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This paper introduces a global method of the highest order finite difference scheme for the discretization of any 
order derivative. The weighting coefficients in this scheme can be deteraiined by a simple algebraic formulation or by a 
recurrence relationship. A multi-domain technique was also presented for treating more complex problems. Application 
of this scheme to solve 2D incompressible Navier-Stokes equations showed that accurate numerical results can be 
achieved using just a few grid points and requiring much less computational effort and storage.

1. INTRODUCTION

The numerical solutions of incompressible Navier- 
Stokes equations can usually be obtained by low order 
finite difference and finite element methods by using a 
large number of grid points. One disadvantage of these 
methods is that in some cases, the solutions are required 
at only a few specified points in the physical domain. But 
for a reasonable accuracy, these low order methods also 
require the use of a large number of grid points to obtain 
the solutions at those specified points. To seek a mote 
efficient method to obtain the solutions using 
considerably smaller number of grid points, global 
methods may provide a promising way. Amongst them, 
the spectral and pseudospectral methods are widely used. 
But since these methods do not discretize the derivatives 
directly, they may be inconvenient to apply, especially 
for the case with nonlinear terms and high order 
derivatives. Furthermore, since the coordinates of grid 
points in spectral methods are usually taken as the roots 
of a specific function, a transformation between physical 
space and computational space is often required. As a 
result, the global method of the highest order finite 
difference scheme is attractive in application because it 
discretizes derivatives directly and is easier to apply than 
spectral methods. The key problem in the highest order 
finite difference scheme is how to determine the 
weighting coefficients for the discretization of any order 
derivative.

Recently, Bellman et al [1] presented an attractive 
method of differential quadrature (DQ) for the efficient 
solutions of partial differential equations. DQ is a type of 
global method, which discretizes the derivative using the 
same form as the highest order finite difference scheme. 
Key to DQ is the determination of weighting coefficients 
for any order derivative discretization. Bellman et al 
suggested two ways to determine the weighting 
coefficients of the first order derivative. The first way 
solves an algebraic equation system. TTie second uses a 
simple algebraic formulation, but with the condition of 
coordinates of grid points chosen as the roots of the 
shifted Legendre polynomial. From the publication, 
applications of DQ so far ([3]-[6]) usually use Bellman’s 
first way to obtain the weighting coefficients because the 
coordinates of grid points can be chosen arbitrarily. But 
unfortunately, when the order of the system, i.e. the 
number of grid points, is large, the matrix of the system 
is ill-conditioned. Thus it is very difficult to obtain the 
weighting coefficients using this way when the number 
of grid points used is large. To overcome the drawbacks 
of DQ, the current authors [2] have developed the 
technique of generalized differential quadrature (GDQ), 
where the weighting coefficients of the first order 
derivative are determined by |i simple algebraic 
formulation without any restriction on choice of grid 
points, and the weighting coefficients of the second and 
higher order derivatives are determined by a recurrence 
relationship. It has been proved in Ref. 2 that the 
algebraic equation system for the weighting coefficients



derived from the highest order finite difference scheme is 
equivalent to that derived from GDQ. Thus the weighting 
coefficients for discretizing any order derivative in the 
highest order finite difference scheme can be given from 
the results of GDQ.

2. NUMERICAL METHOD

2.1 Highest Order Finite Difference Scheme

For brevity, the one-dimensional case is chosen for 
demonstration. Since any finite range can be transformed 
into the range of [0, 1] by a simple transformation, we 
will consider only the range [0, 1] hereafter. Supposing 
that there are N grid points in the whole domain, the 
discretization of the first order derivative of function 
f(x,t) with respect to x at xi can be given by the (N-1 ,)th 
order (i.e. the highest order) finite difference scheme as a 
linear sum of aU the functional values at N grid points, 
which has the form

