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Abstract

The parallel execution of an aerodynamic simulation code on a non-dedicated, het­

erogeneous cluster of workstations is examined. This type of facility is commonly 

available to CFD developers and users in academia, industry and government labor­

atories and is attractive in terms of cost for CFD simulations. However, practical 

considerations appear at present to be discouraging widespread adoption of this tech­

nology. The main obstacles to achieving an efficient, robust parallel CFD capability 

in a demanding multi-user environment are investigated. A static load-balancing 

method, which takes account of varying processor speeds, is described. A dynamic 

re-allocation method to account for varying processor loads has been developed. 

Use of proprietary management software has facilitated the implementation of the 

method.
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1 Introduction

Parallel computing in computational fluid dynamics is a very broad area of current 

research and development. Parallel computing software and hardware technology 

is developing very rapidly, and the CFD community is at the forefront in exploit­

ing emerging technology to obtain the high performance computational resource 

required to solve large CFD problems. The enthusiasm for parallel computing in 

the CFD community is based on present cost effectiveness compared to conventional 

computing, and future projections of enormous computing power. The exploitation 

of parallel computing is considered to be a key to tackling the grand challenges in 

CFD[1].

To effectively use a parallel computer an intelligent mapping of subsets of the 

total computational work onto processors must be performed. There are several 

different levels of parallelism, ranging from job parallelism where processors ex­

ecute tasks with no interdependency, to arithmetic parallelism where the work of 

the simplest operations is shared amongst processors. A coarse-grain data parallel 

approach[2] is usually employed in parallel CFD, where sub-domains of the compu­

tational grid are mapped onto the set of processors, with the objective of finding 

a mapping which results in the fastest overall execution of the parallel task. This 

approach is commonly referred to as domain decomposition in the literature. The 

principal feature of an efficient domain decomposition is that the load is evenly 

distributed across the processors. A typical parallel CFD application involves a 

communication phase where information must be passed between the processors. 

Communication is necessary periodically, e.g. once every time step. If the load is 

evenly distributed then the processors arrive at the communication phases simul­

taneously, minimising processor idle time. For many applications, attempting to 

minimise the time spent in the communication phase is also necessary for efl[icient





implementation. The problem of optimal domain decomposition is well known to 

be NP-complete[3],[4], i.e. a deterministic solution procedure is impractical. The 

task of achieving a parallel execution via domain decomposition can be viewed as 

a two-stage process; mesh partitioning to form the sub-domains and allocation of 

sub-domains to processors to achieve load balanced execution[3],[5]. A wide vari­

ety of methods have been proposed, see for example the proceedings of the Parallel 

CFD conferences[6],[7], reflecting the variety of problems considered and architec­

tures used. For unstructured grid problems the prevalent approach is to use a mesh 

partitioning heuristic to obtain equally sized sub-domains and at the same time 

attempt to minimise the sub-domain interface length to keep down the amount of 

necessary communication. The resulting partition then consists of the same num­

ber of sub-domains as there are processors, and communication has already been 

considered implicitly in the partitioning stage, so it is sufficient to allocate the sub- 

domains directly onto the processors. An initially popular method was the ‘Greedy’ 

algorithm for mesh partitioning[8], so called because successive ‘bites’ are taken from 

the domain. The Greedy algorithm is very fast since it essentially involves only one 

sweep across the mesh, but is unreliable since the last ‘bites’ can leave sub-domains 

of inappropriate size and shape. Most researchers now employ a recursive bisection 

approach from graph theory, a good review of which is provided in [9]. In recent 

years some speciflc methods have become established in the GFD and structural 

flnite-element communities and are available in the public domain[10],[ll],[12]. Al­

ternative non-deterministic approaches such as simulated annealing and stochastic 

evolution have been used for unstructured mesh partitioning, but have the disadvant­

age of being slow in comparison to recursive bisection methods[4],[5],[13]. Applying 

the methods of unstructured grid partitioning to multiblock structured grids is often 

quoted as being possible, but only one example has been found in the literature[14j. 

