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time
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mth order derivative of function M(x)

weighting coefficients of the first order derivative

weighting coefficients of the second order derivative

weighting coefficients of the nth order derivative in the x direction

weighting coefficients of the mth order derivative in the y direction
an N-dimensional linear polynomial vector space, V(x)

a M-dimensional linear polynomial vector space, V,(y)

a NxM dimensional linear polynomial vector space, Vy,(X,y)
base polynomials in V

base polynomials in V,,

base polynomials in V

the Kronecker operator

weighting coefficients of the first order derivative in the x direction
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the first order derivative of function f with respect to z

the approximation error of function f
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A a matrix from the GDQ spatial discretization

A an eigenvalue of the matrix A
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ABSTRACT

The technique of differential quadrature (DQ) for the solution of a partial differential equation is
extended and generalized in this paper. The general formulation for determining the weighting
coefficients of the first order derivative is obtained. A recurrence relationship for determining
the weighting coefficients of the second and higher order partial derivatives is also obtained,
and it is shown that generalized differential quadrature (GDQ) can be considered as a finite
difference scheme of the highest order. Three typical formulas of weighting coefficients for the
first order derivative are also given in the paper. The error estimations for the function
and derivative approximation, and the eigenvalue structures of some basic GDQ spatial
discretization matrices have been studied. The application of GDQ to model problems showed

that accurate results can be obtained using a small number of grid points.

1. INTRODUCTION

The numerical techniques for the solution of a partial differential equation can be classified
into two categories. One is based on the direct discretization of the derivatives and integrals.
Another is based on the variational principles or the principles of weighted residuals. The
conventional finite difference methods lie in the first category while the finite element and the
spectral methods are in the second. Usually, low order methods such as finite
differences and finite elements can provide accurate results by using a large number of grid
points. However, in some practical applications the numerical solution of a governing
equation is required at only a few specified points in a domain. But for acceptable accuracy,
conventional finite difference and finite element methods also require the use of a large
number of grid points to obtain the solution at those specified points. In seeking a more
efficient method using just a few grid points to get an accurate result, Bellman et al [1]
introduced a method of differential quadrature, where a partial derivative of a function with
respect to a coordinate direction is expressed as a linear weighted sum of all the functional
variables at all mesh points along that direction. It is clear that this method is based on the
direct discretization of the derivative, and therefore, is in the first category indicated above.
Preliminary computational results ([1]-[6]) showed that differential quadrature has potential

as an attractive approximation technique. The key technique to differential quadrature is the
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means to determine the weighting coefficients for the discretization of any order partial
derivative. Bellman et al suggested two methods to determine the weighting coefficients of the
first order derivative. One method solves a set of algebraic equations which is obtained
by satisfying the linear constrained relation for test functions of xk, k = 0, 1, -, N-1,
where N is the total number of grid points in a domain. This equation system has a unique
solution because the matrix elements are composed of a Vandermonde matrix. Unfortunately,
when N is large the inversion of this matrix becomes difficult. This is probably one of the
reasons that applications of this scheme so far only use a number of grid points less than or
equal to 13. The second method computes the weighting coefficients by an algebraic
formulation with coordinates of grid points chosen as the roots of an Nth order shifted
Legendre polynomial. This means that if N is specified, the distributions of grid
points are the same for different physical problems. This can provide a major drawback
and restrict the application of differential quadrature. In order to overcome this drawback,
the generalized differential quadrature technique was developed. The development is
discussed in this paper. It is based on the analysis of high order polynomial approximation in

the overall domain.
2. DIFFERENTIAL QUADRATURE

For the one dimensional unsteady problem, Bellman et al [1] assume a function u(x,t) to be
sufficiently smooth to allow the following linear constrained relation to be satisfied
N
ux(x:"t) = Zaij'u(xjat)
Jj=1 (2. 1)
fori=1,2, -, N,
where u,(x;,t) indicates the first order derivative of u(x,t) with respect to x at x; . Substituting
(2.1) into a time-dependent partial differential equation yields a set of ordinary differential
equations which can be integrated by such well-developed schemes as Runge-Kutta multi-step

integration.

The key technique to this procedure is how to determine the weighting coefficients a;;. Bellman

et al suggested two ways to carry this out. The first way is to let (2.1) be exact for test functions
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g(x)=xk, k=0, 1, -, N-1, which leads to a set of linear algebraic equations

N
Za,-,--xf =k')€.{c_l
j=1
fori=l1,2, -, N; k=0,1, -, N-1.

This equation system has a unique solution since its matrix is of Vandermonde form.

(2.2)

Unfortunately, when N is large, this matrix is ill-conditioned and its inversion is difficult.

Another way is similar to the first one with an exception that the different test functions
Ly(x
i aes Lty k=12 N
(x=x:)" Ly (x:) (2.3)
are chosen, where Ly(x) is the Nth order Legendre polynomial and Ly({)(x) the first order

derivative of Ly(x). By choosing x, to be the roots of the shifted Legendre polynomial, Bellman

et al obtained a simple algebraic formulation for a;;

LS)(xx') : 2
a; = 2 sk o E
(xr—x) Ly (o) (2.42)
1-2 Xi
ai = '2(—_1)
Xi*\Xi (2.4b)

Formulation (2.4) is only valid for coordinates of grid points chosen as the roots of an Nth

order Legendre polynomial.
3. GENERALIZED DIFFERENTIAL QUADRATURE

In order to overcome the drawback described above for differential quadrature and to
obtain a similar simple formulation for a;;, a method of generalized differential quadrature has

been introduced, based on the analysis of the polynomial linear vector space.
3.1 High Order Polynomial Approximation in the Overall Domain

Since any finite range can be transformed into the range of [0, 1] by a simple transformation,
we will consider only the range [0, 1] hereafter. It is well known that a continuous function

f(x) in the interval [0, 1] can be approximated by an infinite polynomial accurately in
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accordance with the Weierstrass polynomial approximation theorem. In practice, a truncated
finite polynomial may be used. Some methods, an example being the spectral method, have
successfully applied the concept of high order polynomial approximation to the solution of
partial differential equations. Following this approach, it is supposed that any smooth

function in the interval [0, 1] can be approximated by a (N-1)th order polynomial.

