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Summary

The development of phase one of a new model for the prediction of the aerodynamic 

performance of horizontal axis wind turbines is described in the following report. At 
present the model is configured for performance prediction under steady axial flow 

conditions. Geometry prescription techniques, based on conservation of momentum, 
are employed to determine the shape of the turbine wake. This wake is modelled as a 

series of vortex filaments which, via the Biot-Savart relationship, allows the loadings 

on the turbine to be evaluated. As is the case with free wake models, a closed form 

solution is excluded due to the nature of the problem and iterative procedures are, 
therefore, used to obtain a good prediction. As well as a detailed description of the 

model, it’s structure and the numerical procedures employed are described. The results 

obtained from the scheme are satisfactory at this stage of development but further 

validation is required. The work described in this report is intended to act as the basis 

for the development of a more comprehensive prescribed wake model, which should 

yield results of similar accuracy to firee wake calculations while requiring only a fraction 

of the computational effort
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1. Introduction

The flow around Horizontal Axis Wind Turbines (HAWT's) is complex and includes 

several sources of unsteadiness. Factors such as atmospheric turbulence, wind shear, 
the influence of the turbine tower on the blades and the active yawing of the turbine in . 
response to large scale changes in wind direction, all contribute to the turbine operating 

environment. Additionally, in wind farms, the influence of the wakes from surrounding 

turbines may have a significant effect on blade inflow conditions. The cumulative effect 
of these phenomena results in the turbine blade experiencing unsteady loading, which 

has implications for both the aerodynamic performance of the turbine and the fatigue 

life of its structure.

In addition to the factors mentioned above, the practice of using blade stall as a method 

of regulating power output is another important influence on HAWT aerodynamic 

performance. Work carried out by Butterfield et al. [1] found that stall conditions on 

rotating wings differ significantly from those expected on wings in normal flight. No 

explanation of this phenomenon is available as yet, and so, prediction of this flow state 

is problematic. Moreover, if the turbine blades move in and out of stall at sufficiently 

high reduced frequencies, then the blades will be subject to dynamic stall. 
Investigations of this phenomenon have been carried out in the helicopter industry, but 
knowledge of its influence on the dynamic loading of wind turbine blades is limited.

The similarity between the aerodynamics of wind turbines, propellers and helicopter 
rotors has led to the adoption of similar methods of mathematical analysis. The simplest 
of these is momentum theory, which was first developed by Rankine in 1865. In this 

type of scheme, the rotor is represented as an actuator disk, across which exists a 

pressure drop. The flow through this disk is enclosed by a streamtube, which separates 

it from the freestream. The forces acting on the disk, the velocity at the disk and the 

power can then be evaluated by consideration of the mass flow rate, the change in 

kinetic energy and the momentum flux through the control volume. Momentum theory 

provides a good estimate of the average performance across the turbine blades. It's 

applications are, however, limited somewhat since it is unable to provide a more 

detailed indication of aerodynamic performance.

A modified version of momentum and blade element analysis, known as strip theory 

can be used to overcome some of the deficiencies of pure momentum models. This 

theory has evolved, but can be attributed to the original concepts of Lanchester and 

Flamm, with contributions from Joukowski and Betz. Examples of the application of





I
this analysis can be found in [2], [3] and [4], As with momentum analysis, the rotor is 

replaced by an actuator disk with the flow through the disk enclosed by a streamtube. 
This streamtube is sub-divided into a number of concentric streamtubes. The induced 

velocities at the disk are then calculated by equating the forces obtained from 

momentum theory with those from blade element theory at each radial section of the • 
disk. The velocity induced at the blade is considered to be uniform over the area of a 

given annular section.

Strip theory models are attractive due to their relative simplicity and the small amount of 

computing time required to obtain a solution. They have, thus, found much use in 

applications where the speed of calculation is of greater importance than accuracy. One 

drawback of strip theory, however, is that it does not directly take into account the 

induced effect of the turbine wake on the blades. The distribution of this induced flow 

is closely linked to the wake structure. The fact that strip theory models do not consider 
directly the wake structure imposes limits the application of this type of model, 
particularly in cases when the wake is concentrated near the turbine. In order to 

overcome this limitation, a mathematical model which includes a reasonable 

representation of the wake shape is desirable. One such group of models is free vortex 

or free wake models. This type of model employs vortex theory to obtain a detailed 

knowledge of the structure of the wake as a part of the model solution. As a result, a 

more realistic solution than is possible from the simple strip theory models may be 

obtained.

The strategy employed in free wake models is based on allowing the wake shape to 

deform under it's own influence until some steady state is achieved. From time zero, 
the induced effect of the wake on the blades is calculated at discrete azimuthal steps 

through application of the Biot-Savart law. The wake is gradually built up over a 

number of time steps as trailed and shed vorticity is added at each azimuthal position. 
The vorticity in the wake is modelled as a number of straight, finite vortex elements 

which are joined to form a piecewise continuous helical structure. An approximation of 

the wake shape is obtained at each time step by consideration of the induced effect on 

each wake element through successive application of the Biot-Savart law. Once a steady 

state representation of the wake structure is achieved a converged solution for the blade 

loadings can be obtained. Examples of the application of this type of model are detailed 

in [4], [5] and [6].

The value of free wake models lies in the detailed aerodynamic information which can 

be obtained from them. This type of model is, however, disadvantaged by the large





amount of computing time they require to achieve a solution. A less computationally 

intensive strategy would be to define the detailed wake geometry as part of the input to 

the problem rather than as part of the solution. Models which use this technique are 

termed prescribed wake models.

Central to the prescribed wake technique is the generation of mathematical functions 

which can give a good representation of the turbine wake geometry. Although the 

general nature of the flow behind a rotating system is known, this task is hindered by a 

lack of detailed knowledge of such flows. Through consideration of the induced 

velocity field at the blades and application of the principles governing fluid flow it is 

possible, however, to derive such functions. Once the the wake geometry is known, 
the wake vorticity and the rotor loads are calculated in the same manner as in free wake 

analyses. This technique has already been successfully applied to vertical axis wind 

turbine performance analysis, [7].

This report details the initial development stage of a prescribed wake model of a 

HAWT. The model, in its present form, is designed to estimate aerodynamic 

performance in steady, axial flow conditions. This represents the first stage in the 

development of a more comprehensive performance model which will calculate 

estimates of aerodynamic performance over a wide range of turbine cciTigurations and 

operating conditions. A detailed description of the model follows in Chapter 2.





