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The Viability of Parallel Processing Technology for use in Rotorcraft Simulation

Summary

This report documents the viability of parallel processing technology for use in Rotorcraft 
Simulation. The generic rotorcraft simulation model RASCAL (Rotorcraft Aeromechanics 
Simulation for Control Analysis) has been 'parallelised' in a number of different ways and 
the computational performance has been measured and compared to that of the sequential 
code. The model has been implemented on the Parsytec series of parallel computers 
running PARIX and also on a cluster of Silicon Graphics Indy Workstations running PVM. 
The clustered workstation facility forms the HNW project funded by JISC NTI.
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Nomenclature

A matrix of co-efficients 
I identity matrix
T transformation matrix
p roll rate
q pitch rate
r yaw rate
a acceleration vector
r position vector
u control vector/velocity vector (Appendix 2)
X state vector
P blade flap angle
^ blade lag angle
9 blade pitch angle
(j)s lateral shaft tilt
6S longitudinal shaft tilt
W angular velocity vector

University of Glasgow - Aerospace Engineering - Internal Report No. 9504



The Viability of Parallel Processing Technology for use in Rotorcraft Simulation

Introduction

1.1 The Requirement

It has been indicated that 25-75% of development flight test time is required to address 
flight dynamics deficiencies in the design (1). In order for these costs to be minimised, 
flight dynamics models could be used at an influentially early point in the design thus 
designing out areas of potential shortfall before a large financial commitment has been 
made. In order for such models to be used with confidence they must be able to 
appropriately portray the behaviour of rotorcraft that they represent.

One advancement in model fidelity that is of great consequence is the modelling of the 
most influential component in any rotorcraft - the rotor system. Until recently the rotor 
has been modelled by representing the rotor as an infinite number of blades i.e. as a disc. 
More recently, the rotor has been modelled more exactly - that is, as a finite number of 
blades each of which display degrees of freedom in flap, lag and feather. This allows 
periodic forces and moments to be evaluated as the rotor rotates about the azimuth. This 
advancement in modelling certainly achieves greater fidelity but pays the corresponding 
computational price.

In order to incorporate high fidelity rotorcraft simulation at an early stage in the design 
process the models must exhibit economical computational performance. One way in which 
it is possible to enhance the computational performance of the simulation is to use 
parallel processing. This involves using multiple computational nodes which execute 
different elements of the model in parallel thus reducing the overall run-time.

This report describes the parallel implementation and performance of one such rotorcraft 
simulation.

1.2 The Hardware

Parallel processing can be performed in two distinct ways: by multi-processor parallel 
computers and by clustered workstations. In the multi-processor machines processors are 
internally 'hard-linked' to allow message passing between nodes whereas clustered single 
processor machines communicate using Ethernet cable.

The multi-processor machines used in this investigation are the Parsytec series of 
parallel computers - a Supercluster, a Multicluster and an X'Plorer. The Supercluster 
machine has 64 T800 transputers, the Multicluster has 32 T800 transputers and the 
X'Plorer has 4 PowerPC processors.

The workstation cluster consists of 8 Silicon Graphics Indy workstations with R4400 
processors. This cluster is part of a pilot project in parallel cluster computing and it is 
expected that the cluster will grow in size and also include machines from a range of 
vendors.

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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1.3 The Software

The Parsytec machines use the native message passing software entitled PARIX (PARallel 
extensions to UnIX). This software provides additional Unix commands to allow the 
compilation, execution, debugging and optimisation of parallel programs. It also provides 
high level language extensions to enable processors to uniquely identify themselves and to 
communicate with each other. The number of processors used in the execution of PARIX 
programs is determined by the user at run-time and a full copy of the code is loaded on to 
each processor. PARIX functions can then be used to define each processors identification 
and then Virtual Links are created between processors which will be required to 
communicate. Code can be executed in parallel using the processors identification and 
communication between nodes can take place. PARIX users have dedicated use of 
processors during the execution of the programs - no multi-tasking takes place.

The Silicon Graphics cluster uses different message passing software entitled PVM 
(Parallel Virtual Machine). This software provides commands and message passing 
functions similar to that of PARIX but the code executes in a different way altogether. A 
network of all the desired machines is created by the user and a master program is 
executed on one of the machines, typically this master task 'spawns off sub-programs 
which are distributed amongst the machines in the network. These tasks will be 
distributed in accordance to whatever load balancing software is in operation. The sub­
programs will each execute as a unique Unix task and each task can communicate with any 
other. PVM programs run within the multi-user, multi-tasking Unix environment so users 
do not benefit from dedicated processor use.