N
fx(xi>t)^ Z dij-fiXj.t)

j=i (1)
for i =
where fx{xi,t) indicates the first order derivative of 
f(x,t) with respect to x at x,-, a,y are the weighting 
coefficients, a- can be determined by the Taylor series 
expansion which is usually used in the design of the low 
order finite difference schemes. Using a Taylor series 
expansion,/fxy.rj can be expressed as

f( Xj. t) = f(xitt) -f- f<1)(xi, t)-(Xj-Xi) + --- + 

f<k)(xi,t)-(xj-xi)k/k! + - +

- f(N-1)(xi.t)-(xj-x-f-1KN-l)! + RN (2)

where f^k^(xi,t) is the Mi order derivative of f(x,t) with 

respect to x at x,-, RN is the truncated error, which can be 
written as

R, = f(N%.0 <xi-x,rlN! tfjSlx.iXjI (3)

Substituting eq. (2) into eq. (1) and keeping the (N-l)th 
order accuracy leads to the following algebraic equations

N

N
^ aij ~ 0 

J=i
N
Z aij'(Xj-Xi) = l 

j=l
N uZ aij'(X: — xi)k = 0. k = 2, 3, •••, N-1 

y=i

for i = 1,2,N.
(4)

Equation set (4) is an equation system for determination 
of the weighting coefficients of the first order derivative 
in the highest order finite difference scheme. Similarly in 
the domain [xt, xN], the mth order derivative of function 
f(x,t) with respect to x at Xj can be discretized by the 
highest order finite difference scheme as

N
(5)

for i = 1,2,-",N; m = 2,3,-",N — 1, 

where f^^^(xi,t) indicates the /nth order derivative of

f(x,t) with respect to x at Xj, the weighting
coefficients. Substituting eq. (2) into eq. (5), and keeping 
the (N-m)th order accuracy, we obtain

N
ztv(r;=o
j=i

X -(Xj-x,r = m!
j=l

N t
Z J-^)-(xrxif = 0,k = 1.2,-,N-l,k^ m

(6)

Equation set (6) is an algebraic equation system for 
determining the weighting coefficients of the second and 
higher order derivatives in the highest order finite 
difference scheme, hi the following, we will show that all 
these weighting coefficients can be determined by a 
simple algebraic formulation or by a recurrence 
relationship.

2.2 Weighting Coefficients of the First Order
Derivative

For the efficient solution of, a smooth problem. 
Bellman et al [1] introduced a technique of differential 
quadrature, which uses the same form as eq. (1) to 
discretize the first order derivative. They suggested two 
methods to determine the weighting coefficients a,y. The 
first method is to let eq. (1) be exact for test functions



g(x)=x , k = 0,l,---,N-1, which leads to a set of 
algebraic equations as follows

N
Z aij-xkj = k-xf 1 

J=1
for i = l,2,---,N; k = 0,l, -,N-l.

(7)

This equation system has a unique solution because its 
matrix is of Vandermonde form. The second method is 
similar to the first one with an exception that the 
different test functions

gM =
Ln(x)

(x-xk)-L(^(xk)
,k = (8)

are chosen, where LN(x) is the Nth order Legendre

polynomial and L^(x) the first order derivative of

Ln(x). By choosing xk to be the roots of the shifted 
Legendre polynomial. Bellman et al obtained a simple 
algebraic formulation for with the condition that the 
coordinates of grid points should be chosen as the roots 
of an Nth order Legendre polynomial. Applications of 
DQ in engineering so far [3]-[6] usually use Bellman's 
first method to obtain the weighting coefficients because 
it lets the coordinates of grid points be chosen arbitrarily. 
To overcome the drawbacks of DQ, the current authors 
[2] have introduced the technique of GDQ for 
determination of weighting coefficients. In the following, 
we will firstly prove that the algebraic equation system 
(7) given from GDQ is equivalent to the equation system 
(4) given from the highest order finite difference scheme, 
then use the results of GDQ to calculate the weighting 
coefficients.

It is obvious that the first equation of equation sets 
(7) and (4) are the same, i.e.

N
=0 (9)

Furthermore, it can be shown that the second equation of 
the two systems are the same, i.e.

