
University of Glasgow
DEPARTMENT OF

AEROSPACE
ENGINEERING

■ 5 1996

llPrup^

Porting parallel codes to

various parallel environments

X. Xu
GU Aero Report 9417, October, 1994

Engineering
PERIODICALS

mr:

Porting parallel codes to

various parallel environments

X. Xu
GU Aero Report 9417, October, 1994

PSfi/OD/CALcj^

Department of Aerospace Engineering

University of Glasgow

Glasgow G12 8QQ

Porting Parallel Codes to Various Parallel
Environments

Xiao Xu 1

Abstract. Some existing parallel N-S codes, including both
explicit and implicit algorithms, have been ported on different
parallel environments. The application of the PVM software
package to a cluster of workstations and on the EPCC Cray-
T3D have also been illustrated.

1 INTRODUCTION

In the computational fluid dynamics (CFD) area, in order to
simulate complex three dimensional flows, numerical solu­
tions of the Navier-Stokes (N-S) equations need much CPU
time and memory. One state of the art technique is extending
original sequential codes to operate in paraUel. Some par­
allel codes have been developed for solving both algebraic
non-linear systems and two and three dimensional high speed
viscous flows (see [6],[7],[8]). Algorithms presented in the
above papers achieved high parallel efficiency and could de­
compose memory requirements to each processor efficiendy.

However, the way that hardware and software of parallel
environments develop will be a key factor in the emergence of
CFD codes. Some message passing parallel computers avail­
able are the Meiko Computing Surface, Intel iPSC/860 Hy­
percube, and Cray-T3D. Versions of the latter two belong to
the Engineering and Physical Science Research Council (EP-
SRC) in Daresbury Laboratory and the Edinburgh Univer­
sity Parallel Computing Centre respectively. Since the Meiko
Computing Surface in the University of Glasgow was com­
posed of nearly 40 of the slower T800 transputers, it was used
only for testing algorithms. Concerning software, the PVM
package is a successful message passing software available
in the pubhc domain, which allows a heterogeneous network
of parallel and serial computers to appear as a single con­
current computational resource. By using PVM, the cluster of
workstations can be used as a parallel computer. However, the
speed of message passing on the network could be critically
dependent on the application.

1 Department of Aerospace Engineering, University of Glasgow,
Glasgow, G12 8QQ, UK

2 NUMERICAL METHODS

2.1 Discretised equations

Using a numerical method to solve a system of differential
equations often includes the discretizations of the equations
and the domain where the equations are defined. Discretiza­
tion of the domain can be carried out by a structured or un­
structured grid. After spatial discretization a semi-discretised
system of ordinary differential equations in time can be de­
fined as

dV~ + R{V)=0 (1)

where R(V) is a V-dimensional non-linear algebraic system
in the global domain, and N is the number of aU unknown
variables on discretised cells (nodes).

2.2 Linearisations

For Eq. (1) various linearization methods are available to
transfer the original problem to an iterative procedure. Using
the explicit Euler method we have

y*+> = Vk-AlR(Vk)

A four-step Runge-Kutta method is

Vi = Vk- OiAtRiV11)
v2 = Vk-a2AtR(yi)
V3 = Vk- 03AtR{V2)

yi-+l = Vk~ AtR(V3)

(2)

(3)

where O'1=1/4, q'2=1/3, 03=1/2. Usingafully implicit method,
e.g., the backward Euler implicit method.

+ = -R(Vk)
Vk+l = Vk -f AkV (4)

As the time step approaches infinity the method approaches
the Newton’s method

(s^)kAkV = -R(Vk)
Vk+] = Vk + AkV (5)

Glasgow University Aerospace Engineering Report 9417

Therefore, generally speaking, in each step of the iterative
procedures the following linear system is included

JkAkV = -R(VK) (6)

where Jk is a diagonal matrix for the explicit linearization
method, for which the solution of the linear system can be
obtained directly, and a non-diagonal matrix for the implicit
linearization method. Therefore, the computation falls into
three phases, i.e. the generation of the right hand side; the
derivation of the left hand side Jacobian matrix; and the so­
lution of the linear system. For the explicit method the latter
two phases are not needed.

