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Abstract

The general aim of this thesis was to develop analytical techniques for the assessment and
understanding of lower-limb amputee (LLA) gait. The number of individuals with lower limb
amputation (LLA) worldwide is growing and being able to optimise rehabilitation and prosthetic
prescriptions are becoming more important. Gait analysis may be able to inform these processes, in

particular at the individual level.

In study one, a machine learning algorithm was developed and optimised using Principal Component
Analysis (PCA) and Discriminant Function Analysis (DFA) to distinguish between barefoot and shod
running. An iterative process was used to optimise the algorithm, exploring all possible iterations of
ten individuals out of twenty, finding the combination of people with the greatest generic features
and thus the lowest error rate for classification. The outcome showed 93.5% classification accuracy
between barefoot and shod running. This study demonstrated that an iteration procedure could
optimise a machine learning algorithm to overcome the issues of overfitting, which is particularly

useful when working with a small sample size as is common in gait analysis.

In study two, PCA and DFA were used to identify differences between the gait of individuals with
unilateral trans-tibial amputation (UTTA) and able-bodied individuals. Different approaches were
explored, establishing that PCA conducted on normalised temporal-waveforms yielded the best
outcome. Results revealed that UTTA and able-bodied gait differed with regards to certain
biomechanical variables, providing a better understanding of LLA function. Although differences
between individuals with LLA and able-bodied individuals have previously been investigated, this
study demonstrates that using multivariate statistical analyses a vast number of variables can be
investigated simultaneously, identifying the hierarchy of variables and thus which need to be targeted

during treatment.

Clinical diagnosis is based on individual patients, thus in study three PCA was used to determine
whether one individual with a UTTA displayed unique gait characteristics when compared to a group
of able-bodied individuals. Both covariance and correlation matrices were used during PCA,
providing information about variation and magnitude of the data, respectively. Results revealed that
each individual with UTTA has subject-specific gait characteristics, which highlights that this

method can be used to identify variables which can be targeted during treatment.

In the fourth and final study, PCA was used to understand the effects of attempted symmetry on
dynamic stability of individuals with UTTA. Although in rehabilitation symmetrical gait is often
sought for since asymmetrical gait is said to cause long term adverse effects, results revealed that

asymmetry might be playing a functional role and in fact aids better stability in UTTA gait. This
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outcome may suggest that after a certain symmetry has been reached, the target of rehabilitation may

need to be reconsidered to aim for better stability.

In conclusion, multivariate statistical analysis could be used to assess and understand LLA function.
In a clinical setting, the ability to identify important variables during a task, particularly at patient-
specific level has the potential to improve the development of treatment recommendations. Prosthetic
prescription and rehabilitation processes can be tailored and in turn the outcome may be more
successful which could increase the likelihood of independent living of patients and therefore
improve the quality of life of individuals with LLA.
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1.1 Introduction

Undergoing amputation is a traumatic experience. In England, approximately 5000 lower limb
amputations are conducted annually, of which 90% are due to diabetes, hypertension and coronary
heart disease (Ahmad et al., 2014). The number of individuals with lower-limb amputation (LLA)
is expected to double by 2050 due to increased adverse health issues and an increasing ageing
population (Ziegler-Graham et al., 2008). Therefore, individuals with LLA represent a growing
problem in western society. These individuals lose musculoskeletal mechanisms, joint structures
and sensory input vital for movement such as walking. Consequently, their ability to take part in
activities of daily living is impacted (Pezzin et al., 2000). This leads to physical and personal
dependence, which can adversely affect their quality of life (Sawers & Hahn, 2011). One of the
goals of prosthetic rehabilitation is for individuals with LLA to regain and maintain a certain level
of function (van Velzen et al., 2006), and thus be able to live independently. During rehabilitation,
individuals with LLA are equipped with a prosthesis to replace the missing parts of the limb,
which is then used to learn how to walk again (Barnett et al., 2009). Successful prosthetic
rehabilitation is associated with increased chances of living at home after the final discharge, self-

care performance and improved quality of life (Dawson et al., 1995).

Prosthetic rehabilitation is a complex and multifaceted procedure, which can be both physically
and mentally challenging for a patient (Schaffalitzky et al., 2011). The ability to walk well with
a prosthesis increases the likelihood of using it following rehabilitation (Gailey, 2006). However,
the number of people who can use a prosthesis efficiently ranges from 49% to 95% (Dillingham
et al., 2005; Karmarkar et al., 2009; Schoppen et al., 2003). The impact of amputation on mobility
is great, especially in the elderly (van Eijk et al., 2012), which make up the majority of individuals
with LLA, with the average age being 70.6 years (Ahmad et al., 2014). Even individuals with
traumatic LLA, who tend to be younger and healthier, require time to regain pre-existing function,
and it is not always achieved (van Eijk et al., 2012). Research has shown that 31% of individuals
with LLA are unable to live independently 24 months following amputation and 49% lose the
ability to walk completely (Taylor et al., 2005). Being able to predict the outcome of prosthetic
rehabilitation is becoming increasingly important (Jarvis et al., 2017; Leung et al., 1996; van Eijk
et al., 2012) since it can facilitate decision-making processes early on during the rehabilitation
procedure. However, predicting mobility after prosthetic rehabilitation is arduous (Sansam et al.,
2009).

Research studies found that prosthetic rehabilitation and the ability to walk after LLA are

influenced by multiple factors, which include but are not limited to the age of the individual, level
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of amputation, cause of amputation, stump factors and associated pain, cognitive and mood
disturbance, dual disabilities, physical fitness, motivation, prosthetics prescriptions and
rehabilitation programmes (Jarvis et al., 2017; Leung et al., 1996; Sansam et al., 2009). There are
no generic measures in place which are considered essential to evaluate prosthetic rehabilitation
(Callaghan & Condie, 2003). Current prosthetic prescriptions and rehabilitation processes are
based on the subjective experience of clinicians (Schaffalitzky et al., 2011; van der Linde et al.,
2004). Even though rehabilitation goals are met, the lack of knowledge may in some cases
compromise the treatment outcome. Clinical decisions supported by gait analysis, facilitate a
better understanding of factors affecting gait and therefore aid more effective decision-making
processes (Esquenazi, 2014). Clinical gait analysis has changed the way in which gait pathologies
are treated. It helps determine the severity of a condition, provides treatment recommendations
and evaluates treatment outcome (Hamill et al., 2012). Using gait analysis for the assessment of
individuals with LLA can help monitor prosthetic rehabilitation and therapy effectiveness
(Skinner & Effeney, 1985), however, prosthetic rehabilitation is said to lack evidence-based
practice (Ramstrand & Brodtkorb, 2008).

Gait analysis is commonly conducted using data acquisition tools such as motion capture systems,
force platforms and electromyography (Winter, 2009). These data are often processed further
using methods such as inverse dynamics (Robertson et al., 2013; Winter, 2009). Subsequently,
summary techniques such as gait scores and gait indices are applied, producing information that
is accessible by clinical practitioners (Baker et al., 2009; Schutte et al., 2000; Schwartz and
Rozumalski, 2008). However, the quality of the interpretation of temporal gait waveforms
obtained by the acquisition tools and the processing of the data depends on the researcher’s
experience. Therefore, both data collection and data analysis can be subjective and highly affected
by researcher bias. To overcome these issues, multivariate statistical analyses and machine
learning algorithms can be used to develop automatic gait recognition tools, enabling a more
objective analysis procedure (Alagtash et al., 2011a; Lakany, 2008; Simon et al., 2016). In a
clinical setting, an automatic gait recognition tool would not only remove researcher bias, but it
could also facilitate decision-making processes. Thus, in the treatment of individuals with LLA,

it may provide a guide for prosthetic prescriptions and rehabilitation programs.

Research studies commonly assess group effects, whilst clinical assessments are based on
individuals. Therefore, research and clinical attempts to aid patients may appear to be operating
in diverging directions, preventing a coherent inter-disciplinary approach (Schéllhorn et al.,
2002). Being able to identify individual gait differences, instead of focusing on typical behaviour

of a group can be particularly useful, as it allows factors to be identified that can be used to tailor
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a patient’s treatment recommendations meeting their personal needs (Schéllhorn et al., 2002).
This is particularly useful in individuals with LLA since it could help tailor prosthetic
prescriptions and rehabilitation programs, which may, in turn, increase the likelihood of an
individual with LLA to regain the ability to walk independently after rehabilitation. Using
machine learning algorithms, Schéllhorn et al. (2002) demonstrated that individuals exhibit
unique gait characteristics, and these characteristics are not only distinctive but also persistent
over the years (Horst et al., 2017; 2016).

Predicting the ‘right’ intervention for a patient is important, but considerably more work needs to
be done to develop methodological frameworks for patient-specific treatment (Hoerzer et al.,
2015). To be able to identify the ‘right’ factors that need to be targeted in an individual is the first
step towards the development of this framework. Therefore, the aims of this PhD were to
implement guantification methods, which would allow better assessment and understanding of
LLA function. Multivariate statistical analyses and machine learning algorithms were explored to
identify a technique that might allow a comparison between LLA and able-bodied gait to be made,
providing an objective evaluation of LLA function. This technique was then used to compare
between the gait of an individual with LLA and a group of able-bodied individuals, to determine
if subject-specific gait characteristics could be identified. In addition, the technique was
implemented to investigate whether it could provide a better understanding of certain functions

of LLA gait such as dynamic stability.
1.2 Aims and Objectives

The general aim of this PhD was to adopt multivariate statistical analyses and machine learning
algorithms to develop analytical techniques for the assessment and understanding of LLA

function. The specific aims of the thesis were:

(1) Todevelop and optimise a machine learning algorithm using multivariate statistical analyses,
namely Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) to
process human locomotion.

(2) To compare the gait of individuals with unilateral trans-tibial amputation (UTTA) and able-
bodied individuals using PCA and DFA to provide a better understanding of LLA function.

(3) Toestablish subject-specific gait characteristics of an individual with UTTA using PCA when
compared to a group of able-bodied individuals.

(4) To identify the effects of attempted temporal-spatial symmetry on the dynamic stability of
individuals with UTTA, and to use PCA to understand LLA function during the attempt of

temporal-spatial symmetry.
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1.3 Structure of Thesis

The thesis begins with a literature review in Chapter 2. In the review, topics related to the
biomechanics of LLA gait, and the rationale of this PhD are outlined. Biomechanical variables of
LLA gait are described, particularly focusing on variables of forward progression and dynamic
stability, since these functional tasks will be a focus in this PhD research. Subsequently,
multivariate statistical analyses and machine learning algorithms used in gait analysis and
specifically in the assessment of LLA gait are discussed.

The general methodology is outlined in Chapter 3. Details of ethical approval and the inclusion-
exclusion criteria are described here. Furthermore, biomechanical gait variables such as temporal-
spatial, kinetic and kinematic variables which were collected for the research are presented. Also,
acquisition tools and experimental protocol used to collect the data are described as well as
processing and analysis procedures. Any additional methods that applied to a specific study are
described on a study-by-study basis in the individual methodology sections.

The development and optimisation of a machine learning algorithm using PCA and DFA are
described in Chapter 4. The algorithm was developed for data reduction, feature selection and
classification between barefoot and shod running. Different techniques were explored in order to

optimise the classification outcome, which are outlined and discussed.

In Chapter 5, PCA and DFA were applied, to compare between the gait of a group of individuals
with UTTA and a group of able-bodied individuals, using various approaches to establish a robust
analysis method for the assessment and understanding of LLA function. The approaches for once
involved the use of different forms of biomechanical variables, i.e. entire temporal waveform vs
scalar values. The influence of the number of scalar values on the discrimination procedure has
also been assessed. Furthermore, the nature of biomechanical data was investigated, i.e.

normalised vs non-normalised data.

In Chapter 6, the method established in Chapter 5 was applied to discriminate between the gait of
one individual with UTTA and a group of able-bodied individuals. This was done to establish if
an individual with UTTA displayed distinctive discriminating features, thus identifying individual
gait characteristics which could potentially be used to inform patient-specific treatment. During

this analysis, both the covariance and correlation matrices of PCA were utilised.

In Chapter 7, methods described and used in previous chapters were implemented to investigate
the effects of attempting temporal-spatial symmetry on the dynamic stability in individuals with

UTTA. Individuals with LLA are known to fall more often compared to able-bodied individuals,
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which has been attributed to compromised dynamic stability, however, the control mechanisms
of dynamic stability are not well understood. Hence, this study looked to provide further
understanding of the underlying biomechanical variables that are involved in the maintenance of

stable dynamic stability.

Finally, in Chapter 8, the PhD thesis is summarised. Furthermore, limitations, as well as future
directions, are outlined, which is followed by possible implementations of findings in clinical
practice, before concluding the thesis.
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2.1 Introduction

This chapter starts with a brief description of biomechanical characteristics of able-bodied gait,
followed by some statistics on individuals with LLA and a description of LLA gait, focusing on
forward progression and dynamic stability. Different quantification methods of dynamic stability
are described, with a detailed explanation of the extrapolated centre of mass (XCoM) and the
margin of stability (MoS), which are the chosen methods for this PhD research. Subsequently,
characteristics of gait data are outlined, followed by issues faced during the analysis of gait data,
and methods proposed in the literature to overcome these issues. Furthermore, the use of
automatic recognition tools developed using multivariate statistical analyses and machine
learning algorithms are described, detailing their use in gait analysis and their application in the

assessment of LLA gait.

2.2 Biomechanics of Normal Gait

Gait is a term describing locomotion characteristics such as walking and running (Fish & Nielsen,
1993). Able-bodied gait describes a series of rhythmical, alternating movements of the trunk, as
well as upper-limbs and lower-limbs that lead to forward progression of the centre of gravity. Gait
is usually explained in terms of components of the gait cycle starting and ending at heel strike of
the same limb. As outlined in Figure 2.1, the full gait cycle is described as a stride, and a step
describes heel strike to heel strike from one limb to the contralateral limb, rather than the same
limb (Perry et al., 2010). A gait cycle is divided into two major phases of stance and swing (Figure
2.2). The stance phase defines the period during which the foot is in contact with the ground and
comprises up to 60% of the gait cycle, and the swing phase is the period during which the foot is
off the ground, making up 40% of the gait cycle. Three functional goals are met during the gait
cycle, i.e. weight acceptance, single limb support and limb advancement (Perry, 1992), which can

be explained using eight sub-categories (Figure 2.2).

| Stride |
b g
Left Step Right Step
4 Step Width
e -

Figure 2.1 Step length, step width, stride length and foot angle during walking gait.
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The eight sub-categories of the gait cycle are typically described starting with initial contact,
which is often referred to as heel strike. At this instant, the foot comes into contact with the
ground. Heel strike is the first phase of double limb support and stabilises the leading limb in
preparation for forward progression (Perry, 1992). During heel strike, the hip is flexed to ~30°,
the knee is extended between ~0-5°, the foot is at ~25° to the floor and the ankle is at a neutral
position (Perry, 1992). Following heel strike, there is a rapid increase of vertical (Fz) ground
reaction force (GRF) to approximately one times body weight as weight is shifted and the leading
limb accepts the weight. In the anterior-posterior (Fy) GRF an increase in braking force reaches
a peak just after weigh acceptance is completed. The medio-lateral (FX) GRF increases
significantly although the force is only 5% of body weight.

After initial contact, the loading response follows (Perry, 1992). During the loading response, the
ankle joint plantar-flexes and the foot lowers onto the ground, the hip starts to extend, the knee
flexes, and the centre of mass (CoM) propels forward and over the foot, using the heel as a rocker.
The aim of this phase is shock absorption, stability during weight bearing, and preservation of
forward progression. Mid-stance follows the loading response and describes the first half of single
limb support (Perry, 1992). During this phase, the weight is completely aligned over the
supporting foot. Thus, the body weight is fully supported by one limb, as the contralateral foot is
lifting off the floor. During mid-stance, the ankle is dorsiflexed, whilst the hip and knee are
extended. Following mid-stance is terminal stance which describes the second half of single limb
support (Perry, 1992). It begins as the heel of the loaded limb starts lifting off the floor, and the
CoM moves forward past the forefoot. During this phase, hip extension increases and the knee

begins to flex again. This phase ends as the contralateral limb contacts the floor.

At this instance, pre-swing starts at the ipsilateral limb and defines the final phase of stance just
before toe-off occurs (Perry, 1992). The contralateral limb is at initial contact, and the ipsilateral
limb rapidly unloads the weight, transferring it to the contralateral limb, pushing the body
forward. The knee extends, and the ankle plantar-flexes as the toe starts to leave the floor on the
ipsilateral limb. The foot then lifts off the floor to start the initial swing phase (Perry, 1992). The
hip and the knee start flexing, whilst the ankle starts to dorsiflex during this phase. The
contralateral limb is at mid-stance during this instance. This phase ends as the off-loading limb is
level with the contralateral limb in stance phase. The initial swing phase is followed by mid-
swing, during which the hip flexes so that the limb swings forward, and the knee continues to flex
(Perry, 1992). Finally, terminal swing follows, which is also referred to as late swing, where the
knee is fully extended, and the ankle is dorsiflexed to neutral as the limb prepares to make contact

with the ground to start the cycle again (Perry, 1992).
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Figure 2.2 Eight phases of the gait cycle. Figure adopted from Physiopedia (2018).

2.3 Statistics of Individuals with Lower-Limb Amputation

An amputation is defined as the surgical removal of a part of the body (nhs.uk., 2018). It is a
profound and life-changing event with great physical and mental impact on an individual. Every
year thousands of LLAs are performed around the world, with numbers doubling in western
society (Ziegler-Graham et al., 2008). In England, more than 5000 new individuals with LLA are
recorded per annum (Ahmad et al., 2014). The most common causes for an amputation are
diabetes (44%) (Ahmad et al., 2014), which is at an all-time high, equating to 135 procedures
each week (Diabetes UK), followed by hypertension (39%) and coronary heart disease (23%)
(Ahmad et al., 2014). The United States (US) has an estimated 2 million people living with an
amputation, and a further 185,000 individuals scheduled to undergo an amputation annually
(Ziegler-Graham et al., 2008). The most common causes of limb loss in the US similar to England,
are peripheral arterial diseases (PAD). At the present global estimates for the prevalence rates of
PAD in adults age 70 and over stand at 3-10%, with further increases expected to reach 15-20%
(Meijer et al., 1998; Norgren et al., 2007). Increases in life expectancy are leading to an ever-
growing ageing population and associated prevalence of adverse health issues. The number of
individuals predicted to suffer from limb loss by 2050 is 3.6 million people (Ziegler-Graham et
al., 2008). It was estimated that in the United Kingdom (UK) an amputation due to type 2 diabetes
on average incurred annual hospital inpatient costs of £9546 (£6416 — £13463) (Alva et al., 2015).
In 2009, the annual cost of amputations in the US was estimated at $8.3 billion (Amputee
Coalition, 2018) with a lifetime health care cost after LLA of around $509,275 (MacKenzie et al.,
2007). In conclusion, the number of individuals with LLA is increasing, placing greater cost and

care demands on health systems.
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2.4 Biomechanics of Lower-Limb Amputee Gait

Individuals with LLA have compromised balance, posture and gait function (Isakov et al., 2000;
Jayakaran et al., 2012; Sadeghi et al., 2000; Silverman et al., 2008). The obvious mechanical
difficulties result from the removal of parts of the skeletal system and the associated musculature,
which are also compounded by the reduction in the somatosensory input. An amputation may
occur at various levels at the upper-limbs and lower-limbs and can be classified as minor and
major amputation, describing the removal of a digit such as a finger or a toe, or the removal of
full parts of extremities such as an arm or shank, respectively (Assumpcdo et al., 2009). Major
limb loss accounts for more than 42% of all amputations with the majority occurring below the
knee, more commonly referred to as a trans-tibial (TT) amputation, followed by above knee
amputations, commonly referred to as a trans-femoral (TF) amputation. After an LLA, individuals
use alternative muscle groups to create movement (van Velzen et al.,, 2006) and thus

compensatory mechanisms are adopted to achieve a certain level of function.

The compensatory gait of individuals with LLA is associated with greater energy expenditure.
During locomotion, the musculoskeletal system will function to use the least amount of energy to
cover the greatest distance (Waters & Mulroy, 1999). However, individuals with LLA have lower
self-selected walking speed and higher energy expenditure relative to able-bodied individuals
(Schmalz et al., 2002). Schmalz et al. (2002) found oxygen consumption increased proportionally
to an increase in speed, which further increased as the level of major amputation becomes higher,
relative to able-bodied individuals (Figure 2.3). Greater energy expenditure was attributed to
greater mechanical work required during the step-to-step transition from the prosthetic to the
intact limb (Houdijk et al., 2009).

The compensatory mechanisms adopted by prosthetic and intact limbs of individuals with LLA
result in asymmetrical gait. Asymmetrical gait is known to cause secondary issues, some of which
occur early on after the amputation, for example, lower back pain (Kulkarni et al., 2005), and
others which occur later in life such as hip and knee osteoarthritis (Burke et al., 1978). Individuals
with LLA are also 88% more likely to develop osteoporosis in the prosthetic limb due to
asymmetrical gait (Burke et al., 1978). During prosthetic rehabilitation, a more symmetrical gait
is often desired to correct for asymmetry and thus minimise these secondary issues. Literature has
shown that asymmetries tend to decrease as rehabilitation progresses, and walking ability

improves (Barnett et al., 2009).
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Figure 2.3 Oxygen consumption of individuals with UTFA (solid squares), individuals with
UTTA (open circles) and able-bodied individuals (solid triangles), as speed increases during
treadmill and level walking. Figure adopted from Schmalz et al. (2002).

2.4.1 Temporal-Spatial Parameters of Lower-Limb Amputee Gait

Temporal-spatial parameters describe many variables such as speed and step length, providing an
initial assessment of gait. In LLA gait, temporal-spatial variables were found to differ between
the intact and prosthetic limb (Isakov et al., 1992; 2000) and also varied depending on individual
characteristics such as level of amputation as well as prosthetic components. The self-selected
walking speed of individuals with LLA tends to be lower relative to that of able-bodied
individuals. However, different average results have been reported across studies for individuals
with UTTA and individuals with UTFA as illustrated in Figures 2.4 and 2.5.

12
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Figure 2.4 Average walking speed (m/s) of individuals with UTTA. The solid black line indicates
the average speed of able-bodied individuals. Error bars show standard deviation. In all studies,
speeds were identified from over ground walking except for Schmalz et al. (2002). The majority
of the cohorts in these studies had undergone an amputation due to trauma, and their choice of
prosthetic components were elastic response feet and microprocessor knee joints with some
exceptions. Figure adapted from Jarvis et al. (2017).
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Figure 2.5 Average walking speed (m/s) of individuals with UTFA. The solid black line indicates
the average speed of able-bodied individuals. Error bars show standard deviation. In all studies,
speeds were identified from over ground walking except for Schmalz et al. (2002). The majority
of the cohorts in these studies had undergone an amputation due to trauma, and their choice of
prosthetic components were elastic response feet and microprocessor knee joints with some
exceptions. Figure adapted from Jarvis et al. (2017).
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Isakov et al. (2000) found the average speed of fourteen individuals with UTTA using patellar
tendon bearing (PTB) sockets and solid ankle cushion heel (SACH) feet to be 1.25 m/s. They also
found significantly larger step time and swing time on the prosthetic limb (step time 0.582+0.04s;
swing time 0.438+0.04s) relative to the intact limb (step time 0.569%0.04s; swing time
0.407+0.03s). Furthermore, larger stance time and single support time on the intact limb (stance
time 0.774+0.06s, single support time 0.438+0.04s) relative to the prosthetic limb (stance time
0.708+0.05s, single support time 0.407+0.03s) was found (Isakov et al., 2000). The shorter single
support time on the prosthetic limb was attributed to the prosthetic foot, since the rigid ankle
mechanism of the SACH foot leads to quicker weight transfer from the heel to the forefoot, i.e.
resulting in shorter stance duration on the prosthetic limb and shorter swing time on the intact
limb. Breakey (1976) found similar results regarding the stance duration on the prosthetic limb.
Highsmith et al. (2010) reported similar results for individuals with UTFA in step time on the
prosthetic limb (0.70+0.05s) relative to the intact limb (0.60+0.06s), however, in individuals with
UTTA they found step time to be shorter on the prosthetic limb (58+0.03s) relative to the intact
limb (0.60£0.05s). Jarvis et al. (2017) also reported significantly shorter step time on the
prosthetic limb (60-62% of the gait cycle) relative to the intact limb (62-66% of the gait cycle).

Longer stance time on the intact limb relative to the prosthetic limb (Board et al., 2001; Breakey,
1976; Isakov et al., 2000; McNealy and Gard, 2008; Sanderson and Martin, 1997; Schmid et al.,
2005; van der Linden et al., 1999) was described as a control mechanism and was attributed to
the lack of confidence in the prosthetic limb (Sanderson & Martin, 1997). It has also been
identified as an attempt to protect the prosthetic limb from increased loads and forces (Hurley et
al., 1990; Nolan et al., 2003; Powers et al., 1998; Sanderson & Martin, 1997). Jarvis et al. (2017)
however, reported that walking speed, stride length and cadence of high functioning individuals
with UTTA and individuals with UTFA, who use state of the art prosthetic devices, was
comparable to able-bodied individuals (Table 2.1). Rabago and Wilken (2016) used prevalence
to describe gait deviations of individuals with UTTA. The measure of prevalence is described as
a percentage outside normative reference ranges, where the reference range was calculated using
the mean and standard deviation of a group of able-bodied individuals. Individuals with UTTA
were found to have the greatest prevalence, i.e. differed from the normative reference ranges, in
step time and length measurements of the intact limb, however, these deviations were not

significant.

14



Chapter 2: Review of Literature

Table 2.1 Temporal-spatial variables of individuals with UTTA and individuals with UTFA of
both prosthetic (PROS) and intact (NONPROS) limbs, and able-bodied individuals of both right
and left limbs. Table adopted from Jarvis et al. (2017).

Parameter Individuals with Individuals with Able-bodied
UTTA UTFA Individuals

PROS NONPROS PROS NONPROS Right Left

Speed (m/s) 1.36+5% 1.22-5% 1.29

Stride length (m)  1.46-1% 1.42-3% 1.47

Stride width (m)  0.13+9% 0.18+54% 0.12

Cadence 112+6% 103-3% 106

(steps/min)

Step length 0.73+0%  0.73+1% 0.71-3% 0.72-3% 0.74 0.73

Step time (% 60.9-3%  63.8+1% 62.3-1% 64.0+1% 63.1 629
cycle)

Temporal-spatial parameters are often used to investigate the process of rehabilitation in
individuals with LLA. Baker and Hewison (1990) used speed as a performance index,
demonstrating that it increases by almost 55% within the initial 15 days of rehabilitation. Barnett
et al. (2009) also demonstrated that temporal-spatial asymmetry reduces between limbs during
the rehabilitation process. Analysing temporal-spatial parameters, Isakov et al. (1996) found these
variables to be symmetrical between the limbs of individuals with UTTA, unlike knee kinematic
data which was found to be asymmetrical. During loading response, knee flexion increased during
fast speed (1.4 m.s?) relative to ‘normal’ speed (0.9 m.s™) on the intact limb, but not in the
prosthetic limb. Also, during toe-off, larger knee flexion was reported on the prosthetic limb
relative to the intact limb due to the lack of dorsiflexion of the prosthetic foot. Schmid et al. (2005)
found that the duration of double-support phase prior to the prosthetic limb was prolonged relative
to double support prior to the intact limb, which was attributed to balance and comfort issues.
However, not all studies have found this asymmetry in double-support phases (Isakov et al.,
1996). The temporal differences between intact and prosthetic limbs tend to reduce as walking
velocity increases (Nolan et al., 2003) but increase with higher prosthetic limb mass (Donker and
Beek 2002; Mattes et al., 2000; Nolan et al., 2003).

Although individuals with UTTA and able-bodied individuals were found to have similar stance
time and double support time, able-bodied individuals spend only 12% of the gait cycle having
heel only contact whilst UTTA spend 20% of the gait cycle having heel only contact (Powers et
al., 1998). The inability of individuals with UTTA to lower the foot much more rapid after initial

contact was attributed to compromised plantarflexion as a result of the stiffness of the prosthetic
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ankle (Isakov et al., 2000), which can be improved with better prosthetic foot devices (van der
Linden et al., 1999; 2004). Temporal-spatial parameters vary depending on the prosthetic foot.
During the analysis of ten participants using five prosthetic feet (Carbon Copy I, Seattle,
Quantum, SACH and Flex foot) at self-selected speeds, Powers et al. (1994) found that
irrespective of the prosthetic used, the foot cadence was similar between intact and prosthetic
limbs of individuals with LLA, as well as control limbs of able-bodied individuals. However,
stride length was found to be larger in the Flex foot stride (1.5 m) relative to SACH (1.44 m) and
Quantum (1.44 m), while the other feet were similar (Carbon Copy Il = 1.46 m, Seattle = 1.47 m
and control foot = 1.51 m). The Flex foot also had larger dorsiflexion (23.2°) relative to the
Quantum, while the Quantum had larger dorsiflexion (19.5°) relative to the other feet (Carbon
Copy 11 =12.1°, Seattle = 15.1° and SACH = 12.0°). Prince et al. (1998) suggested that a prosthetic
foot should be selected, depending on the time it takes to reach foot flat, the amount of energy
recovered by the foot and other objective criteria such as maintenance.

2.4.2 Ground Reaction Forces of Lower-Limb Amputee Gait

Individuals with LLA display different GRFs relative to able-bodied individuals. Kovac et al.
(2009) report significant asymmetries between intact and prosthetic limbs of individuals with
UTTA compared to control limbs of able-bodied individuals. The vertical GRF has a typical
double-peaked characteristic, where the first peak was found to increase as speed increased, but
the second peak increased in the control and intact limb, but not in the prosthetic limb (b)
(Sanderson & Martin, 1997). The vertically aligned prosthetic limb was notable in the anterior-
posterior GRF since both breaking and propulsion phases were visibly reduced (a) (Sanderson &
Martin, 1997). The lack of change in the prosthetic limb could be attributed to the lack of push-
off capacity in the prosthetic ankle joint (Sanderson & Martin, 1997).
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Figure 2.6 Average anterior-posterior (a) and vertical (b) components of the ground reaction force
during stance phase at 1.2 m/s. Abbreviations: AMP-PROS — prosthetic limb, AMP-INT — intact
limb, NONAMP — control limb. Figure adopted from Sanderson & Martin (1997).
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2.4.3 Joint Kinetics and Kinematics of Lower-Limb Amputee Gait

In biomechanics, kinematics describes the movement of segments, i.e. the segment’s position and
orientation relative to its surroundings, whilst kinetics describes forces that cause movement, i.e.
internal forces as a result of muscles and joint activity as well as external forces as a result of
interaction with the surrounding environment, e.g. ground reaction forces. Depending on the level
of amputation, the kinematics of an individual with LLA may be similar to that of an able-bodied
individual (Sanderson & Martin, 1997). Kinematic and kinetic characteristics of UTTA gait
suggest that the support functions of individuals with UTTA are similar to that of able-bodied
individuals, whilst the motor functions differ (Sanderson & Martin, 1997). Individuals with
UTTA lose the ankle joint and the associated ankle plantar-flexors (Sanderson and Martin, 1997;
Silverman et al., 2008), which are responsible for 80% of mechanical power generated at the
ankle joint during walking (Winter & Sienko, 1988). These muscles are also responsible for body
support, forward propulsion, leg swing initiation and medio-lateral balance during walking
(Silverman et al., 2008).

Individuals with LLA tend to increase the joint moment and power on the intact limb, relative to
the control limbs in able-bodied individuals, to compensate for functional losses of the prosthetic
limb (Nolan & Lees, 2000). The primary compensatory mechanism of individuals with LLA
during self-selected walking speed is increased hip joint power on the prosthetic limb (Silverman
et al., 2008). They display higher amplitude and duration of hip joint power throughout the first
half of the stance phase (55-60% of the gait cycle) relative to able-bodied individuals (20% of the
gait cycle). This is considered the first limb propeller parameter (Sadeghi et al., 2001). Hip
extensor power was found to increase due to increased Gluteus Maximus activity to compensate
for the lack of push-off at the ankle joint (Sadeghi et al., 2001). Hip joint power before toe-off
(H3S) pulls the limb upward and forward (McNealy & Gard, 2008; Sadeghi et al., 2001; Seroussi
et al. 1996). Able-bodied individuals simultaneously use their H3S and ankle joint power through
the gait cycle to prepare for the swing phase. Individuals with LLA increase H3S directly before
toe-off to compensate for the lack of energy generated at the ankle joint (A2S). This mechanism
is associated with greater energy expenditure due to increased work at the hip joint (Silverman et
al., 2008; Sjodahl et al., 2002; Su et al., 2007; Underwood et al., 2004).

Individuals with LLA adopt compensatory mechanisms in both limbs to maintain a degree of
symmetry in support moments (Sanderson & Martin, 1997). Sanderson and Martin (1997) found
that during early stance the support moment of the prosthetic limb reduces relative to the intact
limb and the control limb because of adaptations at the knee joint. During late stance, symmetry

was apparent in the support moments of hip, knee and ankle joints (Sanderson & Martin, 1997),
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since individuals with UTTA generated limited ankle plantar-flexor moment, but on the intact
limb the plantar-flexor moment increased to a magnitude identical to the prosthetic limb,

modulating symmetry (Sanderson & Martin, 1997).

The hip joint moment in the prosthetic and intact limbs of individuals with UTTA were found to
differ during the first half of the stance phase relative to the control limbs of able-bodied
individuals at a speed of 1.2 m/s, but not significantly (Figure 2.7 a) (Sanderson & Martin, 1997).
The amplitude of the peak extensor moment on the prosthetic limb was found to be smaller for
the first half of the stance phase relative to the intact and control limbs. As speed increased the
extensor moment in the control limb increased but remained unchanged in the intact limb and
decreased in the prosthetic limb (Figure 2.7 b) (Sanderson & Martin, 1997).

Individuals with UTFA utilise the hip joint to assist with forward progression since knee and
ankle joints are missing (McNealy & Gard, 2008; Nolan & Lees, 2000). At initial contact, the hip
joint moment in the sagittal plane was found to be twice as large in individuals with UTFA relative
to able-bodied individuals (McNealy & Gard, 2008). The hip moment becomes an extensor
moment on the intact limb much sooner relative to the prosthetic limb (Seroussi et al., 1996).
Furthermore, during early stance, the work done by the concentric hip extensor was found to be
larger in individuals with UTFA on the intact limb (34.246.6J) relative to the prosthetic limb
(4.942.1J) and the control limb of able-bodied individuals (25.2+3.7J) (Seroussi et al., 1996).

—— NONAMP
(2) ——— NONAMP (© 0p. ———NoNAwP (e) L AMPANT
02 -— AMPANT : -— AMP-INT 05— - AMP-PROS
......... AMP-PROS - AMP-PROS 05
~
g 01 § oA
: : 1
c g 00
H g
g E o1+t
4 01 F
H FLEXOR 2 oas
PLANTARFLEXION
02 Y S — 02 —t——t———— " L
o 20 40 60 0 1 0 20 0 6 80 1
% STRIDE 8 ®© % STRIDE 0 0 20 doﬁ STRIDE e To0
(b) (d) o2 ()

HIP MOMENT (NWBW)
o
KNEE MOMENT (NMBW)

ANKLE MOMENT (NWBW)

EXTENSCR

02 t t t f | 0 o0
[+] 20 40* srmnseo 80 100 % STRIDE

Figure 2.7 Sagittal joint moments of hip (a, b), knee (c, d) and ankle (e, f) at 1.2 m/s (a, c, e) and
1.6 m/s (b, d, f) of the prosthetic (AMP-PROS) and intact limbs (AMP-INT) relative to control
limb (NONAMP). Figure adopted from Sanderson & Martin (1997).
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Able-bodied individuals rely on a knee extensor moment, which controls knee flexion during
weight acceptance. Individuals with UTTA have significantly smaller knee flexion moment in the
prosthetic limb (Figure 2.7 ¢, d) (Sanderson & Martin, 1997). In the prosthetic limb of individuals
with UTTA, the knee moment does not become extensor in orientation for almost the entire stance
phase (Sanderson & Martin, 1997). In individuals with UTFA, the knee moment is negative
preventing prosthetic knee motion during the stance phase, so there is no energy storage or return
(K2S) (McNealy & Gard, 2008). Individuals with LLA experience a 63% reduction in knee power
absorption during the loading response phase (K1S) on the prosthetic limb relative to the intact
limb. Thus, it is assumed that the knee extensor moment is not crucial in the development of
extensor support function in the prosthetic limb (Sanderson & Martin, 1997). Although knee
extensor moment was found in the control limb of able-bodied individuals and the intact limb of
individuals with LLA (Figure 2.7 c, d), Sanderson and Martin (1997) indicate that it may play a
less dominant role in the support and propulsion during walking since it was minimal compared
to the hip and the ankle joints (Figure 2.7 a, b, e, f). The hip and knee joint angles are found to be
more vertically aligned in the prosthetic limb relative to the intact limb during the stance phase
(Sanderson & Martin, 1997). This prevents the knee joint from collapsing and reduces loading on
it, which may be due to reduced knee extensor muscle strength on the prosthetic limb, and also

an indication of the lack of confidence in the ability to control the knee joint.

During the loading phase, knee flexion has a shock-absorbing effect that is important for the
prevention of wear and tear (Isakov et al., 1996). Control and intact knee flexion are between 15-
18°, however, prosthetic knee flexion is reduced to 9-12° in individuals with UTTA (Isakov et al.,
1996; Powers et al., 1998; Su et al., 2007) and often absent or negative in individuals with UTFA
(Segal et al., 2006). Sanderson and Martin (1997) report minor changes in the angular position
and velocity of individuals with UTTA relative to able-bodied individuals in hip, knee and ankle
joints (Figure 2.8 a, ¢, €). Subtle differences apparent in the hip and knee joints specifically during
the first part of stance phase, were the prosthetic limb retained a more extended position in both
these joints resulting in the thigh being more vertical in orientation (Figure 2.8 a, ¢). The ankle
joint demonstrated more noticeable differences in the prosthetic limb relative to the intact and
control limbs, particularly during late stance and early swing, because of the substantially reduced
plantar flexion (Figure 2.8 €). Postema et al. (1997) also reported that due to the lack of mobility
in the prosthetic feet relative to a biological ankle joint, the ability for an individual with LLA to

dorsiflex was limited compared to able-bodied individuals (12.5° + 3.1° vs 20.2° + 3.59).
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Figure 2.8 Sagittal joint angles (a, ¢, €) and angular joint velocity (b, d, ) of hip (a, b), knee (c,
d) and ankle (e, f) at 1.2 m/s of the prosthetic (AMP-PROS) and intact limbs (AMP-INT) relative
to control limb (NONAMP). Figure adopted from Sanderson & Martin (1997).

The absence of knee flexion and the lack of ankle movement during stance phase in individuals
with UTTA means heel contact occurs at 20% or 44.5% of the gait cycle (Goh et al., 1984; Prince
et al., 1998) since individuals with UTTA spend more time rotating the prosthetic foot forward
until initial contact is reached. An ankle plantar-flexion indicates the foot's ability to be flat on
the ground in early stance, allowing increased contact and therefore better stability. Ankle joint
plantar and dorsiflexion are greatly influenced by prosthetic foot design and thus vary depending
on that (Perry et al., 1997; Postema et al., 1997; Powers et al., 1994). The majority of dynamic
prosthetic feet are comprised of a blade without much articulation in the ankle joint. Therefore,
the plantar-flexion during early stance occurs by heel compression and is often limited compared

to the biological ankle joint (Postema et al., 1997).

At self-selected walking speeds, ankle joint power is four times lower in individuals with LLA

relative to ankle joint power in able-bodied individuals at slow speed. Ankle plantar flexors are a
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major energy source during push-off (Seroussi et al., 1996) and they are responsible for 80% of
mechanical power generated at the ankle joint during walking (Winter & Sienko, 1988). Hence,
individuals with LLA adopt other compensatory mechanisms to accommodate for the reduction
of push-off power (Sadeghi et al., 2001; Seroussi et al., 1996). The three most common
compensatory mechanisms are (1) increased work at the intact ankle during push-off, (2)
increased concentric hip extensor muscle work at intact limb during early stance and (3) increased
concentric hip extensor pull-off in the prosthetic limb (H3S) in early swing (Seroussi et al., 1996).
Ankle joint power is highly influenced by the prosthetic foot device (Graham et al., 2007; Postema
etal., 1997; Seroussi et al., 1996; Underwood et al., 2004; van der Linden et al., 1999). A dynamic
prosthetic foot allows a greater power absorption (A1S) during weight acceptance, which
increases dorsiflexion moment and push-off power of the prosthetic ankle (Underwood et al.,
2004). However, as push-off power only reaches 20% of biological ankle work it is still much
lower than the ankle power generated by an able-bodied individual (Seroussi et al., 1996).

The prosthetic and the intact limbs were found to have 20°, and 26° range of motion (ROM),
respectively, whilst a control ankle joint has a ROM of 21°. The increased ROM in the intact limb
was considered a compensatory mechanism allowing better foot clearance during swing phase
due to the lack of ROM in the prosthetic ankle joint (Nolan & Lees, 2000). Due to a lack of
dorsiflexion, individuals with LLA hip hike which means the pelvis is raised, raising the limb to
swing it through the motion of swing phase, which helps clear the foot off the ground (Su et al.,
2007). During hip hiking the entire body mass against needs to be lifted up against gravity and
thus its associated with greater metabolic energy cost (Su et al., 2007). Furthermore, individuals
with LLA have greater pelvic ROM at self-selected speed relative to pelvic ROM in able-bodied
individuals during slow speed (Su et al., 2007).

