
Article
Chemokine Receptor Redu
ndancy and Specificity
Are Context Dependent
Highlights
d Mice deficient in CCR1, CCR2, CCR3, and CCR5 (iCCRs)

develop normally

d iCCRs redundantly establish resting tissue-resident

myelomonocytic cell populations

d CCR2 dominates in controlling monocyte recruitment in

acute inflammation

d iCCRs are not involved in neutrophil or lymphocyte

recruitment in acute inflammation
Dyer et al., 2019, Immunity 50, 378–389
February 19, 2019 ª 2019 The Author(s). Published by Elsevier I
https://doi.org/10.1016/j.immuni.2019.01.009
Authors

Douglas P. Dyer, Laura Medina-Ruiz,

Robin Bartolini, ..., Kit Ming Lee,

Christopher A.H. Hansell,

Gerard J. Graham

Correspondence
gerard.graham@glasgow.ac.uk

In Brief

CCR1, CCR2, CCR3, and CCR5 (iCCRs)

are dominant regulators of

myelomonocytic cell recruitment in

inflammatory disease. Here, Dyer et al.

have deleted the genomic locus

incorporating the iCCRs in mice and

demonstrate redundancy of iCCR

involvement in establishing tissue-

resident myelomonocytic cell

populations yet specificity of iCCR use in

acute inflammation.
nc.

mailto:gerard.graham@glasgow.ac.�uk
https://doi.org/10.1016/j.immuni.2019.01.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2019.01.009&domain=pdf


Immunity

Article
Chemokine Receptor Redundancy
and Specificity Are Context Dependent
Douglas P. Dyer,1,2,3 Laura Medina-Ruiz,1,3 Robin Bartolini,1 Fabian Schuette,1 Catherine E. Hughes,1 Kenneth Pallas,1

Francesca Vidler,1 Megan K.L. Macleod,1 Christopher J. Kelly,1 Kit Ming Lee,1 Christopher A.H. Hansell,1

and Gerard J. Graham1,4,*
1Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University
of Glasgow, Glasgow G12 8TT, UK
2Present address: Wellcome Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology,

Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
3These authors contributed equally
4Lead Contact

*Correspondence: gerard.graham@glasgow.ac.uk

https://doi.org/10.1016/j.immuni.2019.01.009
SUMMARY

Currently, we lack an understanding of the individual
and combinatorial roles for chemokine receptors in
the inflammatory process. We report studies on
mice with a compound deletion of Ccr1, Ccr2, Ccr3,
and Ccr5, which together control monocytic and
eosinophilic recruitment to resting and inflamed sites.
Analysis of resting tissues from these mice, and mice
deficient in each individual receptor, provides clear
evidence for redundant use of these receptors in
establishing tissue-resident monocytic cell popula-
tions. In contrast, analysis of cellular recruitment to
inflamed sites provides evidence of specificity of
receptor use for distinct leukocyte subtypes and no
indication of comprehensive redundancy. We find
no evidence of involvement of any of these receptors
in the recruitment of neutrophils or lymphocytes to
resting or acutely inflamed tissues. Our data shed
important light on combinatorial inflammatory che-
mokine receptor function and highlight Ccr2 as the
primary driver of myelomonocytic cell recruitment in
acutely inflamed contexts.

INTRODUCTION

Leukocyte migration is regulated by chemokines (Rot and von

Andrian, 2004), which are characterized by conserved cysteine

motifs and which exert their effects by binding to 7-transmem-

brane-spanning receptors (Bachelerie et al., 2014a). Chemo-

kines and their receptors are broadly defined as being inflamma-

tory or homeostatic according to the contexts in which they

function (Mantovani, 1999; Zlotnik and Yoshie, 2000), and their

biology is further fine-tuned by stromally expressed atypical che-

mokine receptors (Bachelerie et al., 2014b; Nibbs and Gra-

ham, 2013).

Chemokines and their receptors have emerged as prominent

players and key therapeutic targets in a wide range of immune
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and inflammatory disorders (Griffith et al., 2014; Proudfoot,

2002; Viola and Luster, 2008). However, despite extensive

research, no antagonists of inflammatory chemokine receptors

have been licensed for use in inflammatory diseases (Bachelerie

et al., 2014a; Schall and Proudfoot, 2011), and this is partly due

to the complexity of inflammatory chemokine and chemokine re-

ceptor biology and biochemistry. For example, inflammatory

chemokine receptors display promiscuous ligand binding (Bach-

elerie et al., 2014a), and the chemokines in turn bind to multiple

different chemokine receptors. It is unclear to what extent this

represents biological redundancy (Mantovani, 1999) or whether

there are discrete signals triggered by different chemokines

through individual chemokine receptors, and this remains a

controversial area (Schall and Proudfoot, 2011; Steen et al.,

2014). Further complicating our understanding of the chemo-

kine-driven inflammatory response is the fact that individual

leukocyte subsets appear to simultaneously express multiple in-

flammatory chemokine receptors (Haringman et al., 2006; Tacke

et al., 2007; Weber et al., 2000). It is therefore currently not

possible to say with any degree of certainty which chemokine

receptors monocytes, for example, would use to migrate to an

inflammatory site.

We have been studying four of the inflammatory chemokine

receptors: Ccr1, Ccr2, Ccr3, and Ccr5 (henceforth referred to

as iCcrs). Evolutionarily, Ccr2 is the oldest of these four recep-

tors (Nomiyama et al., 2011). From it, the others have emerged

through gene duplication to occupy a discrete and tight chro-

mosomal locus (170 kb) on mouse chromosome 9 (human

chromosome 3). Together, the iCcrs are responsible for mye-

lomonocytic cell recruitment to inflamed sites (Shi and Pamer,

2011). However, the combinatorial, and in some cases the in-

dividual, roles for these receptors in leukocyte recruitment are

currently unclear, and this is an issue of controversy and

confusion within the field (Gautier et al., 2009; Sandblad

et al., 2015; Soehnlein et al., 2013; Tacke et al., 2007; Weber

et al., 2000). Overall, we lack an integrated understanding of

how these four receptors regulate myelomonocytic cell recruit-

ment during inflammation. The issue of redundancy versus

specificity of inflammatory chemokine receptor function also

remains unresolved for the iCcrs (Mantovani, 1999; Schall

and Proudfoot, 2011). A further hindrance to studies in this
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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area is the close genomic association of the genes encoding

the iCcrs. Therefore, generating compound-receptor-deficient

mice to examine combinatorial receptor function has been

impractical.

Here, we have deleted the entire iCcr locus (iCCR-deficient

mice) and have examined the recruitment of leukocytes to both

resting and acutely inflamed sites between these mice and

both wild-type (WT) and single-receptor-deficient mice. The

iCCR-deficient mice are viable and healthy but display profound

defects in inflammatory leukocyte recruitment. Our results pro-

vide evidence for both redundancy and specificity in the function

of the iCcrs and highlight the primacy of Ccr2 as a recruiter of

monocytic cells to acutely inflamed sites.

RESULTS

Deletion of the iCcr Locus Is Not Associated with
Developmental Abnormalities
The iCcrs are contained within a 170 kb genomic locus situated

at the telomeric end of mouse chromosome 9 (Figure S1A).

This is a ‘‘pristine’’ locus, and it contains no other genes

(with the exception of a poorly characterized and weakly

conserved putative chemokine receptor, Ccr1l1 [Nomiyama

et al., 2011], which is absent from the human genome), thus

ensuring that excision of this locus affects only the iCcrs. We

deleted the locus by inserting LoxP sites at its 50 and 30 ex-
tremes and inducing Cre-mediated excision in embryonic

stem (ES) cells (Figure S1A). Heterozygous mice were gener-

ated from these ES cells and bred to homozygosity. Homozy-

gous mice were born at the expected Mendelian frequency

from heterozygote crosses (Figure S1B) and were healthy

and fertile. Deletion of the four chemokine receptors was

further confirmed by PCR analysis of expression in periph-

eral-blood leukocytes of heterozygous offspring, which re-

vealed 50% of WT expression of Ccr1, Ccr2, Ccr3, and Ccr5

but unaltered expression of Cxcr2, which sits outside the tar-

geted locus (Figure S1C). T cells from iCCR-deficient mice dis-

played identical responses to WT cells after Cxcl10 treatment

(Figure S1D), and monocyte-derived macrophages responded

identically to Cx3cL1 treatment (data not shown), indicating

that multi-receptor deletion does not alter responses through

other non-deleted chemokine receptors. iCCR-deficient em-

bryos appeared grossly normal (Figure S1E), and no differ-

ences were noted in numbers of fetal liver monocytes (Figures

S1Fi and S1Fii) or cKit+ hematopoietic progenitor cells (Figures

S1Gi and S1Gii).