In this paper the Newton’s method is used for solving the
2-dimensional and pseudo 3-dimensional high speed viscous
flows and the explicit method is used for the 3-dimensional
flows. A cell centred finite volume method and the Osher’s
upwind scheme with the high order MUSCL interpolation are
used to discretise the N-S equations.

JN

Figure 1. Domain decomposition

3 PARALLEL ALGORITHMS
3.1 Domain decomposition
The benefits of using the structured grid are: (1) it is easy
for ordering the cells, (2) it makes the Jacobian matrix of
the implicit method structured, (3) it is more suitable for
the discretization of boundary layers, and (4) in the parallel
calculation it is easy for using the domain decomposition
technique.

For the structured grid (ij) of the 2-dimensional or (LjX)
of the 3-dimensional domain, one direction or multidirections
decomposition can be employed. The order is first to decom­
pose the k direction and then, if it is necessary, to decompose
thei direction and finally the i direction. Each array used in
the code has the index of (i.jjc) or (ISjX), where / represents
another index for grouping a set of relative arrays. An exam­
ple of the 2-dimensional structured grid with one direction
decomposition is illustrated in figure 1.

3.2 Parallelizability
It has been presented in [7] and [8] that in the former two
operations of the three phases of calculations, the generation
of one component only concerns the cell, to which the com­
ponent is corresponding, and its limited neighbouring cells
(e.g. figure 2). This type of calculation is said to have lo­
cal characteristics. The other approach is said to have global
characteristics, an example being the solution of the linear
system.

Since the variables on neighbouring cells are needed for the
local characteristic, communications are required between the
neighbouring subdomains for the message passing near the
boundary of them. The extent of cells, for which the variables
are needed to be transferred, is dependent on the extent of
the local characteristic. Figure 3 shows the real subdomains
needed for execution of the parallel code.

N2
(i+2,j)

NW
(i+l.j+1)

NI
(i-bl.j)

NE
(i+lj-I)

W2
(ij+2)

W1
(ij-bl)

C
(ij)

El
(ij-l>

E2
(ij-2)

SW
(i-l.j+1)

SI
(i-lj)

SE
(i-lj-1)

S2
(i-2j)

Figure 2. 13 cell stencil

JN

j

f

\■JN

j

-1

Figure 3. Subdomains

GU Aero report 9417 X. Xu

Using the GMRES or CGS linear solver vector inner prod­
ucts and matrix-vector multiplications are included. Assum­
ing there areM processors available. One of the matrix storage
methods is through decomposing the matrix along coluimi
with no data over-lap. Assuming the matrix A is of order
N {N > M), the matrix A can be written in columns as
A=[A' A2,—AM], where Am is aN * L submatrix. The trans­
position of vectors X and b can be written as XT=[xf X.2
and hT=[b\, -;brM] where and bh are vectors of order
L corresponding to Am ,m=\,2,...M. Am, xJn undb^ are stored
in each processor m. The calculation of the inner product of
two algebraic vectors a and b is equal to the sum, within
all processors, of the inner products of their corresponding
components (eq 7). Therefore the calculation includes sin­
gle processor and multiprocessor accumulation and broadcast
procedures [1].

In using GMRES or CGS linear solver there is no se­
quential bottle-neck for the parallelization, even if the block
diagonal or 5 diagonal blocks incomplete lower and upper
factorisation (5BILUF) preconditioner is used [8]. From [8] a
BILUF or 5BILUF preconditioner is very efficient only if the
factorisation can keep the important information of the Jaco­
bian matrix, and the sequential bottle-neck is present when
using BILUF preconditioner, such as BILUF generation and
forward-backward substitution. However, the cost of comput­
ing these terms has been reduced to only a few percent of the
total computation cost. That is, the calculation, which is not
paraUelizable, will have little effect on the efficiency of the
parallelization of the complete Newton’s method.

a-GMRES is another fully parallelizable algorithm for
solving linear systems, which arise from the representation
of very complicated physical phenomenon [6].