2. Model Description 

2.1 Overview of Model

A prescribed wake model for the evaluation of the detailed aerodynamic performance of 

a horizontal axis wind turbine operating under axial flow conditions has been developed 

and is described below. The HAWTDAWG (Horizontal Axis Wind Turbine Directly 

Allocated Wake Geometry) model was developed using the following assumptions,

1. The flow is inviscid.

2. The fluid velocity is low enough for compressibility effects to be 

ignored.

3. The free stream flow is uniform and steady.

4. AH blades are equally spaced, have identical geometry and 

aerodynamic characteristics.

The strategy employed in the HAWTDAWG model is the use of mathematical functions 

to prescribe the geometry of the vortex wake based on blade induced velocities. This 

means that the fully developed wake structure is established without regard to the wake 

self-induced velocities, as is the case with free wake models and, consequently, 
computation time is substantially reduced. The wake geometry is obtained in an iterative 

manner, from initial blade conditions estimated by application of a blade 

element/momentum analysis.

On the basis of this calculation an initial wake shape is generated using a number of 

polynomials which define the axial and radial development of the wake as functions of 

the induced velocities at the blades. Once this wake structure is known, the individual 
wake elements are assigned values of vorticity, corresponding to the variation in 

spanwise blade loading. New estimates of the velocities induced on the blades due to 

the influence of the wake are then calculated using vortex theory. These estimates 

differ from the original momentum calculations and so, as indicated above, an iterative 

procedure is employed to obtain a converged solution corresponding to the wake 

geometry.





Once this has been achieved, a revised wake geometry is constructed. The prescription 

functions employed to generate the initial wake are independent of the method used to 

estimate the blade induced velocities and so they are again used to prescribe the new 

wake geometry. The wake vorticity is then assigned and the influence of the wake on 

the blades calculated iteratively using vortex theory.

The process of revising the wake geometry to obtain new induced velocity estimates is 

repeated until a global convergence criterion has been satisfied. Once the final wake 

geometry has been derived a prediction of the aerodynamic performance of the rotor in 

the specified flow field can be obtained.

2.2 Coordinate Systems

The model uses both cartesian (X,Y,Z) and polar (r,\|/,Z) coordinates systems as 

defined in figure 2.1. An Earth fixed cartesian frame of reference defines the gross flow 

field, and the local blade conditions are defined by a rotating cartesian frame. The axis 

of rotation of the system corresponds to the positive Z axis of the cartesian frames. The 

X axis of the rotating frame lies along the blades. All induced velocities and general 
rotor performance characteristics are described using the Earth fixed axis set while local 
blade characteristics are described by the rotating axis set. The polar coordinate system 

has it's Z axis coincident with those of the cartesian frames and r is defined as the radial 
distance from the Z axis to any point in the spanwise direction. describes the blade 

azimuthal position and is measured from the positive X axis of the Earth fixed cartesian 

system. Earth fixed parameters are transformed to rotating parameters using the 

following transformation

x‘ cosy/ sini//- O' X
Y = siny/ -cosy/ 0 Y
Z 0 0 1_ Z (2.1)

2.3 Blade Model

Each blade is divided into a number of spanwise elements, which are aerodynamically 

independent. Conditions are assumed to be steady around the blade azimuth and so the 

aerodynamic performance of the blade elements may be obtained from steady two 

dimensional aerofoil data. The performance parameters, such as wake induced velocity 

and blade loading are calculated at control points, positioned at the quarter chord of the 

mid span of each cell. Values obtained at a given control point are then assumed to be





uniform over the whole blade element associated with that control point. A finer 

distribution of elements at the blade tip is employed to accommodate the large gradient 
in blade loading and the consequent strong trailing vorticity associated with the tip 

region.

The blade elements are defined by the positions of a series of element boundaries along 

the blade. The blade root section corresponds to the first blade element boundary, 
which is positioned at 0.1 of the blade radius. The remaining element boundary 

distribution along each blade is achieved using the following relationship

r 2 .1— = — cos 
R K

1 - (i- I)'
NE (2.2)

where R = blade radius
NE = number of blade elements
i = element boundary number (i = 2 -> NE + 1)
r = i th element boundary position

A representative blade is shown in Fig 2.2

The bound vorticity, Fb, of each blade element is represented by a straight-line vortex 

which spans the element along the quarter chord line. The strength of the blade bound 

circulation is calculated using the Kutta-Joukowski theorem, which defines the 

relationship between the lift generated by an aerofoil and the circulation around it. For a 

blade element of width dr, chord c,with bound circulation Fb encountering a resultant 
velocity Vr, the hft generated is given by

L = pVRrbdr

The lift on the blade element can also be expressed in the form.

(2.3)

L = ipcCL VRdr

From (2.3) and (2.4) we obtain the expression

pVRrbdr = |pcCLV|dr

Thus the bound circulation, Fb around the blade element is given by

(2.4)

(2.5)





r = -V cc1 b 2 v R ^ '^L (2.6)

The spanwise distribution of bound circulation can therefore be obtained by applying 

equation (2.6) to the control point of each blade element

2.4 Model Start-up

The initial condition for free wake modelling is normally time zero, with the turbine at 
rest. When the turbine is started, the wake develops as time progresses. Hopefully a 

steady state is achieved in a reasonable time. The advantage of a prescribed wake model 
is that this stage is bypassed and iteration towards a converged result commences with a 

fully developed wake structure. Estimates of blade loading, necessary to provide data 

for the generation of an initial wake geometry, are obtained by applying 

momentum/blade element analysis (strip theory) to the turbine.

The rotor is modelled by an actuator disc which is divided into concentric, 
aerodynamically independent "streamtubes" or anulli. The induced spanwise velocity 

variation and blade loading can then be obtained by application of strip theory to each 

stream tube.

Applying the axial and angular momentum equations to a streamtube at radius r and 

width dr. Fig 2.3, the elemental thrust and torque components are given by

and
dT = driiAU

dQ = drh AUxr

(2.7)

(2.8)

Expanding the above we obtain

dT = 2;rrp(t/. + vz)dr(u„ - (UM + 2vz))

= -4;rprvz(UM + vz) dr (2 g)

and

where

dQ = Itt rp(U0O + v2) dr (2<j!)ir - 0) r 

= 4;rpr3(U0<> + vz)<yi dr

Uoo = free stream velocity

(2.10)





vz = axial induced velocity at disk
VvcOj = —^ = rotational induced velocity at disk

Applying the velocities obtained from the momentum analysis to a blade element at 
radius r with width dr we obtain the velocity diagram shown in Fig 2.4. If it is assumed 

that the blade element acts like a two dimensional aerofoil, the non-dimensional normal 
and tangential components of the forces acting on the blade element are

CN = CL COS0 -t- CD sin0 

CT = CL sirup - CD cos(p (2.11)