References 2 and 3 detail the workings of PARIX and PVM respectively and a description 
of some of the most common FORTRAN message passing functions is given in Appendix 1.

1.4 RASCAL Model

The simulation model used to investigate the impact of parallel processing is entitled 
RASCAL (Rotorcraft Aeromechanics Simulation for Control Analysis). A full mathematical 
description of RASCAL is given in ref 4. The modelling principles can be summarised as 
follows.

The model works by numerical time integration of the full state vector of the vehicle. The 
time derivative of each state is calculated via the translational and rotational equations of 
motion, airframe kinematics, blade flap, lag and feather equations of motion, and engine 
and wake dynamics. This forms the heart of the simulation.

The model can be trimmed to a prescribed flight state by minimisation of the vehicles 
accelerations using a function minimisation algorithm, the aerodynamic derivatives can be 
evaluated using small perturbation techniques and the free response to control 
perturbations or gust can be calculated.

The key features of RASCAL is that both rotors are modelled as a finite number of 
individual blades rather than as discs. This allows greater fidelity as complex blade 
shapes can be modelled using blade element theory and it also allows blade degrees of 
freedom to be incorporated. The blade kinematics are modelled precisely using current 
time-step states and not those of the previous time-step as is often incorporated in 
rotorcraft simulation. This allows the blade flap, lag and feather characteristics to be 
evaluated using the appropriate information.

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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1.5 Constraints

In order for the simulation to be used and further developed by non-specialist 'parallel 
programmers' the following constraints were required.

Where possible, the input and output of the code should be similar to that of the original 
sequential code and also that there is flexibility in the number of processors used (this is 
only applicable to the Parsytec computers). This should ensure 'user-transparency' to the 
parallel elements.

Where possible, the actual code should be similar to the original sequential code. This can 
be achieved by incorporation of a parallel layer which lies on top of the original code.
This method also facilitates the speedy conversion of the code from one message passing 
language to another for example, the PARIX layer can be peeled off and replaced by the 
PVM layer. As new message passing libraries become available they will also be able to be 
easily incorporated. This should ensure 'developer-transparency' to the parallel elements.

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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2. Parallel Implementation

2.1 Trim

The starting point of any flight mechanics analysis is to obtain knowledge of the trimmed 
control states for a prescribed flight condition.

In RASCAL, this condition is obtained by minimising the vehicles accelerations to produce 
a quasi-trim state. A full description of the trimming method is described in ref 5. The 
trimmed state does not describe the periodic flight path that would be present - it works 
by setting the mean accelerations to zero. This is done by forward numerical integration to 
allow the transient forces and moments to decay and then the mean accelerations are 
calculated over the period. The model uses a NAG routine (E04FCF) to do the Newton- 
Raphson iteration required.

The algorithm can be parallelised in two distinct ways.

Firstly each time-step can be parallelised. That is, a number of processors could be used 
to split up the computation that was required during each integration step. The forces and 
moments from each blade and from each airframe component are calculated separately and 
then super-imposed to evaluate the overall forces and moments that exist on the vehicle. 
Scope for parallelisation exists by computing each of the contributory forces and moments 
separately (in parallel). With knowledge of the forces and moments present the state rates 
can be found via the translational, angular, flap , lag and feather equations of motion. The 
integration can then be performed and the process repeated.

Secondly, it would be possible to parallelise the trimming algorithm itself. Newton- 
Raphson techniques in rotorcraft simulation operate by evaluating an output vector, in 
this case the mean accelerations for a given set of controls and if the output vector is 
outwith a given tolerance each control is independently perturbed positively and 
negatively and a Jacobian matrix is constructed which is then used to provide the next 
estimate of the required controls. Fach perturbed control is evaluated independently so 
scope for parallelisation exists here. This method involves removing the NAG routine and 
replacing it with the GFNISA algorithm, a full description of which can be found in ref 6.