N N
I«y -(Xj -X-J-l = Z«y ■Xj-1 = 0 
j=l j=l

(10)

Now, assuming that the first p+1 equations of the two 
systems are the same, that is

-(xj ~xi)k = Z fly ■Xkj-k-xf 1 = 0 (11)
j=i j=J

fork = 0,l,---,p; i = 1,2,

then using the binary formulation 

(a-b)p =ap-c1p-ap~1b+-

+(-l)kckap-kbk+-+(-l)p-bp (12)

where ck is the combination of p terms taken k at a time,

and setting a = b = 1, the following expression will be 
obtained.

cj^-cl + ^+hD^ ckD+-+(-l)p+I =1 (13)

Using eq. (12), the (p+2)th equation of equation set (4) 
can be written as

'Laij (Xj -xl)p+I = Z alj-xp+1-cIp+1-x[ 
M j=l

N
lLaij-(xPj-

J=1

~c‘p-xlj-‘-xl+-+<-1>'‘ 'f) (14)
2 y J p+1

Substituting eqs.(l 1), (13) into eq. (14) leads to

Zfly -(Xj-Xi)p+1 = X a(y • xp+1 -(p + l)-xp (15) 
j=i j=i

Equation (15) demonstrates that the (p+2)th equation of 
the two systems are exactly the same. Since p is an 
arbitrary integer only if p < N-2, it has been proved that 
the two systems (4) and (7) are the same. But although 
the weighting coefficients fly can be determined by the 
equation system (4) or by the equation system (7), the 
solution of either (4) or (7) is not easy to be obtained for 
a large N. We will use the results of GDQ to calculate 
them.

It is wen known that a continuous function in the 
interval [0, 1] can be approximated by an infinite 
polynomial accurately in accordance with the 
Weierstrass polynomial approximation theorem. In 
practice, a truncated finite polynomial may be used. 
Following this approach, it is supposed that any 
smooth function in the interval [0, 1] can be 
approximated by a (N-J)lh order polynomial. And it is 
easy to show that the polynomial of degree less than or 
equal to N-1 constitutes an N-dimensional linear vector 
space VN with respect to the operation of addition and



multiplication. From the concept of linear independence, 
the bases of a linear vector space can be considered as a 
linearly independent subset which spans the entire space.
Here if rk(x), k = , which are in the space VN,
are the base polynomials, any polynomial in VN can be 
expressed uniquely as a linear combination of

rlc(^)s k = . And if all the base polynomials
satisfy a linear constrained relationship such as eq. (1), so 
does any polynomial in the space. In the linear vector 
space, there may exist several sets of base polynomials. 
Each set of base polynomials can be expressed uniquely 
by another set of base polynomials. It is found that, if the 
base polynomial rk(x) is chosen to be xk l, or taken the 
same form as eq. (8), the same results given by Bellman 
et al can be achieved.

For generality, GDQ chooses the base polynomial 
rij[x) to be the Lagrange interpolated polynomial

rk(x) = M(x)
(x-xk)M(1)(xk) 

where M(x) = (x-X2)-(x-x2)--'(x-xN)

(16)

NM<1)(xk)= n (xk-Xj)
j=lj*k

X1,X2,---,XN are the coordinates of grid points, 
and can be chosen arbitrarily.

For simplicity, we set

M(x) = N(x,xk)-(x-xk), k = l,2,---,N

with N(xi,Xj) = M^1^(xi)-5ij, where 5ij is theKronecker 

operator. Thus we have

M(m) (X) = N(m) (x.xk)-(x-xk) + m- N(m~1) (x, xk )

for m- 1,2,--,N-1; k = 1,2,---,N. (18)

where M^m^(x), N^m^(x,xk) indicate the /nth order

derivative of M(x) and N(xxk)- Substituting eq. (16) into 
eq. (1) and using eq. (18), we obtain

M(1) (Xi) r . .
a;; =-------------- jjy-—r , forj ^ i

(xi-Xj)-M{ (Xj)
(19a)

a,7 =
M(2)(X;) 

2M(1) (Xj) (19b)

for i,j = 1,2,---,N.

