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ABSTRACT

The technique of differential quadrature (DQ) for the solution of a partial differential equation is 

extended and generalized in this paper. The general formulation for determining the weighting 

coefficients of the first order derivative is obtained. A recurrence relationship for determining 

the weighting coefficients of the second and higher order partial derivatives is also obtained, 
and it is shown that generalized differential quadrature (GDQ) can be considered as a finite 

difference scheme of the highest order. Three typical formulas of weighting coefficients for the 

first order derivative are also given in the paper. The error estimations for the function 

and derivative approximation, and the eigenvalue structures of some basic GDQ spatial 
discretization matrices have been studied. The application of GDQ to model problems showed 

that accurate results can be obtained using a small number of grid points.

1. INTRODUCTION

The numerical techniques for the solution of a partial differential equation can be classified 

into two categories. One is based on the direct discretization of the derivatives and integrals. 
Another is based on the variational principles or the principles of weighted residuals. The 

conventional finite difference methods he in the first category while the finite element and the 

spectral methods are in the second. Usually, low order methods such as finite 

differences and finite elements can provide accurate results by using a large number of grid 

points. However, in some practical applications the numerical solution of a governing 

equation is required at only a few specified points in a domain. But for acceptable accuracy, 
conventional finite difference and finite element methods also require the use of a large 

number of grid points to obtain the solution at those specified points. In seeking a more 

efficient method using just a few grid points to get an accurate result. Bellman et al [1] 
introduced a method of differential quadrature, where a partial derivative of a function with 

respect to a coordinate direction is expressed as a linear weighted sum of all the functional 
variables at all mesh points along that direction. It is clear that this method is based on the 

direct discretization of the derivative, and therefore, is in the first category indicated above. 
Preliminary computational results ([l]-[6]) showed that differential quadrature has potential 
as an attractive approximation technique. The key technique to differential quadrature is the
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means to determine the weighting coefficients for the discretization of any order partial 
derivative. Bellman et al suggested two methods to determine the weighting coefficients of the 

first order derivative. One method solves a set of algebraic equations which is obtained

by satisfying the linear constrained relation for test functions of xk, k = 0, 1, N-1,

where N is the total number of grid points in a domain. This equation system has a unique 

solution because the matrix elements are composed of a Vandermonde matrix. Unfortunately, 
when N is large the inversion of this matrix becomes difficult. This is probably one of the 

reasons that applications of this scheme so far only use a number of grid points less than or 

equal to 13. The second method computes the weighting coefficients by an algebraic 

formulation with coordinates of grid points chosen as the roots of an Nth order shifted 

Legendre polynomial. This means that if N is specified, the distributions of grid 

points are the same for different physical problems. This can provide a major drawback 

and restrict the application of differential quadrature. In order to overcome this drawback, 
the generalized differential quadrature technique was developed. The development is 

discussed in this paper. It is based on the analysis of high order polynomial approximation in 

the overall domain.

2. DIFFERENTIAL QUADRATURE

For the one dimensional unsteady problem. Bellman et al [1] assume a function u(x,t) to be 

sufficiently smooth to allow the following linear constrained relation to be satisfied

lix (.■Xi > ^ dij ' d(_Xj 5 0

for i = 1,2, —, N,
(2.1)

where UxCx^t) indicates the first order derivative of u(x,t) with respect to x at x; . Substituting 

(2.1) into a time-dependent partial differential equation yields a set of ordinary differential 
equations which can be integrated by such well-developed schemes as Runge-Kutta rhulti-step 

integration.

The key technique to this procedure is how to determine the weighting coefficients a^. Bellman 

et al suggested two ways to carry this out. The first way is to let (2.1) be exact for test functions
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g(x)=xk, k=0, 1, —, N-1, which leads to a set of linear algebraic equations

.*-1X Uij ■ Xkj = k- xt 
7=1

for i =1, 2, —, N; k = 0, 1, N-1.
(2.2)

This equation system has a unique solution since its matrix is of Vandermonde form. 

Unfortunately, when N is large, this matrix is ill-conditioned and its inversion is difficult.

Another way is similar to the first one with an exception that the different test functions 

Ln{x)
g{x) = , k = 1,2, ■ N

(■^ Xk^*LdN (2.3)
are chosen, where Lj^x) is the iVth order Legendre polynomial and LN(1Hx) the first order

derivative oiLj^x). By choosing xk to be the roots of the shifted Legendre polynomial. Bellman 

et al obtained a simple algebraic formulation for a^j

C(x;)
dij

Cl a

(Xi-Xj)L(^^{Xj)

\-2xi

. I

(2.4a)

(2.4b)2x(jc.-l)
Formulation (2.4) is only valid for coordinates of grid points chosen as the roots of an Vth 

order Legendre polynomial.

3. GENERALIZED DIFFERENTIAL QUADRATURE

In order to overcome the drawback described above for differential quadratiu*e and to 

obtain a similar simple formulation for a^j, a method of generalized differential quadratiu'e has 

been introduced, based on the analysis of the polynomial hnear vector space.

3.1 High Order Polynomial Approximation in the Overall Domain

Since any finite range can be transformed into the range of [0,1] by a simple transformation, 

we will consider only the range [0, 1] hereafter. It is well known that a continuous function 

f(x) in the interval [0, 1] can be approximated by an infinite polynomial accurately in
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accordance with the Weierstrass polynomial approximation theorem. In practice, a truncated 

finite polynomial may be used. Some methods, an example being the spectral method, have 

successfully applied the concept of high order polynomial approximation to the solution of 

partial differential equations. Following this approach, it is supposed that any smooth 

function in the interval [0,1] can be approximated by a (N-1 jth order polynomial.

It is easy to show that the polynomial of degree less than or equal to N-1 constitutes an N- 

dimensional linear vector space VN with respect to the operation of addition and multiphcation. 
From the concept of linear independence, the bases of a linear vector space can be 

considered as a linearly independent subset which spans the entire space. Here if rk(x), k=l, 
2, —, N, which are in the space VN, are the base polynomials, any polynomial in VN can be 

expressed as a linear combination of rk(x), k=l, 2, —, N, i.e

(3.1)
fix) = PNf = rt(x) 

where is a projection operator of smooth functions onto VN , ck is a coefficient, and f(x), 
rk(x) are in space VN. The spectral method uses a high order polynomial similar to (3.1) to 

approximate the function f(x) in the overall domain. But the procedures for the solution of a 

partial differential equation are quite different. The spectral method, which is based on the 

principle of the weighted residuals, involves the determination of the coefficients of the base 

polynomials, namely ck, while generalized differential quadrature (to be described), which uses 

this formulation only to determine the weighting coefficients for discretization of any order 

(less than N) partial derivative, involves the determination of the functional values at grid 

points.

