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A B S T R A C T

Vascular inflammatory responses play an important role in several cardiovascular diseases. Of the many pro-
inflammatory vasoactive factors implicated in this process, is aldosterone, an important mediator of vascular
oxidative stress. Statins, such as atorvastatin, are cholesterol-lowering drugs that have pleiotropic actions, in-
cluding anti-oxidant properties independently of their cholesterol-lowering effect. This study investigated
whether atorvastatin prevents aldosterone-induced VSMC inflammation by reducing reactive oxygen species
(ROS) production. Vascular smooth muscle cells (VSMC) from WKY rats were treated with 1 μM atorvastatin for
60min or for 72 h prior to aldosterone (10-7 mol/L) stimulation. Atorvastatin inhibited Rac1/2 and p47phox
translocation from the cytosol to the membrane, as well as reduced aldosterone-induced ROS production.
Atorvastatin also attenuated aldosterone-induced vascular inflammation and macrophage adhesion to VSMC.
Similarly EHT1864, a Rac1/2 inhibitor, and tiron, ROS scavenger, reduced macrophage adhesion. Through its
inhibitory effects on Rac1/2 activation and ROS production, atorvastatin reduces vascular ROS generation and
inhibits VSMC inflammation. Our data suggest that in conditions associated with aldosterone-induced vascular
damage, statins may have vasoprotective effects by inhibiting oxidative stress and inflammation.

1. Introduction

Aldosterone is a steroid hormone synthesized mainly in the outer
layer of the adrenal cortex, the zona glomerulosa [1], although extra-
adrenal sources of aldosterone have been identified [2]. Aldosterone
plays an important role in vascular homeostasis regulating endothelial
function, vascular inflammation and remodeling, which are important
processes underlying vascular injury in hypertension and athero-
sclerosis [1,3–5].

Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzymeA
(HMG-CoA) reductase, revolutionized the treatment of hypercholes-
terolemia. Statins are competitive inhibitors of HMG-CoA reductase, the
rate-limiting enzyme in cholesterol synthesis, thus decreasing en-
dogenous cholesterol synthesis [6,7]. Statins confer cardiovascular
protection, which has been confirmed extensively in experimental and
clinical studies [8,9]. In addition to lipid-lowering actions of statins,
they exhibit a wide array of cardiovascular effects independently of

their lipid-reducing properties [10], the so-called pleiotropic effects.
Statins influence redox-sensitive processes through putative antioxidant
properties and by inhibiting NADPH oxidase (Nox)-derived reactive
oxygen species (ROS) generation [10,11]. Recently, we demonstrated
that atorvastatin treatment counterbalances type 2 diabetes-associated
vascular inflammation and dysfunction and kidney damage, via anti-
oxidant-dependent mechanisms [8,12]. Since vascular cells express
functionally active HMG-CoA reductase [13,14], it is also possible that
vascular effects of statins may involve local inhibition of this enzyme.

Here, we investigated whether atorvastatin directly modulates al-
dosterone inflammatory effects in vascular smooth muscle cells
(VSCM), and whether this effect is mediated via anti-oxidant properties.
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2. Material and methods

2.1. VSMC culture

The study was approved by the Animal Ethics Committee of the
University of Ottawa and performed according to the recommendations
of the Canadian Council for Animal Care and in accordance with the
Guide for the Care and Use of Laboratory Animals published by the US
National Institutes of Health. VSMCs from adult male Wistar-Kyoto rats
(16 weeks-old) were euthanized with non-anesthetic gas (carbon di-
oxide) followed by decapitation. VSMCs derived from mesenteric ar-
teries were isolated and characterized as previously described [15,16].
Low-passage cells (4 to 7) from 3 different batches of cell isolation were
studied.

2.2. Protocols for cell stimulation

Cells were stimulated with aldosterone (10−7 mol/L). Two different
times of stimulations were used: 5 and 30min (min), to assess non-

transcriptional effects, or long-term 24 h (h), to assess transcriptional
effects. In some experiments cells were pre-exposed for 60min and 72 h
to atorvastatin (10−7 mol/L). Cells were also pre-treated for 30min
with EHT1864 (Rac1/2 inhibitor, 10−6 mol/L) or tiron (ROS scavenger,
10−5 mol/L).

