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Abstract 

The general aim of this thesis was to develop analytical techniques for the assessment and 

understanding of lower-limb amputee (LLA) gait. The number of individuals with lower limb 

amputation (LLA) worldwide is growing and being able to optimise rehabilitation and prosthetic 

prescriptions are becoming more important. Gait analysis may be able to inform these processes, in 

particular at the individual level. 

In study one, a machine learning algorithm was developed and optimised using Principal Component 

Analysis (PCA) and Discriminant Function Analysis (DFA) to distinguish between barefoot and shod 

running. An iterative process was used to optimise the algorithm, exploring all possible iterations of 

ten individuals out of twenty, finding the combination of people with the greatest generic features 

and thus the lowest error rate for classification. The outcome showed 93.5% classification accuracy 

between barefoot and shod running. This study demonstrated that an iteration procedure could 

optimise a machine learning algorithm to overcome the issues of overfitting, which is particularly 

useful when working with a small sample size as is common in gait analysis. 

In study two, PCA and DFA were used to identify differences between the gait of individuals with 

unilateral trans-tibial amputation (UTTA) and able-bodied individuals. Different approaches were 

explored, establishing that PCA conducted on normalised temporal-waveforms yielded the best 

outcome. Results revealed that UTTA and able-bodied gait differed with regards to certain 

biomechanical variables, providing a better understanding of LLA function. Although differences 

between individuals with LLA and able-bodied individuals have previously been investigated, this 

study demonstrates that using multivariate statistical analyses a vast number of variables can be 

investigated simultaneously, identifying the hierarchy of variables and thus which need to be targeted 

during treatment. 

Clinical diagnosis is based on individual patients, thus in study three PCA was used to determine 

whether one individual with a UTTA displayed unique gait characteristics when compared to a group 

of able-bodied individuals. Both covariance and correlation matrices were used during PCA, 

providing information about variation and magnitude of the data, respectively. Results revealed that 

each individual with UTTA has subject-specific gait characteristics, which highlights that this 

method can be used to identify variables which can be targeted during treatment. 

In the fourth and final study, PCA was used to understand the effects of attempted symmetry on 

dynamic stability of individuals with UTTA. Although in rehabilitation symmetrical gait is often 

sought for since asymmetrical gait is said to cause long term adverse effects, results revealed that 

asymmetry might be playing a functional role and in fact aids better stability in UTTA gait. This 
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outcome may suggest that after a certain symmetry has been reached, the target of rehabilitation may 

need to be reconsidered to aim for better stability. 

In conclusion, multivariate statistical analysis could be used to assess and understand LLA function. 

In a clinical setting, the ability to identify important variables during a task, particularly at patient-

specific level has the potential to improve the development of treatment recommendations. Prosthetic 

prescription and rehabilitation processes can be tailored and in turn the outcome may be more 

successful which could increase the likelihood of independent living of patients and therefore 

improve the quality of life of individuals with LLA. 
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TP True positive 

TT Trans-tibial 
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UTFA Unilateral trans-femoral amputation/unilateral trans-

femoral amputee 

UTTA Unilateral trans-tibial amputation/unilateral trans-tibial 

amputee 

vCoM Centre of mass velocity 

XCoM Extrapolated centre of mass 
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1.1 Introduction 

Undergoing amputation is a traumatic experience. In England, approximately 5000 lower limb 

amputations are conducted annually, of which 90% are due to diabetes, hypertension and coronary 

heart disease (Ahmad et al., 2014). The number of individuals with lower-limb amputation (LLA) 

is expected to double by 2050 due to increased adverse health issues and an increasing ageing 

population (Ziegler-Graham et al., 2008). Therefore, individuals with LLA represent a growing 

problem in western society. These individuals lose musculoskeletal mechanisms, joint structures 

and sensory input vital for movement such as walking. Consequently, their ability to take part in 

activities of daily living is impacted (Pezzin et al., 2000). This leads to physical and personal 

dependence, which can adversely affect their quality of life (Sawers & Hahn, 2011). One of the 

goals of prosthetic rehabilitation is for individuals with LLA to regain and maintain a certain level 

of function (van Velzen et al., 2006), and thus be able to live independently. During rehabilitation, 

individuals with LLA are equipped with a prosthesis to replace the missing parts of the limb, 

which is then used to learn how to walk again (Barnett et al., 2009). Successful prosthetic 

rehabilitation is associated with increased chances of living at home after the final discharge, self-

care performance and improved quality of life (Dawson et al., 1995).  

Prosthetic rehabilitation is a complex and multifaceted procedure, which can be both physically 

and mentally challenging for a patient (Schaffalitzky et al., 2011). The ability to walk well with 

a prosthesis increases the likelihood of using it following rehabilitation (Gailey, 2006). However, 

the number of people who can use a prosthesis efficiently ranges from 49% to 95% (Dillingham 

et al., 2005; Karmarkar et al., 2009; Schoppen et al., 2003). The impact of amputation on mobility 

is great, especially in the elderly (van Eijk et al., 2012), which make up the majority of individuals 

with LLA, with the average age being 70.6 years (Ahmad et al., 2014). Even individuals with 

traumatic LLA, who tend to be younger and healthier, require time to regain pre-existing function, 

and it is not always achieved (van Eijk et al., 2012). Research has shown that 31% of individuals 

with LLA are unable to live independently 24 months following amputation and 49% lose the 

ability to walk completely (Taylor et al., 2005). Being able to predict the outcome of prosthetic 

rehabilitation is becoming increasingly important (Jarvis et al., 2017; Leung et al., 1996; van Eijk 

et al., 2012) since it can facilitate decision-making processes early on during the rehabilitation 

procedure. However, predicting mobility after prosthetic rehabilitation is arduous (Sansam et al., 

2009).  

Research studies found that prosthetic rehabilitation and the ability to walk after LLA are 

influenced by multiple factors, which include but are not limited to the age of the individual, level 
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of amputation, cause of amputation, stump factors and associated pain, cognitive and mood 

disturbance, dual disabilities, physical fitness, motivation, prosthetics prescriptions and 

rehabilitation programmes (Jarvis et al., 2017; Leung et al., 1996; Sansam et al., 2009). There are 

no generic measures in place which are considered essential to evaluate prosthetic rehabilitation 

(Callaghan & Condie, 2003). Current prosthetic prescriptions and rehabilitation processes are 

based on the subjective experience of clinicians (Schaffalitzky et al., 2011; van der Linde et al., 

2004). Even though rehabilitation goals are met, the lack of knowledge may in some cases 

compromise the treatment outcome. Clinical decisions supported by gait analysis, facilitate a 

better understanding of factors affecting gait and therefore aid more effective decision-making 

processes (Esquenazi, 2014). Clinical gait analysis has changed the way in which gait pathologies 

are treated. It helps determine the severity of a condition, provides treatment recommendations 

and evaluates treatment outcome (Hamill et al., 2012). Using gait analysis for the assessment of 

individuals with LLA can help monitor prosthetic rehabilitation and therapy effectiveness 

(Skinner & Effeney, 1985), however, prosthetic rehabilitation is said to lack evidence-based 

practice (Ramstrand & Brodtkorb, 2008). 

Gait analysis is commonly conducted using data acquisition tools such as motion capture systems, 

force platforms and electromyography (Winter, 2009). These data are often processed further 

using methods such as inverse dynamics (Robertson et al., 2013; Winter, 2009). Subsequently, 

summary techniques such as gait scores and gait indices are applied, producing information that 

is accessible by clinical practitioners (Baker et al., 2009; Schutte et al., 2000; Schwartz and 

Rozumalski, 2008). However, the quality of the interpretation of temporal gait waveforms 

obtained by the acquisition tools and the processing of the data depends on the researcher’s 

experience. Therefore, both data collection and data analysis can be subjective and highly affected 

by researcher bias. To overcome these issues, multivariate statistical analyses and machine 

learning algorithms can be used to develop automatic gait recognition tools, enabling a more 

objective analysis procedure (Alaqtash et al., 2011a; Lakany, 2008; Simon et al., 2016). In a 

clinical setting, an automatic gait recognition tool would not only remove researcher bias, but it 

could also facilitate decision-making processes. Thus, in the treatment of individuals with LLA, 

it may provide a guide for prosthetic prescriptions and rehabilitation programs. 

Research studies commonly assess group effects, whilst clinical assessments are based on 

individuals. Therefore, research and clinical attempts to aid patients may appear to be operating 

in diverging directions, preventing a coherent inter-disciplinary approach (Schöllhorn et al., 

2002). Being able to identify individual gait differences, instead of focusing on typical behaviour 

of a group can be particularly useful, as it allows factors to be identified that can be used to tailor 
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a patient’s treatment recommendations meeting their personal needs (Schöllhorn et al., 2002). 

This is particularly useful in individuals with LLA since it could help tailor prosthetic 

prescriptions and rehabilitation programs, which may, in turn, increase the likelihood of an 

individual with LLA to regain the ability to walk independently after rehabilitation. Using 

machine learning algorithms, Schöllhorn et al. (2002) demonstrated that individuals exhibit 

unique gait characteristics, and these characteristics are not only distinctive but also persistent 

over the years (Horst et al., 2017; 2016).  

Predicting the ‘right’ intervention for a patient is important, but considerably more work needs to 

be done to develop methodological frameworks for patient-specific treatment (Hoerzer et al., 

2015). To be able to identify the ‘right’ factors that need to be targeted in an individual is the first 

step towards the development of this framework. Therefore, the aims of this PhD were to 

implement quantification methods, which would allow better assessment and understanding of 

LLA function. Multivariate statistical analyses and machine learning algorithms were explored to 

identify a technique that might allow a comparison between LLA and able-bodied gait to be made, 

providing an objective evaluation of LLA function. This technique was then used to compare 

between the gait of an individual with LLA and a group of able-bodied individuals, to determine 

if subject-specific gait characteristics could be identified. In addition, the technique was 

implemented to investigate whether it could provide a better understanding of certain functions 

of LLA gait such as dynamic stability.  

1.2 Aims and Objectives 

The general aim of this PhD was to adopt multivariate statistical analyses and machine learning 

algorithms to develop analytical techniques for the assessment and understanding of LLA 

function. The specific aims of the thesis were: 

(1) To develop and optimise a machine learning algorithm using multivariate statistical analyses, 

namely Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) to 

process human locomotion. 

(2) To compare the gait of individuals with unilateral trans-tibial amputation (UTTA) and able-

bodied individuals using PCA and DFA to provide a better understanding of LLA function. 

(3) To establish subject-specific gait characteristics of an individual with UTTA using PCA when 

compared to a group of able-bodied individuals. 

(4) To identify the effects of attempted temporal-spatial symmetry on the dynamic stability of 

individuals with UTTA, and to use PCA to understand LLA function during the attempt of 

temporal-spatial symmetry. 
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1.3 Structure of Thesis 

The thesis begins with a literature review in Chapter 2. In the review, topics related to the 

biomechanics of LLA gait, and the rationale of this PhD are outlined. Biomechanical variables of 

LLA gait are described, particularly focusing on variables of forward progression and dynamic 

stability, since these functional tasks will be a focus in this PhD research. Subsequently, 

multivariate statistical analyses and machine learning algorithms used in gait analysis and 

specifically in the assessment of LLA gait are discussed.  

The general methodology is outlined in Chapter 3. Details of ethical approval and the inclusion-

exclusion criteria are described here. Furthermore, biomechanical gait variables such as temporal-

spatial, kinetic and kinematic variables which were collected for the research are presented. Also, 

acquisition tools and experimental protocol used to collect the data are described as well as 

processing and analysis procedures. Any additional methods that applied to a specific study are 

described on a study-by-study basis in the individual methodology sections. 

The development and optimisation of a machine learning algorithm using PCA and DFA are 

described in Chapter 4. The algorithm was developed for data reduction, feature selection and 

classification between barefoot and shod running. Different techniques were explored in order to 

optimise the classification outcome, which are outlined and discussed. 

In Chapter 5, PCA and DFA were applied, to compare between the gait of a group of individuals 

with UTTA and a group of able-bodied individuals, using various approaches to establish a robust 

analysis method for the assessment and understanding of LLA function. The approaches for once 

involved the use of different forms of biomechanical variables, i.e. entire temporal waveform vs 

scalar values. The influence of the number of scalar values on the discrimination procedure has 

also been assessed. Furthermore, the nature of biomechanical data was investigated, i.e. 

normalised vs non-normalised data. 

In Chapter 6, the method established in Chapter 5 was applied to discriminate between the gait of 

one individual with UTTA and a group of able-bodied individuals. This was done to establish if 

an individual with UTTA displayed distinctive discriminating features, thus identifying individual 

gait characteristics which could potentially be used to inform patient-specific treatment. During 

this analysis, both the covariance and correlation matrices of PCA were utilised.  

In Chapter 7, methods described and used in previous chapters were implemented to investigate 

the effects of attempting temporal-spatial symmetry on the dynamic stability in individuals with 

UTTA. Individuals with LLA are known to fall more often compared to able-bodied individuals, 
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which has been attributed to compromised dynamic stability, however, the control mechanisms 

of dynamic stability are not well understood. Hence, this study looked to provide further 

understanding of the underlying biomechanical variables that are involved in the maintenance of 

stable dynamic stability.  