From these forces the elemental thrust and torque can be expressed as follows

dT = —p UR2 CN n c dr

dQ = —pUR2CTrncdr 
2

(2.12)

(2.13)

where c = blade chord 

n = number of blades

Equating the thrust obtained from momentum theory to that from blade element theory 

gives

-4np r vz(U„ -I- vz) dr = ^p UR2 CN n c dr
(2.14)

Which can be reduced to
_Vz(u. + Vz),

From Fig 2.4 the following relationships can be derived

u = U- + VZUR

(2.15)

sin (p (2.16)





Ur =
COS(j)

which allows equation (2.15) to be written as

-vz(U.+ vz)=Mjf^
8 sin^

where riL is the local solidity

(2.17)

(2.18)

=
nc
nr (2.19)

Rearranging (2.18) gives

<7l Cn

U..+ vz 8 sin^ (2.20)

It is convenient to denote the axial induced velocity vz in non dimensional terms. This 

is normally done with respect to the free stream velocity, giving the term

-vza = —- 
U„ (2.21)

which is known as the axial interference factor. Substituting (2.21) into (2.20) we 

obtain an expression in terms of the axial induced velocity at the rotor

_ gL

(1- a) 8 sin2^ (2.22)

Similarly, equating the expressions for torque obtained from momentum theory and 

blade element theory we obtain

4;rpr3(U00+ v7)£yi dr = —p UR2 CT r n c drV J 2y R 7 (2.23)

which reduces to

/tt \ UR2CTnc 
(u-+ Vz)<B'=

(2.24)
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substituting equations (2.16) and (2.17) into (2.24) gives
(U„ + yz)coi = (Hr±vzXQ+ 6?i)rCrg-L

8 r COS0 sin^ (2.25)

which yields

(O;

(Q+ ©i) 8cos0 sin0 (2.26)

As with the axial induced velocity, it is convenient to denote the rotational induced 

velocity OOj in non dimensional terms. This is normally done with respect to the blade 

rotational velocity, giving the term

a'
Q (2.27)

Which is the rotational interference factor. As with the axial case, substituting (2.27) 

into (2.26) gives the following expression for the induced rotational velocity at the rotor

a' _ (Tl Ct 

(1 + a') 8cos^ sin0 (2.28)

The spanwise variations of axial and rotational interference factors (and hence axial and 

rotational induced velocities ), for a given rotor configuration operating in steady axial 
flow, are obtained using an iterative procedure which solves equations (2.22) and 

(2.28) at each blade element control point. This is discussed in more detail in Chapter 
3. From these estimates of induced velocities an initial wake geometry can be 

constructed. The blade loadings can also be estimated, which means that the consequent 
wake vorticity distribution can be calculated. Thus, application of strip theory to the 

turbine yields sufficient information to obtain a reasonable representation of the fully 

developed wake which is the "starting point" for the model.

2.5 Wake Model

2.5.1 General

As air passes through the turbine, energy is removed from the flow. This results in a 

deceleration of the flow in the streamwise direction. Since momentum must be 

conserved, the radius of the wake will increase as the axial convection velocity
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decreases. Thus, an axial contraction and a radial expansion of the wake occurs 

immediately behind the rotor. This continues until the wake achieves some far field 

equilibrium condition. The wake can therefore be viewed as consisting of two distinct 
regions. In the first of these, the near wake, large scale changes in the wake geometry 

occur before the equilibrium state is reached. Beyond this is the far wake region, which 

represents the new equilibrium state of the flow.

The wake of a HAWT consists of a continuous helical vortex sheet containing both 

trailed and shed vorticity. The trailed vorticity arises from the variation in spanwise 

bound vorticity while the shed vorticity is equal to azimuthal variations in blade bound 

vorticity. The current version of the HAWTDAWG model has been formulated for 

steady axial flow. For this limited case, blade conditions are steady around the azimuth 

and consequently, the wake will only contain trailed vorticity.

For this case the vortex wake is modelled as a discretised series of sequential finite 

straight-line vortex filaments which extend downstream from the blade trailing edge. 
These filaments are assumed to be solid bodies and trail downstream from the blades to 

the far field. The vorticity in the wake is assumed to be contained within the core of 

these filaments.

2.5.2 Wake Vorticitv

The strength of the trailing vorticity in the wake is defined to be the difference between 

the bound vorticity on two adjacent blade elements. This is illustrated in Fig 2.5. If the 

strengths of blade elements i and i+1 are Fbi and Fbi+i respectively, then the strength 

of the vortex F tj, trailed from the boundary between the two blade elements is defined 

as

r = r - r1 tj 1 bi+l 1 tri (2.29)

For a blade with NE blade elements, eqn (2.29) defines the strengths of the NE-i-1 

vortex elements trailed from the blade for a given spanwise bound vorticity distribution. 
Since the blade conditions are steady around the azimuth the strength of the vortex 

trailed between elements i and i+1, (i = 1 NE), will remain constant throughout the 

wake.





12

2.5.3 Vortex Wake Induced Velocity

A knowledge of the velocities induced at the blades due to the wake is required in order 

to calculate rotor performance. The induced velocity at a point due to a single wake 

element may be obtained by application of the Biot-Savart law. The total induced 

velocity at each blade element is, therefore, obtained by summation of the velocities 

induced at the blade element control point by each element of the wake.

From application of the Biot-Savart law, the velocity induced at a spacial point 
P(X,Y,Z) from an infinitesimal vortex element of strength F, (see Fig 2.6), is given by

dV = r dlxr 
An |r3| (2.30)

From equation (2.30) the magnitude of the elemental induced velocity is.

d|V| =
r d|l| |r| sinO 

Tn kP

_ r d|l| |r| sin0
An (2.31)

From Fig 2.6,

r =
sin0 (2.32)

and

d|!l = cosec20 dO
(2.33)

Substituting equations (2.32) and (2.33) into equation (2.31) yields

d|V| =
cosec20sin0d0

An

r sin 9

/sin2 6

An
dd

(2.34)
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The magnitude of the velocity induced by a straight-line vortex element AB is therefore 

given by,

r efBsin0|V| = -i-f^d0
4;tA rjBA pp

IM = 4;r
(cosOA - cosdg)

(2.35)

The wake vorticity in this study is modelled as a chain of vortex elements of finite 

length. From Fig 2.6, for a vortex element AB of finite length.

rA.-rAB
COS0. = —1 , COS0R =

rB. ■ rAB

AB AB (2.36)

and

^aXTb

AB (2.37)

Thus, the magnitude of the velocity induced by a finite vortex line AB is

lYl = AB

4;r rA xrB

rA ■ rAB rB ■ rAB

AB AB

lYl = rA ■ rAB rB ■ rAB

(2.38)

In vector notation equation (2.38) becomes

r rA x rB
V = — ■

4;r rAxrB

rA ■ rAB rB ■ rAB

(2.39)



I



Where

rA xrB

rAxrB

is the unit vector normal to the plane APB.