It is easy to show that the polynomial of degree less than or equal to N-1 constitutes an N-
dimensional linear vector space Vy with respect to the operation of addition and multiplication.
From the concept of linear independence, the bases of a linear vector space can be
considered as a linearly independent subset which spans the entire space. Here if ry (x), k=1,
2, ---, N, which are in the space VY, are the base polynomials, any polynomial in Vi can be

expressed as a linear combination of r (x), k=1, 2, -+, N, i.e

f(x) =Py f =2 e rlx)

= k=1 (3:1)
where Py is a projection operator of smooth functions onto Vy , ¢y is a coefficient, and f(x),
r,(x) are in space Vy. The spectral method uses a high order polynomial similar to (3.1) to
approximate the function f(x) in the overall domain. But the procedures for the solution of a
partial differential equation are quite different. The spectral method, which is based on the
principle of the weighted residuals, involves the determination of the coefficients of the base
polynomials, namely c,, while generalized differential quadrature (to be described), which uses
this formulation only to determine the weighting coefficients for discretization of any order
(less than N) partial derivative, involves the determination of the functional values at grid

points.
3.2 Weighting Coefficients of the First Order Derivative

Equation (2.1) is a linear constrained relationship. If the base polynomials ry (x), k=1, 2, ---, N,
satisfy (2.1), so does polynomial f(x). And if the base polynomial r, (x) is chosen to be x¥-1, the

same equation system as (2.2), given by Bellman's first method, can be obtained. For

generality, here the base polynomial 1y (x) is chosen to be the Lagrange interpolation polynomial
M(x)
(x—x)- M (xe) (3.2)

ri(x)=



where M(x) = (x-x7)-(x-x;)+-(x-Xp)

N
M(l) (Xk) = H (Xk = Xj)
j=1,j#k

X1, X5, **, Xy are the coordinates of grid points, and can be chosen arbitrarily.
For simplicity, we set

M®&) = N(x, xp ) (x-%x) , k=1,2, -, N
with N(x;, x;) = M()(x;)-8;;, where &;; is the Kronecker operator.
Thus we have

M™(x)= N (x,x0) - (x = x )+ m- N (x, x) (3.3)
form=1,2,,N-1; k=1,2, -, N

where M(M)(x), N(m)(x, x,) indicate the mth order derivative of M(x) and N(x, x;). Substituting

(3.2) into (2.1) and using (3.3), we obtain

M (x) : .
= = g fory ki
(x,»—x,-)‘M (Xj) (3.4a)
e M(Z)(x,-)
D B () (3.4b)

for i, j =1, 2, -, N.
Equation (3.4) is a simple formulation for computing a;; without any restriction on choice of
grid point x;. Actually, if x; is given, it is easy to compute M()(x;), thus a;; for i 5 j. The
calculation of a;; is based on the computation of the second order derivative M(2)(x;) which is

not easy to be obtained. Next, it will be shown that a;; can be calculated from a;; (i 5 j).

According to the theory of a linear vector space, one set of base polynomials can be expressed
uniquely by another set of base polynomials. Thus if one set of base polynomials satisfies a
linear constrained relationship, say (2.1), so does another set of base polynomials. And since
the weighting coefficients are only dependent on the coordinates of grid points if the number of
grid points is given, the equation system for determination of a;; derived from one set of base

polynomials should be equivalent to that derived from other sets of base polynomials. Thus a;;

satisfies the following equation which is obtained by the base polynomial x¥ when k=0

a; = 0
1 (3.5

M=
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where a;; can be easily determined from a;; (i  j). Equation (3.4) is a general form for

calculating a;;. It follows that if the coordinates of grid points are chosen as the roots of a shifted
Legendre polynomial, (3.4) is exactly the same as that given by Bellman's second method.

3.3 Weighting Coefficients of the Second and Higher Order Derivatives

For discretization of the second order derivative, we introduce the following linear constrained

relation

N
U (xi58) = X by - U(x)51)
j=1

fori=1,2,,N

where u,,(x, t) is the second order derivative of u(x, t) with respect to x, and Lagrange

(3.6)

interpolated polynomials are chosen as the base polynomials (see 3.2). Using the same

approach as for the first order derivative and formulation (3.4), the weighting coefficients b;;

are given by
bijzzaij'(aii_ ) 5 fOrj i)
< 5 0 (3.72)
s M(S)(-xi)
MO (x) o

fori,j=1,2, -, N.
When j 5 i, b;; can be calculated from a;; easily. In a similar analysis to the case of the first
order derivative, the equation system for b;; derived from the above Lagrange interpolated
polynomials is equivalent to that derived from the base polynomials xk , k = 0, 1, -+, N-1.
Thus b;; should also satisfy the following formulation derived from the base polynomial xk

when k=0

N

2b;=0

i (3.8)
from which b;; can be easily determined. :

Furthermore, for the case of discretization of the higher order derivative, the linear constrained

relations are applied as follows



N
uim—l)(x” t) = 2 wij’"“) . u(xjyt)
(3.9)

N
ui’n)(xi’t) = ZWE-;")'u(xj,t)
= (3.10)
fori=1,2, -, N
where u, (M-1)(x;,t), u,(M)(x;,t) indicate the (m-1)th and mth order derivative of u(x,t) with
respect to x at x;, wy;(m D, w;(m are the weighting coefficients related to u,(™-(x;,t) and

u, M(x;,t). Substituting (3.2) into (3.9), (3.10) and using (3.3), (3.4), a recurrence formulation

is obtained as follows
e
Wi sy WD S L 4
N (3.11)
form=2,3,-,N-1; ,j=1,2,-, N

where a;; are the weighting coefficients of the first order derivative described above. Again, in
terms of the analysis of the N-dimensional linear vector space, the equation system for w; j(m)
derived from Lagrange interpolated polynomials should be equivalent to that derived from the

base polynomials xk, k=0, 1, -, N-1. Thus w;;™ should satisfy the following equation

obtained from the base polynomial xk when k=0

N

2w; =0
i1 (3.12)
From this formulation, w;(™ can be easily calculated from wy;(™ (j 5 i).

