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Abstract. Some existing parallel N-S codes, including both 
explicit and implicit algorithms, have been ported on different 
parallel environments. The application of the PVM software 
package to a cluster of workstations and on the EPCC Cray- 
T3D have also been illustrated.

1 INTRODUCTION

In the computational fluid dynamics (CFD) area, in order to 
simulate complex three dimensional flows, numerical solu­
tions of the Navier-Stokes (N-S) equations need much CPU 
time and memory. One state of the art technique is extending 
original sequential codes to operate in paraUel. Some par­
allel codes have been developed for solving both algebraic 
non-linear systems and two and three dimensional high speed 
viscous flows (see [6],[7],[8]). Algorithms presented in the 
above papers achieved high parallel efficiency and could de­
compose memory requirements to each processor efficiendy.

However, the way that hardware and software of parallel 
environments develop will be a key factor in the emergence of 
CFD codes. Some message passing parallel computers avail­
able are the Meiko Computing Surface, Intel iPSC/860 Hy­
percube, and Cray-T3D. Versions of the latter two belong to 
the Engineering and Physical Science Research Council (EP- 
SRC) in Daresbury Laboratory and the Edinburgh Univer­
sity Parallel Computing Centre respectively. Since the Meiko 
Computing Surface in the University of Glasgow was com­
posed of nearly 40 of the slower T800 transputers, it was used 
only for testing algorithms. Concerning software, the PVM 
package is a successful message passing software available 
in the pubhc domain, which allows a heterogeneous network 
of parallel and serial computers to appear as a single con­
current computational resource. By using PVM, the cluster of 
workstations can be used as a parallel computer. However, the 
speed of message passing on the network could be critically 
dependent on the application.
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2 NUMERICAL METHODS

2.1 Discretised equations

Using a numerical method to solve a system of differential 
equations often includes the discretizations of the equations 
and the domain where the equations are defined. Discretiza­
tion of the domain can be carried out by a structured or un­
structured grid. After spatial discretization a semi-discretised 
system of ordinary differential equations in time can be de­
fined as

dV~ + R{V)=0 (1)

where R(V) is a V-dimensional non-linear algebraic system 
in the global domain, and N is the number of aU unknown 
variables on discretised cells (nodes).

2.2 Linearisations

For Eq. (1) various linearization methods are available to 
transfer the original problem to an iterative procedure. Using 
the explicit Euler method we have

y*+> = Vk-AlR(Vk)

A four-step Runge-Kutta method is

Vi = Vk- OiAtRiV11)
v2 = Vk-a2AtR(yi)
V3 = Vk- 03AtR{V2)

yi-+l = Vk~ AtR(V3)

(2)

(3)

where O'1=1/4, q'2=1/3, 03=1/2. Usingafully implicit method, 
e.g., the backward Euler implicit method.

+ = -R(Vk)
Vk+l = Vk -f AkV (4)

As the time step approaches infinity the method approaches 
the Newton’s method

(s^)kAkV = -R(Vk) 
Vk+] = Vk + AkV (5)
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Therefore, generally speaking, in each step of the iterative 
procedures the following linear system is included

JkAkV = -R(VK) (6)

where Jk is a diagonal matrix for the explicit linearization 
method, for which the solution of the linear system can be 
obtained directly, and a non-diagonal matrix for the implicit 
linearization method. Therefore, the computation falls into 
three phases, i.e. the generation of the right hand side; the 
derivation of the left hand side Jacobian matrix; and the so­
lution of the linear system. For the explicit method the latter 
two phases are not needed.

In this paper the Newton’s method is used for solving the 
2-dimensional and pseudo 3-dimensional high speed viscous 
flows and the explicit method is used for the 3-dimensional 
flows. A cell centred finite volume method and the Osher’s 
upwind scheme with the high order MUSCL interpolation are 
used to discretise the N-S equations.

JN

Figure 1. Domain decomposition

3 PARALLEL ALGORITHMS
3.1 Domain decomposition
The benefits of using the structured grid are: (1) it is easy 
for ordering the cells, (2) it makes the Jacobian matrix of 
the implicit method structured, (3) it is more suitable for 
the discretization of boundary layers, and (4) in the parallel 
calculation it is easy for using the domain decomposition 
technique.