Using the relationships derived in Appendix A in conjunction with equation (2.39) the 

following expressions for the velocity components induced at a point P(X,Y,Z) by a 

finite vortex AB are obtained.

vx =
r[(Y - Ya)(Z - ZB) - (Y - Yb)(Z - ZA)]

f

An rA xrB

Ta-Tab

vY =
r [(X - xA)(z - zB) - (X - XB)(Z - ZA)1'

4;r IaxIb
2

V

Ta-Tab

vz =
r[(x - xA)(Y - yb) - (X - xb)(y - ya)] (

An ^aXTb

rA'rAB

AB

rB

(2.40a)

Ib •r

rB y
(2.40b)

rB rAB

£b y
(2.40c)

is known it is
possible to calculate the corresponding induced axial, radial and tangential velocity 

components at the blade by applying equations (2.40a) - (2.40c).

2.5.4 Vortex Core Radius

Application of the Biot-Savart law to the wakes of rotating systems such as wind 

turbines can, under certain flow conditions, introduce numerical instabilities, i.e where 

a vortex element passes very close to or lies on the blade control point under 

consideration. In order to avoid such this problem, the idea of a finite vortex core may 

be utilised. The Biot-Savart law is ,therefore, apphed to the flow field beyond the core 

radius while a modified relationship between induced velocity and perpendicular 

distance from the vortex element is employed inside the core. This technique results in a

14
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more representative estimate of the induced velocity. Several vortex core models have 

been developed for use in the analysis of helicopter rotor aerodynamics. Two examples 

of these are shown in Fig 2.7. The simplest application of this concept involves 

considering the velocity induced at a control point to be zero if the control point lies 

within the vortex core. This representation vortex core is of sufficient accuracy at this 

stage in the development of the HAWTDAWG model.

In addition to the type of core model used, the vortex core size must also be considered. 
This choice is made difficult since little information is available on the subject. Work 

carried out by Langrebe [8], however, suggests that a constant core size of one percent 
of the rotor radius, R, is sufficient. This was adopted in the development of a 

prescribed wake model for vertical axis wind turbines by Basuno [7] and was found to 

be adequate. As such, this core size is adopted in this analysis.

2.5.5 Trailing Vortex Ro11-ud

The radial velocity of the trailing vortices will vary with spanwise position. This leads 

to the possibility that a given trailed vortex element Fj may be convected to a radial 
position beyond that of the adjacent element Fj+i. In real flows this would result in the 

two vortices rotating about the local centre of vorticity as shown in Fig 2.8. This 

phenomenon is common in the wakes of HAWT's, occuring predominantly at the tip 

region, and is known as vortex roll-up.

Vortex roll-up is modeled in the following manner. If the radial position of a vortex 

element trailed from the ith blade element exceeds that of elements trailed from the 

adjacent i+lth blade element then the two are combined to form a single element of 

strength Fj -i- Fj+i. This 'new' wake element is assumed to occupy the same spacial 
position as the original wake element trailed from the i-i-lth blade element.

2.5.6 The Near Wake

Of the two wake regions the near wake has the greatest influence on the rotor induced 

velocities. As such care must be taken when prescribing the development of this region. 
A major consideration is the extent of the near wake. By drawing parallels with wakes 

behind bluff bodies (such as flat disks or plates normal to the free stream) it may be 

suggested that as a first step the near wake size may simply be dependent on the rotor 

diameter, as described in [9]. The structure of the wake behind a given turbine, 
however, will vary considerably with the operating tip speed ratio.
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The wake behind a rotor operating at a low tip speed ratio will be relatively extensive 

with the trailed vortex system being convected much further downstream from the 

blades in a given time period than if the rotor were operating at a high tip speed ratio. It 
therefore seems likely that the extent of the near wake region will vary spacially, 
depending on the HAWT operating conditions. This presents difficulties in constraining, 
the near wake to a spatial cut-off condition which is applicable over a wide range of tip 

speed ratios.

This suggests that simply linking the cut-off point of the near wake to the rotor diameter 
may not provide a satisfactory result. A more appropriate solution is to express the near 
wake cut-off as a function of time. This allows the near wake region to vary spatially 

depending on operating conditions, whilst offering a universal near wake cut-off 

criterion.

2.5.7 Near Wake Geometry Prescription

The work carried out by Basuno [7], achieved good results through using correlation 

with momentum theory as a means of obtaining suitable wake structures. This approach 

is also used as the basis of the wake prescription in this work. As stated previously, a 

prescribed wake model relies on the use of mathematical fun>.:dons to define the axial 
and radial development of the wake.

In order to avoid the use of higher order polynomials, or even spline functions, in the 

description of the wake development, the axial development of near wake is divided 

into three sub-regions. It is,therefore, possible to define the non-linear variation of axial 
velocity from the blades to the far field through the use of relatively simple functions.

Inside each sub-region the axial velocity is described by a linear function of time. The 

geometry 'prescription' functions in each of the three regions are defined in such a way 

as to give continuous wake development. This is illustrated in Fig 2.9.

By adopting this strategy, the parameters of each of the sub-regions can be varied semi- 
independently over a range of operating conditions. In this way a universal solution for 

the development of the axial velocity in the near wake may be obtained. Having defined 

the axial velocity in the near wake as a function of time, the positions of the nodes of 

individual vortex elements are simply obtained by integration of these functions.
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The radial development of the near wake is addressed in a different fashion from the 

axial development described above. Two differing strategies are employed.

The first strategy, implemented during the construction of the initial wake structure, 
involves the application of continuity to each streamtube to obtain the far wake radial 
positions of the vortex elements. The radial development of the wake from the blades to 

the far wake is then defined in a similar manner to the axial development described 

above. The near wake is again divided into three sub-regions (corresponding to those 

used for axial development). Inside each sub-region, the radial positions of the wake 

elements are determined by a linear function of time. As in the axial case, the radial 
prescription functions join to give a continuous expansion to the far field condition.

Following the construction of the initial wake geometry, a strategy based on the radial 
induced velocities calculated at the blades is implemented. This approach is preferable 

to that used to obtain the initial geometry as it is based on actual velocities and avoids 

the limitations of the application of continuity.

As the wake develops towards it's far field equilibrium the radial velocity of the wake 

will decrease to zero. The manner in which this occurs is modelled by a single quadratic 

function of time spanning the entire near wake region, as opposed to the 'phased' 
development employed in the axial direction. The radial positions of the near wake 

elements are therefore described by a cubic function of time.

