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ABSTRACT

The global methods of generalized differential quadrature (GDQ) and generalized integral 

quadrature (GIQ) for solutions of partial differential and integral equations are presented in this 

paper. These methods approximate the derivatives and integrals by a linear combination of all 

the functional values in the overall domain, where the weighting coefficients can be readily 

identified. The error estimations of GDQ and GIQ have also been analysed. Application of 

GDQ and GIQ to solve boundary layer equations demonstrated that accurate numerical results 

can be obtained using just a few grid points.

1. INTRODUCTION

In seeking an efficient method using just a few grid points to get an accurate solution of a partial 

differential equation. Bellman et al [1] introduced a global method of differential quadrature, 

where any partial derivative at a discrete point is approximated by a linear weighted sum of all 

the functional values in the whole domain. The key to this scheme is how to determine the 

weighting coefficients. They suggested two methods to determine the weighting coefficients of 

the first order derivative. One method solves a set of algebraic equations. Unfortunately, when 

N (the number of grid points) is large the matrix of the equation system is ill-conditioned. The 

second method computes the weighting coefficients by an algebraic formulation with 

coordinates of grid points chosen as the roots of an iVth order shifted Legendre polynomial. 

This means that if N is specified, the distributions of grid points are the same for different 

physical problems. This restricts the application of, and hence provides a major drawback to, 

differential quadrature. In order to overcome the drawbacks described above, the generalized 

differential quadrature (GDQ) was then developed [2], and presented in this paper.

Based on the same concept as GDQ, the generalized integral quadrature (GIQ) was also 

developed. If a function is continuous in the whole domain, then the integral of the function 

over a part of the whole domain can be approximated by GIQ with high order accuracy even 

though the integral domain contains only two points. When the integral domain becomes the 

whole domain, GIQ reduces to the conventional integral quadrature. Obviously, GIQ greatly 

improves the accuracy of conventional integral quadrature when the integral domain contains
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just a few grid points.

The boundary layer approximation is still an interesting area in CFD because it greatly 

reduces the computational effort compared with a Navier-Stokes solver. For numerical solution 

of boundary layer equations, low order finite difference schemes are usually used to discretize 

the continuity, momentum and energy equations. The reason for not using the integral form 

of the continuity equation is that the normal velocity obtained by integrating the equation 

along the normal coordinate is less accurate because some integral domains do not contain 

sufficient grid points. As will be shown in this paper, the GIQ technique can provide a 

promising way to obtain the normal velocity accurately by an explicit formulation derived 

from the integration of the continuity equation. The determination of the normal velocity at any 

mesh point of the normal coordinate direction has the same order of accuracy. We will use 

both the GDQ and GIQ techniques in the normal direction for discretizing the derivatives and 

the integrals. In the streamwise direction, both GDQ and low order finite difference schemes 

can be used. We will show that the GDQ-GIQ approach can be applied for both the case where 

the dependent variable is the stream function and the case where the dependent variable is the 

primitive variable.

2. DIFFERENTIAL QUADRATURE

For the one dimensional unsteady problem. Bellman et al [1] assume a function u(x,t) to be 

sufficiently smooth to allow the following hnear constrained relation to be satisfied
N

Ux (jc,, 0 = X Qij • u(Xj J)
;=1 (2.1) 

for i = 1,2, —, N,

where ux(xitt) indicates the first order derivative of u(x,t) with respect to x at xj. The key 

technique to this procedure is how to determine the weighting coefficients Ujj. Bellman et al 

suggested two methods to carry this out. The first method is to let (2.1) be exact for test 

functions gk(x)=xk, k=0, 1, —, N-1, which leads to a set of linear algebraic equations

k-lXr GiJ ' Xj ^ ' Xi 
;=i

for i =1, 2, -, N; k = 0, 1, -, N-1.
(2.2)
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polynomial in VN can be expressed uniquely as a linear combination of rk(x), k=l, 2, —, N.