Finally, in Chapter 8, the PhD thesis is summarised. Furthermore, limitations, as well as future 

directions, are outlined, which is followed by possible implementations of findings in clinical 

practice, before concluding the thesis. 
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2.1 Introduction 

This chapter starts with a brief description of biomechanical characteristics of able-bodied gait, 

followed by some statistics on individuals with LLA and a description of LLA gait, focusing on 

forward progression and dynamic stability. Different quantification methods of dynamic stability 

are described, with a detailed explanation of the extrapolated centre of mass (XCoM) and the 

margin of stability (MoS), which are the chosen methods for this PhD research. Subsequently, 

characteristics of gait data are outlined, followed by issues faced during the analysis of gait data, 

and methods proposed in the literature to overcome these issues. Furthermore, the use of 

automatic recognition tools developed using multivariate statistical analyses and machine 

learning algorithms are described, detailing their use in gait analysis and their application in the 

assessment of LLA gait. 

2.2 Biomechanics of Normal Gait 

Gait is a term describing locomotion characteristics such as walking and running (Fish & Nielsen, 

1993). Able-bodied gait describes a series of rhythmical, alternating movements of the trunk, as 

well as upper-limbs and lower-limbs that lead to forward progression of the centre of gravity. Gait 

is usually explained in terms of components of the gait cycle starting and ending at heel strike of 

the same limb. As outlined in Figure 2.1, the full gait cycle is described as a stride, and a step 

describes heel strike to heel strike from one limb to the contralateral limb, rather than the same 

limb (Perry et al., 2010). A gait cycle is divided into two major phases of stance and swing (Figure 

2.2). The stance phase defines the period during which the foot is in contact with the ground and 

comprises up to 60% of the gait cycle, and the swing phase is the period during which the foot is 

off the ground, making up 40% of the gait cycle. Three functional goals are met during the gait 

cycle, i.e. weight acceptance, single limb support and limb advancement (Perry, 1992), which can 

be explained using eight sub-categories (Figure 2.2). 

 

Figure 2.1 Step length, step width, stride length and foot angle during walking gait. 
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The eight sub-categories of the gait cycle are typically described starting with initial contact, 

which is often referred to as heel strike. At this instant, the foot comes into contact with the 

ground. Heel strike is the first phase of double limb support and stabilises the leading limb in 

preparation for forward progression (Perry, 1992). During heel strike, the hip is flexed to ~30°, 

the knee is extended between ~0-5°, the foot is at ~25° to the floor and the ankle is at a neutral 

position (Perry, 1992). Following heel strike, there is a rapid increase of vertical (Fz) ground 

reaction force (GRF) to approximately one times body weight as weight is shifted and the leading 

limb accepts the weight. In the anterior-posterior (Fy) GRF an increase in braking force reaches 

a peak just after weigh acceptance is completed. The medio-lateral (Fx) GRF increases 

significantly although the force is only 5% of body weight.  

After initial contact, the loading response follows (Perry, 1992). During the loading response, the 

ankle joint plantar-flexes and the foot lowers onto the ground, the hip starts to extend, the knee 

flexes, and the centre of mass (CoM) propels forward and over the foot, using the heel as a rocker. 

The aim of this phase is shock absorption, stability during weight bearing, and preservation of 

forward progression. Mid-stance follows the loading response and describes the first half of single 

limb support (Perry, 1992). During this phase, the weight is completely aligned over the 

supporting foot. Thus, the body weight is fully supported by one limb, as the contralateral foot is 

lifting off the floor. During mid-stance, the ankle is dorsiflexed, whilst the hip and knee are 

extended. Following mid-stance is terminal stance which describes the second half of single limb 

support (Perry, 1992). It begins as the heel of the loaded limb starts lifting off the floor, and the 

CoM moves forward past the forefoot. During this phase, hip extension increases and the knee 

begins to flex again. This phase ends as the contralateral limb contacts the floor.  

At this instance, pre-swing starts at the ipsilateral limb and defines the final phase of stance just 

before toe-off occurs (Perry, 1992). The contralateral limb is at initial contact, and the ipsilateral 

limb rapidly unloads the weight, transferring it to the contralateral limb, pushing the body 

forward. The knee extends, and the ankle plantar-flexes as the toe starts to leave the floor on the 

ipsilateral limb. The foot then lifts off the floor to start the initial swing phase (Perry, 1992). The 

hip and the knee start flexing, whilst the ankle starts to dorsiflex during this phase. The 

contralateral limb is at mid-stance during this instance. This phase ends as the off-loading limb is 

level with the contralateral limb in stance phase. The initial swing phase is followed by mid-

swing, during which the hip flexes so that the limb swings forward, and the knee continues to flex 

(Perry, 1992). Finally, terminal swing follows, which is also referred to as late swing, where the 

knee is fully extended, and the ankle is dorsiflexed to neutral as the limb prepares to make contact 

with the ground to start the cycle again (Perry, 1992). 
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Figure 2.2 Eight phases of the gait cycle. Figure adopted from Physiopedia (2018). 

 

2.3 Statistics of Individuals with Lower-Limb Amputation 

An amputation is defined as the surgical removal of a part of the body (nhs.uk., 2018). It is a 

profound and life-changing event with great physical and mental impact on an individual. Every 

year thousands of LLAs are performed around the world, with numbers doubling in western 

society (Ziegler-Graham et al., 2008). In England, more than 5000 new individuals with LLA are 

recorded per annum (Ahmad et al., 2014). The most common causes for an amputation are 

diabetes (44%) (Ahmad et al., 2014), which is at an all-time high, equating to 135 procedures 

each week (Diabetes UK), followed by hypertension (39%) and coronary heart disease (23%) 

(Ahmad et al., 2014). The United States (US) has an estimated 2 million people living with an 

amputation, and a further 185,000 individuals scheduled to undergo an amputation annually 

(Ziegler-Graham et al., 2008). The most common causes of limb loss in the US similar to England, 

are peripheral arterial diseases (PAD). At the present global estimates for the prevalence rates of 

PAD in adults age 70 and over stand at 3-10%, with further increases expected to reach 15-20% 

(Meijer et al., 1998; Norgren et al., 2007). Increases in life expectancy are leading to an ever-

growing ageing population and associated prevalence of adverse health issues. The number of 

individuals predicted to suffer from limb loss by 2050 is 3.6 million people (Ziegler-Graham et 

al., 2008). It was estimated that in the United Kingdom (UK) an amputation due to type 2 diabetes 

on average incurred annual hospital inpatient costs of £9546 (£6416 – £13463) (Alva et al., 2015). 

In 2009, the annual cost of amputations in the US was estimated at $8.3 billion (Amputee 

Coalition, 2018) with a lifetime health care cost after LLA of around $509,275 (MacKenzie et al., 

2007). In conclusion, the number of individuals with LLA is increasing, placing greater cost and 

care demands on health systems. 
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2.4 Biomechanics of Lower-Limb Amputee Gait 

Individuals with LLA have compromised balance, posture and gait function (Isakov et al., 2000; 

Jayakaran et al., 2012; Sadeghi et al., 2000; Silverman et al., 2008). The obvious mechanical 

difficulties result from the removal of parts of the skeletal system and the associated musculature, 

which are also compounded by the reduction in the somatosensory input. An amputation may 

occur at various levels at the upper-limbs and lower-limbs and can be classified as minor and 

major amputation, describing the removal of a digit such as a finger or a toe, or the removal of 

full parts of extremities such as an arm or shank, respectively (Assumpção et al., 2009). Major 

limb loss accounts for more than 42% of all amputations with the majority occurring below the 

knee, more commonly referred to as a trans-tibial (TT) amputation, followed by above knee 

amputations, commonly referred to as a trans-femoral (TF) amputation. After an LLA, individuals 

use alternative muscle groups to create movement (van Velzen et al., 2006) and thus 

compensatory mechanisms are adopted to achieve a certain level of function. 

The compensatory gait of individuals with LLA is associated with greater energy expenditure. 

During locomotion, the musculoskeletal system will function to use the least amount of energy to 

cover the greatest distance (Waters & Mulroy, 1999). However, individuals with LLA have lower 

self-selected walking speed and higher energy expenditure relative to able-bodied individuals 

(Schmalz et al., 2002). Schmalz et al. (2002) found oxygen consumption increased proportionally 

to an increase in speed, which further increased as the level of major amputation becomes higher, 

relative to able-bodied individuals (Figure 2.3). Greater energy expenditure was attributed to 

greater mechanical work required during the step-to-step transition from the prosthetic to the 

intact limb (Houdijk et al., 2009). 

The compensatory mechanisms adopted by prosthetic and intact limbs of individuals with LLA 

result in asymmetrical gait. Asymmetrical gait is known to cause secondary issues, some of which 

occur early on after the amputation, for example, lower back pain (Kulkarni et al., 2005), and 

others which occur later in life such as hip and knee osteoarthritis (Burke et al., 1978). Individuals 

with LLA are also 88% more likely to develop osteoporosis in the prosthetic limb due to 

asymmetrical gait (Burke et al., 1978). During prosthetic rehabilitation, a more symmetrical gait 

is often desired to correct for asymmetry and thus minimise these secondary issues. Literature has 

shown that asymmetries tend to decrease as rehabilitation progresses, and walking ability 

improves (Barnett et al., 2009). 
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Figure 2.3 Oxygen consumption of individuals with UTFA (solid squares), individuals with 

UTTA (open circles) and able-bodied individuals (solid triangles), as speed increases during 

treadmill and level walking. Figure adopted from Schmalz et al. (2002). 

 

2.4.1 Temporal-Spatial Parameters of Lower-Limb Amputee Gait 

Temporal-spatial parameters describe many variables such as speed and step length, providing an 

initial assessment of gait. In LLA gait, temporal-spatial variables were found to differ between 

the intact and prosthetic limb (Isakov et al., 1992; 2000) and also varied depending on individual 

characteristics such as level of amputation as well as prosthetic components. The self-selected 

walking speed of individuals with LLA tends to be lower relative to that of able-bodied 

individuals. However, different average results have been reported across studies for individuals 

with UTTA and individuals with UTFA as illustrated in Figures 2.4 and 2.5.  
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Figure 2.4 Average walking speed (m/s) of individuals with UTTA. The solid black line indicates 

the average speed of able-bodied individuals. Error bars show standard deviation. In all studies, 

speeds were identified from over ground walking except for Schmalz et al. (2002). The majority 

of the cohorts in these studies had undergone an amputation due to trauma, and their choice of 

prosthetic components were elastic response feet and microprocessor knee joints with some 

exceptions. Figure adapted from Jarvis et al. (2017). 

 

 

Figure 2.5 Average walking speed (m/s) of individuals with UTFA. The solid black line indicates 

the average speed of able-bodied individuals. Error bars show standard deviation. In all studies, 

speeds were identified from over ground walking except for Schmalz et al. (2002). The majority 

of the cohorts in these studies had undergone an amputation due to trauma, and their choice of 

prosthetic components were elastic response feet and microprocessor knee joints with some 

exceptions. Figure adapted from Jarvis et al. (2017). 
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Isakov et al. (2000) found the average speed of fourteen individuals with UTTA using patellar 

tendon bearing (PTB) sockets and solid ankle cushion heel (SACH) feet to be 1.25 m/s. They also 

found significantly larger step time and swing time on the prosthetic limb (step time 0.582±0.04s; 

swing time 0.438±0.04s) relative to the intact limb (step time 0.569±0.04s; swing time 

0.407±0.03s). Furthermore, larger stance time and single support time on the intact limb (stance 

time 0.774±0.06s, single support time 0.438±0.04s) relative to the prosthetic limb (stance time 

0.708±0.05s, single support time 0.407±0.03s) was found (Isakov et al., 2000). The shorter single 

support time on the prosthetic limb was attributed to the prosthetic foot, since the rigid ankle 

mechanism of the SACH foot leads to quicker weight transfer from the heel to the forefoot, i.e. 

resulting in shorter stance duration on the prosthetic limb and shorter swing time on the intact 

limb. Breakey (1976) found similar results regarding the stance duration on the prosthetic limb. 

Highsmith et al. (2010) reported similar results for individuals with UTFA in step time on the 

prosthetic limb (0.70±0.05s) relative to the intact limb (0.60±0.06s), however, in individuals with 

UTTA they found step time to be shorter on the prosthetic limb (58±0.03s) relative to the intact 

limb (0.60±0.05s). Jarvis et al. (2017) also reported significantly shorter step time on the 

prosthetic limb (60-62% of the gait cycle) relative to the intact limb (62-66% of the gait cycle). 

Longer stance time on the intact limb relative to the prosthetic limb (Board et al., 2001; Breakey, 

1976; Isakov et al., 2000; McNealy and Gard, 2008; Sanderson and Martin, 1997; Schmid et al., 

2005; van der Linden et al., 1999) was described as a control mechanism and was attributed to 

the lack of confidence in the prosthetic limb (Sanderson & Martin, 1997). It has also been 

identified as an attempt to protect the prosthetic limb from increased loads and forces (Hurley et 

al., 1990; Nolan et al., 2003; Powers et al., 1998; Sanderson & Martin, 1997). Jarvis et al. (2017) 

however, reported that walking speed, stride length and cadence of high functioning individuals 

with UTTA and individuals with UTFA, who use state of the art prosthetic devices, was 

comparable to able-bodied individuals (Table 2.1). Rábago and Wilken (2016) used prevalence 

to describe gait deviations of individuals with UTTA. The measure of prevalence is described as 

a percentage outside normative reference ranges, where the reference range was calculated using 

the mean and standard deviation of a group of able-bodied individuals. Individuals with UTTA 

were found to have the greatest prevalence, i.e. differed from the normative reference ranges, in 

step time and length measurements of the intact limb, however, these deviations were not 

significant. 
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Table 2.1 Temporal-spatial variables of individuals with UTTA and individuals with UTFA of 

both prosthetic (PROS) and intact (NONPROS) limbs, and able-bodied individuals of both right 

and left limbs. Table adopted from Jarvis et al. (2017). 