This is for two reasons. First, partitioning a multiblock structured grid is easier than





an unstructured grid in that there are less possible boundary path permutations, 

but harder in terms of programming in that flow solver constraints (e.g. block in­

terface matching) must be considered in the partitioning algorithm. Secondly, often 

the number of grid blocks naturally arising from the grid generation process is far 

greater than the number of processors, so this partition can be accepted as long as a 

heuristic is designed to arrange these blocks onto the processors such that the load is 

balanced. If there are very large blocks which impede a good load balance then it is 

a simple matter to split them ‘manually’, unlike unstructured grids. Hence for struc­

tured multiblock grids the emphasis in domain decomposition is much more on the 

allocation stage. The heuristic techniques employed, often cost function minimisa­

tion procedures, are similar to those attempted for unstructured mesh partitioning, 

but are better suited for this problem due to the reduced size of the state-space[3]; 

tens or hundreds of blocks are considered rather than tens or hundreds of thousands 

of grid cells. See references [3],[5] for a summary of the preferred methods.

The domain decomposition methods mentioned above have all considered the 

static problem, where the decomposition is determined before run-time. Dynamic 

re-allocation methods have not been discussed. It is necessary to reconsider the 

decomposition during run-time to preserve load balance if the solution procedure is 

adaptive, for example when adaptive grids are used. Also, some researchers seeking 

the last percentages of parallel performance gains maintain that a static decom­

position can never exactly account for actual processor speeds and communication 

costs, so some degree of dynamic re-allocation is required. For an overview of this 

type of dynamic problem see references [6],[15]. We are interested here in a different 

type of dynamic problem where the decomposition may have to respond to varying 

processor loads; this point is returned to below.

Compared to a decade ago, parallel CFD technology is considerably more ad­

vanced. However, as noted by Knight[15], the huge amount of publications devoted





to parallel CFD research is not matched by the amount of CFD research conducted 

using parallel CFD as a tool. Based on contacts between the CFD group at Glasgow 

University and the U.K. aerospace industry, this appears to be as much the case for 

CFD use in industry as in academia. Knight suggests three reasons for this:

• parallel computers are perceived as lacking a decisive performance advantage

• parallel code has portability problems

• parallel code is difficult to program efficiently

Advances in hardware and software have now made the first two points an irrelev­

ancy. Numerous recent projects have demonstrated the enormous potential and cost 

savings of using workstation clusters or modern commodity processors in parallel, 

for example[16]. The development of standards in languages (eg. High Performance 

Fortran[17]) and message passing (eg. MPI[18], PVM[19]) have brought the port­

ability of parallel code almost to the same level as sequential code. The problem 

lies in the third point; the practical difficulties in making parallel CFD work can 

be discouraging[20]. To aerodynamicists, there has always been a trade-off between 

the amount of effort necessary to apply a prediction method and the accuracy of the 

results that the method produces. In addition to the effort required for a sequential 

CFD capability, parallel CFD requires the aerodynamicists to:

• obtain and install a message passing library or parallel compiler

• write the parallel code

• write a domain decomposition method or assimilate an ‘off the shelf’ method

• manage the execution of parallel tasks

The first two points are mitigated by the emergence of standards in parallel pro­

gramming, as mentioned above, where message passing libraries are in the public





domain, parallel compilers are available from vendors, advances have been made in 

making parallel programming easier and help on all of these is freely available via the 

internet. However, it is noted that large organisations are likely to employ specialist 

programmers and information technologists; small and medium-sized organisations 

are more likely to be discouraged by the first two points. Chien et al.[21] have 

made some important observations concerning the third and fourth points. Existing 

domain decomposition methods are restricted to parallel systems consisting of a ho­

mogeneous processor set1 and which are operated in single-user mode. This typifies 

a dedicated parallel machine possessed by a large organisation; smaller organisa­

tions are likely to make their first steps in parallel processing using a non-dedicated 

heterogeneous network of workstations. Making use of spare capacity on existing 

UNIX workstations, originally obtained for other purposes, was pioneered by Pratt 

&: Whitney[23] and McDonnell Douglas. However in these cases a policy of inter­

active/sequential and batch/parallel use segregation was enforced, the parallel jobs 

being executed overnight, and all other jobs being suspended. This heavy-handed 

restriction on activity is unwanted in any environment and practically impossible to 

enforce in academia. To make parallel CFD more attractive on ‘open’ networks of 

workstations, the ideal parallelisation approach should

• include a domain decomposition method for a heterogeneous processor set

• be integrated seamlessly with existing sequential batch queueing

• take account of varying network load

1this assertion is perhaps slightly too strong. Varying processor power is occasionally accoun­
ted for in a cost function approach, but without the method being actually demonstrated on 
a heterogeneous network, for example in [3]. In addition, a successful, truly heterogeneous do­
main decomposition has been demonstrated[22]; however the dynamic re-allocation method used 
to achieve the load balance appears very communication-intensive and may only be suitable for 
very compute-intensive problems of the type presented.





