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Abstract
An unfactored implicit time-marching method for the 
solution of the three dimensional Navier-Stokes equa­
tions on multiblock curvilinear grids is presented. For 
robustness the convective terms are discretised using an 
upwind TVD scheme. A centred approach is followed 
for the discretisation of the viscous terms. The linear sys­
tem arising from each implicit time step is solved using 
a Krylov subspace method with preconditioning based 
on an block incomplete lower-upper (BILU(O)) factorisa­
tion. Results are shown for the ONERA B1 ogive, for 
the ONERA M6 wing, the NLR-F5 clean wing and the 
ONERA B2 ogive, demonstrating good comparison with 
experiment except for some discrepancies in the last case 
due to turbulence modelling.

1 Introduction
Due to the availability of increased computing power and 
the advances in numerical methods, computational fluid 
dynamics (CFD), is becoming an important tool for ana­
lysing the aerodynamics of aircraft [20]. Opportunities 
are opening up for the use of CFD to reduce design cycle 
costs, evaluate experimental inaccuracies (eg tunnel in­
terference) and provide high resolution information to aid 
the understanding of flow physics. The most demanding 
problems for aircraft are experienced in the transonic and 
supersonic regimes where the minimum level of mod­
elling to satisfactorally model shock waves is the Euler 
equations. For the separated flow often encountered in 
practical aircraft, rotorcraft and missile flight, and the in­
terest in maintaining attached flow, the modelling of vis­
cous effects is important. The issue of turbulence model­
ling is not considered here.

Navier-Stokes solvers for complex aircraft shapes have 
been used for a number of years. Geometric complex­
ity is tackled through the use of either unstructured or 
block structured grids. The former have the advantage of 
grid generation with less human intervention. However, 
flow codes on unstructured grids require more memory 
and are generally less efficient. Whilst for simulation

of one-off shapes the large cost of the reduced cost of 
the grid generation stage means that unstructured grids 
are normally preferred for Euler calculations, for multi­
disciplinary work such as optimisation,where repetitive 
calculations on the same grid are required, the emphasis 
shifts to flow code efficiency and block structured grids 
are attractive.

The current report describes the development of an im­
plicit method for solving the three dimensional steady 
state Navier-Stokes equations. This work builds on de­
velopments in two dimensions. The features of the 
method are an iterative solution [6] of an unfactored lin­
ear system for the flow updates [3], approximate Jacobian 
matrices [8] and a preconditioning strategy designed to 
provide good parallel performance [4]. Applications of 
the method for steady state problems include for aerofoil 
flows [3] [8], multielement aerofoils [2], axisymmetric 
slender body shapes [ 1] and shock wave reflections in jets 
[5].

The report continues with a description of the Navier- 
Stokes equations, followed by the numerical method. 
Results are then presented for a variet of test cases to il­
lustrate the method performance. Comparison with ex­
perimental data is made where available and comput­
ing times are given to illustrate the performance of the 
method.

2 Three-Dimensional Governing 

Equations

The three-dimensional Cartesian Navier-Stokes equa­
tions can be written in non-dimensional conservative 
form as

aw 5(F‘ + F*7) a(G! + Gv) ^(H1 + H1") _ 
dt dx ^ dy dz

(1)

where W = {p, pu, pv, pw, pE)T denotes the vector of 
conservative variables. The inviscid flux vectors F', G'
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and H1 are.
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In the above p, u, v, w, p and pE denote the density, the 
three Cartesian components of the velocity, the pressure 
and the specific total energy respectively. The viscous 
flux vectors F", G1' and H1' are given by

F" = (0,r:c IXX "b '^'^xy "b tUTg; + Qx)
G — (0, "Txy, '^yy^ '^yz^ '^'^xy "b '^'^yy “b WTyZ Qy')
H — {O^TxzjTyzjTz , urxz + VTyz + WTz + qz)

where the components of the stress tensor and of the heat 
flux vector are modeled in the following way:

'^xx — (M "b Mt) f ^ 

Tyy = ~{fJ‘ "b Mt) (2

du
dx
dv
dy

U1- )dz
(du I dv^ I dw \ 1 
^ dx ' dy ' dz ' i

T„ = -(f. + »)(2ft-}(S + t + |f)' 
~ (ij il)

dw') 
dx ITxz = ~{p + Pt) iM +

Tyz = —(m + tlt) )
Qx = - (-y-iVi + ir
„ _________1 ( M 1 8T
’^y ~ (7-1)M^ \Pr _r Prt) dy

qz ~ \Pr ^ Prt) dz

The laminar viscosity p is evaluated using Sutherland’s 
law whilst the turbulent eddy viscosity is given by 
Baldwin-Lomax algebraic turbulence model [10]. Fi­
nally, the various flow quantities are related to each other 
by the perfect gas relations.