2.5 Stability and Balance Control in Gait

Individuals with LLA tend to fall more frequently compared to aged-matched, able-bodied
individuals (Miller et al., 2001a; b) . Studies report 52.4% and 80% of individuals with LLA fall
within 12 months (Miller et al., 2001a; b; Ulger et al., 2010), with multiple falls occurring in 64%
of cases (Ulger et al., 2010). As a consequence of regular falls, these individuals develop a fear
of falling (Miller et al., 2001b), which prevents them from taking part in everyday activities,
affecting their physical and mental health (Pezzin et al., 2000). Falls may occur as a consequence
of compromised dynamic balance and stability, and although falling is a significant problem in

individuals with LLA, its underlying mechanisms are not well understood (Curtze et al., 2010).
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2.5.1 Conditions for Dynamic Stability

The three major systems involved in the maintenance of balance and stability are (Winter, 1995):
(1) the vision system which works to anticipate and plan locomotion through observation of the
surroundings and obstacle avoidance; (2) the vestibular system which is the gyro system of the
human body, controlling orientation and acceleration; and (3) the somatosensory system which is
a large number of sensors that take note of the position and the velocity of segments. The
somatosensory system senses the contact of segments and their relation to the surrounding
environment including the ground and the orientation of gravity. Research studies have
investigated the role of these systems and their adaptability when one of these systems fails or is
impaired (Winter, 1995).

In the literature, the inverted pendulum is a widely used model describing the postural and
dynamic control of balance and stability in human locomotion (Winter, 1995). The model
describes the inverted pendulum pivoted around the ankle joint, where the body is modelled as a
mass m on top of a stick with length [ (Figure 2.9) (Hof et al., 2005). The mass m, i.e. the CoM,
is the pendulum bob, which follows a sinusoidal trajectory during walking. The gravity force
vector mg is located at the CoM, pointing vertically downward. The pressure of the feet is
represented by a single ground reaction force vector (—mg), which is equal and opposite to body
weight, located at the centre of pressure (CoP). The CoP varies as a result of muscle action, which
can occur in the sagittal plane through ankle plantar and dorsiflexion (‘ankle strategy’) and in the
frontal plane through the hip abductors (Winter, 1995). The CoP also defines the area of the base
of support (BoS), which is approximately equal to the area under (U,,in — Umax), and between
the feet during two-feet standing. To maintain balance, the vertical projection of the CoM should
be within the BoS (Hof et al., 2005; Winter, 1995). Both the CoP and CoM are considered to have
certain sway angles which define their limits of stability within the bounds of the BoS. If these

bounds are exceeded impairments in balance and stability control may arise (Nashner, 1997).

22



Chapter 2: Review of Literature

mg

-mg

Win x u Uy
CoM CoP
BoS

Figure 2.9 Schematic diagram of the inverted pendulum model. The vertical projection of the
CoM is denoted x and the position of the COP u. Abbreviations are centre of mass (CoM), centre
of pressure (CoP), base of support (BoS), mass (m), gravity (g), leg length (1). Figure adopted
from Hof et al. (2005).

2.5.2 Extrapolated Centre of Mass and Margin of Stability as Measures of
Dynamic Stability

In the literature, the classic inverted pendulum model was challenged (Pai & Patton, 1997) since
in the event where the CoM is above the BoS and the CoM velocity is pointed outward, balance
may be impossible and in the event where the CoM is outside the BoS and velocity is directed
towards the BoS, balance could be achieved, thus the model would not hold true in dynamic
situations. Hof (2008) introduced the extrapolated centre of mass (XCoM) as a simple measure
of stability during walking, extending the conditions for a classical equilibrium, taking into
consideration the CoM’s velocity and position. The XCoM is defined as:

ux
E=x+ o (2.1)

Where x = CoM, u = CoP and w,= eigenfrequency of the inverted pendulum
wy= |— (2.2)
Where [ = length and g = gravity
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The horizontal distance between the vertical CoM projection and the CoP create a destabilising
moment, which needs to be controlled by a timely displacement of the CoP. The XCoM trajectory
is a straight line from the CoP to the XCoM at the time of foot contact (Hof, 2008). The CoM
follows the trajectory of the XCoM in a sinusoidal manner. For stable walking, during initial
contact, the CoP should be a specific distance behind and outward of the XCoM. Disturbance in
CoM velocity can be compensated by a change in foot position in the same direction (‘stepping
strategy’) (Hof, 2008).

The XCoM is used to quantify both the spatial (b) and temporal (b;) margin of stabilities (MoSs)
(Bruijn et al., 2013). The spatial MoS describes the distance between the XCoM and the border
of the BoS. This can be in the medio-lateral direction or in the anterior-posterior direction. The
temporal MoS, indicates the time in which the stability boundary of the BoS would be reached
without intervention (Bruijn et al., 2013). The MoS is used to quantify dynamic balance and
describes the movement of the body relative to the BoS (Hak et al., 2015) where a small MoS
indicates a greater risk of losing dynamic balance control (Horak et al., 2005). It is calculated
using the difference between the XCoM and the limits of the BoS (Hak et al., 2013a).

The MoS can be calculated in the medio-lateral (ML) direction (Equation 2.4; Figure 2.10 a) (Hof,
2007; MacAndrew-Young et al., 2012), where a negative ML MoS indicates that the XCoM is
located outside the lateral border of the BoS, which will lead to a deviation from a straight walking
trajectory (Hak et al., 2015). It can also be calculated in the backward (BW) direction (Equation
2.5; Figure 2.10 c) (Espy et al., 2010; MacAndrew-Young et al., 2012; Pai & Patton, 1997), where
a negative BW MoS indicates that the XCoM is located posterior to the border of the BoS of the
leading foot which will lead to an interruption of forward progression (Hak et al., 2015).

XCoM = (pCoM + vCoM) X w, (2.3)
ML MoS = XCoM,,,, — Heel Position (2.4)
BW MoS = XCoM,,p — Heel Position (2.5)

Where XCoM = extrapolated centre of mass, pCoM = position of the CoM, vCoM = velocity of
the CoM, w,= eigenfrequency of the inverted pendulum, ML MoS = medio-lateral margin of

stability, XCoM),,,= extrapolated centre of mass in the medio-lateral direction, BW MoS =
backward margin of stability, XCoM,,p= extrapolated centre of mass in the anterior-posterior

direction.
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In the Figure 2.10 (b, d), the ML MoS (a) is defined as the minimum distance in medio-lateral
direction between the XCoM (dotted line) and the lateral border of the foot during heel-strike
(solid line). The BW MosS (b) is defined as the distance in anterior-posterior direction between
the XCoM (dotted line) and the posterior border of the leading foot during heel-strike (solid line).
The XCoM s calculated as the position of the COM (pCoM) (dashed line on the graph Figure
2.10) plus its velocity (vCoM) multiplied by the square root of the leg length (I) over acceleration
due to gravity (g), as defined below:
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Figure 2.10 ML (a, b) and BW MoS (c, d). The graphs illustrate the MoS over a period of two
steps. The trajectories of BoS (solid line), CoM (dashed line) and XCoM (dotted line). The XCoM
is calculated as the position of CoM plus its velocity multiplied by w,, where w, is defined as the
square root of the leg length (I) over acceleration due to gravity (g). The MoS is calculated as the
difference between the trajectory of the XCoM and the BoS, when MoS is at its minimum value.
Figure adopted from Hak et al. (2013a).
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2.5.3 Measuring the Margin of Stability in Lower-Limb Amputee Gait

During walking, most of the trunk is supported by one leg at a time, and the CoM is never over
the BoS, presenting an unstable system, which can be stabilised through active control (Hof et al.,
2007). During walking, the CoM needs to pass the front of the stance foot during the single
support phase. If this process is interrupted, dynamic balance control can be compromised, which
may lead to falls if recovery fails. During walking, humans place their feet a particular distance
behind, and outward of the XCoM, in doing so, the movement of the XCoM and CoM are
redirected, achieving stable gait (Curtze et al., 2011).

In general, individuals with LLA walk more slowly relative to able-bodied individuals (Hak et
al., 2013c). Comparatively, they also have different step parameters such as a lower step
frequency and larger step width, but similar step length (Hak et al., 2013c). The greater step width
is a control for compromised balance since it keeps the CoM within safe margins from the BoS,
since it increases the MoS in the ML direction (Curtze et al., 2011; Hof et al., 2007). Although
LLA gait differs from able-bodied gait, research studies found that compensatory mechanisms to
maintain dynamic balance control in response to perturbations are similar between both groups
(Bolger et al., 2014). In response to a decrease in dynamic balance, individuals with LLA and
able-bodied individuals adapt to increase ML and BW MoS and thus control dynamic balance
(Hak et al., 2013a; b; Hak et al., 2015). Individuals with LLA and able-bodied individuals were
found to increase step frequency and step width, decrease step length and maintain constant speed
in order to increase BW and ML MoS, in response to continuous perturbations through a moving
walking surface (Hak et al., 2013c; Hak et al., 2012). In response to adaptability tasks, where
participants were asked to hit targets placed in a virtual environment, individuals with LLA and
able-bodied individuals decrease step length and increase step width but maintain step frequency
and speed (Hak et al., 2013c).

In response to multi-directional surface translation, Bolger et al. (2014) found that individuals
with UTTA adopted different kinetic parameters relative to able-bodied individuals allowing
them to achieve dynamic balance control similar to able-bodied individuals in most directions.
During lateral perturbation, similar CoM but greater CoP displacement was found in individuals
with LLA. This led to a greater MoS in the least stable direction. Furthermore, inter-limb
differences in CoP and GRF suggested that individuals with LLA rely more on the intact limb.
The limited directional force was found in the prosthetic limb relative to the intact limb, however,
it was not obvious whether these are compensatory mechanisms or limitations of the prosthetic
design. Some individuals with LLA exhibit exaggerated CoP, which could be a response to

repeated falls or due to the limited sensorimotor information perceived, thus, exaggerating the
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control response (Bolger et al., 2014). However, control responses that are larger than necessary,
which lie within the limits, can in the occurrence of large and continuous perturbation lead to loss
of stability since further adaptation will not be possible (Bolger et al., 2014). Yet exaggeration of
a single and safe compensatory mechanism may eliminate the need to alter responses according

to perturbations and so simplify the control mechanism (Bolger et al., 2014).

When confronted with compromise in dynamic stability, it was found that forward centre of mass
velocity (vCoM) and/or the forward foot placement (FFP) were increased thus increasing BW
MoS (Figure 2.11) (Hof et al., 2005; Hof, 2008). An increased BW MoS indicates that the CoM
can easily pass the border of the BoS defined by the new stance leg, during the consecutive single
support phase and thus decreases the risk of balance loss in the BW direction (Hak et al., 2014).
Individuals suffering from multiple morbidities such as PAD may have compromised
sensorimotor function, which may prevent them from using their prosthesis adequately and thus
being able to adjust FFP to control BW stability (Bolger et al., 2014).

The investigation of prosthetic and intact limbs separately revealed that the step length asymmetry
between the two limbs was due to asymmetry in FFP. The BW MoS was found to be larger on
the intact limb compared to the prosthetic limb at initial contact but this difference was not present
at the end of the double support phase. The average vCoM did not differ between steps, but the
vCoM decreased during double support phase following the intact limb (Hak et al., 2014). Shorter
intact step length in individuals with LLA contribute to larger BW MoS at initial contact of the
intact limb. The shorter step length seems to be a compensatory mechanism for the reduced BW
MoS during the double support phase following the intact step. This is because the reduced ankle-
push off capacity of the prosthetic limb decreases the vCoM, which limits the BW MoS during
double support phase in the intact limb. Thus, the shorter step length on the intact limb is needed

to decrease the risk of interruption of forward progression.
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Figure 2.11 lllustration of dynamic stability, forward velocity of the COM and/or FFP in relation
to the BW MoS. Figure adopted from Hak et al. (2014).

Investigating the recovery response after an evoked forward fall, Curtze et al. (2010) found that
all individuals with LLA and able-bodied individuals were able to recover balance within a single
step after being released from a forward-inclined orientation of 10%. Despite asymmetry in their
gait, individuals with LLA were able to use either of their limbs during the recovery process. The
CoP was posterior to the CoM prior to release from forward-incline orientation. After release
CoM gained velocity moving apart from the XCoM, and moving the XCoM within the BoS to
break the forward fall. Curtze et al. (2010) note that the CoP and XCoM need to coincide for a
successful recovery. It is not sufficient for the CoM only to coincide with CoP since the CoM
would move away due to its velocity. During the recovery process, the knee flexion on the
prosthetic limb was found to be reduced at heel-strike. This has been associated with the larger
step length of the prosthetic limb as the CoP cannot be actively shifted under the prosthetic foot,
because of reduced active ankle control. When leading with the prosthetic limb, the heel strike
interval was shorter allowing increased stability. During everyday activity, individuals with LLA
encounter challenges of uneven terrain and obstacles, thus, to remain supported and stable these
individuals adjust the way they walk. Both individuals with UTTA and UTFA lack active ankle
control which is important for modifying CoP during heel-strike (Curtze et al., 2011). During the
investigation of individuals with UTTA walking on varying surfaces, no difference was found in
step parameters (stride time, stance time, double-support time and step frequency), and FFP with
respect to the XCoM was found to remain unchanged in lateral stability (Curtze et al., 2011).
However, individuals with UTFA had larger MoS on the prosthetic limb (Hof et al., 2007).
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Figure 2.12 Forward position of the CoM, XCoM and CoP as a function of time after release
from 10% forward-incline orientation during the investigation by Curtze et al. (2010). Recovery
occurred within one step following (1) release at t,, (2) toe-off leading limb, (3) heel-strike
leading limb, (4) toe-off trailing limb, and heel-strike trailing limb. Figure adopted from Curtze
et al. (2010).
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2.5.4 Other Measures of Balance and Stability in Gait

2.5.4.1 Biomechanical Measurements of Stability - Stabilizing and Destabilizing

Forces and Foot Placement Estimator

Duclos et al. (2009) introduced the concept of stabilising and destabilising forces. Stabilising
forces quantify forces required to stop the CoP motion in the direction of the border of BoS and
the destabilising forces are the forces needed to bring the CoP outside the BoS ignoring this
velocity. Quantifying the ratio of these two forces indicates the risk of falling, where a lower ratio

illustrates a greater risk.

The foot placement estimator (FPE) measures the foot position needed for stable gait (Millard et
al., 2009; 2012; Wight et al., 2008). It is based on the assumption that the angular momentum
remains intact when transitioning from one limb to the other. It estimates where the foot should
be placed during the transition for the energy of the system to be equal to its peak potential energy.
A pendulum gait, involving perfect interchange between potential and kinetic energy, would
imply that peak potential energy is at standstill. During gait, this occurs at its apex, at mid-stance.

2.5.4.2 Examples of measures of stability derived from dynamical systems theory -
Maximum Lyapunov exponent, maximum Floquet multiplier and long-range

correlations

The maximum Lyapunov exponent is commonly calculated using kinematic trunk data (Kang and
Dingwell, 2009) since the trunk plays a critical role in stability during upright walking (Grabiner
et al., 2008; MacKinnon & Winter, 1993). Studies that investigated knee osteoarthritis and
anterior cruciate ligament ruptures used kinematic knee joint data (Arellano et al., 2009; Fallah
Yakhdani et al., 2010; Gates and Dingwell, 2009; Moraiti et al., 2007; Moraiti et al., 2010; Segal
et al., 2010; Stergiou et al., 2004), since the main mode of instability arose from buckling or
giving way of the knee (Yakhdani et al., 2010). The maximum Lyapunov exponent is calculated,
identifying the nearest neighbour in a state-space for each data point (Rosenstein et al., 1993) or
identifying the nearest neighbour for data points along a single reference trajectory (Wolf et al.,
1985). Two components are reported in the literature, A, and A, referred to as divergence
exponents, where A, represent the time as neighbouring points reach maximum separation and
the distance cannot become larger, and A is the estimated maximum Lyapunov exponent.
Literature suggest that the divergence measure of A, but not A, may be a valid measure to
estimate the probability of falling. Measuring walking over unstable surfaces, Chang et al. (2010)
found increased values of A, but not of A,. Similarly, Sloot et al. (2011) and van Schooten et al.

(2011) reported increased values of A, but not of 4;, when participants were destabilised using
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galvanic vestibular stimulation. Furthermore, destabilising gait using surface perturbations or
visual perturbations, A, changed but not A; (Arellano et al., 2009). These findings have been
confirmed by Hak et al. (2012), which indicated that the amplitude of perturbation led to an
increase of Ag, i.e. indicating that there is a proportional relationship between the dose of

perturbation and the response.

Orbital stability has been quantified using maximum Floquet multipliers, which quantifies the
rate of convergence/divergence of a periodic system, in other words, the response of perturbations
of a system from one gait cycle to the next (Kang & Dingwell, 2009). Research has highlighted a
couple of concerns when using the maximum Lyapunov exponent and maximum Floguet
multiplier as local and orbital dynamic stability measures: (1) the length of data required and (2)
sensitivity of the measure. Rosenstein et al. (1993) suggest that the use of Lyapunov exponents
are not sensitive to the length of data whilst Kang and Dingwell (2006) report that 5 minutes of
continuous data was not sufficient enough. Bruijn et al. (2008) suggest that long data series
beyond 150 strides, covering an equal number of strides for every condition, for each participant
should be analysed, for an accurate estimation of balance using these measures. Local and orbital
dynamic stability were influenced by speed and is therefore very sensitive to any changes in speed
(England & Granata, 2007).

Research has found that gait variations are not random but instead future variations depend on
past variations. These dependencies appear as long-range correlations thus they define another
measure of stability. Long-range correlation can be calculated from a number of different
biomechanical variables such as step length, step time, impulse, duration of contact and peak
active force (Damouras et al., 2010; Jordan et al., 2007a; b). The calculations require a
recommended 600 strides as a minimum (Damouras et al., 2010). A system with a scaling
exponent () further away from 0.5 is considered more stable. Hausdorff et al. (1995) reported
that long-range correlations are resistant to internal and external perturbations and more tolerant

to error, thus they could be used as an indicator of adaptability during gait.
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2.6 Characteristics of Gait Data

Gait analysis attempts to describe the characteristics of locomotion (Kirtley, 2006; Levine et al.,
2012). In clinical settings, it is often used to assess the effects of conditions on gait and to
understand how treatments and/or interventions influence gait (Kirtley, 2006; Levine et al., 2012)
such as cerebral palsy (Novacheck et al., 2010), Parkinson’s disease (Roiz et al., 2010; Sofuwa
etal., 2005) and LLA (Barnett et al., 2009). Gait analysis has led to improved diagnostic methods,
enhanced treatment recommendations, and more effective evaluation of treatment outcomes of

pathological gait (Hamill et al., 2012).

During gait analysis various quantification methods are used to describe human locomotion which
can be described in a three-stage system:

(1) Data acquisition tools such as motion capture systems, force platforms and electromyography
are used to investigate the biomechanical and muscle activation characteristics of gait

(Winter, 2009). The raw kinematic and kinetic data are often reported.

(2) Mathematical methods such as inverse dynamics are applied turning data into variables that
describe biomechanical characteristics of gait, which allow further aspects of gait to be
assessed such as joint angles, moments and powers (Robertson et al., 2013; Winter, 2009).
These are often presented in the form of temporal waveforms or time-series throughout the

gait cycle with respect to time (Deluzio et al., 1997; Robertson et al., 2013).

(3) Application of summary techniques to simplify temporal waveforms turning them into
clinically useful information such as summary scores and gait indices (Baker et al., 2009;
Schutte et al., 2000; Schwartz & Rozumalski, 2008).

Temporal waveforms are governed by the following characteristics which need to be considered

during data processing (Chau 2001a; b):

(1) Highdimensionality: Data acquisition tools and further mathematical measures produce large
data sets. The gait data is inter-dependent, and so it is governed by high dimensionality.
Traditional statistical approaches become intractable beyond five variables, and one’s visual
interpretation is limited to three-dimensions. Furthermore, traditional reduction methods

assume a linear relationship (Chau, 2001a).

(2) Time dependence: Data collected during self-selected speed have quasi-periodic temporal

dependence which means a gait cycle has a periodic recurrence at irregular intervals. The
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resulting time series are difficult to model since the traditional assumption of stationarity is

not applicable.

(3) High variability: Gait data displays high intra-subject and inter-subject variabilities and also
marker alignment and instrumentation cause further variability. Quantifying variability,
recent studies established that some variables are repeatable whilst others substantially vary.
It is difficult to control variability and so statistical conclusions during gait analysis must be
interpreted with caution (Chau, 2001a).

(4) Correlation: Gait data results in temporal waveforms. During the assessment of a treatment,
for example, it is common to compare temporal gait waveforms before and after the treatment
to establish similarities and differences. Correlations and distances established between two
points of a waveform cannot be extended to the entire curve, so mathematical derivations

need to be undertaken to assess differences of entire waveforms (Chau, 2001a).

(5) Non-linear relationship: Intrinsic non-linear human movement results in the non-linear
interaction of gait variables, i.e. a direct cause and effect relationship is difficult to establish

analytically and exposed to subjective interpretation.

As data acquisition tools used to collect gait data and the subsequent procedures for calculating
novel variables advance, they provide an ever-increasing volume of data (Deluzio et al., 1997;
Robertson et al., 2013). This presents a limitation to clinicians and researchers when trying to
interpret this data and when forming clinically useful information (Deluzio et al., 1999). A widely
used approach to analyse and interpret movement data is through the description of graphical
profiles of temporal waveforms, using summary statistics (mean, variance, correlations) and
waveform parameterisation (peak amplitude) (Alagtash et al., 2011a; Deluzio et al., 1999). An
example of parameterisation of gait data is shown in (Figure 2.13) which illustrates the knee angle
of barefoot and shod running throughout a gait cycle, corresponding to solid and dashed
waveforms, respectively. A typical discrete parameter (scalar values) would be peak knee angle
as indicated by the red arrow. These values extracted from each condition are then typically

compared using statistical analysis.
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Figure 2.13 Example of knee angle parameterisation in the sagittal plane (a) and coronal plane

(b).

Although these methods are typical for the analysis of gait data, there are a few disadvantages.
The interpretation of graphical profiles is researcher dependent which means results will depend
on the researcher’s experience and will differ among various patients and between laboratories.
Similarly, the choice of data collected during gait analysis is dependent upon equipment
availability, and importantly, the choices of the researcher. This presents an issue in a clinical
environment as the choice of parameters assessed in a patient may not necessarily be the cause of
a problem, and thus results may show no significant difference, and the problem will remain
undetected and untreated. Thus, both data collection and data analysis are subjective and highly

affected by researcher bias.

Summary statistics and parameterisation of temporal gait waveforms often provide limited
additional insight into the data beyond bivariate plots, and some gait characteristics seem to be
ignored. For example, when selecting a discrete parameter, important temporal information is lost
(Deluzio and Astephen, 2007) which means the relationship to time is neglected even though
specific parameters may occur at a different instance in time when measurements are repeated as
a result of intra-subject variation. Also, certain parameters cannot easily be identified in
pathological gait (Daffertshofer et al., 2004; Deluzio et al., 1997) since parameters may be
distorted as a result of the pathology and thus are not displayed in the same manner as
measurements would be in able-bodied gait. Moreover, a linear relationship is assumed between
variables, which is not the case because movement data is highly dimensional (Chau, 2001a;
Daffertshofer et al., 2004) thus the change of one variable can affect multiple other variables, and
these effects are not necessarily proportional to the changes. Furthermore, the correlation existing
between different gait variables is disregarded (Schutte et al., 2000). Therefore, there is a need
for efficient and robust data reduction techniques as well as methods that allow useful information

to be extracted from highly correlated and time-dependent variables.
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In an attempt to consider gait characteristics and interpret large amounts of complex gait data,
researchers have implemented indices with the aim that a single measure could be used to
represent the ‘quality’ of a specific gait pattern (Baker et al., 2009; Schutte et al., 2000; Schwartz
& Rozumalski, 2008). The Gillette Gait Index (GGI) also referred to as the Normalcy Index (NI)
is a widespread clinically accepted index, which is used to quantify the deviation of a patient’s
gait pattern from that of an able-bodied group (Schutte et al., 2000). It is calculated by applying
PCA to 16 biomechanical variables measured during gait analysis, where the sum of squared of
these variables indicates the patient’s gait deviation. The GGI has been widely used, particularly
in the assessment of CP and idiopathic toe walkers (Schutte et al., 2000; Trost et al., 2008). It has
proven effective in the diagnosis of pathologies and tracking an intervention between patients
with the same pathology. A disadvantage of GGl is that the variables used during PCA are
comprised of 3 temporal-spatial and 13 kinematic measurements and do not include any kinetic
data. Thus, a new index was developed, which included 5 kinematic and kinetic variables, to
provide an accurate description of a hip function known as the hip flexor index (HFI) (Schwartz
et al., 2000). The HFI has proven to be a valid method to assess hip function, but it is not

necessarily considered part of the GGI category as it only focuses on one joint.

Gait Deviation Index (GDI) is another measure which was developed to quantify gait deviations
of pathological gait relative to able-bodied gait (Schwartz & Rozumalski, 2008). The GDI is based
on 15 gait features extracted using singular value decomposition from 9 angle variables of the
pelvis and hip in the three planes of motion, of the knee and ankle joints in the sagittal plane and
of foot progression. Applying this method to able-bodied individuals defines an average of non-
pathological gait. The absolute distance between pathological and non-pathological gait can be
quantified, indicating the extent to which the pathological gait differs. Both, the GDI and GGl
were found to correlate since they are both measures of the same underlying construct, however,

they measure different aspects (Schwartz et al., 2000).

Gait Profile Score (GPS) is a single index outcome, similar to the GDI, but it is considered a
simpler interpretation of the distance measure underlying the GDI. It provides an overall global
score of the gait quality and can be deconstructed providing a gait variable score (GVS) (Baker
et al., 2009). The GPS is represented by the 9 variables of the GVS to generate a movement
analysis profile (MAP). The MAP illustrates the variation of nine variables averaged over a gait
cycle, therefore indicating which variables contribute to a high GPS score. The GPS uses features
of all relevant kinematic variables from the root mean squared difference between a patient's data

and the able-bodied reference data, whilst the GDI uses the first 15 gait features.
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All the scores, with the exception of the HFI, consider temporal-spatial and kinematic data only,
although this provides a limited evaluation of pathological gait. To provide an improved overall
understanding of gait, the GDI-kinetic was introduced, considering joint Kkinetics rather than
kinematics. This index identifies 20 gait features using singular value decomposition, whose

linear combinations of the first 20 features reconstruct 91% of the data.

The indices and summary scores simplify the complexity of pathological gait data through the
use of discrete parameters. Introduced by Barton et al. (2012), the Movement Deviation Profile
(MDP) describes the deviation of a patient from normal data using a graph profile, which has
shown to detect gait deviation where missed by discrete parameters. Gait data is conveyed into
step-patterns using self-organising Artificial Neural Networks (ANN) or Self-Organising Map

(SOM) to visualise complex gait patterns in the form of single curves (Barton et al., 2006).

Over the years, many summary measures have been introduced, but unlike the ones previously
mentioned, their clinical application still remains limited. For example, data reduction techniques
were proposed where the combination of a score which would provide an evaluation of multiple
curves and ‘interpretable functions’ were combined as a method (Tingley et al., 2002). Aside
from these summary scores and indices, in recent years biomechanics research studies started to
implement alternative methods originating from computer science, psychology, cognitive science,
physics and engineering, to better handle “big data” (Phinyomark et al., 2017). These methods
include advanced multivariate statistical analyses such as Principal Component Analysis (PCA)
and machine learning techniques such as Discriminate Function Analysis (DFA), which can be

used to develop automatic gait recognition tools.

2.6.1 Development of Automatic Recognition Tools using Multivariate Statistical

Analyses and Machine Learning Algorithms

Automatic gait recognition tools can be developed using multivariate statistical analyses and
machine learning algorithms in order to discriminate and classify data. These tools are developed
using different stages of training, predictive and evaluation (Lever et al., 2016a; c). (1) During
the training stage a model is developed, i.e. the machine is supplied with information to learn. (2)
During the prediction stage, the model developed in (1) is used to identify classes. A threshold is
established to define the probability of an observation belonging to one class or the other, i.e. the
classification performance of different models form the machine are assessed and/or improved.
For example, as seen in Figure 2.14 the features of two classes/categories (solid and open black
circles) are separated into two classes using the predicted probability. In (a) the membership of

classes is perfectly separable when using a 0.5 threshold, in (b) however, the membership of
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features into classes is ambiguous as shown by the 0.5 thresholds. Thus, the threshold needs to be
tuned to control false positives (0.75) and false negatives (0.25) (Lever et al., 2016¢). (3) During
the evaluation stage data that was not used for the training or the classification is used to assess

how a classifier performs (Lever et al., 2016a).
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Figure 2.14 Threshold example of a classification of a data set. Figure adopted from Lever et al.
(2016c).

Prior to the development of a machine learning algorithm, data needs to be pre-processed, which
is done by reducing large volumes of data through dimensionality reduction, followed by feature
selection, which can be followed by a cross-validation method and finally the classification
procedure. Different methods can be implemented at any given stage of the development (Figure
2.15).

Feature Determination

|

Feature Normalisation

:

Feature Selection
PCA, kPCA, GA, Hill-climbing

!

Cross-Validation
CV,LOO, DOB-SCV

l

Classification
CA, SVM, NB, LR, KNN, DT, DA, ANN

l

Classification Evaluation
Accuracy, Sensitivity, Specificity, NLR, AUC

Figure 2.15 Schematic illustrating the steps in the development of an automatic recognition tool.
Abbreviations are Principal Component Analysis (PCA); Kernel based-PCA (kPCA); Genetic
Algorithm (GA); Cross-Validation (CV); Leave-one-out (LOO); Distribution optimally balanced
stratified CV (DOB-SCV); Clustering Analysis (CA); Support Vector Machine (SVM); Naive
Bayes (NB); Logistic regression (LR); K-Nearest Neighbours (KNN); Decision Tree (DT);
Discriminant Analysis (DA); Artificial Neural Networks (ANN); Negative likelihood ratio
(NLR); and area under the curve (AUC). Figure adapted from Figueiredo et al. (2018).
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2.6.1.1 Feature selection methods

When presented with large volumes of data, as is the case during gait analysis, a parsimonious
representation of the data is sought. During the development of automatic pattern recognition
tools, feature selection methods are used, which also improve classification outcomes (Alagtash
et al., 2011a; Lee et al., 2009; Muniz et al., 2010a). These methods can be divided into three
groups: filter methods, wrapper methods, and embedded methods (Saeys et al., 2007). Filter
methods process data without considering the classification algorithm that follows (Saeys et al.,
2007), wrapper methods use heuristic criterion to evaluate a subset of data according to the
classification method that follows (Lu et al., 2014; Saeys et al., 2007) and embedded methods
interact with the classification method. Different feature selection methods have been investigated
in gait analysis, such as Principal Component Analysis (PCA) and kernel based-PCA (kPCA)
which are filter methods, genetic algorithm (GA) which is a wrapper method, and hill-climbing
which is an embedded method (Lu et al., 2014; Martins et al., 2014).

(1) Principal Component Analysis (PCA) is the orthogonal transformation of variables, i.e.
dependent variables are transformed to become independent variables. It aims to establish the
optimal linear transformation representing the data in the least squared sense (Yang et al.,
2012). Data is presented in a new coordinate system, capturing the maximum variance within
the data set (Badesa et al., 2014; Dillmann et al., 2014; Wu et al., 2007; Yang et al., 2012).
The different axes of the coordinate system are referred to as principal components (PCs),
where the first few of PCs hold the most variance of the original data set. To reduce large data
volumes, the dimensionality of the data is reduced by preserving the first two PCs and
removing the remaining PCs (Lee et al., 2009; Yang et al., 2012). Principal Component
Analysis was first applied to gait data in order to derive a method to represent signals instead
of using the signals themselves (Wootten et al., 1990), to reduce large volumes of data (Olney
et al., 1998) and to assess entire temporal waveforms of gait data retaining potentially

valuable information (Deluzio et al., 1997).

(2) Kernel based-PCA (kPCA\) is used to map non-linear data onto a higher dimensional feature
space using a kernel function such as linear, polynomial and radial basis function (RBF) (Wu
et al., 2007). Studies comparing different kernel functions established that a polynomial
kernel achieves better performance relative to linear and RBF kernels (Liang & Lee, 2013;
Wu et al., 2007).
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(3) Genetic algorithms (GA) are inspired by Charles Darwin’s theory of natural evolution and is
considered a time efficient optimisation technique (Ardestani et al., 2014; Martins et al.,
2014). The algorithm starts with a random set of individuals called a population, where each
individual of the population is characterised by a set of parameters known as genes. Each one
of these genes is jointed into a string creating a chromosome (solution). A fitness function
determines an individuals’ probability of reproduction and only candidates with the potential
to pass to the next generation as defined by the classification method are preserved, i.e.
optimising the cost function (Ardestani et al., 2014; Sarbaz et al., 2012).

(4) Hill-climbing algorithms iteratively search for features that positively contribute to the
classification procedure (Begg et al., 2005). Each feature is used for initial classification and
based on the performance of the classifier and the features are ranked from the highest to the
lowest contributor (Chan et al., 2013).

Studies demonstrated classification results improved following feature selection methods. Using
PCA, Eskofier et al. (2011) demonstrated that the classification outcome improved from 58% to
95.8%. Using kPCA, Wu et al. (2007) showed that the classification outcome improved from 85%
to 91% after the original dataset of 36 features was reduced to 17 features, creating a compact
data set of uncorrelated features which still represented the original data set without compromise.
However, other studies showed that the classification outcome did not necessarily improve
following feature selection (Badesa et al., 2014; Lai et al., 2008). Nevertheless, the reduced data

set minimised performance time, and thus also computational cost (Lai et al., 2008).

Principal Component Analysis is the most common data reduction method applied in gait analysis
(Badesa et al., 2014; Deluzio & Astephen, 2007; Eskofier et al., 2011; Figueiredo et al., 2018;
Lee et al., 2009). However, Wu et al. (2007) demonstrated that KPCA extracts PCs that are more
relevant to non-linear gait data in the presence of noise, relative to PCA, but it is mathematically
more complicated. An issue with both PCA and kPCA is the number of PC scores retained during
the analysis since the selection of PCs is fundamental to achieve the best possible classification
outcome (Badesa et al., 2014; Deluzio & Astephen, 2007; Eskofier et al., 2011). Too many PC
scores would result in overfitting of the data, and too little would result in underfitting of the data.
Hill-climbing and GA aim to find a local optimum and a global minimum, respectively (Ardestani
et al., 2014; Martins et al., 2014; Su & Wu, 2000). Genetic algorithms quantitatively and
qualitatively identify the most relevant features, but the selection processes depend on other
factors associated with high computational cost (Pratihar et al., 2002). Compared to other

methods, PCA and kPCA are less complex.
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2.6.1.2 Classification methods

Machine learning algorithms have the ability to identify patterns automatically, and model
complex, non-linear and high dimensional data (Alagtash et al., 2011b; Lai et al., 2008; Zheng et
al., 2009). In gait analysis, different machine learning algorithms have been used such as
Discriminant analyses (DA) which are either in the form of Linear Discriminant Analysis (LDA)
or Quadratic Discriminant Analysis (QDA), Artificial Neural Networks (ANNSs), Support VVector
Machine (SVM), Naive Bayes (NB), Logistic regression (LR), Clustering analysis (CA), Fuzzy
logic clustering or K-Nearest Neighbours (KNN).

(1) Discriminant Analysis (DA) is a supervised machine learning algorithm that finds a linear or
guadratic combination of input features in order to separate data into two or more classes.
Discriminant analysis is thus referred to as Linear Discriminant Analysis (LDA) which is also
known as Discriminant Function Analysis (DFA) or Quadratic Discriminant Analysis (QDA).
Each feature has its own weighting factor which indicates its importance to the discrimination
procedure between the classes. The intra-class and inter-class distances between the features
are determined to define which class a feature belongs to (Badesa et al., 2014; Harper, 2005;
Lee et al., 2009).

(2) Artificial Neural Networks (ANNSs) are machine learning algorithms based on the biological
neural system (Ardestani et al., 2014). They are made up of multilayer feed-forward neural
networks, which are composed of layers of interconnected sets of nodes which loosely model
the neurons in a biological brain. Connections between units move forward through hidden

layers of nodes to form the input to the output layer (Alagtash et al., 2011a; Chau, 2001b).

(3) Support Vector Machine (SVM) is a supervised machine learning algorithm using a kernel
method to classify non-linear gait data and map it to a higher dimensional feature space (Begg
& Kamruzzaman, 2005; Begg et al., 2005). Classification is performed by finding the optimal

hyperplanes that separate between classes.

(4) Naive Bayes (NB) based on Bayes’ theorem, assumes that all features are independent of each
other (Badesa et al., 2014; Chan et al., 2013). It creates a probabilistic model defining the

class that an input belongs to.

(5) Logistic regression (LR) transforms data into logic variables (binary variables) to maximise

classification outcomes (Harper, 2005; Muniz et al., 2010b).
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(6) Clustering Analysis (CA) uses homogeneous groups or “clusters” to classify data. Two
methods of hierarchical and non-hierarchical clustering are used to minimise variability

within a class and maximise variables between classes (Kaczmarczyk et al., 2009).

(7) Fuzzy Logic Clustering offers an insight into the non-linear relationship between variables
(Chau, 2001a). It does not consider sharp boundaries so input data can simultaneously
contribute to multiple classes (Alagtash et al., 2011b; Chau, 2001a).

(8) K-Nearest Neighbours (KNN) is a non-hierarchical clustering method. It defines the
characteristics of the input data depending on similarity to their neighbours (Alagtash et al.,
2011a; Badesa et al., 2014).

All machine learning algorithms have benefits and limitations, hence an algorithm is chosen
depending on the application. Artificial Neural Networks handle non-linear data and can learn
and adapt to new data, but large volumes of variables are required for an accurate generalisation
of the algorithm. It can suffer from overfitting which compromises its generalisation (Begg &
Kamruzzaman, 2005; Begg et al., 2005; Chau, 2001b; Lai et al., 2008). Support Vector Machine,
however, considers a global optimum and overfitting of the training process can be avoided (Saeys
et al., 2007; Wu et al., 2007). It can be applied to small data, and new data can be added to the
classification procedure without compromising the outcome (Begg & Kamruzzaman, 2005; Begg
et al., 2005; Khandoker et al., 2007). Other classification methods, such as CA, are sensitive to
correlated variables. This means that prior to its application, correlated variables need to be
identified and removed (Kinsella & Moran, 2008). Furthermore, a priori rules and clusters need
to be defined by the user, which may introduce bias (Chau, 2001a; Dobson et al., 2007).
Nevertheless, CA based on fuzzy logic clustering offers insights into non-linear relationships

between variables.

Different machine learning algorithms will result in different classification outcomes due to the
unique approach of each algorithm. No algorithm suits all applications (Harper, 2005) especially
considering the complexity of gait data. Studies have therefore investigated different approaches
to evaluate which suits their data. Comparing DA, tree-based algorithms, ANN, and LR
classification methods, Harper (2005) demonstrated that no ideal approach exits, instead the
performance of the classification depends on the features. Other studies suggest that the
combination of different classification methods can improve the classification outcome (Pogorelc
et al., 2012). Classification performance depends on multiple factors such as the relevance of
features, type of feature, size of the dataset, and/or number of participants (Badesa et al., 2014;

Begg & Kamruzzaman, 2005).
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2.6.1.3 Classification evaluation

The performance of machine learning algorithms can be evaluated using different methods. The
evaluation should be performed on a test set which has not been used for the training and whose
classification is not known. One method involves using the confusion matrix to define accuracy,
sensitivity and specificity (Lever et al., 2016a). In a two-class problem, there are four possible
outcomes of classification: true positive (TP), false negative (FN), true negative (TN), and false
positive (FP), where accuracy (Equation 2.6) evaluates the classifier defined as the percentage of
true predictions using a model of these four categories. However, high accuracy does not
necessarily imply a good classifier. Thus, sensitivity (Equation 2.7) and specificity (Equation 2.8)
measure the proportion of actual positives and negatives of the classifier, respectively. True
positives and false positives can be captured by precision, also known as a positive predictive

value, which is the proportion of predicted positives (Lever et al., 2016a).

TN+TP

04 — 0 2.6
Accuracy (%) TP+TN+FP+FNX100/O (2.6)
Sensitivity (%) = L X 100% 2.7
YU = T Y FEN 0 '
Specificity (%) = N X 100% (2.8)
pecificity (%) = TN T FP 0 :

There are several methods to aggregate the confusion matrix. The most popular is Fg score, which

controls the balance of recall and precision using 8, which can be calculated as follows:

_ (1 + B*)(Precision x Recall)

= 2.9
B B? X Precision + Recall (29)

Where F = Fp score, § = shape parameter

As B decreases, precision is given greater weight. Commonly, the F;score is calculated with 8 =
1, balancing recall and precision with the equation reduced to 2TP/(2TP + FP + FN). The Fp
does not capture the whole confusion matrix since it does not give an indication of TNs. One
method to capture all data in a coefficient matrix is Matthew Correlation Coefficient (MCC),

)

which ranges from -1 to 1, where ‘-1’ indicates classification is always wrong, ‘0’ indicates

classification is no better than random and ‘+1” indicates classification is always correct.
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It should be noted that no single matrix can distinguish all strengths and weakness of a classifier.
Instead of evaluating a classifier using a positive or negative, a level of certainty can be used,
which can be visually interpreted using a receiver operating characteristic (ROC) curve. It is also
possible to determine the ratio between false and true negatives using the negative likelihood ratio
(NLR) and the area under the curve (AUC) (Begg et al., 2005; Chan et al., 2013).