Equation (19) is a simple formulation for computing a - 
without any restriction on choice of grid point x,-. 
Actually, if x-t is given, it is easy to compute Mk1fxi), 
thus for i ^ j. It can be applied in a straightforward 
way for both uniform and non-uniform grids. The 
calculation of ai{ is based on the computation of the 
second order derivative M(2fxi) which is not easy to 
obtain. On the other hand, from the equation system (4), 
a,7 can be obtained from the following formulation

Nz
j=I

aij=0 (20)

2.3 Weighting CoefTicients of the Second and Higher 
Order Derivatives

For the second order derivative, we introduce the 
following linear constrained relationship

N
fxx(xi,t)= 'Lbij-f(XjIt) 

j=i
for i = 1,2,■■■.N,

(21)

where fxx (Xj,t) is the second order derivative of f(x,t) 
with respect to x at x,-, and Lagrange interpolated 
polynomials are chosen as the base polynomials. Using 
the same approach as for the first order derivative and 
formulation (18), (19), the weighting coefficients b,j are 
given by

bij — 2 ■ Ojj a,7 -
X,- -Xj

, forj ^ i
J J

u M(3)(xi)
bn =-----7-n——

(22a)

(22b)" SM(J) (Xi)

for i, J= 1,2,-■ N.

When j ^ i, bij can be calculated from a- easily. Also,
from the results of the highest order finite difference 
scheme, i.e. the equation system (6), hJ(- can be given by



N
Z b:; = 0 

j=i
u (23)

For the case of discretization of the higher order 
derivative, eq. (5) can be applied. To deduce a recurrence 
relationship for the weighting coefficients, the following 
linear constrained relationship is also applied

N

j=i

fori = m = 2,3,---,N-1.

(24)

Substituting eq. (16) into eqs. (5), (24), and using eqs. 
(18), (19), a recurrence formulation is obtained as 
follows

a:-w(-m'J)___
i] "'ll

V 2Xi -Xj

fori, j = 1,2,---,N; m = 2,3, --,N-l.

(25)

where atj is the weighting coefficients of the first order 
derivative described above. Again, from the equation
system (6), >v(f,', can be obtained by

lw(lr)=o
j=i

(26)

For the multi-dimensional case, it is shown in Ref. 
2 that if the grid is structured, then the discretization of 
Spatial derivatives in each direction can be treated using 
the same fashion as in the one-dimensional case.

2.4 Multi-Domain Technique

It is supposed that the physical domain of a 
problem is represented by Q, and the boundary by F. 
The multi-domain technique, firstly, decomposes the 
domain Q into several subdomains i = 1,2,---,K,
where K is the number of subdomains. In each 
subdomain, a local mesh is generated with stretching 
near the boundary and the local highest order finite 
difference scheme is applied, in the same fashion as the 
application of the scheme in a single domain. Each 
subdomain may have a different number of grid points. 
The solutions for interior grid points are independent for 
each subdomain. Globally, the information exchange 
between subdomains is required. This can be done across 
the interface of subdomains. Any complex geometry can 
be transfonmed into a rectangular domain or a

combination of the rectangular subdomains, by the 
technique of grid generation. Here we thus consider only 
a rectangular domain for the demonstration without 
losing generality.

For the solution at the interface, there are several 
ways available. In the present application, a patched 
interface, which keeps the function and its normal 
derivative to be continuous across the interface, was 
adopted. As shown in Fig. 1, Fy is the interface between 
the subdomains Gj and Hj.

a. 1 n.
1 1 J

Fig. 1 Topology of a Patched Interface

Keeping the function and its normal derivative to be 
continuous across the interface, we obtain

f(x‘N)=f(xi) on Tij (27)

fn(^N)=fn(4) 0nrij (28)

where f(x‘tq), f(xj) represent the values of the function 
f at the interface of the i subdomain and the j subdomain,

and fn(xlff), fn(xj) the values of the first order 
derivative of f with respect to n at the interface.

