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1. Introduction
The existence of strong shock waves, thin shear layers and their interaction in hyper­
sonic viscous flows requires the use of a high resolution scheme for an accurate 
numerical simulation. Through an extensive study (Qin et al. 1991) of different flux 
formulae on their capabilities of capturing both shock waves and shear layers, the 
Osher flux difference splitting scheme has been found to be satisfactory. However, 
high resolution schemes usually involve more complicated formulation and thus longer 
computation time per iteration as compared to the simpler central differencing scheme. 
Therefore, the acceleration of the convergence for high resolution schemes becomes an 

increasingly important issue.
In this paper, we will present a new iterative approach for fast steady state 

solution of Navier-Stokes equations. The approach is illustrated by its application to 
hypersonic viscous flows over a cone at high angle of attack in which the Osher flux 
difference splitting high resolution scheme is used for capturing both shock waves and 

shear layers in the flowfield.

2. The high resolution discretisation
Corresponding to the test case presented in Section 4, the governing equations are the 
locally conical Navier-Stokes equations, which can be written as

^ + ^+H = 0 

377 ac
(2.1)

where H is the source term resulting from the locally conical approximation. In the cell 
centred finite difference or finite volume formulation, the state variables are evaluated at 
cell centres and represent cell-averaged values. The fluxes are evaluated at cell 
interfaces. The spatial derivatives are then represented as a flux balance across a cell. 
The convective interface flux is determined from a local one-dimensional model of 
wave interactions normal to the cell interfaces. With the flux difference splitting (FDS) 
model developed by Osher and Chakravarthy (1983), the convective interface flux can 

be written as



/•Qr

Fi = ^[Fi(QL) + Fi(QR) aFi

Ql
dQ

dQ] (2.2)

where the integral in the state variable domain is carried out along a path piecewise 

parallel to the eigenvectors of aFj/aQ.
The state-variable interpolations determine the resulting accuracy of the scheme. 

A K-parameter family of higher-order schemes can be written as

(IJL+1. k = qj- k + {(^)[(1"KS)^- + (l+Ks)A+]q}j, k
(2.3)

qj+l k = qJ+1- k‘ {(j)[(1+ks)a- + (l-Ks)A+]q}j+i, k 
J 2’

where A+ and A- denote forward and backward difference operators, respectively, in 

the Tj direction. The parameter K determines the spatial accuracy of the difference 

approximation. We choose K = 1/3 for a third order upwind-biased scheme. The 

parameter s serves to limit higher-order terms in the interpolation in order to avoid 
oscillations at discontinuities such as shock waves in the solutions. The limiting is 
implemented by locally modifying the difference values in the interpolation to ensure 

monotone interpolation as

s = 2A+qA.q + e 

(A+q)2 + (A.q)2 + E
(2.4)

where e is a small number preventing division by zero in regions of null gradients.
The diffusive fluxes are calculated at cell interfaces using a central differencing 

scheme.
After the above discretisation and proper treatment at the domain boundaries, a 

large sparse nonlinear system results, which we denote as

R(Q)=0 (2.5)

3. The SFDN-a-GMRES and SQN-a-GMRES methods
3.1 Discussion
For steady state problems, a time dependent approach is often employed, which can be 

written as

— -t- R(Q) = 0 
dt

(3.1)



Using a fully implicit method, e.g. the backward Euler implicit method,

AQn = -R(Qn)ii+'3R
At \dQ} (3.2)

unconditional stability can be achieved and as the time step approaches infinity the 
method approaches the Newton method

/3R'n
— AQn = -R(Qn) 
dQl (3.3)

for the solution of the nonlinear system (2.5). In practical applications to CFD 

problems, however, it is very difficult (1) to get the analytical Jacobian of the nonlinear 

system for a high order high resolution scheme for viscous flows (it is almost 
impossible if turbulence or chemical reactions are involved) and (2) to solve the 

resulting large sparse nonsymmetric linear system efficiently. Previous researchers in 

CFD have tried to avoid these two difficulties in the following ways respectively: (1) to 

construct simplified implicit operators, e.g. to use only first order inviscid implicit 
operators; (2) to use approximate factorization for the multidimensional implicit 
operator so that the resulting linear systems can be solved easily. Both of these 

naturally negate the advantages of the fully implicit scheme. Therefore the time step size 
is still limited due to the inconsistency of the implicit operator and the right hand side 

(the nonlinear system) and the factorization error which increases with the time step. 
Simplified implicit methods will thus obviously not approach a Newton iterative 

method as the time step approaches infinity.