Parameter Individuals with 

UTTA 

Individuals with 

UTFA 

Able-bodied 

Individuals 

 PROS NONPROS PROS NONPROS Right Left 

Speed (m/s) 1.36+5% 1.22-5% 1.29 

Stride length (m) 1.46-1% 1.42-3% 1.47 

Stride width (m) 0.13+9% 0.18+54% 0.12 

Cadence 

(steps/min)  

112+6% 103-3% 106 

Step length 0.73+0% 0.73+1% 0.71-3% 0.72-3% 0.74 0.73 

Step time (% 

cycle) 

60.9-3% 63.8+1% 62.3-1% 64.0+1% 63.1 62.9 

 

Temporal-spatial parameters are often used to investigate the process of rehabilitation in 

individuals with LLA. Baker and Hewison (1990) used speed as a performance index, 

demonstrating that it increases by almost 55% within the initial 15 days of rehabilitation. Barnett 

et al. (2009) also demonstrated that temporal-spatial asymmetry reduces between limbs during 

the rehabilitation process. Analysing temporal-spatial parameters, Isakov et al. (1996) found these 

variables to be symmetrical between the limbs of individuals with UTTA, unlike knee kinematic 

data which was found to be asymmetrical. During loading response, knee flexion increased during 

fast speed (1.4 m.s-1) relative to ‘normal’ speed (0.9 m.s-1) on the intact limb, but not in the 

prosthetic limb. Also, during toe-off, larger knee flexion was reported on the prosthetic limb 

relative to the intact limb due to the lack of dorsiflexion of the prosthetic foot. Schmid et al. (2005) 

found that the duration of double-support phase prior to the prosthetic limb was prolonged relative 

to double support prior to the intact limb, which was attributed to balance and comfort issues. 

However, not all studies have found this asymmetry in double-support phases (Isakov et al., 

1996). The temporal differences between intact and prosthetic limbs tend to reduce as walking 

velocity increases (Nolan et al., 2003) but increase with higher prosthetic limb mass (Donker and 

Beek 2002; Mattes et al., 2000; Nolan et al., 2003).  

Although individuals with UTTA and able-bodied individuals were found to have similar stance 

time and double support time, able-bodied individuals spend only 12% of the gait cycle having 

heel only contact whilst UTTA spend 20% of the gait cycle having heel only contact (Powers et 

al., 1998). The inability of individuals with UTTA to lower the foot much more rapid after initial 

contact was attributed to compromised plantarflexion as a result of the stiffness of the prosthetic 
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ankle (Isakov et al., 2000), which can be improved with better prosthetic foot devices (van der 

Linden et al., 1999; 2004). Temporal-spatial parameters vary depending on the prosthetic foot. 

During the analysis of ten participants using five prosthetic feet (Carbon Copy II, Seattle, 

Quantum, SACH and Flex foot) at self-selected speeds, Powers et al. (1994) found that 

irrespective of the prosthetic used, the foot cadence was similar between intact and prosthetic 

limbs of individuals with LLA, as well as control limbs of able-bodied individuals. However, 

stride length was found to be larger in the Flex foot stride (1.5 m) relative to SACH (1.44 m) and 

Quantum (1.44 m), while the other feet were similar (Carbon Copy II = 1.46 m, Seattle = 1.47 m 

and control foot = 1.51 m). The Flex foot also had larger dorsiflexion (23.2º) relative to the 

Quantum, while the Quantum had larger dorsiflexion (19.5º) relative to the other feet (Carbon 

Copy II = 12.1º, Seattle = 15.1º and SACH = 12.0º). Prince et al. (1998) suggested that a prosthetic 

foot should be selected, depending on the time it takes to reach foot flat, the amount of energy 

recovered by the foot and other objective criteria such as maintenance.  

2.4.2 Ground Reaction Forces of Lower-Limb Amputee Gait 

Individuals with LLA display different GRFs relative to able-bodied individuals. Kovac et al. 

(2009) report significant asymmetries between intact and prosthetic limbs of individuals with 

UTTA compared to control limbs of able-bodied individuals. The vertical GRF has a typical 

double-peaked characteristic, where the first peak was found to increase as speed increased, but 

the second peak increased in the control and intact limb, but not in the prosthetic limb (b) 

(Sanderson & Martin, 1997). The vertically aligned prosthetic limb was notable in the anterior-

posterior GRF since both breaking and propulsion phases were visibly reduced (a) (Sanderson & 

Martin, 1997). The lack of change in the prosthetic limb could be attributed to the lack of push-

off capacity in the prosthetic ankle joint (Sanderson & Martin, 1997).  

 

Figure 2.6 Average anterior-posterior (a) and vertical (b) components of the ground reaction force 

during stance phase at 1.2 m/s. Abbreviations: AMP-PROS – prosthetic limb, AMP-INT – intact 

limb, NONAMP – control limb. Figure adopted from Sanderson & Martin (1997). 
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2.4.3 Joint Kinetics and Kinematics of Lower-Limb Amputee Gait 

In biomechanics, kinematics describes the movement of segments, i.e. the segment’s position and 

orientation relative to its surroundings, whilst kinetics describes forces that cause movement, i.e. 

internal forces as a result of muscles and joint activity as well as external forces as a result of 

interaction with the surrounding environment, e.g. ground reaction forces. Depending on the level 

of amputation, the kinematics of an individual with LLA may be similar to that of an able-bodied 

individual (Sanderson & Martin, 1997). Kinematic and kinetic characteristics of UTTA gait 

suggest that the support functions of individuals with UTTA are similar to that of able-bodied 

individuals, whilst the motor functions differ (Sanderson & Martin, 1997). Individuals with 

UTTA lose the ankle joint and the associated ankle plantar-flexors (Sanderson and Martin, 1997; 

Silverman et al., 2008), which are responsible for 80% of mechanical power generated at the 

ankle joint during walking (Winter & Sienko, 1988). These muscles are also responsible for body 

support, forward propulsion, leg swing initiation and medio-lateral balance during walking 

(Silverman et al., 2008).  

Individuals with LLA tend to increase the joint moment and power on the intact limb, relative to 

the control limbs in able-bodied individuals, to compensate for functional losses of the prosthetic 

limb (Nolan & Lees, 2000). The primary compensatory mechanism of individuals with LLA 

during self-selected walking speed is increased hip joint power on the prosthetic limb (Silverman 

et al., 2008). They display higher amplitude and duration of hip joint power throughout the first 

half of the stance phase (55-60% of the gait cycle) relative to able-bodied individuals (20% of the 

gait cycle). This is considered the first limb propeller parameter (Sadeghi et al., 2001). Hip 

extensor power was found to increase due to increased Gluteus Maximus activity to compensate 

for the lack of push-off at the ankle joint (Sadeghi et al., 2001). Hip joint power before toe-off 

(H3S) pulls the limb upward and forward (McNealy & Gard, 2008; Sadeghi et al., 2001; Seroussi 

et al. 1996). Able-bodied individuals simultaneously use their H3S and ankle joint power through 

the gait cycle to prepare for the swing phase. Individuals with LLA increase H3S directly before 

toe-off to compensate for the lack of energy generated at the ankle joint (A2S). This mechanism 

is associated with greater energy expenditure due to increased work at the hip joint (Silverman et 

al., 2008; Sjödahl et al., 2002; Su et al., 2007; Underwood et al., 2004). 

Individuals with LLA adopt compensatory mechanisms in both limbs to maintain a degree of 

symmetry in support moments (Sanderson & Martin, 1997). Sanderson and Martin (1997) found 

that during early stance the support moment of the prosthetic limb reduces relative to the intact 

limb and the control limb because of adaptations at the knee joint. During late stance, symmetry 

was apparent in the support moments of hip, knee and ankle joints (Sanderson & Martin, 1997), 
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since individuals with UTTA generated limited ankle plantar-flexor moment, but on the intact 

limb the plantar-flexor moment increased to a magnitude identical to the prosthetic limb, 

modulating symmetry (Sanderson & Martin, 1997). 

The hip joint moment in the prosthetic and intact limbs of individuals with UTTA were found to 

differ during the first half of the stance phase relative to the control limbs of able-bodied 

individuals at a speed of 1.2 m/s, but not significantly (Figure 2.7 a) (Sanderson & Martin, 1997). 

The amplitude of the peak extensor moment on the prosthetic limb was found to be smaller for 

the first half of the stance phase relative to the intact and control limbs. As speed increased the 

extensor moment in the control limb increased but remained unchanged in the intact limb and 

decreased in the prosthetic limb (Figure 2.7 b) (Sanderson & Martin, 1997).  

Individuals with UTFA utilise the hip joint to assist with forward progression since knee and 

ankle joints are missing (McNealy & Gard, 2008; Nolan & Lees, 2000). At initial contact, the hip 

joint moment in the sagittal plane was found to be twice as large in individuals with UTFA relative 

to able-bodied individuals (McNealy & Gard, 2008). The hip moment becomes an extensor 

moment on the intact limb much sooner relative to the prosthetic limb (Seroussi et al., 1996). 

Furthermore, during early stance, the work done by the concentric hip extensor was found to be 

larger in individuals with UTFA on the intact limb (34.2±6.6J) relative to the prosthetic limb 

(4.9±2.1J) and the control limb of able-bodied individuals (25.2±3.7J) (Seroussi et al., 1996).  

 

Figure 2.7 Sagittal joint moments of hip (a, b), knee (c, d) and ankle (e, f) at 1.2 m/s (a, c, e) and 

1.6 m/s (b, d, f) of the prosthetic (AMP-PROS) and intact limbs (AMP-INT) relative to control 

limb (NONAMP). Figure adopted from Sanderson & Martin (1997). 
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Able-bodied individuals rely on a knee extensor moment, which controls knee flexion during 

weight acceptance. Individuals with UTTA have significantly smaller knee flexion moment in the 

prosthetic limb (Figure 2.7 c, d) (Sanderson & Martin, 1997). In the prosthetic limb of individuals 

with UTTA, the knee moment does not become extensor in orientation for almost the entire stance 

phase (Sanderson & Martin, 1997). In individuals with UTFA, the knee moment is negative 

preventing prosthetic knee motion during the stance phase, so there is no energy storage or return 

(K2S) (McNealy & Gard, 2008). Individuals with LLA experience a 63% reduction in knee power 

absorption during the loading response phase (K1S) on the prosthetic limb relative to the intact 

limb. Thus, it is assumed that the knee extensor moment is not crucial in the development of 

extensor support function in the prosthetic limb (Sanderson & Martin, 1997). Although knee 

extensor moment was found in the control limb of able-bodied individuals and the intact limb of 

individuals with LLA (Figure 2.7 c, d), Sanderson and Martin (1997) indicate that it may play a 

less dominant role in the support and propulsion during walking since it was minimal compared 

to the hip and the ankle joints (Figure 2.7 a, b, e, f). The hip and knee joint angles are found to be 

more vertically aligned in the prosthetic limb relative to the intact limb during the stance phase 

(Sanderson & Martin, 1997). This prevents the knee joint from collapsing and reduces loading on 

it, which may be due to reduced knee extensor muscle strength on the prosthetic limb, and also 

an indication of the lack of confidence in the ability to control the knee joint.  

During the loading phase, knee flexion has a shock-absorbing effect that is important for the 

prevention of wear and tear (Isakov et al., 1996). Control and intact knee flexion are between 15-

18º, however, prosthetic knee flexion is reduced to 9-12º in individuals with UTTA (Isakov et al., 

1996; Powers et al., 1998; Su et al., 2007) and often absent or negative in individuals with UTFA 

(Segal et al., 2006). Sanderson and Martin (1997) report minor changes in the angular position 

and velocity of individuals with UTTA relative to able-bodied individuals in hip, knee and ankle 

joints (Figure 2.8 a, c, e). Subtle differences apparent in the hip and knee joints specifically during 

the first part of stance phase, were the prosthetic limb retained a more extended position in both 

these joints resulting in the thigh being more vertical in orientation (Figure 2.8 a, c). The ankle 

joint demonstrated more noticeable differences in the prosthetic limb relative to the intact and 

control limbs, particularly during late stance and early swing, because of the substantially reduced 

plantar flexion (Figure 2.8 e). Postema et al. (1997) also reported that due to the lack of mobility 

in the prosthetic feet relative to a biological ankle joint, the ability for an individual with LLA to 

dorsiflex was limited compared to able-bodied individuals (12.5º ± 3.1º vs 20.2º ± 3.5º). 
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Figure 2.8 Sagittal joint angles (a, c, e) and angular joint velocity (b, d, f) of hip (a, b), knee (c, 

d) and ankle (e, f) at 1.2 m/s of the prosthetic (AMP-PROS) and intact limbs (AMP-INT) relative 

to control limb (NONAMP). Figure adopted from Sanderson & Martin (1997). 

 

The absence of knee flexion and the lack of ankle movement during stance phase in individuals 

with UTTA means heel contact occurs at 20% or 44.5% of the gait cycle (Goh et al., 1984; Prince 

et al., 1998) since individuals with UTTA spend more time rotating the prosthetic foot forward 

until initial contact is reached. An ankle plantar-flexion indicates the foot's ability to be flat on 

the ground in early stance, allowing increased contact and therefore better stability. Ankle joint 

plantar and dorsiflexion are greatly influenced by prosthetic foot design and thus vary depending 

on that (Perry et al., 1997; Postema et al., 1997; Powers et al., 1994). The majority of dynamic 

prosthetic feet are comprised of a blade without much articulation in the ankle joint. Therefore, 

the plantar-flexion during early stance occurs by heel compression and is often limited compared 

to the biological ankle joint (Postema et al., 1997).  