Thus, the iCcrs are not essential for development or postnatal

survival, and deletion of the locus is not associated with any

gross developmental abnormalities.

iCCR-Deficient BloodDisplaysCcr2-likeMonocytopenia
Analysis of peripheral-blood leukocytes demonstrated a

marked reduction in the numbers of circulating Ly6ChiCD11b+

monocytic cells in resting iCCR-deficient mice compared with

WT mice (Figure 1Ai) but no alteration in numbers of cells

from any other tested hematopoietic lineages (Figure S3A).

Quantification of the reduction in monocytic cell numbers in

iCCR-deficient blood demonstrated that this reduction was

specifically for Ly6Chi inflammatory monocytes (60% reduc-
tion; Figure 1Aii and Figure S3A), and no significant differences

were detected in the numbers of circulating Ly6Clo cells (Table

S1 and Figure S3A). As previously reported (Serbina and

Pamer, 2006; Tsou et al., 2007), CCR2-deficient mice dis-

played an identical reduction in circulating Ly6Chi monocyte

numbers (Figures 1Ai and 1Aii), indicating that, in terms of

peripheral-blood leukocyte content, iCCR-deficient mice

essentially phenocopied CCR2-deficient mice. There was a

modest reduction in Ly6Chi monocyte numbers in the blood

of CCR1-deficient mice (Table S1), which reflected the re-

ported reduction in hematopoietic progenitor cell numbers in

CCR1-deficient peripheral blood (Gao et al., 1997). However,

the relevance of this is unclear because there was no further

reduction in Ly6Chi monocyte numbers in the blood of iCCR-

deficient, compared with CCR2-deficient, mice. No significant

differences in circulating monocyte numbers (or indeed in

numbers of any other tested circulating hematopoietic line-

ages) were seen in CCR3-deficient or CCR5-deficient mice

(Table S1). Thus, our data demonstrate that monocyte egress

from bone marrow to the resting circulation is fully and non-

redundantly dependent on Ccr2.

In contrast to previous studies of CCR2-deficient mice (Ser-

bina and Pamer, 2006; Tsou et al., 2007), we failed to detect

any corresponding increase in CD11b+Ly6Chi cell numbers in

either iCCR-deficient or CCR2-deficient bone marrow (Figures

1Bi and 1Bii). In addition, no differences were detected in any

other tested hematopoietic lineages in the bone marrow from

iCCR-deficient mice (Figure S3B), and no differences were de-

tected in any of the other single-receptor-deficient mice (data

not shown). Analysis of the spleen (Figure 1Ci) revealed a selec-

tive reduction in numbers of both Ly6Chi and Ly6Clo monocytes

in iCCR-deficient mice (Figures 1Cii and 1Ciii), which again

phenocopied CCR2-deficient mice. A modest but significant

decrease in splenic Ly6Chi monocyte numbers was seen in

CCR1-deficient mice (Figure 1), and, in this case, a reduction

was also seen in CCR5-deficient mice (Table S1). Again, there

was no apparent redundancy at play here because the extent

of impairment of Ly6Chi monocyte recruitment to the spleen

was the same in iCCR-deficient and CCR2-deficient mice. No

differences in monocytic recruitment were noted in CCR3-defi-

cient mice (Table S1).With the exception of a significant increase

in eosinophils (which, as reported previously [Humbles et al.,

2002], is also seen in CCR3-deficient spleens; Figure 1Civ), no

other hematopoietic lineages were altered in the iCCR-deficient

spleens (data not shown) or in the spleens of other receptor-defi-

cient mice studied.

Luminex analysis (Figure 1D) of WT and iCCR-deficient

plasma revealed significantly higher concentrations of Ccl5

(Ccr1, Ccrl3, and Ccrl5 ligands), Ccl7 (Ccl1, Ccl2, Ccl3, and

Ccl5 ligands), and Ccl11 (Ccr3 ligand) in iCCR-deficient mice

than in WT mice, suggesting that in WT mice, these chemo-

kines are actively scavenged at rest by their cognate receptors,

which indicates that these receptors are functional in resting

cell recruitment. This suggests that Ccl11 plays a prominent

role in basal eosinophil migration into resting tissues (Figure 2).

Furthermore, the specific increase in Ccl7 concentrations indi-

cated that it is likely to be the primary Ccr2 ligand involved in

monocyte egress from the bone marrow and entry into resting

peripheral tissues. This finding is in agreement with previous
Immunity 50, 378–389, February 19, 2019 379



Figure 1. iCCR-Deficient Mice Display

Resting Blood and Spleen Defects

(A) (i) Flow-cytometric analysis of Ly6Chi and

CD11b+ cells (arrows) in the blood of WT, iCCR-

deficient, and CCR2-deficient mice. (ii) Quantifi-

cation of Ly6Chi cells in the blood of WT (n = 32),

iCCR-deficient (n = 15), and CCR2-deficient

(n = 15) mice.

(B) (i) Flow-cytometric analysis of Ly6Chi cells in the

bone marrow of WT, iCCR-deficient, and CCR2-

deficient mice. (ii) Quantification of Ly6Chi cells in

the bone marrow of WT (n = 16), iCCR-deficient

(n = 18), and CCR2-deficient (n = 17) mice.

(C) (i) Flow-cytometric analysis of CD45+ and

Ly6Chi cells (in the CD11c�MHCII� gate) in the

spleen of WT, iCCR-deficient, and CCR2-deficient

mice, as well as quantification of (ii) Ly6Chi cells, (iii)

Ly6Clo cells, and (iv) eosinophils in the spleen of

WT (n = 33), iCCR-deficient (n = 9), and CCR2-

deficient (n = 11) mice (and eosinophils in CCR3-

deficient mice [n = 10]).

(D) Luminex analysis of chemokine concentrations

in the plasma of WT mice (gray bars) and iCCR-

deficient mice (black bars).

All numerical data in (Aii), (Bii), (Cii)–(Civ), and (D)

are presented as mean + SEM. *p < 0.05; **p <

0.01; ****p < 0.0001, n.s., not significant. All

experiments are representative of at least three

repeat experiments, which were analyzed by one-

way ANOVA on log-transformed data. Each data

point represents a measurement from a single

mouse. Please also see Figures S1, S2, S5, and S7

and Table S1.
studies (Bardina et al., 2015; Tsou et al., 2007) that demon-

strated a crucial functional role for Ccl7 in monocyte egress

from bone marrow. The elevated concentrations of Ccl5 are

also compatible with a role for Ccr1 in contributing to the effi-

ciency of bone marrow egress of monocytic cells. The issue

of chemokine use by resting tissues is also addressed in the

Discussion.

Thus, iCCR-deficient peripheral blood is characterized by a

substantial reduction in Ly6Chi monocyte numbers and essen-

tially recapitulates the circulatory phenotype observed in

CCR2-deficient mice.We conclude that Ly6Chi monocyte egress

from bone marrow is fully and non-redundantly dependent

on Ccr2.
380 Immunity 50, 378–389, February 19, 2019
Redundancy Is Evident in Receptor
Use for Recruitment of
Myelomonocytic Cell Populations to
Resting Skin
Next, we examined the leukocyte con-

tent of resting iCCR-deficient skin. Flow-

cytometric analysis of skin from adult

WT, iCCR-deficient, and CCR2-deficient

mice revealed a reduction in the over-

all CD45+ cell content in both iCCR-

deficient and CCR2-deficient skin (data

not shown), which was not seen in other

single-receptor-deficient mice. Broad-

based flow-cytometric assessment of
discrete CD11c�MHCII�, CD11cloMHCII+, and CD11chiMHCIIhi

populations revealed (Figures 2Ai–2Aiv) substantial reduction in

all three populations in iCCR-deficient mice, but significant

reduction was seen only in CD11chiMHCIIhi dendritic cells in

CCR2-deficient mice (Figure 2Aiv).