3.2 Weighting Coefficients of the First Order Derivative

Equation (2.1) is a linear constrained relationship. If the base polynomials rk(x), k=l, 2, —, N, 

satisfy (2.1), so does polynomial f(x). And if the base polynomial rk(x) is chosen to be xk_1, the 

same equation system as (2.2), given by Bellman's first method, can be obtained. For 

generality, here the base polynomial rk(x) is chosen to be the Lagrange interpolation polynomial

Mix)___
[) / \

(3.2)
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where M(x) = (x-x1)-(x-x2)---(x-xN)
N

M(1) (xk) = n (xfc - Xj)
xl5 x2, —, xN are the coordinates of grid points, and can be chosen arbitrarily.

For simphcity, we set
M(x) = N(x, xk)-(x - xk) , k = 1, 2, —, N 

with NCxj, Xj) = M(1)(xi)-5ij, where 6jj is the Kronecker operator.
Thus we have

M(m) = N{m) {x, Xk) •{x-Xk) + m- (x, Xk) (3.3)
for m = 1, 2, —, N-1; k = 1, 2, —, N

where M(m)(x), N(m)(x, xk) indicate the mth order derivative of M(x) and N(x, xk). Substituting 

(3.2) into (2.1) and using (3.3), we obtain

M(,)U) ^ . .— , forj ^ i
(3.4a)

Clij

da

(x-Xj)-Mw(xj)

Mm (Xi)

2Mw{x) (3.4b)
for i, j =1, 2, —, N.

Equation (3.4) is a simple formulation for computing a^j without any restriction on choice of 

grid point Xj. Actually, if x, is given, it is easy to compute M(1)(xi), thus a^j for i ^ j. The 

calculation of a^ is based on the computation of the second order derivative M(2)(xj) which is 

not easy to be obtained. Next, it will be shown that aii can be calculated from ajj (i j).

According to the theory of a linear vector space, one set of base polynomials can be expressed 

uniquely by another set of base polynomials. Thus if one set of base polynomials satisfies a 

linear constrained relationship, say (2.1), so does another set of base polynomials. And since 

the weighting coefficients are only dependent on the coordinates of grid points if the number of 

grid points is given, the equation system for determination of a^j derived from one set of base 

polynomials should be equivalent to that derived from other sets of base polynomials. Thus ajj 

satisfies the following equation which is obtained by the base polynomial xk when k=0

X Gij = 0 
y=i (3.5)
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where ajj can be easily determined from ajj (i ^ j). Equation (3.4) is a general form for

calculating ajj. It follows that if the coordinates of grid points are chosen as the roots of a shifted 

Legendre polynomial, (3.4) is exactly the same as that given by Bellman's second method.

3.3 Weighting Coefficients of the Second and Higher Order Derivatives

For discretization of the second order derivative, we introduce the following linear constrained 

relation
N

Uja (Xi,t) = l bij • u(xj ,t)
J=1 (3.6)

for i = 1, 2, -, N
where uxx(x, t) is the second order derivative of u(x, t) with respect to x, and Lagrange 

interpolated polynomials are chosen as the base polynomials (see 3.2). Using the same 

approach as for the first order derivative and formulation (3.4), the weighting coefficients bjj 
are given by

bij 2 dij
1

Xi - Xj
■) » forj * i

bu =
M(3\xi)

(3.7a)

(3.7b)3Ma) (xi) 
for i, j = 1, 2, -, N.

When j i, bjj can be calculated from ajj easily. In a similar analysis to the case of the first 

order derivative, the equation system for bjj derived from the above Lagrange interpolated 

polynomials is equivalent to that derived from the base polynomials xk , k = 0, 1, •••, N-1. 

Thus bjj should also satisfy the following formulation derived from the base polynomial xk 

when k=0

ibij = 0
j=i

from which bjj can be easily determined.
(3.8)

Furthermore, for the case of discretization of the higher order derivative, the linear constrained 

relations are applied as follows
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U(r1) (Xi,t) = t,wfl)-U(Xj,t)
J=i (3.9)

(3.10)
u[m)(xi,t) = lw^;)-u(xJ,t)

y=i
for i = 1, 2, —, N

where ux(m4)(xi,t), ux(m)(xi,t) indicate the (m-1 )th and wth order derivative of u(x,t) with 

respect to x at Xj, Wjj(m) are the weighting coefficients related to ux(m-1)(xi,t) and

ux(m)(xi,t). Substituting (3.2) into (3.9), (3.10) and using (3.3), (3.4), a recurrence formulation 

is obtained as follows
(m-I) Wu

j * i
(3.11)

(m) ... f (m-1) y \Wij = m-{an• Wii---------- ) ,
Xi - Xj

for m = 2, 3, —, N-1; i, j = 1, 2, —, N 

where ajj are the weighting coefficients of the first order derivative described above. Again, in

terms of the analysis of the N-dimensional linear vector space, the equation system for Wjj(m) 

derived from Lagrange interpolated polynomials should be equivalent to that derived from the 

base polynomials xk, k=0, 1, —, N-1. Thus Wjj(m) should satisfy the following equation

obtained from the base polynomial xk when k=0

iwr=o
(3.12)

From this formulation, Wj/"1) can be easily calculated from wij(m) (j ^ i).

3.4 Extension to the Multi-Dimensional Case

For the two-dimensional approximation of a function f(x,y) in the domain x G [0,1], y € [0,1],

it is supposed that the value of f(x,b), where b is a constant, b G [0, 1], can be approximated

by an (N-1 )th order polynomial PN(x) which constitutes an N-dimensional linear vector space 

VN with N base polynomials q(x), i=l, 2, —, N, and the value of f(a,y), where a is a 

constant, a G [0, 1], can be approximated by a (M-l)ih order polynomial PM(y) which

constitutes a M-dimensional linear vector space VM with M base polynomials Sj(y), j=l, 2, —, 
M. The value of function f(x,y) can be approximated by the polynomial QNxM(x>y) with the
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form

GWxWu»>’)=ssc,-y_i-y1
i=l ;=1

where Cij is a coefficient
(3.13)

It is clear that QNxNi(x’y) constitutes a NxM dimensional linear polynomial vector space VN)<M

with respect to the operation of addition and scalar multiplication. It will now be shown that 

d>ij(x,y) = rj(x)-Sj(y) constitutes the base polynomials in the vector space VNxM. Since ri(x), 

Sj(y) are the base polynomials of VN and VM, they must be linearly independent, that is