5.2 The SFDN and SQN nonlinear iterative methods
Instead of avoiding the difficulties for a fully implicit method, Qin and Richards (1988, 
1990) tried to tackle the problem directly in order to achieve fast convergence for the 

steady state solution. The discretisation of the Navier-Stokes equations results in a large 

sparse nonlinear system to be solved, which can be considered as a fully implicit 
scheme with an infinite time step. Viewing the Navier-Stokes solution as the solution of 

a large sparse nonlinear system, we derived a fast convergence algorithm which is 
general and robust.

The algorithm is based on the Newton iterative method. Due to the complexity of 

the nonlinear system, an analytical expression for the Jacobian matrix is usually not 
obtainable. Therefore, we took the following two approaches: (1) the sparse finite 

difference Newton method (SFDN) (Curtis et al. 1974); and (2) the sparse quasi- 

Newton method (SQN) (Schuben 1970).
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The SFDN method calculates numerically the Jacobian of the nonlinear system. 
Making use of its structured sparsity, Qin and Richards (1988) devised a practical way 

of calculating the Jacobian using finite differences. If we take the present 2-D as an 

example, the above higher order spatial discretisation will result in a 13-point stencil 
(Fig.l). In the calculation of the Jacobian, we can minimize the number of calculations 

of R(Q) in the following way. Because the discretisation has a 13-point stencil, we can 

perturb one of the five state variables by a local increment h1ij at every 5 points in both 

coordinate directions in one evaluation of R(Q), i.e. we calculate

R(Q + Z hljelj)’
i=m,I,5
j=n,J,5

1=1,5; m=l,5; n=l,5 (3.4)

where e'jj is the unit vector at point (i,j) for the 1th component of the state. Therefore 

we can get the finite difference approximation of the Jacobian column by column 

through a total number of 125 evaluations of R(Q). If the increments are properly 

chosen according to machine zero and the rounding errors in calculating R(Q), the 

SFDN method can still give a quadratic convergence rate as has been shown by Dennis 

and Schnabel (1983).
The SQN method updates an approximation to the Jacobian from the solution of 

the linear system and the value of R(Q) available. It is an extension of the quasi- 

Newton method to nonlinear systems with sparse Jacobians. To keep the sparsity 

structure of the Jacobian, only those non-zero elements are updated through a 

projection operator Pj The updating procedure can be written as

A nAQn = -R(Qn)
Yn = R(Qn+1)-R(Qn)

AAn = PiD+(Yn - A nAQn)(AQn)T] 

An+1 = An -I- AAn

(3.5)

where D+ is a diagonal matrix which is determined from the linear solution AQn and the 

sparsity structure of the Jacobian matrix. One can see that there is no extra evaluation of 

R(Q) involved in updating the approximation. It has been proved that the SQN method 

has a superlinear convergence rate (Dennis and Schnabel 1983). Qin and Richards 

(1988, 1990) formulated its application to nonlinear systems with sparse block 

structured Jacobian matrices arising from Euler and Navier-Stokes solutions.
It is obvious that the SFDN method requires much more computing time in 

generating the Jacobian approximation as compared to the SQN method in which the 

computing time for generating the Jacobian approximation is negligible. On the other



hand, the difference between quadratic convergence and superlinear convergence can be 

significant in practical applications because a large amount of computing time has to be 

spent in solving the large sparse nonsymmetric linear system at each iteration.

3.3 The a-GMRES linear solver
After the linearization of the nonlinear system, a large sparse nonsymmetric linear 

system results, either (3.3) for the SFDN method or (3.5) for the SQN method, which 

we denote as

Ax=b (3.6)

For a 2-D case, A is a block 13-point diagonal structured sparse matrix as shown in 

Fig.2.