2.3. Lucigenin-enhanced chemiluminescence

ROS generation was measured by a luminescence assay with luci-
genin as the electron acceptor and NADPH as the substrate, as pre-
viously described [15,17].

2.4. Western blotting

Total or fractionated proteins from VSMCs were separated by elec-
trophoresis on a polyacrylamide gel, and transferred onto a ni-
trocellulose membrane. Non-specific binding sites were blocked with
5% skim milk. Membranes were then incubated with specific antibodies
overnight at 4 °C described in the cytosol and membrane fractionation.
After incubation with secondary antibodies, signals were revealed with
chemiluminescence, visualized by autoradiography and quantified
densitometrically. Antibody to β-actin (Sigma Aldrich, MO-USA) was
used as an internal control.

2.5. Cytosol and membrane fractionation

Cytosol to membrane translocation of p47phox, which is essential
for NADPH oxidase activation, and Rac1/2 (small G protein necessary
for NADPH oxidase activity) was assessed in VSMCs. Cells were lysed
and fractionated to obtain cytosol- and membrane-enriched fractions.
Western blotting was performed as described using anti-p47phox (Santa
Cruz Biotechnology, TX-USA) and anti-Rac1/2 (Cell Signaling, MA-
USA). Translocation was determined as the ratio of protein expression
in membrane to cytosolic fractions.

Fig. 1. Atorvastatin prevents aldosterone-induced ROS generation in WKY
VSMCs. Effects of aldosterone (10−7 mol/L) on ROS generation measured by
lucigenin chemiluminescence assay in the absence and presence of 10−7 mol/L
of atorvastatin (60minutes and 72 hours pre-incubation). Results are
mean ± SEM of 5–6 experiments. *P < 0.05, vs. vehicle.

Fig. 2. Atorvastatin prevents aldosterone-induced
Rac1/2 activity in WKY VSMCs. Effects of aldos-
terone (10−7 mol/L) on Rac1/2 translocation from
cytosol to the membrane, in the absence and pre-
sence of 10−7 mol/L of atorvastatin (60 minutes and
72 hours pre-incubation). Representative im-
munoblots: Rac1/2 (fractions of membrane and cy-
tosol). Results are mean ± SEM of 5–6 experi-
ments. *P < 0.05, vs. vehicle.
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2.6. Real time RT (reverse transcription)-PCR

Total VSMC mRNA was extracted (Trizol Plus, Invitrogen), purified
with chlroform method, and eluted in 20 μL of DEPC-treated water.
Complementary DNA was generated by RT-PCR with SuperScript III
(Invitrogen). Reverse transcription was performed at 50 °C for 50min;
the enzyme was heat inactivated at 85 °C for 5min, and real-time
quantitative RT-PCR was performed with the SYBR Green Supermix
(Bio-Rad Laboratories). The genes analyzed were: Tumor necrosis factor
alpha (TNF-α): Fw: ACCACGCTCTTCTGTCTACTG; Rev.: CTTGGTGGT
TTGCTACGAC, interleukine 1β (IL-1β): Fw: GCAATGGTCGGGACATA
GTT; Rev.: AGACCTGACTTGGCAGAGGA and glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH): Fw: AAGGTCATCCCAGAGCTGAA;
Rev.: GTCCTCAGTGTAGCCCAGGA, which was used as house-keeping
gene.

2.7. Vascular inflammatory response: macrophage adhesion

Vascular macrophage adhesion was determined according to our
previously described methods [16]. Briefly, VSMCs were cultured to
confluence in 6-well plates. Growth-arrested VSMCs from WKY rats