2.6.1.4 Cross-validation

After a machine learning algorithm is developed, different approaches are implemented to
improve the classification performance. These include cross-validation and feature normalisation
methodologies. Cross-validation (CV) methods are used to evaluate the generalisability of the
classification outcome as new data is added. These methods can also minimise the likelihood of
overfitting (Figueiredo et al., 2018). The conventional CV method starts by dividing the data set
into training and testing (predictive) data sets, based on k-fold. During the process, the cross-
validation process is repeated k times until every trial is used as a testing sample at least once
whilst all other trials make up the training sample. Finally, the average k results are calculated,

determining the performance of the classifier (Alagtash et al., 2011a; b).

During the leave-one-out (LOO) cross-validation method data in each fold belongs to a particular
participant instead of randomly assigned trials (Alagtash et al., 2011a; Badesa et al., 2014).
Therefore, the LOO method uses k-fold depending on the number of trials. This method is
unsuitable if trials are unbalanced since that may introduce different data distributions (Lépez et
al., 2014). For an unbalanced number of distribution trials, optimally balanced stratified cross-
validation (DOB-SCV) should be used (L6pez et al., 2014).

Other methods to improve a classifier’s accuracy and robustness is by implementing
normalisation procedures. Time normalisation is an example of such method, during which each
feature is expressed as a function of a gait cycle instead of time (Alagtash et al., 2011b; Eskofier
etal., 2011; Zhang et al., 2014). Similarly, kinematic data can be standardised to a person’s body
weight instead of a gait cycle (Laroche et al., 2014). Using a z-score to standardise data (Begg
and Kamruzzaman, 2005; Hanson et al., 2009; Wu and Wang, 2008) ensures that all features have

a mean of zero and a variance of one (Yang et al., 2012; Zhang et al., 2014):

xX—u (2.10)
o

Where x = feature, u = mean and o = standard deviation
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2.6.2 Multivariate Statistical Analysis and Machine Learning Algorithms in Gait

Analysis Current Use and the Future

Automatic gait recognition tools are becoming increasingly popular in gait analysis. In a clinical
setting, they can provide a quantitative, non-invasive diagnostic method, patient-specific
treatment recommendations, and more effective evaluation of treatment outcomes (Alagtash et
al., 2011b; Lakany, 2008; Pogorelc et al., 2012). Current challenges in clinical settings are the
discrimination of able-bodied gait and pathological gait and the evaluation of the progression of
pathological gait (Figueiredo et al., 2018). Therefore, classification methods based on statistical
analysis, mathematical transformation and machine learning algorithms have been assessed in the
investigation of gait data (Alagtash et al., 2011b). Using statistical analysis, the persistent
challenges of an objective analysis have not been achieved and a normal distribution of data is
assumed (Chau, 2001b). Mathematical transforms were limited to applications of univariate
signals and guideline selection based on wavelets (Chau, 2001b). However, machine learning
algorithms used to develop automatic gait recognition tools were able to detect patterns and work
with complex non-linear relationships between variables (Alagtash et al., 2011b; Zheng et al.,
2009). They provide an objective method for the analysis of large datasets and thus eliminating
researcher bias (Alagtash, Sarkodie-Gyan, et al., 2011) whilst providing a quick and cost-effective
method of analysis (Alagtash et al., 2011b; Lakany, 2008; Simon, 2004). Furthermore, these
algorithms could handle high-dimensional data and new data could easily be incorporated to
improve the prediction performance (Alagtash et al., 2011a; Begg & Kamruzzaman, 2005 ; Zheng
et al., 2009). The ability to address nonlinear and high-dimensional data such as gait data and the
ability to properly process new data makes machine learning algorithms a suitable method for gait

analysis.

Research studies have implemented multivariate statistical analysis methods and machine
learning algorithms to investigate Parkinson’s disease, cerebral palsy, spinal cord injury,
osteoarthritis, running injuries and stroke. The application of these advanced statistical methods
was initiated due to the lack of quantitative methods in the assessment of motor symptoms in
Parkinsonian gait (Palmerini et al., 2011). In recent years, the use of machine learning algorithms
has had many applications for the assessment of pathological gait, for example investigating the
use of classifiers to detect cerebral palsy in infants (Rahmati et al., 2016) and children
(Kamruzzaman and Begg, 2006), determine the severity of the condition (Rozumalski and
Schwartz, 2009), characterise movement patterns of stroke patients (Kaczmarczyk et al., 2009)
and diagnose osteoarthritis (Astephen et al., 2008). Other applications included determining the

risk of developing a disease or predicting the outcome of an intervention (Wei et al., 2017).
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In gait analysis, many studies focused on predictive tasks such as classification (80.6%) and
regression (11.6%), while only a few investigated data mining such as clustering tasks (7.8%)
(Halilaj et al., 2018). These two machine learning approaches, predictive modelling and data
mining, serve different purposes compared to more traditional statistical approaches. Predictive
modelling is used to find a function/model to map input data such as kinetic or kinematic
waveforms to a given output such as severity of pathology so that it can be used to make future
predictions. An example of predictive modelling is powered prosthesis, which use myoelectrical
sensors embedded in the prosthesis’ socket to predict an individual’s intention for the upcoming
steps (e.g. Afzal et al., 2017). Predictive modelling was also used to develop diagnosis and
prognostic models, for example, of predicting falling (e.g. Wei et al., 2017) or activity during
outpatient treatment (e.g. Biswas et al., 2013). Data mining, on the other hand, is used to discover
new patterns in data. For example, using clustering analysis gait patterns of subpopulations within
types of pathological gait could be identified (e.g. Rozumalski and Schwartz, 2009).

Recent investigations in the development of automatic gait recognition tool were performed on
data extracted from wearable sensory systems such as footswitches and accelerometers (Taborri
et al., 2016). Advances in technology make these sensors smaller, lightweight and easier to take
on and off. These sensors also allow measuring variables in free-living conditions which can be
advantageous specifically in the advancement of robotic or powered therapies (e.g. Afzal et al.,
2017). Hegde et al., (2018), for example, used shoe-based wearable sensors to monitor activity
and gait of children with CP. Machine learning models were used to automatically classify
activities of daily living. The results showed that activities could be classified with a 95.3% and
96.2% accuracy for children with and without CP, respectively. A disadvantage of wearable
sensors, however, is that they only provide kinematic data. To overcome this issue Wouda et al.
(2018) used ANN to estimate kinematic and kinematic parameters of runners using wearable
sensors. Joint angles and vertical acceleration from the wearable sensors were used as input values
to estimate vertical GRF. The outcome showed that sagittal knee kinematics and vertical GRF

could be estimated using three inertial sensors with no significant difference to the reference data.

Although wearable sensors have their advantages, using non-ambulatory external sensors such as
motion capture-systems or force platforms can provide more detailed information. These systems
operate in a controlled environment (Sabatini et al., 2005), which occasionally is considered a
disadvantage since it can be challenging to acquire consecutive gait cycles for long-term
applications in a natural environment (Alahakone et al., 2010; Azhar et al., 2014). However, the
accuracy of these systems cannot be underestimated, as they provide comprehensive and reliable

biomechanical data such as temporal-spatial, kinematic and kinetic variables (Howell et al., 2012;
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Bamberg et al., 2008). Alagtash et al., (2011a), for example, have used the nearest neighbour
classifier and ANN to classify GRF data of able-bodied individuals, individuals with CP and
multiple sclerosis. The classification outcome yielded an accuracy of 95%, indicating that
automatic gait recognition tools can be useful for clinicians in the diagnosis and identification of
pathological gait. Ertelt et al., (2018) used Gaussian distribution to classify the GRF patterns of
athletes from different sports. The results showed that the overall prediction was 94,29% of sports
and athletes. Only three out of the ten sports under investigation could not be correctly classified
in all instances, whilst the other sports were 100% correctly allocation. These results can have
high implications in both medical and sports fields since they have the potential to be used for the
identification of gait patterns at different points during an intervention.

In previous studies, the feature space, which presents the number of variables, was generally
larger than number of observations, which present the number of participants (Alagtash et al.,
2011 a; b; Begg and Kamruzzaman, 2005; Eskofier et al., 2013) since most studies would have
fewer participants (median = 40 participants) compared to variable data points (Halilaj et al.,
2018). In general, the number of observations should be greater than the number of features when
using machine learning otherwise there might be a risk of overfitting. Barrett and Kline (1981)
recommend that the number of participants should be at least 50 for PCA. However, having said
this, during gait analysis of pathological groups, the characteristics of and the location of the
research site might impose constraints regarding the number of participants which can be obtained

for a study.

In gait analysis, descriptive statistical methods such as peak angles are extracted from temporal
waveforms. However, these methods require a priori selection of features, which depends on
researchers experience and knowledge. Consequently, a large part of the temporal waveform is
discarded which may hold important information. Dimensionality reduction technique could be
used for feature selection and feature extraction to overcome this issue and thus full gait cycles
could be implemented in the classification procedure. However, many investigations performed
the machine learning procedure using discrete parameters (Begg and Kamruzzaman, 2005) and
only a few have tried including entire gait waveforms (Phinyomark et al., 2015). Furthermore,
some studies limited their investigation to specific variables, i.e. only kinetic, kinematic or EMG
(Alagtash et al., 2011a; Ertelt et al., 2018), however, investigations have shown that machine

learning algorithms still perform well when using different variables.

Although, some models were build using various data of kinetic, kinematic and EMG, only a
limited number of studies addressed the scaling of these data (Rahmati et al., 2016, Roy et al.,

2013), which could adversely affect the classification outcome due to the different units and
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weightings of these variables. Some studies report that variables from different planes have the
potential to improve the classification results, thus providing a more comprehensive
understanding of pathological gait (Schéllhorn et al., 2002) but the majority of studies focused
on sagittal plane data only. However, the use of data from different planes should be approached
with caution since ambiguous and erroneous data such as soft tissue artefacts can negatively affect
the results (Phinyomark et al., 2018). Thus, more data does not necessarily mean a more accurate
classification outcome would be obtained.

Machine learning algorithms are currently being trialled for a number of applications in gait
analysis. Some recent studies investigated the use of machine learning in combination with
modern technology to enhance medical practice. Zhan et al., (2018), for example, used machine
learning and smartphones to quantify the severity of Parkinson’s disease in individuals.
Automatic gait recognition tools have proven to be effective in the analysis of pathological gait.
However, a drawback of the methods developed thus far is the lack of inclusion of patient history

(Bonnefoy-Mazure et al., 2013), which needs to be addressed.

2.6.3 Application of Multivariate Statistical Analyses and Machine Learning

Algorithms in Lower-Limb Amputee Gait

In LLA gait, machine learning algorithms have mainly been used to investigate powered
prosthetic devices (Afzal et al., 2017; Chen et al., 2013; Dutta et al., 2011; Hargrove et al., 2015;
Huang et al., 2011; Joshi & Hahn, 2016; Khan et al., 2018; Miller et al., 2013; Pew & Klute,
2017; Simon et al., 2016; Woodward et al., 2016; Young et al., 2013; Young et al., 2014; Zheng
et al., 2013; Zheng & Wang, 2017). Powered prosthetic devices are becoming increasingly
popular since sensors in the socket and residuum interface are used to detect changes from the
muscle fibres, and depending on the signal, automatic transition between gait modes occur. The
transitioning process, however, is not always smooth and thus research has used classification
methods in order to identify gait modes and transition periods between gait modes to improve
these devices. Gait modes have been classified using muscle synergy data from electromyography
sensors (Afzal et al., 2017; Miller et al., 2013) and captive sensing methods (Chen et al., 2013).
Khan et al. (2018) used brain signals to detect walking intention in order to remove artefacts from
physiological noises, investigating how the brain can start and stop a gait cycle on powered
prosthetic devices. Seeking the highest classification outcome, studies investigated the
combination of different methods (Afzal et al., 2017; Chen et al., 2013; Joshi & Hahn, 2016;
Khan et al., 2018; Miller et al., 2013; Pew & Klute, 2017). Furthermore, in an attempt to reduce
the time required to train and test a machine learning algorithm, Woodward et al. (2016)

investigated the use an independent data set to test a subjects data rather than a subject’s own
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dependent data showing that classifiers are capable of making fast decisions. Investigating
different prosthetic devices using machine learning algorithms, Lemoyne et al. (2015) acquired
100% classification outcome. Although the investigations of prosthetic devices are important, in
the first instance individuals who can benefit from these devices need to be identifiable. Thus,
classification methods should be implemented as diagnostic tools for the assessment and
understanding of LLA gait. In order to do this multivariate statistical analyses and machine
learning algorithms should be implemented to assess and understand differences between LLA
and able-bodied gait.

Lower-limb amputee function has been described using PCA (Detrembleur et al., 2005; Gao &
Zhang, 2013; Mouchnino et al., 2006). Quantifying symmetry, Gao and Zhang (2013) used PCA
to identify important variables during a sit-to-stand and stand-to-sit tasks in an individual with
UTFA. Measuring kinematics, kinetics and muscle activity, they were able to identify the most
important variables determining these tasks. Using PCA, Soares et al. (2016) described the
differences in GRF and CoP data between individuals with UTFAs and able-bodied individuals.
The first three principal components (PCs) were found to explain 74.5 - 93.9% of the variance in
the data. Results illustrated that the majority of differences found in the full temporal waveforms
were commonly observed in areas assessed during parameterisation of waveforms (e.g. peaks).
Soares et al. (2016) also describe the relevant sections in the temporal waveforms relative to the
first three PCs. In the vertical GRF, PC1 described the sections between 20-30% and 80-95% of
the stance phase, and PC2 and PC3 described the sections between 35%-75% and 7%-12% of the
stance phase, respectively. While a higher magnitude was found in the vertical GRF of the control
limbs relative to the prosthetic limb in PC1, PC2 and PC3 were found to be significantly different
between both prosthetic and intact limbs of the individuals with UTFAs and also the control limbs
able-bodied individuals.

Prosthetic rehabilitation is said to lack evidence-based practice (Ramstrand & Brodtkorb, 2008),
although using gait analysis for the assessment of individuals with LLA can help monitor
prosthetic rehabilitation and therapy effectiveness (Skinner & Effeney, 1985). There are no
objective measures to evaluate prosthetic rehabilitation, but instead, it depends on clinicians
experience (van der Linde et al., 2004; Schaffalitzky et al., 2011). For example, the evaluation of
prosthetic alignment is based on visual interpretation of the patient’s gait, which depends on the
prosthetists” experience and thus is highly subjective. In an attempt to address this, Zhang et al.,
(2018) used the machine learning algorithm SVM to detect misalignment in the prosthesis of
individuals with UTTA though GRF data. The misalignment could be accurately detected 96.7%
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within a subject and 88.9% between subjects, indicating that automatic gait recognition could be

used in a clinical setting to detect prosthetic misalignment.

At present, limited research has investigated the use of multivariate statistical analyses and
machine learning algorithms to understand LLA gait, although this can have many positive
applications. Prosthetic rehabilitation is said to lack evidence-based practice and incorporation of
research findings (Ramstrand & Brodtkorb, 2008). However, the implications of automatic gait
recognition tools in clinical gait analysis could facilitate a better understanding of factors affecting
gait and therefore aid better decision making processes early on during rehabilitation (Esquenazi,
2014), increasing the likelihood of prosthetic use after inpatient treatment. In turn, this can

improve the quality of life of individuals with LLA.
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3.1 Introduction

This chapter describes common methodological procedures used across all experimental studies
of this PhD. These include participant recruitment, ethical review, data acquisition, data
processing and analysis techniques. Each section details the rationale and justification for the
procedures. Any additional procedures, related to a particular study, are described in the methods
section of the individual study.

3.2 Participants

In this research, able-bodied individuals and individuals with UTTA volunteered. Able-bodied
individuals were involved in studies 1-3 presented in chapters 4-6 and were drawn from the
University and local communities. Individuals with UTTA were involved in studies 2-4 presented
in chapters 5-7 and were recruited from the Mobility Centre at Nottingham University Hospitals
NHS Trust. Prior to volunteering in the studies, participants were given details of the studies in
the participant information sheets (Appendices 5 and 6) and written informed consent
(Appendices 5 and 7) was obtained from each participant on arrival to the laboratory prior to
testing. Participants also completed a participant health screen form (Appendix 9) to ensure all
inclusion/exclusion criteria were met, and to ensure that participants were under no risk through
participation in the studies. Demographics of individuals with UTTA and details of their

prosthetic components were shown in Table 3.1.

3.2.1 Ethics Approval

Ethical approval for study 1 presented in chapter 4 was obtained from Nottingham Trent
University College of Science and Technology Ethical Review Committee (Humans). Ethical
approval, for studies 2-4 presented in chapters 5-7, was sought from the Nottingham Trent
University’s College of Science and Technology Ethical Review Committee (Humans), the NHS
Research Ethics Committee, the NHS Health Research Authority and the NHS Research and
Development (REC reference - 16/EM/0311).
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3.2.2 Inclusion/Exclusion Criteria
3.2.2.1 Experimental Study 1

Inclusion criteria for study 1 specified that participants had to be greater than 18 years of age, had
no lower limb pathologies and were free of injury during the time of the study.

3.2.2.2 Experimental Study 2 -4
Inclusion criteria for studies 2-4 specified that individuals with UTTA:

- Should have at least a year of experience using their prosthetic limb after inpatient treatment,

- Should be at least 18 years of age at the time of the study,

- Should be independent walkers, i.e. are able to walk without the use of any walking aids other
than their prosthetic limb,

- Should be able to walk for 3 minute periods at once to be able to meet the walking
requirements for the studies.

Exclusion criteria for studies 2-4 specified that individuals with UTTA:

- Should suffer from a medical condition that impaired balance or sensory loss including
significant musculoskeletal, neurologic or cardiopulmonary conditions,

- Should have a prescription for more than five medications at the time of the research. This is
because research has demonstrated that consumption of more than five medications affect
walking habits (Lord & Menz, 2002),

- Should experience pain when walking at a self-selected speed,

- Should experience discomfort wearing the prosthetic limb.
Inclusion criteria for studies 2 and 3 specified that able-bodied individuals:

- Should be at least 18 years of age at the time of the study,
- Should have no lower-limb pathologies,
- Should be free of injury during the time of the study.

Exclusion criteria for studies 2 and 3 specified that able-bodied individuals:

- Should suffer from a medical condition that impaired balance or sensory loss including
significant musculoskeletal, neurologic, or cardiopulmonary conditions,

- Should have a prescription for more than five medications at the time of the research,

- Should have experienced more than one fall in the 12-months prior to data collection. This is
because research has demonstrated that frequent falls affect an individual’s balance and
stability (Melzer et al., 2004)
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Table 3.1 Demographics including prosthetic components of participants with UTTA.

Participant ~ Sex  Height (m)  Mass (kg)  Age (Years) Cause of Amp Time since Amp (Years) Phantom Pain Socket Liner Suspension Foot
1 M 1.77 743 46 Trauma 13 Yes Iceross carbon fibre Iceross original Pin Venture 25Rt
2 M 1.67 93.3 49 Trauma 2 Yes Carbon fibre Endolite comfort liner Pin Avalon 24Rt
3 F 1.64 64.5 48 Osteosarcoma 19 Yes Iceross laminate Iceross sport Pin Avalon 24Lt
4 M 1.74 84.35 67 Failed Ankle Fusion 1 Yes Silver carbon fibre Iceross synergy wave Pin Echelon VT 27Rt
5 M 1.86 93 32 Neurofibromatosis 7 Yes Iceross laminate Iceross synergy wave Pin Senator 26Rt
6 M 1.67 88 55 Trauma 1 Yes Laminate socket Endolite comfort liner Sleeve Avalon 26Lt
7 M 1.79 95.5 70 Thrombosis 4 Yes Laminate socket SmartTemp cushion liner Sleeve Avalon 28Rt
8 M 1.77 98.3 52 Infection after Trauma 4 Yes Laminate socket Endolite silcare breathe liner Sleeve Echelon VT
9 M 1.9 87.1 28 Trauma 5 Yes PTB socket Gel cushion liner Sleeve Re-Flex Shock
10 M 177 89.5 53 Trauma 5 No Laminate socket Iceross comfort locking liner Pin Echelon VT
11 F 1.52 55.5 52 Osteoarthritis 1 Yes PTB laminate socket Pelite liner Sleeve Navigator 22Lt
Mean 1.74 83.9 50 5
SD 0.11 13.6 12 5
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3.3 Data Acquisition and Processing

3.3.1 Hardware and Equipment Set-Up

Kinematic data was measured using a three-dimensional (3D) Qualisys Motion Capture System
(Qualisys, Gothenburg, Sweden). The system was made up of eight Oqus 400, and one high-speed
Oqus 310 cameras, and the associated hardware, and the software, Qualisys Track Manager
version 2.2 (QTM v2.2) (Qualisys, Gothenburg, Sweden). Kinematic data was measured as a
participant moved through the performance volume with reflective markers attached to certain
body landmarks as individual cameras capture images of these reflective markers. Ground
reaction force (GRF) data were measured using an AMTI ORG6-7 strain gauge force platform
(508x464mm) (AMTI, MA, US). The GRF was measured as a participant walked over the force
platform and clear contact was made between the participant’s foot and the platform.
Measurements were made in three axes, namely vertical (Fz), anterior-posterior (Fy) and medio-
lateral (Fx).

The cameras of the Qualisys Motion Capture System were connected in a serial fashion (Figure
3.1). Camera 1 was connected to a desktop PC (Dell OptiPlex 990, Dell, Bracknell, UK) feeding
kinematic data into QTM (Qualisys, Gothenburg, Sweden). Camera 1 was also connected to the
sync input of a USB analogue to digital (A-D) converter (Qualisys USB-2533, Gothenburg,
Sweden). The AMT] force platform was connected to an AMTI connection box (AMTI, MSA-6)
via connection cables. The AMTI connection box was fed into the A-D converter (Qualisys USB-
2533, Gothenburg, Sweden) via coaxial cables and BNC connectors. The AMTI connection box
was also connected to the desktop PC. Thus, for synchronisation purposes, both GRF data from
the AMT] force platforms and kinematic data from the Qualisys cameras were fed into the USB
A-D board and to the desktop PC. Finally, the A-D converter was connected to the desktop PC
via a USB highspeed ribbon cable.
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Figure 3.1 lllustration of equipment set-up.

3.3.2 Kinematic Data Acquisition

To create three-dimensional (3D) coordinates from two-dimensional (2D) images of the cameras,
a linear relationship between the 2D image and 3D coordinates needs to be established (Payton
& Bartlett, 2007). This was carried out through calibration of the system, ensuring that 2D images
were accurately scaled to 3D coordinates. The calibration involved a series of control points on a
rigid structure with known coordinates (Robertson et al., 2013), which in this research was an L-
shaped calibration frame with reflective markers of known dimensions (300mm & 600mm)
(Figure 3.2). The frame was placed still in the performance volume so that it was seen by all
cameras, whilst a T-shaped wand with markers on each end (600mm) was moved through the
performance volume (Figure 3.2). The control points, i.e. the markers of the L-shaped calibration
frame and the T-shaped wand were measured during movement. These measurements were
utilised to scale digitised coordinates into real metric units through methods known as Functional
Linear Transformation (FLT) or Direct Linear Transformation (DLT) (Robertson et al., 2013).

Measurement accuracy depended on the accuracy of the calibration, which was determined by the
residual error of each camera. The residual error indicates the precision of locating a marker’s
position. In this research, the residual error for each camera had to be <2mm in order to be

accepted for data acquisition. Prior to calibration, individual cameras were checked to ensure that
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no unwanted objects were obstructing the view. The calibration created a global/laboratory
coordinate system (z — vertical, y — anterior/posterior and x —medial/lateral), where markers in the
corners of the L-shaped frame represent the laboratory origin or zero point of the laboratory
coordinate system. Markers placed on certain body landmarks of a participant created a local
coordinate system. The global coordinate system is fixed whilst the local coordinate system
moves dependent on participant’s movements. Segment movement can be defined using both

coordinate systems.

Figure 3.2 T-shaped wand (left) and L-shaped reference frame (right).

3.3.3 Biomechanical Modelling

Markers were placed on certain bony landmarks in accordance with a six-degrees of freedom
(6DoF) marker model shown in Figure 3.3 and Figure 3.4. In study 1 a 36-marker model (Figure
3.3) and in studies 2-4 a 70-marker model (Figure 3.4) were used to measure kinematic data.
Spherical reflective markers (14mm diameter) were attached on participants’ head, upper
extremities, trunk (Leardini et al., 1999) and lower extremities (Cappozzo et al., 1995) (Figure
3.3, Figure 3.4 and Table 3.2). Markers on the prosthetic limb of individuals with UTTA in studies
2-4 were placed, estimated depending on the intact limb due to the absence of anatomical
landmarks (Powers et al., 1998) to define segment geometry. The 6 DOF marker models describe
segments being modelled independently of each other thus no assumptions were made regarding
joint constraints (Cappozzo et al., 1995; Collins et al., 2009; Kirtley, 2006; Robertson et al.,
2014). Markers were either used as definition or tracking markers of individual segments, and at
least three non-linear markers were used to define a segment’s position and orientation in the 3D
space. Segments were treated as objects where the inertial properties of the object depended on
its shape (Hanavan, 1964), and the shape, i.e. the segment geometries were computed depending
on the segment definition (Section 3.3.4).
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Anterior View Posterior View

Figure 3.3 Diagram of 36-Marker Locations (Cappozzo et al., 1995; Leardini et al., 1999).
Figure adopted from Visual3D.

Anterior View Posterior View

Figure 3.4 Diagram of 70-Marker Locations (Cappozzo et al., 1995; Leardini et al., 1999).
Figure adopted from Visual3D.

57



Chapter 3: General Methodology

Table 3.2 Anatomical positions of markers used to create a 36-marker and 70-marker model.
All markers were 14mm in size.

Anatomical Position Corresponding Marker Study 1 Study 2 -4
Head HEAD_ANT L, X

HEAD ANT R,

HEAD_POST L,

HEAD_POST_R
Left/right acromion LCAJ/RCAJ X X
Jugular notch SIN X X
Xiphoid process SXS X X
seventh cervical vertebrae Cv7 X X
Second and seventh thoracic vertebrae TV2, TV7 X X
First, third and fifth lumbar vertebrae LV1, LV3, LV5 X X
Left/Right anterior superior iliac spine LIAS/RIAS X X
Left/Right posterior superior iliac spine LIPS/RIPS X X
Greater trochanter LFTC/RFTC X X
Cluster on thigh LTH/RTH X
Lateral femoral epicondyle LFLE/RFLE X X
Medial femoral epicondyle LFME/RFME X X
Fibula head LFAX/RFAX X X
Tibial tuberosity LTTC/RTTC X X
Cluster on shank LSK/RSK X
Lateral malleolus LFAL/RFAL X X
Medial malleolus LTAM/RTAM X X
Calcaneus LFCC/RFCC X X
1%, 2"d and 5th metatarsal head LFM1/RFM1, LFM2/RFM2, X X

LFM5/RFM5
Distal end of toe LDM/RDM X
Shoulders LSHO/RSHO X
Humerus lateral epicondyle LHLE/RHLE X
Humerus medial epicondyle LHME/RHME X
Ulna-Styloid process LUSP/RUSP X
Radius-Styloid process LRSP/RRSP X
Distal end of middle finger LTIP/RTIP X

All markers were placed bilaterally, and in the absence of anatomical landmarks, i.e. on the prosthetic
leg, markers were placed estimated from the intact limb.
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3.3.4 Segment Definition
3.3.4.1 Segment Definition of 36-Marker-Model

3.3.4.1.1 Thorax Segment

The thorax segment was defined using the anatomical locations of the jugular notch, the xiphoid
process, the 7" cervical vertebrae and the 2" thoracic vertebrae. The thorax was built as a cylinder
where the markers of the vertebrae were considered the joint centre of the cylinder. The radii of
the cylinder were defined as half the distances between the jugular notch and the 7 cervical
vertebrae and the mid-point between the xiphoid process and the 2" thoracic vertebrae, which
define the proximal and distal ends of the cone, respectively. The segment was also tracked using
the jugular notch, the xiphoid process, the 7" cervical vertebrae and the 2™ thoracic vertebrae.

(b)

>
Oy

'm”?"

\ ey

Figure 3.5 Marker location (a) and definition (b) of the thorax segment.

Table 3.3 Thorax definition in Visual3D.
Thorax segment
Proximal joint and radius Joint Centre - TV2 Radius - 0.5*DISTANCE(TV2,SIN)
Distal joint and radius Joint Centre - TV7 Radius - 0.5*DISTANCE(TV7,SXS)

Extra target to define orientation  Posterior Location - SIN
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3.3.4.1.2 Coda Pelvis

The coda pelvis was defined using the anatomical locations of the Anterior Superior Iliac Spine
(ASIS) and the Posterior Superior lliac Spine (PSIS). The origin of the pelvis was created at the
mid-point between the ASISs. The sacrum location was defined as the mid-point between the
PSISs, and a plane from the sacrum to the ASISs defining the pelvis location. The segment was
built as a cylinder and tracked using the ASISs and PSISs.

By building the pelvis the right and left hip joint centres were estimated as follows (Bell et al.,
1989; 1990):

RHJC = (0.36 x ASIS_Distance,—0.19 X ASIS Distance, —0.3

(3.1)
X ASIS_Distance)

LH]C = (—0.36 x ASIS_Distance,—0.19 x ASIS_Distance,—0.3

(3.2)
X ASIS_Distance)

Table 3.4 Landmark definition for the Coda pelvis in Visual3D.
Landmark Starting point Ending point
SCRM RIPS LIPS

Figure 3.6 Marker location (a) and definition (b) of the coda pelvis.
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3.3.4.1.3 Thigh Segment

The thigh segment was defined using the anatomical locations of the hip joint centres, greater
trochanter, medial and lateral femoral epicondyle. The thighs were built as a cone, where a quarter
of the distance between the hip joint centres defined the proximal radius of the cone, and the distal
end of the cone was defined by the medial and lateral femoral epicondyles. The segment was

tracked using the hip joint centre, greater trochanter, medial and lateral femoral epicondyle.

Table 3.5 Thigh definition in Visual3D.
Thigh segment
Proximal joint and radius  Joint centre - RIGHT_HIP  Radius - 0.25*DISTANCE(LFTC,RLTC)
Distal joint and radius Lateral - RFLE Medial - RFME

(b)

/LFME
RFLE® e oo le LFLE

Figure 3.7 Marker location (a) and definition (b) of the thigh segment.
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3.3.4.1.4 Shank Segment

The shank segment was defined using the anatomical locations of the medial and lateral femoral
epicondyles, fibula head, tibial tuberosity, medial and lateral malleoli. The mid-point between the
medial and lateral femoral epicondyles was used to create a landmark (RKNEE). The shank was
built as a cone, where at the proximal end the joint centre was defined by the RKNEE landmarks
and the fibular head as the lateral border of the cone, and the distal end of the cone was defined
by the medial and lateral malleoli. The segment was tracked using the fibula head, tibial

tuberosity, medial and lateral malleoli.

Table 3.6 Shank definition in Visual3D.

Shank segment
Proximal joint and radius  Joint centre - RKNEE  Lateral - RFAX
Distal joint and radius Lateral - RFAL Medial - RTAM

Table 3.7 Landmark definition for the shank segment in Visual3D.

Landmark Starting point Ending point
RKNEE RFLE RFME

(2)

RFAX ® LFAX

/LTAM
RFALe[ 1® ® JleLFAL

Figure 3.8 Marker location (a) and definition (b) of the shank segment.
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3.3.4.1.5 Foot Segment

The foot segment was defined using the anatomical locations of the medial and lateral malleoli,
calcaneus, 1%, 2" and 5™ metatarsal heads. The mid-point between the medial and lateral malleoli
was used to create a landmark (RANKLE). The foot was defined as a cone where the proximal
end of the cone was defined by RANKLE as the joint centre, and the radius of the cone was
defined as half the distance between the malleoli. The distal end of the cone was defined by
RSM_PROJ as the joint centre and the 5 metatarsal head as the lateral border of the cone. The
RSM_PROJ landmark was projected on a plane from the 2" metatarsal head, where the plane
was stretched from the calcaneus and the 1% metatarsal head to the lateral point of the 5™
metatarsal head. The segment was tracked using the calcaneus, 1%, 2" and 5" metatarsal heads.
The foot segment was used for kinetic calculations.

Table 3.8 Foot definition in Visual3D.
Foot segment
Proximal joint and radius  Joint centre - RANKLE Radius - 0.5*DISTANCE(RFAL,RTAM)
Distal joint and radius Joint Centre - RSM_PROJ  Lateral - RFM5

Table 3.9 Landmark definition for the foot segment in Visual3D.

Landmark Starting point Ending point Lateral object Projected from

RANKLE RFAL RTAM
RSM_PROJ RFCC RFM1 RFM5 RFM2
| |
/LTAM “ j
RFAL e e ® 1 e LFAL ,4 i
RFM5 .l‘ﬂl./LFM.]: ‘.e LFM5 A Q‘ ‘o
RFM2 LFM2 LFCC RFCC

Figure 3.9 Marker location of the foot segment.
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3.3.4.1.6 Virtual Foot Segment

The virtual foot segment, created for kinematic measurements was built similar to the foot
segment, except that the joint centre at the proximal end was defined by the calcaneus instead of

the mid-point between the malleoli. The virtual foot segment was used for kinematic calculations.

Table 3.10 Virtual foot definition in Visual3D.
Foot segment
Proximal joint and radius  Joint centre — RFCC Radius - 0.5*DISTANCE(RFAL,RTAM)
Distal joint and radius Joint Centre - RSM_PROJ  Lateral - RFM5

3.3.4.2 Segment Definition of 70-Marker-Model

3.3.4.2.1 Head Segment

The head segment was defined as an ellipsoid by four markers on the head, and two markers on
the left and right acromion. The four markers the head were in line with the forehead. Landmarks
were created at the mid-point between the two front markers and two back markers of the head
(HEAD_FRONT and HEAD_BACK). The proximal end of the ellipsoid was defined between
the left and right acromion, while the distal end was defined between the landmarks that were

defined. The segment was tracked using the four markers, which were in line with the forehead.

Table 3.11 Head definition in Visual3D.
Head
Proximal joint and radius  Lateral - LCAJ  Medial - RCAJ
Distal joint and radius HEAD FRONT HEAD_BACK

Table 3.12 Landmark definition for the head segment in Visual3D.
Landmark Starting point Ending point
HEAD FRONT HEAD ANT L HEAD ANT R
HEAD BACK HEAD POST L HEAD POST R

HEAD ANT R HEAD ANT L HEAD POST R 4 HEAD POST L

]

o

¥ :
RCQA', = ,}‘_:_)\LC.A] _CV'I‘T

Figure 3.10 Marker location of the head segment.
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3.3.4.2.2 Thorax Segment

The thorax segment was defined using the anatomical locations of the left and right acromion,
jugular notch, the xiphoid process, the 7" cervical vertebrae and the 2™ thoracic vertebrae.
Landmarks were created at the mid-points between the jugular notch and the 7" cervical vertebrae,
and between the xiphoid process and the 2™ thoracic vertebrae. The thorax was built as a cylinder
where the created landmarks defined the proximal and distal joint centres of the cylinder, and the
radius of the cylinder was defined as half the distance between the left and right acromion. The
segment was also tracked using the jugular notch, the xiphoid process, the 7" cervical vertebrae

and the 2™ thoracic vertebrae.

Table 3.13 Thorax definition in Visual3D.
Thorax
Proximal joint and radius  Joint centre - SIN_CV7  Radius - 0.5*DISTANCE(RCAJ,LCAJ)
Distal joint and radius Joint centre - SXS TV7 Radius - 0.5*DISTANCE(RCAJ,LCA))

Table 3.14 Landmark definition for thorax in Visual3D.
Landmark Starting point Ending point
SIN_.CV7  SIN CVv7
SXS TV7  SXS V7

3.3.4.2.3 Composite Pelvis Segment

The composite pelvis was defined using the anatomical locations of the ASIS and PSIS. The
origin of the pelvis was created at the mid-point between the mid-ASISs and mid-PSIS. The length
of the pelvis is defined as the distance between the origin and the midpoint between the hip joint
centres, where the hip joint centres were defined as described in Section 3.3.4.1.2. The segment

was built as a cylinder and tracked using the ASISs and PSISs.

65



Chapter 3: General Methodology

mid-PSIS

Right PSIS

Left ASIS
mid-ASIS

Hip Joint Center(y

Right ASIS

Figure 3.11 Definition of the composite pelvis.

3.3.4.2.4 Thigh Segment

The thigh segment was defined using the anatomical locations of the hip joint centres, medial and
lateral femoral epicondyle. The thigh was built as a cone, where the joint centre at the proximal
end was defined by the hip joint centre, and the radius was defined as a quarter of the distance
between the two hip joint centres. The distal end of the cone was defined by the medial and lateral
femoral epicondyles. The segment was tracked using four markers attached on a cluster to the
thigh.

Table 3.15 Thigh definition in Visual3D.
Thigh segment
Proximal joint and radius  Joint centre - RIGHT_HIP  Radius - 0.25*DISTANCE(RIGHT_HIP,LEFT_HIP)
Distal joint and radius Lateral - RFLE Medial - RFME

3.3.4.2.5 Shank Segment

The shank segment was defined using the anatomical locations of the medial and lateral femoral
epicondyle, and the medial and lateral malleoli. The mid-point between the medial and lateral
femoral epicondyles was used to create a landmark (RKNEE). The shank was built as a cone,
where at the proximal end the joint centre was defined by RKNEE, and the radius was defined as
half the distance between the femoral epicondyles. The distal end of the cone was defined by the
medial and lateral malleoli. The segment was tracked using four markers attached on a cluster to
the shank.
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Table 3.16 Shank definition in Visual3D.

Shank segment
Proximal joint and radius  Joint centre - RKNEE  Radius - 0.5*DISTANCE(RFLE,RFME)
Distal joint and radius Lateral - RFAL Medial - RTAM

Table 3.17 Landmark definition for the shank segment in Visual3D.
Landmark Starting point Ending point
RT_KNEE RFLE RFME

3.3.4.2.6 Foot Segment

The foot segment was defined using the anatomical locations of the medial and lateral malleoli,
calcaneus, 1%, 2" and 5™ metatarsal heads. The mid-point between the medial and lateral malleoli
was used to create a landmark (RANKLE). The foot was built as a cone, where the joint centre at
the proximal end was defined by RANKLE, and the radius was defined by half the distance of the
malleoli. The distal end of the cone was defined by the 1% and the 5" metatarsal heads. The
segment was tracked using calcaneus, 1%, 2" and 5" metatarsal heads. The foot segment was used
for kinetic calculations.

Table 3.18 Foot definition in Visual3D.
Foot segment
Proximal joint and radius  Joint centre —- RANKLE  Radius - 0.5*DISTANCE(RFAL,RTAM)
Distal joint and radius Lateral - RFM5 Medial - RFM1

Table 3.19 Landmark definition for the foot segment in Visual3D.

Landmark Starting point Ending point
RTANKLE RFAL RTAM

3.3.4.2.7 Virtual Foot Segment

The virtual foot segment was defined using the anatomical locations of the medial and lateral
malleoli, calcaneus, 1%, 2" and 5" metatarsal heads. The joint centre at the proximal end of the
foot was defined by the calcaneus and the radius was 0.01. The joint centre at the distal end of the
foot was defined by RSM_PROJ, and the lateral border was defined by the 5" metatarsal head.
The RSM_PROJ landmark was projected on a plane from the 2" metatarsal head, where the plane
was stretched from the calcaneus and the 1% metatarsal head to the lateral point of the 5"
metatarsal head. The segment was tracked using the calcaneus, 1%, 2" and 5" metatarsal heads.

The virtual foot segment was used for kinematic calculations.
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Table 3.20 Landmark definition for the virtual foot segment in Visual3D.
Landmark Starting point Ending point Lateral object Project from
RSM_PROJ RFCC RFM5 RFM1 RFM2

3.3.4.2.8 Upper Arm Segment

The upper arm was defined using the anatomical locations of the shoulder markers, and medial
and lateral Humerus epicondyles. The upper arm was built as a cone, where the joint centre at the
proximal end was defined by the shoulder marker and the radius was defined as half the length
between the medial and lateral Humerus epicondyles. The distal end of the cone was defined by
the medial and lateral Humerus epicondyles. The segment was tracked using the shoulder marker,

medial and lateral Humerus epicondyles.

T

=

N
usnn./bg‘. _:53‘ ® 1510
. "
/'\, k(/
>

>

‘> x ~L

RILE g W »:t\% @Ik

o/ 7 o\
A RS Sl

Figure 3.12 Definition of the upper arm.

3.3.4.2.9 Forearm Segment

The forearm was defined using the anatomical locations of the lateral and medial Humerus
epicondyles, the Ulna-Styloid Process and Radius-Styloid Process. A landmark was defined mid-
point between medial and lateral Humerus epicondyles. The forearm was built as a cone, where
the joint centre at the proximal end of the cone was defined by the landmark and the radius was
half the distance between the medial and lateral Humerus epicondyles. The distal end of the cone
was defined by the Ulna-Styloid process and Radius-Styloid process. The segment was tracked
using the medial and lateral Humerus epicondyles, the Ulna-Styloid Process and Radius-Styloid
Process.

Table 3.21 Forearm definition in Visual3D.
Shank segment
Proximal joint and radius  Joint centre - RELBOW  Radius - 0.5*DISTANCE(RHLE,RHME)
Distal joint and radius Lateral - RRSP Medial - RUSP
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Table 3.22 Landmark definition for the forearm segment in Visual3D.

Landmark Starting point Ending point
RELBOW  RHLE RHME

. ZX

RINI } LHME

RR\P ' V um'
® s ('/O"/ wse HL

Figure 3.13 Definition of the forearm.

