

Aleksandrova, E., Anagnostopoulos, C. and Kolomvatsos, K. (2019)

Machine Learning Model Updates in Edge Computing: An Optimal

Stopping Theory Approach. In: 18th IEEE International Symposium on

Parallel and Distributed Computing (ISPDC 2019), Amsterdam, The

Netherlands, 5-7 Jun 2019, ISBN 9781728138015

(doi:10.1109/ISPDC.2019.000-4).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/184450/

Deposited on: 17 April 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ISPDC.2019.000-4
http://eprints.gla.ac.uk/184450/
http://eprints.gla.ac.uk/

Machine Learning Model Updates in Edge
Computing: An Optimal Stopping Theory Approach

Ekaterina Aleksandrova, Christos Anagnostopoulos, Kostas Kolomvatsos
School of Computing Science, University of Glasgow, UK

2133352A@student.gla.ac.uk; {christos.anagnostopoulos; kostas.kolomvatsos}@glasgow.ac.uk

Abstract—This work studies a sequential decision making
methodology of when to update machine learning models in
Edge Computing environments given underlying changes in the
contextual data distribution. The proposed model focuses on
updates scheduling and takes into consideration the optimal
decision time for minimizing the network overhead. At the
same time it preserves the prediction accuracy of models based
on the principles of the Optimal Stopping Theory (OST). The
paper reports on a comparative analysis between the proposed
approach and other policies proposed in the respective literature
while providing an evaluation of the performances using linear
and support vector regression models. Our evaluation process is
realized over real contextual data streams to reveal the strengths
and weaknesses of the proposed strategy.

Index Terms—Edge computing, machine learning model up-
dates, communication efficiency, optimal stopping theory.

I. INTRODUCTION

The Internet of Thing (IoT) has been gaining popularity
since the end of the 20th century. IoT has allowed the
transformation of small scale computing environments into
vast ecosystems, whose cores, i.e., cloud data centers, require
a massive computational power to process all the received
contextual data. In addition, there is the need for a substantial
network overhead in order to receive all the raw data. However,
as this has proven to be inefficient [20], a computing paradigm
has been provided in the form of Edge Computing (EC), whose
rationale is to push most of the computations to the edge of
the network, e.g. sensors, mobile devices, etc. This allows to
take advantage of the computational and sensing capabilities
of modern devices and deliver the locally processed contextual
data to the cloud in the form of partially or entirely extracted
knowledge [3]. The edge-centric rationale contributes as a
method for decreasing network traffic, as the delivered statis-
tical learning model representations of the locally stored data
have significantly smaller size compared to the raw contextual
sensed data. The EC is expected to significantly reduce the
required latency in the provision of knowledge while involving
less computational power than cloud resources. However, if
the acquired knowledge is still transferred to the cloud with
a high frequency due to changes in the underlying data, then
the considerable communication overhead remains along with
other complications explained further ahead in this paper.

The main problem which this paper aims is estimating an
optimal waiting time criterion for updating and delivering
Machine Learning (ML) models from the edge network to
the cloud based on sequential observations over multivariate

contextual data. The proposed scheme should be able to decide
when a ML model is to be sent from an edge node to an
edge gateway to minimize the communication overhead and, in
parallel, to preserve the prediction accuracy of the generated
ML models. We express this as the research question: How
can the ML model delivery time and model accuracy at the
network edge be maximized while minimizing the communica-
tion overhead and computational complexity at the edge node
level? We address this question adopting the principles of the
Optimal Stopping Theory (OST) and propose a time-optimized
stochastic model for ML model updates.

The paper is organized as follows: Section 2 presents related
work, while Section 3 introduces the proposed methodology
built on the OST. Section 4 reports on the performance
and comparative assessment with other sequential decision
making policies using real datasets and provides a summarized
analysis, while Section 5 concludes the paper.