^crn (x) = 0 only if Ct = 0, i = 1, 2, • N
i=l

U

S dj • Sj (y) = 0 only if dj = 0, j = 1, 2, • M

(3.14)

(3.15)
Now we see that if 

x£cs-0,;(j:,y) = 0 , i.e. I[Ec.,• (j)]• rf(x) = 0
■ -1 ; = 1 1=1 J=1

From (3.14) the following equation is obtained 

^Cij-sAy) = 0
;=i

Finally from (3.15) we obtain Cjj = 0. Then, <bij(x, y) constitutes the base polynomials in 

VNxM>

Now it is assumed that the following constrained relations are satisfied for function u(x,y,t) and 

its first order spatial derivatives

ux{xi,yj,t) = ial-u{xkjyj,t)
(3.16)

(3.17)
Uy(.Xi ^y j ft') ^ cijk ‘ u(^Xi ^y k ft')

k=i

for i = 1, 2, —, N; j = 1, 2, —, M 

where axik, ayjk are the weighting coefficients related to ux(xj,yj,t) and uy(xi,yj,t) respectively. 

If all the base polynomials <l>ij(x,y) satisfy equations (3.16), (3.17), then so does any 

polynomial in VNxM. Substituting d>ij(x, y) into (3.16), (3.17) leads to

J.aik-rj{xk) = r(l)(xi)
(3.18)
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(3.19)
yLayik-sj(yk) = sT(yi)
k=l

where represents the first order derivative of rj(x) at x; and Sj^'^Yi) represents the first

order derivative of Sj(y) at yj. From (3.18), (3.19), it is obvious that axik or ayjk is only related 

to rj(x) or Sj(y). Hence the formulation of the one dimensional case can be directly extended to 

the two dimensional case, that is

M(1,(x,) ^ ^ .— , forj I
(3.20a)

a
iXi-Xj)- M (xj)

da dij

for i, j = 1, 2, -, N
(3.20b)

y __
Cl a

p (y!)

y
da

Cy, y' /,<1) (yy)
Af

’ = - Xa’
for i, j = 1, 2, —, M

forj ^ i
(3.21a)

(3.21b)

where

Mm{Xi)= ii(x-A:;)

M

p0)(yi) = n {yi-yJ)
Similarly, for the second or higher order derivative the recurrence relationship of the weighting 

coefficients can be obtained as follows
(n-l) w

t(n) ___ M . /■ ___ IJ(n) M / x (^“0yvij = «■ idij ■ Wii - ■ j * i
Xi - Xj

for n = 2, 3, —, N-1; i, j = 1, 2, —, N

(3.22a)

(3.22b)

---- (m-l)
W.,

wr = m-(ayj-wT-i)-----,

u
—('") _ V —Wii =- ^Wij

for m = 2, 3, M-l; i, j = 1, 2, —, M

j * i
(3.23a)

(3.23b)
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where Wjj(n) are the weighting coefficients of the nth order derivative of u(x,y,t) with respect to

-----(m)

X at Xj, Yj, namely ux(n)(xi,yJ-,t), and wv the weighting coefficients of the mth order derivative 

of u(x,y,t) with respect to y at Xj, yj, namely uy(m)(xi,yj,t). They satisfy

u[n) {xi,yj,t) = 'L wT -uix^yjj)
k=l

u\m) (JC.,, 0 = i wf ■ u(xi, yk, t)
k=\

for i = 1, 2, N; j = 1, 2, M; n = 1, 2, N-1; m = 1, 2, M-1.

Similar formulations can be obtained for the three dimensional case.

(3.24)

(3.25)

If the functional values at all grid points are obtained, it is easy to determine the functional 

values in the overall domain in terms of the polynomial approximation, i.e.

u{x,yj,t) = 'tu{xi,yrt)-ri{x) , j = 1, 2, M 
1=1 
M

u(xi,y,t) = 'Lu(xi,yj,t)-sj{y) , i = 1, 2, •••, N
;=i 

N M

(3.26a)

(3.26b)

u(x, y, 0 = X X m(x., , 0 • r, (x) ■ Sj (y)
■=i M (3.26c)

where rj(x), Sj(y) are the Lagrange interpolated polynomials along the x and y direction

respectively.

3.5 Comparison with the Highest Order Finite Difference Scheme

For the one dimensional case, supposing the whole domain has N grid points, x1, x2, •••, xN. 

The (N-1 jth order finite difference scheme for the first order derivative can be written as a linear 

sum of the functional values at N grid points, which has the same form as (2.1) where the 

weighting coefficients are determined by the Taylor series expansion which is usually used in 

the design of the low order finite difference schemes. Using a Taylor series expansion, u(xj,t) 

can be expressed as

u(xj,t) = u{xi,t) + uwixij)-(xj-xi) + --- + u{k)ixi,t)-{xrxi)k / A:!
H------f w<w 1)(xi>0 ■ ixj~Xi)N 1 / (N -l)l-\-RN (3.27)

where u(k)(xi,t) is the ^th order derivative of u with respect to x at xi, RN is the truncated error.
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and can be written as

R, = u'’'(.il,tHx-xf IN\ , ^Jslx„xl] 
Substituting (3.27) into (2.1) yields

N

Ux (x., 0 = X ttii •{u{Xi,t)+ Xi) + --- +

(3.28)

y=i

u(N-1) (xi, t) • (x-xd / (N-1)\+Rn} (3.29)
In order to keep the right side of (3.29) consistent with the left side of (3.29) with (N-1 jth order

accuracy, we set

X ttij = 0
y=i

N

X Qij • {Xj - X.) = 1
y=i

AT

yLaij‘{x-Xi) =0,k = 2,3,---.N -1
1=1

for i = 1, 2, N.
(3.30)

Equation set (3.30) is another equation system for the determination of the weighting 

coefficients ajj which are derived from the Taylor series expansion.

As stated above, the equation system for the determination of a^j derived from one set of base 

polynomials is equivalent to that derived from another set of base polynomials. We will choose

only one equation system (2.2) obtained by the base polynomials xk, k = 0, 1, —, N-1 and 

prove that this equation system is equivalent to (3.30) given by the highest order finite 

difference approach.