Equation (2.1) is a linear constrained relationship. If the base polynomials rk(x), k=l, 2, —, N, 

satisfy (2.1), so does any polynomial in VN, and if the base polynomial rk(x) is chosen to be xk- 

!, the same equation system as (2.2), given by Bellman's first method, can be obtained. For 

generality, here the base polynomial rk(x) is chosen to be the Lagrange interpolation polynomial 

M{x)
11/ \

(3.1)
rk (x) =

U - jc*) • M(1) (jf*) 
where M(x) = (x-x1)-(x-x2)"-(x-xN)

Mm(xk)= ri(A:t-A:y)
j=l,j*k

Xj, x2, —, xN are the coordinates of grid points, and can be chosen arbitrarily. 

For simplicity, we set
M(x) = N(x, xk)-(x - xk) , k = 1, 2, N, 

withiVfjc,-, Xj) = M<1>(xi)-6ij, where 5jj is the Kronecker operator.
Thus we have

M(m) (x) = N{m) (x, Xk) •(x-Xk) + m- N(m 1} {x, Xk) 
for m = 1, 2, —, N-1; k = 1, 2, —, N,

(3.2)

where M(m)(x), N^m)(x, xk) indicate the mth order derivative of M(x) and N(x, xk). Substituting 

(3.1) into (2.1) and using (3.2), we obtain

M(1)(jc,) ^ ^ •
----  , forj ^ i

(3.3a)
Clij

(x-Xj)-Mw(xj) 

Mi2)(Xi)
a,, =

(3.3b)2M(1,(jc,) 
for i, j =1, 2, N.

Equation (3.3) is a simple formulation for computing a^j without any restriction on choice of 

grid point Xj. Actually, if xx is given, it is easy to compute MC1)(x1), thus a1J for i ^ j. The 

calculation of ajj is based on the computation of the second order derivative M(2)(xi) which is 

not easily obtained. Next, it will be shown that aii can be calculated from (i ^ j).
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According to the theory of a linear vector space, one set of base polynomials can be expressed 

uniquely by another set of base polynomials. Thus if one set of base polynomials satisfies a 

linear constrained relationship, say (2.1), so does another set of base polynomials. Since the 

weighting coefficients are only dependent on the coordinates of grid points, if the number of 

grid points is given, the equation system for determination of ajj derived from one set of base 

polynomials should be equivalent to that derived from other sets of base polynomials. Thus ajj

satisfies the following equation which is obtained by the base polynomial xk when k=0 :

N
S fly = 0
y=i (3.4)

where aji can be easily determined from (i j). Equation (3.3) is a general form for

calculating ajj. It follows that if the coordinates of grid points are chosen as the roots of a shifted 

Legendre polynomial, (3.3) is exactly the same as that given by Bellman's second method.

3.2 Weighting Coefficients of the Second and Higher Order Derivatives

For the case of discretization of the second and higher order derivatives, the linear constrained 

relations are applied as follows

u'r''(x„t) = iwT'Ki‘(xl.t)
;=1 (3.5)

(3.6)
u[m){Xi ,0 = 5^ • u{xj, t)

y=i
for i = 1, 2, —, N,

where ux(m l)(xi,t), ux(m)(xi,t) indicate the (m-1 )th and wth order derivative of u(x,t) with 

respect to x at Xj, and wij(m'1), wjj^111) are the weighting coefficients related to ux(m4)(xi,t) and 

ux(m)(xi,t). Substituting (3.1) into (3.5), (3.6) and using (3.2), (3.3), a recurrence formulation

is obtained as follows

w-(m-l) rV'J

(m-l)

(.m) _ ^ ( (m-1)wij = w • (a,y • w„ - -) . y ^ i
(3.7)Xi - Xj

for m = 2, 3, N-1; i, j = 1, 2, —, N,
where ajj is the weighting coefficients of the first order derivative described above. Again, in 

terms of the analysis of the N-dimensional linear vector space, the equation system for wij(m)
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derived from Lagrange interpolated polynomials should be equivalent to that derived from the 

base polynomials xk, k=0, 1, —, N-1. Thus wij(m) should satisfy the following equation 

obtained from the base polynomial xk when k=0 :

lw!;) = o
From this formulation, Wji^111) can be easily calculated from Wij^"1) (j i).