2.1.1 Time-step Parallelisation

2.1.1.1 Description

RASCAL is a sophisticated simulation which models both rotors as a finite number of 
individual blades, it also uses current time-step accelerations in the evaluation of the 
blades' inertial forces and moments. This means that the state equation formulation has 
added complexity. We can say that:

ah,ade = f(x,u,x,u)

The total state vector thus has contributions that are independent of itself and 
contributions that are dependent. It is convenient then to describe the state vector in the 
following form:

—lutal ^independent ^ ^dependent 
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Thus

Where
—total ^ —independent

A = 1 - A'

(1)

The computation which is required during each time-step is as follows.

Rotor aerodynamic calculations - the local velocity of a blade element is required which is 
used to evaluate the blades' aerodynamic forces and moments. The local velocity is a 
function of the aircraft's' velocity, rotorspeed, rates of flap, lag and feather and the 
velocity due to the wake. The wake model used in RASCAL is based on momentum theory.

Rotor inertial forees - the local acceleration of a blade element is required which is used 
to evaluate the blades' inertial forces and moments. The local acceleration is a function of 
the aircraft's' acceleration and angular velocity, rate of change of rotorspeed and the 
angular accelerations of the blades.

Engine calculations - the engine dynamics are function of the total rotor yawing moments.

Airframe dynamics - the aerodynamic forces and moments from the tailplane, fins and 
fuselage are evaluated from the local velocity.

These forces an moments are then used to solve the equations of motion, via inversion of 
the matrix A. It should be noted that is matrix is sparse and almost singular and prone to 
rounding errors. A routine to solve equation (1) directly has yet to be found and inversion 
via NAG routine FOIAAF has proved the most robust to date. The state can then be 
integrated numerically and the process repeated until the full period is described.

The time-step parallelisation could be implemented in the following manner. One 
processor per blade could be used to evaluate the forces and moments on that blade and 
also the co-efficients of the A matrix which are pertinent to that blade. One other 
processor could be used to evaluate the airframe components forces and moments - as 
evaluation of the individual airframe components contributions can be executed in a short 
time relative to the blade calculations only one processor is used to evaluate the 
contribution from the fin, tailplane and fuselage. As the matrix inversion is a NAG 
routine and no other suitable means of solving the set of equations this part is to be left as 
sequential code. The numerical integration can be split between the processors with each 
'blade' processor doing its own states integration. The other processor does the airframe 
states. This implementation is described pictorially in figure 1.

The message passing necessary in this implementation is plentiful. Before the simulation 
can begin each process requires knowledge of the flight condition and the helicopter 
configuration. So one processor reads the relevant information and broadcasts it to all the 
others.

During the execution of the code the following message passing is required at each time 
step. Consider first the 'blade' processors. The wake model used in RASCAL is a disc-type 
approximation and thus the blades' z-force and pitching and rolling moments need to be 
summed for each rotor system i.e. each processor will originally only have knowledge of 
say, the rolling moment of that blade but in order for the wake model to be evaluated that 
processor needs information about the rolling moments of the other blades in its rotor 
system. The engine dynamics also require knowledge of the yawing moments of the rotor 
system so this information has to be message passed and summed also.

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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During the calculation of the blades forces and moments the remaining processor 
calculates the airframe component dynamics and then receives the blade information 
which includes the co-efficients of the A-matrix. This processor then computes the 
equations of motion and inverts the A-matrix and solves for the total rates of states.

The hlade pitch, flap and roll accelerations and rates are then sent to the appropriate 
blade processors and each blade processor performs the numerical integration of its own 
states. The aircraft states i.e. the translational and angular velocity, position and attitude 
and also the engine and wake states are computed on the remaining processor and the 
appropriate message passing is done which will allow progression to the next time-step 
with knowledge of the appropriate new states.

2.1.1.2 Results

The relative parallel performance improvement is described in table 1. The times are 
measured by accessing the internal clocks, timenowlow in the PARIX application and 
etime in the PVM application. It should be noted that etime returns the elapsed CPU time 
so the table assumes that the network contains at least the same number of machines as 
there are spawned tasks. This is assumed in all of the other implementations as well as 
this gives the clearest insight into the parallelism of each implementation. In order for 
this performance to be achieved there must be only one spawned task per node and each 
spawned task is receiving dedicated CPU usage. This is not necessarily the case but it is 
readily achievable through careful system administration if so desired.