For the structured grid (ij) of the 2-dimensional or (LjX) 
of the 3-dimensional domain, one direction or multidirections 
decomposition can be employed. The order is first to decom­
pose the k direction and then, if it is necessary, to decompose 
thei direction and finally the i direction. Each array used in 
the code has the index of (i.jjc) or (ISjX), where / represents 
another index for grouping a set of relative arrays. An exam­
ple of the 2-dimensional structured grid with one direction 
decomposition is illustrated in figure 1.

3.2 Parallelizability
It has been presented in [7] and [8] that in the former two 
operations of the three phases of calculations, the generation 
of one component only concerns the cell, to which the com­
ponent is corresponding, and its limited neighbouring cells 
(e.g. figure 2). This type of calculation is said to have lo­
cal characteristics. The other approach is said to have global 
characteristics, an example being the solution of the linear 
system.

Since the variables on neighbouring cells are needed for the 
local characteristic, communications are required between the 
neighbouring subdomains for the message passing near the 
boundary of them. The extent of cells, for which the variables 
are needed to be transferred, is dependent on the extent of 
the local characteristic. Figure 3 shows the real subdomains 
needed for execution of the parallel code.
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Using the GMRES or CGS linear solver vector inner prod­
ucts and matrix-vector multiplications are included. Assum­
ing there areM processors available. One of the matrix storage 
methods is through decomposing the matrix along coluimi 
with no data over-lap. Assuming the matrix A is of order 
N {N > M), the matrix A can be written in columns as 
A=[A' A2,—AM], where Am is aN * L submatrix. The trans­
position of vectors X and b can be written as XT=[xf X.2 
and hT=[b\, -;brM] where and bh are vectors of order 
L corresponding to Am ,m=\,2,...M. Am, xJn undb^ are stored 
in each processor m. The calculation of the inner product of 
two algebraic vectors a and b is equal to the sum, within 
all processors, of the inner products of their corresponding 
components (eq 7). Therefore the calculation includes sin­
gle processor and multiprocessor accumulation and broadcast 
procedures [1].

In using GMRES or CGS linear solver there is no se­
quential bottle-neck for the parallelization, even if the block 
diagonal or 5 diagonal blocks incomplete lower and upper 
factorisation (5BILUF) preconditioner is used [8]. From [8] a 
BILUF or 5BILUF preconditioner is very efficient only if the 
factorisation can keep the important information of the Jaco­
bian matrix, and the sequential bottle-neck is present when 
using BILUF preconditioner, such as BILUF generation and 
forward-backward substitution. However, the cost of comput­
ing these terms has been reduced to only a few percent of the 
total computation cost. That is, the calculation, which is not 
paraUelizable, will have little effect on the efficiency of the 
parallelization of the complete Newton’s method.

a-GMRES is another fully parallelizable algorithm for 
solving linear systems, which arise from the representation 
of very complicated physical phenomenon [6].

(«.^)= Et, aibi= EP, a‘b‘ + - + EpM a‘b‘ (1)

The task of calculating Ax to M processors is divided by 
calculating AmXm on processor Wl. Let y=Ax, i.e.

/ y' \ 
f

J
= ( A'A2,...Am )

/ X1 \ 
X2

J
we have

/ X1 \ / o1 \ / o1 \
O2 X2 o2
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The resulting vector}1 is again distributed to the M proces­

sors. The only communication required in the calculation is 
in the formation of y. Due to the sparsity of the matrix A, this 
communication is only of a limited nature.

3.3 Parallel implementation
There are two types of message passing, i.e. between the 
neighbouring processors and between all processors.

In one calculation the whole message passing between the 
neighbouring subdomains along one coordinate direction can 
be completed within four steps of communications as in figure 
4.
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Figure 4. Parallel flow chart

4 PARALLEL CODES
The enrollment of parallel on iPSC860 is as following:

G -----------------------------------------------

c Enroll in parallel
c ----------------------------

nun=numnodes() 
if(nun.ne.npro) stop 999 
myn=mynode()

c -------------------------------------------------
c Determine neighbors in the ring 
c -------------------------------------------------
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lan=itiyn-l
nGn=inYn+l
if(Ian.It.0) lan=lan+npro 
if(nen.gt.npro-1) nen=nen-npro

where the decomposition is along one direction k, npro is the 
number of processors, which are used in the calculation and 
set by the user. Ian, myn, nen are the identification numbers 
of my previous processor, myself, and my next processor, 
respectively.