II. RELATED WORK & CONTRIBUTION

A. Knowledge Sharing in Edge Computing Environments

Given a sample path in a distributed environment consisting
of multiple sensing and computing edge nodes, local edge
gateways and a data center node as an endpoint, the multi-hop
transmission increases energy consumption when the gateways
are busy and the data have to be passed to the central node
[14]. When data processing is not performed at the edge
of the network and given that n d-dimensional data points
{xi}ni=1,xi ∈ Rd are sensed, collected and disseminated
through the network, it results to at least n transmissions.
On the other hand, if the data points {xi} are locally pro-
cessed at the edge nodes close to their source, the derived
result corresponding to knowledge derivation can be expressed
through a model representation of the data, where only the
representative statistical parameters are disseminated through
the network. This results in reduced energy consumption and
expected communication overhead [17]. Moreover, wireless
sensor networks in IoT environments used in remote locations,
e.g., rain forest sensors [19], surface and mine monitoring [2],
water pollution detectors [1], are usually being powered by
a battery. Therefore, the energy consumption of the sensing
devices should be minimized as much as possible to reduce the
amount of human interaction required to replace the exhausted
energy source and the corresponding costs. If the sensors
are placed at locations with difficult access, that could also
increase the financial cost or even cause danger to the person

responsible for the replacement. Moreover, sensor systems rely
on renewable energy, most widely used is solar energy, which
could be slower to harvest in environments such as rain forests
[19], therefore, having a power efficient device is required in
order to have a well-functioning system. Another concern with
communicating processed data on every sensing & reporting
period is that it is possible that the data contains bias, e.g.,
missing or corrupted data points [4]. When disseminating them
to the gateway, it can potentially be used to make inaccurate
predictions of the sensed/monitored environment. This can be
avoided by delaying the reporting of data and the derived ML
model update before making sure that the bias is not in fact a
novelty in the data or due to data missingness.

A way of minimizing the energy cost in edge devices is by
reducing the expected number of data transmissions [7]. This
can be achieved by introducing a certain delay in the delivery
of the up-to-date data [3], [4], [5], at the cost of allowing a
reasonable reconstruction error in the data domain [8]. Adopt-
ing this delay-based rationale, our distributed approach departs
from the data domain and heads to the derived ML models
domain of the underlying data. Specifically, the concept is
as follows: initially, a ML model, e.g., linear regression or
support vector regression model, is generated at the edge
nodes, which is sent to the edge gateway. In the case that
the node does not detect a significant change between the
initially modelled data via the derived ML model and the
currently sensed data, no communication is made for update
purposes. Thereofre, making the decision on when to send
a new updated ML model to the edge gateway before the
accuracy is expected to degrade given an application specific
error tolerance threshold should be studied from an time-
dependent stochastic optimization angle.

B. Time-optimised Sequential Decision Making

The OST is epxected to solve the stochastic problem stated
above, i.e., choosing a best time instance to take a given action.
In our context, we need to decide when to stop observing
changes on the derived ML model and send the new ML
model to the edge gateway. The action is based on sequentially
observed random variables in order to maximize expected
reward trading off the communication overhead and expected
accuracy. Based on this abstraction of the considered problem,
several OST-based variations are adopted as a basis to abstract
problems in computing science notably: the House-Selling
(HS) problem and the Quickest Change Detection (QCD)
problem [6]. The HS problem explores the attempt to stop
and sell a house at the highest offer by taking into account a
cost, such as living cost or real estate agency commission, for
each rejected offer. This problem relates to the approach that
waiting can be penalized, the way Tian et al. use it in their
cost-aware update policy [18]. In our context, the decision on
whether to update an outdated ML model with the current one
is based on how much it was lost (how big the ”regret” is) since
the update with the better model was not performed in the past.
Once a tolerance threshold is violated, an update is inevitable,
which also prevents additional retraining computations on the

edge node. The QCD problem deals with the exploration
of the context distribution and stopping when a change is
detected while penalizing false alarms [6]. Research has been
focusing on two major approaches based on assumptions on
the underlying data distribution. Shiryaev [15] provides an
optimal solution to the problem using a Bayesian approach,
while, on the other hand, a non-Bayesian approach is adopted
using the well-known Cumulative Sum (CuSum) method [13].
The latter was proven to be optimal by Moustakides [12] based
on Lorden’s formulation of the problem [11]. Recently, Lau
and Tay [16] introduce the ”critical change” and ”nuisance
change” in a distribution, where the critical change is of
highest importance and should be detected, as opposed to
the nuisance change, which should be ignored. They propose
two algorithms using Bayesian and non-Bayesian assumptions,
compared to [13] and [15].

Contribution: Given these established methodologies for
sequential decision making, we depart from the related work
in the direction of detecting changes not in the underlying data
but on the prediction capability of the derived ML models on
edge nodes. Specifically, our contributions are:

1) An analytical time-dependent stochastic optimization
model relying on the principles of OST that minimizes
the communication overhead while preserving the pre-
diction accuracy of the ML models in EC environments;

2) Comparative assessment of our model with established
change detection rules and baseline solutions using real
data-sets;

3) A statistical significance-based methodology for hyper-
parameter optimization when applying the proposed
optimal decision making policy.