(3.8)

4. GENERALIZED INTEGRAL QUADRATURE

It is supposed that a function f(x) is continuous in the overall domain [a, b], which can be 

decomposed into N-1 intervals with grid points as x1=a, x2, •••, xN=b. Since f(x) is 

continuous in the whole domain, it can be approximated by an (N-1 )th order polynomial. 
In particular, when the functional values at N grid points are known, f(x) can be approximated 

by the Lagrange interpolated polynomial which are related to the functional values at all grid 

points. As a result, the integral of this approximated polynomial over [xi, xj] may involve the 

functional values outside the integral domain. As a general case, it is assumed that the integral 
of f(x) over a part of the whole domain can be approximated by a linear combination of the 

functional values in the overall domain with the form

Xif(x)'dx=JJd-f(Xk)
Xl k=i (4.1)

where x;, xj are numbers that can be altered. When x;=a, Xj=b, (4.1) reduces to a traditional 
numerical integral. In a similar fashion to the analysis in the previous section, the (N-l)th 

order polynomial, which is an approximation to f(x), constitutes an N-dimensional linear 

vector space. Thus if all the base polynomials satisfy (4.1), so does any polynomial in the 

space. If the Lagrange interpolated polynomials, rk(x), k = 1, 2, —, N, are chosen as the base

polynomials, c^^'J can be determined by

(4.2)
d = J rk(x) ■ dx

Xi

The expression of Cjjd is very complicated. Therefore, it is difficult to calculate ckd accurately 

using (4.2). We will turn to another way to determine Cjjd. Setting
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fix) = du{x)

dx (4.3)
we see clearly that if f(x) is an (N-1 jth order polynomial, u(x) should be an iVth order
polynomial. Furthermore, if u(x) is an Nth order polynomial without a constant term, f(x) can
still be an (N-1 jth order polynomial. Thus it is supposed that u(x) has N terms with the form

u(x) = x-(a0+ai-x + — + aN_1-xN'1) (4.4)

It is clear from (4.4), that u(x) constitutes an N dimensional linear vector space. One set of its 

base polynomials can be chosen as
pk(x) = x-rk(x) , k = 1,2, N (4.5)

where rk(x) is the Lagrange interpolated polynomial. Similar to formulation (2.1), we can set
N

uAx) = 'Laij-uixi)
(4.6)

Formulation (4.6) can be written as a vector form 

Ux =AU (4.7)
where

U = [uixi),uix2),--,uixN)]T

Ux = [ux (xi), Ux ixi\ • • •, Mx ixN)T 

and A is a matrix composed by ajj.
Integrating (4.3) yields

u(x) = j; fit) ■ dt + Fic) (4.8)
where c is a constant, c G [a,b], F(c) guarantees that u(x) has no constant term. Setting

Xi X2 Xn

f1 =[] fix) • dx.lfix) • dx, • ”, \ fix)' dx]
c c c

I =[1,1,-, IF 

f = ux
then (4.7) can be written as 

f =A-(fI+F(c)-I) .

Setting 

Wl = A1 

we then obtain

(4.9)

(4.10)
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f = WI-f-F(c)-I .
The scalar form of (4.11) can be written as

(4.11)

Xi N
J f{x) 'dx=JJw\k‘ fixk) - F(c)
c k=l
for i = 1, 2, —, N.

Thus

(4.12)

(4.13)
(4.14)

J f(x) ■dx='Z (Wjk - Wik) • /(Xk)
x< k=l

cii = wIjk-wIik .

We will discuss how to determine A through the two following cases.

Case I: The Integral Domain not Including the Origin

Supposing b > a, it is assumed that the integral domain does not include the origin, i.e. a > 0 

or b < 0. Substituting (4.5) into (4.6) yields

aij = -- an , when i ^ j
Xj (4.15a)

1
a, = a„ + —

X. (4.15b)
for i, j = 1, 2, N.

Equation (4.15) requires xi ^ 0, for i =1,2, N. This is guaranteed by the condition of a > 0 

or b < 0.