In order to measure the performance improvement it was first necessary to evaluate the 
time to trim on a single processor. A typical case was chosen which trims the PUMA 
helicopter at 80 knots.

1 Node 
10 Nodes 
Speed-up

T800 
240660s 
105552s 

2.28 
Table 1

R4400
2524s
2726s
0.926

In this application, the R4400 node is approximately 100 times faster than the T800 but it 
is the speed-up that is of concern as this best describes the relative parallel performance. 
It should also be noted that for consistency all of the T800 results are for Supercluster 
nodes. These have poorer performance than the Multicluster nodes and much poorer 
performance than the PowerPC nodes present in the X'Plorer.

2.1.1.3 Discussion

The parallel performance of this implementation displays disappointing results. There is 
only a small improvement in the run-time performance of the code on a parallel computer 
and when implemented on clustered workstations the code actually takes longer to execute 
in parallel than it does sequentially. The reasons for this are:

1. This implementation requires a large amount of message passing during the execution of 
each time-step of the code. This message passing suffers a significant overhead due to the 
extra processing required and also the associated idle time as processes wait for messages 
before computation can restart. The large amount of message passing required also 
explains the parallel performance difference between the parallel computer and clustered

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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workstations. The difference is two-fold: the parallel computer is a 'tightly-coupled' 
machine which is design specifically to have high communication performance, clustered 
workstations on the other hand use Ethernet cable to pass messages between one node and 
another; and the parallel performance improvement for implementations with a high 
degree of message passing is very dependent on the ratio of communications to 
computations. The Parsytec machines have relatively slow computational speeds but high 
communication speeds so are more suited to 'fine-grained' implementations - where only 
relatively small amounts of computation is performed with respect to the amount of 
message passing required. The Silicon Graphics nodes on the other hand, display excellent 
computational speeds but relatively slow communication performance so this type of 
platform is not so well suited to this sort of implementation.

2. The A-matrix inversion is computed on one processor and the other processors lie idle 
during this time. By profiling the code it was shown that this inversion takes around 32% 
of the CPU time in the sequential code. This situation could be improved in a number of 
different ways: direct solution of the state rate vector could be utilised if a robust method 
was implemented, a parallel solution to the inversion could be implemented or the inertial 
accelerations could be remodelled using information from the previous time-step thus 
eliminating the necessity for the existence of the matrix. This remodelling of the 
accelerations is described in section 2.3.1.

3. The 'blade' processors perform code which is merely rotor dependent for example the 
velocities and accelerations of the hub are calculated in duplicity. In the sequential code 
these were calculated only once. It is more efficient to calculate them in duplicity as this 
does not carry a message passing overhead. The other processors would merely be idle 
during this calculation anyway.

4. The wake model used is inconsistent with the rest of the code as it is a disc type model 
and not an individual blade model. The additional message passing that is required is the 
rotor-summed values of aerodynamic z-force and pitching and rolling moments.

5. Each blade task take longer than the airframe aerodynamic contributions so idle time 
occurs on that processor as it waits for information.

It is possible to place the wake model on the processor which computes the airframe 
aerodynamics but this displays no significant performance improvement. Similarly, it is 
possible to place the engine model on the 'blade' processors but this again results in no 
significant performance improvement.

There exists scope for additional parallelisation by separating the aerodynamic and 
inertial rotor forces and moments. The blade elements could also be split on to more 
processors. Neither of these would be able to provide significant performance 
improvement as only small amounts of code could be executed in parallel and much 
additional message passing would be incurred. All this would succeed in doing would be 
to make the implementation more finely-grained. None of the above reasons for the poor 
performance improvement would be addressed.

The PARIX implementation of the code will only run on the correct number of nodes or 
above. This sacrifices the user-transparency somewhat but was required in order to 
maintain the generic properties of the RASCAL model.

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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2.1.2 Trim Algorithm Parailelisation

2.1.2.1 Description

The NAG algorithm E04FCF was replaced by the inverse simulation algorithm entitled 
GENISA which is documented in ref 6. The algorithm solves for a set of initial conditions 
that produce a specified output. In the case of solving the trim condition for the RASCAL 
model the initial conditions are the control states and the output is the mean accelerations 
over the period, which, for the trim case, are zero.