2.5.8 The Far Wake

The far wake describes the region extending downstream from the last point in the near 

wake, corresponding to t = Tnw seconds, to infinity. The flow field in the far wake 

represents the equilibrium state of the flow leaving the rotor blades. Flow conditions 

are therefore assumed to remain steady throughout the far wake, resulting in a 

cylindrical, axis-symmetric flow field.

The conditions in the far wake are achieved under the following constraints:

1. Radial velocity decreases from vxbiade to zero 

at start of far wake

2. Axial induced velocity increases from vzbiade to
F-vZbiade at the start of the far wake, where F = Vzfar

VZblade



I
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Applying simple momentum theory to the system dictates that the axial induced velocity 

in the far wake is equal to twice that at the blades. This is an average value which is 

representative of the whole rotor. When considered in more detail, however, it is not 
unreasonable to expect this value to vary along the span, especially in the tip region. 
Accordingly, a function was developed, defining the equilibrium state of the axial 
induced velocity using a far wake velocity parameter, F. This is allowed to vary with 

spanwise position, yielding a more detailed solution than that from momentum theory.

2.5.9 Determination of Wake Geometry Prescription Functions

The influence of the wake geometry on the blade loadings is extremely complicated and 

involves several inter-dependent parameters. The most efficient manner by which to 

obtain a satisfactory near wake geometry is, therefore, to solve simultaneously for as 

many of these parameters as possible. To this end, the scheme adopted involves 

obtaining the spacial development of the near wake, together with the location of the 

near wake cut-off point and the far field axial induced velocity conditions, in one global 
calculation.

Calculation of these parameters was achieved through the implementation of an iterative 

procedure. A mesh of control points, positioned along wake streamtube boundaries, 
was set up, as illustrated in Fig 2.10. The local velocity at each control point was then 

calculated using vortex theory and was compared to the corresponding prescribed 

value. The prescription function parameters were then modified in light of any 

difference which existed between the two. Using this technique, the prescription 

functions were gradually adjusted to give the optimum comparison between the 

prescribed and calculated velocity profiles. This was carried out over a range of tip 

speed ratios, yielding a universal set of wake geometry prescription functions. Defined 

as follows :

Near wake cut-off point : rj, 7TTR Inw — /ITT sec4U0

Axial Velocity Far Wake Condition :

F = 1.1426 -I- 5.1906------ 8.9882
R

fry fv- + 4.0263UJ U
(2.41)



I
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Axial Development

Sub-Region 1: ,=°-> ^sec
where t = 0 describes conditions at the blades

End Condition : 60% of full axial deceleration achieved

Velocity Prescription Function

Displacement Prescription Function

S1 = U00(l- a)t -h ^^(l-F)t2 
1 ^ 5nRK J

(2.42)

(2.43)

Sub-Region 2 ttr ttrt= Trr~ "FF sec4Uo Uc

End Condition : 90% of full axial deceleration achieved

Velocity Prescription Function

Yz2 = U.(l-i(l+F))+^(l-F)t

Displacement Prescription Function

(2.44)

S2 —
a;rR(l - F) 

16
+ U.(l-i(l+F)).+ ||(l-F)t-

(2.45)

Sub-Region 3: » TTR ^ „t — Tnw sec

End Condition : far field equilibrium achieved
(full axial deceleration)





20

Velocity Prescription Function

Yz3 = u-(1“^(7+23F)) + iS(1"F)t
Displacement Prescription Function

(2.46)

S3 = .iZH^ + u A(7+23F)\ + 1UL(1-F)t2
240 I 30V fJ 15;rR ^ J

(2.47)

Radial Development

Initial Strategy:

Sub-Region 1 : „ ^ 2tT t = 0 -> ——sec

End Condition : 60% of full radial expansion achieved

Sub-Region 2:

Displacement Prescription function

_ . ^^(rfar ~ rbhde)u~
•l ■ i“' 5nR

TTR ^ TTR
t_ 4Uoo Uo. sec

(2.48)

End Condition : 90% of full radial expansion achieved

Displacement Prescription function

Sub-Region 3 :

r _ r 1 Ffar ^ blade .
1 w2 — 1 blade T ^ 'r

_ ttr ^ _t — T T ^ t nw sec

2(rf3r rblade)(J»

5;rR (2.49)

U„

End Condition : far field equilibrium achieved
(full radial expansion)





Displacement Prescription function

^w3 A blade

, ^^(rfar rblade) , ^(rfar rblade)U„

30 15;rR
(2.50)

Main Strategy: t = 0 Tnw sec

End Condition : far field equilibrium achieved
(vxw = 0.0, blade fixed coordinates)

Velocity Prescription Function

VXw — VXblade 1-—2- — 
T.„ Tnw V nw .

Displacement Prescription Function

rw — rblade + VXblade ^ 1-
( . \ 
1-

V J

(2.51)

(2.52)
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3. Numerical Procedure

3.1 System Characteristics Required as Input

The HAWTDAWG model is is intended to be used as a design tool. Thus, the user is 

required to provide details of the rotor system and the operating conditions which are to 

be modelled.

The following information is required as input:

Fieestream velocity 

Number of time steps 

per revolution 

Number of wake cycles 

Number of blades 

Tip speed ratio 

Number of blade 

elements 

Rotor Radius 

Blade root chord 

Blade taper ratio

Spanwise pitch variation

Uoo

NTI
NCYC
n
X

NE
R
cr

A
a
dr

In general the user is free to assign these system parameters in any way he wishes, 
however the following constraints should be bourne in mind.

The model is designed to deal with large scale horizontal axis wind turbines, hence the 

number of blades specified should be hmited to that found on this type of system.

In its present form, the model is not designed to deal with large scale reverse flow 

regions, this should be bourne in mind when results are required at high tip speed 

ratios, where various reverse flow states may be induced.

The number of time steps per revolution must be exactly divisible by the number of 

blades specified in order to break the cycle down into discrete steps.
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3.2 Evaluation of Blade Initial Conditions

The initial conditions at a given blade control point are evaluated from equations (2.22) 
and (2.28), using an iterative procedure. This is illustrated in Fig 3.1.

The procedure is started by assuming initial values of a and a', taken to be zero in this 

study. The blade inflow angle at a given spanwise position ^ is then calculated using,

(p = tan' (1-a)
(l + a')A^

(3.1)

which is obtained from Fig 2.4.

Since the blade pitch variation is known, the angle of attack « can be calculated. From 

Fig 2.4

K = 4> - e (3.2)

Having obtained the angle of attack, the aerodynamic force coefficients Cl and Co can 

be obtained from 2-D data. Thus the normal and tangential force coefficients Cn and Cr 

can be calculated using equation (2.11). Equations (2.22) and (2.28) can now be 

utilised to give updated estimates for a and a'. If the new values of a and a' fulfil the 

convergence conditions the procedure is stopped, otherwise it is repeated (from the 

calculation of 4>) until convergence is achieved.