3 Numerical Method
3.1 Spatial Discretisation
The Navier-Stokes equations are discretised on curvi­
linear multi-block body conforming grids using a cell- 
centred finite volume method which converts the partial

differential equations of (1) into a set of ordinary differ­
ential equations which can be written as

dt
{Vi,j,kWij^k) = —Ri,j,fc(W). (2)

The convective terms are discretised using Osher’s up­
wind scheme [7] for its robustness, accuracy and stabil­
ity properties. MUSCL variable extrapolation is used to 
provide second-order accuracy with the Van Albada lim­
iter to prevent spurious oscillations around shock waves. 
The discretisation of the viscous terms requires the value 
of some of the flow variables at the edges of each cell, as 
well as their derivatives. Cell-edge values are approxim­
ated by the average of the two adjacent cell-centre values, 
whilst cell-edge values of the derivatives are obtained us­
ing Green’s formula applied to an auxiliary cell made of 
the two halves of the cells surrounding the considered 
edge. The choice of the auxiliary cell is guided by the 
need to avoid odd-even point decoupling and to minim­
ise the amount of numerical viscosity introduced in the 
discretised equations.

3.2 Implicit Unfactored method
The implicit time marching scheme for equation (2) is 
given by

At
1 (3)

where the superscript n + 1 denotes the time level (n + 
1) X At. In order to be able to solve equation (3) the term 
Ri,jlfc(W"+1) is linearised with respect to time:

Ri,i.*(wn+1) RijMWn) +

where AWij^h 
following linear system

= wUl w"m-

(4)

This leads to the

At 1 + 3Ri,j,k

dWi,j,k.
AWij.fc = -Riiiifc(Wn). (5)

In the present work, the left hand side of equation (5) is 
approximated with first order jacobians as in [8]. This re­
duces the number of terms in the matrix from 825 per cell 
to 175 which is essential as 3D problems can easily have 
several million cells. Initial results have indicated that 
the present method requires 1 MB of memory per 550 
nodes. The right hand side of (5) is not changed to main­
tain second order spatial accuracy. A Krylov subspace al­
gorithm is used to solve the linear system of equation and 
is preconditioned using a Block Incomplete Lower-Upper 
factorisation which has the same sparsity pattern as the 
Jacobian matrix (BILU(O)). Furthermore, the BILU(O) 
factorisation is decoupled between blocks to improve par­
allel efficiency. This approach does not seem to have a 
major impact on the effectiveness of the preconditioner 
as the number of blocks increases [9].
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4 Computational Results
4.1 Results for the ONERA B1 Ogive
The first test case considered is a laminar flow around the 
ONERA B1 ogive [ 11] at a freestream Mach number of 2, 
a Reynolds number based on the ogive diameter of 0.16 
million and two angles of attack: 0° and 10°. The com­
putational grid used contains 65 points along the body in 
the direction of the flow, 65 points in the direction nor­
mal to the wall surface and 65 points in the circumferen­
tial direction (half body). A coarser grid was generated 
by extracting every other points from the fine one. Using 
grid sequencing and 4 processors on a cluster of Pentium 
Pro, the method required less than an hour to reduce the 
L2 norm of the residual by 6.5 and 5 orders for the 0° and 
10° case, respectively.

Figure 1 compares the pressure coefficient and skin 
friction distributions for the 0° case obtained with the 
present method with the solution of a 2D axisymmet- 
ric code which has been extensively validated [12]. The 
agreement between the two numerical methods is very 
good, with nearly perfect matching.

For the 10° problem, the pressure coefficient distribu­
tions along the body and at given X/D stations are shown 
in Figure 2. The angle # = 0 corresponds to the wind­
ward side of the ogive, whereas the angle $ = 180 cor­
responds to the leeward side. Also, note that the scale of 
the two graphs is not the same. The agreement between 
computation and experiment is good, except in the region 
surrounding the vortex (120 < $ < 160). These discrep­
ancies might be due to the fact that the flow is actually 
turbulent. Indeed, the experimental report [11] investig­
ates the influence of natural and fixed transition points 
between laminar and turbulent flow and shows some sub­
stantial differences in the flowfield. Nevertheless, the 
overall trends are correctly captured by the numerical 
method. The location of the separation lines is show 
in Figure 3. Again, the predicted main separation line 
matches well with the experimentally observed one. Fi­
nally, an overview of the flowfield at three different X/D 
stations can be seen in Figure 4.