At self-selected walking speeds, ankle joint power is four times lower in individuals with LLA 

relative to ankle joint power in able-bodied individuals at slow speed. Ankle plantar flexors are a 
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major energy source during push-off (Seroussi et al., 1996) and they are responsible for 80% of 

mechanical power generated at the ankle joint during walking (Winter & Sienko, 1988). Hence, 

individuals with LLA adopt other compensatory mechanisms to accommodate for the reduction 

of push-off power (Sadeghi et al., 2001; Seroussi et al., 1996). The three most common 

compensatory mechanisms are (1) increased work at the intact ankle during push-off, (2) 

increased concentric hip extensor muscle work at intact limb during early stance and (3) increased 

concentric hip extensor pull-off in the prosthetic limb (H3S) in early swing (Seroussi et al., 1996). 

Ankle joint power is highly influenced by the prosthetic foot device (Graham et al., 2007; Postema 

et al., 1997; Seroussi et al., 1996; Underwood et al., 2004; van der Linden et al., 1999). A dynamic 

prosthetic foot allows a greater power absorption (A1S) during weight acceptance, which 

increases dorsiflexion moment and push-off power of the prosthetic ankle (Underwood et al., 

2004). However, as push-off power only reaches 20% of biological ankle work it is still much 

lower than the ankle power generated by an able-bodied individual (Seroussi et al., 1996).  

The prosthetic and the intact limbs were found to have 20º, and 26º range of motion (ROM), 

respectively, whilst a control ankle joint has a ROM of 21º. The increased ROM in the intact limb 

was considered a compensatory mechanism allowing better foot clearance during swing phase 

due to the lack of ROM in the prosthetic ankle joint (Nolan & Lees, 2000). Due to a lack of 

dorsiflexion, individuals with LLA hip hike which means the pelvis is raised, raising the limb to 

swing it through the motion of swing phase, which helps clear the foot off the ground (Su et al., 

2007). During hip hiking the entire body mass against needs to be lifted up against gravity and 

thus its associated with greater metabolic energy cost (Su et al., 2007). Furthermore, individuals 

with LLA have greater pelvic ROM at self-selected speed relative to pelvic ROM in able-bodied 

individuals during slow speed (Su et al., 2007).  

2.5 Stability and Balance Control in Gait 

Individuals with LLA tend to fall more frequently compared to aged-matched, able-bodied 

individuals (Miller et al., 2001a; b) . Studies report 52.4% and 80% of individuals with LLA fall 

within 12 months (Miller et al., 2001a; b; Ülger et al., 2010), with multiple falls occurring in 64% 

of cases (Ülger et al., 2010). As a consequence of regular falls, these individuals develop a fear 

of falling (Miller et al., 2001b), which prevents them from taking part in everyday activities, 

affecting their physical and mental health (Pezzin et al., 2000). Falls may occur as a consequence 

of compromised dynamic balance and stability, and although falling is a significant problem in 

individuals with LLA, its underlying mechanisms are not well understood (Curtze et al., 2010).  
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2.5.1 Conditions for Dynamic Stability 

The three major systems involved in the maintenance of balance and stability are (Winter, 1995): 

(1) the vision system which works to anticipate and plan locomotion through observation of the 

surroundings and obstacle avoidance; (2) the vestibular system which is the gyro system of the 

human body, controlling orientation and acceleration; and (3) the somatosensory system which is 

a large number of sensors that take note of the position and the velocity of segments. The 

somatosensory system senses the contact of segments and their relation to the surrounding 

environment including the ground and the orientation of gravity. Research studies have 

investigated the role of these systems and their adaptability when one of these systems fails or is 

impaired (Winter, 1995). 

In the literature, the inverted pendulum is a widely used model describing the postural and 

dynamic control of balance and stability in human locomotion (Winter, 1995). The model 

describes the inverted pendulum pivoted around the ankle joint, where the body is modelled as a 

mass 𝑚 on top of a stick with length 𝑙 (Figure 2.9) (Hof et al., 2005). The mass 𝑚, i.e. the CoM, 

is the pendulum bob, which follows a sinusoidal trajectory during walking. The gravity force 

vector 𝑚𝑔 is located at the CoM, pointing vertically downward. The pressure of the feet is 

represented by a single ground reaction force vector (−𝑚𝑔), which is equal and opposite to body 

weight, located at the centre of pressure (CoP). The CoP varies as a result of muscle action, which 

can occur in the sagittal plane through ankle plantar and dorsiflexion (‘ankle strategy’) and in the 

frontal plane through the hip abductors (Winter, 1995). The CoP also defines the area of the base 

of support (BoS), which is approximately equal to the area under (𝑢𝑚𝑖𝑛 − 𝑢𝑚𝑎𝑥), and between 

the feet during two-feet standing. To maintain balance, the vertical projection of the CoM should 

be within the BoS (Hof et al., 2005; Winter, 1995). Both the CoP and CoM are considered to have 

certain sway angles which define their limits of stability within the bounds of the BoS. If these 

bounds are exceeded impairments in balance and stability control may arise (Nashner, 1997).  
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Figure 2.9 Schematic diagram of the inverted pendulum model. The vertical projection of the 

CoM is denoted 𝑥 and the position of the COP 𝑢. Abbreviations are centre of mass (CoM), centre 

of pressure (CoP), base of support (BoS), mass (𝑚), gravity (𝑔), leg length (𝑙). Figure adopted 

from Hof et al. (2005). 

 

2.5.2 Extrapolated Centre of Mass and Margin of Stability as Measures of 

Dynamic Stability 

In the literature, the classic inverted pendulum model was challenged (Pai & Patton, 1997) since 

in the event where the CoM is above the BoS and the CoM velocity is pointed outward, balance 

may be impossible and in the event where the CoM is outside the BoS and velocity is directed 

towards the BoS, balance could be achieved, thus the model would not hold true in dynamic 

situations. Hof (2008) introduced the extrapolated centre of mass (XCoM) as a simple measure 

of stability during walking, extending the conditions for a classical equilibrium, taking into 

consideration the CoM’s velocity and position. The XCoM is defined as: 

 

 𝜉 = 𝑥 +
𝑢𝑥

𝜔0
 (2.1) 

Where 𝑥 = CoM, 𝑢 = CoP and 𝜔0= eigenfrequency of the inverted pendulum 

 𝜔0 = √
𝑙

𝑔
 (2.2) 

Where 𝑙 = length and 𝑔 = gravity 
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The horizontal distance between the vertical CoM projection and the CoP create a destabilising 

moment, which needs to be controlled by a timely displacement of the CoP. The XCoM trajectory 

is a straight line from the CoP to the XCoM at the time of foot contact (Hof, 2008). The CoM 

follows the trajectory of the XCoM in a sinusoidal manner. For stable walking, during initial 

contact, the CoP should be a specific distance behind and outward of the XCoM. Disturbance in 

CoM velocity can be compensated by a change in foot position in the same direction (‘stepping 

strategy’) (Hof, 2008).  

The XCoM is used to quantify both the spatial (𝑏) and temporal (𝑏𝜏) margin of stabilities (MoSs) 

(Bruijn et al., 2013). The spatial MoS describes the distance between the XCoM and the border 

of the BoS. This can be in the medio-lateral direction or in the anterior-posterior direction. The 

temporal MoS, indicates the time in which the stability boundary of the BoS would be reached 

without intervention (Bruijn et al., 2013). The MoS is used to quantify dynamic balance and 

describes the movement of the body relative to the BoS (Hak et al., 2015) where a small MoS 

indicates a greater risk of losing dynamic balance control (Horak et al., 2005). It is calculated 

using the difference between the XCoM and the limits of the BoS (Hak et al., 2013a). 

The MoS can be calculated in the medio-lateral (ML) direction (Equation 2.4; Figure 2.10 a) (Hof, 

2007; MacAndrew-Young et al., 2012), where a negative ML MoS indicates that the XCoM is 

located outside the lateral border of the BoS, which will lead to a deviation from a straight walking 

trajectory (Hak et al., 2015). It can also be calculated in the backward (BW) direction (Equation 

2.5; Figure 2.10 c) (Espy et al., 2010; MacAndrew-Young et al., 2012; Pai & Patton, 1997), where 

a negative BW MoS indicates that the XCoM is located posterior to the border of the BoS of the 

leading foot which will lead to an interruption of forward progression (Hak et al., 2015). 

 

 𝑋𝐶𝑜𝑀 = (𝑝𝐶𝑜𝑀 + 𝑣𝐶𝑜𝑀) × 𝜔0 (2.3) 

 

 𝑀𝐿 𝑀𝑜𝑆 =  𝑋𝐶𝑜𝑀𝑀/𝐿 − 𝐻𝑒𝑒𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (2.4) 

 

 B𝑊 𝑀𝑜𝑆 = 𝑋𝐶𝑜𝑀𝐴/𝑃 − 𝐻𝑒𝑒𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (2.5) 

 

Where 𝑋𝐶𝑜𝑀 = extrapolated centre of mass, 𝑝𝐶𝑜𝑀 = position of the CoM, 𝑣𝐶𝑜𝑀 = velocity of 

the CoM, 𝜔0= eigenfrequency of the inverted pendulum, 𝑀𝐿 𝑀𝑜𝑆 = medio-lateral margin of 

stability, 𝑋𝐶𝑜𝑀𝑀/𝐿= extrapolated centre of mass in the medio-lateral direction, 𝐵𝑊 𝑀𝑜𝑆 = 

backward margin of stability, 𝑋𝐶𝑜𝑀𝐴/𝑃= extrapolated centre of mass in the anterior-posterior 

direction. 
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In the Figure 2.10 (b, d), the ML MoS (a) is defined as the minimum distance in medio-lateral 

direction between the XCoM (dotted line) and the lateral border of the foot during heel-strike 

(solid line). The BW MoS (b) is defined as the distance in anterior-posterior direction between 

the XCoM (dotted line) and the posterior border of the leading foot during heel-strike (solid line). 

The XCoM is calculated as the position of the COM (pCoM) (dashed line on the graph Figure 

2.10) plus its velocity (vCoM) multiplied by the square root of the leg length (l) over acceleration 

due to gravity (g), as defined below: 

 

 

Figure 2.10 ML (a, b) and BW MoS (c, d). The graphs illustrate the MoS over a period of two 

steps. The trajectories of BoS (solid line), CoM (dashed line) and XCoM (dotted line). The XCoM 

is calculated as the position of CoM plus its velocity multiplied by 𝜔0, where 𝜔0 is defined as the 

square root of the leg length (l) over acceleration due to gravity (g). The MoS is calculated as the 

difference between the trajectory of the XCoM and the BoS, when MoS is at its minimum value. 

Figure adopted from Hak et al. (2013a). 
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2.5.3 Measuring the Margin of Stability in Lower-Limb Amputee Gait 

During walking, most of the trunk is supported by one leg at a time, and the CoM is never over 

the BoS, presenting an unstable system, which can be stabilised through active control (Hof et al., 

2007). During walking, the CoM needs to pass the front of the stance foot during the single 

support phase. If this process is interrupted, dynamic balance control can be compromised, which 

may lead to falls if recovery fails. During walking, humans place their feet a particular distance 

behind, and outward of the XCoM, in doing so, the movement of the XCoM and CoM are 

redirected, achieving stable gait (Curtze et al., 2011).  

In general, individuals with LLA walk more slowly relative to able-bodied individuals (Hak et 

al., 2013c). Comparatively, they also have different step parameters such as a lower step 

frequency and larger step width, but similar step length (Hak et al., 2013c). The greater step width 

is a control for compromised balance since it keeps the CoM within safe margins from the BoS, 

since it increases the MoS in the ML direction (Curtze et al., 2011; Hof et al., 2007). Although 

LLA gait differs from able-bodied gait, research studies found that compensatory mechanisms to 

maintain dynamic balance control in response to perturbations are similar between both groups 

(Bolger et al., 2014). In response to a decrease in dynamic balance, individuals with LLA and 

able-bodied individuals adapt to increase ML and BW MoS and thus control dynamic balance 

(Hak et al., 2013a; b; Hak et al., 2015). Individuals with LLA and able-bodied individuals were 

found to increase step frequency and step width, decrease step length and maintain constant speed 

in order to increase BW and ML MoS, in response to continuous perturbations through a moving 

walking surface (Hak et al., 2013c; Hak et al., 2012). In response to adaptability tasks, where 

participants were asked to hit targets placed in a virtual environment, individuals with LLA and 

able-bodied individuals decrease step length and increase step width but maintain step frequency 

and speed (Hak et al., 2013c).  

In response to multi-directional surface translation, Bolger et al. (2014) found that individuals 

with UTTA adopted different kinetic parameters relative to able-bodied individuals allowing 

them to achieve dynamic balance control similar to able-bodied individuals in most directions. 

During lateral perturbation, similar CoM but greater CoP displacement was found in individuals 

with LLA. This led to a greater MoS in the least stable direction. Furthermore, inter-limb 

differences in CoP and GRF suggested that individuals with LLA rely more on the intact limb. 

The limited directional force was found in the prosthetic limb relative to the intact limb, however, 

it was not obvious whether these are compensatory mechanisms or limitations of the prosthetic 

design. Some individuals with LLA exhibit exaggerated CoP, which could be a response to 

repeated falls or due to the limited sensorimotor information perceived, thus, exaggerating the 
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control response (Bolger et al., 2014). However, control responses that are larger than necessary, 

which lie within the limits, can in the occurrence of large and continuous perturbation lead to loss 

of stability since further adaptation will not be possible (Bolger et al., 2014). Yet exaggeration of 

a single and safe compensatory mechanism may eliminate the need to alter responses according 

to perturbations and so simplify the control mechanism (Bolger et al., 2014).  