Type 1 Type 2 Type 3 Type 4
No. of machines 3 2 4 7

Processor R5000 R4400 R4400 R4600
Speed (MHz) 150 150 150 133

Main memory (Mb) 96 160 64 64
Data cache (Kb) 32 16 16 16

Instruction cache (Kb) 32 16 16 16
CPU factor, k 1.9 1.6 1.6 1.2

Table 1: Specifications of the workstation cluster

In this report, the integration of a parallel multiblock structured aerodynamic 

simulation code into an open, heterogeneous workstation cluster environment is 

examined. The use of clusters of workstations for parallel CFD is of high interest to 

industry[24]. The expected performance increase is limited but comes essentially free 

since the workstations have usually already been purchased and installed for either 

sequential CFD work or other tasks. The workstation cluster used is located in the 

Department of Aerospace Engineering at the University of Glasgow. The cluster 

consists of a number of Ethernet-connected Silicon Graphics Indy workstations of 

four different types, as described in Table 1. The cluster is typical of departmental 

level computing facilities (albeit larger than usual) and the facilities at the disposal 

of industry, where often the development of the computing resource over time results 

in an inevitably heterogeneous computing environment [25]. The focus of the work is 

to consider the needs of small and medium sized organisations who require a parallel 

capability to scale up their computing resource but may at present be discouraged 

by the perceived practical difficulty involved. This differs from the majority of 

parallel CFD research where the principal or sole aim has been to achieve the high 

parallel efficiencies necessary for potential or actual massively-parallel applications 

on dedicated machines. Network load management software services are exploited 

to facilitate the application of the decomposition method, and assimilating parallel 

tasks into the overall batch scheduling and queueing sytem for the workstation





cluster is considered.

The flow solver used is PMB2D[26],[27],[28],[29] developed by the CFD group 

at the University of Glasgow. Overlapping grids are employed with two rows of 

‘halo’ cells associated with each internal block boundary. After each time step the 

updated solution is copied to these halo cells from the corresponding cells in the 

adjacent block, such that each block has the necessary information to form the 

residual vectors and Jacobian matrices for the next time step. If blocks sharing a 

common boundary reside on different processors, then the copying of data is enabled 

using message passing.

2 Cost function minimisation

We wish to distribute structured data blocks amongst the processors of a paral­

lel machine. The primary consideration in determining an efficient distribution is 

that each processor should spend the same amount of time performing calculations 

between the synchronous communication phases i.e. that the processors are not 

idle. This is the load balancing problem. Restricting our discussion at present to 

a homogeneous parallel machine (where all the processors are identical), for CFD 

applications a balanced load can be obtained, to a good approximation, by assigning 

an equal number of grid cells to each processor. Sub-domain shape, e.g. block aspect 

ratio, and boundary conditions can also influence processor load [30] but these are 

usually ignored as less important effects. The load balancing problem can then be 

modelled as a minimisation problem for the ‘cost’ H due to the time spent perform­

ing calculations [13]:

p2 P
H = S"n2]V2 Au 9

q=l
(1)

where P is the number of processors, N is the total number of grid cells and Nq 

is the number of grid cells resident on the processor q. As noted in section 1,





non-deterministic procedures are used to solve this allocation problem. No clear 

consensus on which method is best has appeared in the literature, although simu­

lated annealing (S.A.) is most often cited as reliably producing near-optimal results, 

for example in [4],[13],[30], although there are some reservations about the relatively 

long execution time of the S.A. algorithm. An iterative improvement (LI.) technique 

is said to often out-perform S.A. if tailored towards the particular application[31]. 

For these reasons LI. and S.A. will be evaluated as minimisation procedures for the 

cost function (1). Their algorithms are described below.