The algorithm operates in the following manner. The initial (estimated) control state is 
used in the forward simulation to evaluate the output vector and if this output is outwith a 
predefined tolerance then each of the control states is perturbed positively and negatively 
in turn and the Jacobian matrix can be constructed using the rate of change of the output 
vector with respect to the control perturbation. This is then used to obtain an updated 
estimate of the controls which are then used in the forward simulation and the output 
vector is once again checked against the tolerance. If necessary the process is repeated 
until the convergence criteria are met.

Each of the perturbed states forward simulations are entirely independent of each other so 
they can be performed in parallel. The parallel execution of the code is described in 
figure 2.

2.1.2.2 Results

The performance of the trim algorithm parallelisation is described in table 2.

1 node 
13 nodes 
Speed-up

T800 
180863s 
26212s 

6.90 
Table 2

R4400
1947s
290s
6.71

2.1.2.3 Discussion

This parallel implementation shows a much better performance improvement. The 
performance improvement on clustered workstations is comparable to that on the parallel 
computer, this is because of the limited message passing involved. The implementation is a 
'coarser-grained' implementation than that of the time-step implementation so it does not 
suffer the high message passing overhead that was present. Also each of the perturbed 
states forward simulation perform exactly the same code - albeit with slightly different 
initial conditions, so the time for execution of the code is the same for each.

The reason that non-perfect speed-up is obtained is that the 'tolerance checking' forward 
simulation is executed on its own. That is, there is no scope to run any other code whilst 
the check is done. On the parallel computer where there is single-user access to the nodes 
the CPU cycles that are unused are wasted but on the multi-user, multi-tasking clustered 
workstations the CPU cycles are not necessarily wasted as they can be utilised by other 
users.

Each row of the Jacobian matrix is calculated by using double-sided numerical 
differentiation so the number of forward simulations required is two times the number of 
control states. Another forward simulation, using the unperturbed state, is required to

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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evaluate the error vector. In the case of the PUMA helicopter and the trim state being 
calculated in a similar manner as before, there are 13 independent forward simulations. 
The algorithm then calculates a new control state and it runs the forward simulation to 
check if this new state is within tolerance. This forward simulation is done whilst the 
remaining processes are idle. In this case, there are a total of 14 forward simulations and
the parallel implementation one process is to do is 2 forward simulations, the others only
do one. So it is to be expected that the speed-up is of the order of 7.

The achievable speed-up is thus of the order of the number of control states plus one. The
parallelisation will be directly applicable to the inverse simulation for which the 
algorithm was originally constructed. In inverse simulation the number of control states 
used for the PUMA is 4 so a speed-up of 5 can be expected.

The real parallel performance improvement can be obtained in a system which perturbs 
many states. One such system would be a periodic trimmer which perturbed the full state 
vector. One such trimmer is described in ref 7. It should be noted that the model used in 
ref 7 is implemented in parallel using a time-step implementation - the trimming 
algorithm itself is not parallelised. In the case of the PUMA which is described by 78 
states there is a vast potential parallel performance improvement.
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2.2 Small perturbation model

The small perturbation model is the classical way it examine an aircraft's control and 
stability characteristics. It is currently implemented as a single-sided differencing 
method but could be extended to a double-sided one. The aircraft's flight and control 
states are perturbed and the resulting accelerations are calculated.

The method can be parallelised in two ways: by parallelising the time-step and by 
computing each of the perturbed states in parallel.

2.2.1 Time-step parallelisation

2.2.1.1 Description

This method is similar to the one described in section 2.1.1.1

2.2.1.2 Results

The parallel performance improvement is shown in table 3.

1 Node 
10 Nodes 
Speed-up

T800 
82611s 
31945s 

2.59 
Table 3

R4400
852s
751s
1.13

2.2.1.3 Discussion

The performance improvement from time-step parallelisation is similar to that described 
in section 2.1.1.3.

2.2.2. Perturbation Parallelisation

2.2.2.1 Description

Each perturbation is entirely independent of any other so the code can be parallelised in a
very straightforward manner. Processors can each calculate the resultant accelerations
from one perturbation. This parallelisation is described pictorially in Figure 3.

For the PARIX implementation it is also possible to implement the code in a manner that it
will run successfully on any number of processors. This is in keeping with the user-
transparency constraint.

2.2.2.2 Results

The parallel performance improvement is described in table 4.