Message passing is executed by

call csend(type,buf,len,node,pid)

and

call crecv(type,buf,len)

where type is an integer that identifies the type of the message 
to be sent or received and can be set by user, buf refers to the 
buffer that contains the message to be sent or received, len is 
the size of bytes of the message, node is an integer that defines 
where the message is to be sent, and pid must be set to 0.

The enrollment of PVM 3.3 on Cray-T3D is as following:

c ----------------------
c Enroll in pvm
c ----------------------

call pvmfmytid( mytid )
c ------------------------
c T3D inclusions
c ------------------------

call pvmfgetpe(mytid, pe) 
call pvmfgettid(pvmall,0,mtid) 
call pvmfgsize(pvmall,nun)

c -------------------------------------------------------
c Determine neighbors in the ring
c -------------------------------------------------------

if(nun.ne.npro) stop 999
myn=mytid-mtid
mynj=myn+l-(myn/nproj)*nproj
my nk=my n / np r o j +1
lank=(mynk-2)*nproj+mynj-l
lanj=(mynk-l)*nproj+mynj-2
nenj=(mynk-1)*nproj+mynj
nenk=raynk*nproj +mynj-1
mynj=mynj-l
mynk=mynk-1

The enrollment of PVM 3.3 on workstation clusters is as 
following:

c
c
c

Enroll in pvm

call pvmfmytid( mytid ) 
name='nscode'
call pvmfparent( tids(O) ) 
if( tids(O) .It. 0 ) then

tids(0)=raytid 
myn=0
call pvmfspawn(name,PVMDEFAULT 

& npro-1,tids(1),info)
if(info.lt.npro-1) stop 999 
do i=2,npro 

type=50000
call pvmfpsend(tids(i-1),type 

& ,tids(0),npro,INTEGER4,info)
end do 

else
type=50000
call pvmfprecv(-1,type,tids(0)

& ,npro,INTEGER4,ati,ata,len,info) 
do i=l,npro-1
if(mytid.eq.tids(i)) myn=i 

end do 
endif

c -------------------------------------------------------
c Determine neighbors in the ring
c -------------------------------------------------------

inynj=rayn+l- (myn/nproj) *nproj
rnynk=myn/npro j +1
lank=(mynk-2)*nproj +mynj-1
lanj=(raynk-1)*nproj+mynj-2
nenj =(mynk-1)*nproj +mynj
nenk=mynk*nproj +raynj-1
mynj=mynj-l
mynk=mynk-l
latj=tids(lanj)
netj=tids(nenj)
latk=tids(lank)
netk=tids(nenk)

where the decomposition is along two directions k and j. 
npro, nproj, and nprok are the numbers of all processors, J 
direction processors, and k direction processors respectively, 
which are used in the calculation and set by the user, myn 
is the identification number of myself in all processors, lanj, 
mynj, nenj are the identification numbers of my previous 
processor, myself, and my next processor in j direction, re­
spectively. lank, mynk, nenk are the identification numbers 
of my previous processor, myself, and my next processor in 
k direction, respectively, latj and nenj are the identification 
numbers of my previous processor and my next processor in j 
direction, and latk and netk are the identification numbers of 
my previous processor and my next processor in k direction, 
which are used in workstation clusters version.

Message passing is executed by

call pvmfinitsend(PVMDEFAULT,info) 
call pvmfpack(what, buf,len,stride,info) 
call pvmfsend(node,type,info )

and

call pvmfrecv(node,type,info )
call pvmfunpack(what,buf,len,stride,info)
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where type is an integer that identifies the type of the message 
to be sent or received and can be set by user, buf refers to the 
buffer that contains the message to be sent or received, len is 
the size of words of the message, node is an integer that defines 
where the message is to be sent or received, what is equal to 
REAL4 or REALS for the real data to be sent or received (on 
Cray-T3D, always REALS), and stride is an integer and will 
equal 1 for real data to be packed or unpacked.

Note: On Cray-T3D, the node number for the neighbouring 
nodes is lanj, nenj, lank, or nenk, however on workstation 
clusters, it should be latj, netj, latk, or netk which is obtained 
from a calculation, such as latk=tids{lank).

References [3] and [2] also provide useful information.