III. TIME-OPTIMIZED MODEL UPDATES METHODOLOGY

We propose a time-optimized ML model update postponing
policy in light of reducing the communication rate in the
network edge but preserving the quality of prediction. We con-
sider a distributed/EC environment with edge nodes capable
of sensing and processing data and edge gateways. Initially,
the edge node is responsible for gathering/sensing multivariate
contextual data and generating a ML model y = f(x) over the
first W data observations {(xi, yi)}Wi=1, i.e., sliding window
of length W . The ML model f is then temporarily stored
on the edge node and is also communicated with the edge
gateway. On each next observation round, the datum (x, y)
is received and appended to the currently stored window
W , while the oldest observation (x, y) is discarded. A new
ML model y = f ′(x) can then be incrementally updated or
generated representing the current updated dataset. By fitting
the dataset on the old f and the new f ′ ML models, we
obtain the two corresponding Mean Squared Errors (MSE)
indicating the predictability capability of the models: (i) MSE
e = 1

n

∑n
i=1(yi − f(xi))

2 from the ML model f the edge
gateway, which has been previously received from the edge
node; (ii) MSE e′ = 1

n

∑n
i=1(yi−f ′(xi))

2 from the ML model
f ′ based on the most up-to-date sensed data at the edge node.
Given that the predictability of the latest ML model f ′ of the

edge node satisfies certain criteria, the decision is made to
communicate the f ′ to the edge gateway. This also requires
that the temporarily stored outdated ML model f at the edge
device is also updated to correctly represent the disseminated
local knowledge in the EC environment.

A. Optimal Postponing Policy

The proposed Optimal Postponing (OP) policy for ML
model updates is based on the change in the error distribution
using the cumulative sum of the absolute error difference
between the two MSEs e and e′ at time instance of observation
t > 0. Let us consider the definitions of the absolute error
difference Zt and cumulative error difference St:

Zt = |e′t − et| (1)

St =

t−1∑
k=1

Zk + Zt = St−1 + Zt (2)

Consider also the application-specific error tolerance thresh-
old Θ > 0 defined to determine the acceptable error sum. This
will be used to determine if the edge node should proceed with
a ML model update or not. Under this context, we define the
random variable Vt as the reward of a ML model update deci-
sion reflecting the trade-off between communication efficiency
and presentation of the model predictability w.r.t. tolerance Θ:

Vt =

{
t, if St ≤ Θ,
−B, if St > Θ.

(3)

That is, when the cumulative error difference is less than a pre-
defined tolerance Θ, we desire to delay the ML model update,
thus, we obtain a reward proportional to the waiting time up
to t (given that each time instance t corresponds to a new data
observation). On the other hand, should the accumulation of
the error differences exceeds Θ, then we impose a penalty.
The penalty is expressed via a penalty factor B > 0 denoting
that the current cumulative St exceeds the tolerance Θ, thus,
the edge node could have sent the updated ML model to the
edge gateway. To be communication efficient, the edge node
desires to postpone the ML model update, thus, increasing the
value of Vt as much as possible. However, as long as the edge
node delays the model update, then the cumulative error St

approaches Θ, thus increasing the risk of exceeding it. The
challenge is for the cumulative error difference St to reach as
close to the tolerance Θ as possible, but without exceeding
this. We formalize then our problem as follows:

Problem 1: The edge node should find the best time
instance t∗ such that the expected reward for delaying a ML
model update is maximized, i.e., the optimal stopping time t∗

achieves the essential supremum: ess supt E[Vt].

We provide an estimate of the optimal stopping time in
Problem 1 as stated in the Theorem 1.

Theorem 1: The optimal stopping time t∗ that maximizes the

essential supremum ess supt E[Vt] of the reward function in
(3) in Problem 1 is the first time instance t > 0 such that:

FZ(Θ− St) ≤
t+B

t+ 1 +B
,

where FZ(z) is the cumulative density function (CDF) of the
absolute error difference Zt = |et − e′t|.

Proof of Theorem 1: From the reward in (3) we obtain the
expected current reward E[Vt]:

E[Vt] = t · P (St ≤ Θ)−B · (1− P (St ≤ Θ))

= (t+B) · P (St ≤ Θ)−B.