T800 R440
1 Node 82611s 852s

13 Nodes 6301s 68s
Speed-up 13.11 12.53

Table 4

University of Glasgow - Aerospace Engineering - Internal Report No. 9504
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It should be noted that the measured run-times are susceptible to congestion within the 
system. For example, the time taken to write to a file is dependent on other users. This 
explains the apparent anomaly of the T800 speed-up shown above.

The PARIX implementation can also be run on fewer than thirteen nodes. This is achieved 
by getting the nodes to do more than one perturbation. The performance improvement over 
varying numbers of nodes is described in Graph 1 and the average usage of the varying 
number of nodes is described in Graph 2.

100000 
80000 

Time 60000--’ 
(s) 40000--

20000--

1
0.8--

Usage
0.6 -- 
0.4-- 

0.2 --

3 5 7 9 11 13
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Graph 1

0 I I I I I I I I I I I I I
1 3 5 7 9 11 13

No. of processors 

Graph 2

2.2.2.3 Discussion

The perturbation parallelisation provides an excellent parallel performance improvement.

The parallel computer and clustered workstations show comparable parallel performance.

The code runs with near perfect speed-up on the correct number of nodes. In the PARIX 
application with fewer nodes than required the code also shows excellent performance 
improvement but it is susceptible to 'mis-matching' as the number of tasks often does not 
fit the number of nodes.

This implementation is a 'coarser-grained' one the that of the time-step implementation so 
it has similar benefits to that described in section 2.1.2.3.

The available parallelism is limited by the number of perturbed states and by the method 
deployed. For the PUMA case, using single-sided differentiation, the maximum number of 
nodes that can be usefully used is 13. However, 26 nodes could be used if double-sided 
differentiation where deployed at no increase in the elapsed time of execution. Similarly, 
rotorcraft configurations that required a higher number of perturbed states i.e. tilt-rotor 
aircraft - which have more control states than conventional main and tail rotor 
helicopters, would be able to utilise a larger number of processors and thus run the code 
without any increase in the elapsed time of execution.
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2.3 Free Response

The RASCAL model can also be used to develop time histories of the vehicle states by 
calculating the response of the aircraft. This is useful as it allows evaluation of the 
aircraft's response to a control perturbation and/or gust.

As no 'control state' loop exists the only parallel implementation possible is the time- 
step implementation. The model has been parallelised using the exact inertial 
accelerations and also with remodelled ones in order to remove the necessity of inverting 
the matrix A.

2.3.1 Time-step Parallelisation

2.3.1.1 Description

The model was parallelised in a similar manner to that describe in section 2.1.1.1.

2.3.1.2 Results

The case was 10 seconds of PUMA flight time. The parallel performance improvement is 
shown in table 5.

1 Node 
10 Nodes 
Speed-up

T800 
23897s 
10470s 
2.28 

Table 5

R4400
258s
264s
0.98

2.3.1.3 Discussion

Similar conclusions to those in section 2.1.1.3 can be drawn.

2.3.2 Time-step Parallelisation - Remodelled accelerations

2.3.2.1 Description

In order to try to improve the parallel performance of the code the inertial accelerations 
were remodelled in order to remove the necessity of the inversion of the matrix A. This 
remodelling is described fully in Appendix 2.

2.3.2.2 Results

Due to the high degree of communication in this application it has only been implemented 
on the Parsytec machine.

The results are given in table 6.

T800
1 Node 6855

10 Nodes 1054
Speed-up 6.50

Table 6
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2.3.2.3 Discussion

The remodelling of the inertial accelerations has a major effect on the parallel 
performance of the code.

The parallel performance improvement is very good. It should also be noted that on a 
single T800 node the sequential performance is also dramatically improved.

It would also be possible to achieve 'double-implementations' with greater speed-up in the 
calculation of trim and of small perturbation.
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3. Conclusions

1. The rotorcraft simulation model RASCAL has been successfully parallelised in a 
number of different ways.

2. Whilst the parallel implementation has only been implemented for the main and tail 
rotor helicopter all of the message passing routines have been written so that they can be 
easily extended in include the full suite of rotorcraft that the RASCAL model is able to 
represent.

2. The 'coarse-grained' implementations display excellent performance improvement on 
both the parallel computer and the clustered workstations. The 'fine-grained' 
implementations only display useful improvement on the parallel computer.