Further myelomonocytic cell subtyping revealed a marked

reduction (70%) in the size of the Ly6Chi monocytic population

in iCCR-deficient mice, whereas, no significant differences

were seen in the Ly6Chi population in any of the single-recep-

tor-deficient mice, including CCR2-deficient mice (Figure 2Bi

and Table S1). Notably, this analysis is powered to detect a

25% variation in iCCR-deficient cell numbers compared with

WT numbers, and thus no single receptor can account for the



Figure 2. iCCR-Deficient Mice Display

Resting Defects in Myelomonocytic Cell

Recruitment to Skin

(A) (i) Flow-cytometric assessment of CD11c

and MHCII expression among CD45+CD11b+

cells from WT, iCCR-deficient, and CCR2-def-

icient mice. Numbers of (ii) CD11c�MHCII�, (iii)

CD11cloMHCII+, and (iv) CD11c+MHCIIhi cells are

shown as a percentage of live cells in WT (n = 6),

iCCR-deficient (n = 6), and CCR2-deficient (n = 6)

mice.

(B) (i) Flow-cytometric assessment of myelomo-

nocytic cells gated for (i) Ly6Chi, (ii) Ly6Clo, and (iii)

dendritic cells (WT, n = 54; iCCR deficient, n = 15;

CCR1 deficient, n = 12; CCR2 deficient, n = 22;

CCR3 deficient, n = 15; CCR5 deficient, n = 15).

(C) (i) Flow-cytometric assessment (eosinophils

indicated by arrows) and (ii) quantification of

eosinophil numbers (WT, n = 54; iCCR deficient,

n = 15; CCR3 deficient, n = 15). (iii) Analysis ofCcr7

expression on splenic eosinophils fromWT, CCR3-

deficient, and iCCR-deficient mice.

All numerical data in (Aii)–(Aiv), (B), (Cii), and (Ciii)

are presented as mean + SEM. *p < 0.05; **p <

0.01; ***p < 0.001; ****p < 0.0001; n.s., not signifi-

cant. Data in (A) are representative of at least three

repeat experiments, and data in (B) and (C) are

compiled from at least three independent experi-

ments. In all cases, data were analyzed by one-

way ANOVA on log-transformed data. Each data

point represents a measurement from a single

mouse. Please also see Figures S3, S6, and S7 and

Table S1.
substantial reduction in the Ly6Chi population observed in iCCR-

deficient mice. These data therefore clearly indicate redundancy

in receptor involvement in recruitment of Ly6Chi cells or their pre-

cursors to resting skin.

Reductions of 40%–60% were noted for Ly6Clo cells in both

iCCR-deficient and CCR2-deficient mice (Figure 2Bii), and

although both genotypes displayed a reduction in dendritic cell

numbers (Figure 2Biii), this was significantly greater in iCCR-

deficient mice (80% reduction). Finally, resident eosinophil

numbers were reduced in iCCR-deficient skin closely phenoco-

pying CCR3-deficient mice, although the reduction in CCR3-

deficient mice was consistently more profound than that seen

in iCCR-deficient mice (Figures 2Ci and 2Cii). We detected
Imm
higher expression of CCR7 on splenic

eosinophils from CCR3-deficient and

iCCR-deficient mice than on those from

WT mice, and the increase was signifi-

cantly greater in CCR3-deficient than in

iCCR-deficient eosinophils (Figure 2Ciii).

This suggests a possible mechanism

for the more comprehensive depletion of

eosinophils in the CCR3-deficient mice,

i.e., that they are more competent for

tissue egress. In contrast to iCCR-defi-

cient, CCR2-deficient, and CCR3-defi-

cient mice, CCR1- and CCR5-deficient

mice displayed no reductions in the size
of any of the measured leukocyte populations (Table S1). No

differences were detected in any lymphoid subtype in iCCR-

deficient resting skin (Figure S4A).

Overall, this analysis demonstrates clear redundancy in the

involvement of the receptors within the iCcr locus in establishing

the resting skin Ly6Chi population.

Receptor Involvement in Resting Leukocyte
Recruitment Varies between Tissues
We performed a similar analysis of resident leukocytes in the

lungs and (as shown in Figure 3Ai) again observed significant

reduction in total monocyte and macrophage numbers in both

iCCR-deficient and CCR2-deficient resting mice. In-depth
unity 50, 378–389, February 19, 2019 381



Figure 3. Resting Myelomonocytic Cell

Content of Lung

(A) Flow-cytometric analysis of (i) total myelomo-

nocytic cells, (ii) Ly6Chi cells, (iii) Ly6Clo cells, (iv)

dendritic cells, and (v) alveolar macrophages (WT,

n = 62; iCCR deficient, n = 20; CCR2 deficient,

n = 16; CCR1 deficient, n = 10).

(B) Flow-cytometric (i) and quantitative (ii) analysis

of eosinophil numbers in all mouse strains (WT,

n = 52; iCCR deficient, n = 12; CCR2 deficient,

n = 16; CCR1 deficient, n = 10; CCR3 deficient, n =

16; CCR5 deficient, n = 15).

All numerical data in (A) and (Bii) are presented as

mean + SEM. *p < 0.05; **p < 0.01; ***p < 0.001;

n.s., not significant. Data are compiled from at

least three independent experiments. In all cases,

data were analyzed by one-way ANOVA on log-

transformed data. Each data point represents a

measurement from a single mouse. Please also

see Figures S3, S6, and S7 and Table S1.
phenotyping revealed a strong depletion of Ly6Chi monocytes in

both iCCR-deficient and CCR2-deficient mice (Figure 3Aii). A

lesser, but significant, depletion was noted in CCR1-deficient

mice, but no differences were seen in CCR3-deficient or

CCR5-deficient mice (Table S1). No detectable changes were

seen in Ly6Clo cells (apart from a slight reduction in CCR2-

deficient mice, but not in iCCR-deficient mice), dendritic cells

(Figures 3Aiii and 3Aiv and Table S1), or any of the other myelo-

monocytic cell populations examined. No differences were

detected in alveolar macrophage numbers (Figure 3Av and Table

S1). Finally, a profound depletion of eosinophils was seen in the

iCCR-deficient lungs (Figures 3Bi and 3Bii). In keeping with

previous reports (Humbles et al., 2002; Pope et al., 2005), we

did not observe depletion of eosinophil numbers in CCR3-

deficient lungs but did detect significant reductions in numbers

in CCR1-deficient and CCR2-deficient lungs (Figures 3Bi and
382 Immunity 50, 378–389, February 19, 2019
3Bii and Table S1). Again, no differences

were noted in the size of any lymphocyte

populations (Figure S4B) in iCCR-defi-

cient mice, and no alterations in any of

the other measured populations were

detectable in CCR1-deficient or CCR5-

deficient mice (Table S1).

Thus, resting iCCR-deficient tissues are

characterized by comprehensive deple-

tion of a range of myelomonocytic cell

subtypes, which varies according to tis-

sue type.

Resting Skin and Lung Display
Differential Patterns of iCcr
Ligand Use
The variability in receptor use apparent in

our analysis of resting skin and lung could

be explained by differential chemokine

use in these tissues. Given that receptor

function is associated with scavenging of

cognate ligands (Cardona et al., 2008),
we reasoned that elevated concentrations of iCcr ligands in

iCCR-deficient tissues would be indicative of cognate receptor

involvement in leukocyte recruitment to these tissues. Using

multiplexing analysis, we found that most chemokines were

below limits of detection. However, as shown in Figure 4A,

Ccl5, Ccl7, Ccl11, and Ccl12 (Ccr2 ligand) were detectable,

and there was evidence of differential chemokine use between

lung and skin. Specifically, and in agreement with a previous

report (Galkina et al., 2005), elevated concentrations of Ccl5

(Figure 4Ai) were detected in iCCR-deficient lung but not skin,

suggesting that Ccl5-binding receptors are active in monocyte

recruitment to resting WT lungs. In contrast, although Ccl7

concentrations were not different between WT and iCCR-defi-

cient lungs (Figure 4Aii), iCCR-deficient skin displayed signifi-

cantly higher concentrations than WT skin. No differences were

seen in Ccl11 concentrations (Figure 4Aiii), but again, although



Figure 4. Chemokine Expression in Resting

Skin and Lung

(A) Concentrations of (i) Ccl5, (ii) Ccl7, (iii) Ccl11,

and (iv) Ccl12 were measured in WT (n = 5) and

iCCR-deficient (n = 5) lungs and skin via multiplex

approaches.