4.2 Results for the RAE 2822 Infinite Wing
In order to validate the implementation of the Baldwin- 
Lomax turbulence model, calculations around an RAE 
2822 infinite wing were made. A fine C-type grid was 
generated with 193 points in the streamwise direction, 
33 points in the wake, 65 points in the direction nor­
mal to the wall and 5 points in the spanwise direction. 
The spacing of the first node next to the wall was chosen 
so as to insure a near wall value of y+ of around one. 
The outer boundary was located approximately 15 chords 
away. Again, a coarser grid was generated by removing 
every other points from the fine grid. In accordance with 
the experiment [13], transition points from laminar to tur­

bulent flow were fixed at 3% chord.
Two flow conditions were investigated. Case 9 is at a 

freestream Mach number of 0.73, and angle of attack of 
2.79° and a Reynolds number of 6.5 million. Case 10 is 
at a freestream Mach number of 0.75, and angle of attack 
of 2.81° and a Reynolds number of 6.2 million. The pres­
sure coefficient and skin friction distributions are shown 
in Figures 5 and 6 for Case 9 and 10, respectively. For 
Case 9, the agreement between experiment and computa­
tion is good, except for the shock strength which is over­
estimated. For Case 10, the experimental data and com­
putational results agree well on the lower surface and up­
stream of the shock wave on the upper surface. However, 
the location of the shock is predicted to aft, its strength 
is over-estimated and the pressure levels downstream of 
the shock are incorrect. Also, the predicted flow separ­
ates from the shock wave right up to the trailing-edge, 
whereas experimentally shock-induced separation with 
reattachment is observed.

However, several authors, such as Rumsey and Vatsa 
[14], have found a similar level of agreement for Case 9 
and 10 using a Baldwin-Lomax turbulence model, with 
the discrepancies for Case 10 explained by the deficien­
cies of the turbulence model for separated or close-to- 
separation flows.

4.3 Results for the ONERA M6 Wing
The next problem considered in this paper is the flow 
around the ONERA M6 wing [15]. A C-O type grid was 
generated containing 129 x 65 x 65 points with 97 points 
wrapped around the wing section, 17 points in the wake 
and 65 points in the direction normal to the wing. In the 
spanwise direction, there are 49 points on the wing and 
17 points around half of the tip. The spacing of the first 
node next to the wall was chosen so as to insure a near 
wall value of y+ of around one and the outer boundary 
was located approximately 15 chords away. This level of 
grid density was felt to be sufficient in view of the results 
obtained in the previous section and from our experience 
with 3D inviscid flows [9].

A first calculation was made for a flow at a Mach num­
ber of 0.84, an angle of attack of 3.06° and a Reyn­
olds number of 11.7 million. The experimental pressure 
coefficient distributions at several spanwise locations are 
shown in Figure 7 and are compared with the present tur­
bulent results as well as inviscid ones obtained on a sim­
ilar size grid. The agreement between experiment and 
simulations is in general good. But, the turbulent calcula­
tions are much closer to the experiment than the inviscid 
results in the shock wave regions. This is particularly true 
towards the tip of the wing, from rj = 0.9 onwards where 
the turbulent simulation predicts the correct location and 
strength of the shock. At the tip however, both methods 
fail to capture the pressure plateau towards the trailing- 
edge due to the tip vortex. A similar level of agreement 
was achieved by Rumsey and Vatsa [14]. An overview of
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the flowfield on the wing upper surface is shown in Figure 
8 where the lambda shape of the shock is clearly seen.

A second calculation was made at the same Mach and 
Reynolds numbers, but at a higher angle of 6.06°. The 
pressure contours on the wing upper surface are shown in 
Figure 9 and indicates that the turbulent calculation pre­
dicts flow separation downstream of the shock towards 
the tip of the wing. This is confirmed in Figure 10 where 
the predicted flow is separated from the shock up to the 
trailing edge from station r/ = 0.65 onwards, whereas ex­
perimentally, the flow seems to separate from station r/ = 
0.80 only. The cause of this mis-match can be attributed 
to the turbulence model which fails to predict firstly, the 
correct location of the strong secondary shock towards 
the root of the wing and secondly, the correct pressure 
levels downstream of the shock from r] = 0.65. At these 
stations, it is probable that experimentally shock induced 
flow separation occurs with reattachment or mild separa­
tion.

For both cases, the calculation runtime was under 45 
minutes to reduce the L2 norm of the residual by just un­
der 3.5 orders using 6 processors on a cluster of Pentium 
Pro.

4.4 Results for the NLR-F5 Clean Wing
Next, the flow around a NLR-F5 clean wing was invest­
igated. The flow conditions are as follows: the freestream 
Mach number is 0.896, the angle of attack is 0.497° and 
the Reynolds number is 5.79 million. The C-0 type grid 
used is similar in size to that for the ONERA M6 wing, 
except that in the spanwise direction, there are 57 points 
on the wing and 9 points around half of the tip since the 
NLR-F5 wing is only 5% thick.