The above procedure is applied to each radial station in turn, giving the initial induced 

velocity state across the blades. From these converged solutions initial blade loadings, 
wake geometry and wake vorticity can be estimated.

3.3 Evaluation of Blade Conditions for a Given Wake Geometry

A converged solution for the aerodynamic condition at the blades for a given wake 

geometry is obtained using a first order Newton iterative scheme.

From Fig 3.2, when attempting to solve for a single differentiable function f for f(c) = 

0, the error term g will tend to zero. The error, g, can be expressed as follows.
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,tkg = S + Acg'

For a system of equations, equation (3.3) can be written as

gr=gf+Acivgtj

where,

(3.3)

(3.4)

Acf 'gf
Acj gf

Acf = • gf = •

Acf. .gf.

and

Vgf, =

’^gi

dc2
<?g2 dg2
dc: dc2

^gj

_____
1

^gi

dc;

dc;

The solution of the function requires the error to become zero. Thus equation (3.4) can 

be written as

-gr=vgtAcf (3.5)

k . .Now, if the n X n matrix Vg- : is invertable, equation (3.5) can be rearranged to give
A’J

Acf=-Vgf,j-gf (36)

The system of equations which we wish to evaluate give the induced velocities due to 

the vorticity present in the wake of a HAWT at nxNE control points on the turbine 

blades. The axial induced velocity at the nth control point may be written as

Vkzn+1 = VL + AVL (3.7)



I
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Substituting equation (3.6) into equation (3.7) gives

vk+1=vk -fVek 'He1"
VZn VZn [V6n.m JSn (3.8)

The velocities induced at the blades are a function of the trailed vorticity in the rotor 

wake, as described in Section 2.4.3. The error term gn in equation (3.8) can therefore

be expressed as

Sn = - f(rt) (3.9)

Since the strength of the vorticity trailed from a given blade element boundary is 

constant throughout the downstream extent of the wake, equation (3.9) can be written 

as

NCYC
NE+1

g|; = vL- Srlpi>.Gt„
P=1
q=l (3.10)

where Gp.q describes the geometric position, with respect to the nth blade control point, 
of the vortex element trailed from the pth blade element boundary after q time steps. 
Ttp, q is the strength of the vortex element.

The wake trailed vorticity arises from the spanwise variation in blade bound vorticity, 
as defined by equation (2.29) i.e

r = r - rip.q bp+1 bp

where the blade bound vorticity is defined by equation (2.6).

Substituting equation (3.11) into equation (3.10) gives

NCYC
NE+l

(3.11)

g; = vi,- S(rbp-rbl>,)Gp,,
p=i
q=l

k .

(3.12)

From equation (3.12) the term Vg- • in equation (3.4) becomes1d
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Vgf, =

dg, dgx ^g:
dwzi dw
dg2 dg2

Z2
^Zi

dvzl dwZ2

^gi ^gj

.^Zl dwZi (3.13)

where

^gj _ ^zi d
NCYC
NE+1

^Zi ^Zi ^Zi p=l 
q=l

S(rbp-rvl)Gp„
(3.14)

The evaluation of the individual terms in equation (3.14) is described in Appendix B.

Hence, equation (3.14) can be evaluated by successive application of equation (B.13) 
k+1and therefore Wr^ can be evaluated by substitution into equation (3.8).

A converged solution for the spanwise variation in axial velocity induced by a given 

wake is obtained by repeated solving of equation (3.8) at each blade control point until 
sufficient accuracy has been achieved.

3.4 Model Structure

The HAWTDAWG model is constructed in a modular fashion, such that the range of 

the model may be extended by simply inserting new modules at the relevant points.

The overall calculation may be broken down into a number of separate tasks. The order 

in which these tasks are dealt with is illustrated in Fig 3.3.

The model is initiated by the user entering a number of parameters which define the 

system to be modelled. These are listed in Section 3.1.

After this step the first task carried out by the code is the definition of the blade model. 
Here, the blade element distribution is calculated and the spanwise chord and local 
solidity variation evaluated.
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Once the blade geometry is specified, the initial conditions at the blades are evaluated 

using the procedure detailed in Section 3.2. These initial conditions are evaluated at 
radial positions corresponding to the blade element boundaries, as knowledge of the 

velocities at these points is required for the generation of the wake.

The initial wake geometry may now be generated, using the functions described in 

Sections 2.4.6.4 and 2.4.6.S.

In order to assign vorticity to the wake elements generated above, the bound circulation 

on the blades must first be calculated. This is achieved by applying equation (2.6) to 

each blade element control point. Initially, induced velocities at the control points, are 

taken to be the average of those already calculated at the element boundaries. Having 

evaluated the blade bound vorticity, the wake trailed vorticity may be assigned using the 

relationship defined in Section 2.4.2.

Vortex theory is then used to determine the induced velocity variation at the blades due 

to the wake, as described in Section 2.4.3. Once this variation has been calculated, the 

iterative scheme detailed in Section 3.3 is employed to obtain a converged solution.

Following this, a new wake is generated, based on the converged blade conditions. 
Using vortex theory, a new estimate of the blade loading is obtained.The iterative 

scheme mentioned above is again implemented, yielding a converged solution for this 

wake geometry.

This point in the model structure represents the first step in the global iterative scheme. 
A revised wake is constructed, again based on the converged blade conditions from the 

previous stage, and vortex theory is used to obtain values of blade induced velocities. A 

comparison between these induced velocities and those obtained from the previous 

stage is made. The difference between the two solutions is then checked against the the 

criteria set down for full convergence of the system. The above procedure is repeated 

until the global convergence criterion are satisfied.
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4. Results and Discussion

The HAWT test configuration used for the purpose of assessing the HAWTDAWG 

model consisted of a two bladed rotor, of diameter 14.0m. The blades were untwisted, 
having a constant pitch angle of 4°, with a taper ratio of 0.25. Each blade was divided 

into 16 blade elements while the blade azimuth was split into 16 discrete steps. The 

aerofoil data used was taken from 2-D static tests on the NACA 0015 profile, [10]. A 

constant ffeestream velocity of 9 ms'1 was used in all tests. Results from a range of tip 

speed ratios were obtained.

The wake prescription functions given in Section 2.5.9 were developed by comparison 

of prescribed and calculated axial induced velocity conditions throughout the wake. 
Figures 4.1 - 4.6 show the extent to which prescribed and calculated axial velocity 

distributions compare for tip speed ratios 7.0 - 12.0.