3.3.4.2.10 Hand Segment

The hand was defined using the anatomical locations of the Ulna-Styloid process, Radius-Styloid
process and the distal end of middle finger. The hand was built as a sphere, where the proximal
end of the sphere was defined by the Ulna-Styloid process and the Radius-Styloid process. The
distal end of the sphere was by a joint centre along the axis of the marker on the distal end of the
middle finger, and the radius was defined as half the distance between the Ulna-Styloid process
and Radius-Styloid process. The segment was tracked using the Ulna-Styloid Process and Radius-

Styloid Process and the marker at the distal end of the middle finger.

Table 3.23 Hand definition in Visual3D.
Shank segment
Proximal joint and radius  Lateral - RRSP Medial - RUSP
Distal joint and radius Joint centre — RTIP  0.5*DISTANCE(RRSP,RUSP)

RTIP | LTIP

Figure 3.14 Definition of the hand.
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3.3.5 Data Processing and Reduction

Following kinematic and Kinetic data collection, the data was processed in QTM before .c3d files
were exported for further processing in Visual3D v5 (study 1) and v6 (study 2-4) (C Motion,
Germantown, MD, USA). In QTM, reflective markers were labelled using acronyms as indicated
in Table 3.2. This process was done manually or using the Automatic Identification of Markers
(AIM) function. Marker trajectories were checked and edited where necessary. Files were cropped
to start at the heel strike on the force platform and ended at the consecutive heel strike of the same
limb (study 1), or they were cropped so that the maximum number of gait cycles of either limb
was captured (study 2-4). Once this process was completed, the raw marker trajectories and force
data were exported form each individual data file as .c3d files for further processing in Visual3D.

In Visual3D, marker trajectories were used to model and determine segment properties such as
proximal and distal ends of segments and segment geometry, as defined in Section 3.3.3. To do
so, the dynamic files were imported and assigned to the appropriate static file, where the static
file included all markers so that all segments could be defined. Medial and lateral landmarks
defined anatomical frames from which segment coordinate systems were defined following the
right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction and
longitudinal, Cardan rotation sequence was used to define the order of rotations to calculate joint
kinematics. Gait events of heel strike (HS) and toe off (TO) were determined. Gait events were
based on a kinetic and a kinematic technique (Stanhope et al., 1990; Zeni et al., 2008). The first
technique involved kinetic data from a force platform to determine the occurrence of the required
events. Based on the kinematic information of these events during force platform contact,
subsequent occurrences of the same event were identified (Stanhope et al., 1990). The events
could only be detected where force platform data was available, thus for the events where there
was no force platform contact an alternative method was used. The alternative technique was
based on a coordinate based algorithm (Zeni et al., 2008) and involves the determination of HS
and TO depending on the maximal displacement of the heel and toe relative to the sacrum marker.
Markers on the feet were characterised by a sinusoidal curve when the x-coordination of the
marker was displayed against time. The peak of the curve coincides with the time during which
the foot comes into contact with the ground, and the valleys coincide with the time of swing phase
initiation, i.e. toe-off. A display of the foot marker relative to the sacral marker was also a
sinusoidal curve with the same characteristics. Thus, the mean value of this curve was used to

determine a threshold which when exceeded identifies the peaks (HS) and valleys (TO):
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tys = (Yheel - Ysacrum)max (3-3)

tro = (Ytoe - Ysacrum)max (3-4)

Kinematic data were interpolated using a spline algorithm, and both kinematic and GRF data were
filtered using 4" order, zero-lag Butterworth with 6Hz and 30Hz, respectively. Butterworth filter
is a low-pass filter. Thus, low frequencies remained unchanged, and high frequencies were
attenuated (Robertson et al., 2013). All data were normalised to 100% gait cycle. Different
kinematic and kinetic variables were computed in Visual3D and exported to Excel files (Microsoft
Windows, Redmond, Washington). In the Excel files, each column represented a variable, whilst
each row represented a data point in time, normalised to 101 data points for 100% of the gait
cycle. Data from the Excel spreadsheet was imported into MATLAB R2016a (MathWorks Inc.,
MA, USA) or SPSS v.23.0 (SPSS Inc., Chicago, USA) for statistical analysis.

3.3.6 Definition of Variables

3.3.6.1 Study1

Thirty biomechanical gait variables in the form of temporal waveforms were reported for study 1
(Table 3.24).

- The ground reaction force (GRF) was calculated for each right foot contact on the force
platform and normalised to body weight (BW).

- Joint angles for hip, knee and ankle joints were defined as the orientation of one segment
relative to another segment, where the distal segment was calculated relative to the proximal
segment. The proximal segment was considered the reference frame, i.e. the movement of the
distal segment was defined by its local coordinate system. The Cardan sequence was defined
as Z-X-Y, defining flexion/extension, abduction/adduction and longitudinal rotation,
respectively. For ankle joint angle, a virtual foot segment was used to define the angle,
removing the off-set and aligning the foot on the same plane to the lab floor. The joint angle
was normalised to the standing trial.

- Joint moments for hip, knee and ankle joints were calculated as the net internal moment,
where the net internal moment was balanced by the net external moment created by the GRF.
Mathematically, internal and external net forces are equal and opposite to each other, i.e. the
forces from the force platforms are considered internal joint forces and are used to calculate
joint moments using one of many inverse dynamics calculations (moment = force x

perpendicular distance). The joint moment was normalised to body mass.
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- Joint powers for hip, knee and ankle joints were computed as scalar values and normalised to

body mass. Joint powers are the product of moment (my, my, m;) and angular velocity (mx, ®y,

Wz):

Power = [Mx, My, Mz] - [wx, wy, wz]

Power = Mx.wx + My.wy + Mz.wz

(3.5)

(3.6)

Table 3.24 Temporal waveforms of biomechanical variables reported for study 1.

No. Temporal Waveforms of Biomechanical Variables  Units

1 Anterior-posterior GRF BW

2 Medio-lateral GRF BW

3 Vertical GRF BW

4 Sagittal hip joint power W.kg'

5 Frontal hip joint power W.kg?
6 Transverse hip joint power W.kg?

7 Sagittal hip joint moment N.m.kg*?
8 Frontal hip joint moment N.m.kg*
9 Transverse hip joint moment N.m.kg*?
10  Sagittal hip joint angle Degrees
11 Frontal hip joint angle Degrees
12 Transverse hip joint angle Degrees
13  Sagittal knee joint power W.kg?
14 Frontal knee joint power W.kg?
15  Transverse knee joint power W.kg'
16  Sagittal knee joint moment N.m.kg*?
17  Frontal knee joint moment N.m.kg*?
18  Transverse knee joint moment N.m.kg™
19  Sagittal knee joint angle Degrees
20  Frontal knee joint angle Degrees
21  Transverse knee joint angle Degrees
22 Sagittal ankle joint power W kg
23 Frontal ankle joint power W.kg?
24 Transverse ankle joint power W.kg?
25  Sagittal ankle joint moment N.m.kg*
26  Frontal ankle joint moment N.m.kg*
27  Transverse ankle joint moment N.m.kg*
28  Sagittal ankle joint angle Degrees
29  Frontal ankle joint angle Degrees
30  Transverse ankle joint angle Degrees
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3362 Study2-4

Twenty biomechanical gait variables in the form of temporal waveforms were reported for the
studies 2-4, and seven scalar values were reported for study 2 (Table 3.25 and Table 3.26). The
GREFs, joint angles, moments and powers were computed as described in Section 3.3.6.1, with
exception of the power in the prosthetic limb which was computed using unified deformable
(UD) segment model (Takahashi et al., 2012). Anatomically relevant models are built containing
a series of rigid segments joined together via mechanical joints, but this presents an issue when
modelling LLA gait since some joints are missing. Thus, the UD segment was used to compute
power on the prosthetic limb since it does not require the definition of a joint.

- Centre of pressure (CoP) was computed from the force platform. The foot segment was
assigned to the force, where the foot segment was defined from the ankle to the metatarsals.
The signal was normalised relative to the segment’s length (distance between proximal and
distal ends of the segment) and width (distal radius). The CoP velocity was computed as the
first derivative from the CoP position.

- Centre of mass (CoM) was defined relative to inertial properties calculated using the segment
geometries as described in Sections 3.3.3 and 3.3.4.

- Speed was defined depending on stride time and length.

- Step width was defined by the medio-lateral distance between the proximal end positions of
the leading foot at heel strike to the proximal end positions the heels strike of the contralateral
limb (Figure 2.1). The step width was calculated by taking the cross product by taking the
stride vector and the opposite step position. The left stride with was the perpendicular distance
from the proximal end of the left foot segment to the right vector. The right step width was
calculated as the perpendicular distance from the proximal end of the right foot segment to
the left vector. Left and right stride width were reported as an average between both feet.

- Step length was defined as the distance between the proximal end position of the contralateral
foot at the previous heel strike to the proximal end position of the leading foot at heel strike.

- Step frequency is the rate at which a person walks, and is better known as cadence, which is

expressed in steps per minute:
60
left steps time

60
right steps time

- Left steps per minute =
- Right steps per minute =

- Net-work at the ankle was determined through the summation of positive and negative power
phases. This was done using time integration. Net-work was normalised to body mass.
- The BW MoS and ML MoS of stability were computed as described in 2.5.1.1.1.
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Table 3.25 Temporal waveforms of biomechanical variables reported for study 2 - 4.

No. Temporal Waveforms of Biomechanical Variables  Units

1 Anterior-posterior GRF BW

2 Medio-lateral GRF BW

3 Vertical GRF BW

4 Anterior-posterior CoP displacement m

5 Medio-lateral CoP displacement m

6 Vertical CoP displacement m

7 Anterior-posterior CoP velocity m/s

8 Medio-lateral CoP velocity m/s

9 Vertical CoP velocity m/s

10  Vertical CoM displacement m

11 Vertical CoM velocity m/s

12 Sagittal hip joint power W.kg'
13  Sagittal hip joint moment N.m.kg*?
14 Sagittal hip joint angle Degrees
15  Sagittal knee joint power W.kg?
16  Sagittal knee joint moment N.m.kg*?
17  Sagittal knee joint angle Degrees
18  Sagittal ankle joint power W.kg?
19  Sagittal ankle joint moment N.m.kg*?
20  Sagittal ankle joint angle Degrees

Table 3.26 Scalar values of biomechanical variables reported for study 2.

No. Biomechanical Scalar Values Units

1 Speed m/s

2 Step width m

3 Step length m

4 Step frequency step/min
5  Ankle net-work N.m.kg*?
6 BW MoS m

7 ML MoS m
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3.4 Multivariate Statistical Analyses

In this PhD thesis multivariate statistical analyses of PCA and DFA have been used to develop a
machine learning algorithm. PCA was a method of choice as it can be used to reduce high
dimensionality whilst important characteristics of the data set, which contribute to its variance are
still retained (Badesa et al., 2014). DFA was used during the current research as compared to
other machine learning algorithms it achieves maximum discrimination which helps to classify
data accurately (Tharwat et al., 2017). PCA is an unsupervised algorithm which in the current
PhD, was used for data reduction and feature selection, whilst DFA is a supervised algorithm
which was used for classification. In an unsupervised approach, classes are not defined and its
entities are not known, i.e. the characteristics of the class are defined by the data structure. In a
supervised approach, however, algorithms are supplied with information regarding various
entities whose class is known and from this, the characteristics of each class are formed.
Multivariate statistical method of DFA can be considered a machine learning algorithm, whilst
PCA is not. The concept of learning has been described as the ability to develop classification
rules from experience. The learning stage can be described as having a set of training objects
whose classes are known, usually using a supervised algorithm, to establish prediction rules using

attribute values of each class of an unknown data set (Quinlan, 1990).

3.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is multivariate statistical method used to establish variation
between variables. Using PCA, data is presented in a new coordinate system, capturing the
maximum variance of a data set (Badesa et al., 2014; Dillmann et al., 2014; Wu et al., 2007; Yang
et al., 2012). PCA can be calculated using either the covariance or correlation matrices. The
matrix used depends on the nature of the data, for example, if the variables under investigation
share the same units the covariance matrix should be used whilst the correlation matrix should be
used when the variables have different units. PCA was first applied to biomechanical data to
derive a representation of signals instead of using signals themselves (Wootten et al., 1990),
others used it as a data reduction method (Olney et al., 1998), whilst different researchers used it

to assess entire gait waveforms retaining potentially valuable information (Deluzio et al., 1997).

A visual example of PCA is shown in Figure 3.15. Suppose the spheres represent two variables
that make up a data set represented in a x; — x, coordinate system (Figure 3.15 a). The direction
in which most of the variance occurs between these two variables can be captured by the axis u
(Figure 3.15 b). A second axis v, perpendicular to axis u, will represent the axis holding the

second most variation between the data (Figure 3.15 c¢). The u — v coordinate system will

75



Chapter 3: General Methodology

represent the mean of the variables, where the covariance between u and v variables would be

zero. For a given data set, PCA finds the axis system defined by the principle direction of variance,

i.e. u — v axis, were u and v are the principle components (PCs) (Figure 3.15 d). In a larger data

set, with a greater number of variables, the number of PCs would match the number of variables,

creating a high-dimensional space.
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Figure 3.15. Illustration of PCA analysis. The variance of the variables is captured using PCA
and represented in a new data set of PCs.

To compute PCA using covariance matrix the following methods are used (Robertson et al.,

2013). Firstly, the data under investigation should be represented in a matrix.

X11  X12 X1p
X21  Xo2 X2p

X=1": . . (3.7
Xn1 Xn2 xnp
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To find differences in the structure of the data, the covariance of columns of X is calculated.

S11 S12 S1p
S21 S22 . S2p

S = : : . : (38)
Sn1 Snz . Snp

Where:
S = covariance or correlation matrix (of columns of X)
sj;j= diagonal elements, that represent the variance at each instance of the temporal waveform.

Where the diagonal elements of covariance are computed as follows:

- Zzﬂi"’j - %) (3.9)

Sii

Where:
i = column
n = number of rows (participants)

The off-diagonal elements represent the covariance between each pair of time instants:

_ Zk=1 (i — %) (k) — X)) (3.10)
B n—1 .

cov (i,j) = 04y = S

Where:

i and j = two columns

n = number of rows (participants)
X = mean value

o = variance

A covariance that is not equal to zero indicates a linear relationship between two variables. The

strength of the linear relationship can be defined by the correlation coefficient:

. Sij oij  cov(i,j)
corr(i,j) = py; =1 = or or
SiiSjj  0i9j 0:0j

(3.11)

The variance of the original data (matrix X) is presented by the covariance matrix S. If the off-
diagonal elements of matrix S are non-zero, they represent a correlation of the columns in matrix
X. The principal components (PC) are extracted from matrix S. Since the PCs are independent of
each other i.e. uncorrelated, the off-diagonal elements of the covariance matrix S are changed to

equal zero. The process of changing all off-diagonal elements to zero from the covariance matrix
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S to a covariance matrix D is known as diagonalisation, or also referred to as orthogonal
decomposition and is given by:

UTsu =D (3.12)

Where:

S= covariance matrix

U= orthogonal transformation of X (columns of U are Eigenvectors of S known as loading
vectors)

UT= transpose orthogonal transformation of X

D = diagonal covariance matrix of S (Eigenvalues are stored in D which indicate variance of PCs).

If the covariance matrix of data is a diagonal matrix, such that the covariances are zero, then this
means that the variances must be equal to the Eigenvalues A. Matrix U can be seenas a orthogonal
transformation matrix of the original data set in a new coordinate system. The new coordinates
represent PCs which are aligned in descending order of variance in the data. The columns of U
are Eigenvectors of S and are known as loading vectors which are the PCs.

The diagonal covariance matrix D has the elements A;, which are the Eigenvalues of S. Each
Eigenvalue is a measure of variance associated with each PC. The maximum number of PCs is
presented by the non-zero diagonal elements of matrix D. This is equal to fewer of participant

number n or length of temporal waveform p corresponding to the rank r of matrix S.

Matrix U is the transformation of the original data set to new uncorrelated principal components

(¥).

Y =[X-X] U
i = XK1Y (3.13)

In matrix Y each column is a PC and the elements of these columns are PC scores. Following the

computation of PCs, they are organised in descending order of variance so that the first PC

displays the maximum amount of variance in the original data followed by the second PC

orthogonal to the first, and so on. The Eigenvalues A; which are the diagonal elements of matrix

D give the variance of each PCs.

Hence PCA is a technique that conserves the variance of the original raw data through the PCs.
To measure the total variation within the data the sum of variances can be computed which is
corresponding to the sum of diagonal elements of S. The sum of the diagonal matrix in referred

to as (tr) of a matrix therefore:
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tr(S) = tr(D) (3.14)

Quantifying the portion of total variance explained by each principal component,

i

tr (S) XA

Variation Explained by PCi = (3.15)

3.4.2 Discriminant Function Analysis

Fisher Discriminant Analysis, also referred to as Discriminant Function Analysis (DFA) is a
multivariate statistical analysis, which is used for the development of machine learning
algorithms. It is a supervised analysis, used to project data onto lower-dimensional vector and
provides the highest possible discrimination between different classes. DFA attempt to express a
dependent variable as a linear or quadratic combination of other variables, referred to Linear
Discriminant Analysis (LDA), or Quadratic Discriminant Analysis (QDA), respectively. LDA
aims to find a linear combination of input features according to a least square sense by sorting
input data into two or more classes (Badesa et al., 2014). Each feature has its own weighting
factor which indicates its importance to the discrimination between the classes (Badesa et al.,
2014). The intra and inter-class distance between the features are determined to establish which
class it belongs to. Discriminant Function Analysis can be calculated as follows (Badesa et al.,
2014; Sugavaneswaran et al., 2012; Swets, 1996) (for a detailed tutorial see Tharwat et al., 2017):

For two different experimental groups, i.e. a two-class problem, the features of each data set are
represented in a matrix. Consider a matrix with two columns, where each column represents a

vector that corresponds to a variable.

[x11 X12 1 Vi1 V12

| X21  X22 | [3’21 Y22 ]

classi=|"" " classj=|"" 7 (3.16)
Xm1 Xm2 Yn1 Yn2

In case where principal component Y, is unable to separate the two obvious classes, then they are

projected on to Z, providing a discriminant analysis procedure:

Z=wTy (3.17)

Where:
W = projection matrix
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Firstly, the mean of each matrix, i.e. class is calculated, before merging them together. In case
where principal components Y have not already been calculated, the covariance or correlation for
each matrix must be computed. This is done in order to obtain the scatter coefficient within a
group and between the groups. The scatter measure is given as:

Sw = Yibi X (covy); Sy, = Z]- p; X (covj) (3.18)

For a two-class problem with S, as the within-class and S, as the between-class scatter measure

is given as:
c n; T
Se=) > (G- MY - M) (319)
i=1 j=1

Where:
Y;= principal component of class j
M;= mean of class i

Sy= p. (M= M)(M; M) (3.20)

4

Where:
M = mean of a global mean computed from merged dataset
M;= mean of class i

Scatter measures are then optimised using maximisation within-class and between-class
covariance criteria. This is done by calculating Euclidean distances for each data point, where the
Euclidean distance is defined as the straight-line difference between two points in space.
Therefore, a smaller measured distance corresponds to a vector (variable) that is classified to class
J-

D(i) = sign(Sy X i+ Sp) (3.21)

Where:

D (i) = discriminative function

i = input feature vector of class i
S, = weighting vector

S, = intercept
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The input feature vector i is assigned to a class if D (i) is positive and assigned to the other class
if it is negative. Figure 3.16 shows the scatter of features and how the most discriminating features
can be identified using DFA when missed by PCA. For the MATLAB codes of PCA and DFA,
see Appendix 1.

MEF vector

MDi vector \ Y1

classes

%E’Ehvglaupearates 57 No MEF val n
1 A - R+ value cal
the classes R T X separate the two

Z3

Figure 3.16 Problems with the most discriminating features (MDF) for class separation. In the x
and y-axes, representing the principal components (PC), the classes are not separated. Projecting
classes onto a different set of z-axes results in seperation of classes. Figure adopted from Swets
(1996).

3.4.3 Display of PCA and DFA Outcomes

The PCA discrimination and DFA classification outcomes are represented using scatter plots
(Figure 3.17 a, c) which illustrates the clustering or the lack of clustering between
groups/conditions. Furthermore, eigenspectra (Figure 3.17 b) of PCA and DF spectra (Figure 3.17
d) of DFA show the weighing of variables, i.e. their contribution to the discrimination/
classification procedure. The length of each bar emphasises the weighwhere large and small bars

represent a large and small contribution to the discrimination/ classification process, respectively.
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Figure 3.17 Outcome of PCA (a) and DFA (c) scatter plot, showing clustering of
groups/conditions. Eigenspectra (b) and DF spectra (d) indicating the weighting factors of
individual variables involved during analysis.
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4.1 Introduction

In a clinical setting, gait analysis can be particularly useful since it helps diagnose pathology,
provide treatment recommendations and evaluate treatment outcomes. Data acquisition tools and
processing procedures produce large amounts of gait data. This data is in the form of temporal
waveforms and has typical characteristics such as high dimensionality, meaning it consists of
multiple variables. A widely used approach to analyse and interpret movement data is through the
description of graphical profiles of temporal waveforms, using summary statistic (mean, variance,
correlations) and waveform parameterisation (peak amplitude) (Alagtash et al., 2011a; Deluzio
et al., 1999). However, these approaches are subject to researcher bias, and some of the gait
characteristics are ignored. To overcome these drawbacks and handle data, recent studies
implemented multivariate statistical analyses such as PCA and machine learning algorithms such
as DFA. Principal Component Analysis is an unsupervised algorithm. It reduces data and
highlights important generic features by evaluating the gross structure of a data set whilst
maintaining the variance of the original data (Chau, 2001a). Discriminant Functional Analysis is
a supervised algorithm, which reveals discriminating features within a data set through the
evaluation of the detailed structure (von Tscharner et al., 2013). Together, PCA and DFA provide
a method for assessing differences between experimental groups of people/conditions. The
combination of an unsupervised and a supervised algorithm can be used to develop a machine
learning algorithm, which refers to the ability of a device to independently conduct discrimination
on a database without the input of a researcher. Therefore, in a clinical setting, it would provide

an objective method, eliminating researcher bias and without compromising gait characteristics.

Previous studies have used machine learning algorithms to identify gait differences between
different groups and obtained high discrimination results such as 91.7% or 95.8% between older
and younger individuals (Begg and Kamruzzaman, 2005; Eskofier et al., 2011; Reid et al., 2010),
98-100% between males and females (Phinyomark et al., 2016), and 100% between pathological
and non-pathological gait (Lemoyne et al., 2015). However, experimental data sets used to
develop these algorithms were made up of discrete parameters such as walking speed and
maximum vertical force at heel strike (Alagtash et al., 2011a; Begg and Kamruzzaman, 2005; Wu
etal., 2007). Limiting the information that could be provided by entire temporal waveforms which
means important discriminating features may have been neglected (Deluzio et al., 1999). In some
cases, high discrimination rates have been obtained, but the environment of discrimination was
not challenging, as experimental groups were expected to be significantly different, e.g.

experimental groups of young and older individuals (Begg & Kamruzzaman, 2005; Wu et al.,
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2007). Sophisticated numerical methods have been employed to pre-process data and conduct
discrimination (Wu et al., 2007), but studies have shown that even the use of simple
discrimination methods for tighter experimental conditions, enables a classification to be made
(von Tscharner et al., 2013). Also, the quality of the data used to train the machine learning
algorithm was not considered, effecting the quality of the discrimination outcome, because
different individuals will exploit features in a different manner, which means that a feature could
be strongly discriminating in one individual however not in another. A group of individuals will
collectively display the strongest generic discriminating features between two experimental
groups of people/conditions. Therefore, depending on the individuals that have been selected to
develop the training database for the machine learning algorithm, its predictive abilities will vary.
Thus using an iterative process to identify the individuals that express these generic features most
predominantly and using their data as the training database, will optimise the algorithm, ensuring
a reliable prediction every time the machine learning algorithm is used. Therefore, the aim of this
study was to develop and optimise a machine learning algorithm using multivariate statistical
analyses, namely Principal Component Analysis (PCA) and Discriminant Function Analysis
(DFA) for processing of human locomotion.

4.2 Methodology

4.2.1 Participants

A convenience sample of twenty recreationally active participants (14 males and 6 females; age
24+4 years; height 1.75+£0.86m; mass 72.0+8.5 kg) were drawn from the University community.
These individuals had no lower limb pathologies and were free of injury during the time of the
study. Ethical approval was granted by the Nottingham Trent University Ethics Committee

(Humans). All participants provided informed consent prior to participation.

4.2.2 Experimental Design and Data Acquisition

The study investigated participants under two different experimental conditions; running with
(shod) and without shoes (barefoot). Upon arrival, the participant was briefed, and consent was
acquired. All activities were completed with participants wearing lycra shorts and running shoes.
To obtain kinematic data 36 spherical 14mm, reflective markers were placed directly onto the
skin or clothing using bi-adhesive tape, defining trunk (Leardini et al., 2011) and lower limb
segments (Cappozzo et al., 1995) (for marker placement, refer to Section 3.3.3). Subsequently,

participants conducted a short five minute warmed-up on a treadmill at self-selected speed.
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Depending on the initial condition, foot markers were placed before or after the warm-up since

warm-up was performed wearing shoes.

A static trial was obtained for segment definition, followed by the dynamic trials. Dynamic trials
were counterbalanced between conditions, thus participant would start with either barefoot or
shod running trials. First, the participant’s starting position was defined, to ensure that force
platform data was obtained. During the trials participant ran at a self-selected speed along a 15m
runway. This process was repeated until five successful trials (force plate contacts) were collected
on the right limb for each condition. Once the intial condition was completed, the second
condition followed thus shoes were either put on or taken off, followed by marker placement.
Ground reaction force (GRF) was measured at 1000Hz using a single floor-mounted strain gauge
force platform (AMTI, Watertown, MA, USA) and kinematics were measured at 100Hz using a

nine-camera motion capture system (Qualisys, Gothenburg, SE).

4.2.3 Data Pre-Processing

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3 and
start and end points of a trial were adjusted to one gait cycle of the right limb. Marker trajectories
and force data were exported as .c3d files and subsequently processed in Visual 3D v5 (C Motion,
Inc., Germantown, MD, USA). Kinematic data were interpolated using a cubic-spline algorithm
with kinematic and GRF data being subsequently filtered using 4™ order, zero-lag Butterworth
low-pass filters with 6Hz and 30Hz cut-off frequencies, respectively. All data were normalised to
100% gait cycle. Medial and lateral landmarks defined anatomical frames from which segment
coordinate systems were defined following the right-hand rule (Cappozzo et al., 1995). A flexion-
extension, abduction-adduction and longitudinal Cardan rotation sequence was used to define the
order of rotations to calculate joint kinematics. Gait events of heel strike and toe off were
determined using event detection algorithm (Stanhope et al., 1990) (Section 3.3.5). Joint angles
(°), joint moments (N.m.kg™*) and joint powers (W.kg) for the hip, knee and ankle joints, as well
as the GRF (multiples of body weight; BW) were computed in Visual 3D (C-Motion, Inc,
Germantown, USA) (Section 3.3.6). Results were reported in all three anatomical planes. Thus
thirty temporal waveforms were reported for a single stride in each trial starting with heel strike
of the right limb on the force platform and finished at the consecutive heel strike on the same
limb. Processed data were exported from Visual3D in .c3d files, and individual signals from the
.c3d files were imported to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis.
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4.3 Development of a Machine Learning Algorithm

4.3.1 Power Spectrum of Data

The machine learning algorithm was developed using DFA. Prior to DFA, PCA was used for data
reduction and feature selection, followed by DFA to classifying the data. Before PCA and DFA
were applied, the data were linearly interpolated to the same digital length filling any missing
gaps in the data. This was done so that the power spectrum (modulus of Fast Fourier transform
(FFT)) could be computed for all variables. The power spectrum removes the absolute phasing of
kinetic and kinematic waveforms which if not removed could compromise the quality of the
discrimination process and therefore also the machine learning algorithm since the time lag would
be considered a false discrimination feature (Figure 4.1). Apart from the absolute phasing of
different frequency components of the data, the rest of the temporal information of the waveforms

is kept intact in the power spectra.
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Figure 4.1 Display of ankle angle relative to time (a) and its power spectrum (b).

The Power Spectral Density (PSD) describes the contribution of power as a function of the
different frequencies components (Welch, 1967; Thomson, 1982). The log of the power spectrum
was also assessed, however, as it did not improve the discrimination outcome, it was not included
in the procedure. The first frequency component of the power spectrum is always an average of
the raw data set and has a larger magnitude than all the other frequencies. Processing the data
with and without the first frequency component did not improve the discrimination outcome and

thus it was not included in the discrimination process, either.
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4.3.2 Application of Principal Component Analysis

After the power spectrum is applied, PCA followed. PCA is an orthogonal transformation turning
dependent variables to a new set of independent variables or principal components, Z, which
represent the variance observed in the original variables X (Chau, 2001a) (see Section 3.4.1). The
principal components (PCs), making up the columns of the covariance and correlation matrices,
are ordered in terms of decreasing variance such that the majority of variation in the data can
usually be described by the first few PCs. Therefore the remaining PCs can be ignored reducing
the dimensionality of the data. However, depending on the research question lower ordered PCs
may provide the necessary information rather than higher ordered PCs (Phinyomark et al., 2015).

4.3.2.1 Principal Component Analysis Ranking and Reduction Procedures

An input matrix M was built containing the power spectra of the kinetic and kinematic waveforms
extracted from each experimental trial. The matrix was ordered as follows: for each subject, five
trials of each condition existed (twenty subjects and two conditions resulted in 200 trials) and
every trial was made of 30 columns with 50 row vectors, where each column represented a
measured variable and each row vector represented the spectral frequency of the 3D coordinate
measure of the variable. The input matrix M, originally 3D with 200 x 30 x 50 points, was
rearranged to be 2D, with 200 x 1500 points, in order to undertake the PCA on a collection of
200 trials each comprising of 1500 points. The data were summarised using PCA, involving the
diagonalisation of the covariance matrix which can be either 200 x 200 or 1500 x 1500. We chose
the first option so 200 x 1500 points became 200x200. This choice was made because there are
more features (variables/parameters) than individuals thus using the unconventional method of
PCA to compute the PCs substantially reduces computer memory requirements. In this particular
case a small complication arises when having to access the eigenspectra. The pseudo-inverse
method was further employed as the matrix requiring inversion was not square (see Appendix 1.
for code) (Hua and Liu, 1998). In the PCA plot each trial was shown by a single data point i.e.
200 points (100 for barefoot and 100 shod trials). The coordinates of each data point are PC scores,
these are obtained by the cross-correlation product (a.k.a. 'projection’) of a given measurement
(30 parameters spectra) by a given PCA eigenspectrum. However, since the PCA plot can only
be shown in 2 or 3D, only two or three first PC scores are shown. In this study, the trials were

shown in 2D.

As previously mentioned, higher PCs hold most of the information whilst lower ones hold
increasingly noise. The numerical analysis was made immune to overfitting artefacts originating

from the over-exploitation of small details, by choosing the highest explored rank (12'") well
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below the one still carrying information (20™). In Figure 4.2 the PCA rank is displayed using an
exponentially decreasing graph. The line decreases up to rank no. 20, indicating the presence of
information up to this point whilst noise is also increasing. The graph plateus beyond rank no. 20
indicating that beyond this point the data consits mainly of noise, thus a PC rank beyond this point
should be avoided. Selecting too few PC scores will result in neglect of important information
(underfitting) and selecting PC score too high will introduce a lot of noise (overfitting) to the
discrimination procedure. The number of PC scores that need to be considered depends on the
complexity of the data. For more complex data sets a higher PC score should be considered which
will also be evident in the PC rank.Thus, in the current study high dimensionality was reduced
from the original 1500 points (for each trial) to 8, 10 or 12 points.

The PC rank can also be displayed as an image scale (Figure 4.3), where x and y-axis are the PCs.
Starting at the first PC with the highest variance, a great scatter of colours is present which

gradually fades into a block colour as the presence of noise increases in the data.
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Figure 4.2 Principal components are ranked by the amount of variance they capture in the original
data.
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Figure 4.3 Image scale of PC ranking. The right hand image shows a zoom Section of the first
20PCs, illustrating the complexity of the data shown by the scatter before it fades into a block
colour moving down the PCs that hold reduced variance.

4.3.3 Application of Discriminant Function Analysis

The reduced data set from PCA was further analysed using DFA to identify generic discriminating
features between the two experimental conditions, and cluster the data as required by the goal of
the study into barefoot versus shod running. Discriminant Function Analysis (DFA), also known
as Linear Discriminant Analysis (LDA), is a statistical analysis which works to attain the
maximum discrimination between classes. The ratio of inter-class and intra-class variance for any
given database is computed to achieve maximum separation. This results in linear class
boundaries thus grouping the various class clusters in a given subspace (Badesa et al., 2014,
Sugavaneswaran et al., 2012; Swets, 1996) (see Section 3.4.2).

4.3.4 Development of the Machine Learning Algorithm

As previously mentioned a robust machine learning algorithm is developed in three stages namely
training, predictive and evaluation stage (Lever et al., 2016a; c). In this study, the training stage
of a machine learning algorithm was optimised to distinguish between two experimental
conditions, barefoot and shod running. All stages of data interpolation, application of power
spectrum, dimensionality reduction and feature extraction using PCA, and classification using
DFA, were combined to develop a machine learning algorithm (Figure 4.5). A machine learning
algorithm is also referred to as a predictive algorithm when applied to data that did not contribute

to the training stage.
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Different approaches have been explored to determine which would provide the best predictive
outcome (Figure 4.4). First, the discrimination was conducted on a single participant to try and
discriminate between barefoot and shod running. Secondly, all participants’ data were included
in the discrimination process. This was followed by the selection of random biomechanical
variables and a random sample of participants to investigate whether this would improve the
discrimination between the experimental condition. Finally, a systematic iteration process was
explored. During this process, all possible combinations of ten individuals were explored during
the training stage, and an error rate was computed for each iteration to indicate the accuracy of
the discrimination during the predictive stage with the remaining ten individuals. This was done
for discrimination between two clouds where each cloud corresponded to one condition, and it
was done for multiple clouds. In the discrimination procedure of multiple clouds, one cloud would
be made up of one condition, e.g. shod trials and multiple smaller clouds corresponding to the
number of the participant would make up the other condition.

One participant

v

All participants

v

Selecting random biomechanical measurements

y

Selecting random participants

v

Systematic iteration of participants to
discriminate between two groups

v

Systematic iteration of participants to
discriminate between multiple groups

Figure 4.4 Build-up of approaches to establish the method with the highest predictive outcome.

4.3.4.1 Training and Predictive Stages

In this study, during the training stage, data from ten participants were used to direct the search
for generic features and identify which of these provided the greatest discrimination between the
two experimental conditions. During the predictive stage, data of the remaining ten participants
that had not contributed to the training of the machine learning algorithm were used to assess
whether it could automatically and correctly assign data to the group with the same generic

features.
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____________________________________

Optimised Machine Learning
Algorithm

Figure 4.5 Flow-chart of the development of the machine learning algorithm.

4.3.4.2 Optimisation Process

The machine learning algorithm was trained and tested using ten participants out of a total of
twenty in both stages (Figure 4.6). In order to optimise the training stage, participants that would
result in the greatest classification had to be identified. This was done by exploring all possible
combinations of 10 out of 20 participants; a total of 184,756 iterations were identified. An error
rate was computed for each individual iteration. The best iteration corresponded to the one
yielding the combination of participants with the lowest error rate since this indicates the strongest
generic discriminating features to have been identified and thus optimising the algorithm. There
are common gait features among individuals, however, some individuals will express these
features more strongly than others, i.e. identifying the participants with the strongest expression
of these features will collectively allow the identification of the generic features that discriminate

between barefoot and shod running.
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The error rate was calculated as follows: each trial was projected onto a two dimensional DF
space, yielding a set of two DF scores. In this space, the coordinates of the two centroids of each
group were calculated, and for each trial, the Euclidean distances to both centroids were further
calculated. The ratio of these two distances was used to assess whether the trial ended up in the
‘shod’ or ‘barefoot’ category, with a value of 1 corresponding to the threshold dictating the
membership. The trials ending up with the incorrect group were expressed as a percentage error

rate, overall the 200 trials (20 individuals each undertaking 5 shod and 5 barefoot runs).

Optimisation Process

Total of Twenty Participants

Training stage — A combination
of ten participants is chosen.

Y

Y

___________________________________________ Informative Feature Selection +

The combination of ten participants | Classification

is altered. This process is repeated ;

until all possible iterations of ten
participants was explored.

Predictive stage — Remaining ten
participants are classified depending
on established class boundaries.

Error Rate Computation

Figure 4.6 Flow-chart of the iteration process used to optimise the machine learning algorithm.

4.3.4.3 Evaluation of Classification

In this study, positive instances relate to shod running trials, and negative instances relate to
barefoot running trials. The sensitivity and specificity (Equation 2.7 and Equation 2.8) refer to
positive and negative instances which have been correctly identified during the predictive
procedure. In this study, entrie gait waveforms have been used in the evaluation rather than

discrete parameters.
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4.4 Results

4.4.1 Discrimination Outcome of One Individual without Optimisation

The PCA and DFA outcomes for the discrimination between barefoot and shod running of one
individual are illustrated in Figure 4.7. There was a clear classification of the experimental

conditions. However, these results did not include the generic discrimination features since they

were based on the data of a single individual. The PC scores considered during this discrimination

were few, as the complexity of data was minimal. Figure 4.8 shows the PC rank in a scateer plot

demonstaring the fading of colour after PC rank no 4, thus a score beyond this point was avoided

to eliminate risks of overfitting.
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Figure 4.7 PCA and DFA outcome of one individual.
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4.4.2 Discrimination Outcome of a Group of Individuals without Optimisation

The outcome of the PCA search (Figure 4.9) alone results in severely overlapping clouds. This
demonstrates that the discrimination sought for is not residing in the main deviations found in the
data of barefoot and shod running, illustrating the challenging nature of the conditions of interest.
Instead, the discrimination required resides in subtle details of the spectra, necessitating the
second stage numerical search, DFA, to be applied to the data after reduction of PCA.
Discriminant Function Analysis is needed depending on the ability of PCA to cluster the data.
Since PCA is an unsupervised algorithm and it works to maintain the variance of the original data
set, it explores the gross structure only. In a challenging environment, where differences lie within
the detailed structure of the data, it will not be able to identify differences between
groups/conditions. In this case, a supervised algorithm such as DFA is needed since it seeks out
differences in the data by assessing the details of the structure. Visual examination undertaken of
both the time courses and the spectra of the barefoot and shod conditions showed no clear
common discriminating characteristics emerged despite careful inspection. Following DFA the
two clouds representing each condition start classifying. Using the entire database as the training
database for the discrimination exercise yielded an error rate of 24% as seen in the DFA outcome
of Figure 4.9 (d). Thus, even after the numerical search, the training stage of the machine learning

algorithm results in a high error rate if not optimised.

Figure 4.9 shows the outcome of PCA and DFA following classification. Each dot represents a
trial of a participant and since there are 10 participants and each has conducted 10 trials (5 shod
and 5 barefoot). The outcome did not improve when the first spectral frequency was included (c
and d) relative to when it was not (a and b) thus it was not included in the processing procedure.
Increasing the rank of the PCA scores fed to the DFA algorithm from 8 to 12 did not improve the

outcome, and the data shown were obtained using 10 PCA scores.
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Figure 4.9 PCA (a) and DFA (b) without the first frequency component of the spectral analysis
and PCA (c) and DFA (d) with the first frequency component of the spectral analysis.

4.4.3 Exploring Optimisation during Discrimination of a Multiple Class Problem

Investigating all possible iterations, as shod trials were considered as one cloud, and barefoot
trials were considered multiple clouds, indicating the error rates of trials which could not be
correctly classified ranged between 9% to 50%, with the majority identified to have had an error
rate of 31% (Figure 4.10). Investigating all possible iterations, as barefoot trials were considered
as one cloud, and shod trials were considered multiple clouds, indicating the error rates of trials

which could not be correctly classified ranged between 31% to 50%, with the majority identified
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Figure 4.10 Histogram indicating the error rates of discrimination for each individual iteration
during discrimination of one shod and multiple barefoot classes.
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Figure 4.11 Histogram indicating the error rates of discrimination for each individual iteration
during discrimination of one barefoot and multiple shod classes.
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4.4.4 Exploring Optimisation during Discrimination of a Two-Class Problem

The outcome of all possible iterations, when comparing between two clouds, one corresponding
to each condition, as shown in the histogram of Figure 4.12, indicated that the error rates of trials
which could not be correctly classified ranged from 6.5% to 47.5%. The majority of iteration were
identified to have an error rate of 22.5%. This clearly demonstrates how much the algorithm can
be helped by the careful selection of the training database. As previously mentioned an iteration
consisted of a different combination of 10 participants out of 20 for each the training and predicted
database. The error is the percentage of trials that end up in the wrong category (shod or barefoot).
The lowest error rate indicated the iteration with the strongest generic features and the highest
predictive ability. Therefore, the iteration corresponding to 6.5% was used as the input for the

optimised machine learning algorithm.
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Figure 4.12 Histogram indicating the error rates of discrimination for each individual iteration
during discrimination of barefoot and shod running as two separate clouds.
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The optimum iteration was further used to identify the most discriminating features between the
two experimental groups of barefoot and shod running using DFA. The different bar charts
correspond to different DF curves were integrated over all spectral frequencies (full frequency-

resolved DF curves are shown in Figure 4.13), where each bar represents a variable (Figure 4.14).