When confronted with compromise in dynamic stability, it was found that forward centre of mass 

velocity (vCoM) and/or the forward foot placement (FFP) were increased thus increasing BW 

MoS (Figure 2.11) (Hof et al., 2005; Hof, 2008). An increased BW MoS indicates that the CoM 

can easily pass the border of the BoS defined by the new stance leg, during the consecutive single 

support phase and thus decreases the risk of balance loss in the BW direction (Hak et al., 2014). 

Individuals suffering from multiple morbidities such as PAD may have compromised 

sensorimotor function, which may prevent them from using their prosthesis adequately and thus 

being able to adjust FFP to control BW stability (Bolger et al., 2014). 

The investigation of prosthetic and intact limbs separately revealed that the step length asymmetry 

between the two limbs was due to asymmetry in FFP. The BW MoS was found to be larger on 

the intact limb compared to the prosthetic limb at initial contact but this difference was not present 

at the end of the double support phase. The average vCoM did not differ between steps, but the 

vCoM decreased during double support phase following the intact limb (Hak et al., 2014). Shorter 

intact step length in individuals with LLA contribute to larger BW MoS at initial contact of the 

intact limb. The shorter step length seems to be a compensatory mechanism for the reduced BW 

MoS during the double support phase following the intact step. This is because the reduced ankle-

push off capacity of the prosthetic limb decreases the vCoM, which limits the BW MoS during 

double support phase in the intact limb. Thus, the shorter step length on the intact limb is needed 

to decrease the risk of interruption of forward progression.  
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Figure 2.11 Illustration of dynamic stability, forward velocity of the COM and/or FFP in relation 

to the BW MoS. Figure adopted from Hak et al. (2014). 

 

Investigating the recovery response after an evoked forward fall, Curtze et al. (2010) found that 

all individuals with LLA and able-bodied individuals were able to recover balance within a single 

step after being released from a forward-inclined orientation of 10%. Despite asymmetry in their 

gait, individuals with LLA were able to use either of their limbs during the recovery process. The 

CoP was posterior to the CoM prior to release from forward-incline orientation. After release 

CoM gained velocity moving apart from the XCoM, and moving the XCoM within the BoS to 

break the forward fall. Curtze et al. (2010) note that the CoP and XCoM need to coincide for a 

successful recovery. It is not sufficient for the CoM only to coincide with CoP since the CoM 

would move away due to its velocity. During the recovery process, the knee flexion on the 

prosthetic limb was found to be reduced at heel-strike. This has been associated with the larger 

step length of the prosthetic limb as the CoP cannot be actively shifted under the prosthetic foot, 

because of reduced active ankle control. When leading with the prosthetic limb, the heel strike 

interval was shorter allowing increased stability. During everyday activity, individuals with LLA 

encounter challenges of uneven terrain and obstacles, thus, to remain supported and stable these 

individuals adjust the way they walk. Both individuals with UTTA and UTFA lack active ankle 

control which is important for modifying CoP during heel-strike (Curtze et al., 2011). During the 

investigation of individuals with UTTA walking on varying surfaces, no difference was found in 

step parameters (stride time, stance time, double-support time and step frequency), and FFP with 

respect to the XCoM was found to remain unchanged in lateral stability (Curtze et al., 2011). 

However, individuals with UTFA had larger MoS on the prosthetic limb (Hof et al., 2007).  
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Figure 2.12 Forward position of the CoM, XCoM and CoP as a function of time after release 

from 10% forward-incline orientation during the investigation by Curtze et al. (2010). Recovery 

occurred within one step following (1) release at 𝑡0, (2) toe-off leading limb, (3) heel-strike 

leading limb, (4) toe-off trailing limb, and heel-strike trailing limb. Figure adopted from Curtze 

et al. (2010).  
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2.5.4 Other Measures of Balance and Stability in Gait 

2.5.4.1 Biomechanical Measurements of Stability - Stabilizing and Destabilizing 

Forces and Foot Placement Estimator 

Duclos et al. (2009) introduced the concept of stabilising and destabilising forces. Stabilising 

forces quantify forces required to stop the CoP motion in the direction of the border of BoS and 

the destabilising forces are the forces needed to bring the CoP outside the BoS ignoring this 

velocity. Quantifying the ratio of these two forces indicates the risk of falling, where a lower ratio 

illustrates a greater risk. 

The foot placement estimator (FPE) measures the foot position needed for stable gait (Millard et 

al., 2009; 2012; Wight et al., 2008). It is based on the assumption that the angular momentum 

remains intact when transitioning from one limb to the other. It estimates where the foot should 

be placed during the transition for the energy of the system to be equal to its peak potential energy. 

A pendulum gait, involving perfect interchange between potential and kinetic energy, would 

imply that peak potential energy is at standstill. During gait, this occurs at its apex, at mid-stance. 

2.5.4.2 Examples of measures of stability derived from dynamical systems theory - 

Maximum Lyapunov exponent, maximum Floquet multiplier and long-range 

correlations 

The maximum Lyapunov exponent is commonly calculated using kinematic trunk data (Kang and 

Dingwell, 2009) since the trunk plays a critical role in stability during upright walking (Grabiner 

et al., 2008; MacKinnon & Winter, 1993). Studies that investigated knee osteoarthritis and 

anterior cruciate ligament ruptures used kinematic knee joint data (Arellano et al., 2009; Fallah 

Yakhdani et al., 2010; Gates and Dingwell, 2009; Moraiti et al., 2007; Moraiti et al., 2010; Segal 

et al., 2010; Stergiou et al., 2004), since the main mode of instability arose from buckling or 

giving way of the knee (Yakhdani et al., 2010). The maximum Lyapunov exponent is calculated, 

identifying the nearest neighbour in a state-space for each data point (Rosenstein et al., 1993) or 

identifying the nearest neighbour for data points along a single reference trajectory (Wolf et al., 

1985). Two components are reported in the literature, 𝜆𝐿 and 𝜆𝑠, referred to as divergence 

exponents, where 𝜆𝐿 represent the time as neighbouring points reach maximum separation and 

the distance cannot become larger, and 𝜆𝑠 is the estimated maximum Lyapunov exponent. 

Literature suggest that the divergence measure of 𝜆𝑠, but not 𝜆𝐿 may be a valid measure to 

estimate the probability of falling. Measuring walking over unstable surfaces, Chang et al. (2010) 

found increased values of 𝜆𝑠, but not of 𝜆𝐿. Similarly, Sloot et al. (2011) and van Schooten et al. 

(2011) reported increased values of 𝜆𝑠, but not of 𝜆𝐿, when participants were destabilised using 
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galvanic vestibular stimulation. Furthermore, destabilising gait using surface perturbations or 

visual perturbations, 𝜆𝑠 changed but not 𝜆𝐿  (Arellano et al., 2009). These findings have been 

confirmed by Hak et al. (2012), which indicated that the amplitude of perturbation led to an 

increase of 𝜆𝑠, i.e. indicating that there is a proportional relationship between the dose of 

perturbation and the response.  

Orbital stability has been quantified using maximum Floquet multipliers, which quantifies the 

rate of convergence/divergence of a periodic system, in other words, the response of perturbations 

of a system from one gait cycle to the next (Kang & Dingwell, 2009). Research has highlighted a 

couple of concerns when using the maximum Lyapunov exponent and maximum Floquet 

multiplier as local and orbital dynamic stability measures: (1) the length of data required and (2) 

sensitivity of the measure. Rosenstein et al. (1993) suggest that the use of Lyapunov exponents 

are not sensitive to the length of data whilst Kang and Dingwell (2006) report that 5 minutes of 

continuous data was not sufficient enough. Bruijn et al. (2008) suggest that long data series 

beyond 150 strides, covering an equal number of strides for every condition, for each participant 

should be analysed, for an accurate estimation of balance using these measures. Local and orbital 

dynamic stability were influenced by speed and is therefore very sensitive to any changes in speed 

(England & Granata, 2007).  

Research has found that gait variations are not random but instead future variations depend on 

past variations. These dependencies appear as long-range correlations thus they define another 

measure of stability. Long-range correlation can be calculated from a number of different 

biomechanical variables such as step length, step time, impulse, duration of contact and peak 

active force (Damouras et al., 2010; Jordan et al., 2007a; b). The calculations require a 

recommended 600 strides as a minimum (Damouras et al., 2010). A system with a scaling 

exponent (𝛼) further away from 0.5 is considered more stable. Hausdorff et al. (1995) reported 

that long-range correlations are resistant to internal and external perturbations and more tolerant 

to error, thus they could be used as an indicator of adaptability during gait. 
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2.6 Characteristics of Gait Data 

Gait analysis attempts to describe the characteristics of locomotion (Kirtley, 2006; Levine et al., 

2012). In clinical settings, it is often used to assess the effects of conditions on gait and to 

understand how treatments and/or interventions influence gait (Kirtley, 2006; Levine et al., 2012) 

such as cerebral palsy (Novacheck et al., 2010), Parkinson’s disease (Roiz et al., 2010; Sofuwa 

et al., 2005) and LLA (Barnett et al., 2009). Gait analysis has led to improved diagnostic methods, 

enhanced treatment recommendations, and more effective evaluation of treatment outcomes of 

pathological gait (Hamill et al., 2012). 

During gait analysis various quantification methods are used to describe human locomotion which 

can be described in a three-stage system:  

(1) Data acquisition tools such as motion capture systems, force platforms and electromyography 

are used to investigate the biomechanical and muscle activation characteristics of gait 

(Winter, 2009). The raw kinematic and kinetic data are often reported. 

 

(2) Mathematical methods such as inverse dynamics are applied turning data into variables that 

describe biomechanical characteristics of gait, which allow further aspects of gait to be 

assessed such as joint angles, moments and powers (Robertson et al., 2013; Winter, 2009). 

These are often presented in the form of temporal waveforms or time-series throughout the 

gait cycle with respect to time (Deluzio et al., 1997; Robertson et al., 2013). 

 

(3) Application of summary techniques to simplify temporal waveforms turning them into 

clinically useful information such as summary scores and gait indices (Baker et al., 2009; 

Schutte et al., 2000; Schwartz & Rozumalski, 2008). 

Temporal waveforms are governed by the following characteristics which need to be considered 

during data processing (Chau 2001a; b): 

(1) High dimensionality: Data acquisition tools and further mathematical measures produce large 

data sets. The gait data is inter-dependent, and so it is governed by high dimensionality. 

Traditional statistical approaches become intractable beyond five variables, and one’s visual 

interpretation is limited to three-dimensions. Furthermore, traditional reduction methods 

assume a linear relationship (Chau, 2001a). 

(2) Time dependence: Data collected during self-selected speed have quasi-periodic temporal 

dependence which means a gait cycle has a periodic recurrence at irregular intervals. The 
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resulting time series are difficult to model since the traditional assumption of stationarity is 

not applicable.  

(3) High variability: Gait data displays high intra-subject and inter-subject variabilities and also 

marker alignment and instrumentation cause further variability. Quantifying variability, 

recent studies established that some variables are repeatable whilst others substantially vary. 

It is difficult to control variability and so statistical conclusions during gait analysis must be 

interpreted with caution (Chau, 2001a). 

(4) Correlation: Gait data results in temporal waveforms. During the assessment of a treatment, 

for example, it is common to compare temporal gait waveforms before and after the treatment 

to establish similarities and differences. Correlations and distances established between two 

points of a waveform cannot be extended to the entire curve, so mathematical derivations 

need to be undertaken to assess differences of entire waveforms (Chau, 2001a). 

(5) Non-linear relationship: Intrinsic non-linear human movement results in the non-linear 

interaction of gait variables, i.e. a direct cause and effect relationship is difficult to establish 

analytically and exposed to subjective interpretation.  

As data acquisition tools used to collect gait data and the subsequent procedures for calculating 

novel variables advance, they provide an ever-increasing volume of data (Deluzio et al., 1997; 

Robertson et al., 2013). This presents a limitation to clinicians and researchers when trying to 

interpret this data and when forming clinically useful information (Deluzio et al., 1999). A widely 

used approach to analyse and interpret movement data is through the description of graphical 

profiles of temporal waveforms, using summary statistics (mean, variance, correlations) and 

waveform parameterisation (peak amplitude) (Alaqtash et al., 2011a; Deluzio et al., 1999). An 

example of parameterisation of gait data is shown in (Figure 2.13) which illustrates the knee angle 

of barefoot and shod running throughout a gait cycle, corresponding to solid and dashed 

waveforms, respectively. A typical discrete parameter (scalar values) would be peak knee angle 

as indicated by the red arrow. These values extracted from each condition are then typically 

compared using statistical analysis. 
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Figure 2.13 Example of knee angle parameterisation in the sagittal plane (a) and coronal plane 

(b).  

 

Although these methods are typical for the analysis of gait data, there are a few disadvantages. 

The interpretation of graphical profiles is researcher dependent which means results will depend 

on the researcher’s experience and will differ among various patients and between laboratories. 

Similarly, the choice of data collected during gait analysis is dependent upon equipment 

availability, and importantly, the choices of the researcher. This presents an issue in a clinical 

environment as the choice of parameters assessed in a patient may not necessarily be the cause of 

a problem, and thus results may show no significant difference, and the problem will remain 

undetected and untreated. Thus, both data collection and data analysis are subjective and highly 

affected by researcher bias.  

