cyhnder





The inviscid cylinder at M=2.21, M=6 and M=30 
were selected for these tests, as they are the most diflB- 
cult from the after-comer expansion point of view and 
the inviscid nature makes them suitable for examining 
the wall boundary condition modification. The Cp dis­
tributions for all three grids at each freestream Mach 
number are shown in figures 5, 6, 7. To compare the 
Mach contours on each grid, the Mach 6.00 case was 
chosen (Figs. 8, 9, 10). While the Cp distributions are 
almost identical, the Mach contour plots manifest cer­
tain difference in the shock resolution - the finer the 
grid, the thinner is the shock. The waviness seen in 
the bow shock waves in Figs. 8-10 is concerned with 
the plotting routine and the coarseness of the grid and 
is normal in presentation of such data. However, the 
shape of the shock is the same in all cases.

The grid refinement has no effect on the results, 
and as the other geometries represent easier cases, the 
above conclusions on the grid refinement independence 
should be true for them as well. However, to avoid 
too thick shocks (occurring on the coarse grid) or too 
expensive calculations (there are 4 times more cells in 
the fine grid than in the medium), the medium grid 
was chosen for further computations.

5 Calculation Results and Valid­
ation

5.1 Spike at Mach 2.21 and Mach 6.00
Both the inviscid and laminar calculations for the spike 
converged rapidly in the supersonic case requiring typ­
ically 500 explicit steps at 0.4 explicit CFL and 375 im­
plicit steps at a CFL number of 50 (marked as 500/0.4 
+375/50 in the following) taking 31 minutes on the 
above 200 MHz Pentium Pro 686 processor. The hyper­
sonic case converged even more rapidly with the para­
meters of 500/0.4-1-58/50 requiring only 13 minutes 
running time. All calculations had 3rd order accur­
acy and the Mach contour plots for the viscous cases 
are shown in Figs. 11 and 12.

Note that in the hypersonic case the shock wave 
angle is lower and the boundary layer is much thicker 
than in the supersonic. This means, that the flow is 
conical only at the spike tip section and hence it is 
interacting with the high freestream velocity causing 
the weak shock angle to be determined rather by the 
thick boundary layer than the conical spike tip.

Because of the weak strength of the expansion the 
boundary modification was not in use in these cases.

5.2 Cone and Cylinder at Mach2.21
All the calculations of the supersonic cases converged 
well with the details shown in Table 1 (3rd order accur-

Figure 11: Mach contours for the spike, 
Re=0.13 milhon

Mach 2.21,

Figure 12; Mach contours for the spike, Mach 6, 
Re=0.13 million

acy again) and taking the time of 35 minutes for both 
50° cone cases and 2 h 04 minutes and 2 h 53 minutes 
for the inviscid and laminar cylinder, respectively.

Mach Cone Flow Exphcit Implicit log
num. Angle Type Steps Steps Res
2.21 50 invisc. 1200/0.4 462/10 -8
2.21 90 invisc. 1500/0.4 1841/10 -8
2.21 50 lamin. 500/0.4 544/10 -8
2.21 90 lamin. 1500/0.4 2260/10 -8

Table 1: Mach 2.21 Calculation Details

Mach contour plots are shown in Figs.13,14, 16,17. 
As expected, the flow is detached in the cone case as 
the detachment angle at M=2.21 is 43.1° [10]. The 
inviscid flows show an overexpanded flow right after the 
shoulder which recompresses in a shock-wave, while





Figure 13: Mach contours for the cone, Mach 2.21, Figure 16: Mach contours for the cyhnder, Mach 2.21, 
inviscid Re=0.13 mUhon

Figure 14: Mach contours for the cyhnder, Mach 2.21, ^iSure Mach contours for the cyhnder, Mach 2.21, 
inviscid Re=0.13 milhon

1?. icr n/r u i r xi. .. , „ . . ., Figure 18: Mach contours for the cone, Mach 6,1 igure 15: Mach contours for the cone, Mach 6, inviscid j^e=Q 23 Tnj]]inn





the viscous flows also have overexpansion and re- 
compression, but less evident. This is due to the influ­
ence of the boundary layer, which causes the flow to 
be less energetic after the corner and causes the above 
phenomenon to be weaker.

In addition, the behaviour of the wall boundary 
modification was monitored, which showed, that it was 
active at the initial phases of the calculations only. 
This means that the converged solutions would be un­
affected by the modification.