The fact that they are dissimilar justifies the benefit of undertaking the discrimination in two
dimensions rather than one. The length of each bar emphasises the weight factors of individual
kinetic and kinematic variables (averaged over all frequencies). Large and small bars represent a
large and small contribution to the discrimination process, respectively. Since the analysis was
conducted for thirty variables, there are thirty bars for each integrated DF curve. Variables
corresponding to individual bars have been ordered, in decreasing order of contribution, and

displayed in Figure 4.15.
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Figure 4.13 Full frequency-resolved DF curves.
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Figure 4.14 DFA discrimination is showing two bar charts where each bar is equivalent to a
measured variable from a DF curve, integrated over all spectral frequencies. Abbreviations are
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Low Contribution/ High Contribution ———————— .

Rank Integrated DF Curve 01 Variables Integrated DF Curve 02 Variables
1 Ankle Angle in Transverse Plane Ankle Power in Transverse Plane
2 Ankle Moment in Coronal Plane Ankle Angle in Transverse Plane
3 Ankle Angle in Sagittal Plane Ankle Moment in Coronal Plane
4 Ankle Angle in Coronal Plane Ankle Angle in Sagittal Plane
5 Ankle Power in Transverse Plane Ankle Power in Sagittal Plane
6 Ankle Moment in Transverse Plane Ankle Angle in Coronal Plane
7 Ankle Power in Sagittal Plane Hip Moment in Transverse Plane
8 Hip Moment in Transverse Plane Ankle Moment in Transverse Plane
9 Ankle Moment in Sagittal Plane Ankle Power in Coronal Plane
10 Hip Power in Transverse Plane Ankle Moment in Sagittal Plane
11 Hip Angle in Transverse Plane Hip Power in Transverse Plane
12 Ankle Power in Coronal Plane Hip Angle in Transverse Plane
13 Hip Power in Sagittal Plane Hip Power in Sagittal Plane
14 Hip Moment in Sagittal Plane Hip Moment in Coronal Plane
15 Hip Moment in Coronal Plane Hip Moment in Sagittal Plane
16 Hip Angle in Sagittal Plane Hip Angle in Sagittal Plane
17 Knee Moment in Transverse Plane Knee Moment in Transverse Plane
18 Knee Power in Transverse Plane Hip Power in Coronal Plane
19 Knee Power in Sagittal Plane Knee Power in Sagittal Plane

20 Knee Angle in Transverse Plane Knee Power in Transverse Plane
21 Hip Angle in Coronal Plane Knee Angle in Transverse Plane
22 Right Medial-Lateral GRF Hip Angle in Coronal Plane
23 Hip Power in Coronal Plane Right Medial-Lateral GRF
24 Knee Moment in Sagittal Plane Knee Moment in Sagittal Plane
25 Knee Power in Coronal Plane Knee Power in Coronal Plane
26 Knee Angle in Sagittal Plane Knee Angle in Sagittal Plane
27 Right Anterior-Posterior GRF Right Vertical GRF

28 Right Vertical GRF Right Anterior-Posterior GRF
29 Knee Moment in Coronal Plane Knee Moment in Coronal Plane
30 Knee Angle in Coronal Plane Knee Angle in Coronal Plane

Figure 4.15 Measured variables in decreasing order of contribution to the discrimination process.
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Figure 4.16 An illustrative representation of exemplary highly discriminating (A - sagittal plane
ankle angle) and lower discriminating (B — sagittal plane knee angle) variables from a single
participant during both shod (red limbs and lines) and barefoot (blue limbs and lines) running.
Dashed lines represent the instance in the gait cycle that the illustrations are taken from.

High contribution variables included ankle angle and power in the transverse plane, ankle angle
in the sagittal plane and ankle moment in the coronal plane whereas low contribution variables
corresponded to knee angle and moment in the frontal plane, and medio-lateral and the
anterior/posterior GRFs. An example of a highly discriminating, and a low discriminating variable
is shown in Figure 4.16. The quality of the discrimination obtained with the optimised DFA is
illustrated in Figure 4.17 and Figure 4.18. The quality of discrimination is evidenced by the
minimal amount of overlap between the two conditions; two well-discriminated groups will not
occupy the same space. The outcome of the training database alone, used to develop the algorithm
is shown in Figure 4.17 (a). Once developed the predictive ability of the algorithm was assessed
as illustrated in Figure 4.17 (b). It can be seen that even though there is a slightly greater scatter
in the predictive outcome it does not compromise the quality of discrimination when the software
was given a chance to be trained with the ideal training database, Figure 4.17 suggest that the
computer was further able to correctly discriminate those individuals that have a rather ‘unique’

or ‘rare’ way to run shod and barefoot. Combining both the outcomes from the training database
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and the predictive data (Figure 4.18), it is clear that both experimental conditions of barefoot and
shod running were clustered in separate clouds which were shifted to the left and right side
respectively, with minimal overlap between the two clouds and a slight vertical slant between the
two centroids. The overlap were representative of 6.5% of the trials which could not be correctly
discriminated, where 5% and 8% overlap represent predicted and training data, respectively. The
discrimination occurs mostly horizontally with a slight angle indicating that the discrimination is
mostly achieved through the DF score 1. Projection onto a higher dimensional space did not yield
any significant discrimination. The classification evaluation reinforces these results and shows
that sensitivity, i.e. true positives (shod and truly identified as shod) would be correctly identified
in 90% of cases and specificity, i.e. true negatives (barefoot and correctly identified as barefoot)

would be correctly identified in 91%.
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Figure 4.17 Outcome of training database (a) following discrimination, from the 10 participants
with the smallest error in prediction. Outcome of discrimination for the 10 participants not used
to generate the machine learning algorithm (b).
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Figure 4.18 Combined display of trained and predicted data following discrimination.
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4.5 Discussion and Conclusion

The aim of this study was to develop and optimise a machine learning algorithm using
multivariate statistical analyses, PCA and DFA to process human locomotion. The optimisation
was achieved by implementing an iterative process, where the individuals contributing to the
training stage were systematically permuted, to explore all possible iterations of 10 participants
out of 20. This allowed generic discriminating features to be identified between the two
experimental conditions. The optimised algorithm yielded a large discrimination accuracy of
93.5%, typically 17.5 % higher than when using standard analysis.

Instead of using a cross-validation method to assess the training and predictive stage, in this study
an optimisation process was developed. Previous studies have achieved large classification results
however the quality of data used as a training database for the machine learning algorithms were
not considered which in turn affects the reliability of their predictive outcome (Alagtash et al.,
2011a; Begg & Kamruzzaman, 2005; Eskofier et al., 2011; Federolf et al., 2012; Kobsar et al.,
2015; Lemoyne et al., 2015; Wu et al., 2007; Phinyomark et al., 2016). Factors affecting the
reliability of an algorithm include data from an insufficient number of participants, i.e. too few
participants. The classification results may be of great accuracy (Lemoyne et al., 2015), however,
the training sample may not be reflective of the generic features of a particular population, and
thus the outcome may not necessarily be reliable. Using generic features to train the machine is
more likely to accurately evaluate a new data set since the machine is familiar with common
discriminating variables. In instances where the machine learning algorithm is facing the
challenge of a mixture of highly ‘generic’ and highly ‘singular’ trials in its training database, it is
suggested that by homing onto the highly generic individuals, at the stage of training the
computer, substantial improvements may be achieved over the entire group, including the highly
‘singular’ individuals. High improvement in the software’s performance was achieved by using
half of the data for training, and the other half for prediction. The iterative process facilitated the
identification of generic features in ten participants used for the training data. Thus, unlike other
published work, the discrimination of this study is free from artefacts resulting from training the

computer with trials carrying somewhat rare or unique information (Lever et al., 2016a).

The relatively small group size of this study prevents an estimation to the extent to which
accidental spurious information may also have been harvested in the process but limiting the
process to only 10 PCA scores severely limits the likelihood of such phenomena. Since the chosen
rank (10") was below the rank well below the one still carrying information (20") ensuring the

numerical analysis was made immune to overfitting artefacts originating from the over-

104



Chapter 4: Discussion and Conclusion

exploitation of small details. An interesting question is whether it might be possible, in any study
similar to this one, to identify the best group size to be used when optimising the training.
Unfortunately, the extent to which specific volunteers provide a generic enough feature and the
extent to which features of interest become spread between several PCA scores will depend on
the particular study undertaken so that no general method can be recommended. A possibility to
try and establish the best group size may be to use the iterative process of this study, in

combination with a cross-validation method such as the leave-one-out method.

For studies with large numbers of participants, i.e. a sample size which a considered atypical in
biomechanics, one way forward is perhaps to start by following this optimisation procedure with
the same group sizes for training and predicting, and then further refine the collection of ‘ideal’
individuals by swapping one of the ten individuals with a new one to see whether improved
discrimination could be obtained. This way the collection of ‘ideal’ generic individuals could
gradually be further improved. Using a larger sample then presented in this study would provide
the option to validate the machine learning algorithm since individuals who did not contribute to
the training and prediction stages could be used. In such large studies, it is also possible to
somewhat reduce the effect of a second possible source of overfitting artefact, that coming from
(possibly high magnitude) information accidentally helping the clustering and therefore biasing
it. It is possible to quantitate and minimise such overfitting artefacts (Lever et al., 2016b) by
splitting the individuals who did not contribute to the training into two groups respectively called
‘evaluation’ and ‘test’ sets. The trained algorithm can be optimised on the ‘evaluation’ set only,
and those iterations are yielding a performance much lower on the ‘test’ set can be deemed as
suffering from overfitting and dismissed. Unfortunately, such a method is not reliable on the
relatively small group size of our study, and the high performance of the optimised outcome of
our work suggests that we would have reached the same result if we had implemented it, as both

‘evaluation’ and ‘test’ sets would have benefitted from a similar performance.

The context of the experimental protocol influences the results of a discrimination since some
experimental groups or conditions are easier to distinguish than others, in particular in instances
where the two groups to be discriminated are necessarily formed from different individuals, e.g.
young vs. older individuals, normal vs. pathological gait and males vs. females (Alagtash et al.,
2011a; Begg & Kamruzzaman, 2005; Eskofier et al., 2011; Federolf et al., 2012; Kobsar et al.,
2015; Lemoyne et al., 2015; Wu et al., 2007; Phinyomark et al., 2016). Thus in the development
of this machine learning algorithm, the same heterogeneous sample of participants repeated both
experimental conditions. This creates a more challenging environment when compared to having

clearly discrete heterogeneous groups, e.g. healthy vs pathology, whose data is independent of
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one another. Therefore, the outcome of the algorithm presented in this study was more likely to

reflect the ability of the algorithm rather than experimental group differences.

Developing a machine learning algorithm using scalar quantities extracted from the waveforms
of kinetic and kinematic variables (Alagtash et al., 2011a; Begg and Kamruzzaman, 2005;
Phinyomark et al., 2016; Wu et al., 2007) could result in the dismissal of important temporal data,
thus power spectra of full waveforms have been employed (Federolf et al., 2012; Kobsar et al.,
2015; Reid et al., 2010) since each individual feature provides complementary information (Ali
& Shah, 2010). Scalar quantities have shown to result in high classification outcomes (Alagtash
etal., 2011a; Begg and Kamruzzaman, 2005; Phinyomark et al., 2016; Wu et al., 2007), however,
the outcome was highly sensitive to various factors of the discrimination procedure such as type
of variables, e.g. kinematic or kinetic only, and conditions, e.g. more than two classes or groups
(Schéllhorn et al., 2002), since the complementary information of a full temporal waveform is
missing, misclustering should be expected. In this study, the training database used to conduct a
numerical search using PCA and DFA included the spectra of thirty full temporal waveforms of
kinetic and kinematic variables for each trial thus the entire waveform of a variable was taken
into consideration. The spectra data was used as the spectral analysis removes the phasing within
the data, however this step is not needed since retrospectively it was established that the phasing
in the data was removed by normalising temporal waveforms to 100% gait cycle.

Despite the use of sophisticated three-dimensional motion capture system, most studies limited
the classification to data of the sagittal plane (Dobson et al., 2007). However, in order to apply
this type of data to clinical settings, three-dimensional data should be considered as done in this
study since different planes of motion reveal additional information that will inform treatment or
intervention. For example, during the assessment of the dynamic stability of individuals with
LLA, it may be important to consider the frontal plane as it may help identify issues related to the

medio-lateral direction.

In previous studies, ankle kinematic and kinetic variables such as plantar flexion (Lieberman et
al., 2010; Williams et al., 2012) were shown to differ between barefoot and shod running gait
(Braunstein et al., 2010; Lieberman et al., 2010; Williams et al., 2012). Studies have also reported
limited differences between barefoot and shod runners in GRFs (Divert et al., 2005; Kerrigan et
al., 2009). Although not the specific focus of this study, the results of this study confirmed these
findings, suggesting that these variables represent the key differences between shod and barefoot
running gait. However, unlike previous research, the choice of variables selected in our study as

an input to the machine learning algorithm were generic biomechanical features and were not
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explicitly chosen, thus reducing researcher bias and reflecting the true ability of the algorithm to

identify the generic discriminating features.

In order to develop a robust machine learning algorithm, three stages need to be conducted, the
training, prediction and the evaluation phase (Lever et al., 2016a; c). A significant limitation of
this study is that the optimised machine learning algorithm was not evaluated using an
independent sample. While 10 participants were used for training and the remaining 10 for
predictions (testing) stages, by the time all iterations were covered, each participant was used both
in stages. During the evaluation stage, the performance of the machine learning algorithm should
be assessed using a truly independent test set, which was not involved in the training nor the
predictive phase and whose classification outcome is not known to describe the model on unseen
data. In this study, the evaluation was conducted on participants previously involved in the
iterative process thus their classification outcome was known thus invalidating the evaluation
outcome. However, the evaluations made for every model were on the 10 participants used for
the predictive phase rather than the training phase.Therefore for future studies, an independent
sample should be collected to evaluate the algorithm using a confusion matrix, i.e. accuracy,
sensitivity and specificity, once trained and predictions have been made.

The development of the machine learning algorithm described has many important applications
in both clinical and research settings. In clinical settings, it allows for a more comprehensive and
consistent assessment process across patients by utilising a wider range of data whilst
simultaneously eliminating researcher bias. Furthermore, since all discriminating features are
identified, in both a clinical and research setting, it will prevent important factors being neglected
and ensure accurate and reliable diagnosis. This will enable analysis methods to be more

objective, consistent and reliable across institutions.

In conclusion, a machine learning algorithm, using PCA and DFA, was developed using power
spectra of temporal waveforms to successfully identify barefoot and shod running gait. The
predictive accuracy of the algorithm was optimised in a challenging environment by
implementing an iterative process. All discriminating features between the two experimental
groups were identified, and a strong machine learning algorithm was developed with a 93.5%
accuracy in discriminating between conditions. This method can be implemented, to find
informative features when the sample size is small and heterogeneous, as common during gait

analysis and in clinical settings during the treatment of a particular patient.

107



Chapter 5: Identifying Gait Differences between Individuals with Unilateral Trans-Tibial
Amputation and Able-Bodied Individuals.

Chapter 5: Identifying Gait Differences between Individuals
with Unilateral Trans-Tibial Amputation and Able-Bodied

Individuals.

108



Chapter 5: Introduction

5.1 Introduction

Gait analysis facilitates better treatment of pathological gait (Kirtley, 2006; Levine et al., 2012).
Using machine learning algorithms as automatic recognition tools during gait analysis can
enhance subject-specific treatment methods enabling a comparison between pathological and
able-bodied gait using non-invasive, quantitative methods (Alagtash et al., 2011b; Lakany, 2008).
Automatic gait recognition tools enable discimination and classification of data. In clinical
settings, machine learning algorithms have demonstrated the ability to classify pathologies
correctly that were initially misclassified by specialists (Lakany, 2008). Thus, these algorithms
provide automatic and objective methods for clinicians to use that are also quick and cost-
effective (Alagtash et al., 2011a; Lakany, 2008; Simon et al., 2016). The benefits of machine
learning algorithms in gait rehabilitation include the ability to model complex non-linear
relationships of gait data and incorporate multi-dimensional data (Figueiredo et al., 2018). The
ability to add new data to the machine learning algorithm means its performance can be
continously improved and thus its predictive performance is also improved (Figueiredo et al.,
2018).

Through research, it has been suggested that multiple different variables such as temporal-spatial
parameters, kinetic, kinematic and muscle activation data, should be incorporated to carry out an
extensive gait analysis procedure (Figueiredo et al., 2018). Since pathological gait is
heterogeneous and treatment varies among patients, no machine learning algorithm fits all
applications and analysis procedures, but instead, the best performing algorithm depends on the
features of a data set (Harper, 2005). A good gait recognition tool should provide an accurate

classification and insights into the predictive structure of the data (Breiman, 1984).

In LLA gait, machine learning algorithms have mainly been used to investigate powered
prosthetic devices (Afzal et al., 2017; Chen et al., 2013; Dutta et al., 2011; Hargrove et al., 2015;
Huang et al., 2011; Joshi & Hahn, 2016; Khan et al., 2018; Miller et al., 2013; Pew & Klute,
2017; Simon et al., 2016; Woodward et al., 2016; Young et al., 2013; Young et al., 2014; Zheng
et al., 2013; Zheng & Wang, 2017). Although the investigations of prosthetic devices are
important, in the first instance, individuals who can benefit from these devices need to be
identified. For this to be feasible, multivariate statistical analyses and machine learning algorithms

can be implemented as diagnostic tools to assess and understand LLA gait.

The majority of the studies that used automatic gait recognition tools during the investigation of
LLA gait have focused on biomechanical gait variables recorded from wearable sensor systems

such as footswitches and accelerometers (Taborri et al., 2016). Recent advances in technology
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make these sensors smaller, lightweight and easier to put on and off. Furthermore, these sensors
allow measuring variables in free-living conditions which can be advantageous in the
advancement of robotic or powered therapies (Afzal et al., 2017; Chen et al., 2013; Dutta et al.,
2011; Hargrove et al., 2015; Huang et al., 2011; Joshi & Hahn, 2016; Khan et al., 2018; Miller et
al., 2013; Pew & Klute, 2017; Simon et al., 2016; Woodward et al., 2016; Young et al., 2013;
Young et al., 2014; Zheng et al., 2013; Zheng & Wang, 2017). Although wearable sensors have
advantages, using non-ambulatory external sensors such as motion capture-systems or force
platforms can provide more detailed information. These systems operate in a controlled
environment (Sabatini et al., 2005), which is occasionally considered a disadvantage since it can
be challenging to obtain consecutive gait cycles for long-term applications in a natural
environment (Alahakone et al., 2010; Azhar et al., 2014). However, the accuracy of these systems
cannot be underestimated, as they provide comprehensive and reliable biomechanical data
(Bamberg et al., 2008; Howell et al., 2012).

In order to improve prosthetic rehabilitation, the differences between LLA and able-bodied gait
needs to be better understood. Some studies described LLA function using multivariate statistical
analyses such as PCA (Detrembleur et al., 2005; Gao and Zhang 2013; Mouchnino et al., 2006).
Trying to quantify symmetry, Gao and Zhang (2013) used PCA to identify important variables
during a sit-to-stand and stand-to-sit task in an individual with UTFA. Measuring kinematic,
kinetic and muscle activity, they were able to identify which variables were important during this
task. Soares et al. (2016) used PCA to investigate whether GRF and CoP data of individuals with
UTFA and able-bodied individuals can be discriminated. They report that using the first three
principal components (PCs), between 74.5 - 93.9% variance of the data can be explained. The
ability to compare between LLA and able-bodied gait to find differences, can assist decision-
making processes during prosthetic rehabilitation. Therefore, the aim of this study was to establish
differences between UTTA and able-bodied gait using PCA and DFA providing a better

understanding of LLA function.
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5.2 Methodology

5.2.1 Participants

A convenience sample of eleven individuals with UTTA (age 50+12years; height 1.7+£0.1m; mass
83.94+13.59kg) and thirty able-bodied individuals (age 39+20years; height 1.7+0.1m; mass
73.76+14.02kg) were recruited from the university and local communities. All participants met
the inclusion and exclusion criteria detailed in Section 3.2.2. Ethical approval was granted by the
Nottingham Trent University’s College of Science and Technology Ethical Review Committee
(Humans), the NHS Research Ethics Committee, the NHS Health Research Authority and the
NHS Research and Development. All participants provided written informed consent prior to

participation.

5.2.2 Experimental Design and Data Acquisition

The study investigated individuals with UTTA and able-bodied individuals at self-selected
walking speed. Upon arrival, the participants were briefed. All activities were completed with
participants wearing lycra shorts and everyday shoes. Individuals with UTTA used their habitual
prosthesis (Table 3.1). To obtain kinematic measurements 70 spherical 14mm, reflective markers
were placed directly onto the skin or clothing using bi-adhesive tape, defining head, arms, trunk
(Leardini et al., 2011) and lower limb segments (Cappozzo et al., 1995) (for marker placement,
refer to Section 3.3.3). Marker placement on the prosthetic limb was estimated depending on
marker placement of the intact limb (Powers et al., 1998).

A static trial was obtained for segment definition, followed by the dynamic trials. First, the
participant’s starting position was defined, to ensure that force platform data was obtained as the
participant walked along the walkway. During dynamic trials, participants walked at a self-
selected speed along a 15m walkway. This process was repeated until five successful trials were
collected for both limbs, where GRF was measured at 1000Hz using a single floor-mounted strain
gauge force platform (AMTI, Watertown, MA, USA) and kinematics were measured at 100Hz
using a nine-camera motion capture system (Qualisys, Gothenburg, SE). A successful trial was

defined by a clear force plate contact.

5.2.3 Data Processing

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3. and
trial start and end periods were adjusted to one gait cycle of each limb starting at heel strike on

the force platform. Marker trajectories and force data were exported as .c3d files and subsequently
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processed in Visual3D v5 (C Motion, Inc., Germantown, MD, USA). Kinematic data were
interpolated using a cubic-spline algorithm with kinematic and GRF data being subsequently
filtered using 4" order, zero-lag Butterworth low-pass filters with 6Hz and 30Hz cut-off
frequencies, respectively. All data were normalised to one gait cycle. Medial and lateral
landmarks defined anatomical frames from which segment coordinate systems were defined
following the right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction
and longitudinal Cardan rotation sequence was used to define the order of rotations to calculate
joint kinematics. Gait events of heel strike and toe off were determined using kinetic and
kinematic event detection algorithms (Stanhope et al., 1990; Zeni et al., 2008) (Section 3.3.5).
Twenty seven biomechanical variables which are typically reported in the literature for forward
progression and dynamic stability were included in the analysis (Table 3.25 and Table 3.26) since
the continuous interchange between mobility and stability are essential for efficient walking
(Lakany, 2008). The biomechanical variables were computed in Visual3D (C-Motion, Inc,
Germantown, USA). Processed data were exported from Visual3D as .c3d files, and individual
signals were imported to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis.

5.3 Multivariate Statistical Analysis

5.3.1 Principal Component Analysis and Discriminant Function Analysis
Comparing UTTA and Able-Bodied Gait

Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were
successively applied to compare the gait of a group of eleven individuals with UTTA with a group
of thirty able-bodied individuals. PCA was used for data reduction and feature selection, whilst
DFA was used for the classification. Twenty temporal gait waveforms (Table 3.25) and seven
scalar values (discrete parameters) (Table 3.26) were reported for each limb, i.e. the prosthetic
limb (PROS) and intact limb (NONPROS) of the individuals with UTTA, and the control limbs
(RIGHT and LEFT) of the able-bodied individuals. Different methods were explored (Figure 5.1)
to establish the most suitable technique to compare between UTTA and able-bodied gait.
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Figure 5.1 Investigative approach to establish a technique for the comparison between UTTA
and able-bodied gait. Abbreviations are Principal Component Analysis (PCA), Discriminant
Function Analysis (DFA), scalar values (SV).

First, the form of input data was considered i.e. scalar values (Figure 5.1 a), temporal waveform
(Figure 5.1 b) or both scalar values and temporal waveforms together (Figure 5.1 c). Second, the
version of input data was considered i.e. normalised or not normalised. This has been investigated
because the different scaling and weighting of variables influence the outcome. Using the
covariance matrix variables’ weightings depend on the range of their magnitude. In biomechanics,
a variable’s typical magnitude may simply be based on the joint that it is derived from, some
joints move through a small ROM and others through a large ROM, some are driven by small
muscle groups others by large. Therefore, investigating the difference between joints may incur
bias if the difference between the two groups is based on the absolute magnitude. The
normalisation accounted for the variable’s units, i.e. variables with the same unit were processed
as a group and scaled to their specific maximum value. Thus, the using the covariance matrix the
variables contribute equally, irrespective of their units, but the range of magnitude variation of a
variable is retained. Third, PCA or a combination of PCA followed by DFA was considered and
applied to the data. Lastly, the number of scalar values included during the analysis varied, to
evaluate if additional scalar values could improve the outcome, i.e. either five biomechanical
variables (step length, step frequency, ankle net-work, BW and ML MQS), or seven (including
walking speed and step width) were comprised during the analysis. The five scalar values were
calculated separately for each limb, whilst speed and step width were collected for the individual
rather than for each limb. Speed was defined by stride time and length. To perform the analysis
using two additional variables, speed and step width, the input arrays of both limbs included each

of these variables so that there would be no bias due to an uneven number.
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In this analysis, no power spectrum was applied to the data, as results from the previous study
presented in Chapter 4, showed that it did not improve the discrimination outcome since the
phasing in the data was removed by the normalisation of temporal waveforms to 100% gait cycle,
done in Visual3D. Depending on the input data, i.e. temporal waveform, scalar values, or both,
the input matrix M varied. For the temporal waveforms of each subject, one mean trial was made
of 20 columns with 101 row vectors, where each column represented a variable and each row
vector represented a data point in the normalised gait cycle. The original 3D input matrix M, for
the individuals with UTTA, was 101 x 20 x 11 points for either the prosthetic or the intact limb.
For the able-bodied individuals, the original 3D input matrix was 101x 20 x 30 for the right or the
left limb. The third dimension represented the number of people, where one group was made up
of eleven individuals with UTTA and the other group was made up of thirty able-bodied
individuals. In 2D, the matrices were rearranged to 2020 x 82 points since each of the participants’
limbs was considered separately. After applying PCA, this matrix was reduced to 82 x 82 points.
For the scalar values, the original input matrix M was 5 x 82 or 7 x 82, depending on the number
of scalar values. The numerical analysis was made somewhat immune to overfitting artefacts
(originating from the over-exploitation of small details) by choosing the highest explored PC rank
to be 10 for temporal waveforms (Figure 5.2 (a)) and 2 for scalar values (Figure 5.2 (b)). Figure
5.2 illustrates the decay of variance with the PC scores in an exponential-like decreasing curve,
which indicates the information contained within each PC score. As described in Chapter 4, when
a plateau is reached in the data, the content is mainly noise, and the PC scores beyond this point
bring no meaningful information in the analysis.
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Figure 5.2 PCA ranking for temporal waveform data (a) and five scalar values (b).
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5.4 Results

The overall results indicated that the prosthetic and intact limbs of the individuals with UTTA
differed from the control limbs of the able-bodied individuals. Exploring different methods
implied that for this application, PCA on temporal waveforms which were normalised to units
provided the best outcome. The overall results are shown in Table 5.1, where in column 1 the type
of data is described, i.e. temporal waveforms (a), scalar values (b) or the combination of both (c).
Column 2 shows the PC holding the discriminating factors and which of the limbs differed in that
dimension. Column 3 describes the main variables causing the difference between the two groups,
whilst column 4 describes the DFA outcome and which limbs were clustered here, and column 5

describes the variables that caused the separate clusters in DFA.

Table 5.1 PCA and DFA outcomes of all analyses including the variables responsible for the
differences and classification identified by the Eigenspectra and DF spectra, respectively.

Type of data PCA Variables responsible DFA Variables responsible for
for difference classification
Not norm temp wave PROS limb in sagittal hip joint ang No clustering -

PC2 sagittal knee joint ang
sagittal ankle joint ang
Norm temp wave Both groups in vertical GRF Both groups, and PROS ML GRF
PC2 sagittal hip joint mom and NONPROS vertical GRF

sagittal knee joint ang

separately

sagittal knee joint ang

Not norm 5 SV No difference - No clustering -
Norm 58V PROS limb in ankle net-work PROS limb ankle net-work
PC1 ML MoS ML MoS
Not norm 7 SV No difference - No clustering -
Norm 7 SV PROS limb in speed PROS limb speed
PC1 ankle net-work ankle net-work
ML MoS ML MoS
Norm temp wave and 5 Both groups in vertical GRF Both groups, and PROS ML GRF
SV PC2 sagittal hip joint mom and NONPROS vertical GRF
sagittal knee joint ang separately sagittal knee joint ang
sagittal ankle joint ang speed
ankle net-work ankle net-work
ML MoS ML MoS
Norm Temp wave and 7 Both groups in vertical GRF Both groups, and PROS ML GRF
sV PC2 sagittal hip joint mom and NONPROS vertical GRF
sagittal knee joint ang separately sagittal knee joint ang
sagittal ankle joint ang speed
speed step length
ankle net-work ankle net-work
ML MoS ML MoS

Abbreviations are intact limb (NONPROS), ground reaction force (GRF), margin of stability
(MoS), angle (ang), medio-lateral (ML), moment (mom), normalised (norm), principal
component (PC), prosthetic limb (PROS), scalar values (SV), temporal waveforms (temp wave).
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5.4.1 Analyses of Normalised and Non-Normalised Temporal Waveforms

The PCA outcome is shown in four different views, where each view is between two dimensions
and a dimension is a PC. The PCA outcome of the temporal waveform data without normalisation
displayed no difference between the UTTA (red diamonds) and able-bodied (black circles) gait,
as reflected by the lack of separation between the two clouds (Figure 5.4 a). Between PC1 and
PC2 (outcome number 1), and the PC2 and PC3 (outcome number 3), the prosthetic limb (solid
red diamonds) clustering at the edge of the remainder of the cloud that consisted of NONPROS
(open red diamonds) and control limbs (open and solid black circles), indicating that the PROS
limb differs from other limbs in PC2. The Eigenspectrum of PC2 for the temporal waveforms
highlighted variables number 17, 20 and 14 (Figure 5.4 b), which corresponded to sagittal knee,

ankle and hip joint angles.

The PCA outcome of temporal waveforms which were normalised to units (Figure 5.4 ¢) showed
a difference between the gait of individuals with UTTA (red diamonds) and able-bodied
individuals (black circles) in PC2 (outcome number 1 and 3) as reflected by the separation of
clouds with a minimal overlap between the clusters of the groups. In outcome number 1, the
groups separated horizontally, i.e. to the top and bottom of the graph and in outcome number 3
they separated vertically, i.e. to the right and left of the graph. These results also indicate that the
factors responsible for the difference are held in PC2. The Eigenspectrum of PC2 for the temporal
waveforms highlighted variables number 3, 17 and 13 (Figure 5.4 d), which corresponded to
vertical GRF, sagittal knee joint angle and sagittal hip joint moment, respectively. The differences
in the temporal waveform profile of the vertical GRF between limbs is shown in Figure 5.3.

Vertical GRF

vGRF (BW)

——LEFT

e RIGHT
==—=NONPROS
e=PROS

0 25 50 75 100
Gait Cycle (100%)

Figure 5.3 The mean + SD of the vertical GRF temporal waveform profile of the lower-limbs of
individuals with UTTA (PROS and NONPROS) and able-bodied individuals (RIGHT and
LEFT).
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Figure 5.4 PCA outcome (a, ¢) and Eigenspectrum (b, d) comparing between individuals with
UTTA and able-bodied individuals using temporal waveforms without (a, b) and with
normalisation to units (c, d).
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There was no separation between the red diamond and black circles in the DFA outcome
indicating that there was no clear classification between the gait of individuals with UTTA (red
diamonds) and able-bodied individuals (black circles) when the temporal waveforms were not
normalised to units (Figure 5.5 a). The limbs of both groups are aligned next to each other and
overlapping at a slight diagonal. The DFA outcome of the temporal waveforms, which were
normalised to units (Figure 5.5 c) showed a classification between the limbs of the individuals
with UTTA and able-bodied individuals. Furthermore, it showed a classification between the
PROS limb (solid red diamonds) and NONPROS limb (open red diamond) which were clustered
separately.
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Figure 5.5 DFA classification outcome (a, c) and DF spectrum (b, d) between individuals with
UTTA and able-bodied individuals using temporal waveforms without (a, b) and with
normalisation to units (c, d). In the DF spectrum, each bar is equivalent to a measured variable
from a DF curve, integrated over all spectral frequencies.
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The DFA analysis was conducted in two dimensions. Similar to the study 1 described in Chapter
4, the DF spectra are dissimilar thus justifying the benefits to undertake the discrimination in two
dimensions rather than one (Figure 5.5 b and d). The length of the bar emphasises the weight
factors of the 20 individually measured variables presented in the table included in Figure 5.5.
Large and small bars represent a large and small contribution to the discrimination process,
respectively. The DFA outcome of temporal waveform data which was not normalised, did not
classify the data thus the DF spectra did not provide any information regarding important features
(Figure 5.5). The DF spectrum of the temporal waveforms which were normalised to units,
however, highlighted variables number 17 and 3 (Figure 5.5 d) which corresponded to sagittal
knee joint angle and vertical GRF, respectively.

5.4.2 Analyses of Five and Seven Normalised Scalar Values

The scalar values were normalised to units since previous results of the temporal waveforms
demonstrated that normalisation was required to obtain accurate results. For further analysis of
the scalar values without normalisation see Appendix 2. The PCA outcome of the scalar values
with normalisation to units showed that the PROS limb (solid red diamonds) differed compared
to the other limbs (NONPORS limb = open red diamonds, LEFT limb = closed black circle,
RIGHT limb = open black circle) (Figure 5.6). The PROS limb formed a cluster at the edge of
the remainder of cloud in PC1 (outcome number 1 and 2) (Figure 5.6 a). Repeating the PCA
analysis with an additional two scalar values of speed and step width, did not improve clustering
outcome (Figure 5.6 ¢). However, speed was identified as a discriminating factor as can be seen
in the Eigenspectrum (Figure 5.6 d). Ankle joint net-work and ML MoS were also identified as
discriminating variables between the PROS limb, and other limbs (Figure 5.6 b and d).
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Figure 5.6 PCA outcome (a, ¢) and Eigenspectrum (b, d) comparing between individuals with
UTTA and able-bodied individuals using five (a, b) and seven scalar values (c, d), normalised to

units.
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The DFA outcome for both five (Figure 5.7 a) and seven (Figure 5.7 ¢) scalar values, showed that
the PROS limb (solid red diamonds) was classified from the remainder of the other limbs
(NONPORS limb = open red diamonds, LEFT limb = closed black circle, RIGHT limb = open
black circle). The discrimination of scalar values using a supervised algorithm did not improve
the classification outcome but similar to the PCA outcome, speed was identified as a
discriminating feature (Figure 5.7 d). Furthermore, similar to the Eigenspectra, the DF spectra
highlighted ankle net-work and ML MoS to cause the classification between the PROS limb and
remainder of the limbs (Figure 5.7 b).
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Figure 5.7 DFA classification outcome (a, c) and DF spectrum (b, d) comparing between
individuals with UTTA and able-bodied individuals using five scalar values (a, b) and seven scalar
values (c, d), normalised to units. In the DF spectrum, each bar is equivalent to a measured
variable from a DF curve, integrated over all spectral frequencies.
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5.4.3 Analyses of Temporal Waveforms and Five Scalar Values, Normalised

The PCA outcome of both, temporal waveform data and scalar values, normalised to units showed
that there is a difference between UTTA (solid and open red diamonds) and able-bodied (solid
and open black circles) gait in PC2 (outcome number 1 and 3, Figure 5.8 a). In outcome number
1 the groups separated horizontally, i.e. they separated to the top and bottom of the graph and in
outcome number 3, they separated vertically, i.e. to the right and left of the graph. Similar results
were observed in the PCA analysis of temporal waveform data alone (Section 5.4.1), suggesting
that scalar values did not add any additional information to the discrimination procedure. The
Eigenspectrum of PC2 for the temporal waveforms (Figure 5.8 b) highlighted variables number
3, 17, 13 and 20, which corresponded to vertical GRF, sagittal knee joint angle, sagittal hip joint
moment, and sagittal ankle joint angle. The Eigenspectrum of PC for the scalar values (Figure 5.8
¢) highlighted variables number 3 and 5, which corresponded ankle net-work and ML MoS (For
the outcome of PCA on temporal waveform data and scalar values, which were not normalised

and with 7 scalar values see Appendix 2).
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Figure 5.8 PCA outcome (a) and Eigenspectrum (b, ¢) comparing between individuals with
UTTA and able-bodied individuals using temporal waveforms (b) and five scalar values (c),
normalised to units.
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The DFA outcome showed a classification between the gait of individuals with UTTA (solid and
open red diamonds) and able-bodied individuals (solid and open black circles) and between the
PROS and NONPROS limbs (Figure 5.8), similar to the classification of temporal waveform data
alone (Section 5.4.1, Figure 5.5 c). The DF spectrum for this analysis corresponded with previous
findings of individual analyses of temporal waveform data and scalar values, separately. The DF
spectrum of temporal waveforms highlights variables number 17, 4 and 3, which correspond to
sagittal knee joint angle, vertical GRF and medio-lateral GRF. The DF spectrum of the scalar
values highlights variables 1, 3 and 5, which correspond to step length, ankle joint net-work and
ML MoS. (For the outcome of DFA on temporal waveform data and scalar values, which were
not normalised and with 7 scalar values see Appendix 2).
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5.5 Discussion and Conclusion

The aim of this study was to establish differences between UTTA and able-bodied gait using PCA
and DFA providing a better understanding of LLA function. Differences in gait between the two
groups were found and attributed to vertical GRF, sagittal hip joint moment and sagittal knee joint
angle. The biomechanical variables measured in this study consisted of temporal-spatial, kinetic
and kinematic variables, which were commonly reported in the literature during the investigation
of forward progression and dynamic stability. These variables were chosen in particular because
the continuous interchange between mobility and stability is required for walking without the risk
of falling (Lakany, 2008) which is a common concern for individuals with LLA (Jayakaran et al.,
2012). Different analysis methods were explored to establish a technique, which would allow
important variables that differ between UTTA and able-bodied gait to be identified. The results
demonstrated that for this particular application of multivariate statistical analyses methods, PCA
on normalised temporal waveforms was the most suitable technique. However, there is not a
single method that is applicable to all data and applications, instead, the best performing algorithm
depends on the features of a data set (Harper, 2005).

In current methods, biomechanical variables were normalised to units, which was important as
reflected by the Eigenspectra and DF spectra. This is because, using the covariance approach
during PCA, the variables’ weightings depend on their magnitude. In biomechanics, a variable’s
magnitude may be small or large depending on the joint or muscle groups driving it. Thus,
investigating the difference between joints may incur bias if the difference between the two
groups is based on the absolute magnitude. Hence, during the assessment of biomechanical

variables using automatic gait recognition tools, normalisation of data should be incorporated.

In this study, different multivariate statistical analyses of PCA and PCA followed by DFA, have
been explored. Both methods identified differences between UTTA and able-bodied gait,
however, since DFA is a supervised algorithm it seeks out differences. During the treatment of
pathological gait, the aim is not to seek out differences but rather find naturally occurring
differences that could be treated. Therefore, using PCA alone is sufficient since it highlights
differences that occur in the gross structure of the data which can also be identified in the graphical
profile of temporal waveforms as highlighted in the current results. Differences in the detailed
structure may imply that an issue is present, however, these differences may not be easily

identified in graphical profile and thus may be more difficult to treat.

Although differences may be identified in the graphical profile of the temporal waveform and

traditional statistical approaches can be used to establish if a variable differs significantly between
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a group/condition, it is still advantageous to use PCA for a number of reasons: (1) Interpretation
of the graphical profile of temporal waveform and the selection of discrete parameters to perform
the statistical analysis are subject to researcher bias, whilst PCA is an objective measure. (2) Since
PCA can be used to analyse the entire temporal waveform, characteristics of biomechanical data
such as time-dependance, are considered which would otherwise be ignored if discrete parameters
were used to perform traditional statistical tests. (3) Although differences could be identified in
the graphical profile, PCA can be used to quantify these differences (as will be demonstrated in
Chapter 6) and different parts of the profile could be ranked in terms of variance using PC scores,
as demonstrated by Soares et al. (2016). (4) PCA enables many variables to be compared
simultaneously, and it does not only reveal if variables differ between groups/conditions as
traditional statistical approaches do, but it also ranks the variables in terms of variance as shown
in the Eigenspectrum of the current results. Thus in clinical applications it can provide an
indication of which variables need to be targeted.

The results of the PCA outcome revealed that the differences between the gait of individuals with
UTTA and able-bodied individuals were in PC2, indicating that PC1 does not necessarily always
hold the information of interest. Thus, although PC1 holds the majority of the variance of the
original data set, it cannot be expected that it contains the variables responsible for the
discrimination between experimental groups which is a common, yet false assumption. This
highlights the importance of the remaining PCs, as previously discussed by Phinyomark et al.
(2016). Having said that, variables in the first few PCs have larger weighting factors and
discriminating variables in lower ranked PCs have smaller weighting factors. Thus, similar to the
DFA outcome, discriminating variables in lower ranked PCs may be more difficult to identify in

2D plots of temporal waveforms.

The Eigenspectrum of the PCA with the biomechanical variables of normalised temporal
waveform data highlighted that in PC2 vertical GRF, sagittal knee joint angle and sagittal hip
joint moment were the main variables to cause a difference between the gait of individuals with
UTTA and able-bodied individuals. Soares et al. (2016) previously identified that the vertical
GRF discriminated in PC1 between the control limb and the prosthetic limb, while PC2
discriminated between the control limbs and both the intact and prosthetic limbs. The magnitude
of the vertical GRF was found to be much smaller on the prosthetic limb, which may have been
a protective mechanism to reduce loading on the residual limb. However, it should be noted that
the participants in the study by Soares et al. (2016) were individuals with UTFA, whilst in this

study, individuals with UTTA were investigated. The discrimination may have occurred at
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different PC since the level of amputation differed, i.e. fewer joints remain and thus larger

compensation was required.