Summary statistics and parameterisation of temporal gait waveforms often provide limited 

additional insight into the data beyond bivariate plots, and some gait characteristics seem to be 

ignored. For example, when selecting a discrete parameter, important temporal information is lost 

(Deluzio and Astephen, 2007) which means the relationship to time is neglected even though 

specific parameters may occur at a different instance in time when measurements are repeated as 

a result of intra-subject variation. Also, certain parameters cannot easily be identified in 

pathological gait (Daffertshofer et al., 2004; Deluzio et al., 1997) since parameters may be 

distorted as a result of the pathology and thus are not displayed in the same manner as 

measurements would be in able-bodied gait. Moreover, a linear relationship is assumed between 

variables, which is not the case because movement data is highly dimensional (Chau, 2001a; 

Daffertshofer et al., 2004) thus the change of one variable can affect multiple other variables, and 

these effects are not necessarily proportional to the changes. Furthermore, the correlation existing 

between different gait variables is disregarded (Schutte et al., 2000). Therefore, there is a need 

for efficient and robust data reduction techniques as well as methods that allow useful information 

to be extracted from highly correlated and time-dependent variables. 
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In an attempt to consider gait characteristics and interpret large amounts of complex gait data, 

researchers have implemented indices with the aim that a single measure could be used to 

represent the ‘quality’ of a specific gait pattern (Baker et al., 2009; Schutte et al., 2000; Schwartz 

& Rozumalski, 2008). The Gillette Gait Index (GGI) also referred to as the Normalcy Index (NI) 

is a widespread clinically accepted index, which is used to quantify the deviation of a patient’s 

gait pattern from that of an able-bodied group (Schutte et al., 2000). It is calculated by applying 

PCA to 16 biomechanical variables measured during gait analysis, where the sum of squared of 

these variables indicates the patient’s gait deviation. The GGI has been widely used, particularly 

in the assessment of CP and idiopathic toe walkers (Schutte et al., 2000; Trost et al., 2008). It has 

proven effective in the diagnosis of pathologies and tracking an intervention between patients 

with the same pathology. A disadvantage of GGI is that the variables used during PCA are 

comprised of 3 temporal-spatial and 13 kinematic measurements and do not include any kinetic 

data. Thus, a new index was developed, which included 5 kinematic and kinetic variables, to 

provide an accurate description of a hip function known as the hip flexor index (HFI) (Schwartz 

et al., 2000). The HFI has proven to be a valid method to assess hip function, but it is not 

necessarily considered part of the GGI category as it only focuses on one joint.  

Gait Deviation Index (GDI) is another measure which was developed to quantify gait deviations 

of pathological gait relative to able-bodied gait (Schwartz & Rozumalski, 2008). The GDI is based 

on 15 gait features extracted using singular value decomposition from 9 angle variables of the 

pelvis and hip in the three planes of motion, of the knee and ankle joints in the sagittal plane and 

of foot progression. Applying this method to able-bodied individuals defines an average of non-

pathological gait. The absolute distance between pathological and non-pathological gait can be 

quantified, indicating the extent to which the pathological gait differs. Both, the GDI and GGI 

were found to correlate since they are both measures of the same underlying construct, however, 

they measure different aspects (Schwartz et al., 2000). 

Gait Profile Score (GPS) is a single index outcome, similar to the GDI, but it is considered a 

simpler interpretation of the distance measure underlying the GDI. It provides an overall global 

score of the gait quality and can be deconstructed providing a gait variable score (GVS) (Baker 

et al., 2009). The GPS is represented by the 9 variables of the GVS to generate a movement 

analysis profile (MAP). The MAP illustrates the variation of nine variables averaged over a gait 

cycle, therefore indicating which variables contribute to a high GPS score. The GPS uses features 

of all relevant kinematic variables from the root mean squared difference between a patient's data 

and the able-bodied reference data, whilst the GDI uses the first 15 gait features.  
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All the scores, with the exception of the HFI, consider temporal-spatial and kinematic data only, 

although this provides a limited evaluation of pathological gait. To provide an improved overall 

understanding of gait, the GDI-kinetic was introduced, considering joint kinetics rather than 

kinematics. This index identifies 20 gait features using singular value decomposition, whose 

linear combinations of the first 20 features reconstruct 91% of the data.  

The indices and summary scores simplify the complexity of pathological gait data through the 

use of discrete parameters. Introduced by Barton et al. (2012), the Movement Deviation Profile 

(MDP) describes the deviation of a patient from normal data using a graph profile, which has 

shown to detect gait deviation where missed by discrete parameters. Gait data is conveyed into 

step-patterns using self-organising Artificial Neural Networks (ANN) or Self-Organising Map 

(SOM) to visualise complex gait patterns in the form of single curves (Barton et al., 2006). 

Over the years, many summary measures have been introduced, but unlike the ones previously 

mentioned, their clinical application still remains limited. For example, data reduction techniques 

were proposed where the combination of a score which would provide an evaluation of multiple 

curves and ‘interpretable functions’ were combined as a method (Tingley et al., 2002). Aside 

from these summary scores and indices, in recent years biomechanics research studies started to 

implement alternative methods originating from computer science, psychology, cognitive science, 

physics and engineering, to better handle “big data” (Phinyomark et al., 2017). These methods 

include advanced multivariate statistical analyses such as Principal Component Analysis (PCA) 

and machine learning techniques such as Discriminate Function Analysis (DFA), which can be 

used to develop automatic gait recognition tools.  

2.6.1 Development of Automatic Recognition Tools using Multivariate Statistical 

Analyses and Machine Learning Algorithms 

Automatic gait recognition tools can be developed using multivariate statistical analyses and 

machine learning algorithms in order to discriminate and classify data. These tools are developed 

using different stages of training, predictive and evaluation (Lever et al., 2016a; c). (1) During 

the training stage a model is developed, i.e. the machine is supplied with information to learn. (2) 

During the prediction stage, the model developed in (1) is used to identify classes. A threshold is 

established to define the probability of an observation belonging to one class or the other, i.e. the 

classification performance of different models form the machine are assessed and/or improved. 

For example, as seen in Figure 2.14 the features of two classes/categories (solid and open black 

circles) are separated into two classes using the predicted probability. In (a) the membership of 

classes is perfectly separable when using a 0.5 threshold, in (b) however, the membership of 
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features into classes is ambiguous as shown by the 0.5 thresholds. Thus, the threshold needs to be 

tuned to control false positives (0.75) and false negatives (0.25) (Lever et al., 2016c). (3) During 

the evaluation stage data that was not used for the training or the classification is used to assess 

how a classifier performs (Lever et al., 2016a).  

 

Figure 2.14 Threshold example of a classification of a data set. Figure adopted from Lever et al. 

(2016c). 

 

Prior to the development of a machine learning algorithm, data needs to be pre-processed, which 

is done by reducing large volumes of data through dimensionality reduction, followed by feature 

selection, which can be followed by a cross-validation method and finally the classification 

procedure. Different methods can be implemented at any given stage of the development (Figure 

2.15). 

 

Figure 2.15 Schematic illustrating the steps in the development of an automatic recognition tool. 

Abbreviations are Principal Component Analysis (PCA); Kernel based-PCA (kPCA); Genetic 

Algorithm (GA); Cross-Validation (CV); Leave-one-out (LOO); Distribution optimally balanced 

stratified CV (DOB–SCV); Clustering Analysis (CA); Support Vector Machine (SVM); Naïve 

Bayes (NB); Logistic regression (LR); K-Nearest Neighbours (KNN); Decision Tree (DT); 

Discriminant Analysis (DA); Artificial Neural Networks (ANN); Negative likelihood ratio 

(NLR); and area under the curve (AUC). Figure adapted from Figueiredo et al. (2018). 
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2.6.1.1 Feature selection methods 

When presented with large volumes of data, as is the case during gait analysis, a parsimonious 

representation of the data is sought. During the development of automatic pattern recognition 

tools, feature selection methods are used, which also improve classification outcomes (Alaqtash 

et al., 2011a; Lee et al., 2009; Muniz et al., 2010a). These methods can be divided into three 

groups: filter methods, wrapper methods, and embedded methods (Saeys et al., 2007). Filter 

methods process data without considering the classification algorithm that follows (Saeys et al., 

2007), wrapper methods use heuristic criterion to evaluate a subset of data according to the 

classification method that follows (Lu et al., 2014; Saeys et al., 2007) and embedded methods 

interact with the classification method. Different feature selection methods have been investigated 

in gait analysis, such as Principal Component Analysis (PCA) and kernel based-PCA (kPCA) 

which are filter methods, genetic algorithm (GA) which is a wrapper method, and hill-climbing 

which is an embedded method (Lu et al., 2014; Martins et al., 2014).  

(1) Principal Component Analysis (PCA) is the orthogonal transformation of variables, i.e. 

dependent variables are transformed to become independent variables. It aims to establish the 

optimal linear transformation representing the data in the least squared sense (Yang et al., 

2012). Data is presented in a new coordinate system, capturing the maximum variance within 

the data set (Badesa et al., 2014; Dillmann et al., 2014; Wu et al., 2007; Yang et al., 2012). 

The different axes of the coordinate system are referred to as principal components (PCs), 

where the first few of PCs hold the most variance of the original data set. To reduce large data 

volumes, the dimensionality of the data is reduced by preserving the first two PCs and 

removing the remaining PCs (Lee et al., 2009; Yang et al., 2012). Principal Component 

Analysis was first applied to gait data in order to derive a method to represent signals instead 

of using the signals themselves (Wootten et al., 1990), to reduce large volumes of data (Olney 

et al., 1998) and to assess entire temporal waveforms of gait data retaining potentially 

valuable information (Deluzio et al., 1997).  

 

(2) Kernel based-PCA (kPCA) is used to map non-linear data onto a higher dimensional feature 

space using a kernel function such as linear, polynomial and radial basis function (RBF) (Wu 

et al., 2007). Studies comparing different kernel functions established that a polynomial 

kernel achieves better performance relative to linear and RBF kernels (Liang & Lee, 2013; 

Wu et al., 2007).  
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(3) Genetic algorithms (GA) are inspired by Charles Darwin’s theory of natural evolution and is 

considered a time efficient optimisation technique (Ardestani et al., 2014; Martins et al., 

2014). The algorithm starts with a random set of individuals called a population, where each 

individual of the population is characterised by a set of parameters known as genes. Each one 

of these genes is jointed into a string creating a chromosome (solution). A fitness function 

determines an individuals’ probability of reproduction and only candidates with the potential 

to pass to the next generation as defined by the classification method are preserved, i.e. 

optimising the cost function (Ardestani et al., 2014; Sarbaz et al., 2012).  

 

(4) Hill-climbing algorithms iteratively search for features that positively contribute to the 

classification procedure (Begg et al., 2005). Each feature is used for initial classification and 

based on the performance of the classifier and the features are ranked from the highest to the 

lowest contributor (Chan et al., 2013). 

 

Studies demonstrated classification results improved following feature selection methods. Using 

PCA, Eskofier et al. (2011) demonstrated that the classification outcome improved from 58% to 

95.8%. Using kPCA, Wu et al. (2007) showed that the classification outcome improved from 85% 

to 91% after the original dataset of 36 features was reduced to 17 features, creating a compact 

data set of uncorrelated features which still represented the original data set without compromise. 

However, other studies showed that the classification outcome did not necessarily improve 

following feature selection (Badesa et al., 2014; Lai et al., 2008). Nevertheless, the reduced data 

set minimised performance time, and thus also computational cost (Lai et al., 2008). 

Principal Component Analysis is the most common data reduction method applied in gait analysis 

(Badesa et al., 2014; Deluzio & Astephen, 2007; Eskofier et al., 2011; Figueiredo et al., 2018; 

Lee et al., 2009). However, Wu et al. (2007) demonstrated that kPCA extracts PCs that are more 

relevant to non-linear gait data in the presence of noise, relative to PCA, but it is mathematically 

more complicated. An issue with both PCA and kPCA is the number of PC scores retained during 

the analysis since the selection of PCs is fundamental to achieve the best possible classification 

outcome (Badesa et al., 2014; Deluzio & Astephen, 2007; Eskofier et al., 2011). Too many PC 

scores would result in overfitting of the data, and too little would result in underfitting of the data. 

Hill-climbing and GA aim to find a local optimum and a global minimum, respectively (Ardestani 

et al., 2014; Martins et al., 2014; Su & Wu, 2000). Genetic algorithms quantitatively and 

qualitatively identify the most relevant features, but the selection processes depend on other 

factors associated with high computational cost (Pratihar et al., 2002). Compared to other 

methods, PCA and kPCA are less complex. 
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2.6.1.2 Classification methods 

Machine learning algorithms have the ability to identify patterns automatically, and model 

complex, non-linear and high dimensional data (Alaqtash et al., 2011b; Lai et al., 2008; Zheng et 

al., 2009). In gait analysis, different machine learning algorithms have been used such as 

Discriminant analyses (DA) which are either in the form of Linear Discriminant Analysis (LDA) 

or Quadratic Discriminant Analysis (QDA), Artificial Neural Networks (ANNs), Support Vector 

Machine (SVM), Naïve Bayes (NB), Logistic regression (LR), Clustering analysis (CA), Fuzzy 

logic clustering or K-Nearest Neighbours (KNN). 

(1) Discriminant Analysis (DA) is a supervised machine learning algorithm that finds a linear or 

quadratic combination of input features in order to separate data into two or more classes. 

Discriminant analysis is thus referred to as Linear Discriminant Analysis (LDA) which is also 

known as Discriminant Function Analysis (DFA) or Quadratic Discriminant Analysis (QDA). 

Each feature has its own weighting factor which indicates its importance to the discrimination 

procedure between the classes. The intra-class and inter-class distances between the features 

are determined to define which class a feature belongs to (Badesa et al., 2014; Harper, 2005; 

Lee et al., 2009).  

 

(2) Artificial Neural Networks (ANNs) are machine learning algorithms based on the biological 

neural system (Ardestani et al., 2014). They are made up of multilayer feed-forward neural 

networks, which are composed of layers of interconnected sets of nodes which loosely model 

the neurons in a biological brain. Connections between units move forward through hidden 

layers of nodes to form the input to the output layer (Alaqtash et al., 2011a; Chau, 2001b).  