(B) (i) qPCR analysis of expression of Ccl5, Ccl7,

Ccl11, and Ccl12 in resting skin and lung. (ii) qPCR

analysis of expression of Ccr1, Ccr2, Ccr3, and

Ccr5 in resting skin.

(C) Analysis of the protein concentrations of

the indicated chemokines in (i) the lungs and

(ii) the skin of individual iCCR-deficient mice.

Numbers represent mice deficiencies as fol-

lows: 1, CCR1 deficient; 2, CCR2, deficient; 3,

CCR3 deficient; and 5, CCR5 deficient. No sig-

nificant differences were noted between any of

these data points.

All numerical data in (A)–(C) are presented as

mean + SEM. *p < 0.05; n.s., not significant. Data

were analyzed with the Mann-Whitney U test.

Each point represents an individual mouse.
no differences in Ccl12 concentrations were detected between

WT and iCCR-deficient lungs (Figure 4Aiv), iCCR-deficient

skin displayed elevated concentrations. Importantly, these

differences in chemokine concentrations were not reflected

in differences in transcript amounts (Figure 4Bi), confirming a

role for receptor-scavenging rather than transcriptional induction

in increased protein concentrations. In addition, all four iCcrs

were detectable in skin and lung (data shown for skin in Fig-

ure 4Bii), suggesting expression on tissue-resident leukocytes.

Crucially, none of the chemokines tested displayed alterations

at either the protein (Figures 4Ci and 4ii) or transcript (data not

shown) levels in the lung and skin of individual iCCR-deficient
Imm
mice. This indicates that raised concen-

trations in iCCR-deficient tissues are not

a consequence of single-receptor defi-

ciency but of combinatorial receptor use

in steady-state monocyte recruitment to

resting tissues.

Overall, these data indicate differential

chemokine use in resting skin and lung.

Of particular note is that Ccl7 is known

to bind to all of the iCcrs (Bachelerie

et al., 2014a), suggesting that its domi-

nant use within the skin might account

for the clear redundancy of receptor use

in leukocyte recruitment to this tissue un-

der resting conditions.

Specificity in Receptor Use Is
Evident for Recruitment of Cells to
Sites of Acute Inflammation
To study leukocyte recruitment in

inflammation, we used the air-pouch

model (Colville-Nash and Lawrence,

2003; Edwards et al., 1981). This

involved generating an air pouch in the

mouse dorsum and injecting the inflam-
matory agent carrageenan into the air pouch. Subsequent

sampling of the now inflamed air pouch (referred to simply

as ‘‘air pouch’’ from now on) allowed precise analysis of

recruited cells without the potentially confusing contribu-

tion from tissue-resident cells. 48 h after carrageenan intro-

duction into the air pouch, the blood, bone marrow, and

air-pouch contents were collected and analyzed for leuko-

cyte content. Analysis of blood from iCCR-deficient and

CCR2-deficient mice (Figure 5Ai) demonstrated equivalent

Ly6Chi monocytopenia (70%–80%) to that seen in resting

mice. In contrast to the data from resting mice, Ly6Chi mono-

cytes accumulated in the bone marrow of iCCR-deficient and
unity 50, 378–389, February 19, 2019 383



Figure 5. Myelomonocytic Cell Recruitment

to Inflamed Air Pouches

(A) Ly6Chi cells in (i) blood (WT, n = 34; iCCR defi-

cient, n = 12; CCR2 deficient, n = 13) and (ii) bone

marrow (WT, n = 29; iCCR deficient, n = 8; Ccr2

deficient, n = 8).

(B) (i) Flow-cytometric assessment of CD11c and

MHCII expression in WT (n = 54), iCCR-deficient

(n = 20), and CCR2-deficient (n = 13) cells recruited

to the air pouch. (ii) Quantification of the percent-

age of the total monocytes and macrophages in

the air pouch.

(C) (i) Flow-cytometric assessment of CD64 and

Ly6C expression on WT, iCCR-deficient, and

CCR2-deficient myelomonocytic cells, as well as

enumeration of (ii) Ly6Chi, (iii) Ly6Clo, and (iv) den-

dritic cells in the air pouch. Animal numbers as in

(Bii) are shown.

(D) Flow-cytometric evaluation of (i) total mono-

cytes and macrophages, (ii) Ly6Chi monocytes,

and (iii) Ly6Clo macrophages in the 24 h perito-

neal exudate after intraperitoneal zymosan in-

jection in WT, iCCR-deficient, and CCR2-defi-

cient mice.

(E) Flow-cytometric evaluation of total monocytes

and macrophages in the lungs of WT, iCCR-defi-

cient, and CCR2-deficient mice exposed to pul-

monary influenza A virus infection.

All numerical data in (A), (Bii), (Cii)–(Civ), (D),

and (E) are presented as mean + SEM. *p <

0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Data in (A)–(E) are compiled from at least three

separate experiments and were log-transformed

and analyzed by one-way ANOVA. Each data

point represents a measurement from a single

mouse. Please also see Figures S4 and S6 and

Table S1.
CCR2-deficient mice (Figure 5Aii) in this air-pouch model,

indicating that they were expanded in number in response

to the distant inflammation but were unable to efficiently leave

the bone marrow because of the lack of Ccr2 expression.

Again, no differences in blood or bone marrow cellularity

were noted in any of the other single-receptor-deficient mice

(Table S1), including, in this inflamed context, CCR1-deficient

mice. This demonstrates that Ccr2 is also the sole iCcr

contributing to monocyte mobilization from the bone marrow

in inflammation.

We conducted a broad-based analysis of myelomonocytic cell

populations in the air-pouch by using CD11c and MHCII staining

(as above), which revealed no differences in the recruited popu-
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lations in CCR1- or CCR5-deficient mice.

However, although we noted reductions

in all three key populations in CCR2-defi-

cient mice, we observed a complete

block in recruitment of all three popula-

tions in the iCCR-deficient mice (Fig-

ure 5Bi). Quantification of total recruited

monocyte and macrophage numbers

confirmed these findings, demonstrating

a 95% reduction in recruitment to the air

pouch in CCR2-deficient mice but an
absence of recruitedmonocytes andmacrophages in iCCR-defi-

cient air pouches (Figure 5Bii). Further, more detailed flow-cyto-

metric analysis revealed reduced numbers of both Ly6Chi and

Ly6Clo cells in CCR2-deficient air-pouches but a complete

absence of these cells in iCCR-deficient air pouches (Figure 5Ci).

This was confirmed by quantitative analyses, which revealed

recruitment of approximately 2% Ly6Chi and 10% Ly6Clo, as

well as 10% dendritic cell, numbers in CCR2-deficient air

pouches, compared with WT air pouches. All three cellular pop-

ulations were essentially absent from iCCR-deficient air pouches

(Figures 5Cii–5Civ). No differences in Ly6Chi, Ly6Clo, or dendritic

cell numbers were noted for any of the other single-receptor-

deficient mice (Table S1).



It is notable that CCR2-deficient mice have approximately

20%–30% of WT circulating Ly6Chi cell numbers, but only 2%

of cells displaying this phenotype are recruited to the air pouch.

This raises two possibilities. First, small numbers of cells re-

cruited via Ccr2 express or induce chemokines, which amplify

cellular recruitment via other receptors. Alternatively, these

data could simply suggest that Ccr2 is the dominant receptor

in recruitment of myelomonocytic cells to acutely inflamed sites.

To address these possibilities, we used multiplex approaches to

analyze chemokine concentrations in air-pouch fluid. As shown

in Figure S4C, we detected slightly higher concentrations of

Ccl3, Ccl5, Ccl12, and Cx3cl1 in air-pouch fluid in CCR2-defi-

cient mice, suggesting reduced scavenging by their cognate re-

ceptors (Ccr1, Ccr2, Ccr5, and Cx3cr1) on monocytic cells and

demonstrating that lack of recruited myelomonocytic cells

does not lead to a reduction in chemokine concentrations within

the air pouch. In fact, we detected no reduction in the concentra-

tions of any detectable chemokines in the CCR2-deficient air

pouch, indicating that ‘‘pioneering’’ cells that enter the air pouch

and express chemokines are not required for subsequent leuko-

cyte recruitment. Together, these data indicate that Ccr2 is the

dominant receptor not only for mobilization of Ly6Chi cells from

the bone marrow to the blood but also for recruitment to periph-

eral acutely inflamed sites.