3.4 Extension to the Multi-Dimensional Case

For the two-dimensional approximation of a function f(x,y) in the domain x € [0,1], y € [0,1],
it is supposed that the value of f(x,b), where b is a constant, b € [0, 1], can be approximated

by an (N-1)th order polynomial Py(x) which constitutes an N-dimensional linear vector space
VN with N base polynomials r;(x), i=1, 2, -, N, and the value of f(a,y), where a is a

constant, a € [0, 1], can be approximated by a (M-I)th order polynomial Py,(y) which

constitutes a M-dimensional linear vector space V), with M base polynomials S ), j=1, 2, -,

M. The value of function f(x,y) can be approximated by the polynomial Qu,\(X,y) with the

29:



form

N M :
G (=2t "
il j=1 (3.13)
where ¢ ; is a coefficient
It is clear that Qp,\(X,y) constitutes a NxM dimensional linear polynomial vector space Vi,

with respect to the operation of addition and scalar multiplication. It will now be shown that
<I)ij(x,y) = ri(x)-sj(y) constitutes the base polynomials in the vector space V- Since r;(x),

s{(y) are the base polynomials of Viy and V), they must be linearly independent, that is

Zc,-'r.-(x)=0 Onlyl:fc'_zo, i=1 2, -+ N
(3.14)

Yd, s;(»)=0 onlyif d,=0, j= 1,2, -, M

i=1 (3:15)
Now we see that if

BBE () =D bl B ermiN R =0

i=1 j=1 =1 j=1

From (3.14) the following equation is obtained

M
ey 5;,(y)=0
Jj=1
Finally from (3.15) we obtain ¢;; = 0. Then, ®j;(x,y) constitutes the base polynomials in

VNxM-

Now it is assumed that the following constrained relations are satisfied for function u(x,y,t) and

its first order spatial derivatives

N
ux(.x{ayj7t) = Za; u(xk 7yj9t)
< (3.16)

M
u,(xf,yj,t) = Zaik'u(xiayk9t)
k=1 .17
fori=1,2,-,N; j=12,-,M s
where a%;; , a¥;, are the weighting coefficients related to u, (x;,y;,t) and uy(x;, y;,t) respectively.
If all the base polynomials CDij(x,y) satisfy equations (3.16), (3.17), then so does any
polynomial in V. Substituting ®;;(x, y) into (3.16), (3.17) leads to

ia& ri(x) =rP (%)
k=1 (3.18)
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M

Xays;(y)=s7(y)

k=1 (3.19)

where rj“)(xi) represents the first order derivative of rj(x) at x; and sj“)(yi) represents the first
order derivative of s;(y) at y;. From (3.18), (3.19), it is obvious that aX;, or ¥ is only related

to r;(x) or s;(y). Hence the formulation of the one dimensional case can be directly extended to

the two dimensional case, that is

M (x; : :
a, = ( ()D o) i
(xi—x;)M”(x;) (3.20a)
a;=- 2aj
el (3.20b)
fori,j=1,2,-, N
PP(y. : 3
a= O '()1) . Jor] #°1
(V=) PO (3.21a)
M
a,=- 2a,
e (3.21b)

fori,j=1,2,-,M

where

M (x)= ﬁ(x,- %)

Jj=1,j#i

P(y)= 11 (3,-)

j=1,j#i

Similarly, for the second or higher order derivative the recurrence relationship of the weighting

coefficients can be obtained as follows

(n-1)

w(") = (ax] f;n D— ;) y j ¢ i
X=Xy (3.222)
N
WE,'") = ngjll)
=1, % (3.22b)

forn=2,3,-,N-1; i,j=1,2,,N

—(m) =m- (ay —<m 1 _”_._) : ] z i .
=y, (3.23a)
_(m) Sk z _f,m)
Jolipt (3.23b)
form=2,3,-,M-1; i,j=1,2,--M

1=



where w;;(") are the weighting coefficients of the nth order derivative of u(x,y,t) with respect to
—_—)

X at x;, yj, namely u,(™(x;,y;,t), and W+ the weighting coefficients of the mth order derivative

of u(x,y.t) with respect to y at x;, y;, namely u, ™(x;,y;,t). They satisfy

N
U (X, Y,58) = 2wy u(xiY;»t)
k. (3.24)

M
u;”l)(xi’yj,t) - 2W§:)'u(x,,yk,t)
k=1

fori=1,2,-,N; j=1,2,-,M;n=1,2,-,N-I;m=1,2, .-, M-1.

(3.25)

Similar formulations can be obtained for the three dimensional case.

If the functional values at all grid points are obtained, it is easy to determine the functional

values in the overall domain in terms of the polynomial approximation, i.e.

u(x9yj9t)=2u(xi9yjat)'r.‘(x) ’ j= 1; 2, ,M
i=1 (3.263)

I
-
e
2

UGer yo1) = Su(xny, 1) 5,00) 5
/=t (3.26b)

N M
WX, yity= 2 Y ulx,y, 1) r(x) 5;(y)

Lt (3.26¢)
where r;(x), s;(y) are the Lagrange interpolated polynomials along the x and y direction

respectively.
3.5 Comparison with the Highest Order Finite Difference Scheme

For the one dimensional case, supposing the whole domain has N grid points, X;, X5, ***, XN
The (N-1 )th order finite difference scheme for the first order derivative can be written as a linear
sum of the functional values at N grid points, which has the same form as (2.1) where the
weighting coefficients are determined by the Taylor series expansion which is usually used in
the design of the low order finite difference schemes. Using a Taylor series expansion, u(x;,t)

can be expressed as

U(x;,t) = u(x )+ u® (xont) - (= x) + -+ u® (s 1) - (x=x)" [ k!

+otu™ 0 () (x=x)" /(N =1+ Ry (3.27)
where u®(x;,t) is the kth order derivative of u with respect to x at x;, Ry is the truncated error,
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and can be written as

Ro=u(E,0)-Grm) INYV -, . & ebx,x] (3.28)
Substituting (3.27) into (2.1) yields

ux(xi’t) = iaij'{u(Xiyt)+u(l)(xut)'(-xj_xi)'l""'l'

Jj=1

2 0 () LN =D R} (3.29)
In order to keep the right side of (3.29) consistent with the left side of (3.29) with (N-1 )th order

accuracy, we set

.
Il
—

N
<Za.~,~'(x,-—xf)=1

zaij'(xj'—xi)k=oyk =2737'”yN-]
=1 (3.30)
fori=1, 2, -, N.

Equation set (3.30) is another equation system for the determination of the weighting

coefficients a;; which are derived from the Taylor series expansion.

As stated above, the equation system for the determination of a;; derived from one set of base
polynomials is equivalent to that derived from another set of base polynomials. We will choose
only one equation system (2.2) obtained by the base polynomials xk, k = 0, 1, ---, N-1 and
prove that this equation system is equivalent to (3.30) given by the highest order finite

difference approach.