(3.31)

It is obvious that the first equation of (2.2) and (3.30) are the same, i.e.
N

X ttij = 0

Furthermore, it can be shown that the second equation of the two systems are the same, i.e.
N N N N

X a.; • (jC; - x) -1 = X a,y • Xj - (X a^) • x -1 = X aiy • -1 = 0 
1=1 1=1 1=1 1=1 (3.32)
Now, assuming that the first (p+1) equations of the two systems are the same, that is

X ai} ■ (xj-Xi^ = ^aij- x]-k- x*'1 = 0
1=1 1=1 (3.33)
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for k =0, 1, —, p; i = 1, 2, N 

then using the binary formulation

(a-by = ap-c1P-ap~ib + --- + (-l)k-ckP-ap-k-bk + --- + (-iy-bp 

here cpk is the combination of p terms taken k at a time,

and setting a = b = 1, the following expression will be obtained.

c;-c:+-+(-ir-c:+-+(-ir=i
Using (3.34), the (p+2)th equation of (3.30) can be written as

N

X Oij ■ (xj -X an • {xj-x)p+ = X an • xpyl - • Xi ■
y=i y=i

-■Cp-Xj • X, + • • • +----------- )
2 p + \

(3.34)

(3.35)

(3.36)
Substituting (3.35), (3.33) into (3.36) leads to 

Xan• (x-xy*' = Xa,-xf1 -(p +1)• X- \c\-cp + --- + (-1)‘+I• c* + • • • + (-1),’+1]
;=i ;=l

= 11 an' xp+1 - (p +1) • xf
M (3.37)

Equation set (3.37) demonstrates that the (p+2)th equation of the two systems are the same.

Since p is an arbitrary integer only if p < N-2, it has been proved that the two systems (3.30) 

and (2.2) are exactly the same.

Similarly, for the case of higher order derivatives, it is easy to show that the weighting 

coefficients Wjj^111) satisfy the following equation system, derived from the (N-m)th order finite 

difference scheme for the /nth order derivative in the overall domain

Xwr = 0
j=i

N

X vu-m) • (Xj-XiT = m!
7=1

N

Iwy^-ixj-xd =0 , k = 1, 2, ", N -1, butk m 
7=1 (3.38)

It is clear that the first equation of (3.38) is exactly the same as (3.12) for m = 2, —, N-1. To

prove that Wij^"1), for 2 ^ m ^ N-1, satisfies other equations of (3.38), it is supposed that 

wjjtm-i) satisfies those equations firstly, that is
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(m —1)! when k = m-1

_0 others
Using (3.11), now we have, for 1 < k < N-1
j=i

y=i

(3.39)

(3.40)
E wT (jCy-JCi)* = rn • wTX)' ^ eta' (x-Xi)k + w • E wly” l) ■ (xy-x,)*1
y=i y=i j=i

Substituting (3.39), (3.30), (3.12) into (3.40) leads to 

m! when k = m

0 others
Since m is an arbitrary integer only if 2 ^ m < N-1, it has been proved that Wjj^111) satisfies

(3.38) exactly. Thus it can be concluded that GDQ is an extension of finite difference methods, 
and is a highest order finite difference scheme.

(3.41)

As an example, we will show that the discretization of the first order derivative by the GDQ 

approach in the domain [xj.j, xi+1] is the same as that given from the second order finite 

difference scheme. Clearly, the domain [xi_1, xi+1] includes three grid points Xj.j, xj, xi+1, and 

it is known that any smooth function in this domain can be approximated by a polynomial of 

degree 2, which constitutes a 3-dimensional linear vector space. Thus the weighting 

coefficients of the first order derivative for this specific case can be determined as follows 

according to formulation (3.4)
M(x) = (x-xi.1),(x-xi)*(x-xi+1) (3.42)

M(1Kxi.1) = (Xj.j -XjHxi.j -xi+1) (3.43)

M1)(xi) = (xi-xi.1Hxi-xi+1) (3.44)

M(1)(xi+i) = (xi+1 -xiAy(xi+1-xi) (3.45)

and

\i-i = -A2/[(A1+A2)A1] (3.46)

ai,i+i = Aj /[(A j+A 2) A 2] (3.47)

ai>i = (A2-A1)/(ArA2) (3.48)

where

Ai =xi-xi.1
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(3.49)

A2 = xi+i-xi

Hence, the first order derivative of a function f can be approximated as 

fx(xi) = 'LuiMj- f{xi+j)
j=-l

It is easy to show that (3.49) is exactly the same as that from the second order finite 

difference scheme and if the grid is uniform, (3.49) can be reduced to 

fx(xi) = 0.5-[f(xi+1) - f(xi_1)]/A (3.50)

where A = Ai = A2

which is the same as used in the finite difference scheme. In the same manner, the 

discretization of the first order derivative at Xj.j and xi+1 can be written as

A.2 Ai + A2 Ai + A2
/.(:ciJ = -------------- f(xiJ +-------- fU)-

fx ixi+l) =

(Ai + A2) • A 

A2
a.-a2

“ • / (j^i+l)

(Ai + A2) • A2 (3.51)
Ai + A2 2A2+Aj

/(jCi-,)  ---------------/(Xi) +--------------------------/(xi+i)

(A: + A2)-A, ArA2 (A, + A2)-A. (3.52)
which are exactly the same as those from the second order finite difference scheme. For

the overall domain case, it is suggested that such a domain can be divided into N-1 elements

with grid points, Xj, xN. At location Xj, i = 2, 3, •••, N-1, the first order derivative of a

function can be discretized by (3.49) in the element [xj^, xi+1]. It is noted that in the case

here, the two neighbouring elements [xj.j, xi+1] and [xj, xi+2], used for the discretization

of the first order derivative at collocation points Xj and xi+1, are overlapped with the region

of [Xj, Xj+1]. This behaviour is different from the standard finite element approach where

the neighbouring elements are patched. Similarly, at xj and xN, the discretization of the

first order derivative of a function can be obtained by (3.51) in the element [xj, x3] and by

(3.52) in the element [xN.2, xN]. It can be concluded that any higher order finite difference

scheme can be designed using this technique in a straightforward way.

3.6 Specific Results for Typical Distributions of Grid Points

In this section, three specific formulations of the weighting coefficients will be given for 

three typical distributions of grid points: uniform grid; the coordinates chosen as the roots of 

Tn(ti) or ITn(ti)I -1, where Tn(t|) is an Nth order Chebyshev polynomial. Since the complete
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weighting coefficients of the second and higher order derivatives can be calculated from 

those of the first order derivative, and that for the multi-dimensional cases, each direction can 

be treated as in the ID case, then only the weighting coefficients of the first order derivative 

in the ID case are considered.