3. The 'coarse-grained' implementations display better performance improvement than the 
'fine-grained' ones.

4. The user-transparency has where possible been maintained. For the time-step 
parallelisation where much message passing is necessary the flexibility in the number of 
processors has been removed in order to maintain the generic configurational qualities of 
the simulation.

5. The developer-transparency has been maintain and all of the parallel elements of the 
code are contain within distinct sub-routines. This allows straightforward conversion to 
any message passing language and also keeps the main sequential body of code intact, thus 
allowing it to be developed independently of the message passing routines.

6. The mathematical modelling can have a significant effect on the ability to parallelise 
the code effectively. For example, disc type wake models require summed forces and 
moments which would not be required for an individual blade type wake model - so the 
amount of message passing required is increased. Also the modelling of the blades inertial 
forces and moments has a dramatic effect on the sequential run-time performance of the 
code and also its ability to be parallelised. It is thus necessary to carefully consider the 
impact of the modelling used on the parallelism of the code if run-time performance is of 
concern.

7. Parallel computing can only be a useful tool when the model that is implemented is 
intrinsically parallelisable. Rotorcraft simulation does display enough inherent 
parallelism to make parallel processing technology a valid tool.
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4. Further Work

1. Development of a parallel trim algorithm which captures the periodicity of the 
aircraft's trim state rather than a 'quasi-steady' approximation. This can be implemented 
by checking the periodicity of the full state vector of the vehicle and ensuring that its 
mean flight path is the required one. There exists vast scope for parallelisation in the 
GENISA algorithm here.

2. Incorporation of different wake models which are not based on viewing the rotor system 
as a disc thus reducing the message passing required.

3. Code optimisation to achieve real-time simulation.
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Figure 1 - Time-step Parallelisation

Master Process Blade Processes

Read input data

Send input data

Send data to master

Receive input data

Receive blade data

Integrate the states of the blade

Message pass updated states as required Message pass updated states as required

Calculate aircraft equations of motion 
and airframe kinematics

Receive the rates pertinent to 
appropriate blade

Calculate fuselage, fin and 
tailplane forces and moments

Integrate the airframe, wake and engine 
states

Send the 'blade' rates to the appropriate 
processor

Set up and invert the A-matrix and solve 
for the total rates of states

Calculate blade forces and moments 
and blade co-efficients of A-matrix.
* This involves communication to 
allow the Wake and Engine Model to 
be evaluated
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Figure 2 - Trim Algorithm Parallelisation

Master Process Worker Process

STOP

Within ' 
Tolerance^

Send flag to stop

Read input data

Send input data

Send new controls

Receive input data

Send output vector

Receive new controls

Receive flag to stop

Output trim condition

Receive output vectors

Perturb appropriate control

Estimate new controls via 
Jacobian matrix

Perform forward simulation 
with perturbed control

Perform forward simulation on 
unperturbed controls

Perform forward simulation on 
new controls
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Figure 3 - Perturbation Parallelisation 

Master Process Worker Process

Output Results

Send input data

Read input data

Send output vector

Receive input data

Receive output vectors

Perturb appropriate controlPerturb appropriate control

Perform forward simulation 
with perturbed control

Perform forward simulation 
with perturbed control

University of Glasgow - Aerospace Engineering - Internal Report No. 9504



The Viability of Parallel Processing Technology for use in Rotorcraft Simulation

Appendices
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Appendix 1.

Common PARIX functions

myprocidO - returns a unique processor identification number. 
nprocsO - returns the number of processors within the partition.
addnewlinkO - creates a virtual link between two processors in the partition.
send() - sends information via a virtual link.
recv() - receives information via a virtual link.

Common PVM functions

pvmfmytidO - returns Unix process identification number 
pvmfspawnO - starts 'child' task
pvmfparentO - returns Unix process identification number of 'parent' process
pvmfinitO - clears memory in buffer
pvmfpackO - packs data into buffer memory
pvmfsendO - sends buffer
pvmfrecvO - receives buffer
pvmfunpackO - unpacks data from buffer
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Appendix 2.