It is obvious that the first equation of (2.2) and (3.30) are the same, i.e.

N

i=1 (3.31)
Furthermore, it can be shown that the second equation of the two systems are the same, i.e.
N N N N ‘
Yay(x;—x)=1=2a;"x,—(Zayp) -x—1=Xa;-x;,-1=0
j=1 j=1 j=1

i= (3.32)
Now, assuming that the first (p+1) equations of the two systems are the same, that is

Zaij'(xj_x‘.)k = zaij'xf‘_k'_x:‘_] 5 0
'=1 & (3.33)

“Ha



fork =0, I, --;p; i=1,2 N
then using the binary formulation
fa-bfi=ig’ Zebug’ D ¥ 2 ot BE (I (3.34)
here cpk is the combination of p terms taken k at a time,
and setting a = b = 1, the following expression will be obtained.

G et S gk Sl ) (3.35)
Using (3.34), the (p+2)th equation of (3.30) can be written as

5 p+l

N
1
do 0 = Xt [Z gy (x5~
j=1

SfNF. 2
'C:,'X?_l'x."i'""*'g—")_x—l)]
p+1
Substituting (3.35), (3.33) into (3.36) leads to

M=

N

+1
Yag(x~x) =
j=1 1

J

N | =

(3.36)

N N
Ya, (mx)" =2, =D x [ = A (DT e+ (D]

j=1

N
=g, oo+
i=1 (3.37)
Equation set (3.37) demonstrates that the (p+2)th equation of the two systems are the same.

Since p is an arbitrary integer only if p < N-2, it has been proved that the two systems (3.30)

and (2.2) are exactly the same.

Similarly, for the case of higher order derivatives, it is easy to show that the weighting
coefficients w; j(m) satisfy the following equation system, derived from the (N-m)th order finite

difference scheme for the mth order derivative in the overall domain

,

M=

w =0

U

Il
—

J

N
{3 W (x=x)" = m!

j=1

N
ZWf’,fn)'(Xj_xx‘)k=O , ko= L dune N - I K £ m
e (3.38)
It is clear that the first equation of (3.38) is exactly the same as (3.12) form = 2, ---, N-1. To

prove that w;;(™, for 2 < m < N-1, satisfies other equations of (3.38), it is supposed that
w;(m-1) satisfies those equations firstly, that is

=



N
T k
Zwy ) (x=x) -

j=1

[(m—l)! whenk = m-1

others (3.39)
Using (3.11), now we have, for 1 <k < N-1

e = = L 4 HE %
ZWf-j )-(x,'—Xi) = mWf, D'de‘j'(xj'_x.’) +m'2W§~j l)'(x,-—x.-)k ;
j=t j=1

j=1 (3.40)
Substituting (3.39), (3.30), (3.12) into (3.40) leads to

N > m! whenk = m

2w xi—x) =

Since m is an arbitrary integer only if 2 < m < N-1, it has been proved that w;;(™ satisfies

(3.38) exactly. Thus it can be concluded that GDQ is an extension of finite difference methods,

and is a highest order finite difference scheme.

As an example, we will show that the discretization of the first order derivative by the GDQ
approach in the domain [x;_;, X;,1] is the same as that given from the second order finite
difference scheme. Clearly, the domain [x;_;, X;, ] includes three grid points x;_;, X;, X;,1, and
it is known that any smooth function in this domain can be approximated by a polynomial of
degree 2, which constitutes a 3-dimensional linear vector space. Thus the weighting
coefficients of the first order derivative for this specific case can be determined as follows

according to formulation (3.4)

M(x) = (X-X;.1)-(X-Xp)-(X-X;41) (3.42)

M®D(x;_1) = (X1 -X1) (X1 Xj41) (3.43)

MO(x;) = (x3-%;_1) (XjX41) (3.44)

M®D(Xi11) = Kis1 X)) (Xie17%;) (3.45)
and

a; ;.1 = -D [[(A1+A)A] (3.46)

%i+1= 81 /(A 1+82)40,] (3.47)

8,i = (B2-A A1 B) (3.48)
where

Ay =% - X1
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Ay =Xi41 - %

Hence, the first order derivative of a function f can be approximated as

1
fx (-xi) =2, Aiivj* f(-xx'+j)
i (3.49)

It is easy to show that (3.49) is exactly the same as that from the second order finite
difference scheme and if the grid is uniform, (3.49) can be reduced to

£, (x;) = 0.5 [f(x;,) - f&x;_DV/A (3.50)
where A =A; = A,
which is the same as used in the finite difference scheme. In the same manner, the

discretization of the first order derivative at x;_; and x;,; can be written as

2A A A+A; A,
s PR i e 1 UK )~ )
(A|+Az)'A2 A A, (AN A (351)
A, A+A, 2A.+A .
f, (xi+l) = —'f(xi—l)_ 'f(xx)+—' f(-xm)
(A] * Az) A, A A, (Ax * Az) A (352)

which are exactly the same as those from the second order finite difference scheme. For
the overall domain case, it is suggested that such a domain can be divided into N-1 elements
with grid points, x;, -, XN. Atlocation x;, i =2, 3, ---, N-1, the first order derivative of a
function can be discretized by (3.49) in the element [x; ;, X;,;]. It is noted that in the case
here, the two neighbouring elements [x;_, X;,;] and [X;, X;,,], used for the discretization
of the first order derivative at collocation points x; and x;,, are overlapped with the region
of [x;, X;,1]- This behaviour is different from the standard finite element approach where
the neighbouring elements are patched. Similarly, at x; and xy, the discretization of the
first order derivative of a function can be obtained by (3.51) in the element [x;, x3] and by
(3.52) in the element [xy_, Xn]. It can be concluded that any higher order finite difference

scheme can be designed using this technique in a straightforward way.

3.6 Specific Results for Typical Distributions of Grid Points

In this section, three specific formulations of the weighting coefficients will be given for
three typical distributions of grid points: uniform grid; the coordinates chosen as the roots of

Tn(M) or ITyM)I - 1, where Ty(M) is an Nth order Chebyshev polynomial. Since the complete
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weighting coefficients of the second and higher order derivatives can be calculated from
those of the first order derivative, and that for the multi-dimensional cases, each direction can
be treated as in the 1D case, then only the weighting coefficients of the first order derivative

in the 1D case are considered.
Case I: Uniform Grid

By a uniform grid it is meant that the grid has the same step sizes. Thus setting
Ax = Xy - X1 =X - Xi.1 = XN~ XN-1» etc.,
one can obtain

X; - X; = (j-i)-Ax

M(x;) = (-IN-E(AxN-1(i-1)I«(N-i)! , i=1,2,-, N
Thus
(i-DI(N-=-i)!