Iterative Improvement

An algorithm based on iterative improvement[31],[32] is very straightforward to pro­

gram. Some initial configuration of the state (which can be generated at random if 

necessary) is required, along with a cost function definition. In an iterative manner, 

a small change based on a random selection is made to the system and this ‘basic 

move’ is either accepted or rejected. The acceptance criterion is as follows: if the 

move causes the cost to decrease, the move is accepted, otherwise the move is rejec­

ted. The process is terminated when a large pre-determined number of consecutive 

attempts are unsuccessful. Note that careful selection of the basic move is crucial 

to the success of the method. The method is sometimes referred to as ‘hill-climbing’.

Simulated Annealing

The method of simulated annealing[31],[32],[33] is a relatively new method for the 

minimization of objective functions. It is particularly suited to discrete, very large 

configuration spaces i.e. for combinatorial optimization problems. The title of the 

method is due to an analogy with the slow cooling of metals. The simulated an­

nealing algorithm is straightforward to program, and has as its kernel the iterative 

improvement algorithm. Again an initial configuration of the state and a cost func-
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tion definition are required. The acceptance criterion is as follows: if a proposed 

basic move reduces the cost, then the move is accepted. If the cost is increased, 

then the move is only rejected with a certain probability, called the Metropolis 

criterion[34]. Included in this criterion is an artificial system ‘temperature’ such 

that at high temperatures almost any basic move is accepted, however costly, and 

at low temperatures effectively zero ‘bad’ moves are accepted i.e. the algorithm 

becomes one of iterative improvement. A high starting temperature is used, and 

the temperature is periodically forced down by some factor after a large number of 

basic moves have been proposed. The intention is to explore the entire state-space 

with the Metropolis criterion providing a means of escape from local minima.

Two structured multiblock grids were considered to evaluate I.I. and S.A. for 

the allocation problem. Details of grid dimensions are shown in Table 2. Note that 

both grids consist of a large number of blocks with widely varying block sizes. To 

evaluate the effectiveness of the cost minimisation procedures, an efficiency measure 

El is defined as

N/P
El = JSImax

Q

(2)

Grid 1 Grid 2
Total number of cells {N) 48,425 43,417

Number of blocks 81 21
Average block size 598 2067
Biggest block size 2349 6642
Smallest block size 104 319

Table 2: Details of multiblock grids used in allocation test problems

where NfLax is the greatest number of grid cells on any one processor in the final 

allocation. Note that for an ideal allocation Ex is unity. Two basic moves were used 

for both I.I. and S.A.; a ‘simple’ move where two randomly chosen processors swap 

randomly chosen blocks, and a ‘complex’ move where clusters rather than single
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blocks are swapped. The clusters begin as randomly chosen blocks, then collect 

blocks on the same processor with a probability of 0.2 for each possible collection[13]. 

The values of Ei obtained for each minimisation method and different numbers of 

processors are shown in Figures 1 and 2. In each case S.A. out-performs I.I. for the 

‘simple’ move. S.A. provides a mechanism for avoiding local minima which can trap 

the I.I. procedure. However, there is negligible difference in the final result for the 

‘complex’ move. This basic move is designed to enable larger jumps in the state- 

space of the type required to avoid local minima (for this problem), and has had the 

desired effect. Note that the complex S.A. has also out-performed the simple S.A. 

method. A very good discussion of the importance of choosing an appropriate basic 

move is included in [13]. Note that for both test problems, the efficiency of the final 

allocation begins to decrease when an allocation over a large number of processes 

is attempted. This occurs when the number of cells in the largest block becomes 

larger than the ideal number of cells per processor N/P. If it were desired to use 

a large number of processors, this problem could be avoided by manually splitting 

the biggest grid block.

For the remainder of this work the complex I.I. minimisation procedure will 

be used. More detailed cost functions will be employed, but the nature of the 

minimisation problem will remain the same. It is preferred to the complex S.A. 

procedure since it requires less execution time, less than one second compared to 

about four seconds, and provides equally high quality results.