Calculation of the acceleration of a blade element

From ref 8, it is shown that the absolute acceleration, of a point moving in a co­
ordinate system with rotating axis is given by:

d2r
Up — Uc) H—

dt1
where

d2rf = arei + 2a'xwei + ax{axr) + axr
dt

As there is no motion between the points that we are considering and that the rotorcraft 
components in question are modelled as rigid bodies, we can say that:

Thus
d2r
dt2

Clrel — lire I — 0

= «x(fflxr)-i-«xr

So in notation that is consistent with RASCAL we can say 

iS=aS*+aS* X (a“' x rtaWa)

where

body _ -body , rnbody v body 
Q.cg -iLcg +^cg X —eg

It is now possible to transform the axis set to one which is located in the rotorcraft hub by 
the following transformation.

•shaft _ rp -hody 
iLhub — 1 —hub

where

T\ =
cos 05 0 —sin 05

sin 05 sin 0s cos 05 sin 0s cos 0s 

cos 05 sin 0s - sin 0s cos 0s cos 0s

Transforming the axis set again from one which is located in the hub to one which is 
rotating with the hub can be achieved as follows:

ro,or = T2ut^Uhub

where
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Ti =

sim/A —cos y/ 0 

cos y/ sinyr 0
0 0 1

So the acceleration can now be calculated at the hinge using the following transformation:

■rotor _ -rotor , n-.rotor v (mrotor v \ , f\rmor v r
—hinge —hub * —hub ^ \^hub ^ —hinge I hub) ‘ —hub —-

And this can be further transformed into blade axes by:

•blade __rF-ii‘jrotor
—hinge ~ ^ —hinge

hinge/hub

where

r3 =
cos ^ sin ^ 0

-cos^sin^ cos P cos ^ sin)8
sinjSsin^ -sinyScos^ cos(5

Finally, the acceleration of a blade element can be calculated, using:

•blade _ -blade , .Made v (mblade v \ , -blade
—elem —hinge ' —hinge hinge ^ Lelem!hinge ’ ‘ —hinge ^ Lelemthinge

It is obvious from the above that the angular velocities' and accelerations at each 
intermediate point is required in order for these transformations to take place. Consider 
first the angular velocity.

r.tbody _ ..-.body _
ylhub ~ yicg ~

Transforming this into axes fixed in the hub can be achieved as follows:

ffhaft rp mbody 
—hub 1 ihub

And into and axes system that rotates with the shaft

+
o'
0
a

We can also say that

..rotor _ ,.rotor
"Ihinge ~ —hub

And we can transform this into blade axes using the following transformation:
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.Made _ ,,rotor
—hinge ~ 1 3blunge

The same can also be done for angular acceleration:

body ‘.body 
Qlhub = ®cg

Which can be transformed into an acceleration in shaft axes:

•shaft rj^ -body 
^hub =Tl^hub

And from that into one which rotates with the hub

It is therefore apparent that:

•rotor rji shaft ,Qihuh =Tmhub +

• rotor _ • rotor
—/imge —hub

0
0
Q

So it is now possible to describe the angular acceleration as in blade axes as follows:

•blade rr> -rotor , 
^hinge ~ ^^^hinge

From the description above it is apparent that the calculation of the inertial acceleration 
of a blade element is a function of many parameters including translational acceleration of 
the vehicle, angular acceleration of the vehicle, rate of change of rotorspeed and angular 
acceleration of the blades. This complicates the mathematics of the simulation somewhat 
as the model works by calculation of the rate of change of each state variable and thus the 
new state is found by numerical integration.

Mathematically this can be expressed as follows:

x = f{x,u,x,u)

In RASCAL this is overcome in the following manner:

^total ^partial ^ ^total

Which can be re-arranged to give the following:
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Where

r ~ A ^ V -total ■rL —partial

A = I —A

This allows the inertial acceleration of each blade element to be calculated exactly but 
causes the computational performance to be poor as it involves the calculation of many 
extra terms and also requires the matrix A to be inverted (or for the system of 
differential equations to be solved for directly).

It is possible to avoid this computational burden by introducing a modelling discrepancy. 
That is to use information from the previous time step when calculating the blade element 
inertial accelerations. It is possible to do this without introducing large errors because 
the contribution of the inertial forces and moments to the overall forces and moments of 
the rotor system is small because of the dominance of the aerodynamic terms and also if 
the model is calculated over small time steps then variations in the rates of change will 
also be small.
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