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Abstract

A novel time-stepping approach is presented for the three-dimensional 
thin-layer Navier-Stokes equations. The method involves a two factor 
approximate factorisation and uses a preconditioned conjugate gradient 
solution for one of the factors. The method has potential to provide most 
of the advantages of a fuUy unfactored method without the huge memory 
requirements. A partially implicit method is also considered. Results and 
a stability analysis are presented to evaluate the approaches.



1 Introduction
There is considerable potential for saving valuable computer time by care­
ful examination of solution methods for the equations describing three- 
dimensional flows. Simulations based on the compressible Navier-Stokes 
equations are important in aerospace engineering because of their general­
ity which in theory should lead to the accurate prediction of shock waves, 
boundary layers and flow separation. However, due to the large amount 
of computation required to solve these equations, coarse grids and poorly 
converged solutions often mean that the advantages are not fully realised 
due to the poor quality of the approximation to the flow field.

To obtain steady flow solutions quickly it is crucial to select appropriate 
ways of accelerating the convergence to steady state. One way of doing 
this is to use an implicit treatment of some or all terms to allow the use of 
larger time steps. Two particular approaches were examined for aerofoil 
flows in [1] and [2]. The first method used an implicit treatment for terms 
normal to an aerofoil and yielded high efficiency in parallel. The second 
method, called AF-CGS, which proved preferable overall, used an implicit 
treatment of all spatial terms together with an unfactored solution of the 
resulting linear system by the conjugate gradient squared (CGS) iterative 
method together with preconditioning based on the alternating direction 
implicit (ADI) factorisation.

The generalisation of these methods to solve for three-dimensional flows 
is complicated by several issues. First, computer storage becomes a lim­
iting factor because of the need to store large Jacobian matrices. This 
leads to a giga-byte requirement on relatively small meshes. Secondly, the 
ADI factorisation is significantly worse in three-dimensions than in two. 
Thirdly, the relative grid spacings required to resolve scales in the three di­
rections is different compared with the two dimensional problem and hence 
opens up new possibilities for efficient methods, eg, an explicit treatment 
in the spanwise direction of a wing along with an implicit treatment in the 
streamwise and normal directions.

In the current report we discuss various alternatives for the efficient 
solution of the three-dimensional Navier-Stokes equations. The discussion 
emphasises the likely application of each method. Analysis is presented 
to demonstrate the stability properties of two of the methods proposed. 
Finally, results are presented for a transonic laminar test case which illus­
trate points raised in the discussion and analysis.

2 Equations
The three dimensional thin-layer Navier-Stokes equations are given in 
Cartesian co-ordinates by

dw df dg _ ds 
dt dx ^ dy ^ dz dy (1)
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P 2

The symbols p, u, v, w, e, p, p, k, T represent the fluid density, the three 
components of velocity, energy, pressure, viscosity, heat conductivity and 
temperature respectively. The constants 7 and cv stand for the ratio of the 
specific heats and the specific heat at constant volume respectively. The 
fluid viscosity is assumed to vary with temperature by Sutherland’s lawr. 
The spatial discretisation used is Osher’s method for the inviscid terms 
with MUSCL interpolation and a flux limiter used to provide third order 
spatial accuracy. Central diff’erencing is used for the viscous fluxes.

3 Time-Stepping Methods
The efficiency of the underlying numerical method is particularly impor­
tant for three-dimensional flow simulations due to the high computer costs 
involved. Large CPU time and memory requirements are limiting factors 
which must be overcome. In this section we discuss some time-stepping 
methods for steady and unsteady flows over wings. The following notation 
is used in describing the numerical method:

dx ~ Rr

d(g-s)
dy
r3h 
dz

Rn

Rz.
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method formulation

explicit 6w = —At(Rx + Ry + Rz) = Sexp

implicit (I + + At^ + At^)Sw = bexp
v 1 dw 1 OW ' OW '

partially implicit [I^Atid^^At'^)bw = b^xv

F/UNF (if + )|f_,(|f +

Table 1; Time stepping methods for 3D case.

The time stepping methods which we consider are shown in table 1. Here 
ttw = wri+1 — wn and = pn+1 — p'1 where w and p are the vectors 
of cell conserved and primitive variables respectively and the superscript 
denotes the time level of the approximation.

The potential for using the fully implicit method is limited because of 
the very high memory recpiirements. Also, the size of the linear system 
means that a direct or iterative solution is significantly harder than in 
two dimensions. The generalisation of the AF-CGS method [2] to three 
dimensions is unpromising because of these two problems and also because 
of the poor quality of the three factor approximate factorisation.