Case I: Uniform Grid

By a uniform grid it is meant that the grid has the same step sizes. Thus setting 

Ax = x2 - xx = Xj - Xj.! = xN - Xjyf.!, etc.,

one can obtain 

Xj - Xi = (j-i)-Ax

M(!>(Xi) = (-lf-i-(Axf-1-(i-l)!-(N-i)! , i = 1, 2, -, N 

Thus

(/-l)!-(iV-0!>+;a, = (-1)
Ax-(i- j) • {j -1) !• (A^ - j)! 

for i, j = 1, 2, N, except j ^ i
(3.53a)

da la. » i 2, ■N
J=UJ*i (3.53b)

Case II: Coordinates Chosen As the Roots of |TN(ii)| - 1

An iVth order Chebyshev polynomial can be written as 

Tn(ti) = cos(N0) (3.54)

with T) = cos 0 , -1 < T] < 1 

Setting ITN(r|)l = 1 yields 

N0 = jTt , j = 0, 1, N 

i.e. T|j = cos(j7c/N) , j = 0, 1, -, N

where Tij is the coordinate of the grid point in the domain [1, -1]. In this case, the Lagrange 

interpolated polynomial can be written as
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(-iy+1-(i- 772) r^)(7]) . /i ,
rj('n) =------------;;------------------- ,J = 0,1, •■',N

Cj-N ■(ti~ Oj)

where Tn(1)(T|) is the first order derivative of Tn(t]), and 

2 when j = 0, N

_1 others
Thus (3.4) can be reduced to

(3.55)

Cj =

Clij
cj-d-rij)

, i,j =0, 1, ■■■, N, but j i

au = - %aij , i = 0, 1, •",N

(3.56a)

(3.56b)

It can be seen that (3.56a) is the same as that deduced from the pseudospectral Chebyshev 

method [8]. To analyse this behaviour, it is known that both spectral methods and finite 

element methods are based on the principle of the weighted residuals. Spectral methods can 

be considered as an extension of finite element methods. The difference is that the spectral 

methods include only one element while finite element methods include many elements. As 

shown in section 3.5, finite difference methods can also be considered as "finite element" 

methods which are different from the standard approach in that the elements in a finite 

difference method are overlapped while the elements in a standard finite element method are 

patched. But if the whole computational domain is composed of only one element, both 

finite difference methods, and finite element methods in which the weighting function is taken 

as the delta function, should give the same results. This is because in this case, one 

overlapped element and one patched element are the same. From this analysis, it is shown that 

the GDQ approach should give the same results as the spectral collocation methods if the same 

distribution of grid points is used, since they can be considered as an extension of the 

finite difference and finite element methods with only one element. This phenomenon is 

confirmed in the research which is reported above.

If the physical domain is not [1,-1], but [a,b],then we need to use the following transformation 

X = 0.5-(b-a)-(l-Tj) + a , where x is the physical coordinate

The weighting coefficients a‘] in the physical coordinate system can be written as
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Qij = -2 • Qij lib-a) , i,j = 0, 1, -",N.

Case III: Coordinates Chosen As the Roots of Tn(ti)

(3.57)

Setting TN(ri) = 0 yields

N0 = 0.5-(2j-l)7t , i.e. Tij = cos[0.5-(2j-l)7i/N] ,j = l,2,N 

It should be noted that Tij is in the domain [t]!, tin], where rj! = cos(0.57t/N), T|n = -Tij, 

and T\i ^ 1. In this case, the Lagrange interpolated polynomial can be written as

rjil) =-----------------------------
N (71-71.)

Then (3.4) can be reduced to

, j = 1, 2, ", N.
(3.58)

(-l)y+' (I-772)12
aij =---------------rn . L j = N, butj It i

(ni-'nj)i\-7]i) (3.59a)
N

da ^ Clij j 7 — 1, 2, ■", N
(3.59b)

Similarly, if the physical domain is [a, b], using the following transformation 

Tj = d2-(x-a)/(b-a) + di, where d: = cos[0.5tc/N], d2 = - 2dj,

the weighting coefficients aij in the physical coordinate system can be written as

Qij = d2 • a<j I(b- a) =-2cos[0.5-tuIN]-aiJl(b-a) 
for i, j = 1, 2, N.

(3.60)

4. ERROR ESTIMATIONS

The theory and details of GDQ have been described in the previous sections. The errors of 

the approximations for a function and its derivatives will be estimated in this section.

4.1 The Function Approximation

Firstly, we will discuss the approximation error when f(x) is approximated by an (N-1 )th
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order polynomial, particularly by the Lagrange interpolation polynomial 

PNf = 'Lf(xi)-ri{x)
(4.1)

We define the approximation error of f(x) as 

E(f)=f(x)-PNf. (4.2)
If it is supposed that the A^th order derivative of function f(x) is a constant, say K, then using 

a Taylor expansion, we can obtain

f(x) = /(C) + /(I) (C) -(X-€) + ■■■ + fk) (c) • (x-c)‘ !k\+---

+ /<w_,) (C) • (.x-c)N-x I {N !+ fN\^) • {x-c)N / N!
= mo + nhX + rriiX2— + rriN-i • xN^1 + ^• jcw / ! (4 3)

where c is a constant, and ^ G [x, c]. Since (4.1) is exactly satisfied for a polynomial of degree

less than or equal to N-1, we have

E(xk) = 0, when k = 0, 1, —, N-1. (4.4)

Substituting (4.3) into (4.2) and using (4.4), we obtain 

E(f) = K-E(xn)/N! (4.5)

where

(4.6)
E(xN) = xN -^x1! ■ r, (x)

1=1

On the other hand, substituting the (N-1 )th order polynomial g(x) = xN - (x-x1)-(x-X2)-*-(x-xN) 

= xN - M(x) into (4.1), we obtain

^x^ Tfix) = xN -M(x)
1=1

Finally, we get
E(f) = K-M(x)IN!

(4.7)

(4.8)

In most cases, the Nth order derivative of f(x) is not a constant, but may be bounded. In this 

case, we can turn to another way to analyse E(f). For simplicity, we set (() (x) = and define 

the function F(z) as
F(z) = f(z) - ([) (z) - a-M(z) (4.9)

Clearly, when z = x:, x2, •••, xN, F(z) = 0. If we set F(x) = 0, we get

E(f) = f(x) - PNf = f(x) - (j) (x) = a-M(x) (4.10)
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Since F(z) has N+1 roots in the domain, by repeated application of Rolle’s theorem, the Nih 

order derivative of F(z), F(N) (z), is found to have at least one root lying between Xj and xN. 

Let ^ denote this point. We have

F(N)(^) = 0. (4.11)

From (4.9), we obtain

a = FN)(4)/N! , (4.12)

so, E(f) = m (^)-M(x)/N! . (4.13)

Generally, ^ is a function of x.