Case II: The Integral Domain Including the Origin

If the integral domain includes the origin, (4.15) may be singular. This problem can be removed 

by the following transformation :
^ = x+ d (4.16)

where x is the transformed coordinate, and d is a constant which guarantees that the 

transformed integral domain does not include the origin, i.e. | = a + d>0or^ = b + d<0. 
Then (4.15) is held in the domain [a, Using (4.16), we get in this case, as

Xi + d
aij =

Xj + d
• au when i ^ j

(4.17a)
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1
au = a,i +

Xi + d
for i, j = 1, 2, N. (4.17b)

5. ERROR ESTIMATIONS

5.1 The Function Approximation

Firstiy, we discuss the approximation error when f(x) is approximated by an (N-l)th 

order polynomial, in particular by the Lagrange interpolation polynomial ;

(5.1)
PNf = X/(x)t,(a:)

«=1

We define the approximation error of f(x) as 

E(f)=f(x)-PNf . (5.2)

If it is supposed that the Nth order derivative of function f(x) is a constant, say K, then using 

a Taylor expansion, we can obtain

fix) = /(c) + f\c) .(X-€) + ■■■ + fk) (C) • {X-C)k I k\+---

+ f""' (C) ■ ix-c)N-1 / (N -1)!+ /<A', (4)-(x-c)n/N\
= m0 +nhX + m2X2----- (- mN-i • xN^1 + K -xN / N\

where c is a constant, and ^ G [x, c]. Since (5.1) is exactly satisfied for a polynomial of degree
less than or equal to N-1, we have

E(xk) = 0, when k = 0, 1, —, N-1. (5.4)

Substituting (5.3) into (5.2) and using (5.4), we obtain 

E(f) = K-E(x^)/N! (5.5)

where

(5.6)
E(xN) = xN - J. x^ • nix)

i=l

On the other hand, substituting the (N-1 )th order1 polynomial g(x) = xN - (x-x1)-(x-x2)—(x-xN) 

= xN - M(x) into (5.1), we obtain

lx--nix) = xN-M(x)
i=l

Finally, we get (5.7)
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E(f) = K-M(x)IN! (5.8)

In most cases, the A^th order derivative of f(x) is not a constant, but may be bounded. In this 

case, we can turn to another way to analyse E(f). For simplicity, we set (j) (x) = PNf, and define 

the function F(z) as
F(z) =f(z) - (t>(z) - a-M(z) . (5.9)

Clearly, when z = xx, x2, xN, F(z) = 0. If we set F(x) = 0, we then get
E(f) = fix) - PNf = f(x) -<l>(x) = a-M(x) . (5.10)

Since F(z) has N+1 roots in the domain, then by repeated application of Rolle's theorem, the 

Nth order derivative of F(z), F(N> (z), is found to have at least one root lying between x1 and 

xN. Let ^ denote this point. We have

F<N>(^) = 0. (5-11)

From (5.9) and (5.11), we obtain

a =fNH^)IN! , (5-12)

so, E(f)=fN>(^)-M(x)IN! . (5.13)

Generally, ^ is a function of x.

5.2 The Derivative Approximation

We define the error for the wth order derivative approximation as

E'-(f)-dmf dm^PNf)- = ^ ^
dxm dxm dxm dxm (5.14)

where m = 1, 2, -, N-1. GeneraUy, FD(m)(f) can be written as

1 dm[r\^)-M{x)\
E'o (/) = —--------- —----------

N\ dxm (5.15)
Since ^ is an unknown function of x, it is difficult to estimate FD(m)(f) using (5.15). As a 

special case, if we assume that the Nth order derivative of f(x) is a constant, namely K, then 

from (5.8), we get

Ejjm^(f) = K-M(m>(x)IN! (5.16)
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Although (5.16) is satisfied for the condition of f(N)(^) = K, it is useful in the error analysis. 

Firstly, (5.16) has no restriction on x, in other words, x can be any coordinate in the domain. 