were stimulated with 10−7 mol/L aldosterone for 24 h in the presence
or absence of atorvastatin (60min or 72 h) and inhibitors. Non-stimu-
lated VSMCs served as controls. Rat-derived NR8383 monocyte/mac-
rophage cell lines were obtained from the American Type Culture
Collection (Manassas, VA). NR8383 cells, adherent and suspension,
were cultured in growth medium (Ham's F12K with 2mmol/L L-gluta-
mine, 1.5 g/L sodium bicarbonate and 15% heat inactivated fetal bo-
vine serum). For cell fluorescent labeling, macrophages (105 cells/mL)
were suspended in 1% bovine serum albumin (BSA)-supplemented
phosphate buffered saline containing 1 μmol/L calcein-AM (Molecular
Probes, Eugene, OR-USA) and incubated for 20min at 37 °C. Labeled
macrophages were washed twice with phosphate-buffered saline and
suspended in Hanks' buffered salt solution. Fluorescence labeled cells
(105 cells/well) were then added to both nonstimulated and stimulated
VSMCs layers and were allowed to adhere for 30min at 37 °C in 5%
CO2. After the incubation, non-adhered cells were removed by gently
washing with pre-warmed Hanks' buffered salt solution. The number of
adherent cells was determined by lysing the cells with 0.1mol/L NaOH.
The cell lysate was transferred to a 96 well plate and the fluorescence
intensity was measured with a fluorescence multiwell plate reader
(excitation wavelength 485 nm, emission wavelength 535 nm, Cary
Eclipse, Varian, CA-USA). VSMC lysate was used as a blank. Experi-
ments were performed in duplicates.

2.8. Data analysis

Aldosterone-stimulated effects were determined as the percent in-
crease over control, with the control normalized to 100%. Results are
presented as mean ± SEM and compared by one way ANOVA. Values
of P < 0.05 were considered to be significant.

3. Results

3.1. Atorvastatin prevents ROS-generation by inhibiting Rac1/2 and
p47phox assembly in VSMCs

Aldosterone (5 and 30min) increased ROS production. Atorvastatin
pre-incubation (60min and 72 h) prevented aldosterone-induced ROS
generation in VSMCs (Fig. 1). Aldosterone increased Rac1/2 and

Fig. 3. Atorvastatin prevents aldosterone-induced
p47pox activity in WKY VSMCs. Effects of aldosterone
(10−7 mol/L) on p47phox translocations from cytosol to
the membrane, in the absence and presence of
10−7 mol/L of atorvastatin (60 minutes and 72 hours
pre-incubation). Representative immunoblots: p47phox
(fractions of membrane and cytosol). Results are
mean ± SEM of 5–6 experiments. *P < 0.05, vs. ve-
hicle.

Fig. 4. Atorvastatin prevents aldosterone-induced ROS generation via Rac1/2
in WKY VSMCs. Effects of aldosterone (10−7 mol/L) on ROS generation mea-
sured by lucigenin chemiluminescence assay in the absence and presence of
EHT1864 (10−6 mol/L) or tiron (10−5 mol/L) (30minute-incubation). Results
are mean ± SEM of 5–6 experiments. *P < 0.05, vs. vehicle.
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p47phox translocation from the cytosol to the membrane, which was
abrogated by atorvastatin treatment (Figs. 2 and 3). In order to confirm
that aldosterone produces ROS via Rac1/2 activation, we incubated
VSMC with EHT1864 (Rac1/2 inhibitor), which reduced aldosterone-
induced ROS generation, similar to the atorvastatin effects. Tiron (ROS
scavenger) also reduced aldosterone-mediated production of ROS
(Fig. 4).

3.2. Atorvastatin blocks aldosterone-induced vascular inflammation

Aldosterone has been associated with vascular inflammation. We
analyzed whether statin treatment reduces aldosterone-stimulated

macrophage adhesion and inflammatory markers. Aldosterone stimu-
lation significantly increased TNF-α expression and there was a trend to
increase IL-1β genes expression. Aldosterone increased the number of
adherent macrophages on VSMCs, effects that were attenuated by
atorvastatin. Furthermore, Rac1/2 inhibition and ROS scavenging
prevented aldosterone-induced vascular inflammatory response
(Fig. 5A–C).

4. Discussion

Major findings in the present study demonstrate that atorvastatin
attenuates inflammatory effects induced by aldosterone in VSMCs by

Fig. 5. Atorvastatin prevents aldosterone-induced inflammation and macrophages adhesion to WKY VSMCs by Rac1/2 and ROS-sensitive mechanisms. Effects of
aldosterone (10−7 mol/L) on TNF-α (A) and IL-1β (B) gene expression macrophages adhesion (C) in the absence and presence of 10−7 mol/L of atorvastatin
(60minutes or 72 h pre-incubation), EHT1864 (10−6 mol/L) or tiron (10−5 mol/L) (30min pre-incubation). Results are mean ± SEM of 4–6 experiments.
*P < 0.05, vs. vehicle.
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inhibiting Rac1/2 and reducing ROS production. Statins as an adjuvant
therapy in the management of cardiovascular diseases such as hy-
pertension and atherosclerosis may have beneficial vascular effects
beyond their lipid-lowering effects.