Clearly, although useful for tissue sampling and analysis of

leukocyte recruitment to inflamed sites in the absence of tis-

sue-resident cells, the air-pouch model is artifactual given that

the air pouch is not a physiological structure. Therefore, to com-

plement these analyses, we also examined the response of WT,

iCCR-deficient, and CCR2-deficient mice in models of intraper-

itoneal zymosan injection (Figure 5D) and pulmonary influenza A

virus (IAV) infection (Figure 5E). The data revealed that, in both

models, CCR2-deficient and iCCR-deficient mice again showed

profound defects in myelomonocytic cell recruitment, and the

block in recruitment was significantly greater in iCCR-deficient

than in CCR2-deficient mice. This was shown for total mono-

cytes and macrophages (Figure 5Di), Ly6Chi cells (Figure 5Dii)

and Ly6Clo cells (Figure 5Diii) for the peritoneal model, and for

total monocytes andmacrophages (Figure 5E) for the IAVmodel.

Together, these data confirm that the observations made from

the air-pouch model also hold for more physiologically relevant

models of inflammatory disease.

Strong eosinophil recruitment was seen in WT, CCR1-defi-

cient, CCR2-deficient, and CCR5-deficient air pouches (Table

S1) but was essentially absent in iCCR-deficient and CCR3-defi-

cient air pouches (Figures 6Ai and 6Aii). Notably, whereas no

differences in neutrophil recruitment were detected in CCR1-,

CCR3-, or CCR5-deficient mice, iCCR-deficient and CCR2-defi-

cient air pouches apparently contained a proportionately higher

neutrophil content than equivalent WT air pouches (Figures 6Bi

and 6Bii). Importantly, this increase was not seen when the

data were expressed as absolute numbers of neutrophils (Fig-

ure 6Biii), and this discrepancy was likely to be a consequence

of a relative reduction in the size of other cellular populations in

the iCCR-deficient and CCR2-deficient mice. Our data therefore

provide no evidence of an active role for the iCcrs in regulating

neutrophil recruitment in acute inflammation. Finally, no signifi-

cant differences in recruitment of any detectable lymphoid

lineage cells were noted in iCCR-deficient mice or in any of the
single-receptor-deficient mice (Figures 6Ci–6Civ). T helper 17

(Th17) cells were undetectable in the air-pouch model and in

the lung tissues from mice undergoing IAV infection.

Overall, these data demonstrate that in this inflamed context,

little if any redundancy of receptor use is apparent, and Ccr2 is

the dominant, non-redundant contributor to myelomonocytic

cell recruitment to the air pouch. Our data further demonstrate

combinatorial receptor involvement in overall myelomonocytic

cell recruitment to inflamed sites and exclusivity of Ccr3 involve-

ment in eosinophil recruitment.

The Ccr2-Independent Population Recruited to the Air
Pouch Is Distinct from the Bulk Myelomonocytic Cell
Population Recruited in WT Mice
The Figure 5 data showing residual Ly6Chi monocytic cell recruit-

ment in CCR2-deficient air pouches suggest either that some

classical Ly6Chi myelomonocytic cells display redundancy of re-

ceptor use or that this residual population represents a Ccr2-in-

dependent, phenotypically discrete cell type. To address this,

we isolated Ly6Chi cells from the air pouch of WT and CCR2-

deficient mice and compared their transcriptomic profiles, which

indicated clearly (Figure 7A) that the residual recruited popula-

tion in the CCR2-deficient air pouch was transcriptomically

distinct from the bulk population recruited in WT mice. We

observed 434 significantly differentially expressed genes, with

222 upregulated and 218 downregulated transcripts, between

the two populations (Table S2). This residual population was

characterized by high expression of Cd209a and increased

expression of a range of transcripts involved in antigen presen-

tation (Figure 7Bi). It, however, lacked the core dendritic cell

gene set defined by the Immgen project (Miller et al., 2012)

and therefore appeared not to be classical dendritic cells.

Notably, this cellular population was also characterized by a

reduction in genes involved in mitosis (Figure 7Bii) and therefore

appeared to be post-mitotic. The generated transcriptomic data,

particularly with respect to genes involved in antigen presenta-

tion, bore striking resemblance to those associated with a den-

dritic-cell-like sub-population of monocytes detected within

the blood (cluster 3 genes in Menezes et al., 2016). Our data

differ with respect to the presence of transcripts indicative of a

post-mitotic state, suggesting that this monocyte-dendritic-cell

population is rapidly terminally differentiated upon entering the

air pouch. This population of cells is reported to be substantially

dependent onCcr2 for mobilization from bonemarrow to periph-

eral blood.

The transcriptomic data further indicated that the residual

population in CCR2-deficient air pouches was characterized

by elevated expression of Ccr1 and Ccr3 (Figure 7Biii). Notably,

multiplex analysis of chemokine concentrations in air-pouch fluid

revealed increased amounts ofCcl3 andCcl5 (Figure 7C), further

suggesting potential involvement of either Ccr1 or Ccr5 in

recruitment of these cells. We examined this option by using sin-

gle-receptor-deficient mice and pharmacological blockers of

Ccr1. Our data clearly indicate, in agreement with the study

mentioned above (Menezes et al., 2016), that this CD209a+ pop-

ulation is strictly dependent on Ccr2 for effective egress from

bone marrow (Figure 7Di). In terms of recruitment to the air

pouch, again our data indicate a complete block to recruitment

of these cells in iCCR-deficient mice but also a strong reduction
Immunity 50, 378–389, February 19, 2019 385



Figure 6. Eosinophil, Neutrophil, and T Cell

Recruitment to the Air Pouch

(A) (i) Flow-cytometric (eosinophils marked by the

arrow) and (ii) quantitative assessments of eosin-

ophils in WT (n = 63), iCCR-deficient (n = 20), and

CCR3-deficient (n = 8) air pouches.

(B) (i) Flow-cytometric (neutrophils marked by the

arrow) and (ii) quantitative assessments of neu-

trophils in WT (n = 63), iCCR-deficient (n = 20),

and CCR2-deficient (n = 13) air pouches and

(iii) exemplar data showing absolute neutrophil

numbers (expressed as a percentage of of WT

numbers) in air-pouch tissue.

(C) Enumeration of (i) total abT cells, (ii) CD4+ abT

cells, (iii) CD4� abT cells, and (iv) gdT cells in WT

(n = 69) and iCCR-deficient (n = 15) air pouches.

All numerical data in (Aii), (Bii), (Biii), and (C) are

presented as mean + SEM. ***p < 0.0001; n.s., not

significant. Data in (A)–(C) are compiled from at

least three separate experiments and were log-

transformed and analyzed by one-way ANOVA.

Each data point represents a measurement from a

single mouse. Please also see Figures S4 and S6

and Table S1.
in CCR2-deficient mice. This potentially indicates that the

CD209a+ population is heterogeneous such that one subset is

dependent on Ccr2 for recruitment to acutely inflamed sites

and one is independent of Ccr2. Notably, no other single-recep-

tor deletion had any effect despite the apparent reduction in

recruitment observed in CCR5-deficient mice, which did not

reach statistical significance. Furthermore, a pharmacological

blocker of Ccr1 had no effect on recruitment of the CD209a+

population to air pouches in WT mice (data not shown). Overall,

these data suggest a dominant role for Ccr2 in bone marrow

egress and, potentially, recruitment to the air pouch of this

cellular population but also a residual role for the other iCcrs,

perhaps in a redundant fashion, in recruitment to the air pouch.

Overall, this transcriptomic analysis demonstrates that the cells

recruited to the air pouch inCCR2-deficientmice are distinct from
386 Immunity 50, 378–389, February 19, 2019
the bulk myelomonocytic cell population.

Together, these data provide further evi-

dence for the lack of redundancy in che-

mokine receptor involvement in inflamma-

tory cell recruitment to air pouches and

suggest combinatorial roles of the individ-

ual receptors in recruitment of the full

complement of leukocyte subsets to

acutely inflamed areas. Overall, our data

indicate that iCcr involvement in acute

inflammation might be more precise and

selective than previously thought.