3 Communication cost

The majority of parallel applications of structured multiblock codes which have 

appeared in the literature consider only the criterion of load balancing to achieve 

good parallel performance. A good example is [14] where impressive results are 

demonstrated on a number of parallel machines, including a dedicated workstation
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cluster. However, a number of researchers have also stressed the need to take into 

account communication overhead. The simplest way to take into account the cost of 

communication as well as computation is to introduce a communication cost element 

into the cost function, and use a balance coefficient jx to scale the relative importance 

of the cost elements. The cost function for the allocation problem then becomes

' * rtJ V t
^9(e),9(/) (3)

9=1 V' ^

The first term in this equation is the load balancing term of equation (1). The 

second term is the communication overhead term. For all the cells e on block edges 

which must communicate with cells / in other blocks, a cost is incurred if e and 

/ do not reside on the same processor q. The choice of scaling constants for each 

cost element is designed to keep their relative magnitudes constant regardless of 

the problem size, as discussed in [13]. For codes with a great deal of calculation 

compared to communication [l should be small, and vice-versa. This explains why 

communication cost may be disregarded for some flow solvers. According to De 

Keyser and Roose[3], it is only important to determine approximately the relative 

magnitude of computational and communication cost, rather than a precise value 

for fi. Hence we seek a value for jx where the resulting final allocation may differ 

from that obtained with fx = 0, indicating that ‘physical’ adjacency of blocks is 

being taken into account to a degree, but where the load balancing problem is 

not being overwhelmed, i.e. El does not become too small. Trial allocations with 

varying values of balance coefficient fx and numbers of processors P for Grids 1 

and 2 indicated the range 10 7 < // < lO-2. To be more certain of obtaining 

an appropriate value for //, trial runs of 50 implicit time steps using Grid 1 on 

two processors of Type 3 were performed for various /r. The results are shown in 

Figure 3. The timings shown are averages of ten runs performed overnight when 

the workstation cluster was very lightly loaded. The parallel efficiency Ep shown is
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defined as

En = sequential execution time
(4)p (parallel execution time) * (no. of processors used, P)

The single processor run was perfomed on a processor of Type 2 which has the same 

speed as Type 3 processors but enough memory for a sequential execution. Prom 

the figure the communication model has had a small effect on execution times. The 

shortest execution times were obtained for lO-5 < p < lO-2; note that for these 

cases the allocations found by the minimisation procedure were identical. For high 

values of p the communication cost begins to dominate, to the detriment of the load 

balance. For p = 1.0 all of the blocks were allocated to one processor. The maximum 

parallel efficiency achieved was 82%. This indicates that communication costs for 

the flow solver on the workstation cluster are high. That a greater parallel efficiency 

was not achieved is not an indication of a failure in the cost function allocation 

method; regardless of which allocation is determined, communication must always 

occur between processors. To achieve a higher parallel efficiency without resorting 

to changing the flow solver algorithm, the way in which the message passing is 

programmed could be examined for possible improvement, or the communication 

network upgraded. Far greater parallel efficiency has been obtained for the same 

code on a dedicated parallel machine[16]. However, in the present work the objective 

is to achieve a scaling-up of computing power, accepting that performance gains 

are limited. In this context the parallel efficiencies obtained are acceptable. For 

subsequent results presented in this report, a value oi p= lO-3 will be used where a 

communication cost model is employed. The same problem was also calculated using 

3 to 6 processors (of Types 2 and 3), with and without the communication overhead 

term in the cost function. The averaged execution times, parallel efficiencies and 

parallel speedups are shown in Figures 4, 5 and 6 respectively. The parallel speedup
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S is defined simply as

S = EpP (5)

Note that for all cases the inclusion of the communication cost element has led to 

improved parallel performance.

When communication overhead is taken into account, the most popular approach 

is to approximately account for the relative importance of computational and com­

munication costs, as described above for the allocation problem, and also for the 

mesh partitioning problem. For particular applications a direct mapping of the 

computational domain onto processors can be visualised and exploited, as discussed 

in [3]. A good example of this is included in [35] where a large single block prob­

lem is decomposed into a two-dimensional array of rectangular patches to exploit 

the processor connectivity of a massively parallel machine where the processors are 

arranged in a two-dimensional array. However, this type of approach lacks gener- 

ality, few computational domains decompose easily to topologies which match the 

target machine topology. The obvious next step in developing a communication 

cost model is to explicitly predict or measure the communication time, rather than 

approximately accounting for it. However, communication time is a function of 

message size, message-passing method, processor type, processor loading, network 

type and network loading which means creating a predictive model is prohibitively 

complex[3],[36]. Some researchers have attempted to measure inter-processor com­

munication costs during run-time[36],[37] which removes some of the difficulties but 

the implementation of such an approach is still an order of magnitude more difficult 

than using the simpler method employed here, and a commensurate improvement 

in performance has not been demonstrated.
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4 Heterogeneous load balancing