4.2 The Derivative Approximation

We define the error for the mth order derivative approximation as 

dmf dm(PNf) dmf dm(l>
d X dx dx dx

where m = 1, 2, —, N-1. Generally, ED(m)(f) can be written as

E°(f) m' dx-

(4.14)

(4.15)
Since ^ is an unknown function of x, it is difficult to estimate ED(m)(f) using (4.15). As a 

special case, if we assume that the Nth order derivative of f(x) is a constant, namely K, then 

from (4.8), we get

ED(m)(f) = K-M(m)(x)/N! (4.16)

Although (4.16) is satisfied for the condition of f(N)(^) = K, it is useful in the error analysis. 

Firstly, (4.16) has no restriction on x. In other words, x can be any coordinate in the domain. 
Secondly, similar to the analysis of the order of the truncated error in a low order finite 

difference scheme, when the order of the tmncated error caused by GDQ is studied, we can 

only consider the (N+1 )th term in the Taylor series expansion though this term is not the exact 

error. The (N+1 )th term of the Taylor series expansion is Fn)(c)-(x-c)n/N!, where c is a

constant. So, FN)(c) can be treated as a constant in this case. Thus the analysis of the function 

and the derivative approximations is the same as that shown above. For a more general case.
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we can use a similar method as in the analysis of the function approximation to do it. Since 

g(z) = f(z) - (]) (z) has N roots in the domain, according to Rolle's theorem, its mth order 

derivative g(^rn)(z) has at least (N-m) roots in the domain, namely, Xj, X2» XN-m- Thus the 

function

F(m)(z) = g(m)(z) - 2-M(z) = Tm^(z) - (j) (m)(z) - a-M(z) (4.17)

where

M(z) = (z-x1Hz-x2)-(z-XN-in) ’

vanishes at xi, X2» XN-m- Now, if we set F(m)(x) = 0, where x is different from Xj, X2» ■"> 

xN.m, then F(m)(z) has (N-m+1) roots, and

ED(m)[f(x)] = f(m)(20 - <|) = a-M(x) (4.18)

Using Rolle's theorem repeatedly (N-m) times, the (N-m)ih order derivative of F(m)(z) is found 

to have at least one root thus 

a = f(N)(^)/(N-m)!

ED(m)[f00] = f(N)(^)-M(20/(N-m)! (4.19)

Equation (4.19) is satisfied for x ^ Xi» X2> XN-m • This is guaranteed if x is outside the 

domain of xj, X2» •"> SN-m.

If it is assumed that all the Xj and x are in the interval h, and the Nth order derivative of function 

f is bounded, then

I FN^(^) I < C, where C is a positive constant 

IM(m)(x) I < N-(N-l)-(N-rn+l)-hN-m

IM(20 I < hN-m

so

ChN-m

\ET(f)\s (N-my. 
for 1 < m < N-1

(4.20)
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5. EIGENVALUES OF SPECIFIC GDQ SPATIAL DISCRETIZATION MATRICES

Time-dependent problems are usually well-posed by the equation 

du
— = L{u)
dt (5.1)

with proper initial and boundary conditions, where L is an operator which contains the
spatial part of the partial differential equations. L is generally a non-linear operator. After
discretization by GDQ and linearization of the non-linear terms, (5.1) can be transformed
into a set of ordinary differential equations in time

d\]
— = AU + Q
dt (5.2)

where U is the vector of the functional values at interior grid points, Q contains non-
homogeneous and boundary values and A is a matrix. According to the stability analysis to
(5.2), it is defined that a method is called A-stable if the region of absolute stability
includes the region Re{ XAt} < 0 (whole left half plane), where A, is an eigenvalue of A.

Furthermore, a method is said to be stable for a particular problem if, for sufficiently small

At > 0, the product of At times every eigenvalue of A lies within the region of absolute

stability, usually with Re{X At} < 0 (part region of left half plane). Thus it is very useful 
to analyse the eigenvalue structure of the GDQ spatial discretization matrix when its 

stability is studied. In the following, we will study the eigenvalues of three basic GDQ spatial 
discretization matrices.

5.1 The Convection Operator

Here L(u) is chosen as a convection operator

du
L(u) ------- , on [0, 1]

dx
with Dirichlet Boundary condition

(5.3)

u(0)= f(x) (5.4)
Firstly, we consider the three typical distributions of grid points given in section 3.6 to study 

the influence of the grid points
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Case I : basic grid is generated by ITn(ti)I = 1;

Case II : basic grid is generated by TN(ri) = 0;
Case m : uniform grid.

The eigenvalues with grid of case I are plotted in Fig. 1. Fig. 2 and Fig. 3 show the 

eigenvalues with grid of case II and case III respectively. It is clear, from Fig. 1, that the real 
parts of all the eigenvalues of case I are strictly negative. This is not true for cases II and HI. 
In fact, the real part of the maximum eigenvalue for cases II and HI is positive although the 

modulus of the maximum eigenvalue of these two cases is less than that of case I. It is noted 

that, for cases II and III, the maximum eigenvalue does always lie in the unstable region. 
This behaviour is independent of the number of grid points used. Thus it seems to be true 

that the distribution of the grid points can greatly influence the stability behaviour of a global 
method such as GDQ. It is also found that the minimum step size near the boundary, for 

cases n and HI, is larger than that for case I.

Here, we pose a question: is the above observation likely to be a major reason to cause 

stability problems arising from the use of cases II and III? To study this, we introduce a 

transformation

X = (1 - a)-(3-x2 - 2-x3) + a-x , a ^ 0 (5.5)

where x is the transformed coordinate. When a < 1, the transformed grid is stretched near the 

boundary (i.e. grid points are more concentrated near the boundary) and when a > 1, the 

transformed grid is relaxed near the boundary. Using (5.5), we can get 

Case IV : Transformed from Case II with a < 1;

Case V : Transformed from Case in with a < 1.
To investigate the effect of the minimum step size, under the condition of stability, on the value 

of the modulus of the maximum eigenvalue, we introduce 

Case VI : Transformed from Case I with a > 0.

Fig. 4-6 display the eigenvalues of cases IV, V and VI. In these cases, the real parts of all 
the eigenvalues are strictly negative. It is shown in Fig. 6 that when the minimum step size is 

relaxed near the boundary, the value of the maximum eigenvalue is reduced, thus the time 

step size is relaxed. It can be concluded from Fig. 4-5 that the stretched grid near the
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boundary can improve the stability. From here, a question may be posed: what is the 

behaviour if the grid is stretched at other points? To study it, we introduce another 

transformation, which stretches the grid near the middle point

X = ^ = 2*(1 - p) (x2 - x) + P-x , p ^ 0 , X < 0.5 (5.6a)

X = 1 - ^ , X > 0.5 (5.6b)

Using (5.6), we obtain case VII as
Case VII : Transformed from Case HI with P < 1.