It can be seen from these figures that, in general, there is good agreement between the 

induced velocity distributions prescribed by the model and those calculated from the 

application of vortex theory to streamtube boundaries in the wake. The two compare 

particularly well in the first sub-region of the near wake.This is extremely important as 

the largest influence on blade conditions comes from this region. The largest 
decelerations also occur immediately behind the turbine, so accurate modelling of the 

wake development in this part of the flow field is vital to the overall accuracy of the 

model.

The only region where large deviations occur between the prescribed and calculated 

developments is at the blade tip. The difficulties experienced in prescribing the induced 

velocities in the tip region were not unexpected. The flow conditions change rapidly 

here, ranging from the relatively weak vortex sheet inboard through a region of high 

vorticity to the steady conditions in the freestream. It is, therefore, not surprising that a 

relatively simple wake scheme such as that employed in the HAWTDAWG model 
would encounter difficulties in this region of the flow field.

Figure 4.7 shows a comparison between prescribed and calculated far wake axial 
induced velocity conditions. Again, with the exception of the tip region, the agreement 
is very good. With 64% of the calculated values of the far wake axial induced velocity 

parameter, F, falling within 0.05 of the prescribed values and all calculated values 

falling within 0.1 of those prescribed by equation (2.58).
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The iterative development of the wake geometry produced by the model at tip speed 

ratio 9.0 is shown in Figure 4.8. For clarity, the figure shows the first five cycles of 

the vortex structure trailed from one of the HAWT blades in isolation.lt can be 

observed that the largest change in the wake structure occurs between the first and 

second iterations. These correspond to the geometry prescribed from blade conditions • 
calculated using strip theory and the first wake developed from vortex theory 

calculations. It is, therefore, not surprising that the greatest adjustment to the wake 

geometry is made at the change over between the two calculation strategies.

The similarity in the geometries produced by successive iterations of the vortex theory 

is encouraging with respect to the stability of the model. The fact that large fluctuations 

in the wake geometry do not occur from iteration to iteration would suggest that the 

overall model strategy is convergent in namre. Additionally, the overall structure of the 

wake seems reasonable and in general terms shows good agreement with the wake 

structure obtained by BareiB and Wagner[ll] using a free wake model.

The blade loading distributions over the range of test operating conditions are shown in 

Figures 4.9 - 4.14. Each figure presents the evolution of the blade loading patterns over 

eight iterations of the wake geometry. It can be seen that the overall convergence 

characteristics of the blade loadings are extremely good, with full convergence 

occurring by the eighth iteration at all tip speed ratios. It should be noted, however, that 
the high tip speed ratio cases require a greater number of iterations than the low and 

mid-range cases to reach a fully converged state. This is due to the highly compact 
nature of the wake under these inflow conditions. The result of this is a greater degree 

of fluctuation of blade conditions in the initial stages of the iterative process, which 

leads to a greater number of iterations being required to obtain a converged solution.

The figures show a shift in the spanwise position of the maximum loading, Fmax, as 

the tip speed ratio increases. For A = 7.0 (Fig 4.9), Fmax occurs around the centre of 

the blade, but as A increases it shifts gradually inboard towards the root. This inboard 

shift in the position of rmax is accompanied by a general increase in the magnitude of 

the loading on the inboard section of the blades. The magnitude of Fmax 

itself,however, only increases slightly with tip speed ratio. The magnitude of the 

loading of the outboard section of the blades also remains relatively constant.

The manner in which the spanwise blade loading pattern varies with tip speed ratio may 

be due to the change in the blade inflow angle as A increases. At low tip speed ratios a 

large section of the root region of the blades will be operating at high angles of attack.
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i.e well into the stall region of the aerofoil section's aerodynamic performance 

envelope. As tip speed ratio increases the inflow angle will generally decrease across 

the span, mainly due to the increase in the tangential velocity component of the flow. 
Since the blade pitch variation is kept constant over the range of operating conditions, 
this decrease in inflow angle corresponds to a decrease in the effective angle of attack of 

the blades. If the angle of attack reduces sufficiently, inboard regions of the blades will 
move out stall, and realise an increase in the local Cl. In this way, the blade loading in 

this region will increase with tip speed ratio. Conversely, a decrease in the angle of 

attack in the outboard region of the blades means that, in performance terms, the 

aerofoil is moving down the linear section of the lift curve. Leading to a decrease in the 

local Cl in this region of the rotor. This is show in Figure 4.15. The fact that the 

magnitude of the loading on the tip region does not change significantly suggests that 
the decrease in Cl is counteracted by the increase in the relative velocity as tip speed 

ratio increases.

The spanwise axial induced velocity variation with tip speed ratio is shown in figures 

4.16-4.21. The induced velocities in these figures were calculated at the mid-point of 

each blade element. Again the results correspond to operating tip speed ratios ranging 

from 7.0 - 12.0. As with the blade loading, the convergence characteristics are 

generally very good and the high tip speed ratio cases require a greater number of 

iterations to achieve fuU convergence.

A general spanwise increase in the magnitude of the induced velocity can be observed 

with increasing tip speed ratio. This increase is greatest on inboard regions of the 

blades and corresponds to the associated change in blade loadings. The overall shape of 

the spanwise distribution of induced velocity remains the same as A increases, i.e it 
increases from the root value to some 'inboard peak' before decreasing until the tip 

region is reached where the magnitude again increases until an 'outboard peak' is 

reached at a position corresponding to the mid-point of the tip blade element. Although 

this general pattern exists over the range of tip speed ratios, the position of the 

maximum induced velocity changes as A increases. At the low tip speed ratios, the 

maximum value occurs near the tip. As A increases,however, the magnitudes of the 

induced velocities inboard increase rapidly until they are greater than those outboard. 
Thus, the maximum induced velocity is seen to shift from the 'outboard peak' at the tip 

region to an 'inboard peak'. The spanwise position of this 'inboard peak' also changes 

with tip speed ratio, shifting towards the root as A increases, mirroring the change in 

spanwise position of rmax .
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5. Conclusions

A prescribed wake model for the prediction of the performance of large scale horizontal 
axis wind turbines in axial flow has been developed. The wake structure produced 

appears qualatively similar to that of a free wake model and the blade loading and 

induced velocity patterns predicted are reasonable for the blade geometry and operating 

conditions specified. The model exhibits good overall convergence characteristics over 

the range of conditions considered in the study. This is encouraging from the point of 

view of the further development of the model which will undoubtedly be made more 

straightforward by virtue of the fact that the basic model is stable in nature.