Ax-(i—j)- (=D = j)! (3.53a)
fori,j=1, 2, -, N, exceptj # 1

a; = (_1)“[ ’

ai= 7 Za;j ’ i = ], 2; 2% N
et (3.53b)

Case II: Coordinates Chosen As the Roots of [Ty(M)| - 1

An Nth order Chebyshev polynomial can be written as
Tn(M) = cos(NO) (3.54)
withn=cosB , -1 <N <1

Setting [Ty(M)! = 1 yields
No=jr, j=0,1,-, N

ie. nj=cos(n/N) , j=0,1,- N

where M; is the coordinate of the grid point in the domain [1, -1]. In this case, the Lagrange

interpolated polynomial can be written as

A



" A-m) T
c,"N*-(n—-n,) (3.55)
where Tp(1() is the first order derivative of Ty(1), and

rj(n) =

I:Z whenj = 0, N

1 others
Thus (3.4) can be reduced to
il M'_,-
aij___u__ g i,j=0, s ---,N,butj¢i
€ (77, e 77,) (3.56a)
a:~ = Za,, ’ l = 0: I: yN
j=1j%i (3.56b)

It can be seen that (3.56a) is the same as that deduced from the pseudospectral Chebyshev
method [8]. To analyse this behaviour, it is known that both spectral methods and finite
element methods are based on the principle of the weighted residuals. Spectral methods can
be considered as an extension of finite element methods. The difference is that the spectral
methods include only one element while finite element methods include many elements. As
shown in section 3.5, finite difference methods can also be considered as "finite element"
methods which are different from the standard approach in that the elements in a finite
difference method are overlapped while the elements in a standard finite element method are
patched. But if the whole computational domain is composed of only one element, both
finite difference methods, and finite element methods in which the weighting function is taken
as the delta function, should give the same results. This is because in this case, one
overlapped element and one patched element are the same. From this analysis, it is shown that
the GDQ approach should give the same results as the spectral collocation methods if the same
distribution of grid points is used, since they can be considered as an extension of the
finite difference and finite element methods with only one element. This phenomenon is

confirmed in the research which is reported above.

If the physical domain is not [1,-1], but [a,b],then we need to use the following transformation

x = 0.5-(b-a)-(1-n) + a , where x is the physical coordinate

The weighting coefficients di in the physical coordinate system can be written as
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Gi=2-aplb=a) ", i = 075N (3.57)

Case III: Coordinates Chosen As the Roots of Tn(M)

Setting Ty(M) = 0 yields

N6 = 0.5-(2j-Dr , ie. mj=cos[0.5-2j-Da/N] ,j=1,2, -, N
It should be noted that M; is in the domain [N, Myl, where M; = cos(0.5t/N), Ny = -Nj,
and N; % 1. In this case, the Lagrange interpolated polynomial can be written as

I A-gapn) . .
r (M) = if o =i 2, N

N-(n-1n) (3.58)
Then (3.4) can be reduced to

g 1/2
-1 (1-7
o SOk , ,j=1, -, N, butj # i

E (n,-n) -(1-n ¥ (3.59a)

N
anl= = Zag ’ i = 1; 2; :N
j=Ljsi (3.59b)
Similarly, if the physical domain is [a, b], using the following transformation

N = dy-(x-a)/(b-a) + d;, where d; = cos[0.57/N], d; =-2d,,

i

the weighting coefficients i in the physical coordinate system can be written as

a;,=d. a; /| (b—a)=-2cos[0.5-7/N]-q;/(b—a) (3.60)
fori,j=1, 2, -, N.

4. ERROR ESTIMATIONS

The theory and details of GDQ have been described in the previous sections. The errors of

the approximations for a function and its derivatives will be estimated in this section.

4.1 The Function Approximation

Firstly, we will discuss the approximation error when f(x) is approximated by an (N-1)th
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order polynomial, particularly by the Lagrange interpolation polynomial

N
Pyf=2f(x) ri(x)
i=1
We define the approximation error of f(x) as

E(f) = f(x) - Pif . 4.2)

If it is supposed that the Nth order derivative of function f(x) is a constant, say K, then using

4.1

a Taylor expansion, we can obtain
F(&) =1k flkaitxr—ci+i f o)) [ kG =

+£27(0) (x=0)"" [ (N =D+ (&) (x—¢)" | N

=metmX+tmx’+ - +mi-x +K-x"/N! 4.3)
where c is a constant, and § € [x, c]. Since (4.1) is exactly satisfied for a polynomial of degree

less than or equal to N-1, we have
E(x*)=0, whenk =0, 1, -, N-1. 4.4)
Substituting (4.3) into (4.2) and using (4.4), we obtain
E(f) = K-E(xN)/N! 4.5)
where
N
EQ)=x"-2xr(x)

i=1 (4.6)
On the other hand, substituting the (N-1 )th order polynomial g(x) = xN - (x-x;)-(X-X5)-**(X-Xy)

= xN - M(x) into (4.1), we obtain

N

Xxr(x)=x"-M(x)

=1 4.7)
Finally, we get

E(f) = K-M(x)/N! (4.8)

In most cases, the Nth order derivative of f(x) is not a constant, but may be bounded. In this
case, we can turn to another way to analyse E(f). For simplicity, we set ¢ (x) = Pyf, and define

the function F(z) as

F(z) =f(z) - 0(2) - aM(z) (4.9)_
Clearly, when z = x{, Xy, **, Xy, F(2) = 0. If we set F(x) =0, we get
E(f) = f(x) - Pyf = f(x) - ¢ (x) = a-M(x) (4.10)
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Since F(z) has N+1 roots in the domain, by repeated application of Rolle's theorem, the Nth
order derivative of F(z), FN) (z), is found to have at least one root lying between x; and xy.