Fig. 7 shows the eigenvalues of case VH. Obviously, the grid stretched near the middle 

point does not improve the stability behaviour. Actually, the real part of the maximum 

eigenvalue for all the cases is always positive. When N becomes a large number, the structure 

of the eigenvalues tends to be symmetrical about the origin.

5.2 The Diffusion Operator

The diffusion operator is chosen as 

d2u
L(u) =

dx2
on [0, 1]

The boundary condition we will impose is of Dirichlet type 

u(0) = u(l) = 0 

or of Neumann type

du du— (()) = —(1) = ° 
dx dx

(5.7)

(5.8)

(5.9)

When the grid of case I was used, the eigenvalues for both the Dirichlet and Neumann 

boundary conditions are real negative numbers. But the Neumann boundary condition 

can give smaller eigenvalues than the Dirichlet boundary condition, thus the former may 

allow a larger time step size to be used. For example, the value of the maximum eigenvalue 

of N = 31, i.e. -1.5443xl05, for the Dirichlet condition, can be reduced to -4.6665X104 for

the Neumann condition. This is also the case when the grid of case II was used in which the 

eigenvalues for the Dirichlet condition are real numbers but are not for the Neumann 

condition. When N = 31, the maximum eigenvalue is (-5.5389 xlO4, 0) for the Dirichlet
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condition, and (-l.dSOlxlO4, 8.0125xl03) for the Neumann condition. Although the

Neumann condition can give smaller eigenvalues, it may cause stability problems. When the 

grid of case III was used with the Dirichlet condition, the real part of all the eigenvalues are 

negative, but when the Neumann condition was applied, the real part of the maximum 

eigenvalue is positive which can cause the computation to be unstable. Fig.8 shows the 

eigenvalues with grid of case in for the Dirichlet and Neumann conditions.

5.3 The Convection-Diffusion Operator

(5.10)

We now consider the convection-diffusion operator 

d2u du
L(u) = V-------------, on [0, 1]

dx2 dx
with a Dirichlet type boundary condition. When v = 0(1), this equation is dominated by 

convection and diffusion. When v « 0(1), this equation is mainly dominated by convection. 

It is found that when v = 0(1), the real parts of all the eigenvalues for all of the cases 

studied are strictly negative, and the case HI gives the smallest value of maximum 

eigenvalue which then allows the use of the largest time step size, but when v is very small, 

the real parts of some eigenvalues may be positive, leading to a stability problem. It is 

found that the minimum v for keeping stability is greatly affected by the distribution of 

grid points. For example, to obtain a stable solution, the minimum value of v is around 0.05 

for the grid of case ni, and 0.0015 for the grid of cases I and II when N=21. Thus for the 

case of very small V, the uniform grid is not recommended. The instability problem can be 

removed by increasing the number of grid points for all the cases when v is very small. If 

the number of grid points is kept the same, it is useful to explore the behaviour if the grid is 

stretched or relaxed near the boundary. We have found that, for the grid of cases II and III, 
the real parts of all the eigenvalues can be negative if the grid is stretched near the boundary. 
This is not true for the grid of case I. Fig. 9 - 10 show the eigenvalues of the convection- 

diffusion operator with V = 0.001 for the grid of case I. It is clear from these figures that, 

when N = 21, the real part of the maximum eigenvalue is positive, but when N = 31, the 

real parts of aU the eigenvalues are strictly negative. Keeping N = 21, when the grid is
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stretched near the boundary, then more eigenvalues lie in the right half plane, but when the 

grid is relaxed near the boundary, the real parts of all the eigenvalues are kept in the left half 

plane. It may be concluded that for the convection-diffusion operator, the stability can be 

improved by stretching the grid near the boundary for some cases of grid, and by relaxing 

the grid near the boundary for other cases of grid.

6. APPLICATION TO MODEL PROBLEMS

In order to validate the capability of GDQ for solving partial differential equations, two 

test examples, each of which has an analytic solution or has been well studied by other 

numerical methods, have been chosen for simulation.

6.1 Solutions of the 2D Burger's Equation

We consider the two-dimensional steady problem by solving the 2D Burger equation

Ut-|- C-Ux+ d-Uy = e-(Uxx + Uyy) (6.1)

with boundary conditions for t > 0
u(x,0,t)={l-exp[(x-l)-c/e]}/[l-exp(-c/e)], u(x,l,t)=0, 0 < x < 1

u(0,y,t)={l-exp[(y-l)-d/e]}/[l-exp(-d/e)], u(l,y,t)=0, 0<y<l.

The exact solution to (6.1) is

1 -exp[(x -1)• c/ e] 1 -exp[(y -\) dl e]
u(x,y) -------------------------------------------------------

1 - exp(-c /e) 1 - Gxp(-d / e) (6 2)
Using GDQ, we have employed the grid of cases I, II and III to simulate this problem, and 

found that, when N = 11, the allowable maximum time step size is l.lxlO-3 for case I,

3.2xl0'3 for case II and T.lOxlO 3 for case III, and that the converged results for all three

cases are nearly the same. This confirms the findings from the stability and eigenvalue 

studies in the above section. Table I lists the computational results using the grid of case HI 
with N = 11. Some exact results and numerical results given by a time-split MacCormack 

scheme are also included in this table. For the finite difference simulation, the allowable
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Table I The Steady Solution of 2D Burger's Equation 

c = 1.0, d = 2.0, e = 0.5

y 0.20 0.40 0.60 0.80

X Computed by GDQ (N = M == 11, CPU = 0.44 sec.)

0.20 0.901911 0.854935 0.750394 0.517749
0.40 0.789693 0.748554 0.657015 0.453316
0.60 0.622288 0.589865 0.517726 0.357209
0.80 0.372555 0.353141 0.309950 0.213851

X Computed by FD1 (N = M = 51, CPU = 17.15 sec.)

0.20 0.901928 0.854973 0.750462 0.517836
0.40 0.789720 0.748616 0.657117 0.453437
0.60 0.622318 0.589932 0.517833 0.357328
0.80 0.372578 0.353191 0.310026 0.213933

X Exact

0.20 0.901916 0.854945 0.750410 0.517764
0.40 0.789702 0.748575 0.657046 0.453345
0.60 0.622299 0.589890 0.517764 0.357244
0.80 0.372563 0.353160 0.309979 0.213878

maximum time step size was used. The CPU time required on the IBM 3090 is also shown in 

the table. It is clear that the GDQ results are more accurate than the finite difference results 

even though fewer grid points are used, and that they result from considerably less 

computation time.