The explicit method has the advantage of low memory requirements 
relative to the fully implicit method. However, from experience in two- 
dimensions, the long time to convergence makes this method inefficient and 
this problem is likely to be worse for the more complex flows encountered 
in three dimensions.

The problems associated with the explicit and fully unfactored meth­
ods motivate the investigation of the partially implicit and the factored- 
iinfactored (F/UNF) methods. Both of these approaches overcome the 
memory limitation because the matrix of the linear system only needs to 
l)e stored for one spanwise factor at a time and hence the major memory 
requirements are similar to that of an unfactored method for each two- 
dimensional spamvise slice. Two-dimensional problems on meshes with 
over 1.5000 grid points can be solved on workstations with 64 Mb of mem­
ory by the fully implicit method and so large three-dimensional problems 
can be solved on workstations using these two methods.



The partially implicit method is Ukely to yield the most efficient use of 
a parallel computer hke the Intel Hypercube with each spanwise slice being 
solved on a processor without communication after an initial setup stage 
with the communication requirements of an explicit method. However, for 
grids which are strongly clustered at the wing tip it is likely that stability 
limits arising from the spanwise explicit treatment of the partially implicit 
method wiU be too restrictive and for these cases the fully implicit or the 
factored-unfactored (F/UNF) methods should have an advantage.

The fuUy factored method in three dimensions is theoretically uncon­
ditionally unstable. However, it is shown in the next section that the two 
factor (or factored-unfactored) method has similar stability properties to 
the two factor method in two dimensions. A loss in efficiency of up to 
fifty per-cent has been noted for the factored method in two-dimensions 
when applied to aerofoil flows but, as discussed above, the generalisation 
of unfactored methods from two dimensions to three is likely to bring re­
duced performance. The problem with the factored-unfactored method 
is that a linear system must be solved which is more complicated in its 
sparsity pattern than the simple banded matrices normally encountered in 
approximately factored methods. However, the more complex factors can 
be solved by an extension of the AF-CGS method i.e.

(£!!: + a(^ + a(2^\ r\ 1 1 r\ • 4op op op
)X = y

is solved by the CGS method with a preconditioner given by inverse of the 
a p p r oxi m ate fact oris at ion

dw . dRxdw
(—b v 0op op Op Op Bp

The factored-unfactored method is formulated in primitive variables to 
overcome a problem with the AF-CGS method which was first encountered 
in two dimensions The difficulty with the conserved variable formulation is 
that large relative errors in the CGS solution become small absolute errors 
when scaled by the cell volume when the conserved variable formulation 
is used.

A crucial part of the three methods involving some form of implicit 
treatment is the calculation of the .Jacobian matrix. This is achieved 
in the present work by a fully analytical derivation using the symbolic 
manipulation package REDUCE. The formulation follows the method used 
for the .Jacobians in two-dimensions as given in [3].

4 Newton scalar analysis
In order to give an indication of the stability of the factored-unfactored 
method, a Newton scalar analysis is carried out along the lines of [4]. A



scalar model of the problem is written as

ut + r(u) = Q (2)

where r{ u) = fi(u) + /2(«) in two dimensions, and r( u) = fi( u) + /2( «) + 
/:!((/) in three dimensions. The three dimensional factored algorithm is 
written as

{1 + Af/|(un)}{1 + ■«")}{! + «")}(«n+1 -un) = —Atr(un) (3)

where the ft represent the differencing signature which is determined by 
the choice of spatial differencing. When the fi are complex, it can be 
shown that the algorithm is at best conditionally stable. However, in the 
'worst case’ of the /, being purely imaginary, it can be shown that for any 
At there exist modes for which the modulus of the amplification factor is 
greater than one, and so the method is unconditionally unstable.

We shall consider the two dimensional factored algorithm, and the 
three-dimensional factored-unfactored algorithm for the ‘worst case .

For the two dimensional factored algorithm we have

{1 -b Atf[(un )}{1 + Af/]( un)}( «n+1 - u" ) = —Atr(un) (4)

Following the analysis of [4] leads to the following equation for the global 
error e" = un — v, where i> is the solution of r{u) = 0,

en+1 = a(At)en +
2

Here, the function g is obtained by writing (4) in the form un+1 = g{ iiT[ 
and a[At) is given by

(5)

a(At) =
l + (At)2f[(v)f}2{v)

[1 + At/|( i’)][l + Af/2(t;)]

Writing /|(c) = ai and f\( v) = 3i. where i - x/-!, we find that

(1 — (A/)2o J)
\a(At)\ =

[(1 — (At)2a3)2 4- (Ai)2{c\ + 4)2]-

Hence |a(A/)|2 < 1 for all o. 3 G F. We also have that a(0) = 1. and that 
rr — I as A/ — oc. If we now consider when At is small, neglecting 
powers of At of 2 or more leads to

dW\
d(At)

-At(a + 3)2.