The results showed that temporal waveforms provided more information since they span the entire
gait cycle compared to scalar values (Chau, 2001a). Previous studies suggest that continuous data
provide a better discriminatory approach relative to discrete parameters (Deluzio et al., 1997).
Schollhorn et al. (2002) found that one in every three discrete parameters (scalar values) is likely
to be misclassified. In this study, adding more scalar values to the analysis procedure did not
improve the outcome. It should be noted, however, that although additional variables did not
improve the classification outcome, one of the additional variables (speed) indicated
discriminatory properties between the gait of individuals with UTTA and able-bodied individuals.
Thus, the variables chosen during a discrimination procedure are of great importance. During the
analysis of scalar values alone using PCA, the prosthetic limb differed from the intact limb of the
individuals with UTTA and also the control limbs of the able-bodied individuals, but during the
analysis of temporal waveforms alone both prosthetic and intact limbs differed from the control
limbs. Using DFA did not only classify individuals with UTTA from the able-bodied individuals
but also clustered prosthetic and intact limb separately. Previous studies investigating LLA gait
using traditional statistics, reported similar findings, thus depending on the aims of a study,
researchers may prefer to use DFA in addition to PCA since it provides a greater discrimination

outcome.

The data in this study consisted of twenty temporal waveforms and seven scalar values of kinetic,
kinematic and GRF variables, and demonstrates the ability of automatic gait recognition tools
with large data sets. Previous research that compared between the gait of individuals with LLA
and able-bodied individuals using automatic gait recognition tools limited the investigations to
either kinematic, kinetic, GRF or EMG data (Miller et al., 2013), but recent studies demonstrated
that the classification of only Kinetic or kinematic variables alone might compromise the outcome
(Schéllhorn et al., 2002). Assessing many variables simultaneously is not only time efficient but
provides an instantaneous in-depth understanding, which can have great implications in clinical

applications.

Biomechanical variables chosen for this analyses were often reported in the literature for the
assessment of forward progression and dynamic stability, however, these variables were reported
in the sagittal plane only. Previous studies that used automatic gait recognition report that
variables from different planes have the potential to improve the classification results, thus
providing a more comprehensive understanding of pathological gait (Schéllhorn et al., 2002). For

example, studies report that the regulation of whole-body angular momentum is important to
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prevent falls, particularly in the frontal plane (Miller et al., 2018). Furthermore, anterior-posterior
CoM from the sagittal trajectory may provide more information regarding forward progression,
however, in the current study, similar to previous research, only vertical CoM displacement and
velocity were assessed, which were commonly reported for the assessment of dynamic stability.

Thus, variables from different planes of motion are worthy of inclusion in future analyses.

In this study, PCA was applied for data reduction and feature selection and DFA was applied for
classification and were found to effectively compare between UTTA and able-bodied gait. Other
studies have compared classification performance of different machine learning algorithms such
as SMV, ANN and NB in order to assess powered prosthetic devices (Afzal et al., 2017; Chen et
al., 2013; Joshi & Hahn, 2016; Khan et al., 2018; Miller et al., 2013; Pew & Klute, 2017).
Findings indicated that some methods provide better discrimination and classification than others.
Therefore, future research should explore the use of different machine learning algorithms to

investigate if these provide more information and thus a better understanding of LLA function.

In conclusion, investigating different techniques to compare UTTA and able-bodied gait in order
to provide a better understanding of LLA function, has demonstrated that using PCA to assess
normalised temporal waveforms of kinetic, kinematic and GRF data was an effective technique
to evaluate LLA gait. It was established that both prosthetic and intact limbs differed from control
limbs due to vertical GRF, sagittal knee joint angle and sagittal hip joint moment. This study
demonstrates the ability of automatic gait recognition as a powerful diagnostic tool in a clinical

setting.
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Chapter 6: Identifying Subject-Specific Gait Characteristics

of Individuals with Unilateral Trans-Tibial Amputation.

Bisele, M., Bencsik, M., Lewis, M.G., & Barnett, C.T. (2018) Should lower-limb amputee gait
be assessed at individual basis to improve function? In Proceedings of the 8" World Congress of

Biomechanics, Dublin, Ireland.
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6.1 Introduction

Gait analysis is used to diagnose, assess and monitor pathological gaits (Kirtley, 2006; Levine et
al., 2012) such as cerebral palsy (CP) (Novacheck et al., 2010), multiple sclerosis (MS),
Parkinson’s disease (Roiz et al., 2010; Svehlik et al., 2009) and other movement-related
pathologies. However, it is not common practice in the treatment of individuals with LLA
(Ramstrand & Brodtkorb, 2008). The treatment these individuals with LLA is influenced by
multiple factors including but not limited to the age of the individual and level of amputation
(Leung et al., 1996), making it difficult to predict therapy outcomes. Studies suggest that there
are no objective measures to evaluate prosthetic rehabilitation, but instead, it depends on
clinicians experience (van der Linde et al., 2004; Schaffalitzky et al., 2011). Gait analysis can
provide a greater understanding and inform clinical decisions more effectively (Esquenazi, 2014).
In individuals with LLA, it can help monitor prosthetic rehabilitation and therapy effectiveness
(Skinner & Effeney, 1985).

Research commonly focuses on group effects, whilst clinical practice is patient-specific, thus
research outcomes may not always be easily integrated into clinical practice (Schéollhorn et al.,
2002). During the assessment of group effects, individual differences among people within the
same group are not commonly investigated (Horst et al., 2017). Thus, even when group effects
are established, the individual variability within the groups remains unknown, making it difficult
to translate group effects from research into clinical practice. Hoerzer et al. (2015) refer to
“functional groups” which describes a group of individuals that share similar characteristics, SO
the response of these individuals to an intervention may be comparable. Although, participant
recruitment in research projects is based on certain inclusion/exclusion criteria, participants may
not necessarily fall into a “functional group”, making it difficult to apply findings to clinical

practice.

Using machine learning algorithms, studies found that individuals exhibit unique gait
characteristics (Horst et al., 2017; Schollhorn et al., 2002). These gait characteristics did not only
differ between individuals but also remained constant over weeks and even months for the same
participant (Horst et al., 2016; 2017). This suggests that using automatic gait recognition methods
such as machine learning algorithms, diagnosis and therapy procedures could be patient-specific,
which would help overcome challenges as the “best” interventions for the individual could be
predicted (Schéllhorn et al., 2006; 2010). This method has yet to be applied to LLA gait to
investigate whether individual gait characteristics can be identified. Therefore, the aim of this

study was to determine subject-specific gait characteristics of one individual with UTTA using
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PCA when compared to a group of able-bodied individuals. We hypothesized that (1) using PCA
an individual with UTTA could be discriminated from a group of able-bodied individuals and (2)
the Eigenspectrum would reveal subject-specific discrimination features that characterise the
UTTA’s gait.

6.2 Methodology

The methods used for this study were similar to those presented in Chapter 5. However the
analysis of the data differed, since the recommendations from the previous findings were
implimented (Section 5.5) and further analysis techniques using covariance and correlation

matrices in PCA, were explored.

6.2.1 Participants

A convenience sample of eleven individuals with UTTA (age 50+12years; height 1.7+0.1m; mass
83.94+13.59kg) and thirty able-bodied individuals (age 39+20years; height 1.7+0.1m; mass
73.76+14.02kg) were recruited from the university and local communities. All participants met
the inclusion and exclusion criteria detailed in Section 3.2.2. Ethical approval was granted by the
Nottingham Trent University’s College of Science and Technology Ethical Review Committee
(Humans), the NHS Research Ethics Committee, the NHS Health Research Authority and the
NHS Research and Development. All participants provided written informed consent prior to

participation.

6.2.2 Experimental Design and Data Acquisition

The study investigated individuals with UTTA and able-bodied individuals at self-selected
walking speed. Upon arrival, the participants were briefed. All activities were completed with
participants wearing lycra shorts and everyday shoes. Individuals with UTTA used their habitual
prosthesis (Table 3.1). To obtain kinematic measurements 70 spherical 14mm, reflective markers
were placed directly onto the skin or clothing using bi-adhesive tape, defining head, arms, trunk
(Leardini et al., 2011) and lower limb segments (Cappozzo et al., 1995) (for marker placement,
refer to Section 3.3.3). Marker placement on the prosthetic limb was estimated depending on

marker placement of the intact limb (Powers et al., 1998).

A static trial was obtained for segment definition, followed by the dynamic trials. First, the
participant’s starting position was defined, to ensure that force platform data was obtained as the
participant walked along the walkway. During dynamic trials, participants walked at a self-

selected speed along a 15m walkway. This process was repeated until five successful trials were
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collected for both limbs, where GRF was measured at 1000Hz using a single floor-mounted strain
gauge force platform (AMTI, Watertown, MA, USA) and kinematics were measured at 100Hz
using a nine-camera motion capture system (Qualisys, Gothenburg, SE). A successful trial was

defined by a clear force plate contact.

6.2.3 Data Processing

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3. and
trial start and end periods were adjusted to one gait cycle of each limb starting at heel strike on
the force platform. Marker trajectories and force data were exported as .c3d files and subsequently
processed in Visual3D v5 (C Motion, Inc., Germantown, MD, USA). Kinematic data were
interpolated using a cubic-spline algorithm with kinematic and GRF data being subsequently
filtered using 4™ order, zero-lag Butterworth low-pass filters with 6Hz and 30Hz cut-off
frequencies, respectively. All data were normalised to one gait cycle. Medial and lateral
landmarks defined anatomical frames from which segment coordinate systems were defined
following the right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction
and longitudinal Cardan rotation sequence was used to define the order of rotations to calculate
joint kinematics. Gait events of heel strike and toe off were determined using kinetic and
kinematic event detection algorithms (Stanhope et al., 1990; Zeni et al., 2008) (Section 3.3.5).
Twenty biomechanical variables which are typically reported in the literature for forward
progression and dynamic stability were included in the analysis (Table 3.25) since the continuous
interchange between mobility and stability are essential for efficient walking (Lakany, 2008). The
biomechanical variables were computed in Visual3D (C-Motion, Inc, Germantown, USA).
Processed data were exported from Visual3D as .c3d files, and individual signals were imported
to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis.

6.3 Multivariate Statistical Analysis

6.3.1 Principal Component Analysis using both Covariance and Correlation
Matrices

Principal Component Analysis was applied (for data reduction and feature selection) to compare
between the gait of one individual with UTTA and a group of thirty able-bodied individuals.
Twenty temporal gait waveforms (Table 3.25) were reported for each limb, i.e. the prosthetic limb
(PROS) and intact limb (NONPROS) of the individual with UTTA, and the control limbs (RIGHT
and LEFT) of the able-bodied individuals. PCA was conducted by means of the diagonalization

of the covariance matrix (a) and the correlation matrix (b).
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The weightings of variables of the covariance matrix depend on their magnitude as described in
Chapter 5 Section 5.3.1. Hence, using the covariance matrix, variables have been normalised
depended on the variables’ units, i.e. variables with the same unit were scaled to their own specific
maximum. The correlation matrix is obtained by normalising the covariance matrix to the
standard deviation of the data. During this normalisation procedure, variables with different
variances (or dynamic ranges) are made equivalent. Although this can sometimes be considered
to be a ‘fairer' way of dealing with large complex data, it will bring forward the contribution of
parameters that may exhibit small and irrelevant variations at the same level to those parameters
that are potentially far more important. In instances where variation in the data is a valued aspect
of discrimination, the covariance method is better suited to identifying differences between groups
(Tinsley & Tinsley, 1987). Using the two different PCA approaches, the varying normalisation
procedures will be reflected in the results.

Comparing between one individual with UTTA
and a group of able-bodied individuals.

v

Waveform

T

Covariance matrix Correlation matrix
(normalised)

Figure 6.1 Temporal waveform data from one individual with UTTA and a group of able-bodied
individuals will be compared using both, the covariance or the correlation matrices during PCA.

The input matrix M, was comprised of data from one individual with UTTA and thirty able-bodied
individuals Therefore, the original 3D matrix was 101 x 20 x 62 points since one mean trial was
made of 20 columns (variables) and 101 row vectors (101 data points which are equivalent to
100% of gait cycle) and the total number of limbs were 62 (the prosthetic and intact limbs of the
individual with UTTA and 60 control limbs of able-bodied individuals). The 2D matrix was 2020
x 62, which was further reduced to 62 x 62 using PCA.
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6.3.2 Euclidean Distances Defining Limb Variation

The distances (in PC score space) of each limb location to the origin (Figure 6.2 a) and to the
cloud centre (Figure 6.2 b), were calculated to provide a measure of how different an individual
limb is from these averages. The origin of PC scores coordinates is the mean value. During
orthogonal transformation from the original variables into principal components, the new set of
axes with rank '1', PC1, holds the maximum variance of the original data and all other axes (with
PC ranks higher than 1) are orthogonal to that particular axis (and to each other). Therefore,
depending on the PC rank under scrutiny, the relationship between limb location and axes will
vary, and this was quantified using the Euclidean distance. This measure identifies whether a
particular limb varies from the average and by how much. For example, in the second dimension,
PC2, the intact and prosthetic limbs of participant X differed from the average by 2 standard
deviations (2SD), whilst the control limb of participant Y varied from the average in PC4 by 2SD.
The distance (in PC score space) from each limb relative to the control limbs cloud centre was
also measured using the Euclidean distance using 20 ranks, indicating the difference of individual
limbs relative to the average of all control limbs, since the cloud centre was quantified only using
control limbs. Thus, the former measure is important because it indicates where a particular limb
differs from the mean and by how much, whilst the latter measure is also important since it
indicates how a particular limb differs with regards to all other control limbs. The normal

distribution of the data was assessed using Kolmogorov-Smirnov test.
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Figure 6.2 Quantification of the distance, in PC score space, of individual limbs to (a) the origin
and (b) the control limbs cloud centre using Euclidean distances. The origin of the red and blue
axes in (a) and (b) respectively shows where the distances are measured to. The PROS and
NONPROS limbs are illustrated by full and open red diamonds and the LEFT and RIGHT control
limbs are illustrated by full and open black circles. The distance from the average is measured in
terms of SD (dashed green lines).
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6.4 Results

The PCA outcome differed for both the correlation matrix and the covariance matrix (Figure 6.3
a and b) and differed for each individual with UTTA. Below is an example of the data for the
individual with UTTA number 1. For all results of each individual with UTTA see Appendix 3.
Figure 6.3 (a) shows the PCA outcome for the individual with UTTA when compared to the able-
bodied individuals using covariance matrix on data normalised to units. The PCA outcome is
shown in four different views between two dimensions each, where a dimension is made up of a
PC component. The individual with UTTA differed from the group of able-bodied individuals in
PC2 (outcome number 1 and 3). The PROS and the NONPROS limbs (solid and open red
diamonds) sat at the edge of the cloud constituted of RIGHT and LEFT control limbs (solid and
open black circles). In PCA outcome number 4, the PROS limb differed from the control limbs,
whilst NONPROS limb was embedded within the cloud of control limbs. This demonstrated that
in some instances only one of the limbs of the individual with UTTA differed not necessarily
both. Therefore, the PC2 (Eig. rank 2 in Figure 6.3 a) holds discriminating features for both the
PROS and NONPROS, whilst PC4 (Eig. rank 4 in Figure 6.3 a) holds discriminating features of
PROS limb only. Similar to the previous study in Chapter 5, a difference did not occur in every
dimension (PCs 1 and 3). In order to establish which biomechanical variables resulted in the
difference between the individual with UTTA and the group of able-bodied individuals, the
average Eigenspectra for the first four PCs are displayed in Figure 6.3 (b). The biomechanical
variables included in the procedure are displayed in decreasing order of contribution to the
discrimination, larger bars indicated larger contribution. Since the covariance matrix revealed that
the PC2 discriminated between the individual with UTTA and the able-bodied individuals, the
second Eigenspectrum is investigated (Eig. rank 2 in Figure 6.3 b), where the greatest contributors
were variable numbers 14, 13 and 10 which corresponds to sagittal hip joint angle, sagittal hip
joint moment and vertical CoM displacement. Furthermore, PC4 showed that the PROS limb
differed from the control limbs, where variable numbers 7, 4 and 17 were responsible for the
discrimination, which corresponded to medio-lateral CoM velocity, medio-lateral CoP

displacement and sagittal knee joint angle.

Figure 6.3 (c) shows the PCA outcome for the individual with UTTA number 1 using the
correlation matrix. The individual with UTTA did not differ from the able-bodied individuals
when using the correlation matrix. Thus, the variables displayed in the Eigenspectrum of different
PCs did not reveal any discriminatory features that provided any additional information. As
previously mentioned, the different result between the covariance and the correlation matrices

can be expected since the normalisation procedure between the two PCA approaches differed.
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Figure 6.3 PCA outcome (a, c¢) and Eigenspectra (b, d) comparing between the gait of the
individual with UTTA number 1 and a group of able-bodied individuals using the

covariance (a, b) and the correlation (c, d) approaches.

b —

No. Temporal Waveforms of Biomechanical Variables
Anterior-posterior GRF

Medio-lateral GRF

3 Vertical GRF

4 Anterior-posterior CoP displacement
5 Medio-lateral CoP displacement
[ Vertical CoP displacement
Anterior-posterior CoP velogity
Medio-lateral CoP velocity

9 Vertical CoP velocity

10 Vertical CoM displacement

11 Vertical CoM velocity

12 Sagittal hip joint power

13 Sagittal hip joint moment

14 Sagittal hip joint angle

15 Sagittal knee jomt power

16 Sagittal knee joint moment

17 Sagittal knee joint angle

18 Sagittal ankle joint power

19 Sagittal ankle joint moment

20 Sagittal ankle joint angle
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Comparing between the gait of one individual with UTTA and the group of able-bodied
individuals, the PCA outcome for each individual with UTTA varied (Table 6.1). For example,
using the covariance approach both PROS and NONPROS limbs of individual number 1 differed
in PC2 and the PROS limb differed in PC4 (Figure 6.3 a), but for individual number 2 only the
PROS limb differed from control limbs in PC1 instead of both limbs in PC2 (Figure 6.4 a). Again,
using the correlation approach individual number 1 did not differ from able-bodied individuals
(Figure 6.3 c), however, in individual number 2 the PROS limb differed in PC2 (Figure 6.4 c).
Furthermore, the variables responsible for the differences between the individuals with UTTA
and able-bodied individuals varied, indicating that each of the individuals with UTTA displays
unique gait characteristics.

The PCs that held the main discriminating features varied between individuals with UTTA.
Nevertheless, the Eigenspectra corresponding to these PCs illustrated some common
discriminating features among individuals (Table 6.1). The discrimination features, which
occurred most commonly in both the covariance and the correlation approaches were sagittal hip
joint moment (discriminating variable number 13) and sagittal hip joint angle (discriminating
variable number 14). Other discriminating features were unique to one individual with UTTA and
did not appear in the Eigenspectrum of many or any other individuals, for example, the sagittal

ankle joint angle in individual number 11.

Table 6.1 PCs in which the prosthetic and intact limbs (PROS and NONPROQOS, respectively) of
one individual with UTTA were discriminated from the control limbs (RIGHT and LEFT) of a
group of able-bodied individuals using the covariance or the correlation approach during the PCA
and the number corresponding to the top 3 variables attributed to the difference. The variables
corresponding to these numbers are detailed in Table 3.25.

Individual Covariance Matrix Discriminating Correlation Matrix  Discriminating
No. Variables Variables

1 Both limbs in PC2 14, 13,10 No discrimination -

2 PROS limb in PC1 13, 19,15 PROS limb in PC2 13,12, 16

3 PROS limb in PC1 13,19,3 PROS limbinPC2  2,13,16

4 PROS limb in PC1 13,15, 16 PROS limb in PC2 13,15, 12

5 Both limbs in PC1 14,17, 10 Both limbs in PC1 14,17, 11

6 PROS limb in PC2 14, 13,15 No discrimination -

7 Both limbs in PC1 14,13,3 Both limbs in PC1 10, 14,5

8 Both limbs in PC1 14,13, 15 PROS limb in PC2 14,13, 15

9 No discrimination - No discrimination -

10 NONPROQOS limb in PC1 13,3,15 No discrimination -

11 PROS limb in PC1 13,14, 19 Both limbs in PC3 4,20,10
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Figure 6.4 PCA outcome (a, ¢) and Eigenspectra (b, d) comparing between the gait of the

individual with UTTA number 2 and a group of able-bodied individuals using the
covariance (a, b) and the correlation (c, d) approaches.

Temporal Wavelorms ol Biomechanical Variables
Antetior-posterior GRF
Medio-lateral GRF

Vertical GRI

Auterior-postetior CoP displacement
Medio-lateral CoP displacement
Vertical CoP displacement
Anterior-posterior CoP velocity
Medio-lateral CoP velocity

Vertical CoP velocity

Vertical CoM displacement

Vertical CoM velocity

Sagittal hip joint power

Sagittal hip joint moment

Sagittal hip joint angle

Sagittal knee joint power

Sagittal knee joint moment

Sagittal knee joint angle

Sagittal ankle joint power

Sagittal ankle joint moment

20 Sagittal ankle joint angle
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From the PCA outcome of the individual with UTTA number 1 using the covariance approach, it
was established that both PROS and NONPROS limbs differed in PC2. The average
Eigenspectrum of PC2 revealed which variables were responsible for this difference. In order to
quantify the relative difference between the PROS and NONPROS limbs from the control limbs,
the Euclidean distance of each limb to the PC origin (0,0) was measured. In Figure 6.5 the standard
deviation (SD) is shown by the dashed lines, where outer lines represent 2SD from the (0,0). If
PROS and NONPROS limbs fall within £2SD, they are considered close to average, and if they
are outside of 2SD, they are considered to be outside the normal range. The red bell curve shows
the distribution of data and is purely for graphical purposes.
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Figure 6.5 The distance of individual limbs from the origin (0,0) of PCA outcome in the first four
dimensions for (a) the covariance and (b) the correlation approach. The four graphs for each
approach correspond to PCs, where top left is PC1, top right PC2, bottom left PC3 and bottom
right PC4. The x-axis is 1D dimension, indicating the distance in that particular dimension from
(0,0), whilst the y-axis describes the number of limbs occurring at that particular distance. The
PROS and NONPROS limbs are shown by the solid and open red diamonds.
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Since the PCA outcome illustrated that the PROS and NONPROS limbs differed for the control
limbs in PC2 using the covariance approach, it was expected that the Euclidean distance measured
for the limbs in PC2 would be 2SD away, which was reflected in the results (PROS = 15.96;
NONPROS = 18.51) (Figure 6.5 a). The Euclidean distance measured, revealed a greater
difference for the NONPROS limb relative to the control limbs when compared to the PROS limb.
Furthermore, since PC4 showed the PROS limb to differ from the control limbs whilst NONPROS
limb was embedded within the cloud, the Euclidean distance measure revealed that the PROS
limb lied outside 2SD (PROS = -10.15) and the NONPROS limb within 2SD (NONPROS = -
1.35). For all the dimensions that did not show a difference between the individual with UTTA

number 1 and able-bodied individuals the limbs were within £1 or +2 SD (Figure 6.5 a and b).

The distance of each limb to the centre of the cloud of control limbs was also measured using the
Euclidean distance (Figure 6.6). The x-axis in Figure 6.6 shows the distance to the cloud centre
(where zero is the centre) whilst the y-axis is the number of occurrences of the limbs at a particular
distance. Similar to other measurements, the PROS and NONPROS limbs are represented by the
solid and open red diamonds, respectively. The SD is shown by the dashed lines, where outer
lines represent 2SD from the centre of the cloud. If the PROS and NONPROS fall within the 2SD,
they were considered within normal range of the control limbs, and vice versa. The red bell curve
shows the distribution of data and is purely for graphical purposes. Figure 6.6 shows that for the
covariance matrix (a), the PROS limb lies 1SD away, and the NONPROS lies 2SD away
compared to the remainder of the control limb, i.e. the NONPROS differed more than the PROS
relative to the average of control limbs. With regards to the correlation matrix (b), both limbs fall
between 1SD to 2SD of the control limbs, i.e. the individual with UTTA did not differ from the
able-bodied individuals. For all results of each individual with UTTA see Appendix 3.
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Figure 6.6 Euclidean distance of limbs from the cloud centre using (a) the covariance and (b) the
correlation approach. The x-axis indicates the distance from the cloud centre, where the zero value
represents the cloud centre. The y-axis defines the number of limbs that occur at that particular
distance.
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6.5 Discussion and Conclusion

The aim of this study was to determine subject-specific gait characteristics of one individual with
UTTA using PCA when compared to a group of able-bodied individuals. The first hypothesis that
using PCA could discriminate the gait of one individual with UTTA and a group of able-bodied
individuals was supported. The majority of individuals with UTTA were discriminated from the
group of able-bodied individuals using the covariance and correlation approaches when compared
individually. However, a few were not discriminated, which may be attributed to the strong
similarity between their gait and that of able-bodied individuals, perhaps because these
individuals were well-established and had at least a year’s worth of experience walking with a
prosthetic limb. Furthermore, the PCA outcome varied, i.e. in some instances the prosthetic limb,
intact limb or both limbs of the individual with UTTA were discriminated from the control limbs.
Both limbs were not necessarily discriminated in all instances. These findings could be due to
compensatory mechanisms adopted on each limb, i.e. if both limbs adopt compensatory
mechanisms, which differ from control limbs, it can be expected that the variables between both
the limbs of the UTTA differ from the control limbs of able-bodied individuals. However, if only
one limb adopts compensatory mechanisms in order to generate a gait for the alternative limb
similar to a control limb, only the limb with the compensatory mechanism will display different

biomechanical variables.

The second hypothesis that the Eigenspectrum would reveal subject-specific discrimination
features that characterise the gait of an individual with UTTA was also supported. The
Eigenspectrum revealed discriminating features corresponding to each individual, of which some
were common between individuals and others were specific to the particular individual, indicating
that there are some generic features among individuals with UTTA but also subject-specific
features, characterising unique gait. Previous research indicated that individual gait characteristics
could be identified (Horst et al., 2016; 2017; Schéllhorn et al., 2002), but may be compromised
by (a) the type of data e.g. discrete parameters rather than temporal waveforms, (b) single type of
variables rather than a combination of variables e.g. only kinetic or kinematic rather than kinetic
and kinematic data, and (c) the inclusion of multiple conditions in the same discrimination
procedure (Schoéllhorn et al., 2002).

The outcome of this study also supports the idea of a “functional group” as defined by Hoerzer et
al. (2015), since some discrimination features could be identified for a number of individuals with
UTTA. These may be the consequence of the study’s inclusion/exclusion criteria that specify the

selection of the individuals with UTTA. In the literature, group responses have been attributed to
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characteristics such as gender, anthropometrics, and age (Begg and Kamruzzaman, 2005), and are
reflected in gait similarities (Hoerzer et al., 2015). Individuals recruited for the experimental
group of this study all had a UTTA and had used a prosthesis for at least a year after inpatient
treatment. Furthermore, individuals had to be able to walk for three-minute periods at once whilst
they are free from pain or other musclo-skeletal disorders. These traits can all contribute to the
commonality across individuals. However, the individuals with UTTA may not necessarily have
fallen into common functional groups, since other factors influence their gait such as the time
since amputation, the cause of amputation and the prosthetics used.

The discrimination between an individual UTTA and the group of able-bodied individuals did not
always occur in the first PC and occasionally occurred in the second or even in lower ranked PCs.
In some instances, discrimination would occur in multiple different PCs, and the discrimination
was for either the prosthetic, the intact or both limbs. Thus, the Eigenspectra would reveal
discriminatory features for either one of the limbs or both limbs. Similar to findings of Chapter 5,
although PC1 holds the greatest variance, it does not necessarily hold a particular feature of
interest, as previously been reported by Phinyomark et al. (2015). Principal components as low
as numbers 5 and 6 revealed discrimination features, however, these PCs hold features with small

weighting factors relative to higher PCs such as 1 and 2.

Two different approaches of PCA were used in this study, i.e. correlation and covariance matrices.
The results of the approaches differed, which was expected due to differences in the normalisation
procedures. The covariance approach describes the outcome depending on the variance within
variables whilst the correlation approach describes the outcome depending on the magnitude of
variables. Previous studies that refer to both approaches do not explain the advantages of using
one method over the other (Badesa et al., 2014; Chau, 2001a; Daffertshofer et al., 2004). From
the result of this study, it was established that depending on the application, one may choose one
method over the other, but both reveal important information and thus there is no ‘ideal” method,
only one that fits the purpose. In this study, in some cases, individuals with UTTA were
discriminated by both matrices, in other cases, discriminating features only occurred in one matrix
but not the other. Thus, where possible both approaches should be explored since differences may

be due to the variance or the magnitude of certain variables.

The most common discriminating features revealed among individuals with UTTA were sagittal
hip joint moment and hip joint angle. In Chapter 5, during the discrimination between a group of
individuals with UTTA and a group of able-bodied individuals, sagittal hip joint moment was also
identified as a discriminating factor, but sagittal hip joint angle was not. Previous studies found

that the sagittal hip moment of individuals with LLA is twice as large as that of able-bodied
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individuals during heel strike (McNealy & Gard, 2008). Also, a large eccentric flexor moment in
the hip joint was identified during the late-mid stance phase (Lemaire et al., 1993). Similar results
are shown in this study, but moreover, this study has indicated the magnitude of ‘importance’ of
any one variable. Furthermore, whilst previous studies have revealed that variables different
between experimental groups, only a few variables were included during the analysis, in this
study, however, a wide range of variables were explored. This indicates that the automatic gait
recognition tool can be used to explore a wide range of variables simultaneously, revealing

instantly more information.

As recommended by study 2 discussed in Chapter 5, the analysis was conducted by means of an
unsupervised search algorithm, i.e. PCA, to investigate variables that naturally differ between one
individual with UTTA and a group of able-bodied individuals rather than seeking out difference
through the use of a supervised algorithm. Furthermore, continuous gait data was used in the form
of temporal waveforms, which have been normalised to 100% of the gait cycle. From research,
presented in Chapter 5 and other previous research (Deluzio et al., 1999), temporal waveforms
provide more information compared to scalar values and enable a more comprehensive and

reliable discrimination procedure.

Previous research reports that the greatest discrimination at an individual level was observed when
continuous data (temporal waveforms) of multiple variables (kinematics, forces and joint
moments) in different planes of motion were analysed together (Schéllhorn et al., 2002). In this
study, similar to the one presented in Chapter 5, the data set considered different gait variables,
which were commonly reported in the literature for forward progression and dynamic balance.
Thus, the number of variables were limited to the sagittal plane, with a few exceptions such as
the GRF. The lack of incorporation of variables from multiple planes of motion may have
compromised the discrimination outcome. Thus, in future studies, variables from all anatomical
planes should be included in the analysis since these may not only yield greater discrimination
results but also provide a better understanding of gait as a wider spectrum of data would be

investigated.

In conclusion, an individual with UTTA displays subject-specific gait characteristics which can
be identified using PCA. Also, there are certain characteristics which are common in a group of
individuals with UTTA. Furthermore, both the covariance approach (with normalised data to
units) and the correlation approach can reveal important information, and so where possible both

analyses methods should be implemented.
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7.1 Introduction

A detrimental, functional limitation of LLA gait is impaired stability and control of balance
(Jayakaran et al., 2012). Individuals with LLA are known to fall more often relative to age-
matched able-bodied individuals (Miller et al., 2001a; b), which has been attributed to
compromised dynamic balance and stability. Because of a high falling incidences, these
individuals often develop a fear of falling which consequently prevents them from taking part in
everyday activities (Miller et al., 2001a). Although falling is a significant problem (Jayakaran et
al., 2012), the underlying mechanisms of it are still not well understood (Curtze et al., 2010).

Walking is an unstable system, which can be stabilised through active control (Hof et al., 2007).
Individuals with LLA are known to walk with a lower speed, lower step frequency and higher
step width relative to able-bodied individuals (Hak et al., 2013c) and they have been shown to
adopt compensatory mechanisms similar to able-bodied individuals in order to regulate stability

by adjusting step parameters (Bolger et al., 2014).

The Mos is a measure of stability, which is quantified by the distance between the CoM motion
state (i.e. position and velocity) relative to the BoS. In response to a decrease in dynamic stability,
individuals with LLA and able-bodied individuals have shown to increase BW and ML MoS,
permitting greater stability (Hak et al., 2013a; b; ¢; Hak et al. 2015). In response to continuous
perturbations through a translating walking surface (Hak et al., 2012; Hak et al., 2013c),
individuals with LLA and able-bodied individuals, both increased step frequency and step width,
decrease step length and kept walking speed constant, which consequently increased BW MoS
and ML MoS in an attempt to regulate stability more effectively (Hak et al., 2013c). In a gait
adaptability task, both groups decreased step length and increased step width, but did not change
step frequency and step walking speed. As a result, BW MoS and ML MoS did not change (Hak
et al., 2013c). The BW MoS was found to be smaller for individuals with LLA relative to the
able-bodied individuals, which was attributed to their naturally slower self-selected speed (Hak
et al., 2013c).

Compensatory mechanisms in individuals with LLA are known to result in asymmetrical gait,
which is typically viewed as unwanted, since it is associated with secondary health issues such as
lower back pain (Kulkarni et al., 2005) and arthritis in the intact hip and knee joints (Burke et al.,
1978). Thus, during prosthetic rehabilitation, a more symmetrical gait is often sought to minimise
these secondary issues. Previous research, however, suggests that asymmetrical step parameters,
such as step length may play a functional role (Hak et al., 2014). Generally, individuals with LLA

were found to have a shorter step length on the intact limb relative to the prosthetic limb (Barnett
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et al., 2009; Isakov et al., 1996; Mattes et al., 2000; Zmitrewicz et al., 2006), which has been
attributed to reduced push-off capacity on the prosthetic limb (Houdijk et al., 2009; Zmitrewicz
et al., 2006). Hak et al. (2014), however, found that the shorter step length on the intact limb
contributes to a larger BW MoS at heel strike of the intact limb. The lack of ankle push-off on the
prosthetic limb during the double support phase decreases the CoM velocity limiting the increase
of BW MoS during this phase. Thus, a smaller distance between the leading foot and the CoM is
needed to compensate for the limited increase in BW MoS and to decrease the risk of interrupting
forward progression. Therefore, in well-established individuals with LLA, temporal-spatial
asymmetry aids MoS to be maintained stable (Bolger et al., 2014; Hak et al., 2014). However,
the effects of symmetrical gait on stability, which is often desired during prosthetic rehabilitation,
are unknown. Therefore, the primary aim of this study was to identify the effects of attempting
temporal-spatial symmetry on the dynamic stability of individuals with UTTA and the secondary
aim was to understand the biomechanical function of gait when attempting temporal-spatial
symmetry.

7.2 Methodology

7.2.1 Participants

A convenience sample of eleven individuals with UTTA (age 50+12years; height 1.7+£0.1m; mass
83.94+13.59kg) were recruited from the university and local communities. All participants met
the inclusion and exclusion criteria detailed in Section 3.2.2. Ethical approval was granted by the
Nottingham Trent University’s College of Science and Technology Ethical Review Committee
(Humans), the NHS Research Ethics Committee, the NHS Health Research Authority and the
NHS Research and Development. All participants provided written informed consent prior to

participation.

7.2.2 Experimental Design

Participants visited the biomechanics laboratory on two occasions to collect measurements for
four conditions; walking at self-selected speed (NORM), walking with attempted symmetrical
step length (SYMsy), walking with attempted symmetrical step frequency (SYMsg), and walking
with both attempted symmetrical step length and step frequency (SYMsc+se). During visit 1,
participants walked along a 15m walkway collecting data for the NORM condition. During visit
2, habitual step length and frequency derived from visit 1 were manipulated, so that individuals
with UTTA walked at attempted symmetries. The manipulations for visit 2 were calculated using

(7.1) and (7.2). For the ‘new’ symmetrical step length, insulating tape was used to mark the
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measurements on the floor, and for the ‘new” symmetrical step frequency a metronome was used.

The conditions during visit 2 were randomised across participants.

SLg + SL, (7.1)

SLeym = 2

Where:
SLsym = symmetrical step length
SLr and SL. =right and left step length, respectively

SFr + SF, (7.2)

SFsym = 2

Where:
SFsym = symmetrical step frequency
SFr and SF._ = right and left step frequency, respectively

7.2.3 Data Acquisition

Upon arrival, the participants were briefed. All activities were completed with participants
wearing lycra shorts and everyday shoes. Individuals with UTTA used their habitual prosthesis
(Table 3.1). To obtain kinematic measurements 70 spherical 14mm, reflective markers were
placed directly onto the skin or clothing using bi-adhesive tape, defining head, arms, trunk
(Leardini et al., 2011) and lower limb segments (Cappozzo et al., 1995) (for marker placement,
refer to Section 3.3.3). Marker placement on the prosthetic limb was estimated based on marker

placement of the intact limb (Powers et al., 1998).

A static trial was obtained for segment definition, followed by the dynamic trials. First, the
participant’s starting position was defined, to ensure that force platform data was acquired as the
participant walked along the walkway. For visit 1, during dynamic trials, participants walked at a
self-selected speed along a 15m walkway (Figure 7.1 a). This process was repeated until five
successful trials were collected for both limbs, where a successful trial was defined by a clear
force plate contact. For visit 2, during attempted SY Ms, participants were asked to land with their
heel on the tape markings for each step (Figure 7.1 b). The tape was placed along the 15m
walkway at a set length as defined by Equation (7.1). During attempted SY Mg, the metronome’s
frequency was defined by Equation (7.2) and participants were asked to take a step with each
sound when walking along the 15m walkway (Figure 7.1 c). Finally, during attempted SY Ms_+sr,

participants were required to take a step and land with the heel on the tape every time the
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metronome sounded (Figure 7.1 d). Each condition was repeated until five successful trials were
collected for each limb. Ground reaction force (GRF) was measured at 1000Hz using a single
floor-mounted strain gauge force platform (AMTI, Watertown, MA, USA) and kinematics were

measured at 100Hz using a nine-camera motion capture system (Qualisys, Gothenburg, SE).

15m walkway

Asyvmmetrical step length during self-selected walking speed
- Lan
a) Visit1, (- - -] (-] () -
NORM (- (- (- (- [
Force-plate
b) Visit 2. - - - - - -
SYMg; - - - - (-
¢) Visit2, (- (- (- - (-
SYMg; (- (- (- [ (-
Metronome mdicating
symmetrical step frequency
Tape on floor marking symmetrical step length
d)  Visit 2. - - - - - -
SYMsp.sp ‘ - (- - - -

Figure 7.1 Data acquisition method. Data for four conditions were measured during two visits:
NORM (a), SYMs. (b), SYMsr () and SYMsi+sk (d). The green and the blue ovals show feet
placements. Abbreviations are walking at self-selected speed (NORM), walking with attempted
symmetrical step length (SYMs), walking with attempted symmetrical step frequency (SYMsg),
and walking with both attempted symmetrical step length and step frequency (SYMsLsk).

7.2.4 Data Processing

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3. and
trial start and end periods were adjusted so that the maximum number of gait cycles of both limbs
were captured. Marker trajectories and force data were exported as .c3d files and subsequently
processed in Visual3D v5 (C Motion, Inc., Germantown, MD, USA). Kinematic data were
interpolated using a cubic-spline algorithm with kinematic and GRF data being subsequently
filtered using 4" order, zero-lag Butterworth low-pass filters with 6Hz and 30Hz cut-off
frequencies, respectively. All data were normalised to one gait cycle. Medial and lateral
landmarks defined anatomical frames from which segment coordinate systems were defined
following the right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction

and longitudinal Cardan rotation sequence was used to define the order of rotations to calculate
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joint kinematics. Gait events of heel strike and toe off were determined using kinetic and
kinematic event detection algorithms (Stanhope et al., 1990; Zeni et al., 2008) (Section 3.3.5).
Twenty seven biomechanical variables which are typically reported in the literature for forward
progression and dynamic stability were included in the analysis (Table 3.25 and Table 3.26) since
the continuous interchange between mobility and stability are essential for efficient walking
(Lakany, 2008). The biomechanical variables were computed in Visual3D (C-Motion, Inc,
Germantown, USA). Processed data were exported from Visual3D as .c3d files, and individual
signals were imported to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis.

7.2.5 Statistical Analysis

Two statistical analyses were performed. To answer the primary aim of this study a two-way
repeated measure analysis of variance (ANOVA) was used and to answer the secondary aim of
the study PCA was used. The ANOVA was used to assess the difference between the four
conditions (NORM, SYMs., SYMsr, SYMsi+s¢) and the two limbs (PROS and NONPROS) for
BW MOS, ML MOS, step length, step frequency, step width and speed. The normality of all the
data was assessed using the Shapiro — Wilk Test of Normality (P > 0.05). All statistical analyses
were conducted in IBM SPSS v.24 (IBM, Portsmouth, UK). Where the assumption of sphericity
was violated, a Greenhouse-Geisser correction factor was applied to control for Type | errors
(Field, 2013). Effect sizes (partial eta squared) were calculated for each statistical comparison,
and posthoc comparisons of significant effects were conducted using the Bonferroni adjustment
when statistical significance was identified between conditions/limbs for any of the given
variables analysed (Vincent & Weir, 2012). The alpha level () of statistical significance was set

at p < 0.05. During this analysis data from, all eleven individuals with UTTA were assessed.

During the second statistical analysis the effect of the conditions on twenty biomechanical
variables (Table 3.25) were assessed using PCA. Both the covariance and the correlation
approaches were used as recommended in Chapter 6, since the covariance matrix identifies the
differences with regards to variation, whilst the correlation matrix identifies the differences with
regards to magnitude. During this analysis, only data from seven individuals with UTTA were
assessed. This was due to missing data form four of the individuals. The analyses were conducted

as follows:

(1) All individuals with UTTA at NORM were compared to one individual with UTTA during
either SYMsi, SYMsror SYMs+sk.