5.3 Cone and Cylinder at Mach 6.00
The hypersonic flow calculations converged well in both 
inviscid and viscous cases (Table 2). Although the in- 
viscid cyhnder case was able to reduce the residual 
by -4.5 order, this is a sufficient level of convergence. 
These hypersonic calculations for the cyhnder are gen­
erally much longer than for the supersonic case, which 
is caused probably by the much larger deviation in the 
cell values throughout the computational domain. The 
calculation times were 25 minutes and 1 h 45 minutes 
for the inviscid and laminar cone cases, and 48 and 
1 h 30 minutes for the inviscid and viscous cylinder, 
respectively.

Mach contour plots for these cases are shown in 
Figs.l5- 22. Note that in contrast to the supersonic 
case, the shock wave is attached in the cone case, as the 
shock-detachment angle at M=6 is 55.5°. The shock- 
detachment distance compared to the Mach 2.21 case is 
decreased for the cylinder and the boundary layers are 
also thicker, which agree with the theory of high-speed 
flows.

Mach Cone Flow Explicit impheit log
num. Angle Type Steps Steps Res
6.00 50 in vise. 1300/0.4 180/10 -8
6.00 90 invisc. 5000/0.1 1000/3 -4.5
6.00 50 lam in. 1500/0.1 447/10 -8
6.00 90 lamin. 2000/0.4 1139/5 -8

Table 2: Mach 6.00 Calculation Details

In general, the boundary modification was active 
in the initial phases of the calculations only (at around 
150-200 explicit steps), apart from the not fully con­
verged inviscid cylinder case, where it remained in use 
during the whole computation. However, in this par­
ticular case grid clustering in the boundary region (de­
scribed in section 3.3) was tested as well, but resulting 
in the same convergence behaviour. This shows, that 
the reason for this lack of convergence is somewhere 
else than in the proposed boundary modification.

5.4 Cone and Cylinder at Mach 30
The robustness of the proposed modifications was tested 
at higher hypersonic Mach numbers. The cone and 
the cylinder were examined at a freestream velocity of 
Mach 30 - a range, which was not solvable with the 
unmodified method. The modified code proved cap­
able of dealing with these cases as well. However, the 
CFL numbers had to be chosen very carefully, which 
resulted in even longer calculation times than for the 
lower hypersonic speed Table 3. The inviscid cases re­
quired 27 minutes and 1 h 58 minutes runtime for the 
cone and the cyhnder, respectively, whereas the lam­
inar cases were much longer, 4 h 54 minutes and 5 h 
27 minutes.

Note, that the inviscid cylinder case was again not 
fuUy converged. It seems, that certain ceU value fluc­
tuations take place in high-speed calculations and are 
strengthened by further increase of the speed. As the 
wall boundary condition modification was stiU active 
even at the late phases of this calculation, the above 
fluctuations could be caused by itself. However, as this 
problem doesn’t appear at the 50° cone case, it is de­
duced that it is also associated with the angle of the 
sharp-comer shoulder and therefore with the strength 
of the expansion, which is also weakened by the exist­
ence of the viscosity.

M Cone
Angle

Flow
Type

Expheit
Steps

Impheit
Steps

log
Res

30 50 invisc. 1500/0.4 148/10 -8
30 90 invisc. 4000/0.1 1500/5 -2.5
30 50 lamin. 1500/0.05 5000/10

+588/200
-8

30 90 lamin. 5000/0.05 2000/2
+2800/50

-8

Table 3; Mach 30 Calculation Details

Mach contour plots in Figs.20-24 show, that the 
shock-wave of the 50°cone is attached once again (shock- 
detachment angle for M=30 is 57.5° but in the invis­
cid case only. On the other hand, viscous case shows 
a shghtly detached curved shock, which is due to the 
relatively high Reynolds’ number at this speed, caus­
ing a very thick boundary layer resulting in displace­
ment effect. This thick boundary layer growing after 
the body shoulder also makes the recompression shock- 
wave (which is clearly visible in the inviscid cases, Fig.21) 
almost disappear. The shock detachment distance in 
the cylinder cases remains basically the same as it was 
for the supersonic freestream, being in agreement with 
the theoretical hypersonic independence for blunt shapes.





Figure 19: Mach contours for the cyhnder, Mach 6, Figure 22: Mach contours for the cylinder, Mach 6, 
inviscid Re=0.13 million

Figure 20: Mach contours for the cone, Mach 30, in- Figure 23: Mach contours for the cone, Mach 30, 
viscid Re=0.13 million

Figure 21: Mach contours for the cylinder, Mach 30, Figure 24: Mach contours for the cylinder, Mach 30, 
inviscid Re=0.13 milhon
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Generally, the wall boundary condition modifica­
tion was in use in the initial phases of the calculations 
only, apart from the not fully converged inviscid cyhn- 
der case mentioned earlier.