Secondly, similar to the analysis of the order of the truncated error in a low order finite 

difference scheme, when the order of the tmncated error caused by GDQ is studied, we can 

only consider the (N+1 )th term in the Taylor series expansion though this term is not the exact 

error. The (N+1 )th term of the Taylor series expansion is Fn)(c)-(x-c)n/N!, where c is a 

constant. So, FN)(c) can be treated as a constant in this case. Thus the analysis of the function 

and the derivative approximations is the same as that shown above. For a more general case, 

we can use a similar method as in the analysis of the function approximation to do it. Since 

g(z) = f(z) - (]) (z) has N roots in the domain, according to Rolle's theorem, its mth order

derivative g(m)(z) has at least N-m roots in the domain, namely, Xi, X2* XN-m- Thus the 

function

p(m^(z) = g^mHz) - d-M(z) =fm^(z) - <j)(m^(z) - a-M(z) (5.17)

where

M(z) = (z-2L1Hz-£2)—(z-^N-m) •

vanishes at Xi, x2. •"> XN-m- Now, if we set F(m)(x) = 0, where x is different from x2, 

—N-m’then F(m)(z) has N-m+1 roots, and

ED(mHM)] = = a-m^) . (5.18)

Using Rolle's theorem repeatedly (N-m times), the (N-m)th order derivative of F(m)(z) is 

found to have at least one root thus from (5.17), (5.18), we have 

Q =fNH^)l(N-m)!

ED(mHm] = fN)( •M(^)l(N-m)! (5.19)

Equation (5.19) is satisfied for xly x2, SN-m •

5.3 The Integral Approximation

The error of the numerical integral of f(x) in the domain [xv Xj] is defined as

El if, Xi, X,) = 1 \f{x) - (pix)] ■ dx

-12-
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N
= jfix)-dx-JJ{wIjk-wIik)'f(xk)

k=l (5.20)
where wy1 is the weighting coefficient of the integral described in the previous section. For a 

general case, using (5.13), we get

1E, (/, a:, . = ^ • 1 M(x)dx
■/V • Xi (5.21)

If the integral domain is [x;, xi+1], then M(x) does not change its sign in [xj, xi+1]. By using the 

second mean-value theorem, (5.21) can be reduced to

fN\n) xTi
Eiif,Xi,Xi+i) = jM(x)-dx

^ J (5.22)
Generally, M(x) may change its sign in the domain [x^ Xj], but IM(x)l is always positive in the

domain. If it is assumed that lf(N)(^)l < C, then (5.21), (5.22) can be rewritten as

\Ei (/, *, <~i\M(x)\-dx

\Ei{f,Xi,Xi+i)\^
Nl

Xm

J M{x) • dx
Xi

(5.23)

(5.24)

6. SOLUTIONS OF BOUNDARY LAYER EQUATIONS

We now apply the GDQ-GIQ approach to solve the boundary layer equations. Two cases are 

considered, each of which is illustrated by a test example.

6.1 Stream Function Chosen as the Dependent Variable

For simplicity, we choose the Blasius boundary layer as a test example, which is governed by

drf dn’
with boundary conditions 

f=0,fT1=0, when J] =0

when T| —» 00

(6.1)

(6.2a)

(6.2b)
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Setting u = fT1 and introducing an unsteady term on the right side of (6.1), this equation can be 

written as the two following equations, which can then be solved by GDQ and GIQ.

dll d2 u du
— =---- + /-----
dt drf dri (6.3)
f = jydrj+f(,0) (64)

For numerical simulation, the infinite interval in the T] direction can be truncated to the finite 

interval [0, 3]. Using GDQ and GIQ in the domain [0, 3], we can discretize equations (6.3), 

(6.4) respectively as

d u u u
dt *=>

f j = X {Wjk - Wit) • Mi + /,

(6.5)

(6.6)
for j = 1, 2, -, M,

where M is the number of grid points, Wjj^1") are the weighting coefficients of the mth order 

derivative of the function with respect to T\ and Wjj1 are the weighting coefficients of the integral 

along the ti direction. The boundary conditions (6.2) become 

u1=0, uM=l, f!=0 (6.7)
which are easily implemented in the solution procedure. It is clear that there are two boundary 

conditions for u. As we will show, another boundary condition for u can be implemented if it is 

necessary. Referring to equation (4.12), the discretization of (6.4) can also be written as

fj = X W;* • Mi - /(O) + /! - X w'jk • Mt
t=i *=i

Equation (6.8) provides another boundary condition for u, i.e.
(6.8)