Aldosterone has potent inflammatory and pro-fibrotic actions
mediated by mineralocorticoid receptor (MR) activation [16,18,19].
Here, we have shown that aldosterone increases inflammatory markers
and macrophage adhesion to VSMCs, supporting a pro-inflammatory
vascular phenotype typically observed in atherosclerosis, hypertension
and other cardiovascular diseases [21–25]. In the present study, we
showed that aldosterone-induced VSMC inflammation is blunted by
atorvastatin incubation and that both acute and long-term effects of
aldosterone are modulated by atorvastatin. Statins possess broad im-
munomodulatory and anti-inflammatory properties, e.g. in endothelial
cells statins increase endothelial nitric oxide synthase (eNOS) mRNA
expression and nitric oxide bioavailability, decreases chemokines re-
ceptors, adhesion protein and cytokines production [20]. In addition,
statin treatment reduces vascular remodeling and oxidative stress in
angiotensin II treated mice, as well as attenuates type I collagen for-
mation in isolated VSMC under angiotensin II stimulus via ROS pro-
duction [21].

Besides being considered a marker for inflammation, ROS have been
considered as a seconder messenger for the inflammatory response
[4,15,19,22–24]. The deleterious effects produced by aldosterone have
been mainly associated with ROS production [3,4,25,26]. Here, we
show that aldosterone elevates ROS production in VSMC, which is ab-
rogated by atorvastatin. Small GTPases such as Rac1/2 are essential for
NADPH oxidase activation. Our findings suggest that atorvastatin might
reduce aldosterone-induced ROS generation by inhibiting Rac1/2 and
consequently Nox-activation, since atorvastatin pre-incubation blocked
aldosterone-induced Rac1/2 and p47phox activation. Nox1 and Nox2
are constitutively associated with p22phox, and the full activation of
these complexes requires interaction with other cytosolic subunits, in-
cluding p47phox [8,23,27]. Further supporting a role for Rac1/2,
NADPH oxidase and ROS in aldosterone-induced inflammation are the
findings that tiron, the ROS scavenger, and EHT1864, Rac1/2 inhibitor,
prevented macrophage adhesion to VSMC induced by aldosterone. This
was associated with reduced ROS production and suggests that ator-
vastatin reduces VSMCs inflammation by inhibiting Rac1/2 and redu-
cing ROS production, possibly mediated by Nox enzymes.

Statins are considered potent inhibitors of cholesterol biosynthesis.
However, the overall benefits observed with statins also include effects
beyond cholesterol lowering effects, e.g.: blocking Small GTPase such as
Rac1/2 [10,13,20,21,28]. Here, 60min of pre-exposure to atorvastatin
generated vascular beneficial effects most likely by directly inhibiting
Rac1/2 activity, whereas 72 h of pre-treatment might produce bene-
ficial effects via dual actions: by lowering cholesterol content and by
inhibiting Rac1/2 activity. The cell membrane contains lipid rafts,
which have high concentrations of cholesterol and sphingolipid and
which are responsible for stabilization of several proteins including the
NADPH oxidases [29,30]. Although we did not check the lipid rafts
content in the present study, 72 h of statin incubation might be in-
hibiting ROS production and vascular inflammation by disrupting lipid
rafts content. Some studies have shown that statin long-term incubation
reduces the lipid rafts content [31,32].

We have not analyzed the effects of statin treatment in experiments
in vivo in the present study, but it is worth mentioning that statins can
reduce aldosterone plasma levels in hypertensive and diabetic patients,
as well as diminish Ang II-induced aldosterone secretion in mouse zona
glomerulosa cells [33]. These findings reinforce the notion that ator-
vastatin may protect the vasculature against pro-inflammatory effects
of aldosterone, as well as reduce aldosterone production.

In conclusion, our findings indicate that atorvastatin prevents al-
dosterone-induced vascular inflammation associated with
Nox–mediated ROS generation. Our findings indicate that atorvastatin
may protect the vasculature in diseases that are associated with

elevated levels of aldosterone. In addition, we propose that statins
might have dual beneficial effects in cardiovascular disease through its
lipid-lowering actions and direct pleiotropic vascular effects.
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