DISCUSSION

There has been confusion andcontroversy

regarding the roles for the iCcrs in the regu-

lation of myelomonocytic cell recruitment

to inflamed sites (Mantovani, 1999; Schall

and Proudfoot, 2011). With a view to
defining the individual and combined roles for the iCcrs in inflam-

matorycell recruitment,wegeneratedmice inwhich theentire iCcr

locus had been deleted. Analysis of these mice, in comparison

withsingle receptor-deficientmice, revealedevidenceofapparent

‘‘redundancy’’ in recruitment of Ly6Chi myelomonocytic cells to

resting skin. Noneof the individual iCCR-deficientmice compared

with WT mice displayed significant alterations in the numbers of

these cells. However, the cells were severely depleted (70%

depletion) in iCCR-deficient mouse skin. Quite how this apparent

‘‘redundancy’’ wasmanifest is not clear. It is possible that individ-

ual leukocyte subtypes simultaneously express multiple chemo-

kine receptors, although, as noted below,Ccr2 is clearly thedomi-

nant receptor on circulating monocytes. This might also be a

stochastic process with sporadic expression of individual recep-

tors at different time points supporting redundant patterning of



Figure 7. Transcriptomic Analysis of Myelo-

monocytic Cells in WT and CCR2-Deficient

Air Pouches

(A) Heatmap representation of the transcriptional

differences between the bulk monocytic popula-

tion recruited to WT air pouches and the small re-

sidual population recruited to CCR2-deficient air

pouches. Green coloration represents down-

regulated genes, and red represents upregulated

genes.

(B) Heatmap comparison of (i) genes typical of

a dendritic cell phenotype, (ii) genes indicative

of a post-mitotic phenotype, and (iii) chemo-

kine, chemokine-receptor, and related genes. In

these heatmaps, yellow represents upregulated

genes, and purple represents downregulated

genes.

(C) Chemokine concentrations in air-pouch fluid as

measured by multiplex analysis (n = 5 per group).

Data in (C) were analyzed with the Mann-Whitney

U test. Note that the WT and iCcr-deficient data

are the same as used in Figure S6 and are repli-

cated here to highlight the point being made in the

text.

(D) (i) CD209ahi cells in the blood of WT, iCCR-

deficient, and CCR2-deficient mice. (ii) CD209ahi

cells in the air-pouch model in WT, iCCR-deficient,

CCR1-deficient, CCR2-deficient, CCR3-deficient,

and CCR5-deficient mice.

All numerical data in (C) and (D) are presented as

mean + SEM. *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001; n.s., not significant. Please also see

Figure S4 and Tables S1 and S2.
the resting cell population over time. One other interesting feature

of this resting tissue analysis is that, despite a profound monocy-

topenia inCCR2-deficientmice, therewasnostatistical difference

in the numbers of Ly6Chi cells in resting skin between these mice

andWTmice. This suggests that the low number of recruited cells

proliferate in situ to generate the full cellular complement (Hashi-

moto et al., 2013). It might also be, therefore, that this apparent

redundancy ismore related to recruitment of low numbers of cells

expressing individual iCcrs than to recruitment of cells expressing

combinations ofCcrs, which then expand in number after recruit-

ment to resting tissues. Although this is not redundancy per se, it

would have the overall effect of similarly helping to establish the

resting tissue monocyte population.

It is also notable that different tissues appear to utilize different

iCcrs and chemokines to establish resting leukocyte popula-
Imm
tions. In contrast to the skin, the spleen

was fully dependent on Ccr2 for estab-

lishment of its monocyte-derived cellular

populations, whereas the lung showed a

combined involvement of Ccr1 and Ccr2

in Ly6Chi monocytic cell recruitment. The

relatively high concentrations of Ccl7 de-

tected in resting iCCR-deficient skin sug-

gested that it is a dominant recruiter of

myelomonocytic cells in this context,

and its ability to bind to Ccr1, Ccr2,

Ccr3, and Ccr5 could account for the
observed redundancy of receptor use in this tissue. Given that

increased Ccl7 concentrations are likely to be a consequence

of a lack of scavenging through cognate receptor interactions

in the iCCR-deficient tissues, the fact that concentrations of

this chemokine were not altered in any of the single-receptor-

deficient mice suggests that no individual receptor is dominant

in its use in steady-state monocytic cell recruitment.

Despite the profound impact on myelomonocytic cell recruit-

ment, our data provide no evidence to support a role for any of

the iCcrs in T cell recruitment to resting tissues. Therefore, in

terms of populating resting tissues with leukocytes, receptors

within the iCcr locus appear to be exclusively involved in myelo-

monocytic cell and eosinophil recruitment, and there is clear

evidence of a redundancy of receptor involvement in establish-

ing skin-resident myelomonocytic cell populations.
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Our data are also supported by an in silico analysis of iCcr

expression in individual leukocyte subsets. In our experience,

many anti-murine chemokine receptor antibodies are of poor

quality and do not give reliable and specific staining. However,

we have mined the Immgen database (http://www.immgen.

org), and it is clear that monocytic cells dominantly express

Ccr2 and have occasional low expression of Ccr1 and Ccr5. In

contrast, eosinophils express Ccr3 at extremely high levels but

display only weak transcription of Ccr1. No expression of iCcrs,

with the exception of Ccr1, was detectable on T cells (Fig-

ure S5B), although our data indicate that this appears to have

no effect on their recruitment. Alveolar macrophages express

only very low amounts of Ccr1 and do not express Ccr2. This

is in keeping with the fact that alveolar macrophage numbers

are unaffected in CCR2-deficient mice.

In contrast to that in resting tissues, we found no evidence of

redundancy in myelomonocytic cell recruitment to the air pouch.

Our overall conclusion is that Ccr2 is the dominant receptor for

myelomonocytic cell recruitment to acutely inflamed sites and

that, in its absence, this is profoundly impaired. However, we

identified a subpopulation of recruited myelomonocytic cells,

which were capable of migrating to the air pouch in a CCR2-in-

dependent manner and which appeared to be a dendritic-cell-

like subpopulation. This population clearly had a dependency

on Ccr2 for egress from the bone marrow and potentially for

recruitment into inflamed sites. In the absence of CCR2, at least

a subset of these cells can also apparently utilize other iCCRs for

recruitment to the air pouch. Our analysis of single-receptor-

deficient mice and use of pharmacological blockers of CCR1

did not demonstrate clear involvement of any individual receptor

in the CCR2-independent recruitment, and thus there is potential

redundancy in iCCR involvement in recruitment of these cells to

the air pouch. Overall, and in combination with the data from

eosinophil analysis, there is no evidence of redundancy in recep-

tor involvement in myelomonocytic cell recruitment to acutely

inflamed sites. Indeed, our data argue for the overwhelming

importance of Ccr2 for both mobilization of monocytic cells

from the bone marrow and recruitment to the acutely inflamed

air pouch. Despite reports to the contrary in studies using alter-

native models (Contento et al., 2008; Lionakis et al., 2012;

Reichel et al., 2006; Rot et al., 2013; Schaller et al., 2008), our

data provide no evidence for a role for any of the iCCRs in the

recruitment of neutrophils or T cell subsets to the air pouch, sug-

gesting that their use might be context dependent.

In conclusion, this comprehensive analysis of iCCR involve-

ment in leukocyte recruitment provides evidence of redundancy

in resting cell recruitment to the skin but specificity of receptor

use and primacy of Ccr2 in recruitment of myelomonocytic cells

to acutely inflamed sites. Our data further suggest that it could be

worth examining Ccr2 as a therapeutic target in appropriate

acute rather than chronic inflammatory settings.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD11b (Clone M1/70) eBioscience Cat#47-0112-82; RRID: AB_1603193

Anti-mouse F4/80 (Clone BM8) eBioscience Cat#25-4801-82; RRID: AB_469653

Anti-mouse CD3e (Clone 145-2C11) Biolegend Cat#100308; RRID: AB_312673

Anti-mouse NK1.1 (Clone PK136) Biolegend Cat#108732; RRID: AB_2562218

Anti-mouse CD64 (Clone X54-5/7.1) Biolegend Cat#139309; RRID: AB_2562694

Anti-mouse MHCII (Clone M5/114.15.2) Biolegend Cat#107639; RRID: AB_2565894

Anti-mouse CD11C (Clone N418) Biolegend Cat#117310; RRID: AB_313779

Anti-mouse Ly6G (Clone 1A8) Biolegend Cat#127606; RRID: AB_1236494

Anti-mouse Ly6C (Clone HK1.4) Biolegend Cat#128024; RRID: AB_10643270

Anti-mouse CD45 (Clone 104) Biolegend Cat#109826; RRID: AB_893349

Anti-mouse CD103 (Clone M290) BD Biosciences Cat#562772; RRID:

AB_2737784

Anti-mouse CD80 (Clone 16-10A1) Biolegend Cat#104729; RRID:

AB_11126141

Anti-mouse SiglecH (Clone 551) Biolegend Cat#129606; RRID:

AB_2189147

Anti-mouse CD209a (Clone MMD3) Biolegend Cat#833003; RRID: AB_2721636

Anti-mouse Siglec-F (Clone E50-2440) BD Biosciences Cat#552126; RRID:

AB_394341

Anti-mouse CD19 (Clone eBio1D3 (1D3)) eBioscience Cat#25-0193-82; RRID:

AB_657663

Bacterial and Virus Strains

IAV strain WSN In house N/A

Chemicals, Peptides, and Recombinant Proteins

Collagenase D Roche Cat#11088858001

Dispase II Sigma-Aldrich Cat#D4693

DNase I Roche Cat#11284932001

Collagenase P Roche Cat#11213857001

Liberase Roche Cat#5401119001

Carageenan Sigma-Aldrich Cat#C1867

cOmplete�, Mini Protease Inhibitor Cocktail Tablets Roche Cat#04693124001

Zymosan A Sigma-Aldrich Cat#Z4250

Tissue Protein Extraction Reagent ThermoFisher Scientific Cat#78510

Critical Commercial Assays

High capacity RNA-to-cDNA Applied Biosystems Cat#4387406

PerfeCTa� SYBR� Green FastMix Quanta Biosciences Cat#95073-012

Custom Mouse Magnetic Luminex Multiplex assay R&D Systems Cat#LXSAMSM- 16

Bio-Plex Pro mouse chemokine 33-plex Biorad Cat#12002231

Mouse RANTES INSTANT ELISA ThermoFisher Scientific Cat#BMS6009IN

ST

Mouse MCP-3 INSTANT ELISA ThermoFisher Scientific Cat#BMS6006IN

ST

Mouse MCP5 INSTANT ELISA ThermoFisher Scientific Cat#BMS6007IN

ST

Mouse Eotaxin Platinum ELISA ThermoFisher Scientific Cat#BMS6008

BCA protein kit Pierce Cat#23227
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Custom RT2 PCR Array QIAGEN Cat#330171

RT2 SYBR Green ROX qPCR Mastermix QIAGEN Cat#330520

RT2 First Strand Kit QIAGEN Cat#330404

RNeasy mini kit QIAGEN Cat#74104

RNeasy micro kit QIAGEN Cat#74004

Experimental Models: Organisms/Strains

Mouse: CCR1def: B6.129S4-Ccr1tm1Gao Gift from Dr. Takanori Kitamura Taconic 4087; RRID:

MGI:3614571

Mouse: CCR2def: B6.129S4-Ccr2tm1Ifc/J The Jackson Laboratory JAX 004999; RRID:

IMSR_JAX:004999

Mouse: CCR3def: C.129S4-Ccr3tm1Cge/J The Jackson Laboratory JAX 005440; RRID:

IMSR_JAX:005440

Mouse: CCR5def: B6.129P2-Ccr5tm1Kuz/J Gift from Dr. Takanori Kitamura JAX 005427; RRID:

IMSR_JAX:005427

Mouse: iCCRdef: C57BL/6 (iCcr)KO This paper This paper

Oligonucleotides

See Table S3 for primers used in this study N/A N/A

Software and Algorithms

Cutadapt Martin, 2011 N/A

Fastqc N/A http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

Kallisto Bray et al., 2016 N/A

DESeq2 Love et al., 2014 N/A

Heatmap.2 package N/A https://github.com/cran/gplots)

FloJo v10.4 Tree Star https://www.flowjo.com/

Prism v7 GraphPad https://www.graphpad.com/scientific-

software/prism/

Other

ACK lysis solution ThermoFisher Scientific Cat#A1049201

Fixable viability stain eBioscience Cat#65-0866-18

FcR blocking reagent Milltenyi Cat#130-092-575

Absolute count beads ThermoFisher Scientific Cat#C36950
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gerard

Graham (gerard.graham@glasgow.ac.uk).

METHOD DETAILS

Mouse generation and maintenance
Mice lacking the inflammatory CC chemokine receptor locus (iCcr) encompassing Ccr1, Ccr2, Ccr3 and Ccr5 were generated in

collaboration with Taconic Biosciences. In brief, LoxP sites were introduced by homologous recombination into the genomic DNA

of ES cells, flanking the iCcr locus. The cluster was then deleted by Cre-mediated excision in C57BL/6 ES cells and deletion

confirmed by PCR, using the primers detailed in Table S3. Targeted ES cells were then used to generate heterozygous mice, which

were subsequently bred to homozygosity.

CCR1-deficient and CCR5-deficient mice were originally obtained from Taconic and Jackson labs respectively but were provided

as a generous gift from Dr. Takanori Kitamura, University of Edinburgh. CCR2-deficient and CCR3-deficient mice were purchased

from Jackson labs. CCR1-deficient, CCR2-deficient and CCR5-deficient were obtained and maintained on a C57BL/6 background,

whereas CCR3-deficient mice were on a BALB/c background. All experiments were normalized to the appropriate WT controls. This

involved comparison of all receptor-deficient mice on a C57BL/6 background with their precise congenic control and CCR3-deficient

mice with BALB/c controls. All WT controls were derived from appropriate heterozygous crosses and maintained in the same

animal house.
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All micewere ‘rederived’ and housed in the animal facility of the Beatson Institute for Cancer Research and bred in a ‘‘specific path-

ogen free environment.’’ Routine genotyping of pups was undertaken by PCR analysis of ear samples (Transnetyx). All experiments

were carried out under the auspices of a UK Home Office Project License and following ethical review by the University of Glasgow

Ethics Review Committee.

Expression of the receptors in peripheral blood
Blood samples were taken from tail tips of resting WT or iCcr heterozygous animals. After red blood cell lysis (ACK lysis solution,

Thermo Fisher Scientific), whole RNA was extracted using the RNeasy mini kit with DNase treatment (QIAGEN). RNA was then

reverse transcribed into cDNA using the High-Capacity RNA-to-cDNA Kit (Applied Biosystems) and cDNA was used in the analysis

ofCcr1, 2, 3, 5 andCxcr2 expression byQPCR (PerfeCTa�SYBR�Green FastMix, Quanta Biosciences). All QPCRswere performed

in a Prism 7900HT Fast Real-Time PCR system (Applied Biosystems). iCcr expression was calculated using standard curves specific

for each gene and results were normalized to the expression of the housekeeping gene GAPDH. QPCR and standard primers used in

these analyses are detailed in Table S3.

Resting tissue analysis
Mice ‘‘at rest’’ were culled and blood extracted from the vena cava, followed by perfusion using 20 mL of PBS (Sigma) containing

1mM EDTA (Sigma) before analysis of the cellular content of a number of tissues.

Dissected spleens were crushed onto 70 mm nylon mesh filters and washed with PBS (Sigma). Spleen and blood cell suspensions

then underwent red blood cell lysis (ACK lysis solution, Thermo Fisher Scientific) before washing, ready for cellular content analysis.

The serum from centrifuged blood was aspirated and taken for multiplex analysis as detailed below.

Shaved lower dorsal skin was dissected and chopped into fine pieces, followed by digestion in 4ml of digest cocktail (Hanks buff-

ered saline solution (HBSS) containing collagenase D (1mg/mL Roche), dispase II (500 mg /mL, Roche) and DNase I (100 mg/mL,

Roche)) for 1.5 hours at 37�C with shaking. Perfused lungs were dissected and chopped into fine pieces before digestion in 5ml

of digest cocktail (RPMI containing DNase I (100 mg/mL, Roche), dispase II (800 mg /mL, Roche) and collagenase P (200 mg/mL,

Roche)) at 37�C for 1.5 hours, with inversion after 45 min. Enzymes were neutralized by adding 20 mL of fetal bovine serum (FBS)

to each tube before skin or lung cell suspensions were filtered through 40 or 70 mm nylon mesh filters, respectively, and washed

for cellular content analysis.

Multiplex analysis of resting and air-pouch samples
Blood was extracted from the vena cava of resting or inflamed (air-pouch) mice as described above. Skin and lung were dissected

from resting mice as described above. Air-pouch membrane and fluid contents were obtained as described below.