(6.9)
iwn-Uk = fi = 0
k=\

It is noted that if (6.8) is used, then (6.9) should be implemented as another boundary 

condition for u. The set of ordinary differential equations (6.5) can be solved by the 4-stage 

Runge-Kutta scheme. We have studied the difference between the use of (6.6) and (6.8), 
(6.9). It is found that when (6.8), (6.9) are used, that is, the three boundary conditions are 

employed, the allowable time step size is much larger than that when (6.6) is used, that is, 
only two boundary conditions are implemented. For example, when N = 12, the allowable
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time step size is l.SxlO*2 if (6.8), (6.9) are used, and is LOxlO 3 if (6.6) is used. As a result,

for the convergence criterion of the maximum residual reduced by 4 orders, (6.8) and (6.9) 

require 385 time steps and 1.03 seconds of CPU time on the IBM 3090, but (6.6) needs 5119 

time steps and 12.92 seconds of CPU time. In addition, it is found that (6.8), (6.9) can give 

more accurate results than (6.6). For the test problem, the exact value of the wall shear stress 

is 1.3284. Equations (6.8), (6.9) give 1.3286 using N = 12 while (6.6) gives 1.3298 using N 

= 12. Fig. 1 shows the computed and the exact velocity profile of the Blasius boundary layer. 

Good agreement between computed and exact solutions has been achieved.

6.2 Primitive Variable Chosen as the Dependent Variable

For demonstration, we consider the two-dimensional unsteady viscous flow past a circular 

cylinder started impulsively from rest. This problem has been chosen as a test example by 

many researchers for the study of unsteady boundary layer behaviour. Unlike the steady 

boundary layer equations, there are arguments as to whether there exists a finite time 

singularity in the solution of the unsteady counterparts. For the test problem, some 

researchers (e.g. Bodonyi and Stewartson [3], Liakopoulos [4]) claimed that there is a finite 

time singularity in the solution procedure, while others (e.g. Cebeci [5]) suggested that there is 

no finite time singularity.

The non-dimensional form of the governing equations for this problem [4] is

+ Vy = 0

U, + U-Ux + y •Uy = Ue'
due

dx
Mjry

with initial condition

u(x,y,0) = ue(x) = sin(x), (y ^ 0)

and boundary conditions 

u(x,0,t) = v(x,0,t) = 0 

u(x,oo,t) = ue(x) = sin(x)

u(0,y,t) = 0 .

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
The computational domain in the y direction can be obtained by truncating the infinite domain
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to [0, 35 ]. Using GDQ and GIQ in the y direction, (6.10), (6.11) can be discretized as

M

\ij = -X (w’jt - Wu) • (Mx X* + Vn

d Uii
- + M,y • (WxXy + V,y • X w'” • Mi* = sin(x) • COS(jr) + X w'f • Uik

k-l

(6.16)

(6.17)dt *=>
for i = 1, 2, -, N; j = 1, 2, -, M,

where N is the number of grid points in the x direction, M is the number of grid points in the y 

direction, wij(m) are the weighting coefficients of the /nth order derivative of the function with 

respect to y and wy1 are the weighting coefficients of the integral along the y direction. When

the derivative of ux is discretized by a second order finite difference scheme, the solution 

procedure can be marched along the x direction, but when GDQ is also used in the x 

direction, the marching technique is invalid. In this case, the 4-stage Runge-Kutta scheme 

can be used for the solution of the resultant ordinary differential equations.

The use of GDQ in the x direction is still attractive although it may increase the storage. 

Since GDQ can achieve the same accuracy using just a few grid points as a low order finite 

difference scheme using a large number of grid points, the total number of the degrees of 

freedom can be greatly reduced if GDQ and GIQ are used in all the coordinate directions. 

Thus the total storage and the computational efforts required may be reduced. For the 

present case, we will use GDQ and GIQ to discretize the spatial derivatives and the integral, 

and use the 4-stage Runge-Kutta scheme to solve the resultant ordinary differential equations.