Let now the filtration Ft = {S1, S2, . . . , St} ∪
{Z1, Z2, . . . , Zt} be the realization of all the random
variables up to t, which is the whole information the edge
node has accumulated up to t. The conditional expectation of
the reward Vt+1 given Ft is then:

E[Vt+1|Ft] = (t+ 1 +B) · P (St+1 ≤ Θ|Ft)−B.

Based on (2) and the fact that the probability of the sum St+1

at t+ 1 being less then or equal to Θ given filtration F equals
the CDF of Z at the value of Θ−St, i.e., P (St+1 ≤ Θ|Ft) =
P (St+Zt+1 ≤ Θ|Ft) = P (Zt+1 ≤ Θ−St|Ft) = FZ(Θ−St),
we obtain that:

E[Vt+1|Ft] = (t+ 1 +B) · P (St+1 ≤ Θ|Ft)−B
= (t+ 1 +B) · P (Zt+1 ≤ Θ− St|Ft)−B
= (t+ 1 +B) · FZ(Θ− St)−B.

We postpone sending the ML model if we expect that the next
iteration will increase the reward value, i.e., we stop at the first
instance t where the current reward is higher than the expected
future reward at t+ 1 or where Vt = t ≥ E[Vt+1|Ft]:

t ≥ (t+ 1 +B) · FZ(Θ− St)−B

FZ(Θ− St) ≤ t+B

t+ 1 +B
,

which completes the proof of Theorem 1. �
Algorithm 1 illustrates the local process in the edge node

of our optimal policy. Note: The CDF FZ(z) is approximated
using training pairs of error differences {zi} before the process
starts. This is achieved by the incremental CDF learning
algorithm of Kernel Density Estimation (KDE) being space
efficient and having constant time complexity [10], thus, not
burdening the computations on the edge node.

B. Policies under Comparison

In order to assess the performance of our method, we
implemented four other policies, which rely either on certain
statistics of the data or on pure randomness, namely: the
Median-based Policy, the Random Policy, the Accuracy Policy,
and the optimal CuSum Policy [13].

Algorithm 1 Time-optimized Postponing Policy (OP)
Initial ML model f
Z0 = 0; S0 = Z0; t = 1
while TRUE do

sense (xt, yt)
update/derive new model f ′ w.r.t. (xt, yt)
calculate et and e′t; Zt = |et − e′t|; St = St−1 + Zt

if FZ(Θ− St) ≤ t+B
t+1+B then

f ← f ′ . update & communicate model to gateway
Z0 = 0; S0 = Z0; t = 1

else
t← t+ 1

end if
end while

1) Median-based Policy: This policy has an initially
learned the median mT from the previously seen absolute
error difference values given that the initial ML model is
never updated. The rationale behind this is to explore the
worst case scenario of the error difference. This assumes that
the closer the timestamps of the two models f and f ′ are,
the lower the error difference between them is and on the
contrary, the further away the timestamps of the two models
are, the higher their error difference is. Using a fraction
α ∈ (0, 1] of the median mT , the policy determines whether
the current absolute error difference is a tolerable amount or if
it indicates that the newly sensed data is significantly outdated
and the associated ML model needs to be communicated
with the edge gateway. This policy is expected to reduce
communication by being more tolerant towards initial small
abrupt changes but detects continuously increasing values. The
policy periodically updates the median value mT , i.e., every
T pre-defined observations. Algorithm 2 illustrates the local
median-based process in the edge node.

Algorithm 2 Median-based Policy
Initial median mT ; initial ML model f ; t = 1
while TRUE do

sense (xt, yt)
update/derive new model f ′ w.r.t. (xt, yt)
calculate et and e′t; Zt = |et − e′t|;
if Zt > α ·mT then

f ← f ′ . update & communicate model to gateway
end if
if t mod T = 0 then

update median mT

end if
t← t+ 1

end while

2) Random-based Policy: This policy is intended to be
sending updates of the latest ML model to the edge gateway
with the same probability p > 0 as the OP policy. The aim is
to show that even if the number of updates is approximated
to the optimal value by OP, the accuracy of the models at the

edge gateway would still suffer a decrease: that is because OP
knows when to send an update to maximize (3). Algorithm 3
illustrates the local random-based process in the edge node.