Let & denote this point. We have

FM €)=0. (4.11)
From (4.9), we obtain

a=fME)/N!, (4.12)
so, E(f) = f™ (€)-M(x)/N! . (4.13)

Generally, & is a function of x.
4.2 The Derivative Approximation

We define the error for the mth order derivative approximation as
If FPf) If To

ES(f)= =
ax" ax" adx” - dx" (4.14)
where m = 1, 2, -+, N-1. Generally, Ex(m)(f) can be written as

1 9"[f7(§) M)
E, (f) et ¥
N! dx (4.15)
Since € is an unknown function of x, it is difficult to estimate E,™)(f) using (4.15). As a

special case, if we assume that the Nth order derivative of f(x) is a constant, namely K, then
from (4.8), we get

Ep™m)(f) = K-M@™)(x)/N! (4.16)
Although (4.16) is satisfied for the condition of f{MN)(€) = K, it is useful in the error analysis.

Firstly, (4.16) has no restriction on x. In other words, x can be any coordinate in the domain.
Secondly, similar to the analysis of the order of the truncated error in a low order finite
difference scheme, when the order of the truncated error caused by GDQ is studied, we can

only consider the (N+1)th termin the Taylor series expansion though this term is not the exact

error. The (N+1)th term of the Taylor series expansion is f™N(c)-(x-c)N/N!, where ¢ is a

constant. So, f™N(c) can be treated as a constant in this case. Thus the analysis of the function

and the derivative approximations is the same as that shown above. For a more general case,
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we can use a similar method as in the analysis of the function approximation to do it. Since

g(z) =f(z) - ¢ (z) has N roots in the domain, according to Rolle's theorem, its mth order

derivative g{™)(z) has at least (N-m) roots in the domain, namely, X;, X, ***, XN.m- Thus the
function
Fm)(z) = g™(z) - a-M(2) = f{™)(2) - ¢ ™(z) - a- M(2) (4.17)
where
M) = (z-%1)-(z-X3)* (Z-XN1m) >
vanishes at Xq, X5, ***, XN.m- NOW, if we set Fm)(x) =0, where x is different from x;, X5, -,

XN then FM)(z) has (N-m+1) roots, and
EpM[fx)] = fm™(x) - ¢ M(x) = a-M(x) (4.18)
Using Rolle's theorem repeatedly (N-m) times, the (N-m)th order derivative of Fim)(z) is found

to have at least one root &, thus

a = fM(E)/(N-m)!

Ep™[f(x)] = {M(€)-M(x)/(N-m)! (4.19)
Equation (4.19) is satisfied for x # X;, X5, -, XNm - This is guaranteed if x is outside the
domain of X;, X5, ', XN.m.

If it is assumed that all the x; and x are in the interval h, and the Nth order derivative of function
f is bounded, then

I fMN(E) | < C, where C is a positive constant

IMm)(x) | < N-(N-1)--+(N-m+1)-hN-m

IMX) I < hN-m
SO
C i hN—m
B
(N —m)! (4.20)

for ] < m< N-1
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5. EIGENVALUES OF SPECIFIC GDQ SPATIAL DISCRETIZATION MATRICES

Time-dependent problems are usually well-posed by the equation

ou L)
—_—— u
ot (5.1)
with proper initial and boundary conditions, where L is an operator which contains the

spatial part of the partial differential equations. L is generally a non-linear operator. After
discretization by GDQ and linearization of the non-linear terms, (5.1) can be transformed
into a set of ordinary differential equations in time

du

s = AR ()

dt (5.2)
where U is the vector of the functional values at interior grid points, Q contains non-

homogeneous and boundary values and A is a matrix. According to the stability analysis to
(5.2), it is defined that a method is called A-stable if the region of absolute 'stability
includes the region Re{AAt} < 0 (whole left half plane), where A is an eigenvalue of A.
Furthermore, a method is said to be stable for a particular problem if, for sufficiently small

At > 0, the product of At times every eigenvalue of A lies within the region of absolute

stability, usually with Re{AAt} < O (part region of left half plane). Thus it is very useful
to analyse the eigenvalue structure of the GDQ spatial discretization matrix when its
stability is studied. In the following, we will study the eigenvalues of three basic GDQ spatial

discretization matrices.
5.1 The Convection Operator

Here L(u) is chosen as a convection operator

du
Luy=-—— |, on [0, 1]

ox (5.3)
with Dirichlet Boundary condition
u(0)= f(x) (5.4)

Firstly, we consider the three typical distributions of grid points given in section 3.6 to study

the influence of the grid points
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Case I : basic grid is generated by ITy(m)l = 1;

Case II : basic grid is generated by Ty(m) = 0;

Case III: uniform grid.
The eigenvalues with grid of case I are plotted in Fig. 1. Fig. 2 and Fig. 3 show the
eigenvalues with grid of case II and case III respectively. It is clear, from Fig. 1, that the real
parts of all the eigenvalues of case I are strictly negative. This is not true for cases II and III.
In fact, the real part of the maximum eigenvalue for cases II and III is positive although the
modulus of the maximum eigenvalue of these two cases is less than that of case I. It is noted
that, for cases II and III, the maximum eigenvalue does always lie in the unstable region.
This behaviour is independent of the number of grid points used. Thus it seems to be true
that the distribution of the grid points can greatly influence the stability behaviour of a global
method such as GDQ. It is also found that the minimum step size near the boundary, for

cases II and III, is larger than that for case I.

Here, we pose a question: is the above observation likely to be a major reason to cause
stability problems arising from the use of cases II and III? To study this, we introduce a
transformation

x=(1-0)@x2-2x3)+ax , a>0 (5.5)
where x is the transformed coordinate. When o < 1, the transformed grid is stretched near the
boundary (i.e. grid points are more concentrated near the boundary) and when o > 1, the
transformed grid is relaxed near the boundary. Using (5.5), we can get

Case IV : Transformed from Case Il with o < 1;

Case V : Transformed from Case III with o < 1.
To investigate the effect of the minimum step size, under the condition of stability, on the value
of the modulus of the maximum eigenvalue, we introduce

Case VI : Transformed from Case I with o > 0.