For numerical simulation, the mesh size used is 21x31. It is found that reverse flow first

starts at 0=180° and time, t=0.644 which is in agreement with other researchers' results. As 

time increases, the point of zero wall shear moves along the surface of the cylinder towards the 

steady state value 0G = 104.5° (position of the Goldstein singularity). However, the 

computation cannot reach steady state resolution because the numerical instability breaks 

down the calculation at t = 3.0. Fig. 2 shows the instantaneous streamlines computed by the 

GDQ-GIQ approach. Clearly, when t = 2.5, some wiggles occur in the streamlines. This 

is because GDQ is a global method, and when the solution develops a singularity at a 

point, this singularity will spread in the whole computational field. To study this, we use a
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second order finite difference scheme to discretize the derivatives in the x direction, the 

derivatives in the y direction being discretized by GDQ. We call this scheme the GDQ-GIQ- 

FD approach for convenience. Figure 3 shows the instantaneous streamlines computed by the 

GDQ-GIQ-FD approach. The mesh size used is 81x31. Compared with Fig. 2, when t < 2.0,

the results for both approaches are nearly the same, but when t > 2.0, the GDQ-GIQ-FD 

approach gives a considerable improvement over the GDQ-GIQ approach. Fig. 4 displays 

the wall shear distributions. The solid lines in the figure are the results of the GDQ-GIQ-FD 

approach, and the symbols are the results of the GDQ-GIQ approach. It is clear that when t > 

2.0, the GDQ-GIQ results are less accurate. Fig. 5 shows the position of zero wall shear, 
where the dashed line is the position of Goldstein singularity. It is seen that the 

unsteady computation cannot reach the position of the Goldstein singularity. Table I lists 

the present and other researchers’ results of the position and the time of the zero wall 
shear.

Table I Comparison of the Time and Position of the Zero Wall Shear Stress

References 180° 166° 146° 138° 124° 110°

Bar-Lev and Yang [6] 0.644 0.660 0.778 0.876 1.204 2.188
Cebeci [5] 0.640 0.660 0.780 0.872 1.192 2.200

Present (GDQ-GIQ) 0.644 0.664 0.790 0.874 1.193 2.098
Present (GDQ-GIQ-FD) 0.644 0.668 0.791 0.878 1.196 2.204

7. CONCLUSIONS

The global methods of generalized differential and integral quadrature have been presented in 

this paper, based on the analysis of a polynomial linear vector space. GDQ approximates any 

spatial derivative at a collocation point by a linear sum of all the functional values in the whole 

domain, where the weighting coefficients of the first order derivative are given by a simple 

algebraic formulation, and the weighting coefficients of the second and higher order 

derivatives are determined by a recurrence relationship. If the function is continuous in the 

whole domain, then GIQ approximates the integral of the function over a part of the whole 

domain (including the case of a whole domain) by a linear sum of all the functional values in the
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whole domain. The weighting coefficients in GIQ can be determined from those of GDQ. 
Application of GDQ-GIQ approach to solve boundary layer equations demonstrated that 
accurate numerical results can be achieved using just a few grid points. In the applications of 

present scheme, the dependent variable can be the stream function or the primitive variable. It is 

found that when the computational field has a singularity at some point, the GDQ-GIQ 

approach is less efficient
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Glasgow and an ORS award from U. K. government during this study.
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Figure Captions

Figure 1 Velocity Profile of the Blasius Boundary Layer

Figure 2 Streamlines past a Circular Cylinder, Computed by GDQ-GIQ Approach.
(a) t = 1.5; (b) t = 2.0; (c) t = 2.5

Figure 3 Streamlines past a Circular Cylinder, Computed by GDQ-GIQ-FD Approach, 
(a) t = 2.0; (b) t = 2.5; (c) t = 2.8

Figure 4 Wall Shear Distributions of the Unsteady Boundary Layer.

Figure 5 Position and Time of the Zero Wall Shear.

Tables

Table I Comparison of the Time and Position of the Zero Wall Shear Stress
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