 

(3) Support Vector Machine (SVM) is a supervised machine learning algorithm using a kernel 

method to classify non-linear gait data and map it to a higher dimensional feature space (Begg 

& Kamruzzaman, 2005; Begg et al., 2005). Classification is performed by finding the optimal 

hyperplanes that separate between classes.  

 

(4) Naïve Bayes (NB) based on Bayes’ theorem, assumes that all features are independent of each 

other (Badesa et al., 2014; Chan et al., 2013). It creates a probabilistic model defining the 

class that an input belongs to. 

 

(5) Logistic regression (LR) transforms data into logic variables (binary variables) to maximise 

classification outcomes (Harper, 2005; Muniz et al., 2010b).  
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(6) Clustering Analysis (CA) uses homogeneous groups or “clusters” to classify data. Two 

methods of hierarchical and non-hierarchical clustering are used to minimise variability 

within a class and maximise variables between classes (Kaczmarczyk et al., 2009).  

 

(7) Fuzzy Logic Clustering offers an insight into the non-linear relationship between variables 

(Chau, 2001a). It does not consider sharp boundaries so input data can simultaneously 

contribute to multiple classes (Alaqtash et al., 2011b; Chau, 2001a).  

 

(8) K-Nearest Neighbours (KNN) is a non-hierarchical clustering method. It defines the 

characteristics of the input data depending on similarity to their neighbours (Alaqtash et al., 

2011a; Badesa et al., 2014). 

 

All machine learning algorithms have benefits and limitations, hence an algorithm is chosen 

depending on the application. Artificial Neural Networks handle non-linear data and can learn 

and adapt to new data, but large volumes of variables are required for an accurate generalisation 

of the algorithm. It can suffer from overfitting which compromises its generalisation (Begg & 

Kamruzzaman, 2005; Begg et al., 2005; Chau, 2001b; Lai et al., 2008). Support Vector Machine, 

however, considers a global optimum and overfitting of the training process can be avoided (Saeys 

et al., 2007; Wu et al., 2007). It can be applied to small data, and new data can be added to the 

classification procedure without compromising the outcome (Begg & Kamruzzaman, 2005; Begg 

et al., 2005; Khandoker et al., 2007). Other classification methods, such as CA, are sensitive to 

correlated variables. This means that prior to its application, correlated variables need to be 

identified and removed (Kinsella & Moran, 2008). Furthermore, a priori rules and clusters need 

to be defined by the user, which may introduce bias (Chau, 2001a; Dobson et al., 2007). 

Nevertheless, CA based on fuzzy logic clustering offers insights into non-linear relationships 

between variables.  

Different machine learning algorithms will result in different classification outcomes due to the 

unique approach of each algorithm. No algorithm suits all applications (Harper, 2005) especially 

considering the complexity of gait data. Studies have therefore investigated different approaches 

to evaluate which suits their data. Comparing DA, tree-based algorithms, ANN, and LR 

classification methods, Harper (2005) demonstrated that no ideal approach exits, instead the 

performance of the classification depends on the features. Other studies suggest that the 

combination of different classification methods can improve the classification outcome (Pogorelc 

et al., 2012). Classification performance depends on multiple factors such as the relevance of 

features, type of feature, size of the dataset, and/or number of participants (Badesa et al., 2014; 

Begg & Kamruzzaman, 2005). 



 

Chapter 2: Review of Literature 

 
 

 

 
42 

 

2.6.1.3 Classification evaluation 

The performance of machine learning algorithms can be evaluated using different methods. The 

evaluation should be performed on a test set which has not been used for the training and whose 

classification is not known. One method involves using the confusion matrix to define accuracy, 

sensitivity and specificity (Lever et al., 2016a). In a two-class problem, there are four possible 

outcomes of classification: true positive (TP), false negative (FN), true negative (TN), and false 

positive (FP), where accuracy (Equation 2.6) evaluates the classifier defined as the percentage of 

true predictions using a model of these four categories. However, high accuracy does not 

necessarily imply a good classifier. Thus, sensitivity (Equation 2.7) and specificity (Equation 2.8) 

measure the proportion of actual positives and negatives of the classifier, respectively. True 

positives and false positives can be captured by precision, also known as a positive predictive 

value, which is the proportion of predicted positives (Lever et al., 2016a).  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% (2.6) 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (2.7) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% (2.8) 

 

There are several methods to aggregate the confusion matrix. The most popular is 𝐹𝛽 score, which 

controls the balance of recall and precision using 𝛽, which can be calculated as follows: 

 

 𝐹𝛽 =
(1 + 𝛽2)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.9) 

 

Where 𝐹𝛽 = 𝐹𝛽 score, 𝛽 = shape parameter 

 

As 𝛽 decreases, precision is given greater weight. Commonly, the 𝐹1score is calculated with 𝛽 = 

1, balancing recall and precision with the equation reduced to 2𝑇𝑃/(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁). The 𝐹𝛽 

does not capture the whole confusion matrix since it does not give an indication of TNs. One 

method to capture all data in a coefficient matrix is Matthew Correlation Coefficient (MCC), 

which ranges from -1 to 1, where ‘-1’ indicates classification is always wrong, ‘0’ indicates 

classification is no better than random and ‘+1’ indicates classification is always correct.  
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It should be noted that no single matrix can distinguish all strengths and weakness of a classifier. 

Instead of evaluating a classifier using a positive or negative, a level of certainty can be used, 

which can be visually interpreted using a receiver operating characteristic (ROC) curve. It is also 

possible to determine the ratio between false and true negatives using the negative likelihood ratio 

(NLR) and the area under the curve (AUC) (Begg et al., 2005; Chan et al., 2013). 

2.6.1.4 Cross-validation 

After a machine learning algorithm is developed, different approaches are implemented to 

improve the classification performance. These include cross-validation and feature normalisation 

methodologies. Cross-validation (CV) methods are used to evaluate the generalisability of the 

classification outcome as new data is added. These methods can also minimise the likelihood of 

overfitting (Figueiredo et al., 2018). The conventional CV method starts by dividing the data set 

into training and testing (predictive) data sets, based on 𝑘-fold. During the process, the cross-

validation process is repeated 𝑘 times until every trial is used as a testing sample at least once 

whilst all other trials make up the training sample. Finally, the average 𝑘 results are calculated, 

determining the performance of the classifier (Alaqtash et al., 2011a; b). 

During the leave-one-out (LOO) cross-validation method data in each fold belongs to a particular 

participant instead of randomly assigned trials (Alaqtash et al., 2011a; Badesa et al., 2014). 

Therefore, the LOO method uses 𝑘-fold depending on the number of trials. This method is 

unsuitable if trials are unbalanced since that may introduce different data distributions (López et 

al., 2014). For an unbalanced number of distribution trials, optimally balanced stratified cross-

validation (DOB-SCV) should be used (López et al., 2014). 

Other methods to improve a classifier’s accuracy and robustness is by implementing 

normalisation procedures. Time normalisation is an example of such method, during which each 

feature is expressed as a function of a gait cycle instead of time (Alaqtash et al., 2011b; Eskofier 

et al., 2011; Zhang et al., 2014). Similarly, kinematic data can be standardised to a person’s body 

weight instead of a gait cycle (Laroche et al., 2014). Using a 𝑧-score to standardise data (Begg 

and Kamruzzaman, 2005; Hanson et al., 2009; Wu and Wang, 2008) ensures that all features have 

a mean of zero and a variance of one (Yang et al., 2012; Zhang et al., 2014): 

 
𝑥 − 𝜇

𝜎
 

(2.10) 

 
 

Where 𝑥 = feature, 𝜇 = mean and 𝜎 = standard deviation 
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2.6.2 Multivariate Statistical Analysis and Machine Learning Algorithms in Gait 

Analysis Current Use and the Future 

Automatic gait recognition tools are becoming increasingly popular in gait analysis. In a clinical 

setting, they can provide a quantitative, non-invasive diagnostic method, patient-specific 

treatment recommendations, and more effective evaluation of treatment outcomes (Alaqtash et 

al., 2011b; Lakany, 2008; Pogorelc et al., 2012). Current challenges in clinical settings are the 

discrimination of able-bodied gait and pathological gait and the evaluation of the progression of 

pathological gait (Figueiredo et al., 2018). Therefore, classification methods based on statistical 

analysis, mathematical transformation and machine learning algorithms have been assessed in the 

investigation of gait data (Alaqtash et al., 2011b). Using statistical analysis, the persistent 

challenges of an objective analysis have not been achieved and a normal distribution of data is 

assumed (Chau, 2001b). Mathematical transforms were limited to applications of univariate 

signals and guideline selection based on wavelets (Chau, 2001b). However, machine learning 

algorithms used to develop automatic gait recognition tools were able to detect patterns and work 

with complex non-linear relationships between variables (Alaqtash et al., 2011b; Zheng et al., 

2009). They provide an objective method for the analysis of large datasets and thus eliminating 

researcher bias (Alaqtash, Sarkodie-Gyan, et al., 2011) whilst providing a quick and cost-effective 

method of analysis (Alaqtash et al., 2011b; Lakany, 2008; Simon, 2004). Furthermore, these 

algorithms could handle high-dimensional data and new data could easily be incorporated to 

improve the prediction performance (Alaqtash et al., 2011a; Begg & Kamruzzaman, 2005 ; Zheng 

et al., 2009). The ability to address nonlinear and high-dimensional data such as gait data and the 

ability to properly process new data makes machine learning algorithms a suitable method for gait 

analysis. 

Research studies have implemented multivariate statistical analysis methods and machine 

learning algorithms to investigate Parkinson’s disease, cerebral palsy, spinal cord injury, 

osteoarthritis, running injuries and stroke. The application of these advanced statistical methods 

was initiated due to the lack of quantitative methods in the assessment of motor symptoms in 

Parkinsonian gait (Palmerini et al., 2011). In recent years, the use of machine learning algorithms 

has had many applications for the assessment of pathological gait, for example investigating the 

use of classifiers to detect cerebral palsy in infants (Rahmati et al., 2016) and children 

(Kamruzzaman and Begg, 2006), determine the severity of the condition (Rozumalski and 

Schwartz, 2009), characterise movement patterns of stroke patients (Kaczmarczyk et al., 2009) 

and diagnose osteoarthritis (Astephen et al., 2008). Other applications included determining the 

risk of developing a disease or predicting the outcome of an intervention (Wei et al., 2017).  
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In gait analysis, many studies focused on predictive tasks such as classification (80.6%) and 

regression (11.6%), while only a few investigated data mining such as clustering tasks (7.8%) 

(Halilaj et al., 2018). These two machine learning approaches, predictive modelling and data 

mining, serve different purposes compared to more traditional statistical approaches. Predictive 

modelling is used to find a function/model to map input data such as kinetic or kinematic 

waveforms to a given output such as severity of pathology so that it can be used to make future 

predictions. An example of predictive modelling is powered prosthesis, which use myoelectrical 

sensors embedded in the prosthesis’ socket to predict an individual’s intention for the upcoming 

steps (e.g. Afzal et al., 2017). Predictive modelling was also used to develop diagnosis and 

prognostic models, for example, of predicting falling (e.g. Wei et al., 2017) or activity during 

outpatient treatment (e.g. Biswas et al., 2013). Data mining, on the other hand, is used to discover 

new patterns in data. For example, using clustering analysis gait patterns of subpopulations within 

types of pathological gait could be identified (e.g. Rozumalski and Schwartz, 2009). 

Recent investigations in the development of automatic gait recognition tool were performed on 

data extracted from wearable sensory systems such as footswitches and accelerometers (Taborri 

et al., 2016). Advances in technology make these sensors smaller, lightweight and easier to take 

on and off. These sensors also allow measuring variables in free-living conditions which can be 

advantageous specifically in the advancement of robotic or powered therapies (e.g. Afzal et al., 

2017). Hegde et al., (2018), for example, used shoe-based wearable sensors to monitor activity 

and gait of children with CP. Machine learning models were used to automatically classify 

activities of daily living. The results showed that activities could be classified with a 95.3% and 

96.2% accuracy for children with and without CP, respectively. A disadvantage of wearable 

sensors, however, is that they only provide kinematic data. To overcome this issue Wouda et al. 

(2018) used ANN to estimate kinematic and kinematic parameters of runners using wearable 

sensors. Joint angles and vertical acceleration from the wearable sensors were used as input values 

to estimate vertical GRF. The outcome showed that sagittal knee kinematics and vertical GRF 

could be estimated using three inertial sensors with no significant difference to the reference data.  

Although wearable sensors have their advantages, using non-ambulatory external sensors such as 

motion capture-systems or force platforms can provide more detailed information. These systems 

operate in a controlled environment (Sabatini et al., 2005), which occasionally is considered a 

disadvantage since it can be challenging to acquire consecutive gait cycles for long-term 

applications in a natural environment (Alahakone et al., 2010; Azhar et al., 2014). However, the 

accuracy of these systems cannot be underestimated, as they provide comprehensive and reliable 

biomechanical data such as temporal-spatial, kinematic and kinetic variables (Howell et al., 2012; 
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Bamberg et al., 2008). Alaqtash et al., (2011a), for example, have used the nearest neighbour 

classifier and ANN to classify GRF data of able-bodied individuals, individuals with CP and 

multiple sclerosis. The classification outcome yielded an accuracy of 95%, indicating that 

automatic gait recognition tools can be useful for clinicians in the diagnosis and identification of 

pathological gait. Ertelt et al., (2018) used Gaussian distribution to classify the GRF patterns of 

athletes from different sports. The results showed that the overall prediction was 94,29% of sports 

and athletes. Only three out of the ten sports under investigation could not be correctly classified 

in all instances, whilst the other sports were 100% correctly allocation. These results can have 

high implications in both medical and sports fields since they have the potential to be used for the 

identification of gait patterns at different points during an intervention. 