Fig. 4 - 6 display the eigenvalues of cases IV, V and VI. In these cases, the real parts of all
the eigenvalues are strictly negative. It is shown in Fig. 6 that when the minimum step size is
relaxed near the boundary, the value of the maximum eigenvalue is reduced, thus the time

step size is relaxed. It can be concluded from Fig. 4 - 5 that the stretched grid near the
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boundary can improve the stability. From here, a question may be posed: what is the
behaviour if the grid is stretched at other points? To study it, we introduce another
transformation, which stretches the grid near the middle point
x=£=2(1-B)x2-x)+Px, p=>0,x<0.5 (5.6a)
=1L 4x>05 (5.6b)
Using (5.6), we obtain case VII as
Case VII : Transformed from Case III with B < 1.
Fig. 7 shows the eigenvalues of case VII. Obviously, the grid stretched near the middle
point does not improve the stability behaviour. Actually, the real part of the maximum
eigenvalue for all the cases is always positive. When N becomes a large number, the structure

of the eigenvalues tends to be symmetrical about the origin.
5.2 The Diffusion Operator

The diffusion operator is chosen as

2

L(u)=-a—u2 oml0, 1)

dx (5.7)
The boundary condition we will impose is of Dirichlet type
u©0)=u(1)=0 (5.8)
or of Neumann type
%(0) 5 2L—t(l) =0
ox ox (5.9)

When the grid of case I was used, the eigenvalues for both the Dirichlet and Neumann
boundary conditions are real negative numbers. But the Neumann boundary condition
can give smaller eigenvalues than the Dirichlet boundary condition, thus the former may

allow a larger time step size to be used. For example, the value of the maximum eigenvalue

of N = 31, i.e. -1.5443x103, for the Dirichlet condition, can be reduced to -4.6665x104 for

the Neumann condition. This is also the case when the grid of case II was used in which the

eigenvalues for the Dirichlet condition are real numbers but are not for the Neumann

condition. When N = 31, the maximum eigenvalue is (-5.5389x104, 0) for the Dirichlet
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condition, and (-1.6801x104, 8.0125x103) for the Neumann condition. Although the

Neumann condition can give smaller eigenvalues, it may cause stability problems. When the
grid of case IIIl was used with the Dirichlet condition, the real part of all the eigenvalues are
negative, but when the Neumann condition was applied, the real part of the maximum
eigenvalue is positive which can cause the computation to be unstable. Fig.8 shows the

eigenvalues with grid of case III for the Dirichlet and Neumann conditions.
5.3 The Convection-Diffusion Operator

We now consider the convection-diffusion operator
Jd’u adu
Lu)y=v- sy [0, 1]
dx’ ox (5.10)
with a Dirichlet type boundary condition. When v = O(1), this equation is dominated by

convection and diffusion. When v « O(1), this equation is mainly dominated by convection.
It is found that when v = O(1), the real parts of all the eigenvalues for all of the cases
studied are strictly negative, and the case III gives the smallest value of maximum
eigenvalue which then allows the use of the largest time step size, but when v is very small,
the real parts of some eigenvalues may be positive, leading to a stability problem. It is
found that the minimum Vv for keeping stability is greatly affected by the distribution of
grid points. For example, to obtain a stable solution, the minimum value of v is around 0.05
for the grid of case III, and 0.0015 for the grid of cases I and II when N=21. Thﬁs for the
case of very small v, the uniform grid is not recommended. The instability problem can be
removed by increasing the number of grid points for all the cases when v is very small. If
the number of grid points is kept the same, it is useful to explore the behaviour if the grid is
stretched or relaxed near the boundary. We have found that, for the grid of cases II and III,
the real parts of all the eigenvalues can be negative if the grid is stretched near the boundary.
This is not true for the grid of case I. Fig. 9 - 10 show the eigenvalues of the convection-
diffusion operator with v = 0.001 for the grid of case L. It is clear from these figures that,
when N = 21, the real part of the maximum eigenvalue is positive, but when N = 31, the

real parts of all the eigenvalues are strictly negative. Keeping N = 21, when the grid is
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stretched near the boundary, then more eigenvalues lie in the right half plane, but when the
grid is relaxed near the boundary, the real parts of all the eigenvalues are kept in the left half
plane. It may be concluded that for the convection-diffusion operator, the stability can be
improved by stretching the grid near the boundary for some cases of grid, and by relaxing
the grid near the boundary for other cases of grid.

6. APPLICATION TO MODEL PROBLEMS

In order to validate the capability of GDQ for solving partial differential equations, two
test examples, each of which has an analytic solution or has been well studied by other

numerical methods, have been chosen for simulation.
6.1 Solutions of the 2D Burger's Equation

We consider the two-dimensional steady problem by solving the 2D Burger equation
ugt cugt douy = €-(uyx + uyy) (6.1)
with boundary conditions for t >0
u(x,0,t)={ 1-exp[(x-1)-c/e]}/[1-exp(-c/e)], u(x,1,)=0, 0 < x <
u(0,y,0)={1-exp[(y-1)-d/e]}/[1-exp(-d/e)], u(Ly,)=0, 0<y<1.
The exact solution to (6.1) is
1-expl(x—1)-c/ €] : 1-expl(y—-1)-d/ €]

1- exp(—c / 8) 1- exp(—d/ 8) (6.2)
Using GDQ, we have employed the grid of cases I, Il and III to simulate this problem, and

1

u(x,y) =

found that, when N = 11, the allowable maximum time step size is 1.1x10-3 for case I,

3.2x10-3 for case II and 7.10x10-3 for case III, and that the converged results for all three

cases are nearly the same. This confirms the findings from the stability and eigenvalue
studies in the above section. Table I lists the computational results using the grid of case III
with N = 11. Some exact results and numerical results given by a time-split MacCormack

scheme are also included in this table. For the finite difference simulation, the allowable
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Table I The Steady Solution of 2D Burger's Equation

c=10, d=20, €=05

y 0.20 0.40 0.60 0.80

X Computed by GDQ (N=M=11, CPU =0.44 sec.)
0.20 0.901911 0.854935 0.750394 0.517749
0.40 0.789693 0.748554 0.657015 0.453316
0.60 0.622288 0.589865 0.517726 0.357209
0.80 0.372555 0.353141 0.309950 0.213851

X Computed by FD' (N =M =51, CPU = 17.15 sec.)
0.20 0.901928 0.854973 0.750462 0.517836
0.40 0.789720 0.748616 0.657117 0.453437
0.60 0.622318 0.589932 0.517833 0.357328
0.80 0.372578 0.353191 0.310026 0.213933

X Exact
0.20 0.901916 0.854945 0.750410 0.517764
0.40 0.789702 0.748575 0.657046 0.453345
0.60 0.622299 0.589890 0.517764 0.357244
0.80 0.372563 0.353160 0.309979 0.213878

maximum time step size was used. The CPU time required on the IBM 3090 is also shown in
the table. It is clear that the GDQ results are more accurate than the finite difference results

even though fewer grid points are used, and that they result from considerably less

computation time.