The computational cost is a function of the processor speed as well as the number of 

cells allocated to the processor. As discussed in Section 1, research in parallel CFD 

has almost exclusively concentrated on homogeneous parallel computers consisting 

of identical processors. However, if the parallel computer consists of a non-dedicated 

workstation cluster, for example that considered in this work (see Table 1), then the 

varying processor speeds of the heterogeneous computer must be included in the cost 

function to efficiently use the resource. Extending equation (3) to include different 

processor speeds gives the new cost function

^ = + (a)
g=l ^ 9 ' v e^f

where kq is a coefficent which varies directly with the processing speed of processor 

q. Hence if an allocation is attempted onto two processors, the first with twice the 

speed of the second (i.e. ki/k2 — 2), then to minimise the computational cost two 

thirds of the cells would be allocated to the first processor and one third to the 

second. The most reliable way to determine values for k is to compare execution 

times on each of the processors for a standard sequential problem [25]. Vendor in­

formation concerning processing speed is unreliable for this purpose, especially when 

processors from more than one vendor are used. On the workstation cluster con­

sidered the commercial management software LSF is used for job control and batch 

scheduling. Use of such management software enables efficient use of distributed 

computing networks [38] and is becoming widespread in industry. LSF also provides 

numerous functions for interrogation of processor configuration and loading that can 

be simply included in user programs. An LSF function for ascertaining directly the 

coefficents kq (termed ‘CPU factors’ in LSF) was employed in the static allocation 

method. Values for k from the workstation cluster used are included in Table 1. 

The computational cost model could be further refined. The processor speed is in-
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fluenced by the proportion of accessed memory which resides in the memory cache 

rather than the main memory[24], although most researchers ignore or disregard 

this effect as insignificant.

In order to examine the effectiveness of the new cost function (6) in exploit­

ing a heterogeneous processor set, the trial problem of 50 time steps using Grid 1 

was repeated using various heterogeneous workstation sets for the parallel machine. 

Ideally the execution time will vary inversely with the sum ktotai of the CPU factors 

k of the processors used. The execution times are plotted against l/ktotai bi Figure 

7. The serial execution time is included in the figure, and is joined by a straight 

line through the origin to indicate optimal performance. The parallel timings are 

presented in three groupings, results for 2, 4 and 6 processors. For each grouping, 

the result with the largest l/ktotai is the result for execution on a homogeneous 

set of Type 4 processors (the slowest available grouping). For each group, if the 

results formed a straight line passing through this end point, with gradient equal 

to the optimal gradient, then the usage of available processing power would be as 

efficient as the homogeneous case. We could expect the gradient to be slightly less 

than optimal since the communication time remains approximately constant for in­

creasing processor speed. The results demonstrate a general trend of decreasing 

execution time with increasing processor power as required, except at a few points 

where the execution time has increased with increasing processor power. This is dis­

appointing since a heterogeneous execution should always be at least as quick as a 

homogeneous execution using processors of the slowest type in the heterogeneous set. 

However it is perhaps unrealistic to expect a non-deterministic allocation method 

to always produce a near-optimal result; none of the timings are unacceptable and 

the general trend clearly indicates that heterogeneity is being reasonably accounted 

for. Examining some particular results helps to indicate the worth of employing 

the heterogeneous allocation model. Using two processors of Type 3 {ktotai — 3.2,
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^/ktotcd = 0.3125) the execution time is 838 seconds. Replacing one of these pro­

cessors with the faster Type 1 processor (now ktotal = 3.5, 1 /ktotal = 0.2857) would 

not result in a faster execution if a homogeneous allocation method were employed, 

the faster processor having to wait while the slower computes its half of the load. 

With the heterogeneous allocation model the execution time was 761 seconds, a 

reduction of 9.2% for a 9.4% increase in computing power.

Note that in Figure 8 results are again presented for allocations determined both 

with and without communication cost modelling. In every case the executions were 

faster when the communication cost element was included.