A comparison between the experimental [16] and com­
putational pressure distributions is shown in Figure 11. 
The agreement between the numerical results and the ex­
perimental data is relatively good, with the turbulent solu­
tion showing some improvements compared to the invis- 
cid one near the lower surface leading-edge suction peak 
and around the upper surface pressure plateau. This is in 
agreement with the findings of several authors [17], [18]. 
More importantly, the inviscid method predicts the pres­
ence of a shock wave on the wing upper surface from root 
to tip, while in the turbulent solution, the region where a 
shock is present is in better agreement with the experi­
ment (see Figure 12). Furthermore, towards the tip of the 
wing, the turbulent method predicts more correctly the 
location and the strength of the shock wave.

4.5 Results for the ONERA B2 Ogive
The final test case considered in this paper is the flow 
around the ONERA B2 ogive [11] at a Mach number of 
2, a Reynolds number based on the ogive diameter of 1.2 
million and two angles of attack: 0° and 10°. The com­
putational grid used contains 65 points along the body

in the direction of the flow, 129 points in the direction 
normal to the wall surface and 33 and 65 points in the cir­
cumferential direction for the 0° case (quarter body) and 
10° case (half body), respectively. Transition points from 
laminar to turbulent flow were fixed at 15 % diameter, in 
accordance with the experiment. The overall runtime of 
the code was just under 1 hour and 15 minutes on 4 (0° 
case) and 8 (10° case) processors to reduce the L2 norm 
of the residual by 6 orders.

For the 0° angle of attack problem, the predicted pres­
sure coefficient and skin friction distributions are com­
pared with the results of a 2D axisymmetric code using a 
k — LJ turbulence model [12] (see Figure 13). The agree­
ment between the two sets of data is good, although the 
skin friction levels predicted by the 3D solver are lower 
than those predicted by the axisymmetric code. The dif­
ference is essentially attributed to the different turbulence 
models used.

Figure 14 shows the stagnation pressure contours at 
three different station along the body for the 10° case. 
It can be seen that the method fails to predict the cor­
rect shape of the vortex present on the leeward side of 
the ogive downstream of X/D = 7. This is caused by 
the fact that the Baldwin-Lomax turbulence model used 
over-predicts the value of the eddy viscosity in regions 
where a vortex can be found. Degani and Schiff [19] have 
introduced a two-way correction to improve results for 
that kind of flows. The first correction, which deals with 
the presence of two distinct maxima in the function F is 
straight forward to implement. However, the second one, 
which helps in cases where the maxima are close to each 
other is not easy to address within a multi-block context 
and was therefore neglected. The results obtained with 
that partial Degani-Schiff correction are shown in Figure 
15 and some improvements can be seen. However, the 
strength and position of the vortex are not yet correct and 
the inclusion of the second part in the Degani-Schiff cor­
rection should improve results further.

5 Conclusion
An unfactored implicit time-marching method for solv­
ing the three dimensional Navier-Stokes equations has 
been presented in this paper. Results were shown for the 
ONERA B1 ogive, the ONERA M6 wing, the NLR-F5 
clean wing and the ONERA B2 ogive. Good results were 
obtained for all cases considered, although the last case 
in particular emphasises the limitation of the Baldwin- 
Lomax turbulence model.
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Figure 7: Pressure coefficient distribution 
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Figure 8; Pressure contours for the ONERA M6 Wing 
Moo = 0.84, Q = 3.06°, Re = 11.7 lO6

Figure 9: Pressure contours for the ONERA M6 Wing 
Moo = 0.84, a = 6.06°, Re = 11.7 10®
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Figure 10: Pressure coefficient distribution 
ONERA M6 Wing, Moo = 0.84, a = 6.06°, Re = 11.7 lO6
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Figure 11; Pressure coefficient distribution 
NLR-F5 Clean Wing, = 0.896, a = 0.497°, Re = 5.79 lO6
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Figure 12: Pressure contours for the NLR-F5 Clean Wing 
Moo = 0.896, a = 0.497°, Re = 5.79 lO6
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Figure 13: Pressure coefficient and skin friction distributions 
ONERA B2 Ogive, M00 = 2,a = 0°, Re = 1.2 lO6

ONERA B2

X/D = 5 X/D = 7 X/D = 9

Figure 14: Stagnation pressure contours at different stations along the body 
Standard Baldwin-Lomax turbulence model 

ONERA B2 Ogive, Moo =2,a= 10°, Re = 1.2 lO6
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Figure 15: Stagnation pressure contours at different stations along the body 
Baldwin-Lomax turbulence model + partial Degani-Schiff correction 

ONERA B2 Ogive, M00 =2,a= 10°, Re = 1.2 lO6