(«.^)= Et, aibi= EP, a‘b‘ + - + EpM a‘b‘ (1)

The task of calculating Ax to M processors is divided by
calculating AmXm on processor Wl. Let y=Ax, i.e.

/ y' \
f

J
= (A'A2,...Am)

/ X1 \
X2

J
we have

/ X1 \ / o1 \ / o1 \
O2 X2 o2

Ax= (A'A2,-Am)(+ +...+

1 0") 1 0" j
= A’x1 -I- A2x2 + ... + AMjAi

(* \
*

V * /
+

/ * \
*

\ *

+ ...+

(* \
*

\ *

= >

/ y1 \ / o1 \ / Q1 \
o2 f o2

+ + ...+

\ 0" j \ 0") \ y" /
The resulting vector}1 is again distributed to the M proces­

sors. The only communication required in the calculation is
in the formation of y. Due to the sparsity of the matrix A, this
communication is only of a limited nature.

3.3 Parallel implementation
There are two types of message passing, i.e. between the
neighbouring processors and between all processors.

In one calculation the whole message passing between the
neighbouring subdomains along one coordinate direction can
be completed within four steps of communications as in figure
4.

evai odd
px). px).

cm:^ckO'
st^l
st^2

st^3

st^4

tiire

Figure 4. Parallel flow chart

4 PARALLEL CODES
The enrollment of parallel on iPSC860 is as following:

G ---

c Enroll in parallel
c ----------------------------

nun=numnodes()
if(nun.ne.npro) stop 999
myn=mynode()

c ---
c Determine neighbors in the ring
c ---

GU Aero report 9417 X. Xu

lan=itiyn-l
nGn=inYn+l
if(Ian.It.0) lan=lan+npro
if(nen.gt.npro-1) nen=nen-npro

where the decomposition is along one direction k, npro is the
number of processors, which are used in the calculation and
set by the user. Ian, myn, nen are the identification numbers
of my previous processor, myself, and my next processor,
respectively.

Message passing is executed by

call csend(type,buf,len,node,pid)

and

call crecv(type,buf,len)

where type is an integer that identifies the type of the message
to be sent or received and can be set by user, buf refers to the
buffer that contains the message to be sent or received, len is
the size of bytes of the message, node is an integer that defines
where the message is to be sent, and pid must be set to 0.

The enrollment of PVM 3.3 on Cray-T3D is as following:

c ----------------------
c Enroll in pvm
c ----------------------

call pvmfmytid(mytid)
c ------------------------
c T3D inclusions
c ------------------------

call pvmfgetpe(mytid, pe)
call pvmfgettid(pvmall,0,mtid)
call pvmfgsize(pvmall,nun)

c ---
c Determine neighbors in the ring
c ---

if(nun.ne.npro) stop 999
myn=mytid-mtid
mynj=myn+l-(myn/nproj)*nproj
my nk=my n / np r o j +1
lank=(mynk-2)*nproj+mynj-l
lanj=(mynk-l)*nproj+mynj-2
nenj=(mynk-1)*nproj+mynj
nenk=raynk*nproj +mynj-1
mynj=mynj-l
mynk=mynk-1

The enrollment of PVM 3.3 on workstation clusters is as
following:

c
c
c

Enroll in pvm

call pvmfmytid(mytid)
name='nscode'
call pvmfparent(tids(O))
if(tids(O) .It. 0) then

tids(0)=raytid
myn=0
call pvmfspawn(name,PVMDEFAULT

& npro-1,tids(1),info)
if(info.lt.npro-1) stop 999
do i=2,npro

type=50000
call pvmfpsend(tids(i-1),type

& ,tids(0),npro,INTEGER4,info)
end do

else
type=50000
call pvmfprecv(-1,type,tids(0)