Algorithm 3 Random-based Policy
Initial ML model f ; t = 1
while TRUE do

sense (xt, yt)
update/derive new model f ′ w.r.t. (xt, yt)
k ← random(0,1)
if k ≤ p then

f ← f ′ . update & communicate model to gateway
end if
t← t+ 1

end while

3) Accuracy-based Policy: This policy compares the MSE
e of the old model f with the MSE e′ of the most up-to-date
model f ′. Once it detects a decrease in the accuracy, the latest
model is sent to the edge gateway. The policy aims to present
a baseline solution for reducing communication but preserving
accuracy as high as possible shown in Algorithm 4.

Algorithm 4 Accuracy-based Policy
Initial ML model f ; t = 1
while TRUE do

sense (xt, yt)
update/derive new model f ′ w.r.t. (xt, yt)
calculate et and e′t
if et > e′t then

f ← f ′ . update & communicate model to gateway
end if
t← t+ 1

end while

4) Cumulative Sum (CuSum) Policy: The Cusum algorithm
implemented here relies on the recursive form of the CuSum
[13]. CuSum is based on two assumptions for the distributions
representing the two hypotheses, where we decide which
hypothesis represents the current sample of data. Firstly, the
no-change hypothesis H0 refers to the ”good distribution”,
which in our context is assumed to be the distribution of
the absolute error differences when the edge gateway model
receives an up-to-date model on every observation on the edge
node. On the contrary, the ”bad distribution” represented by
the changed distribution hypothesis H1 is assumed to be the
distribution of the absolute error difference when the model is
communicated only on the first iteration and then never again.
The assumption is made that the absolute error differences
Z0, Z1, . . . , Zn are continuous independent random variables.
In this case, a Gamma Γ distribution is a choice to represent
the error difference values, as shown in Fig.1, relying on the
two parameters: scale and shape of the Probability Density
Function (PDF) PZ(z) of the Z distribution. When a new
absolute error difference zt = |et − e′t| is calculated, it is
then fitted in the PZ(z) for each of the two distributions:

the good P0(zt) and the the bad P1(zt) corresponding to
the H0 and H1 hypotheses, respectively. The logarithmic ratio
log P1(zt)

P0(zt)
belonging to either the good or the bad distribution

determines whether H0 or H1 is rejected. Once the cumulative
sum of the logarithmic ratios minus the minimum value of the
current ratios exceeds an initially determined threshold Φ, as
proposed in [13] for optimal concept drift detection, the up-
to-date model is sent from the edge node to the edge gateway
indicating a significant change in the predictability behaviour
of the ML model shown in Algorithm 5.

Fig. 1. Gamma distribution approximation of good and bad PZ(z) of the
error difference Z over the GNFUV data using Linear Regression ML model.

Algorithm 5 CuSum Policy
Initial ML model f ; t = 1
sense (xt, yt)
update/derive new model f ′ w.r.t. (xt, yt)
calculate et and e′t; Zt = |et − e′t|;
log-ratio rt = log P1(Zt)

P0(Zt)
; sum-ratio ut = rt

while TRUE do
t← t+ 1
sense (xt, yt)
update/derive new model f ′ w.r.t. (xt, yt)
calculate et and e′t; Zt = |et − e′t|;
calculate rt = log P1(Zt)

P0(Zt)
; sum-ratio ut = ut−1 + rt

if ut −mink<t{uk} > Φ then
f ← f ′ . update & communicate model to gateway
rt ← 0; ut ← 0

end if
end while

IV. PERFORMANCE EVALUATION

A. Data Sets
Two real-date time-series datasets are used in order to apply

the proposed policy OP and compare with the policies: media-
based (M), accuracy-based (A), random (R), and CuSum (C).

GNFUV Unmanned Surface Vehicles Data Set [8]: this
dataset is produced by four Unmanned Surface Vehicles (USV)
sensing devices which observed and recorded the multivariate
contextual environmental data using temperature and humidity
sensors on the sea surface. The collected data will be associ-
ated with the Linear Regression ML model derived on each

USV in the experiments for each policy. The generated linear
regression models are aimed at predicting the environmental
humidity based on the sensed temperature.

Gas sensors for Home Activity Monitoring Data Set [9]:
this dataset contains readings from temperature, humidity and
8 metal-oxide (MOX) gas sensors of a contained environment
whether or not a stimuli is presented. The collected data will be
used in the Support Vector Regression (SVR) ML model with
RBF kernel functions to assess all the policies. The generated
SVR ML models predict the level of MOX gas based on the
2-dim vector of the detected humidity and temperature.