5.5 Results Validation
In order to validate the numerical results the shock- 
detachment distance (tJ), and the pressure coefficient 
maximum {cpmax) were compared with the results from 
theory (Table 4).

First, the inviscid 50° cone results were evaluated. 
The Mach 2.21 case results in a detached shock-wave 
and therefore a theory considering the existence of a 
normal shock wave has to be used for the comparison. 
The modified Newtonian law, which gives cpmax at a 
stagnation point behind a normal shock wave seems 
to be suitable, and the formula (see for example [9])

(t+1)2.M2 12±^r(7-l) + (7+l).M2
O.sJ -1]Cpmax — 7.Mi:n4.7.M;!-0.8J ' ' L (7+l)

predicts a value of 1.689, which is in excellent agree­
ment with the CFD prediction. On the other hand, 
there is no analytical formula available for the shock- 
detachment distance for cones, and therefore no direct 
comparison could be done here. The supporting fact is, 
that the 6 — j3 — M diagram from the conical flows the­
ory results in no intersection for 6 = 50° and M=2.21 
(see [10]), which means that the shock is detached.

From the same sources higher Mach numbers cases 
yield attached foreshocks, (corresponding to zero val­
ues of 5 in Table 4) which was correctly predicted by 
the numerical method (see Figs. 15,20). Therefore, 
another theory considering no normal portion of shock 
was employed for the comparison. Rasmussen’s for­
mula for cpmax, derived from the hypersonic small- 
disturbance theory and plotted in [9] seems to be suit­
able, even if this reference validated it only up to the 
value of 30° for the cone half-angle. Nevertheless, ex­
tending this to 50° yields a still reasonable agreement 
with the numerical results, as it can be seen from the 
second and third row of Table 4.

Mach
Num.

Cone
Angle

ScFD HE ^Pmax
CFD

^Pmax
Theory

2.21 50 0.035 - 1.670 1.689
6.00 50 0 0 1.270 1.249
30.0 50 0 0 1.230 1.232
2.21 90 0.395 0.343 1.682 1.663
6.00 90 0.258 0.257 1.907 1.810
30.0 90 0.247 0.242 1.824 1.832

Table 4: 
ults

Comparison of the CFD and theoretical res­

in the case of the flat nosed cylinder viscous results 
were compared with analytical ones from [11], where 
an extensive theoretical analysis is given for high-speed

flows over simple blunt bodies. To calculate the shock- 
detachment distance, the formula 8/a = 1.182\/fc from 
[11] was used, where a is the body radius (0.5 in our 
case) and k is the ratio of the pressures in front of 
and behind the shock wave pi/p2- This could be easily 
calculated from the normal shock-wave relations (see 
for example [9]). As Tab.4 shows, numerical results 
are almost identical to the theoretical ones apart of the 
Mach 2.21 case. The slight deviation in this case could 
be explained by the fact, that the above formula was 
explored for hypersonic range only, which could cause 
inaccuracy for a supersonic application. Nevertheless, 
the values are reasonable.

Finally, the pressure coefficients at the stagnation 
point were compared with the results from the formula 
cpmax = {2 —k) [11], where k has the same meaning as 
above, and as one can see the results are again in very- 
good agreement with the theory.

6 Conclusions and Future Work
To improve the robustness of the PMB2D code and to 
extend the solvable range of the freestream velocities 
to very high hypersonic values, two modifications were 
presented in this paper.

First, a modification to the wall boundary condi­
tion was proposed to resolve problems arising from 
the strong expansion corners of the blunt bodies. As 
this modification was in use mainly at the beginning 
of the calculations, its role could be defined as help­
ing the calculations through the initial, crucial parts 
of the time-marching scheme. However, instabihties in 
convergence were observed at inviscid, high freestream 
velocity cases, which reason has not been revealed yet.

The second modification, Harten’s entropy fix, was 
necessary to overcome the resolution problem of the 
extremely strong bow shock arising over a blunt body 
at hypersonic speed.

Then, computational results of the high-speed steady 
flows over a spike, a 50° half angle cone and a flat­
nosed cylinder were compared with the theory and a 
good agreement was obtained. Grid dependence tests 
showed no effect on the solutions, and therefore it could 
be stated that the proposed modifications are correct 
and they improve significantly the robustness of the 
code. The calculation times, depending on the partic­
ular case, were ranging from 13 minutes up to 5 h 30 
minutes, which demonstrates the ability of CFD to be 
a powerful alternative to the experiments when invest­
igating high speed flows over simple shapes.

Furthermore, the above examined simple bodies could 
be assembled to spiked cone/cyhnder, and an attempt 
to simulate unsteady supersonic/hypersonic flows over 
spiked bodies could be done.
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