5 Dynamic load balancing

In Section 1 it was described how the available parallel computing resource often 

takes the form of a non-dedicated heterogeneous network of workstations. Most 

parallel CFD work is performed at present using dedicated, single-user parallel com­

puters. The presence of other users’ tasks causes a serious problem for parallel 

applications. Even if the subset of processors to be used for the parallel task is care­

fully selected before run-time, either manually or using management software, the 

load during run-time on these processors can vary dramatically and unpredict ably. 

A load histogram for the workstation cluster considered in this work is included in 

[38]. One sequential task running interactively on a processor already being used for 

a parallel task can double the execution time of the parallel task. Inexperienced use 

of a workstation can lead to disk space/main memory ‘swapping’ which can easily 

reduce the effective processing speed by an order of magnitude and have an even 

worse effect on the parallel task. Even seemingly benign activities such as using 

an internet browser or a graphical electronic mail tool can have a significant effect. 

This dynamic load balancing problem must be tackled if the objective of reliable, 

robust parallel execution is to be achieved.
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The recorded execution times for twenty trial runs of the test problem described 

in Section 3 using four processors of Type 4 are shown in Figure 8 for various 

network conditions. The timings denoted ‘quiet’ are the results of overnight runs 

when the cluster was lightly loaded. The variation in execution time from the fastest 

possible is small. The timings denoted ‘busy’ are the results of day-time runs when 

the workstation cluster was moderately to heavily loaded. The timings are far less 

predictable, some taking 30% longer than the fastest possible. Prom experience, 

some of these timings could have been even greater. The longest execution times 

shown are probably due to interactive use of internet browsers and mail tools on one 

or more processors. Other common workstation cluster activities which would have 

a greater impact are the use of graphical grid generation and solution visualisation 

software. A ‘worst case’ timing is also included in the figure. After initialising 

the parallel task, an interactive serial task was deliberately started on one of the 

processors. This has increased the execution time by approximately 55%. The 

present dynamic load balancing problem is then to bring the ‘busy’ and ‘worst case’ 

timings down to the ‘quiet’ level. The averaged parallel efficiencies are 64%, 57% 

and 42% for the ‘quiet’, ‘busy’ and ‘worst case’ situations respectively.

Chien et al.[21],[39] present an advanced dynamic load balancing method. The 

effective speed of each processor is continually monitored by measuring and compar­

ing the waiting time for the communication phase to complete on each processor, 

adjusting coefficients in the cost function if necessary, and re-allocating the mesh 

partitions if necessary. The method is very efficient for re-allocating a dynamically 

adapted grid, and enables eventual complete migration of the parallel task from a 

heavily loaded processor if necessary. The approach of Chien et al. produces impress­

ive results but at the expense of considerable complexity and programming effort. 

Furthermore, the group have themselves asserted2 that the dynamic load balancing 

2 during their ECCOMAS conference presentation[21]
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problem has been over-elaborated in recent years, with very complex methods being 

developed to achieve increasingly small performance gains, and that the only real 

problem in dynamic load balancing on open workstation clusters can be presented 

simply as

• recognise when processor A is being heavily used by another task

• identify a lightly loaded processor B

• migrate the work of processor A onto processor B

• do all of this as quickly and simply as possible

These are also the objectives of the present work. Prom Figure 8, some interference 

of the parallel task can be tolerated (where the ‘busy’ timings are only slightly longer 

than the ‘quiet’), any performance gains in sending a subset of the blocks on the 

‘busy’ processor to other processors are likely to be small and would not justify the 

programming effort. The only real problem arises when a processor becomes heavily 

loaded, and the entire load from that processor should be migrated. Note that this 

also protects the interests of the interactive user, who then becomes the sole user of 

the processor. A dynamic re-allocation method was implemented as follows, using 

native LSF and PVM functions called from within the flow solver code for simplicitly 

rather than creating custom software:

• periodically monitor processor loadings (LSF)

• if a processor is too heavily loaded, find a candidate alternative (LSF)

• initiate a new task on the new processor (PVM), pass all the necessary in­

formation including the solution and the grid to the new task (PVM)