B. Experimentation with Linear Regression Models

The experiment using linear regression models was per-
formed using the initial 100 data-points of the data-set for
any pre-processing analysis depending on the targeted policy
and the rest of the dataset was used to simulate an online
approach using each of the discussed policies. Three of the
policies require parameterization, which needs to be mentioned
in advance along with the global parameter on the window
size, which is set to be W = 25 for all experiments. The
Median-based policy was performed using an α fraction of the
median updated every T = 100 data observations; α was set
to 0.5. The CuSum policy relies on the threshold Φ = 2, up to
which the cumulative sum of the logarithmic ratio is allowed
to increase. The OP policy requires two parameter values, one
for the error sum threshold Θ and one for the penalty value B.
The box-plot analysis was performed by specifying a threshold
Θ for the OP policy and running the simulation with penalty
values ranging from B = 2 to B = 15. In Figure 2 for the
USV PI3 (refer to [8]) it is shown that the highest mean on
update delay is achieved using a threshold Θ = 3 and a penalty
value B = 14. These values are then used in the complete
simulation of the policy comparison. The absolute error rate
and the communication rate for each policy are depicted in
Figure 3 and Figure 4 respectively.

Fig. 2. Expected postponing time boxplot for Θ = 3 and B ∈ {2, . . . , 15}
for the OP policy.

As can be seen from Figure 3, the plot is very inconsistent
due to the low accuracy of the linear regression models. The
absolute error difference for the OP policy preserves a similar
rate to policy A for six iterations, which is aimed at keeping
the most accurate model. However, as seen in Figure 4, the OP

Fig. 3. Absolute error difference Z = |e− e′| for USV PI3 [8] vs window
size w using Linear Regression.

Fig. 4. Communication for USV PI3 [8] with window w = 25 using Linear
Regression.

policy waits six iterations more compared to policy A before
sending a ML model update. The number of iterations between
two ML model updates are referred to as waiting times and
they are further investigated by performing an ANOVA test
and a Tukey’s Honestly Significant Difference (HSD)1 test
for multiple mean differences in Table I. The results show p-
values less than 5% which points to a statistically significant
difference between the policy means for USV PI3 and USV
PI4 on their waiting times and absolute error rates. We also
perform a follow-up Tukey HSD test, which compares the
means for each couple of policies and the results are plotted
in Figure 5 and Figure 6.

TABLE I
ANOVA TEST RESULTS FOR LINEAR REGRESSION

p-value for ML model postponing time
USV PI3 1.24 · 10−30 ≤ 0.05
USV PI4 7.89 · 10−14 ≤ 0.05
p-value for absolute error
USV PI3 1.24 · 10−13 ≤ 0.05
USV PI4 2.77 · 10−17 ≤ 0.05

The plot in Figure 5 shows that the OP policy has a statisti-
cally significant higher waiting time (ML model postponing
time) compared to policy M, policy C, and policy A and
the same mean with the policy R, as intended. This shows
the advantage in communication reduction introduced by the

1The interest reader could refer to: J. Tukey, ‘Comparing Individual Means
in the Analysis of Variance’, Biometrics, 5(2):99–114, 1949.

OP policy. Moreover, we perform the Tukey’s HSD test on
the absolute error difference of each policy along with policy
E: the policy E communicates the up-to-date models on each
iteration and is intended as a lower bound, which shows the
absolute error rate of the models at its lowest. The results
in Figure 6 show that the accuracy of the ML models does
not suffer a significant deterioration compared to policy E
and the other communication reduction policies but preserves
the highest postponing time. Moreover, the plot shows that
randomly updating the ML models leads to a significant
increase in the absolute error, therefore, the OP policy does
not just correctly guess the optimal number of updates but also
the optimal time between the updates.

Fig. 5. Policy comparison in terms of statistical significance on the expected
ML model postponing/waiting time in Linear Regression experiment.

Fig. 6. Policy comparison in terms of statistical significance on the absolute
error rate in Linear Regression experiment.