& ,npro,INTEGER4,ati,ata,len,info)
do i=l,npro-1
if(mytid.eq.tids(i)) myn=i

end do
endif

c ---
c Determine neighbors in the ring
c ---

inynj=rayn+l- (myn/nproj) *nproj
rnynk=myn/npro j +1
lank=(mynk-2)*nproj +mynj-1
lanj=(raynk-1)*nproj+mynj-2
nenj =(mynk-1)*nproj +mynj
nenk=mynk*nproj +raynj-1
mynj=mynj-l
mynk=mynk-l
latj=tids(lanj)
netj=tids(nenj)
latk=tids(lank)
netk=tids(nenk)

where the decomposition is along two directions k and j.
npro, nproj, and nprok are the numbers of all processors, J
direction processors, and k direction processors respectively,
which are used in the calculation and set by the user, myn
is the identification number of myself in all processors, lanj,
mynj, nenj are the identification numbers of my previous
processor, myself, and my next processor in j direction, re­
spectively. lank, mynk, nenk are the identification numbers
of my previous processor, myself, and my next processor in
k direction, respectively, latj and nenj are the identification
numbers of my previous processor and my next processor in j
direction, and latk and netk are the identification numbers of
my previous processor and my next processor in k direction,
which are used in workstation clusters version.

Message passing is executed by

call pvmfinitsend(PVMDEFAULT,info)
call pvmfpack(what, buf,len,stride,info)
call pvmfsend(node,type,info)

and

call pvmfrecv(node,type,info)
call pvmfunpack(what,buf,len,stride,info)

GU Aero report 9417 X. Xu

where type is an integer that identifies the type of the message
to be sent or received and can be set by user, buf refers to the
buffer that contains the message to be sent or received, len is
the size of words of the message, node is an integer that defines
where the message is to be sent or received, what is equal to
REAL4 or REALS for the real data to be sent or received (on
Cray-T3D, always REALS), and stride is an integer and will
equal 1 for real data to be packed or unpacked.

Note: On Cray-T3D, the node number for the neighbouring
nodes is lanj, nenj, lank, or nenk, however on workstation
clusters, it should be latj, netj, latk, or netk which is obtained
from a calculation, such as latk=tids{lank).

References [3] and [2] also provide useful information.

5 NUMERICAL RESULTS
The foregoing numerical tests have been carried out to solve
the LCNS, PNS and 3-d NS equations for compressible flow.
One case is a laminar Mach 7.95 flow around a sharp cone at an
angle of attack of 24°. Another case is the flow around an ogive
cylinder at Mach 2.5 and an angle of attack of 14°. Any one of
the test cases produces a flow which has a large separated flow
region with an embedded shock wave in the leeward side of
the object and strong gradients in the thin boundary layer on
the windward side, more details of the physical phenomena
involved in these flows can be found in [5] and [4]. The
computers used are a cluster of Silicon Graphics workstations,
Cray-T3D, and Intel iPSC/860 Hypercube.

Parallel implementations for various procedures in using
implicit method in LCNS code have been shown in table 1,
where the dimension of the Krylov subspace is 50, and the
grid size is 34x66. In the table the first GMRES column is
that in conjunction with 5BILU preconditioner and the second
is in conjunction with the BILU preconditioner.

Table 1. CPU time for one step implementation

Table 2. CPU time for one step explicit iteration

o □ A 5BILU GMRES BILU GMRES

1 7.17 39.27 1.23 45.51 — _
2 3.71 19.23 0.62 23.50 2.03 37.58
4 1.95 9.86 0.31 12.45 1.02 30.04
8 1.04 4.95 0.15 6.61 0.62 27.13
16 0.57 2.35 0.08 4.20 0.50 26.41

O; Number of processors D: Explicit iteration
A: Generation of Jacobian matrix

Parallel results of the 3-d NS code on the Cray-T3D, the
iPSC/860, and the workstation clusters for the explicit method
is illustrated in table 2. The grid is

The CPU time (seconds) of one step iteration of a paral­
lel implementation for explicit and implicit methods in the
PNS code have been shown in table 3, where the grid size
is 34x66 in one section. The explicit method is the Eu­
ler explicit method. The imphcit method includes Newton’s
method, GMRES(30) linear solver, block diagonal precondi­
tion, and BILUF preconditioning.