• stop the old task and proceed with the calculation
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Note that the frequency of load monitoring and the threshold for deciding whether 

a processor is overloaded are decided before run-time by the user. The major part 

of the information passed to the new process consists of the solution and grid for 

the partition allocated to that processor. For the present test problem this is ap­

proximately 500Kb for one migration, which is a manageable figure for an Ethernet 

network. It is not necessary to pass the Jacobian matrices (for the implicit scheme) 

which form the major part of the total memory usage for the flow solver. The 20 

trial runs in the ‘worst case’ scenario were repeated, but this time using the dy­

namic re-allocation method. The results are denoted ‘dynamic’ in Figure 8. The 

load monitoring frequency was set at every 10 time steps, recalling that 50 time 

steps are executed in total. It is detected that one processor is over-loaded at the 

first call of the load monitoring function (i.e. after 10 time steps) and the load from 

that processor is transferred to a lightly loaded processor. There is therefore a clear 

improvement over the ‘worst case’ execution time. An average parallel efficiency 

of 57% was achieved in the ‘dynamic’ case, as opposed to 42% for the ‘worst case’. 

The ‘dynamic’ execution times could be further reduced by increasing the load mon­

itoring frequency. Note that this model parallel CFD task has a lower associated 

parallel efficiency than would be the case for a real problem. It is unlikely that an 

engineer would use four processors for a problem which comfortably executes on 

two of the same processors, as in this case. It is well known that larger problems 

have greater parallel efficiencies (since the communication cost to computational 

cost ratio decreases), so since the dynamic re-allocation method effectively reduces 

the computational cost the performance gains for real problems would be larger. In 

addition, dynamic re-allocation would be of greater use for typical CFD jobs with 

longer execution times than the ten minutes in the current test problem.

In the event of no suitable alternative processor being available, the present 

method proceeds with the calculation on the same processor. This could be improved
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by first attempting to contract the problem onto one less processor, or if this is 

not possible by automatically re-submitting the parallel task to the batch queue, 

re-starting from the latest checkpoint files. The present method includes periodic 

checkpointing to local and main disks to enable re-starting in the event of a network 

failure.

Most organisations with a distributed computing network employ a batch schedul­

ing and queueing system, either developed in-house or proprietary, to enable trans­

parent load management and achieve high productivity. Users axe becoming ac­

customed to the convenience of high performance environments, where the system 

does the work of prioritizing batch jobs and selecting resources, and the user must 

only submit the (sequential) job and can depend on the timely arrival of the results. 

Ideally executing parallel tasks should be as simple and reliable. The dynamic re­

allocation method presented here coupled with management software such as LSF 

which fully supports sequential and parallel applications alike makes this possible.

6 Discussion

A domain decomposition method for a parallel, structured multiblock flow solver has 

been presented. The method is suitable for use on a non-dedicated parallel computer 

consisting of a heterogeneous workstation cluster. It has been noted that the ma­

jority of work concerning parallel CFD considers dedicated, homogeneous parallel 

computers. The additional difficulties encountered in a non-dedicated heterogen­

eous environment have been discussed. The parallel computing resource available 

to many engineers in small and medium-sized enterprises is of this type, although 

widespread use of parallel CFD to achieve a scaling-up in computational resource 

appears to be hindered by the perceived complexity involved. With this in mind, 

the domain decomposition strategy presented here attempts to deliver an effective 

resource in as straightforward a manner as possible.
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The method employs a cost function minimisation approach. It is assumed that 

the multiblock grid consists of enough small blocks to enable a reasonably balanced 

distribution. The cost function consists of computational and communication cost 

elements. The time required for a processor to compute its share of the load is 

assumed to vary directly with the number of grid cells assigned to that processor. 

The time required for inter-processor communication is assumed to vary directly 

with the number of cells on the block boundaries which must communicate with 

blocks which reside on different processors. The relative importance of the cost 

elements is defined by a coefficient, a value for which is determined from timing 

experiments. The various processor speeds are ascertained using the management 

software LSF and are accounted for in the cost function. LSF is also used to mon­

itor interference of other users’ tasks with parallel execution, and to select a lightly 

loaded processor as a target for migration. The method enables effective paral­

lel execution in the demanding environment of an open heterogeneous workstation 

cluster. Implementation is straightforward, facilitated by modern management soft­

ware and message-passing libraries, and does not require a specialist programming 

or information technology effort.
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