Blood samples were incubated for 30 min on ice and then centrifuged at 13000g for 20 min. Serum was collected and stored at

�80�C until analysis. Skin, lung and air-pouch membrane were snap-frozen and ground in liquid nitrogen using a mortar and pestle.

They were then processed as described below. Air-pouch fluid contents were centrifuged at 400 g for 5 min. Supernatant was

collected and stored at �80�C until analysis. Skin, lung, air-pouch membrane and fluid cells were lysed in 0.5 mL of Tissue protein

extraction reagent (T-PER, ThermoFisher Scientific) in the presence of protease inhibitor cocktail (Roche) by rotating at 4�C for

6 hours. Samples were then centrifuged at 10000 g for 5 min and supernatant collected and stored at �80�C until analysis.

Resting blood was analyzed using a customised Magnetic Luminex Multiplex assay (R&D Systems). Resting skin, lung and in-

flamed samples were analyzed using a Bio-Plex Pro mouse chemokine 33-plex (Biorad). All samples were read on a Luminex 200

machine (Biorad) in the Flow Cytometry core facility (III, Glasgow).

ELISA Analysis
Total protein was extracted from tissue samples as described under ‘‘Multiplex analysis of serum and air-pouch samples.’’ Total pro-

tein concentrations were determined by Pierce BCA Protein (ThermoFisher Scientific). Specific concentrations of Ccl5, Ccl7, Ccl11

and Ccl12 were measured by ELISA, using Mouse RANTES INSTANT ELISA (ThermoFisher Scientific), Mouse MCP-3 INSTANT

ELISA (ThermoFisher Scientific), Mouse Eotaxin Platinum ELISA (ThermoFisher Scientific) and Mouse MCP5 INSTANT ELISA

(ThermoFisher Scientific), respectively. BCA and ELISA assays were read out on a SunriseTM microplate reader (TECAN). ELISA re-

sults were normalized to the concentration of total protein of each sample.

PCR array analysis
QPCR and standard primers used in these analyses are detailed in Table S3.

Chemokine expression in skin and lung were determined using Custom RT2 PCR Array plates (Qiagen). Plates were designed to

cover the mRNA corresponding to the chemokines detected by Bio-Plex Pro mouse chemokine 33-plex plates (Biorad) used in the

Luminex analysis. Ccr1, Ccr2, Ccr3, Ccr5 were additionally included in this assay. Reverse transcription, positive PCR and genomic

DNA controls were used as quality controls and ActB and TBP as reference genes.

Samples of lung and skin were collected from WT or iCCR-deficient animals. Total RNA was isolated using the RNeasy mini kit

(Qiagen), including an on column DNase digest, and served as template to generate cDNA with the RT2 First Strand Kit (Qiagen).
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qPCR Samples were set up with RT2 SYBR Green ROX Mastermix (Qiagen) and plates run on a Prism 7900HT Fast Real-Time PCR

system (Applied Biosystems). Results were analyzed using the Qiagen Analysis Centre (Qiagen) and are shown as % of WT expres-

sion, normalized to ActB and TBP.

Air-pouch model of inflammation
The air-pouch model of leukocyte recruitment was utilized as described previously (Colville-Nash and Lawrence, 2003; Edwards

et al., 1981). Sterile air (3ml) was injected subcutaneously into the mouse dorsum every 2 days on 3 occasions. 1 day after the final

air injection, 1ml of autoclaved carrageenan (1% (w/v) in PBS, Sigma) was injected into the air-pouch. 48 hours later, micewere culled

and blood extracted from the vena cava and prepared for analysis as described above. Air-pouches were flushed with 3ml of buffer

(PBS containing 1mMEDTA and 1% (w/v) fetal bovine serum, Sigma) and lavage fluid was collected and incubated on ice until further

analysis. The membrane surrounding the air-pouch was then dissected and digested for 1 hour at 37�C with shaking in 1ml of HBSS

containing 0.44 W€unsch units of Liberase (Roche). Liberase was then deactivated by adding 20 mL of FBS and membrane cell sus-

pensions were passed through 70 mmnylonmesh filters andwashed. Blood, air-pouch lavage fluid and digestedmembrane samples

were then analyzed for cellular content as described below.

Influenza A virus infection
Mice were briefly anesthetised using inhaled isoflurane and infected with 300 plaque forming units of IAV strain WSN in 20ul of PBS

intranasally (i.n.). Mice were euthanised 8 days post-infection and lungs harvested for analysis. IAV was prepared and titered in

MDCK cells.

Peritoneal inflammation model
The model of peritoneal inflammation was carried out as described previously (Dyer et al., 2017). Briefly, 1mg of zymosan in 200 mL

PBSwas injected into the peritoneumof the relevantmice, 24 hours later the peritoneumwas flushedwith 5mls of PBS containing 1%

EDTA (weight:volume). Cells were washed in FACS buffer and the resulting cell suspensions stained for flow cytometry.

Flow cytometry staining and analysis
Cell suspensions were washed into PBS and stained for 20 min at 4�C using fixable viability stain (1:1000 in PBS, eBioscience). Sam-

ples were then washed in flow cytometry buffer (PBS containing 1mM EDTA and 1% FBS) and stained for 20 min at 4�C in 100 mL of

antibody cocktail containing FcR blocking reagent (antibodies and FC blocking reagent indicated below, diluted 1:100). Cells were

then washed again in flow cytometry buffer and fixed in 100 mL fixation buffer (BioLegend) for 20 min. After fixation, samples were

analyzed on an LSRII or Fortessa flow cytometer (BD Biosciences) based in the Institute of Infection, Immunity and Inflammation

flow cytometry core facility (University of Glasgow). Antibodies used: CD11b, F4/80, CD19 (eBioscience) CD3e, NK1.1, CD64,MHCII,

CD11c, Ly6G, Ly6C, CD45, CD103, CD80, SiglecH, CD209a (BioLegend) Siglec-F and CD103 (BD Biosciences). FcR blocking re-

agent (MACS Miltenyi Biotec).

Flow cytometry data are expressed as % of WT. In brief, for each experiment, individual WT and receptor-deficient mouse leuko-

cyte numbers (as % of Live) were normalized to the median of the WT congenic control values and expressed as a percentage (% of

WT). We also compared data expressed in this way with data expressed as ‘absolute’ cell numbers and, with the exception of the

data presented in Figure 6Bii and 6Biii, there were no differences relating to the manner of presentation.

RNA sequence analysis
Cell suspensions from themembrane of the inflamed air-pouch were prepared and stained with antibodies as described above. Live,

CD45+CD11b+Ly6G-CD11c-CD3e-CD19-NK1.1-SiglecF-F4/80+CD64+Ly6C+ cells were sorted fromWT or CCR2-deficient mice into

RLT buffer using a FACSARIA II cell sorter (BD Biosciences). Total RNA was then isolated using an RNeasy micro kit with DNase

treatment (QIAGEN) and stored at �80�C.
RNA analysis was undertaken by the Glasgow Polyomics Facility. Briefly, an Illumina TruSeq Stranded mRNA sample preparation

kit was used to prepare sequencing libraries from total RNA, which were then sequenced (Illumina NextSeq 500).

Raw sequence reads were trimmed for contaminating sequence adapters and poor quality bases using the Cutadapt program

(Martin, 2011). Bases that had an average Phred score of lower than 15 were trimmed and reads trimmed to less than 54 bases

were excluded. Read quality was checked before and after trimming with the Fastqc program (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/).

The reads were ‘‘pseudo aligned’’ to the transcriptome using the program Kallisto (Bray et al., 2016). The differential expression for

the analysis groups was assessed using the Bioconductor package DESeq2 (Love et al., 2014). Heatmaps of the resulting data were

generated in R using the heatmap.2 package (https://github.com/cran/gplots).

Statistical analysis
All statistical analysis was carried out using GraphPad Prism and all tests were 2-sided. For normally distributed data, 1-way ANOVA

with Tukey’s post-test was used and for non-normally distributed data, Kruskal-Wallis analysis with Dunn’s post-test was carried out.
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Where marked differences in cell numbers were detected within experiments and where standard deviations followed accordingly,

data were log-transformed prior to statistical analysis. In all analyses, p = 0.05 was considered the limit for statistical significance. In

all figures, * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Data are presented as mean ± SEM except for Table S1 which is

mean ± SD.

DATA AND SOFTWARE AVAILABILITY

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable

request.
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