C. Experimentation with Support Vector Regression Models

After analyzing the second dataset, it was found that the
initial 100 data-points of humidity and temperature contain a
concept drift in the observed pattern. However, the rest of the
data used in the implementation of the online algorithms have
no noticeable changes, which results in no communication
between the edge node and the edge gateway. This called for
placing an artificial change (concept drift in the underlying
distribution) in the data. One gradual long term change and
one abrupt short term change affecting only the MOX sensor
data and preserving the genuine data stream for the humidity
and temperature. This is aimed to simulate a new pattern in the
data which will cause a change in the communicated models.
The gradual long term change occurs from the 50-th data point
(observation) of the start of the experiment, where the MOX

sensor values are increased with 10% of the mean value in the
next 12 observations and after that the change is kept persistent
throughout the rest of the simulation. This drift in the data is
intended to serve as a critical change [16] which should be
detected by the algorithm and acted upon as soon as possible.
The second abrupt short term change occurs in observation
108. The change in the MOX sensor values is increased with
2.5% of the mean value and then decreased to the genuine
data-stream in the next 4 observations. This drift in the data
distribution is intended to serve as a nuisance change [16],
which should be of least importance to the algorithm.

The global parameters for this experiment are set the same
way as in the experimentation using the linear regression
models: window size W = 25 and initial pre-processing data
containing 100 data points. The policy M uses α = 0.5 and
the cumulative sum threshold for the CuSum policy is set to
Φ = 0.5. For the OP policy, the cumulative sum threshold
was set to Θ = 1 as it allowed the needed sensitivity for
the detection of the critical change. The box-plot in Figure 7
shows the ML model postponing times when performing for
the MOX sensor R5 using B ∈ {2, . . . , 15}. The highest mean
waiting time is achieved using penalty B = 3. The results with
this setting are shown in Figures 8 and 9.

Fig. 7. Expected postponing time box-plot for Θ = 1 and B values in the
range 2 to 15 for the OP policy using SVR ML models.

Fig. 8. Absolute error difference Z for MOX sensor R5 with window w = 25
using SVR ML models with RBF Kernel having a concept drift change at the
40-th observation.

In Figure 8, the absolute error line is distorted as expected

after the critical change and less affected after the nuisance
change. The error appears to increase the most for the CuSum
policy and the proposed OP policy and less for the Median-
based policy. An interesting observation is that the policy
relying only on the accuracy (policy A) appears to be per-
sistently close to 0, which can be explained by the good
quality predictions that the SVR model delivers. However,
when we focus our attention to the communication rate of the
policies in Figure 4, despite the allowed error by the CuSum
policy, the critical change appears to cause a communication
overhead mid and post change, where even the Median-based
policy manages to decrease the absolute error at the cost of
less communication. On the contrary, the OP policy allows
a high error rate but at the cost of just two sent messages
as a result of the critical change, which happens shortly after
the change and the nuisance change causes an updated model
about 40 observations after the change. The waiting times for
each policy is investigated further by performing ANOVA and
Tukey’s HSD tests for multiple mean differences in Table II .

Fig. 9. Communication for MOX sensor R5 with window w = 25 using
SVR ML models with RBF Kernel.

TABLE II
ANOVA TEST RESULTS FOR SVR

p-value for ML model postponing time
MOX sensor R3 9.19 10−18 ≤ 0.05
MOX sensor R5 1.47 10−32 ≤ 0.05
p-value for absolute error
MOX sensor R3 6.00 10−23 ≤ 0.05
MOX sensor R5 1.06 10−11 ≤ 0.05

The ANOVA test produces p-values less than 5%, which
shows that there is a statistically significant difference between
the means of the waiting time and the absolute error for sensors
R3 and R5. Since the hypothesis that the policy means were
the same was rejected, we performed the Tukey’s HSD test
with results plotted in Figure 10 and Figure 11. The plots
show a significantly higher waiting time for the OP policy but
also a very high error rate compared to the base accuracy of
policy E in Figure 11. Analyzing the results it shows that the
Median-based policy performs better than both the CuSum and
the OP policy with regards to communication and error rate.

Fig. 10. Policy comparison in terms of statistical significance on the expected
ML postponing/waiting time in SVR experiment.

Fig. 11. Policy comparison in terms of statistical significance on the absolute
error rate in SVR experiment.

D. Evaluation Summary

The results of the evaluation performance are concluded in
the summarized Table III, which shows the trade-offs for each
policy and the situations in which each one is recommended.
For instance, when dealing with models which have high
quality predictions over data of a small window size w, if
we are willing to ‘sacrifice’ some of the accuracy then a
basic policy such as the median-based policy can deliver
the desired results. However, if the models are to be used
occasionally without pressing short term deadlines then the OP
policy eventually delivers the up-to-date accurate ML models
and prevent a communication overhead as required in edge
computing environments. On the contrary, if the generated ML
models are expected to produce low quality predictions, then
the CumSum policy and especially the OP policy are viable
options. They expected to reduce the communication between
the sensing/edge nodes and the edge gateways and preserve
the initial quality of the contextual data and the corresponding
derived machine learning models.