Although the results produced by the model to date appear to be satisfactory, their 

accuracy cannot fully be assessed until validation against other numerical predictions 

and experimental data is carried out. Following this, it is hoped to develop the model 
further to give performance estimates in yawed flow conditions.
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6. Fisurgs





Figure 2.1 Model Coordinate System
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Blade Element
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Figure 2.2 Representative Blade Element Distribution

_____

Figure 2.3 Streamtube Through Radial Position r
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Figure 2.4 Velocity Diagram

Figure 2.5 Trailed Vorticitv Model
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Figure 2.6 Velocity Induced by Vortex Element AB

a)

B(Xb,Yb,Zb)

Free Vortex

Free Vortex
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Free Vortex

Free Vortex

b)

Figure 2.7 Vortex Core Models

Figure 2.8 Relative Motion of Two Vortex Elements Around Local Centre of Vorticitv
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Far Wake Condition

Sub-Region 3

Sub-Region 2

Sub-Region 1

Figure 2.9 Development of Near Wake

Wake Control Points

Figure 2,10 Positioning of Wake Control Points

Vorticity Trailed from 
Spanwise Position r
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Assume initial values

Obtain Cl and Cd at angle of 
attack K from 2-D aerofoil data.

Calculate axial and tangential 
force coefficients Cn and Cr

Calculate a and a' from 
equations (2.22) and (2.28)

Convergance 
conditions 

\ satisfied ?

Calculate blade inflow angle 4>» 
and hence angle of attack K

Tip speed ratio A, control point distribution, 
blade pitch 8 and local solidity CTl are known

Figure 3.1 Strip Theory Iterative Procedure
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Figure 3.2 Iteration towards ffc')=0
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Input system parameters

Set up blade model

Generate initial 
wake geometry

Qaculate blade 
bound vorticity

Calculate wake vorticity

Iterate until converged

Full convergance 
criteria satisfied ?

Generate new wake geometry based 
on converged vortex theory solution

Calculate blade initial 
conditions using strip theory

Calculate blade induced 
velocities using vortex theory

Figure 3.3 Model Structure
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Figure 4.1 Comparison between prescribed and calculated axial induced velocities : A = 7.0
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Figure 4.2 Comparison between prescribed and calculated axial induced velocities : A - 8.0
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Fi<Ture 4.3 Comparison between prescribed and calculated axial induced velocities : X = 9.0
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Fitiure 4.4 Comparison between prescribed and calculated axial induced velocities : A = 10.0
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Ficure 4.5 Comparison between prescribed and calculated axial induced velocities : A = 11.0
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Figure 4.7 Comparison of prescribed and calculated far wake conditions : A = 7.0 - 12.0
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a)First iteration

b) Second iteration

Figure 4,8 Wake geometry trailed from single blade at X = 9.0
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c) Third iteration

d) Fourth iteration

Figure 4.8 Wake geometry trailed from single blade at A = 9.0
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Figure 4.15 Effect of increasing A on blade incidence and Cl
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Appendix A

From Fig 2.6 it can be seen that

lA = (X - XA)i + (Y-YA)i + (Z - ZA)k (A. la)
IB (X -Xb)1 + (Y- Yb)] + (Z-ZB)k (A. lb)
Iab (XA - Xb)1 + (Ya - Yb)] + (ZA - ZB)k (A.lc)
s (A.la) and (A.lb) we obtain

J [(X -Xa)2 + (Y - Ya)2 + (Z - Za)2] (A.2a)
Id = y [(X-Xb)2 + (Y-Yb)2 + (Z-Zb)2] (A.2b)

The cross product term in equation (2.41) expands to

TaXTb = X-XA Y-Ya 

X - XB Y - Yb

k
Z - z, 
z - zt

= [(y-Ya)(z-Zb) - (y-Yb)(z - zA)]i 
- [(X - XA)(Z - Zb) - (X - Xb)(Z - ZA)] i 

+ [(X -xa)(Y -Yb) - (X - Xb)(y - ya)] k (A.3)

and therefore

rA xrB = [(Y - Ya)(Z - ZB)

- [(X - XA)(Z - ZB) 
+ [(X - Xa)(Y - Yb)

- (Y - Yb)(Z - ZA)]2

- (X - XB)(Z - ZA)]2
- (X - Xb)(Y - Ya)]: (A.4)
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Appendix B

From equation (2.6), for a given blade element bound vorticity Ft.

(iVlicCL)
^Zn ^Zn

dw
(icCL) + ^(iVI1c)

Zn Zn (B.l)

The resultant velocity Vr is given by

VR = V(U- - VZn)2 + + VXn)2 + VYn2
(B.2)

The tangential induced velocity, vyn, was found to be small in comparison with fir. In 

order retain numerical efficiency it was therefore decided to treat this term as a constant 
within the iterative procedure rather than iterate towards a solution simultaneously with 

vzn- For the same reasons, the radial induced velocity vxn was also treated as a constant 
within the iterative procedure as it's influence on the blade conditions is small. Both 

vxn and vyn are re-evaluated on completion of the iteration procedure.
Thus,

_ d
^zn dv7ll

[(UM + vZn)2 (^r + vYn)2 + vXn2 /2

=__________ (U^+Vzn)__________
[(U» + vZn)2 + (ar-HvYn)2-^vXn2]/^ (B3)

SOUsing the chain rule, the term gv L in equation (B.l) may be expressed as

dCh _ doc dCL
<^Zn ^Zn da (B.4)

where is the lift curve slope. doc v

The angle of attack,« is given by
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a = tan
(U^+Vzn)

(nr +vYn)
-e

(B.5)

Now, letting m 

expressed as

(Uoo + V7n) 0Oi:and using the chain rule, the term 3—may be (f2 + vYn)r 5vzn

da da dm
dv2n dm dvZn

where

da d { _l -X

=(l+mr
and

(9m
dvZn l/vZndv-.

(U^+Vzn)'

(Qr + Vyn)

(^^r + Vyn)

Expanding equation (B.8) gives

da
dm

1 +
^(U. + Vzn)^ 

(Qr + vYn)

(Qr + vYn)2

-1-1

(U„ + vZn) -f(Qr + vYn)

(B.6)

(B.7)

(B.8)

(B.9)

As stated previously vx is small in relation to the other velocity terms, thus equation 

(B.9) may be written





da (Qr +vYn)2
dm V

= cos20 (B.IO)

Substituting equations (B,8) and (B.IO) into equation (B.6) gives

da _ cos2(p 

dslxi (Qr + vYn) (B.l 1)

Hence, equation (B.4) becomes

^CL _ cos20
<^zn da{Qv + vYn) (B.12)

Substituting equations (B.3) and (B.12) into equation (B.l) gives

dr
dv

— = i-c 2'^
Zn

COS 20

da (Qr + vYn) (B.13)
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