5 NUMERICAL RESULTS
The foregoing numerical tests have been carried out to solve 
the LCNS, PNS and 3-d NS equations for compressible flow. 
One case is a laminar Mach 7.95 flow around a sharp cone at an 
angle of attack of 24°. Another case is the flow around an ogive 
cylinder at Mach 2.5 and an angle of attack of 14°. Any one of 
the test cases produces a flow which has a large separated flow 
region with an embedded shock wave in the leeward side of 
the object and strong gradients in the thin boundary layer on 
the windward side, more details of the physical phenomena 
involved in these flows can be found in [5] and [4]. The 
computers used are a cluster of Silicon Graphics workstations, 
Cray-T3D, and Intel iPSC/860 Hypercube.

Parallel implementations for various procedures in using 
implicit method in LCNS code have been shown in table 1, 
where the dimension of the Krylov subspace is 50, and the 
grid size is 34x66. In the table the first GMRES column is 
that in conjunction with 5BILU preconditioner and the second 
is in conjunction with the BILU preconditioner.

Table 1. CPU time for one step implementation

Table 2. CPU time for one step explicit iteration

o □ A 5BILU GMRES BILU GMRES

1 7.17 39.27 1.23 45.51 — _
2 3.71 19.23 0.62 23.50 2.03 37.58
4 1.95 9.86 0.31 12.45 1.02 30.04
8 1.04 4.95 0.15 6.61 0.62 27.13
16 0.57 2.35 0.08 4.20 0.50 26.41

O; Number of processors D: Explicit iteration 
A: Generation of Jacobian matrix

Parallel results of the 3-d NS code on the Cray-T3D, the 
iPSC/860, and the workstation clusters for the explicit method 
is illustrated in table 2. The grid is

The CPU time (seconds) of one step iteration of a paral­
lel implementation for explicit and implicit methods in the 
PNS code have been shown in table 3, where the grid size 
is 34x66 in one section. The explicit method is the Eu­
ler explicit method. The imphcit method includes Newton’s 
method, GMRES(30) linear solver, block diagonal precondi­
tion, and BILUF preconditioning.

O Grid □ Cray-T3D iPS C/860 A

2 33x33x57 k 10.27 sec _ 3.88 sec
4 33x33x57 k 5.33 sec — 2.05 sec
8 33x33x57 k 2.87 sec — 1.04 sec
4 33x33x57 j.k 5.15 sec 13.64 sec —
8 33x33x57 J.k 2.63 sec 7.60 sec —

32 33x33x57 j.k 0.72 sec 1.89 sec —
64 33x33x57 j.k 0.36 sec — —
64 65x65x113 j.k 2.76 sec — —
128 65x65x113 j.k 1.43 sec — —

O: Number of processors □: Decomposition direction 
A: Silicon Graphics cluster

Table 3. Comparison of using different environments

Cray ■T3D iPSC/860 Ousters
O □ A O A □ A

2 0.249 15.93 0.815 43.2 0.116 10.4
4 0.114 10.23 0.425 29.5 0.071 6.0
8 0.063 8.12 0.228 22.9 0.036 3.1
16 0.034 6.12 0.164 20.3 0.022 1.9

O: Number of processors □: Explicit iteration 
A: Implicit iteration

6 CONCLUSION
We have shown some results of using the PVM package on 
workstation clusters and the EPCC Cray-T3D, and some re­
sults on the iPSC/860. The common parallel feature of these 
environments is message passing. The parallel implementa­
tions accelerate the calculations and divide the storage to 
individual processors.

There are two kinds of jobs can be submitted to the Cray- 
T3D, interactive and batch under NQS. The interactive job 
is only used for testing the code. When a job is submitted 
to the Cray-T3D by NQS, the user needs to wait for the 
necessary number of processors to become available, i.e. even 
if the calculation is very quick when using large numbers of 
processors people cannot have the result quick enough. The 
situation will worsen in future when the number of users 
increase. When using workstation clusters, the job can be 
started immediately, which will share the computer resources 
with other jobs. There are also big difference between the 
CPU time used and the real time for obtaining the result. Also 
another problem is that of load balance, i.e. some workstations 
are heavily used, which delays the whole calculation. It is 
apparent that the iPSC/860 has lost it power nowadays, since 
each processor is of relatively slow speed and the number 
of processors that can be made available in a calculation is 
limited.
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