6.2 Solution to the 2D Incompressible Navier-Stokes Equations

The GDQ is now applied to solve the driven flow in a rectangular cavity. This is a standard test 
problem in CFD and it is governed by the Navier-Stokes equations. The non-dimensional 
vorticity-stream function formulation of the 2D Navier-Stokes equations can be written as

Second Order Time-Split MacCormack Finite Difference Scheme
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cot+ U-0)X+ v-0)y= V20)/Re (6.3a)

V2v = 0) (6.3b)

where V2 is the Laplacian operator, O), \|/ and Re the vorticity, stream function and Reynolds

number; u, v are the components of the velocity in the x and y direction, which can be 

calculated from the stream function

u = V|/y, V =

with the boundary conditions

\|/ = \|/x=0, atx = 0, 1, 0<y<l (6.4a)

\j/ = \|/y = 0 , aty = 0, 0<x<l (6.4b)

V|/ = 0, \j/y = l, at y = 1 , 0<x<l (6.4c)

Clearly, the two comers on the upper wall are singular points which in a numerical technique 

normally cause difficulties in treating the boundary conditions. In numerical simulation, the 

boundary conditions for co can be obtained from equation (6.3b). At each solid boundary there 

is a boundary condition for co and there are two boundary conditions for \|i (see (6.4)). Using 

GDQ, (6.3) can be discretized as

d(D‘j (1) V-(l) 1

-----+ uij-L w,* a>kj + \ij-L Wjt cOik = —
dt *=i Re

S w'f (Okj + S w'f CO k 
*=1,*=1

M

(6.5a)

(6.5b)
lwi.k)yfkJ + ^wJkil/1k = 0),
k=l k=l

Similarly, the boundary conditions for \\f (6.4) and CO (6.3b) can be discretized by GDQ. It 

is indicated that the Neumann boundary conditions for \ji can be combined to give the solution

1
y/2j =

AXN lk=l.k*2.N-l
X (wl‘* • - w^lk • • ¥k,j

1

¥,2 =

AXN
1

I (wZ-w?.l-wZ-wZ)-¥,j
k=ltk^2tN-\

M

AYM 

1
¥,u-, =

—(1) 1 V /—-rr*1) .-ttO) ““(1) \ x,r
^ M.k'¥i,k

k=\,k*2,M-\

AYM

M
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With the boundary conditions, the set of (N-2)x(M-2) ordinary differential equations for

CO was solved by the 4-stage Runge-Kutta scheme, and the set of (N-4)x(M-4) algebraic 

equations for \|/ was solved by LU decomposition. Noting that the Laplacian operator is a 

linear operator, we need only decompose the matrix of the equations system once and store the 

inverted matrix elements for all the following time steps. For numerical simulation, the 

solutions were obtained in the Reynolds numbers range from 100 to 1000. The grid, of case 

IV shown in above section was used for the GDQ simulation. Mesh sizes of 13x13, 17x15,

21x17 and 23x21 for Reynolds numbers of 100, 200,400,1000 were respectively used. The 

initial values for all variables in the interior points are chosen to be zero.

Table II Parameters Defining the Vortex Centre for Driven Cavity Flow

Re Reference Grid X y V CO

Ghia et al 129x129 0.6172 0.7344 -0.1034 3.1665

100 Present (GDQ) 13x13 0.6150 0.7350 -0.1035 3.1547

Present (FD) 51x51 0.6200 0.7400 -0.1030 3.1915

Kuetal 25x15 0.6023 0.6657 -0.1071 2.6345

200 Present (GDQ) 17x15 0.6000 0.6650 -0.1089 2.6686

Present (FD) 51x51 0.6000 0.6600 -0.1072 2.6673

Ghia et al 129x129 0.5547 0.6055 -0.1139 2.2947

400 Present (GDQ) 21x17 0.5550 0.6050 -0.1131 2.2794

Present (FD) 51x51 0.5600 0.6000 -0.1105 2.2428

Ghia et al 129x129 0.5313 0.5625 -0.1179 2.0497

1000 Present (GDQ) 23x21 0.5300 0.5650 -0.1184 2.0649

Present (FD) 51x51 0.5400 0.5600 -0.1103 1.9326
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For direct comparison of GDQ with conventional numerical techniques, numerical results 

using a second order time-split MacCormack finite difference scheme for vorticity 

equation and a preconditioning technique of SIP for the stream function, are also obtained for a 

uniform grid of mesh size of 51x51. By numerical experiment, the allowable maximum

time step size for the finite difference simulation was used. The parameters defining the 

vortex centre are compared in Table II. The comparison includes the results of the GDQ 

approximation, the finite difference approximation and results given by Ghia et al [9] and Ku 

et al [10]. It is clear from Table II that the GDQ approximation is very accurate even though 

just a few grid points were used, compared with the finite difference approximations using a 

large number of grid points. Table III shows the CPU time on the IBM 3090' by the 

GDQ approximation and the time-split MacCormack finite difference approximation. 
The mesh size used is the same as that given in Table II. We see, clearly, that the GDQ 

approach requires much less CPU time for accurate results.

Table III The CPU Time Taken by Driven Cavity Flow Simulation

Re 100 200 400 1000

GDQ (seconds) 4.27 6.69 16.99 33.79

FD (seconds) 442.73 536.98 601.50 732.90

7. CONCLUSIONS

The technique of differential quadrature has been extended to a general case. Generalized 

differential quadrature has overcome the difficulty of differential quadrature in obtaining the 

weighting coefficients of the first order derivative when a large number of grid points with an 

arbitrary distribution are applied. Furthermore, a recurrence relationship has been established 

for determination of the weighting coefficients of the second and higher order derivatives. It 
has been proved that the GDQ approach can be considered as the highest order finite 

difference scheme, and when the coordinates of grid points are chosen as the roots of a
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Chebyshev polynomial, the formulation of the first order derivative discretization obtained by 

GDQ is exactly the same as that given by the Chebyshev pseudospectral method. The 

error estimations for the function and derivative approximation have also been analysed. 

The distribution of the grid points was found to have a considerable influence on the stability 

condition. Grid stretching near the boundary can improve the stabihty, but the grid stretching 

near the middle point makes it worse even though the minimum step size is very small. 

Application of GDQ to solve Burger’s equation and the 2D Navier-Stokes equations showed 

that accurate numerical results can be obtained using just a few grid points, and require much 

less computational time.
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