6.2 Solution to the 2D Incompressible Navier-Stokes Equations

The GDQ is now applied to solve the driven flow in a rectangular cavity. This is a standard test
problem in CFD and it is governed by the Navier-Stokes equations. The non-dimensional

vorticity-stream function formulation of the 2D Navier-Stokes equations can be written as

' Second Order Time-Split MacCormack Finite Difference Scheme
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Ot U0+ v-0y= V20/Re (6.3a)
VZ\V = (6.3b)
where V2 is the Laplacian operator; @, \ and Re the vorticity, stream function and Reynolds

number; u, v are the components of the velocity in the x and y direction, which can be

calculated from the stream function

=Ny, V=Y

with the boundary conditions

y=y,=0, atx=0,1, 0<y<l1 (6.4a)
y=y,=0, aty=0, 0<x<1 (6.4b)
\y=0,\yy=1, aty=1, 0<x«<l1 (6.4¢)

Clearly, the two corners on the upper wall are singular points which in a numerical technique
normally cause difficulties in treating the boundary conditions. In numerical simulation, the
boundary conditions for ® can be obtained from equation (6.3b). At each solid boundary there
is a boundary condition for @ and there are two boundary conditions for y (see (6.4)). Using
GDQ, (6.3) can be discretized as

d a;; (2) —(2)

N N
+u; 2wy @t Ve 2 We x =—"| 2w @y + 2 Wy W :
dt k=1 k=1 Re L= (6.52)

Z wie Y+ 2 Wi Vi = 0
(6.5b)
S1m11ar1y, the boundary conditions for y (6.4) and ® (6.3b) can be discretized by GDQ. It

is indicated that the Neumann boundary conditions for y can be combined to give the solution

1 N
5 g b S iem
1//2,,- T o Z Wik Wana ™ Waie  Win- 1) v, &

AXN k=1,k%2,N~1 (6.6a)
1 1
Vew=—| 2 uiiowitwia v
AXN Li=tk=2,81 (6.6b)
1 M
Vam—— [t @ - wi v
AYM k=1,k#2,M~1 (6.6¢)
i 1 ey i S o )
W.-,M<1 = w,t Wusr Wiz~ Wy” ) W,k
AY k=1,k#2,M-1 (6.6d)
where

S @ e ) )
AXN—Wzvz Winat — Wi " Wava
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AYM"WM,z Wina ™ Wi Wy ua

With the boundary conditions, the set of (N-2)x(M-2) ordinary differential equations for

® was solved by the 4-stage Runge-Kutta scheme, and the set of (N-4)x(M-4) algebraic
equations for y was solved by LU decomposition. Noting that the Laplacian operator is a
linear operator, we need only decompose the matrix of the equations system once and store the
inverted matrix elements for all the following time steps. For numerical simulation, the
solutions were obtained in the Reynolds numbers range from 100 to 1000. The grid. of case

IV shown in above section was used for the GDQ simulation. Mesh sizes of 13x13, 17x135,
21x17 and 23x21 for Reynolds numbers of 100, 200, 400, 1000 were respectively used. The

initial values for all variables in the interior points are chosen to be zero.

Table II Parameters Defining the Vortex Centre for Driven Cavity Flow

Re Reference Grid X y Y ®

Ghia et al 129x129° = 0.6172 0.7344 -0.1034  3.1665

100  Present (GDQ) 13x13 0.6150 0.7350  -0.1035  3.1547
Present (FD) 51x51 0.6200 0.7400 -0.1030  3.1915
Ku et al 25x15 0.6023 0.6657 -0.1071  2.6345

200  Present (GDQ) 17x15 0.6000 0.6650 -0.1089  2.6686
Present (FD) 51x51 0.6000 0.6600 -0.1072  2.6673
Ghia et al 129x129 ~ 0.5547 0.6055 -0.1139  2.2947

400 Present (GDQ) 21x17 0.5550 0.6050 -0.1131  2.2794
Present (FD) 51x51 0.5600 0.6000 -0.1105  2.2428

Ghia et al 129x129 - 0.5313 0.5625 -0.1179  2.0497
1000 Present (GDQ) 23x21 0.5300 0.5650 -0.1184  2.0649
Present (FD) 51x51 0.5400 0.5600 -0.1103  1.9326
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For direct comparison of GDQ with conventional numerical techniques, numerical results
using a second order time-split MacCormack finite difference scheme for vorticity
equation and a preconditioning technique of SIP for the stream function, are also obtained for a

uniform grid of mesh size of 51x51. By numerical experiment, the allowable maximum

time step size for the finite difference simulation was used. The parameters defining the
vortex centre are compared in Table II. The comparison includes the results of the GDQ
approximation, the finite difference approximation and results given by Ghia et al [9] and Ku
et al [10]. It is clear from Table II that the GDQ approximation is very accurate even though
just a few grid points were used, compared with the finite difference approximations using a
large number of grid points. Table III shows the CPU time on the IBM 3090 by the
GDQ approximation and the time-split MacCormack finite difference approximation.
The mesh size used is the same as that given in Table II. We see, clearly, that the GDQ

approach requires much less CPU time for accurate results.

Table III The CPU Time Taken by Driven Cavity Flow Simulation

Re 100 200 400 1000
GDQ (seconds) 4.27 6.69 16.99 33.79
FD (seconds) 442.73 536.98 601.50 732.90

7. CONCLUSIONS

The technique of differential quadrature has been extended to a general case. Generalized
differential quadrature has overcome the difficulty of differential quadrature in obtaining the
weighting coefficients of the first order derivative when a large number of grid points with an
arbitrary distribution are applied. Furthermore, a recurrence relationship has been established
for determination of the weighting coefficients of the second and higher order derivatives. It
has been proved that the GDQ approach can be considered as the highest order finite

difference scheme, and when the coordinates of grid points are chosen as the roots of a

S



Chebyshev polynomial, the formulation of the first order derivative discretization obtained by
GDAQ is exactly the same as that given by the Chebyshev pseudospectral method. The
error estimations for the function and derivative approximation have also been analysed.
The distribution of the grid points was found to have a considerable influence on the stability
condition. Grid stretching near the boundary can improve the stability, but the grid stretching
near the middle point makes it worse even though the minimum step size is very small.
Application of GDQ to solve Burger’s equation and the 2D Navier-Stokes equations showed
that accurate numerical results can be obtained using just a few grid points, and require much

less computational time.
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