(2) All individuals with UTTA at NORM were compared to all individuals with UTTA during
either SYMsi, SYMsror SYMs+sk.
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(3) All individuals with UTTA at NORM were compared to all individuals with UTTA during

all conditions.

Procedure (3) comparing all individuals with UTTA at NORM with all individuals with UTTA
during all other conditions yielded the best discrimination outcome and thus are presented in the

results below. For results of procedures (1) and (2) see Appendix 4.

7.3 Results

7.3.1 Effects of Attempted Symmetry on Backward and Medio-lateral Margin of
Stability

The BW MoS (a) and ML MoS (b) relative to the four conditions (NORM, SYMsi, SYMse,
SYMsissr) are illustrated in Figure 7.2. The BW MoS of each limb appeared to increase/decrease
depending on the condition, but the symmetry/asymmetry that exists between the limbs was
preserved. These results could also be observed in the PCA outcome (Figure 7.3 and Figure 7.4)
since individual conditions were not separated but instead clustered, possibly because of the
preserved symmetry/asymmetry in the data.

The BW MoS showed a significant difference with a large effect size between PROS and
NONPROS limbs (F(1,10) = 11.44, p = 0.007, n; = 0.534). The PCA outcome also highlight this
difference between PROS and NONPROS limbs which formed separate clusters. The difference
between the limbs were attributed to vertical GRF, and sagittal hip, knee and ankle joint angles
(Figure 7.3 and Figure 7.4, Eigenspectrum number 2). The BW MoS showed a significant
difference between the attempted symmetrical step parameters with medium effect (F(1.47,14.71)
= 6.01, p = 0.018, n;= 0.376), where the attempted SYMs. decreased the BW MoS more than
any other condition, whilst the attempted SYMse increased it. The ML MOS showed no
significant difference between limbs (F(1,10) = 0.91, p = 0.362, 77;2; = 0.084) nor between

conditions (F(3,30) = 1.32, p = 0.285, n;, = 0.117).

149



Chapter 7: Results
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Figure 7.2 BW MoS (a) and ML MoS (b) during the four conditions of NORM, SYMs, SYMsg,
and SY Ms +sk.

The PROS and NONPROS limbs seemed to form separate clusters for each individual with

UTTA, where each cluster contained all conditions. The conditions were scattered differently for

individuals, whilst some individuals were clustered relatively close together, others were

separated, such as participant number 5. The Eigenspectrum of PC1 using the covariance

approach identified sagittal hip joint angle (variable number 14) as a causal factor for these
individual clusters for each participant, whilst the correlation approach highlighted sagittal hip
joint angle (variable number 14) as well anterior-posterior GRF (variable number 1) as causal

factors.
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Figure 7.3 PCA outcome (a) and its Eigenspectra (b) of the covariance matrix comparing
individuals with UTTA during all conditions. The different colours indicate conditions, where
solid and open circles are the PROS and NONPROS limbs, respectively. The numbers refer to

the individual participants.
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Figure 7.4 PCA outcome (a) and its Eigenspectra (b) of the correlation matrix comparing
individuals with UTTA during all conditions. The different colours indicate conditions, where
solid and open circles are the PROS and NONPROS limbs, respectively. The numbers refer to

the individual participants.
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7.3.2 Effects of Attempted Symmetry on Step Parameters

The results show that the step length was larger on the PROS limb relative to the NONPROS
(F(1,10) = 9.14, p = 0.013, n;, = 0.477) (Figure 7.5 a). Furthermore, the step length increased
during the attempted symmetry step parameters relative to the NORM condition (F(1.24, 12.42)
=6.40, p = 0.021, n,= 0.390). The Bonferroni post hoc revealed a significant difference between
the NORM and attempted SYMs+sr and SYMsc (p = 0.001), also between NORM and SYMsr
(p = .043). The step frequency was lower on the PROS limb relative to the NONPROS but there
was no significant difference between them (F(1,10) = 0.53, p = 0.483, n;, = 0.050). However,
step frequency differed significantly between conditions with medium effect (F(1.74, 17.37) =
458, p = 0.029, n;= 0.314). The step width did not change significantly between the four
conditions (F(3,30) 0.81, p = 0.499, n; = 0.075 ). The effects of NORM, SYMs(, SYMsr and
SYMsi+sr on speed were not normally distributed, thus a Friedman’s ANOVA was conducted.
Speed differed significantly between conditions, x*(5) = 9.25, p = 0.026 and using Wilcoxon tests
there were no apparent difference between NORM and SYMs, (p = 0.449), or NORM and SYMsr
(p = 0.059), but there was a significant difference between NORM and SYMsi+sr (p = 0.011).
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Figure 7.5 The interaction results of NORM, SYMst, SYMsr and SYMsi+se on step length (a),
step frequency (b), step width (c) and speed (d).
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7.4 Discussion and Conclusion

The primary aim of this study was to identify the effects of attempting temporal-spatial symmetry
on the dynamic stability of individuals with UTTA and the secondary aim was to understand the
biomechanical function of gait when attempting temporal-spatial symmetry. The results show that
although symmetrical step parameters were attempted, individuals with UTTA adjusted their
limbs and asymmetry was preserved, as evident by the results for the BW MoS. The attempted
symmetrical step length (SYMsL) decreased the BW MoS, whereas the attempted symmetrical
step frequency (SYMse) increased BW MoS, thus when combined, these symmetries appeared to
counterbalance one another. Speed was found to increase during the attempt of SYMse and
SYMsissr, although not significantly during SYMse. A significant increase in speed during the
attempt of SYMsi+se was probably the consequence of greater step length and step frequency
during this condition, which both lead to increased velocity. Previous research suggests that
greater velocity improves dynamic coordination between the limbs and thus may lead to increased
stability (Donker & Beek, 2002). Furthermore, backward fall can be reduced by a decrease in step
length or increase in CoM velocity (Espy et al., 2010; Pai & Patton, 1997), whilst CoM velocity
is directly related to increased walking speed (Hak et al., 2012).

Attempted SY Mse increased BW MoS. An increase in BW MoS implies that during the following
single-support phase defined by the new stance limb, the CoM can pass the posterior border of
the BoS, indicating that the risk of backward loss of balance decreases (Hak et al., 2014).
Attempting SYMsy, increased the step length on the intact limb whilst the step length on the
prosthetic limb remained constant, i.e. the intact limb adjusted to meet the required symmetry.
However, BW MoS decreased indicating a compromise of dynamic stability. Previous findings
by Hak et al. (2012) and Hak et al. (2013c) showed that in response to perturbations individuals
with LLA increase step frequency and shorten step length while keeping walking speed constant.
Thus, step length was shortened in order to maintain stability, rather than lengthened. Studies
have implied that the shorter step length commonly found in the intact limb is a compensation for
the lack of CoM velocity when stepping with the prosthetic limb due to reduced push-off capacity,
which constrains the BW MoS during the double support phase of the intact limb (Hak et al.,
2013c¢). Therefore, as a result of the attempt to introduce SYMs, in this study, the individuals with
UTTA may have lost this compensatory mechanism since the step length on the intact limb
increased. The reason for the adjustment on the intact limb rather than the prosthetic limb remains
unknown and needs further investigation. A possible explanation would be the inability of the

prosthetic limb to adjust to certain changes due to the restrictions proposed by the prosthesis.
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The attempted symmetrical step parameters did not have a significant effect on ML MoS. In
response to perturbations, individuals with LLA have shown to increase step width probably as a
control mechanism to allow ML MoS to increase. Hof et al. (2007) state that ML MoS increased
because of increased step width and step frequency, where step frequency coincides with an
increased in walking speed. However, in this study, the attempted symmetrical step frequency
increased the step frequency and speed but did not increase step width. Consequently, this may
be why there was no change to ML MoS, which might imply that step frequency and step length
are predominantly associated with forward progression and BW MoS. During the assessment of
individuals with UTTA in the encounter of uneven surfaces, Curtze et al. (2011) reported no
change in lateral MoS during the investigation of foot placement with respect to the XCoM.
However, Hof et al. (2007) reported larger MoS on the prosthetic side during the investigation of
individuals with UTFA. Thus, levels of amputation may affect foot placement, although the loss
of the ankle structure affects the CoP adjustment in both individuals with UTTA and UTFA.

The PCA outcomes revealed differences between the intact and the prosthetic limb, similar to the
results of Chapter 5. These differences were found to be predominantly due to vertical GRF,
sagittal hip joint moment, and hip and knee joint angles when using the covariance approach. The
correlation approach highlighted sagittal ankle joint angle to be the main driver for a difference
between prosthetic and intact limbs. These results are similar to previous findings, which indicate
that the ankle joint angle changes between limbs since the prosthetic foot component is rigid
compared to the biological ankle joint. Furthermore, the PCA outcome revealed multiple smaller
clusters of each individual with UTTA. The clusters were made up of the four conditions, i.e.
attempted symmetrical step parameters did not change the way an individual with UTTA walks
instead the individual seemed to adjust and preserve asymmetry, as seen by the shift of the limb
from its NORM position to various directions in the PC space whilst remaining in close proximity.
Previous studies reported similar results of individual clusters of people (Schéllhorn et al., 2002;
Chapter 6), and support the need for subject-specific evaluation. Using PCA for subject-specific
evaluation can help improve treatment recommendations specifically prosthetic prescriptions,

leading to more tailored and effective rehabilitation goals.

A limitation of this study was the small sample size (N=11) used to carry out PCA. Most research
concludes that large sample size is required for an accurate analysis to be made (Halilaj et al.,
2018). However, in gait analysis, the sample size of populations under investigation is often small
due to characteristics of pathologies since it can be difficult to find individuals who have these
characteristics. The location of the investigation might place further constrain since there might

not be many individuals in certain areas who have these characteristics. Although larger sample
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size seems to be more reliable there must be a tradeoff with regards to sampling effort and cost.
This study demonstrated that a sample size of N=11 was enough to achieve the stability of
eigenvalues and eigenvectors of PCA. However further research is needed, to establish if there is

a particular number of participants which would satisfy the criteria for a reliable analysis.

In conclusion, the findings of this study suggest asymmetrical temporal-spatial parameters play a
functional role in LLA stability. The PCA outcome further confirmed that asymmetry was
preserved during attempted symmetrical conditions since data did not cluster due to conditions,
but instead, the prosthetic and intact limbs of individuals with UTTA formed multiple small

clusters, suggesting that each individual with UTTA has highly individualised gait characteristics.
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8.1 Discussion

The general aim of this PhD was to adopt multivariate statistical analyses and machine learning
algorithms to develop analytical techniques for the assessment and understanding of LLA
function. The number of individuals with LLA is expected to increase drastically (Ziegler-Graham
et al., 2008). Individuals with LLA lose musculoskeletal mechanisms, joint structures and sensory
input vital for movement such as walking, thus the ability to take part in activities of daily living
is impacted (Pezzin et al., 2000). Using automatic gait recognition tools in gait analysis, could
provide non-invasive diagnosis methods, patient-specific treatment recommendations and
evaluation of treatment outcome (Alagtash et al., 2011b; Lakany, 2008; Pogorelc et al., 2012),
thus it could potentially provide a guide for prosthetic prescriptions and rehabilitation
programmes during the treatment of individuals with LLA.

In the first study of this thesis presented in Chapter 4, the aim was to develop and optimise a
machine learning algorithm. Principal Component Analysis (PCA) was used for data reduction
and feature selection, and Discriminant Function Analysis (DFA) was used for classification
between barefoot and shod running. To optimise this procedure, all possible iterations of ten
individuals out of a total of twenty were explored to establish which combination of participants
would provide the best discrimination between the conditions. An error rate was calculated to
indicate the number of trials misclassified. The combination of ten individuals with the smallest
error rate (6.5% misclassified) was used to train the algorithm, thus optimising it. The best
iteration correctly classified footwear condition 93.5% of the time, although the error rates ranged
from 6.5% - 50% for other combinations of participants. Thus, the quality of data used to train
the machine learning algorithm was improved through the identification of individuals carrying
generic features. In instances where the machine learning algorithm is facing the challenge of a
mixture of highly ‘generic’ and highly ‘singular’ trials in its training database, it is suggested that
by homing onto the highly generic individuals, at the stage of training the computer, substantial

improvements may be achieved over the entire group, including the highly ‘singular’ individuals.

The classification method used in this study was conducted in a challenging scenario of the same
individual with a subtle change to their gait, as compared to examples found in the literature,
which have used clearly discrete heterogeneous groups e.g. healthy vs pathology (Kobsar et al.,
2015; Laroche et al., 2014) or young vs. old (Begg & Kamruzzaman, 2005; Eskofier et al., 2013).
Therefore, the outcome of the algorithm presented in this study was more likely to reflect the
ability of the algorithm rather than the differences between experimental groups. Biomechanical

research studies are often conducted using a small sample size, which may have subtle differences
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between groups/conditions that are difficult to detect. This study demonstrated a technique that
could be implemented during the development of machine learning algorithms to improve their
classification performance. Individuals with LLA have shown to have kinematic variables, similar
to those of able-bodied individuals (Sanderson & Martin, 1997). Thus such a method could have
the potential to facilitate a better understanding of the differences between LLA and able-bodied

gait.

The relatively small sample size of this study prevented an estimation to the extent to which
accidental spurious information may also have been harvested in the process, i.e. overfitting the
data. Nevertheless, by limiting the process to only 10 PCA scores, which was below the rank that
still carried information (20", the likelihood of such phenomena was limited. This ensured the
numerical analysis was made immune to overfitting artefacts originating from the over-
exploitation of small details (Lever et al., 2016b). Moreover, finding the generic features through
the optimisation procedure would also limiting the risks of overfitting. An interesting question is
whether it might be possible, in any study similar to this one, to identify the best group size to be

used when optimising the training.

Previous studies have limited the amount or type of measured variables used, i.e. variables would
only be measured in one plane of motion rather than all three, and only kinetic, kinematic or GRF
data would be assessed instead of a combination of the three data types. This study demonstrated
that it is possible to analyse large amounts of different types of data, e.g. thirty kinetic, kinematic
and GRF variables in different planes of motion, and acquire a large classification accuracy.
Assessing many variables simultaneously is not only time efficient but provides an instantaneous
in-depth understanding. Furthermore, previous studies demonstrated that including variables from
the frontal plane provide better classification results (Schéllhorn et al., 2002). Thus, in order to
improve the classification outcome, data from multiple planes should be included during the

analysis.

Machine learning algorithms are typically developed in three stages of training, prediction and
evaluation (Lever et al., 2016b). A limitation of this study was the absence of the evaluation using
an independent sample. An evaluation procedure provides an indication of the accuracy of a
classifier’s performance. In this study, the evaluation indicated that the sensitivity, i.e. true
positives (shod and truly identified as shod) were correctly identified 90% of cases and the
specificity, i.e. true negatives (barefoot and correctly identified as barefoot) were correctly
identified 91% of cases. However, the evaluation stage was not conducted using an independent

sample, but instead, the classification of the sample was known.
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Machine learning algorithms can provide a better understanding of pathological gait. In LLA gait,
it has been used extensively to improve prosthetic components (Afzal et al., 2017; Chen et al.,
2013; Dutta et al., 2011; Hargrove et al., 2015; Huang et al., 2011; Joshi and Hahn, 2016; Khan
etal., 2018; Miller et al., 2013; Pew and Klute, 2017; Simon et al., 2016; Woodward et al., 2016;
Young et al., 2013; Young et al., 2014; Zheng et al., 2013; Zheng and Wang, 2017), however to
be able to provide an individual with LLA with a better prosthesis, his/her function needs to be
better understood to identify their requirements. Thus, in the second study (Chapter 5), different
techniques were explored to compare the gait of individuals with LLA and able-bodied
individuals providing a better understanding of LLA function. Using the Eigenspectra, it was
highlighted that variables such as vertical GRF, sagittal hip joint moment, and sagittal knee joint
angle caused the differences, providing a better understanding of what distinguishes between
individuals with and without a UTTA. It was also established that in this particular application of
PCA the use of normalised temporal waveforms provided a better method to identify important
variables and understanding the gait differences between individuals with UTTA and able-bodied

individuals:

- the normalisation ensured that all variables were considered of equal weighting regardless of
the magnitude when using the covariance matrix,

- the waveforms included the information of the scalar values and also additional information
which suggests that the use of scalar values extracted from the temporal gait waveforms may
be redundant,

- PCA was sufficient without implementing DFA since DFA is supervised and seeks out
differences, but instead, PCA highlights differences that occur in the gross structure which

may be more suitable for clinical applications.

In this study highlights that no single method would be suitable in every application but instead
the method depends on the features of a data set which also been previously reported by Harper
(2005). The technique established in this study could be implemented to provide a better
understanding of LLA gait.

Using temporal waveforms is more advantageous compared to scalar values since data spans the
entire gait cycle, and so provides more information (Deluzio et al., 1997). However, in cases
where only scalar values (discrete parameters) are available, the researcher should be aware that
misclassification may be likely to occur (Schéllhorn et al., 2002). It should also be noted that the
selection of relevant variables is important as demonstrated by this study. Using 7 scalar values

did not improve the classification outcome, but speed which was one of the additional variables
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added was identified as a discriminating variable between the gait of individuals with UTTA and

able-bodied individuals.

Studies often compare the variables of groups of people/condition to investigate whether they
differ or not. In this study, it was demonstrated that multivariate statistical analyses could reveal
if groups differ as well as order variables that cause the differences according to their contribution
to this difference by means of the weighting factors. This may have great implications as it may
highlight which variables need to be addressed during an intervention. Furthermore, the results of
the PCA outcome revealed that the differences between the UTTA and able-bodied gait were in
lower ranked PCs, indicating that PC1 does not necessarily always hold the variables of interest,
although it holds the greatest variance. This highlights the importance of the remaining PCs, as
previously discussed by Phinyomark et al. (2016). It should be noted, however, that lower PCs
holds lower variance and thus variables may have smaller weighting factors. Thus, the difference
observed in the lower ranked PCs may only make up very small, almost unidentifiable sections

in a 2D profile of temporal waveforms.

In this study, the main variables identified as discriminating factors between UTTA and able-
bodied gait were vertical GRF, sagittal hip joint moment and sagittal knee joint angle. Previous
studies found that between UTFA and able-bodied gait the vertical GRF discriminated between
the control limb and the prosthetic limb in PC1, while PC2 discriminated between the control
limbs and both the limbs of the individuals with UTFA (Soares et al., 2016). The magnitude of
the vertical GRF was found to be much smaller on the prosthetic limb, which may have been a
protective mechanism to reduce loading on the residual limb. In the current study using PCA, no
discrimination was observed in PC1, but a similar outcome was observed in PC2, which is most
likely due to the varying levels of amputation since the current study investigated individuals with
UTTA.

The biomechanical variables included in studies 2-4 presented in Chapters 5-7 were commonly
reported in the literature for the assessment and investigation of forward progression and dynamic
stability of LLA gait. The majority of these variables were reported in the sagittal plane. However,
it has been demonstrated that data in the frontal plane improves classification outcome and
provides more information (Schéllhorn et al., 2002, Chapter 4). Thus, referring to a previous
discussion point, data from multiple planes should be included. However, the use of data from
different planes should be approached with caution since ambiguous and erroneous data such as

soft tissue artefacts can negatively affect the results (Phinyomark et al., 2018).
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Studies have used a combination of different machine learning algorithms, seeking the highest
classification outcome (Afzal et al., 2017; Chen et al., 2013; Joshi & Hahn, 2016; Khan et al.,
2018; Miller et al., 2013; Pew & Klute, 2017). Thus, in future studies a combination of different
methods may reveal more information and better understand of LLA gait, which could potentially
help better treatment recommendations. Exploring different methods can help identify a technique
to reduce time consumption during training and testing procedures of a machine learning
algorithm as previously done by Woodward et al. (2016). In a clinical setting, a quick diagnosis

would be more cost effective and could help reduce the financial burden on health institutions.

Since clinical analysis is commonly based on patient-specific assessments, the third study
presented in Chapter 6 was conducted to investigate if distinct gait characteristics can be identified
for one individual with UTTA. Therefore, an individual with UTTA was discriminated from a
group of able-bodied individuals. The covariance and correlation approaches of PCA were used
during this analysis. The results demonstrated that some characteristics were common among
individuals with UTTA whilst others were specific to an individual. These findings were similar
to previous research which reported subject-specific gait characteristics of able-bodied
individuals (Schéllhorn et al., 2002) as well as “functional groups” which describes a group of
individuals that share similar characteristics (Horst et al., 2017). This study demonstrates that

multivariate statistical analyses could aid as a patient-specify diagnosis tool in clinical settings.

The outcome of the covariance and correlation matrices differed, which was due to the varying
normalisation procedure of the two approaches. Previous studies that mentioned the use of both
the covariance and the correlation matrices during gait analysis did not recommend one approach
over the other (Badesa et al., 2014; Chau, 2001a; Daffertshofer et al., 2004). This study
demonstrates the importance of using both approaches since the covariance matrix takes into
consideration the range whilst the correlation matrix considers the magnitude of the data,
providing important information. Thus the researcher was supplied with varying information from
these approaches which were equally important since one approach indicated the differences
between participants as a result of the variation of variables and the other as a result of the

magnitude of variables. Therefore, where possible both approaches should be implemented.

In the literature, it is commonly reported that compensatory mechanisms in individuals with LLA
lead to asymmetrical gait, which is associated with secondary health issues such as lower back
pain (Kulkarni et al., 2005) and arthritis in the intact hip and knee joint (Burke et al., 1978).
Recent studies, however, have found that asymmetrical gait may play a functional role in well-
established individuals with LLA. Therefore, the fourth and final study presented in Chapter 7

investigated the effects of attempted symmetrical step parameters on the dynamic stability of
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individuals with UTTA. Furthermore, the multivariate statistical analysis, PCA, was used to
establish if underlying mechanisms of these effects can be identified. The main finding of this
study was that asymmetry was preserved in UTTA gait although symmetrical step parameters
were attempted, which was also reflected by the lack of clustering of conditions in the PCA

outcome.

In previous research, it was found that individuals with LLA increased step frequency and
decreased step length in order to maintain stability (Hak et al., 2013c). In the current study,
attempting symmetrical step length reduced BW MoS. Previous studies highlight that shorter step
length on the intact limb is a compensatory mechanism attributed to reduced push-off capacity on
the prosthetic limb since attempting symmetrical step length increased the step on the intact limb
this mechanism was removed, explaining the reduction of BW MoS observed. Thus, the results
of this study confirmed previous findings by Hak et al. (2013c) who suggested that temporal-

spatial asymmetry may be playing a functional role.

The PCA outcome further revealed individual clusters comprised of the conditions of the same
individual with UTTA, confirming previous results (Schéllhorn et al., 2002; Chapter 6). The
clusters also highlighted the difference between the prosthetic and the intact limb of individuals
with UTTA previously seen in the DFA outcome presented in Chapter 5.

A limitation of this study was the small sample size used during PCA. However, the investigation
of pathological groups in gait analysis is often performed using a small sample since
characteristics of certain pathology place a constraint in finding individuals who are suited for the
analysis. Although larger sample size seems to be more reliable, the first study of this PhD,
presented in Chapter 4, introduces a method which could be used to optimise a machine learning
algorithm and overcome the dangers of overfitting even when working with small sample size.
However further research is needed, to establish the specific number of participants which would

satisfy the criteria for a reliable analysis.

This thesis demonstrates that multivariate statistical analyses such as PCA can help understand
certain phenomenon of gait which were previously not well understood. In a clinical environment,
such findings have the potential to improve treatment recommendations. In individuals with LLA,
it may assist in the choice of a suitable prosthesis or help set rehabilitation goals. Furthermore,
these methods could be used to define the cost functions of a computer simulation, which can
help facilitate individualised treatment by identifying the effects of certain factors on the computer
simulation. In the case where the computer simulation reveals an outcome, which is sought for, it

could be translated into clinical practice to inform treatment. The advantage of using multivariate
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statistical analyses to inform a computer simulation means that a possible treatment outcome
could be predicted, prior to applying the treatment to the patient. Thus, it can be identified if a

treatment may be suitable or an alternative is required.

8.2 Conclusion

In conclusion, LLA and able-bodied gait differed as well as prosthetic and intact limbs differed.
Individuals with UTTA reveal common group gait characteristics and unique subject-specific gait
characteristics. Principal Component Analysis could be used to compare between individuals at
group and subject-specific levels, providing a better understanding of gait. In a clinical setting,

PCA may be a useful assessment tool.

Different multivariate statistical analyses and machine learning algorithms can be used to assess
and understand gait, however there is not a single best method that can be standardised for all
applications of gait analysis. Instead, the best performing algorithm depends on the features of a
data set. The methods of this research have demonstrated that certain techniques can be
implemented to improve classification accuracies of machine learning algorithms providing a
better understanding of pathological gait. For example, the training and prediction data sets of a
machine learning algorithm should be optimised using an iteration procedure when working with
a small sample size to overcome issues of overfitting. Furthermore, entire temporal waveforms
should be implemented instead of discrete parameters since they provide more information and
characteristics of gait data are considered. Where entire temporal waveforms are not available the
discrete parameters should be selected with care. Also, both the correlation and the covariance
approaches of PCA should be implemented since they reveal information regarding magnitude
and variance of the data which can both be relevant during the treatment of a patient. When using
the covariance matrix, variables need to be normalised since scaling of variables will influence

the classification accuracy.

This research demonstrates that in a clinical setting the analysis involving all possible variables
resulted in comprehensive ranking order. This is in contrast with other studies which compared a
lower number of variables, therefore, having a limited scope of the problem. The ability to
investigate a large number of variables and establish the order in which these deviate from what
is considered healthy for a particular group of people with pathological gait, allows treatment to
be targeted at particular variables which have been highlighted as an issue. Additionally, ranking
of variables can be identified at patient-specific level. These findings could have great impact in
the medical world, since they present a potential for tailored treatment thus in turn the treatment

outcome may be more successful improving patient’s quality of life.
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Appendix 1 — Multivariate Statistical Analyses Codes
Appendix 1.1 Principal Component Analysis Code
Appendix 1.1.1 — Covariance Approach

The following code was written in Matlab and illustrates how to upload data using the dimread
function, followed by developing a training data base and reshaping the data prior to the
application of PCA.

$Upload data

folder data = 'E:\Experimental Studies\Forward Progression and Dynamic
Balance\Results';

% Select an amputee at a timE:
amputee array = [1:6 8:12];
Volunteers No = 11;

$Select Group - PROSParticipants
counter = 1;
for person No = amputee array

File namel
File name2 =
['PROSParticipant00',num2str (person No),' NormalNONPROS.txt'];

['PROSParticipant00', num2str (person No),' NormalPROS.txt'];

A pro = dlmread([folder data,'\',File namel], '\t', 'B6..A0106");
A non pro = dlmread([folder data,'\',File name2], '\t', 'B6..A0106");

A pro = A pro(:,[1:3 7:9 13:15 19:2:40]);
A non pro = A non pro(:,[1:3 7:9 13:15 19:2:40]);

$Define measurement (columns in matrix)
for measurement No = l:size(A pro,2)
training data base non pro(:,measurement No,counter) =
A non pro(:,measurement No);
training data base pro(:,measurement No,counter) =
A pro(:,measurement No);

end

counter = counter+l;
end
training data base(:,:,1:Volunteers No) = training data base pro;
training data base(:,:, (Volunteers No+l) :2*Volunteers No) =

training data base non pro;

$Define condition - PROSParticipants
PROSNormal = size(training data base, 3);

%Upload data
folder data = 'E:\Experimental Studies\Forward Progression and Dynamic
Balance\Results';

o)

% Select total number of volunteers:

No volunteers = 30;
counter = 1;
$Select Group - PROSParticipants
for person No = [1 3 5:32]
File name3 = ['CONParticipant0O0',num2str (person No),' NormalL.txt'];
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File name4 = ['CONParticipantOO0',num2str (person No),' NormalR.txt'];

A right = dlmread([folder data,'\',File name3], '\t', 'B6..A0106");
A left = dlmread([folder data,'\',File named], '\t','B6..A0106");

A right = A right(:,[1:3 7:9 13:15 19:2:40]);
A left = A left(:,[1:3 7:9 13:15 19:2:40]);

$Define measurement (columns in matrix)
for measurement No = l:size(A left,2)
training data base left (:,measurement No,counter) =
A left(:,measurement No);
training data base right (:,measurement No, counter) =
A right (:,measurement No);

end
counter = counter + 1;
end
training data base(:,:, (PROSNormal+l) : (PROSNormal + No volunteers)) =

training data base right;

training data base(:,:, (PROSNormal + 1 + No volunteers): (PROSNormal +
2*No _volunteers)) = training data base left;

% Normalise the measurements:

training data base = normalise data(training data base);

%Reshape the data so that one 'run' ends up being one long array of

numbers (all measurements are put into one string of data):

reshaped training data base =

reshape (training data base,size(training data base,l)*size(training data base,
2),size(training data base,3));

%Undertake Principal Component Analysis of the training data base:
% Centre the data set:

temp2 = mean(reshaped training data base,2);

centred data set = (reshaped training data base -

temp2*ones (1,size (reshaped training data base,2)))';

% Calculate the PCA scores and eigenvectors:

L = centred data set*centred data set'; % L is the covariance matrix C=A*A".
[V D] = eig(L); % Diagonal elements of D are the eigenvalues for both L=A'*A
and C=A*A".

% Calculate the pseudo inverse (because centred data set2'*V is not a
% square matrix) to access the eigenvectors:

temp = centred data set'*V;

eigendata = pinv(temp');

% Calculate the PCA scores for all measurements:

scores = temp'*centred data set';

scores = flipud(scores);

eigendata = fliplr (eigendata);
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Appendix 1.1.1.1 — Normalisation of Data for Covariance Matrix

Since the data is comprised of variables with different units, this needs to be accounted for,thus
the data has been normalised using following code.

function y = normalise data (X);
% data in body weight:
max magnitude = max (max (max(abs(X(:,[1:3],:)))));
for limb = 1l:size (X, 3)

X(:,1:3,1imb) = (1/max magnitude)*X(:,1:3,1limb);
end
% data in meters:
max magnitude = max (max(max(abs(X(:,[4:6 10],:)))));
for limb = l:size (X, 3)

X(:,[4:6 10],1imb) = (1/max magnitude)*X(:,[4:6 10],1limb);
end

o)

% data in meters/s:

max magnitude = max (max (max(abs(X(:, [7:9 11],:)))));
for limb = 1l:size (X, 3)

X(:,[7:9 11],1imb) = (l/max_magnitude)*x(:,[7:9 11],1limb) ;
end

% data in Watt/kg:

max magnitude = max(max (max(abs(X(:,[12 15 18],:)))));
for limb = 1l:size (X, 3)

X(:,[12 15 18],1limb) = (l/max_magnitude)*X(:,[12 15 18],1imb) ;
end

% data in N.m/kg:

max magnitude = max (max (max(abs(X(:,[13 16 19],:)))));
for limb = 1l:size (X, 3)

X(:,[13 16 19],1imb) = (1/max magnitude)*X(:, [13 16 19],1limb);
end

% data in degrees:
max magnitude = max (max (max(abs(X(:,[14 17 20],:)))));
for limb = 1l:size (X, 3)
X(:,[14 17 20],1limb) = (1/max magnitude) *X(:, [14 17 20],1limb);

end
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Appendix 1.1.2 — Correlation Approach

Principal Component Analysis can be computed using a covariance and correlation matrices. The
following code illustrates how to implement the correlation matrix. If the variables to hand have
different units one may choose to use the correlation matrix instead of normalising the data to
units and using the covariance matrix. The normalisation procedure for both methods differs thus
the answers will differ.

% Divide by the standard deviation in order to diagonalise the correlation
matrix rather than the covariance matrix:

scentred data set2 =
centredidataiset./((std(centredidataiset')')*ones(l,size(centredidataiset,Z)))

centred data set =
centred_data_set./(ones(size(centred_data_set,1),1)*std(centred_data_set));

0;
0;

centred data set (isinf (centred data set))

centred data set(isnan(centred data set))
% Calculate the PCA scores and eigenvectors:
L = centred data set*centred data set'; % L is the correlation matrix C=A*A'.

[V D] = eig(L); % Diagonal elements of D are the eigenvalues for both L=A'*A
and C=A*A".

% Calculate the pseudo inverse (because centred data set2'*V is not a
% square matrix) to access the eigenvectors:

temp = centred data set'*V;

eigendata = pinv(temp');

o)

s Calculate the PCA scores for all measurements:

scores = temp'*centred data set';
scores = flipud(scores);
eigendata = fliplr (eigendata);
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Appendix 1.2 Discriminant Functional Analysis Code

The following code was used to compute DFA.

function [U,V,eigenvals] = DFA (X,group,maxfac)
%[U,V,eigenvals] = DFA(X,group,maxfac)

oe

Performs DISCRIMINANT FUNCTION ANALYSIS

oe

oe

INPUT VARIABLES

oe

% X = data matrix that contains m groups

% Dim(X) = [N x M]. All columns must be independent.
% group = a vector containing a number corresponding

% to a group for every row in X. If you have

% m groups there will be numbers in the range

% l:m in this vector.

% maxfac = the maximum number of DFA factors extracted

oe

oe

OUTPUT VARIABLES

oe

$ U = DFA scores matrix (Dim(U) = [N x maxfac])

% the eigenvalues are multiplied with each column
% in this matrix.

sV = DFA loadings matrix, Dim(V) = [M x maxfac]

% eigenvals = a vector of DFA eigenvalues

o° oo

oe

Copyright, B.K. Alsberg, 1996

[T,W]=TW gen (X, group) ;

B = T-W;

inviW = inv (W) ;

P = invW*B;

[vecl,val]l=eig (P);

d=(diag(val))';

eigenvals = d(l:maxfac);

% Here we sort the eigenvectors w.r.t. the eigenvalues:
[dummy, idx]=sort (-eigenvals) ;

vec = vecl (:,1idx);

eigenvals = eigenvals (idx);

201



Chapter10: Appendices

oo
60

v

oe

U

oe

c a

V is the matrix of canonical variates directions

= vec(:,1l:maxfac);

U is the matrix of scores

= X*V;

new line to multiply eigenvalues to DFA directions:

U*diag(eigenvals) ;

real (U) ;
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Appendix 1.3 — Euclidean Distance Codes
The following code was used to calculate the standard deviation in order to quantify deviation.

Appendix 1.3.1 — Euclidean Distance from Centre of Cloud

figure (5)
clf
for PC score = 1:6
subplot (2, 3,PC_score)
ssubplot (2,2,PC score)
imagesc (reshaped eigendata(:,:,PC _score))
xlabel ('Measured variables', 'FontName', 'Times', 'FontSize',15)
ylabel ('Gait cycle', 'FontName', 'Times', 'FontSize',15)

title(['Amputee No. ',num2str (amputee No),', Eig. rank =
',numZ2str (PC_score) ], 'FontName', 'Times', 'FontSize',15)

end

Appendix 1.3.2 — Euclidean Distance from Origin of Principal Components

figure (6)
clf
for PC score = 1:6
subplot (2,3, PC_score)
$subplot (2,2, PC _score)
temp = mean (abs(reshaped eigendata(:,:,PC_score)));
[a b] = sort(temp, "descend");
bar (temp (b), 'w")
set (gca, "XTick', (1:20))
for uu = 1:20
lab{uu} = num2str (b (uu));
end
set (gca, 'XTicklabel',lab')
xlabel ('Measured variables', 'FontName', 'Times', 'FontSize',15)
ylabel ('Weighting factor', 'FontName', 'Times', 'FontSize',15)

title(['Amputee No. ',num2str (amputee No),', Eig. rank =
',num2str (PC_score) ], 'FontName', 'Times', 'FontSize',15)

axis tight

end

203



Chapter10: Appendices

Appendix 2 — Supplementary Results of Study 2 Presented in Chapter 5

Appendix 2.1 — Results of Scalar Values, Not Normalised
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Figure 10.1 PCA outcome (a, ¢) and Eigenspectrum (b, d) comparing between individuals with
UTTA and able-bodied individuals using five scalar values (a, b) and seven scalar values (c, d)

not normalised to units.
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Figure 10.2 DFA classification outcome (a, ¢) and DF spectrum (b, d) of individuals with UTTA
and able-bodied individuals using five scalar values (a, b) and seven scalar values (c, d), not
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Appendix 3 — Supplementary Results of Study 3 Presented in Chapter 6

Appendix 3.1 — Covariance and Correlation Matrices for Comparing One

Individuals with Unilateral Trans-Tibial Amputation with a Group of Able-Bodied

Individuals
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Figure 10.5 PCA outcome using the covariance approach with data normalised to units (a), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 3.
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Figure 10.6 PCA outcome using the correlation approach (a), the corresponding Eigenspectra (b),
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Figure 10.7 PCA outcome using the covariance approach with data normalised to units (a), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 4.
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Figure 10.8 PCA outcome using the correlation approach (a), the corresponding Eigenspectra (b),
the Euclidian distance from the origin of the principal component (c) and the Euclidian distance
from the centre of the cloud of individual with UTTA number 4.
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Figure 10.9 PCA outcome using the covariance approach with data normalised to units (a), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 5.
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Figure 10.10 PCA outcome using the correlation approach (a), the corresponding Eigenspectra
(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian
distance from the centre of the cloud of individual with UTTA number 5.
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Figure 10.11 PCA outcome using the covariance approach with data normalised to units (), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 6.
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Figure 10.12 PCA outcome using the correlation approach (a), the corresponding Eigenspectra
(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian
distance from the centre of the cloud of UTTA individual with number 6.
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Figure 10.13 PCA outcome using the covariance approach with data normalised to units (a), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 7.
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Figure 10.14 PCA outcome using the correlation approach (a), the corresponding Eigenspectra
(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian
distance from the centre of the cloud of individual with UTTA number 7.
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Figure 10.15 PCA outcome using the covariance approach with data normalised to units (), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 8.
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Figure 10.16 PCA outcome using the correlation approach (a), the corresponding Eigenspectra
(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian
distance from the centre of the cloud of individual with UTTA number 8.
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Figure 10.17 PCA outcome using the covariance approach with data normalised to units (), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 9.
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Figure 10.18 PCA outcome using the correlation approach (a), the corresponding Eigenspectra
(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian
distance from the centre of the cloud of individual with UTTA number 9.
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Figure 10.19 PCA outcome using the covariance approach with data normalised to units (), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 10.
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Figure 10.20 PCA outcome using the correlation approach (a), the corresponding Eigenspectra
(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian
distance from the centre of the cloud of individual with UTTA number 10.