O Grid □ Cray-T3D iPS C/860 A

2 33x33x57 k 10.27 sec _ 3.88 sec
4 33x33x57 k 5.33 sec — 2.05 sec
8 33x33x57 k 2.87 sec — 1.04 sec
4 33x33x57 j.k 5.15 sec 13.64 sec —
8 33x33x57 J.k 2.63 sec 7.60 sec —

32 33x33x57 j.k 0.72 sec 1.89 sec —
64 33x33x57 j.k 0.36 sec — —
64 65x65x113 j.k 2.76 sec — —
128 65x65x113 j.k 1.43 sec — —

O: Number of processors □: Decomposition direction
A: Silicon Graphics cluster

Table 3. Comparison of using different environments

Cray ■T3D iPSC/860 Ousters
O □ A O A □ A

2 0.249 15.93 0.815 43.2 0.116 10.4
4 0.114 10.23 0.425 29.5 0.071 6.0
8 0.063 8.12 0.228 22.9 0.036 3.1
16 0.034 6.12 0.164 20.3 0.022 1.9

O: Number of processors □: Explicit iteration
A: Implicit iteration

6 CONCLUSION
We have shown some results of using the PVM package on
workstation clusters and the EPCC Cray-T3D, and some re­
sults on the iPSC/860. The common parallel feature of these
environments is message passing. The parallel implementa­
tions accelerate the calculations and divide the storage to
individual processors.

There are two kinds of jobs can be submitted to the Cray-
T3D, interactive and batch under NQS. The interactive job
is only used for testing the code. When a job is submitted
to the Cray-T3D by NQS, the user needs to wait for the
necessary number of processors to become available, i.e. even
if the calculation is very quick when using large numbers of
processors people cannot have the result quick enough. The
situation will worsen in future when the number of users
increase. When using workstation clusters, the job can be
started immediately, which will share the computer resources
with other jobs. There are also big difference between the
CPU time used and the real time for obtaining the result. Also
another problem is that of load balance, i.e. some workstations
are heavily used, which delays the whole calculation. It is
apparent that the iPSC/860 has lost it power nowadays, since
each processor is of relatively slow speed and the number
of processors that can be made available in a calculation is
limited.

GU Aero report 9417 X. Xu

REFERENCES
[1] D.P. Berl-sckas and J.N. Tsitsiklis, Parallel and Distributed Com­

putation, Prentice-Hall International, Inc., 1989.
[2] Al. Geist et. al., PVM 3 User's Guide and Reference Manual,

1994.
[3] Intel Corporation, iPSC/2 and iPSC/860 Programmer’s Refer­

ence Manual, 1991.
[4] X.S. Jin, ‘A three dimensional parabolized Navier-Stokes equa­

tions solver with turbulence modelling’. Technical report, GU
Aero Report 9315, (1993).

[5] N. Qin, X. Xu, andB.E. Richards, ‘SFDN-o-GMRES and SQN-
0-GMRE.S methods for fast high resolution NS simulations’, in
ICFD Conference on Numerical Methods for Fluid Dynamics,
ed., K.W. Morton ed. Oxford University Press, (1992).

[6] X. Xu, N. Qin, and B.E. Richards, ‘of-GMRES: A new paral-
lelizable iterative solver for large sparse non-symmetric linear
system arising from CFD’, IntemationalJoumal for Numerical
Methods in Fluids, 15, 613-623, (1992).

[7] X. Xu, N. Qin, and B.E. Richards, ‘Parallelising explicit and
fully imphcit Navier-Stokes solutions for compressible flows’,
in Parallel Computational Fluid Dynamics '92, ed., R.B. Pelz
ed. Elsevier, (1993).

[8] X. Xu and B.E. Richards, ‘Numerical advances in Newton
solvers for tlie Navier-Stokes solutions’, in Computational Fluid
Dynamics '94, ed., S. Wagner ed, John Wiley and Sons, (1994).

GU Aero report 9417 X. Xu