Hence a(At) < 1 when At is small, which implies there exists a finite At 
which gives the optimal convergence rate.

6



Repeating this analysis for the three dimensional factored-unfactored 
method, which is given by

{1 + Atf\(un) + A</|( ii’1 )}{1 + A//|(iin)}(un+1 -un) = -AM ft") (6)

we find that
, , „ l + (\t)2f\(v)fi{v) + (At)2fl2(v)fi(v)

a(At) =----------- —j---------------- i--------------------- i------- •[1 + At/|( i>) + At/'( e)][l + Atfiiv)]

Writing /|(i’) = at, fl2(v) = /Jt and f]3(v) = 7!, we find that

[1 - (At)2(Q7 d-M)]2
|a( At)| = [1 - (At)2(Q7 + li'))]2 + {At)2(a + I))2

Hence \(r{At)\ < 1 for all a, J and 7 € S?. Again we have a(0) = 1, and 
(T — 1 as Af — 00. Considering At small we have

d\a\
d(At)

-At(Q + i3)2.

Hence <T(At) < 1 when At is small, which implies there exists a finite At 
which gives the optimal convergence rate.

The analysis suggests that the three dimensional factored-unfactored 
method behaves in a similar way to the two dimensional factored algo­
rithm, rather than exhibiting the stabihty problems associated with the 
three dimensional factored algorithm in the absence of artificial dissipa­
tion.

5 Results
The test case considered is laminar flow over the lEPG delta wing on a 
49 X 17 X 25 mesh, with the following flow conditions:

M.y, = 0.8, Q = 0°, Re = 9.0 x lO6.

A comparison of the convergence histories for the explicit, partially implicit 
and factored-unfactored methods is shown in figure 1. A work unit is 
defined as the CPU time required for one iteration of the explicit method. 
The partially implicit and factored-unfactored results were both obtained 
with a global CFL number of 10. This CFL numlrer corresponds to the 
optimal convergence rate for the factored-unfactored method. For the 
partially implicit method the convergence rate does not increase when the 
CFL number is increased beyond 5 because the time step throughout the 
mesh is bounded by the explicit stability limit in the spanwise direction. 
Hence, increasing the CFL number has a decreasing effect as the explicit 
limit bounds the time step in an increasing number of cells. Figure 2 
shows that the approximately factored treatment in the spanwise direction 
overcomes this difficulty with the partiaUy implicit method with faster 
convergence arising from the larger time steps. The factored-unfactored 
method acliieves convergence significantly faster than the explicit method.
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Figure i; Comparison of convergence histories for the explicit, partially implicit 
(Plj and facto red-unfactored (F/UNF) methods.
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Figure 2: Comparison of the number of work units to convergence for the fact ored- 
unfactored methods with varying values of the CFL number.



6 Future Work
The results of this report have shown that the partially implicit and 
factored-unfactored time stepping methods both have the potential to 
efficiently solve for three-dimensional flows under certain circumstances. 
These two methods only require the storage at any one time of blocks 
in the Jacobian matrix arising from one slice in the mesh and hence the 
memory needs are reduced to a size which can easily fit onto a workstation.

The penalty for the partially implicit method is the time step restric­
tion arising from the explicit treatment of terms in the spanwise direction 
of the wing. For the lEPG ca.se used as a. test problem above this restric­
tion proves too severe and the convergence is degraded to the extent that 
the method is not competitive. However, this might not be the case for 
higher aspect ratio wings. Also, this method should yield very efficient 
use of a parallel computer since the communications are the same as for 
an explicit method and the computation on each node is increased by a 
factor of five. A speed-up of around 9-5 per-cent was observed for the 
explicit method on 16 nodes of an intel i860a Hypercube and hence the 
partially implicit method should be able to attain almost 100 per-cent of 
the theoretically possible speed up on this machine.

The factored-unfactored method shows a significant speed up over the 
explicit method. For problems on larger meshes and with more severe flow 
features this improvement is likely to be greater.

The fully unfactored method was not investigated because of the lack 
of a suitable machine with sufficient memory. In two-dimensions the unfac- 
tored method is around thirty per-cent quicker than the factored method. 
Ill three-dimensions this improvement is likely to be less due to the poorer 
quality of the factorisation involving three factors than that involving two 
in two-dimensions. Therefore, the degradation of convergence by using the 
factored-unfactored method is likely to be small.

Future work includes

• evaluation of factored-unfactored method for turbulent test cases

• testing on larger meshes using a parallel computer

• evaluate the three implicit methods for unsteady flows.
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