223



Chapter10: Appendices

(a)

PCA Outcome No. 1

PCA Outcome No. 2

(b)

Apiputee No. 11, Eig. rank =1

Aptputee No. 11, Eig. rank =2

151
o - 7
15 .0 2 35
10f 3 6
10 © e . 5 g
- . o & . . L3 225 s
2 By . 2 5 ol ) o 0 & &
. ! o] 5
< o % e < PCI: S S £,
o > o O o, & | 3 s
= . . ¢ o5 el O =
o 0p, 08
sl © 0 o 3 - | . O'o E =2
Y o m ‘ |
.
[s}
-10 o 8 ) . N Hﬂm— o Hﬂﬂﬂﬂﬂﬂﬂn
20 10 0 10 -20 10 0 0 1314193 12151618177201 56 4 9 2 81011 1413157 1217164 5 32019188 8101 2 611
PCA score | PCA score | Measured variables Measured variables
PCA Outcome No. 3 PCA Outcome No. 4 Aptputee No. 11, Eig. rank =3 Antputee No. 11, Eig. rank =4
15 °
o ° ‘e o co [} 5 5
10 o 4@ ©
. + %9 e 54 55
en o%e o <+ 2 ¢, ®* o ‘ 53 3]
g 5[ ® o oe e P o g ,ee o o &£ Sy
S L8t 0 gof ¢ Tute, 2 2
“ nb‘J'UM o % ° [ .OQ k= =0
5 [ - 3 <2 el @ 4 = Z
P . o] o0, B
& 'y o] -4 5 ]
518 w©°© . o * 4 « o[ ¢ Pros z EN
M) ) & NON-PROS E
0 3 6} ® RIGHT N 1
e BEL o, IF
0 50 5 10 15 ET. 0o 5 10 15 10141916 7 121813153 4 9206 5178 1 211 4 720153 1T16119121318108 9 5 1 6 211
PCA score 2 PCA score 3 Measured variables Measured variables
(©
0 Amputee No. 11, SD = 8.7938 o Amputee No. 11, SD = 7.136
T T T T
' f .
[ Able-bodied Individuals [__JAble-bodied Individuals
= Distribution = Distribution
8 4 PROS (18.8228) 4 PROS (-2.1571)
¢ NONPROS (10.1279) 4 NONPROS (8.4832)
@ —— Mean o Maan
g - =30 1 8
= =
2 1 1 8
H 1 1 3
3 a o108
c \ o
1
2 \ ' -
® +
0 1
-20 -15 -10 5 0 5 10 15 20 -20 15 -10 5 [ 5 10 15 20
PC Outcome No. 1 PC Outcome No. 2
o Amputee No. 11, SD = 6.183 o Amputee No. 11, SD = 3.7408
! [ Able-bodied Individuals ! ! : [__]Able-badied Individuals
= Distribution === Distribution
8 4 PROS (-7.2823) 8r ! 4 PROS (2.8317)
© NONPROS (-3.3142) 1 £ NONPROS (2.896)
g — Mean 5 1 Mean
g s = =SD 4 2 6 1 - =SD
S ] 1 1
z g o
g4 T84 1 1
1
1 1
2r 4 L
2 |
1
0 1 1
-20 -15 -10 5 0 5 10 15 20 20 15 -10 5 0 5 10 15 20
PC Outcome No. 3 PC Outcome No. 4
(d)  Amputee No. 11, Mean = 14.1138, SD = 4.4642
T v T T P T
| | 1 [ IAble-bodied Individuals
| | f = Distribution
10 — 4 PROS (22.3261)
! ! ! & NONPROS (16.2986)
1 Ll I = =5D
s 1 ] | 1 1
z 1 1 1
g 1 1 1
55) 5 1 1 1
3 1 1 % 1
1 1 1
C 1
: {
1
1 1
2 1 |
1 1
1
0 1 1
0 5 10 15 20 25 30 35

Distance to cloud centre

Figure 10.21 PCA outcome using the covariance approach with data normalised to units (), the
corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component
(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 11.
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Figure 10.22 PCA outcome using the correlation approach (a), the corresponding Eigenspectra
(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian
distance from the centre of the cloud of individual with UTTA number 11.
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Appendix 4 — Supplementary Results of Study 4 Presented in Chapter 7

Appendix 4.1 - Unilateral Trans-Tibial Amputation During Attempted Symmetrical

Step Parameters Compared to Self-Selected Speed
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Figure 10.23 PCA outcome (a) and Eigenspectrum (b) using the covariance approach to compare
individuals with UTTA at NORM and attempted SYMs.. The different colours indicate the limbs,
where the prosthetic limb is shown by green and blue numbers, and intact limb by red and black
numbers, where the numbers refer to the individual.
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Figure 10.24 (a) PCA outcome and (b) Eigenspectrum using the correlation approach to compare
individuals with UTTA at NORM and attempted SYMs.. The different colours indicate the limbs,
where the prosthetic limb is shown by green and blue numbers, and intact limb by red and black
numbers, where the numbers refer to the individual.
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Figure 10.25 PCA outcome (a) and Eigenspectrum (b) using the covariance approach to compare
individuals with UTTA at NORM and attempted SYMs.
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Figure 10.26 PCA outcome (a) and Eigenspectrum (b) using the correlation approach to compare
individuals with UTTA at NORM and attempted SYMse.
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Figure 10.27 PCA outcome (a) and Eigenspectrum (b) using the covariance approach to compare
individuals with UTTA at NORM and attempted SYMsi+sk.
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Figure 10.28 PCA (a) outcome and Eigenspectrum (b) using the correlation approach to compare
individuals with UTTA at NORM and attempted SYMs+sr.
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Appendix 4.2 — One Individual with a Unilateral Trans-Tibial Amputation During

Symmetrical Step Length Compared to a Group of Individuals with a Unilateral

Trans-Tibial Amputation During Self-Selected Walking Speed.
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Figure 10.29 Individual with UTTA number 1 discriminated using the covariance matrix during
attempted SYMs_ (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of the individual with UTTA

number 1.
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Figure 10.30 Individual with UTTA number 1 discriminated using the correlation matrix during
attempted SYMs_ (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of the individual with UTTA
number 1.
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Figure 10.31 Individual with UTTA number 2 discriminated using the covariance matrix during
attempted SYMs_ (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 2.
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Figure 10.32 Individual with UTTA number 2 discriminated using the correlation matrix during
attempted SYMs. (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 2.
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Figure 10.33 Individual with UTTA number 3 discriminated using the covariance matrix during
attempted SYMs_ (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 3.
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Figure 10.34 Individual with UTTA number 3 discriminated using the correlation matrix during
attempted SYMs. (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 3.
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Figure 10.35 Individual with UTTA number 4 discriminated using the covariance matrix during
attempted SYMs_ (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 4.
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Figure 10.36 Individual with UTTA number 4 discriminated using the correlation matrix during
attempted SYMs. (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 4.
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Figure 10.37 Individual with UTTA number 5 discriminated using the covariance matrix during
attempted SYMs_ (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
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Figure 10.38 Individual with UTTA number 5 discriminated using the correlation matrix during
attempted SYMs. (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 5.
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Figure 10.39 Individual with UTTA number 6 discriminated using the covariance matrix during
attempted SYMs_ (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 6.
(a) PCA Outcome No. 1 PCA Outcome No. 2 (b) 10* Eigenspectrum No. 1 10 Eigenspectrum No. 2
2000 — - ¢ 1500 - —% —@®- ” . o x E : -
1500 ¢ 1000 | 37
o 4
1000 4 ¢ 1 5 5
- [+] . S0 LR o= g | g
o 500 ¢ 2 o a L2, n 3
1 ) ] = =0
] ° + z ¢ £ g
< < 500} b= 2 .
g -s00 I 0 = =2
R & L1000 } ¢ 3 S
+ L] = = -
-1000 . 1
® -1500 |
-1500
. -2000% . 0 o
-4000 -3000 2000 -1000 0 1000 2000 4000 -3000 -2000 -1000 0 1000 2000 5 10 15 20 5 10 15 20
PCA score | PCA score 1 Measured Variable Measured Variable
1500 EI’C.d\ Oulcnm: No. 3 PCA Qutcome Nn.¢4 <10* Eigenspectrum No. 3 <10* Eigenspectrum No. 4
1500% 7
1000 6! -
o 6
500 . °° 1000} - Es 5
P . © P 2 2° N
E 0 a % 500 | 1 ’-: 41 —1: 4 |
g . 2 o * ol £
< - < =23 =
3] ¢ g o *0 ) ] 3
2 L1000 + i o I, (11 - kY ]
+ o o =2 =2 |
. . . 1 —”_‘ ‘ H ’ |
-2000 * . . 41000 14 0 . © oL U ]l [ QLA —‘ 1
-1000 0 1000 2000 -2000 -1000 0 1000 5 10 15 20 5 10 15 20
PCA score 2 PCA score 3 Measured Variable Measured Variable

Figure 10.40 Individual with UTTA number 6 discriminated using the correlation matrix during
attempted SYMs. (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 6.
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Figure 10.41 Individual with UTTA number 7 discriminated using the covariance matrix during
attempted SYMs. (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 7.
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Figure 10.42 Individual with UTTA number 7 discriminated using the correlation matrix during
attempted SYMs. (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 7.
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Appendix 4.3 — One Individual with a Unilateral Trans-Tibial Amputation During
Symmetrical Step Frequency Compared to a Group of Individuals with a Unilateral

Trans-Tibial Amputation During Self-Selected Walking Speed.
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Figure 10.43 Individual with UTTA number 1 discriminated using the covariance matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 1.
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Figure 10.44 Individual with UTTA number 1 discriminated using the correlation matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 1.
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Figure 10.45 Individual with UTTA number 2 discriminated using the covariance matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 2.
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Figure 10.46 Individual with UTTA number 2 discriminated using the correlation matrix during
attempted SYMsk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 2.
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Figure 10.47 Individual with UTTA number 3 discriminated using the covariance matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 3.
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Figure 10.48 Individual with UTTA number 3 discriminated using the correlation matrix during
attempted SYMsk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 3.
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Figure 10.49 Individual with UTTA number 4 discriminated using the covariance matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
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Figure 10.50 Individual with UTTA number 4 discriminated using the correlation matrix during
attempted SYMsk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 4.
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Figure 10.51 Individual with UTTA number 5 discriminated using the covariance matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 5.
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Figure 10.52 Individual with UTTA number 5 discriminated using the correlation matrix during
attempted SYMsk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 5.
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Figure 10.53 Individual with UTTA number 6 discriminated using the covariance matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 6.
(2) PCA Outcome No. 1 PCA Outcome No. 2 ® (b) 10 Eif um No. 1 <10 Ei trum No. 2
2500 - 1500 | 1 a6 sf
¢
w0, 1000 }
. * = 3 o4
1500 . <] g
“ e 500} " 18 5]
© 1000 4 ¢ " 525 =
z2 2 ol ¢ o [ = g
=3 < 1
2 500 ¢ & 00 2 z 2
S o R S | G B2
o & + o & 2 2
500 -1000 0 =z =
¢ ¢ 1
1000 1500 05 H
w0y e 000k 0 o L
-4000 -3000 -2000 -1000 O 1000 4000 -3000 2000 -1000 O 1000 5 10 15 20 5 10 15 20
PCA score 1 PCA score | Measured Variable Measured Variable
]631\ Outcome No. 3 PC% Outcome No. 4. <10 Eif um No. 3 «10* Ei pectrum No. 4
1500 1050 [ , 5|
o t
1000 ¢, . .
K 500 ¢, o g 8
on 500 o ¢ <+ S5 2]
o - o ol =
o o o % o . : £,
2 3 ¢ 2 £
< -500 < g =
o O -s004 ¢, | Hs 2
-9 . 'y & ® = ]
-1000 o + =2 =
-1000 | L] | HH "H 1
-1500 1 H H
-2000 . -1500 0 H o
-1000 o 1000 2000 2000 -1000 0 1000 5 10 15 20 5 10 15 20
PCA score 2 PCA score 3 Measured Variable Measured Variable

Figure 10.54 Individual with UTTA number 6 discriminated using the correlation matrix during
attempted SYMsk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 6.
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Figure 10.55 Individual with UTTA number 7 discriminated using the covariance matrix during
attempted SYMse (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 7.
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Figure 10.56 Individual with UTTA number 7 discriminated using the correlation matrix during
attempted SYMsk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 7.
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Appendix 4.4 — One Individual with a Unilateral Trans-Tibial Amputation during

Symmetrical Step Length and Step Frequency compared to a Group of Individuals

with a Unilateral Trans-Tibial Amputation during Self-Selected Walking Speed.
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Figure 10.57 Individual with UTTA number 1 discriminated using the covariance matrix during
attempted SYMs_-+se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 1.
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Figure 10.58 Individual with UTTA number 1 discriminated using the correlation matrix during
attempted SYMs+se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 1.
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Figure 10.59 Individual with UTTA number 2 discriminated using the covariance matrix during
attempted SYMs_-se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 2.
(a) PCA Outcome No. 1 1500 PCA Oytcome No. 2 (b) w10* Ei rum No. 1 «10* Ei um No. 2
¢
1500 [ + a8 - N
1000 4
1000 R 0 00 3
500 15 g
w500 - ' LAR-PT g
¢ ¢ o E} 23
g LN g2 0 | w
o 3 S o o 2 o
2 2 500 (] £ n
< -500 < = =0
S S 515 )
1000 -1000 ] S
* = 1 = ,
-1500 -1500
M 05
-2000 N -2000 'Q
* 0 [
4000 -3000 -2000 -1000 O 1000 4000 -3000 -2000 -1000 O 1000 5 10 15 20 5 10 15 20
PCA score | PCA score | Measured Variable Measured Variable
PCA O ne No. 3 PCA O 1g No. 4 .10 Eigenspectrum No. 3 10” Ei trum No. 4
1500 @ 2 7
¢ 8
1000 1500 .
¢ ¢ 7
¢ 100
500 . @ 5s 5e
Py + T s00 ] B
g 0 ] g .6 o M s
S S +H = on
2 500 . 20 ] w0 1 & Ea
=< < + =3 =
2 2 500 e =
& 1000 o & ] o
¢ =2 =
a Z,
1500 -1000
! 1
2000 . 1500 M H
. . il , [
2000 -1000 0 1000 2000 -1000 0 1000 5 10 15 20 5 10 15 20
PCA score 2 PCA score 3 Measured Variable Measured Variable

Figure 10.60 Individual with UTTA number 2 discriminated using the correlation matrix during
attempted SYMs+sk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 2.
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Figure 10.61 Individual with UTTA number 3 discriminated using the covariance matrix during
attempted SYMs_-se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
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Figure 10.62 Individual with UTTA number 3 discriminated using the correlation matrix during
attempted SYMs+sk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 3.
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Figure 10.63 Individual with UTTA number 4 discriminated using the covariance matrix during
attempted SYMs_-se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 4.
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Figure 10.64 Individual with UTTA number 4 discriminated using the correlation matrix during
attempted SYMs+sk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 4.
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Figure 10.65 Individual with UTTA number 5 discriminated using the covariance matrix during
attempted SYMs.-+se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 5.
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Figure 10.66 Individual with UTTA number 5 discriminated using the correlation matrix during
attempted SYMs+sk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 5.
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Figure 10.67 Individual with UTTA number 6 discriminated using the covariance matrix during
attempted SYMs_-se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
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Figure 10.68 Individual with UTTA number 6 discriminated using the correlation matrix during
attempted SYMs+sk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA
number 6.
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Figure 10.69 Individual with UTTA number 7 discriminated using the covariance matrix during
attempted SYMs_-se (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 7.
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Figure 10.70 Individual with UTTA number 7 discriminated using the correlation matrix during
attempted SYMs+sk (black squares) from a group of individuals with UTTA during NORM (red
diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA

number 7.
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Appendix 5 - Participant Information Sheet for and Consent Form for Study 1

Presented in Chapter 4

Appendix 2a

Participant Statement of Consent to Participate in the Investigation Entitled:

Biomechanical adaptations to barefoot running in habitually shod runners.

1) I, agree to partake as a participant in the above
study.

2) | understand from the participant information sheet, which | have read in full, and from
my discussion(s) with that this will involve me running in three

conditions: with your normal running shoes (SHOD), with minimal shoes i.e. plimsolls (MIN)
and without shoes i.e. barefoot (BRFT) and then a repeat of these conditions with a change in
direction, in the biomechanics laboratory on three occasions for duration of approximately one

hour.

3) It has also been explained to me by that the risks and side

effects which may result from my participation are as follows: allergic reaction to sticky tape,

falling from a treadmill and muscle pain and/or strain due to exercising.

4) I confirm that | have had the opportunity to ask questions about the study and, where |

have asked questions, these have been answered to my satisfaction.

5) | undertake to abide by University regulations and the advice of researchers regarding
safety.
6) I am aware that | can withdraw my consent to participate in the procedure at any time and

for any reason, without having to explain my withdrawal and that my personal data will be

destroyed.
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7) I understand that any personal information regarding me, gained through my participation in
this study, will be treated as confidential and only handled by individuals relevant to the
performance of the study and the storing of information thereafter. Where information concerning

myself appears within published material, my identity will be kept anonymous.

8) I confirm that I have had the University’s policy relating to the storage and subsequent
destruction of sensitive information explained to me. | understand that sensitive information |
have provided through my participation in this study, in the form of personal contact details and

motion capture data will be handled in accordance with this policy.

9) | confirm that | have completed the health questionnaire and know of no reason, medical or

otherwise that would prevent me from partaking in this research.

Participant signature: Date:
Independent witness signature: Date:
Primary Researcher signature: Date:
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Appendix 6 — Participant Information Sheet for Studies 2-4 Presented in Chpaters
5-7

Appendix 6.1 — Participant Information Sheet for Prosthetic User

NOTTINGHAM®
TRENT UNIVERSITY

PARTICIPANT INFORMATION SHEET FOR PROSTHESIS USER

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee

walking gait and dynamic stability.
IRAS ID: 203582
Name of Researcher: Miss Maria Bisele

Contact Details: Email maria.bisele2014@my.ntu.ac.uk

We would like to invite you to take part in a research study. Before you decide, we would like
you to understand why the research is being done and what it would involve for you.

Please take time to carefully read the following information and talk to others about the study if

you wish.

Part 1 will tell you about the purpose of the study and what will happen if you decide to take part.
Part 2 gives you more detailed information about the conduct of the study.

Please ask us if there is anything that is not clear or if you would like more information. We would
like to know if you would like to take part in this research study. You have up to two weeks

following your appointment to decide whether or not you would like to take part.

PART 1
What is the purpose of this study?

People with a lower limb amputation have been shown to fall more often when compared to age-
matched individuals without lower limb amputation. Prosthesis users adopt certain compensatory
mechanisms to have more efficient gait. Rehabilitation intervention are aimed to re-educate
amputees to abandon these mechanisms and walk in a manner similar to non-amputees. However
it has become apparent that these mechanisms facilitate the amputee’s balance thus changing them
would result in the reduction of balance leading to an increased risk of falling. Therefore, the aim
of this study is to investigate whether walking in a manner which is similarly to non-amputees
causes a reduction of balance in amputees.
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Why have | been invited?

You have been invited to take part in this study as you fit the criteria required to participate in this

study.

Do I have to take part?
No. Participation in this study is entirely voluntary.

If you do decide to take part in this study, you will be free to stop taking part at any time without
giving a reason. This will not affect your care, your future treatment or your legal rights in any

way.

What will happen if | decide to take part?

If you decide to take part in the study then great! You will need to contact Miss Maria Bisele
(maria.bisele2014@my.ntu.ac.uk, Dr. Cleveland Barnett 01158483824) to let her know you are

keen to take part and you will then be invited to the Biomechanics Laboratory, at Nottingham
Trent University. You will be asked to bring along a pair of shorts, a t-shirt or vest and some
comfortable shoes you can walk in. No high heels are permitted in the laboratory. If you do not
have shorts, they will be provided for you. You are also advised to bring along food and drink.

When you arrive, you will be asked to change into your shorts and t-shirt. Reflective markers will
be placed on your skin with double sided sticky tape. The markers are about the size of a marble,
made of polystyrene and covered in reflective tape. Electromyography electrodes will also be
placed on your skin. To place these a standardised skin preparation will be performed during
which the area of interest will be shaved until free of hair, the surface will then be lightly abrading
to remove dead skin cells and wiped clean with alcohol to remove oils from the skin. Once
markers and the electrodes are in place you will be asked to perform a gait analysis task (which

is described in more details in the Section ‘What do | have to do’).

Are there any costs involved?

No. The University will reimburse any costs that you incur as a result of travelling to the
University at a standard University rate of 25p per mile travelled if coming by car. Your fare will

be reimbursed if you come by train or taxi.
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What do | have to do?

The testing will be conducted over seven visits, you will be asked to attend the first two sessions
for a gait analysis test and if you feel fit to it you will be asked to attend an additional five sessions
for a dynamometer test. The overall time commitment of the your visits should not exceed 32

hours in a four week period.

During visit 1.(gait analysis) you will be walking across a 15m walkway at self-selected speed.
This will be repeated for each leg five times. You are then asked to repeat these trials at both self-

selected slow and self-selected fast speeds.

If you are a non- prosthesis user, you will be equipped with an ankle-foot orthosis and the same

tasks are repeated.

During visit 2. (gait analysis) step length and step frequencies measured during the visit 1. are
altered by the researcher so that you will follow a walking pattern which is not habitual to you.

If you are used to conducting vigorous-intensity activity without experiencing any complications
and distress, and you decide you will carry on, you will be asked to come in for an additional five
visits to conduct a dynamometer test using an isokinetic dynamometer as displayed below in
Figure 1. During this test maximum strength of hip, knee and ankle joints are measured. However
if you do not wish to conduct any further testing, it is not a problem. Participation in this study is

entirely voluntary and you are free to withdraw at any time without giving a reason.

During visit 3. and 4. you will be familiarised with the use of the dynamometer. During visit 5.,
6. and 7. you will perform the test. The dynamometer test involves you being tightly strapped into
a chair whilst pushing or pulling your leg with full force against the resistance of the crank arm
which extends from the dynamometer. The strength exerted during the actions of pulling and
pulling are recorded. This process will be repeated for the extension and flexion of hip, knee and

ankle joints and in various seating positions e.g. upright and lying down flat on your back.
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Figure 1. Dynamometer.

Are there any risks involved?

When performing the gait analysis tasks, you may feel unstable. However, you will not be asked

to perform any tasks that you feel are not within your capabilities.

It is extremely rare but one possible side effect of sticky tape being placed on the skin is a skin
reaction to the tape. Your skin will be checked when the markers have been removed and, if there
has been any reaction, appropriate treatment would be recommended. There is also a miniscule
risk of an infection because of the skin preparation which is done to place the EMG electrodes,
however new equipment will be used during each session to minimise the chance of this

happening.

You may experience fatigue or tiredness associated with walking so you will be advised to bring
along food and drink, and will be afforded generous rest periods in order to recuperate.

Prosthesis users may experience abrasion at the socket-residuum interface. Thus you will be asked
to bring your usual sock and liner and you will be able to remove/attach your prosthetic at your

leisure.

Non- prosthesis user may experience musculoskeletal soreness and abrasions from the use of the

ankle-foot orthosis. You will be afforded generous rest periods in order to recuperate.

When performing the dynamometer testing, you will be required to exert multiple maximal
voluntary hip, knee and ankle extension and flexion tasks which may result in some fatigue. You
may also feel short of breath after efforts and may feel some delayed muscle soreness following
each session. You will be afforded generous rest periods in order to recuperate and will be invited
to stop the data collection sessions if abrasions occur and impact upon your ability to perform the

tasks pain free.
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Being tightly constrained by straps keeping you in place and repeated application of force may

result in soreness, which will be prevented or reduced by providing additional cushioning.

There is a risk that you may faint or experience a heart attack during the dynamometer testing due
to the nature of the physical activity, however it is very unlikely assuming you meet the required
inclusion criteria. First aiders are available during the duration of the testing protocol in the events
of any unexpected emergencies. If you are suffering from any cardiovascular complaints you do
not meet the inclusion/exclusion criteria and are unable to participate in this study due to the risks

involved with exercising on a dynamometer.

The correct health and safety measures are taken at all times in the Biomechanics Laboratory and
first aiders from the sport’s department are on site at all times during the testing period. First aider
will be sampled from the following list of current first aiders within the department and on site:
Terry Campion (Laboratory Technician in Sport Science, First Aid Certificate), Alan MaNally
(Reader in Bioscience, First Aid Certificate), Paul Lester (PhD Student and Hourly Paid Lecturer
in in Sport and Exercise Science, TQUK Level 2 Award in Emergency First Aid at Work (QCF)).

What happens when the research study stops?

The results from the study will be published in scientific and clinical publications as well as being
presented at international conferences. You will not be identified in any of this material to
preserve your confidentiality. You may request a copy of any published results from Miss Maria

Bisele.

What if there is a problem?

Any complaint about the way you have been dealt with during the study or any possible harm you
might suffer will be addressed. Please contact Professor Mary Nevill, Head of Department of
Sport Science (mary.nevill@ntu.ac.uk, 011584883918) if this is the case.

If the information in Part 1 has interested you and you are considering taking part in the study,
please read on to Part 2 for additional details.
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PART 2
Confidentiality

All information and data from the study will be kept strictly confidential., Your name and details
will not be disclosed at any time and you will be assigned a code number to identify you in the
study. All data and information will be kept on record electronically on a password protected
computer and in locked filling cabinets.

Miss Maria Bisele has responsibility to safeguard the data and information and only those

individuals involved with the study will have access to these sources.

All data and information will be kept by Miss Maria Bisele at Nottingham Trent University for
the duration of the study and 5 years beyond as to conform with regulations related to challenges
that could be made in terms of publication of data stemming from this study.

In case that you withdraw from the study, data already collected with consent will be retained and

used in the study.

Please be aware that, when giving consent to participate, you are agreeing with the conditions
outlined above.

Your Rights

Your participation in this study is voluntary. You are allowed to withdraw from the study at any
time without reason. This will not affect any future treatment or any legal rights. Withdrawal is

totally without prejudice.

For more advice on the project please contact Miss Maria Bisele, email

maria.bisele2014@my.ntu.ac.uk.

Trial-Related Injury

It is unlikely that you will experience an injury or illness as a result of taking part in this research
study. However, indemnity is provided by the Nottingham Trent University and any
compensation will be as per the University’s usual standards. For more information please contact

Miss Maria Bisele.

Who is organising the study?
Miss Maria Bisele, School of Science and Technology, Nottingham Trent University.
Thank you for your time and | look forward to speaking to you soon.

Miss Maria Bisele
School of Science and Technology
Nottingham Trent University
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Appendix 6.2 — Participant Information Sheet for Non-Prosthetic User

NOTTINGHAM®
TRENT UNIVERSITY

PARTICIPANT INFORMATION SHEET FOR NON-PROSTHESIS USER

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee

walking gait and dynamic stability.
IRAS ID: 203582
Name of Researcher: Miss Maria Bisele

Contact Details: Email maria.bisele2014@my.ntu.ac.uk

We would like to invite you to take part in a research study. Before you decide, we would like
you to understand why the research is being done and what it would involve for you.

Please take time to carefully read the following information and talk to others about the study if

you wish.

Part 1 will tell you about the purpose of the study and what will happen if you decide to take part.
Part 2 gives you more detailed information about the conduct of the study.

Please ask us if there is anything that is not clear or if you would like more information. We would
like to know if you would like to take part in this research study. You have up to two weeks
following your appointment to decide whether or not you would like to take part.

PART 1
What is the purpose of this study?

People with a lower limb amputation have been shown to fall more often when compared to age-
matched individuals without lower limb amputation. Prosthesis user adopt certain compensatory
mechanisms to have more efficient gait. Rehabilitation intervention are aimed to re-educate
amputees to abandon these mechanisms and walk in a manner similar to non-amputees. However
it has become apparent that these mechanisms facilitate the amputee’s balance thus changing them
would result in the reduction of balance leading to an increased risk of falling. Therefore, the aim
of this study is to investigate whether walking in a manner which is similar to non-amputees

causes a reduction of balance in amputees.
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Why have | been invited?

You have been invited to take part in this study as you fit the criteria required to participate in this

study.

Do I have to take part?
No. Participation in this study is entirely voluntary.

If you do decide to take part in this study, you will be free to stop taking part at any time without

giving a reason.

What will happen if I decide to take part?

If you decide to take part in the study then great! You will need to contact Miss Maria Bisele
(maria.bisele2014@my.ntu.ac.uk, Dr. Cleveland Barnett 01158483824) to let her know you are

keen to take part and you will then be invited to the Biomechanics Laboratory, at Nottingham
Trent University. You will be asked to bring along a pair of shorts, a t-shirt or vest and some
comfortable shoes you can walk in. No high heels are permitted in the laboratory. If you do not
have shorts, they will be provided for you. You are also advised to bring along food and drink.

When you arrive, you will be asked to change into your shorts and t-shirt. Reflective markers will
be placed on your skin with double sided sticky tape. The markers are about the size of a marble,
made of polystyrene and covered in reflective tape. Electromyography electrodes will also be
placed on your skin. To place these a standardised skin preparation will be performed during
which the area of interest will be shaved until free of hair, the surface will then be lightly abrading
to remove dead skin cells and wiped clean with alcohol to remove oils from the skin. Once
markers and the electrodes are in place you will be asked to perform a gait analysis task (which

is described in more details in the Section ‘What do | have to do’).

Are there any costs involved?

No. The University will reimburse any costs that you incur as a result of travelling to the
University at a standard University rate of 25p per mile travelled if coming by car. Your fare will

be reimbursed if you come by train or taxi.

What do | have to do?

The testing will be conducted over seven visits, you will be asked to attend the first two sessions
for a gait analysis test and if you feel fit to it you will be asked to attend an additional five sessions
for a dynamometer test. The overall time commitment of the your visits should not exceed 32

hours in a four week period.
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During visit 1.(gait analysis) you will be walking across a 15m walkway at self-selected speed.
This will be repeated for each leg five times. You are then asked to repeat these trials at both self-

selected slow and self-selected fast speeds.

If you are a non- prosthesis user, you will be equipped with an ankle-foot orthosis and the same
tasks are repeated. An ankle-foot orthosis is a brace, made of plastic (as seen in Figure 1.), which
holds the lower leg and the foot in place to limit movement at the ankle.

ng
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Figure 1. Ankle-Foot Orthosis.

During visit 2. (gait analysis) step length and step frequencies measured during the visit 1. are

altered by the researcher so that you will follow a walking pattern which is not habitual to you.

If you are used to conducting vigorous-intensity activity without experiencing any complications
and distress, and you decide you will carry on, you will be asked to come in for an additional five
visits to conduct a dynamometer test using an isokinetic dynamometer as displayed below in
Figure 2. During this test maximum strength of hip, knee and ankle joints are measured. However
if you do not wish to conduct any further testing, it is not a problem. Participation in this study is

entirely voluntary and you are free to withdraw at any time without giving a reason.

During visit 3. and 4. you will be familiarised with the use of the dynamometer. During visit 5.,
6. and 7. you will perform the test. The dynamometer test involves you being tightly strapped into
a chair whilst pushing or pulling your leg with full force against the resistance of the crank arm
which extends from the dynamometer. The strength exerted during the actions of pulling and
pulling are recorded. This process will be repeated for the extension and flexion of hip, knee and

ankle joints and in various seating positions e.g. upright and lying down flat on your back.
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Figure 2. Dynamometer.

Are there any risks involved?

When performing the gait analysis tasks, you may feel unstable. However, you will not be asked

to perform any tasks that you feel are not within your capabilities.

It is extremely rare but one possible side effect of sticky tape being placed on the skin is a skin
reaction to the tape. Your skin will be checked when the markers have been removed and, if there
has been any reaction, appropriate treatment would be recommended. There is also a miniscule
risk of an infection because of the skin preparation which is done to place the EMG electrodes,
however new equipment will be used during each session to minimise the chance of this

happening.

You may experience fatigue or tiredness associated with walking so you will be advised to bring

along food and drink, and will be afforded generous rest periods in order to recuperate.

Prosthesis users may experience abrasion at the socket-residuum interface. Thus you will be asked
to bring your usual sock and liner and you will be able to remove/attach your prosthetic at your

leisure.

Non- prosthesis user may experience musculoskeletal soreness and abrasions from the use of the

ankle-foot orthosis. You will be afforded generous rest periods in order to recuperate.

When performing the dynamometer testing, you will be required to exert multiple maximal
voluntary hip, knee and ankle extension and flexion tasks which may result in some fatigue. You
may also feel short of breath after efforts and may feel some delayed muscle soreness following

each session. You will be afforded generous rest periods in order to recuperate and will be invited

Participant details sheet date of issue:  [8" September 2016]
Participant details sheet version number: [PDS005]



to stop the data collection sessions if abrasions occur and impact upon your ability to perform the

tasks pain free.

Being tightly constrained by straps keeping you in place and repeated application of force may

result in soreness, which will be prevented or reduced by providing additional cushioning.

There is a risk that you may faint or experience a heart attack during the dynamometer testing due
to the nature of the physical activity, however it is very unlikely assuming you meet the required
inclusion criteria. First aiders are available during the duration of the testing protocol in the events
of any unexpected emergencies. If you are suffering from any cardiovascular complaints you do
not meet the inclusion/exclusion criteria and are unable to participate in this study due to the risks

involved with exercising on a dynamometer.

The correct health and safety measures are taken at all times in the Biomechanics Laboratory and
first aiders from the sport’s department are on site at all times during the testing period. First aider
will be sampled from the following list of current first aiders within the department and on site:
Terry Campion (Laboratory Technician in Sport Science, First Aid Certificate), Alan MaNally
(Reader in Bioscience, First Aid Certificate), Paul Lester (PhD Student and Hourly Paid Lecturer
in in Sport and Exercise Science, TQUK Level 2 Award in Emergency First Aid at Work (QCF)).

What happens when the research study stops?

The results from the study will be published in scientific and clinical publications as well as being
presented at international conferences. You will not be identified in any of this material to
preserve your confidentiality. You may request a copy of any published results from Miss Maria

Bisele.

What if there is a problem?

Any complaint about the way you have been dealt with during the study or any possible harm you
might suffer will be addressed. Please contact Professor Mary Nevill, Head of Department of
Sport Science (mary.nevill@ntu.ac.uk, 011584883918) if this is the case.

If the information in Part 1 has interested you and you are considering taking part in the study,

please read on to Part 2 for additional details.
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PART 2
Confidentiality

All information and data from the study will be kept strictly confidential., Your name and details
will not be disclosed at any time and you will be assigned a code number to identify you in the
study. All data and information will be kept on record electronically on a password protected
computer and in locked filling cabinets.

Miss Maria Bisele has responsibility to safeguard the data and information and only those

individuals involved with the study will have access to these sources.

All data and information will be kept by Miss Maria Bisele at Nottingham Trent University for
the duration of the study and 5 years beyond as to conform with regulations related to challenges
that could be made in terms of publication of data stemming from this study.

In case that you withdraw from the study, data already collected with consent will be retained and

used in the study.

Please be aware that, when giving consent to participate, you are agreeing with the conditions
outlined above.

Your Rights

Your participation in this study is voluntary. You are allowed to withdraw from the study at any

time without reason. Withdrawal is totally without prejudice.

For more advice on the project please contact Miss Maria Bisele, email

maria.bisele2014@my.ntu.ac.uk.

Trial-Related Injury

It is unlikely that you will experience an injury or illness as a result of taking part in this research
study. However, indemnity is provided by the Nottingham Trent University and any
compensation will be as per the University’s usual standards. For more information please contact

Miss Maria Bisele.

Who is organising the study?
Miss Maria Bisele, School of Science and Technology, Nottingham Trent University.

Thank you for your time and | look forward to speaking to you soon.

Miss Maria Bisele
School of Science and Technology
Nottingham Trent University
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Appendix 7 — Participant Consent Form experimental for Studies 2-4 Presented in
Chapters 5-7

Appendix 7.1 — Participant Consent form for Prosthetic User

NOTTINGHAM®
TRENT UNIVERSITY

Patient Identification Number for this trial:

CONSENT FORM FOR PROSTHESIS USER

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee

walking gait and dynamic stability.

IRAS ID: 203582

Name of Researcher: Miss Maria Bisele

Please initial all
boxes

1. | confirm that | have read and understand the information sheet dated
/ / (version PIS006_PROS) for the above study. | have had the

opportunity to consider the information, ask questions and have had these answered

satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any

time without giving any reason, without my medical care or legal rights being

affected.

3. | understand that relevant Sections of my medical notes and data collected during

the study, may be looked at by individuals from Nottingham Trent University and

The Mobility Centre, Nottingham University Hospitals NHS Trust, from
regulatory authorities or from the NHS Trust, where it is relevant to my taking part

in this research. I give permission for these individuals to have access to my records.

4. | agree to take part in the above study.
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Name of Participant Date Signature

Name of Person Date Signature

taking consent

A copy of this form will be retained by the researchers, a copy will be given to the participant
and a copy will be placed in the medical notes of the prosthetic user.
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Appendix 7.2 — Participant Consent form for Prosthetic User

NOTTINGHAM®
TRENT UNIVERSITY

Patient Identification Number for this trial:

CONSENT FORM FOR NON-PROSTHESIS USER

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee

walking gait and dynamic stability.

IRAS ID: 203582

Name of Researcher: Miss Maria Bisele

Please initial all

boxes

5. | confirm that | have read and understand the information sheet dated
/ / (version P1S007_CON) for the above study. | have had the

opportunity to consider the information, ask questions and have had these answered

satisfactorily.

6. 1 understand that my participation is voluntary and that | am free to withdraw at any

time without giving any reason, without my medical care or legal rights being

affected.

7. 1 understand that relevant Sections of my data collected during the study, may be

looked at by individuals from Nottingham Trent University and The Mobility
Centre, Nottingham University Hospitals NHS Trust, from regulatory
authorities or from the NHS Trust, where it is relevant to my taking part in this

research. | give permission for these individuals to have access to my records.

8. | agree to take part in the above study.
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Name of Participant Date Signature

Name of Person Date Signature

taking consent

A copy of this form will be retained by the researchers and a copy will be given to the
participant.
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Appendix 8 — Participant Health Screen for Studies 2-4 Presented in Chapters 5-7

Patient Identification Number for this trial:

Date:

NOTTINGHAM®
TRENT UNIVERSITY

PARTICIPANT DETAILS OF PROSTHESIS USER

Information with regards to Limb-Loss

Date of Amputation

Side of Amputation (Right or Left Limb):

Amputation Level (Above knee or Below knee):

Reason for amputation

Do you experience any phantom limb pain?

Frequency/intensity of pain?

Information with regards to Prosthesis

How long have you been using your current

prosthesis?

Socket type

Liner type

Suspension type

Prosthetic components

Residuum Dimension:

Proximal circumference

Distal circumference

Length (from knee joint centre to tip)
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Do you sometimes use any ambulatory aids (ie: walker, crutches, etc.)? How frequently?

Do you have any issues in relation to the non- prosthetic limb e.g. osteoarthritis in knee?

Exercising Details

Do you do any exercise?

How many days during the week do you exercise?

For how many hours does your exercise session last on average?

Do you do any vigorous-intensity activity?

Have you previously performed a maximum strength test using a dynamometer?

Participant details sheet date of issue:  [8" September 2016]
Participant details sheet version number: [PDS005]



NOTTINGHAM®
TRENT UNIVERSITY

Patient Identification Number for this trial:

Date:

PARTICIPANT DETAILS OF NON-PROSTHESIS USER

Exercising Details

Do you do any exercise?

How many days during the week do you exercise?

For how many hours does your exercise session last on average?

Do you do any vigorous-intensity activity?

Have you previously performed a maximum strength test using a dynamometer?
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Patient Identification Number for this trial:

NOTTINGHAM®
TRENT UNIVERSITY

MEDICAL AND HEALTH SCREEN

Please complete this brief questionnaire to confirm fitness to participate:

1. In general, how would you describe your health?

Excellent Very good Good Fair Poor

2. At present, do you have any health problem for which you are:

(a) on medication, prescribed or otherwise

(b) attending your general practitioner (GP)

(c) on a hospital waiting list

If YES, please describe the condition(s):

Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|

3. Do you currently :

(a) Have a pace maker

(b) Take medication daily (i.e. hypertension, oestrogen replacement therapy
(c) Suffer from high blood pressure

(d) Have any physical disabilities (e.g. visual or hearing problems)

(e) Use an assistive device for walking

(f) Sustain any regular limb pain when performing daily movement tasks

(g) Have osteoporosis

(h) Numbness, tingling, swelling or arthritis in hands or feet

(i) Any other illness or condition that affects your general health or interferes

with your mobility and may affect your participation in this study?
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Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|



Smoke cigarettes Yes |:| No |:|

> If NO, have you ever smoked? Yes |:| No |:|

» How many years?
» How many years since stopped
» Number formally smoked on an average day
3. In the past five years, have you had any illness which require you to:

(&) consult your GP Yes |:| No |:|
(b) attend a hospital outpatient department  Yes| | No| ]
(c) be admitted to hospital Yes |:| No |:|

If YES, please describe the condition(s):

4. Have you ever had any of the following?

(@ Airway/chest problems or significant breathing difficulties
(e.g. bronchitis, asthma or wheezy chest)?

(b)  Allergy to nuts, alcohol etc
(c) Back problems

(d) Blood/blood vessel disorders
(e.g. thrombosis, aneurysm, stroke, blood clots)

(e) Bone problems (e.g. osteoporosis, loss of height)
(f)  Broken or fractured any bones

() Cerebrovascular disease

()  Convulsions/epilepsy

(

(j) Disturbance of balance /coordination

)  Diabetes or any other metabolic disease (please state if insulin dependent)

(k) Disturbance of vision
(I)  Ear /hearing problems

(m) Emotional distress or psychiatric problems
(worse than mild anxiety or depression)

(n) Head injury

(0) Heart problems (inc. heart attack, valve disease, palpitations, serve angina)
(p)  Joint surgery

(@) Kidney or liver problems

(r)  Major illness now or in the last 20 years
(e.g. rheumatoid arthritis, blood disorders, cancer)
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Yes [ ]
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(s) Problems with bones or joints

(t) Suffered from significant memory loss
(u)  Thrombophlebitis or pulmonary embolus
(v) Thyroid problems

If yes to ANY of the above questions, please provide details on condition(s)

Yes|:| No|:|
Yes|:| No|:|
Yes|:| No|:|
Ye5|:| No|:|

5. Has any, otherwise healthy, member of your family under the age of 50 died

Yes|:| No|:|

suddenly during or soon after exercise?

6. Has a close relative had a heart attack before age 55 (father or brother)

Yes|:| No|:|

or before age 65 (mother or sister)? If YES, who and at what age:

7. Have you had a cold, flu or any flu like symptoms in the last month?

Yes|:| No|:|

9. Have you had febrile illness within the previous 6 months

Yes|:| No|:|

9.  Have you lost any mobility for greater than 1 week in the previous 6 months,

Yes|:| No|:|

or greater than 2 weeks in the previous year?

If yes to ANY of the above questions, please provide details on condition(s)
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10. Lifestyle and Exercise

Work

Does your work involve vigorous-intensity activity that causes large increases in breathing or heart rate like

[carrying or lifting heavy loads, digging or construction work] for at least 10 minutes continuously?

Yes|:| No|:|

In a typical week, on how many days do you do vigorous intensity activities as part of your work?

How much time do you spend doing vigorous-intensity activities at work on a typical day?

Does your work involve moderate-intensity activity, that causes small increases in breathing or heart rate

such as brisk walking [or carrying light loads] for at least 10 minutes continuously?

Yes|:| No|:|

In a typical week, on how many days do you do moderate intensity activities as part of your work?

How much time do you spend doing moderate-intensity activities at work on a typical day?

Activities

Do you do any vigorous-intensity sports, fitness or recreational (leisure) activities that cause large increases

in breathing or heart rate like [running or football] for at least 10 minutes continuously?

Yes|:| No|:|

In a typical week, on how many days do you do vigorous intensity sports, fitness or recreational (leisure)

activities?

How much time do you spend doing vigorous-intensity sports, fitness or recreational activities on a typical

day?

In a typical week, on how many days do you do moderate intensity sports, fitness or recreational (leisure)

activities?

How much time do you spend doing moderate-intensity sports, fitness or recreational (leisure) activities on

a typical day?
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11. Women only

Are you pregnant, trying to become pregnant or breastfeeding?
Yes |:| No |:|

If YES to any question, please describe briefly if you wish (e.g. to confirm problem was/is short-

lived, insignificant or well controlled.

Participant Name (Please print):

Signature: Date:

Researcher Name (Please print):

Signature: Date:

Thank you for completing this questionnaire.

In case of emergency details:

Name:

Relationship to participant:

Contact detail (1):

Contact detail (2):
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