For the cases selected for study, each subdomain is 
rectangular. Then the normal direction to the interface is 
parallel to one coordinate axis in the local coordinate 
system. For simplicity, this coordinate axis can be 
assumed as the x axis, and along this direction, there are 
N grid points in the i subdomain and M grid points in the 
j subdomain. The weighting coefficients of the first order

derivative along the x direction are written as in the

i subdomain and in the j subdomain. Thus, using 
the technique described above, eq. (28) can be written as

'La‘Nk-f(x‘k)= ’Lajk-f(xi) 
k=l k=l

(29)

Using eq. (27), and setting f(x'N) = f(xj) = f, we 
obtain

N-l
^ aNk'f(xk^ ■

/ _ k=l

M
Z a

k=2 ■
■f(xk)

(30)
- aNN



where / is the value of the function f at the interface Tij’ 
which exchanges the 1 information between the
subdomains, and f(x,k),f(xl) represent the values of

the function f at xif: in the i subdomain and x{ in the j 
subdomain. Along the interface, the function is C1 
continuity, and may not satisfy the governing equations.

3. NUMERICAL RESULTS

For the application of the highest order finite 
difference scheme to simulate incompressible viscous 
flows, the vorticity-stream function formulation was 
taken as the governing equation. The boundary condition 
for vorticity at the solid boundary is given from the 
stream function formulation. And two components of 
velocity at the solid boundary give two boundary 
conditions for the stream function. One is of Dirichlet 
type, another is of Neumann type. After discretizing the 
derivative in the Neumann type boundary condition by 
the highest order finite difference scheme, these two 
boundary conditions can be combined to give two-layer 
boundary conditions for the stream function. After aU the 
spatial derivatives are discretized by the highest order 
finite difference scheme, the resultant set of ordinary 
differential equations for vorticity are then solved by the 
4th order Runge-Kutta scheme, and the set of algebraic 
equations for the stream function are solved by LU 
decomposition. Two test examples are demonstrated as 
follows.

3.1 The Driven Cavity Flow

The driven cavity flow problem is a standard test 
case, which is often chosen to validate new numerical 
techniques. There are a variety of numerical results 
available for comparison. For example, the velocity 
profile through the geometrical centre of the cavity are 
presented by Ghia et al [7]. For present numerical 
simulation by the highest order finite difference scheme, 
the solutions were obtained in the Reynolds number 
range from 100 to 1000. The mesh sizes used are 13 x 13, 
17x15,21x17 and 23x21 for Reynolds numbers of 
100, 200, 400, 1000. The initial values for aU the 
variables in the interior points are taken to be zero.

For direct comparison of the highest order finite 
difference scheme with the conventional low order finite 
difference scheme, numerical results using a second order 
time-split MacCormack finite difference scheme for the 
vorticity equation and a preconditioning technique of the 
strongly implicit procedure (SIP) for the stream function, 
were also obtained using a uniform grid of mesh size of 
51x51. By numerical experiment, the allowable

GHIA ET AL (GRID 129X129)

° RE = too
• RE = 400
3 RE = 1000
-------- PRESENT

(GRID: 13X13,21X17.23X21)

-1.0 -0. a -0.6

U

(a) Results from the Highest Order FD Scheme

GHIA ETAL (GRID 129X129)1

G RE = too
♦ RE = 400
Q RE = 1000
-------- PRESENT

0. 1 .
FO 51X51

-1.0 -0.8 -0.6 -0.4 -0.2

u

(b) Results from the Second Order FD Scheme

Fig.2 Horizontal Velocity Profile through the 
Geometrical Center of the Cavity

maximum time step size was used. Fig. 2 displays the 
computed horizontal velocity profiles along the vertical 
line through the geometric tenter of the cavity for 
Reynolds numbers of 100, 400, 1000. Fig. 3 shows the 
vertical velocity profiles along the horizontal line 
through the geometric center of cavity. The numerical 
results given by Ghia et al [7] were also included in the 
figures for comparison. These results are based on a fine 
mesh of 129 X129. It is clear from Fig. 2 and 3 that the
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Table I Comparison of CPU Time (seconds) for the 
Driven Cavity Flow Simulation

(a) Results from the Highest Order FD Scheme

GHIA ET AL (GRID 129X129) 
o RE = 100
» RE = 400
0 RE = 1000
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FO SIX51

0.0 -
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(b) Results from the Second Order FD Scheme

Fig3 Vertical Vel(Kity Profile through the 
Geometrical Center of the Cavity

highest order finite difference results are more accurate 
than the second order finite difference results even 
though considerably fewer grid points were used in the 
highest order scheme. Furthermore, the CPU time 
required by the highest order finite difference results is 
much less than that by the second order finite difference 
results. Table I shows the CPU time (seconds) required 
for the driven cavity flow simulation by both the highest 
order and the second order finite difference schemes on 
the IBM 3090 vector machine.