TABLE III
POLICY EVALUATION SUMMARY

Policy High quality predictions Low quality predictions
policy C high error & high communication X
policy M X high communication
policy OP high error X
policy A X high communication

V. CONCLUSIONS

This paper presents a time-optimized sequential decision
making technique for optimal ML model update at the network
edge based on the principles of the Optimal Stopping Theory.
The proposed policy was assessed using real datasets in
edge computing environments with multivariate time-series
and compared with baseline solutions and the well-known
optimal cumulative sum algorithm. The results showed that our
policy preserves the accuracy of the generated ML models and
significantly reduces the communication overhead, thus, being
appropriate in efficient knowledge sharing in edge computing.

ACKNOWLEDGEMENT

This research is funded by EU-H2020 GNFUV (#Grant
645220) and EU-H2020 MSCA INNOVATE (#Grant 745829).

REFERENCES

[1] K. Adu-Manu et al. Water quality monitoring using wireless sensor
networks: Current trends and future research directions. ACM Trans.
Sen. Netw., 13(1):4:1–4:41, Jan. 2017.

[2] M. A. Akkaş. Using wireless underground sensor networks for mine
and miner safety. Wireless Networks, 24(1):17–26, Jan 2018.

[3] C. Anagnostopoulos. Time-optimized contextual information forwarding
in mobile sensor networks. J. Parallel Distrib. Comput., 74(5):2317–
2332, May 2014.

[4] C. Anagnostopoulos. Quality-optimized predictive analytics. Applied
Intelligence, 45:1034–1046, 06 2016.

[5] C. Anagnostopoulos and K. Kolomvatsos. A delay-resilient and quality-
aware mechanism over incomplete contextual data streams. Information
Sciences, 355–356:90–109, 2016.

[6] T. S. Ferguson. Optimal stopping and applications
[http://www.math.ucla.edu/ tom/stopping].

[7] N. Harth and C. Anagnostopoulos. Quality-aware aggregation amp;amp;
predictive analytics at the edge. In 2017 IEEE International Conference
on Big Data (Big Data), pages 17–26, Dec 2017.

[8] N. Harth and C. Anagnostopoulos. Edge-centric efficient regression
analytics. In 2018 IEEE International Conference on Edge Computing
(EDGE), pages 93–100, July 2018.

[9] R. Huerta, T. Mosqueiro, J. Fonollosa, N. F. Rulkov, and I. Rodriguez-
Lujan. Online decorrelation of humidity and temperature in chemical
sensors for continuous monitoring. Chemometrics and Intelligent Lab-
oratory Systems, 157:169–176, 2016.

[10] E. Hwang and D. W. Shin. Kernel estimators of mode under $$\psi$$ψ-
weak dependence. Annals of the Institute of Statistical Mathematics,
68(2):301–327, Apr 2016.

[11] G. Lorden. Procedures for reacting to a change in distribution. The
Annals of Mathematical Statistics, 42:1897–1908, 12 1971.

[12] G. Moustakides. Optimal stopping times for detecting changes in
distributions. Annals of Statistics, 14, 12 1986.

[13] E. S. Page. Continuous inspection schemes. Biometrika, 41(1–2):100–
115, 1954.

[14] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3:1, 10 2016.

[15] A. Shiryaev. On optimum methods in quickest detection problems.
Theory of Probability & Its Applications, 8(1):22–46, 1963.

[16] T. Siang Lau and W. P. Tay. Quickest change detection under a nuisance
change. pages 6643–6647, 04 2018.

[17] Z. Tan, Y. Liu, and Z. Zhang. Performance requirements on energy
efficiency in wsns. In 2011 3rd International Conference on Computer
Research and Development, volume 3, pages 159–162, March 2011.

[18] H. Tian, M. Yu, and W. Wang. Continuum: A platform for cost-aware,
low-latency continual learning. ACM Symposium on Cloud Computing
(SoCC 18), 2018.

[19] T. Wark, W. Hu, P. Corke, J. Hodge, A. Keto, B. Mackey, G. Foley,
P. Sikka, and M. Bruenig. Springbrook: Challenges in developing a
long-term, rainforest wireless sensor network. pages 599–604, 01 2009.

[20] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang. A
survey on the edge computing forthe internet of things. IEEE Access,
6:6900–6919, Jan 2018.