Xu et al. (1991) proposed a new efficient multilevel iterative method, the a-GMRES 
(Generalized Minimal RESidual) method for the solution of the sparse nonsymmetric 
linear system. The matrix is first preconditioned by the inverse of its block diagonal 
matrix and a parameter a (0<a<l) is added to the diagonal to further improve the 

matrix property for a successful application of GMRES method. Thus a multi-level 
iterative solver results, which are written as

(a/ + D'^A) xk-i-1 =£)‘lb + axk (3.7)

where D is the block diagonal matrix of A. We have proved the existence of such an a 

(0<a<l) that the above iterative procedure will converge (Xu et al. 1991). In practical 
application, the parameter a is determined by a balanced convergence of the GMRES 

inner loop and the outer loop, which is around 0.1 for the test cases.
Combining the a-GMRES linear solver with the nonlinear SQN and SFDN 

methods, we have thus devised fast convergent solvers for Navier-Stokes solutions, 
which we have named the SFDN-a-GMRES and SQN-a-GMRES methods 

respectively.

4. Numerical examples
The test case chosen is a hypersonic viscous flow around a sharp cone at high angle of 
attack. The flow is modelled by the Locally Conical Navier-Stokes equations, which is 
discretised using the Osher flux difference splitting scheme for the inviscid fluxes and a 
central differencing scheme for the viscous terms. The resulting nonlinear system is 
then solved by the SQN-a-GMRES method or the SFDN-a-GMRES method. In the 
present tests, we choose a=0.1 and the Krylov subspace dimension in the GMRES 
method as 30 and 50 for 33x33 or 66x66 girds respectively. To produce a starting 

solution suitable for an effective application, we use a time dependent approach for the



initial phase, in which a Runge-Kutta method with local time stepping is employed. The 
computation was carried out on the IBM RISC System/6000 320H workstation.

Fig.3 shows the flow conditions and the crosssectional view of the solved 
flowfield, in which the strong bow shock wave on the windward side and the separated 
shear layer on the leeward side can clearly been seen.

Fig.4 plots the convergence against computing time for calculations using the 
SQN-a-GMRES method or the SFDN-a-GMRES method on a 33x33 grid. As can be 

seen, the convergence for the explicit scheme is typically slow even though local time 
stepping has already been employed for efficiency. After switching to the SFDN-a- 
GMRES method or the SQN-a-GMRES method, the solutions converges quadratically 

or superlinearly respectively and the residuals reduce to machine zero in 4 or 8 
iterations. For this particular case, the two methods produce similar efficiency but the 
SQN-a-GMRES method is expected to be more promising for problems involving 
more complicated physics when the expense in evaluating R(Q) is much higher.

In Fig. 5, we show a test on a 66x66 grid using different convergence criteria for 
the iterative linear solver. We do not need to solve the linear systems (3.7) using the 
GMRES method or (3.6) using the a-GMRES method to a high accuracy as long as a 

reasonable convergence in the nonlinear iteration can be achieved. In Fig. 5, el and e2 
represent the convergence criteria for the solution of (3.7) and (3.6) respectively. As 
can be seen, a larger convergence criterion can save computing time in the linear solver 
and it will also degrade the convergence rate of the outer nonlinear iteration. An 
optimum choice can be made through numerical experiments.

5. Conclusions
The SFDN-a-GMRES and SQN-a-GMRES methods presented in this paper have 

provided a new approach for fast steady state Navier-Stokes solutions, when 
complexity from using high resolution schemes produces slow convergence using 
conventional time-dependent approach and when the analytical Jacobian is difficult to 
obtain. In comparison, both of the methods produce similar improvement over the 
corresponding explicit method in computing time for the test case. They are to be 
investigated further in parallel when applied to more complicated cases including 
turbulent modelling and/or real gas effects.
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Fig. 1: Discretisation stencil using the high resolution scheme



Fig. 2; Sparsity pattern of the Jacobian matrix
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Fig. 3: Crossflow temperature contours of the test case
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Fig. 4: Convergence of the SFDN-a-GMRES and SQN-a-GMRES methods 

as compared with the Runge-Kutta explicit method (grid 33x33)
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Fig.5 Parameter tests for the SFDN—a-GMRES method (grid 66x66).
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