Re 100 200 400 1000
Highest Order FD 4.27 6.69 16.99 33.79
2nd order FD 442.73 536.98 601.50 732.90

3.2 The Flow past a Square Step

Now considered is the flow in a channel containing 
a square step in which the step is located fairly close to 
the inlet The flow past a square step with a "flat" inlet 
velocity distribution rather than a fully developed 
parabolic profile, is a more challenging problem for 
numerical simulation since in this case, not only the two 
shaip comers of the step produce vorticity singularities, 
but also the boundary condition at the inlet introduces 
other vorticity singularities. Some researchers have 
reported difficulty in numerical simulation of this 
problem. For example, Hughes et al [8] claimed that the 
conventional Galerkin finite element method produced 
the spurious wiggles in the velocity vectors upstream of 
the step, and suggested the use of an upwind scheme 
which then generated the solution without wiggles. 
Leone and Gresho [9] studied this problem exhaustively 
using a velocity-pressure formulation and the 
conventional Galerkin method. They claimed that, when 
a coarse mesh is used the inlet wiggles may be caused 
more by the presence of the step than the inlet leading 
edge singularity, and when the finer mesh is used, most 
of the inlet wiggles disappear, only small deviations 
appearing near the top singularity of the inlet leading 
edge. They thus suggested that this difficult problem 
should be solved on a fine grid.

Following the work of Hughes et al, it is attempted 
to simulate the developing flow in a one unit high 
charmel containing a step located 1.2 units from the inlet 
which is 0.4 units high and 0.4 units across. The problem 
definition and the computational domain are shown in 
Fig. 4, where the whole computational domain is 
decomposed into 5 subdomains with 4 interfaces. The 
inlet boundary condition is a "fiat" velocity profile, u=l 
and v=0, except that the no-slip condition, u=v=0 occurs 
on the top and bottom surfaces. For the present numerical 
simulation, the outlet location is chosen as 8 units from 
the inlet. Numerical experiment showed that the accurate 
numerical results can be obtained bousing the mesh sizes 
of 15 X13 for domain I and II, 7 x 13 for domain III, and 
21x13 for domain IV and V. This configuration is 
shown in Fig. 5. The present results agree well with 
those given by Leone and Gresho [9]. Fig. 6 shows the 
streamlines for Reynolds numbers of 50, 100, 150, 200,



250, where the values of these streamlines are 1.0, 0.9, 
0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, -0.1, -0.01, - 
0.001 and the window for plotting these streamlines in 
the X direction is from x=0.0 to x=6.0. Qearly, it is 
shown that no wiggles appear in the flow field except for 
very small wiggles caused by the top singularity of the 
chaimel leading edge, which appear near the top comer of 
the inlet (streamlines have a small contraction towards 
mid-channel). This agrees well with the analysis of 
Leone et al and demonstrates that the mesh sizes used are 
fine enough to get accurate results. The lengths of the 
upstream and downstream separation zone for the various 
Reynolds numbers are shown in Table II, where

= xiin/h,x.=x.Jh, Xup'Xdo represent the'up "up ' J~do '
lengths of the upstream and downstream separation 
zortes, and h is the height of the step. For each Reynolds 
number, numerical results were obtained within 4 
minutes of CPU time on the IBM 3090 vector machine.

n m1 IV

I 1 V

(c) Re = 150

(d) Re = 200

(e) Re = 250

Fig.4 Problem Definition and Computational Domain for a 
Square step Problem

Fig. 5 Meshes for Flow past a Square Step

Fig. 6 Streamlines past a Square Step

Table II Length of the Separation Zone for a 
Square Step Problem

Re 25 50 85 100 150 200 250

xup 0.1749 0.1749 0.1749 0.1757 03846 03771 03846

xdo 15211 2,6701 3.8876 43501 5.7549 7.0636 7.9824
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