In previous studies, the feature space, which presents the number of variables, was generally 

larger than number of observations, which present the number of participants (Alaqtash et al., 

2011 a; b; Begg and Kamruzzaman, 2005; Eskofier et al., 2013) since most studies would have 

fewer participants (median = 40 participants) compared to variable data points (Halilaj et al., 

2018). In general, the number of observations should be greater than the number of features when 

using machine learning otherwise there might be a risk of overfitting. Barrett and Kline (1981) 

recommend that the number of participants should be at least 50 for PCA. However, having said 

this, during gait analysis of pathological groups, the characteristics of and the location of the 

research site might impose constraints regarding the number of participants which can be obtained 

for a study.  

In gait analysis, descriptive statistical methods such as peak angles are extracted from temporal 

waveforms. However, these methods require a priori selection of features, which depends on 

researchers experience and knowledge. Consequently, a large part of the temporal waveform is 

discarded which may hold important information. Dimensionality reduction technique could be 

used for feature selection and feature extraction to overcome this issue and thus full gait cycles 

could be implemented in the classification procedure. However, many investigations performed 

the machine learning procedure using discrete parameters (Begg and Kamruzzaman, 2005) and 

only a few have tried including entire gait waveforms (Phinyomark et al., 2015). Furthermore, 

some studies limited their investigation to specific variables, i.e. only kinetic, kinematic or EMG 

(Alaqtash et al., 2011a; Ertelt et al., 2018), however, investigations have shown that machine 

learning algorithms still perform well when using different variables.  

Although, some models were build using various data of kinetic, kinematic and EMG, only a 

limited number of studies addressed the scaling of these data (Rahmati et al., 2016, Roy et al., 

2013), which could adversely affect the classification outcome due to the different units and 
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weightings of these variables. Some studies report that variables from different planes have the 

potential to improve the classification results, thus providing a more comprehensive 

understanding of pathological gait (Schöllhorn et al., 2002) but the majority of studies focused 

on sagittal plane data only. However, the use of data from different planes should be approached 

with caution since ambiguous and erroneous data such as soft tissue artefacts can negatively affect 

the results (Phinyomark et al., 2018). Thus, more data does not necessarily mean a more accurate 

classification outcome would be obtained. 

Machine learning algorithms are currently being trialled for a number of applications in gait 

analysis. Some recent studies investigated the use of machine learning in combination with 

modern technology to enhance medical practice. Zhan et al., (2018), for example, used machine 

learning and smartphones to quantify the severity of Parkinson’s disease in individuals. 

Automatic gait recognition tools have proven to be effective in the analysis of pathological gait. 

However, a drawback of the methods developed thus far is the lack of inclusion of patient history 

(Bonnefoy-Mazure et al., 2013), which needs to be addressed. 

2.6.3 Application of Multivariate Statistical Analyses and Machine Learning 

Algorithms in Lower-Limb Amputee Gait 

In LLA gait, machine learning algorithms have mainly been used to investigate powered 

prosthetic devices (Afzal et al., 2017; Chen et al., 2013; Dutta et al., 2011; Hargrove et al., 2015; 

Huang et al., 2011; Joshi & Hahn, 2016; Khan et al., 2018; Miller et al., 2013; Pew & Klute, 

2017; Simon et al., 2016; Woodward et al., 2016; Young et al., 2013; Young et al., 2014; Zheng 

et al., 2013; Zheng & Wang, 2017). Powered prosthetic devices are becoming increasingly 

popular since sensors in the socket and residuum interface are used to detect changes from the 

muscle fibres, and depending on the signal, automatic transition between gait modes occur. The 

transitioning process, however, is not always smooth and thus research has used classification 

methods in order to identify gait modes and transition periods between gait modes to improve 

these devices. Gait modes have been classified using muscle synergy data from electromyography 

sensors (Afzal et al., 2017; Miller et al., 2013) and captive sensing methods (Chen et al., 2013). 

Khan et al. (2018) used brain signals to detect walking intention in order to remove artefacts from 

physiological noises, investigating how the brain can start and stop a gait cycle on powered 

prosthetic devices. Seeking the highest classification outcome, studies investigated the 

combination of different methods (Afzal et al., 2017; Chen et al., 2013; Joshi & Hahn, 2016; 

Khan et al., 2018; Miller et al., 2013; Pew & Klute, 2017). Furthermore, in an attempt to reduce 

the time required to train and test a machine learning algorithm, Woodward et al. (2016) 

investigated the use an independent data set to test a subjects data rather than a subject’s own 
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dependent data showing that classifiers are capable of making fast decisions. Investigating 

different prosthetic devices using machine learning algorithms, Lemoyne et al. (2015) acquired 

100% classification outcome. Although the investigations of prosthetic devices are important, in 

the first instance individuals who can benefit from these devices need to be identifiable. Thus, 

classification methods should be implemented as diagnostic tools for the assessment and 

understanding of LLA gait. In order to do this multivariate statistical analyses and machine 

learning algorithms should be implemented to assess and understand differences between LLA 

and able-bodied gait. 

Lower-limb amputee function has been described using PCA (Detrembleur et al., 2005; Gao & 

Zhang, 2013; Mouchnino et al., 2006). Quantifying symmetry, Gao and Zhang (2013) used PCA 

to identify important variables during a sit-to-stand and stand-to-sit tasks in an individual with 

UTFA. Measuring kinematics, kinetics and muscle activity, they were able to identify the most 

important variables determining these tasks. Using PCA, Soares et al. (2016) described the 

differences in GRF and CoP data between individuals with UTFAs and able-bodied individuals. 

The first three principal components (PCs) were found to explain 74.5 - 93.9% of the variance in 

the data. Results illustrated that the majority of differences found in the full temporal waveforms 

were commonly observed in areas assessed during parameterisation of waveforms (e.g. peaks). 

Soares et al. (2016) also describe the relevant sections in the temporal waveforms relative to the 

first three PCs. In the vertical GRF, PC1 described the sections between 20-30% and 80-95% of 

the stance phase, and PC2 and PC3 described the sections between 35%-75% and 7%-12% of the 

stance phase, respectively. While a higher magnitude was found in the vertical GRF of the control 

limbs relative to the prosthetic limb in PC1, PC2 and PC3 were found to be significantly different 

between both prosthetic and intact limbs of the individuals with UTFAs and also the control limbs 

able-bodied individuals. 

Prosthetic rehabilitation is said to lack evidence-based practice (Ramstrand & Brodtkorb, 2008), 

although using gait analysis for the assessment of individuals with LLA can help monitor 

prosthetic rehabilitation and therapy effectiveness (Skinner & Effeney, 1985). There are no 

objective measures to evaluate prosthetic rehabilitation, but instead, it depends on clinicians 

experience (van der Linde et al., 2004; Schaffalitzky et al., 2011). For example, the evaluation of 

prosthetic alignment is based on visual interpretation of the patient’s gait, which depends on the 

prosthetists’ experience and thus is highly subjective. In an attempt to address this, Zhang et al., 

(2018) used the machine learning algorithm SVM to detect misalignment in the prosthesis of 

individuals with UTTA though GRF data. The misalignment could be accurately detected 96.7% 
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within a subject and 88.9% between subjects, indicating that automatic gait recognition could be 

used in a clinical setting to detect prosthetic misalignment.  

At present, limited research has investigated the use of multivariate statistical analyses and 

machine learning algorithms to understand LLA gait, although this can have many positive 

applications. Prosthetic rehabilitation is said to lack evidence-based practice and incorporation of 

research findings (Ramstrand & Brodtkorb, 2008). However, the implications of automatic gait 

recognition tools in clinical gait analysis could facilitate a better understanding of factors affecting 

gait and therefore aid better decision making processes early on during rehabilitation (Esquenazi, 

2014), increasing the likelihood of prosthetic use after inpatient treatment. In turn, this can 

improve the quality of life of individuals with LLA. 
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3.1 Introduction 

This chapter describes common methodological procedures used across all experimental studies 

of this PhD. These include participant recruitment, ethical review, data acquisition, data 

processing and analysis techniques. Each section details the rationale and justification for the 

procedures. Any additional procedures, related to a particular study, are described in the methods 

section of the individual study. 

3.2 Participants 

In this research, able-bodied individuals and individuals with UTTA volunteered. Able-bodied 

individuals were involved in studies 1-3 presented in chapters 4-6 and were drawn from the 

University and local communities. Individuals with UTTA were involved in studies 2-4 presented 

in chapters 5-7 and were recruited from the Mobility Centre at Nottingham University Hospitals 

NHS Trust. Prior to volunteering in the studies, participants were given details of the studies in 

the participant information sheets (Appendices 5 and 6) and written informed consent 

(Appendices 5 and 7) was obtained from each participant on arrival to the laboratory prior to 

testing. Participants also completed a participant health screen form (Appendix 9) to ensure all 

inclusion/exclusion criteria were met, and to ensure that participants were under no risk through 

participation in the studies. Demographics of individuals with UTTA and details of their 

prosthetic components were shown in Table 3.1. 

3.2.1 Ethics Approval 

Ethical approval for study 1 presented in chapter 4 was obtained from Nottingham Trent 

University College of Science and Technology Ethical Review Committee (Humans). Ethical 

approval, for studies 2-4 presented in chapters 5-7, was sought from the Nottingham Trent 

University’s College of Science and Technology Ethical Review Committee (Humans), the NHS 

Research Ethics Committee, the NHS Health Research Authority and the NHS Research and 

Development (REC reference - 16/EM/0311). 
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3.2.2 Inclusion/Exclusion Criteria 

3.2.2.1 Experimental Study 1 

Inclusion criteria for study 1 specified that participants had to be greater than 18 years of age, had 

no lower limb pathologies and were free of injury during the time of the study.  

3.2.2.2 Experimental Study 2 – 4  

Inclusion criteria for studies 2-4 specified that individuals with UTTA: 

- Should have at least a year of experience using their prosthetic limb after inpatient treatment, 

- Should be at least 18 years of age at the time of the study,  

- Should be independent walkers, i.e. are able to walk without the use of any walking aids other 

than their prosthetic limb, 

- Should be able to walk for 3 minute periods at once to be able to meet the walking 

requirements for the studies.  

Exclusion criteria for studies 2-4 specified that individuals with UTTA: 

- Should suffer from a medical condition that impaired balance or sensory loss including 

significant musculoskeletal, neurologic or cardiopulmonary conditions, 

- Should have a prescription for more than five medications at the time of the research. This is 

because research has demonstrated that consumption of more than five medications affect 

walking habits (Lord & Menz, 2002), 

- Should experience pain when walking at a self-selected speed, 

- Should experience discomfort wearing the prosthetic limb. 

Inclusion criteria for studies 2 and 3 specified that able-bodied individuals: 

- Should be at least 18 years of age at the time of the study,  

- Should have no lower-limb pathologies, 

- Should be free of injury during the time of the study.  

Exclusion criteria for studies 2 and 3 specified that able-bodied individuals: 

- Should suffer from a medical condition that impaired balance or sensory loss including 

significant musculoskeletal, neurologic, or cardiopulmonary conditions, 

- Should have a prescription for more than five medications at the time of the research, 

- Should have experienced more than one fall in the 12-months prior to data collection. This is 

because research has demonstrated that frequent falls affect an individual’s balance and 

stability (Melzer et al., 2004) 
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Table 3.1 Demographics including prosthetic components of participants with UTTA.  

Participant Sex Height (m) Mass (kg) Age (Years) Cause of Amp Time since Amp (Years) Phantom Pain Socket Liner Suspension Foot 

1 M 1.77 74.3 46 Trauma 13 Yes Iceross carbon fibre Iceross original Pin Venture 25Rt 

2 M 1.67 93.3 49 Trauma 2 Yes Carbon fibre Endolite comfort liner Pin Avalon 24Rt 

3 F 1.64 64.5 48 Osteosarcoma 19 Yes Iceross laminate Iceross sport Pin Avalon 24Lt 

4 M 1.74 84.35 67 Failed Ankle Fusion 1 Yes Silver carbon fibre Iceross synergy wave Pin Echelon VT 27Rt 

5 M 1.86 93 32 Neurofibromatosis 7 Yes Iceross laminate Iceross synergy wave Pin Senator 26Rt 

6 M 1.67 88 55 Trauma 1 Yes Laminate socket Endolite comfort liner Sleeve Avalon 26Lt 

7 M 1.79 95.5 70 Thrombosis 4 Yes Laminate socket SmartTemp cushion liner Sleeve Avalon 28Rt 

8 M 1.77 98.3 52 Infection after Trauma 4 Yes Laminate socket Endolite silcare breathe liner Sleeve Echelon VT 

9 M 1.9 87.1 28 Trauma 5 Yes PTB socket Gel cushion liner Sleeve Re-Flex Shock 

10 M 1.77 89.5 53 Trauma 5 No Laminate socket Iceross comfort locking liner Pin Echelon VT 

11 F 1.52 55.5 52 Osteoarthritis 1 Yes PTB laminate socket Pelite liner Sleeve Navigator 22Lt 

Mean 
 

1.74 83.9 50 
 

5 
     

SD 
 

0.11 13.6 12 
 

5 
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3.3 Data Acquisition and Processing 

3.3.1 Hardware and Equipment Set-Up 

Kinematic data was measured using a three-dimensional (3D) Qualisys Motion Capture System 

(Qualisys, Gothenburg, Sweden). The system was made up of eight Oqus 400, and one high-speed 

Oqus 310 cameras, and the associated hardware, and the software, Qualisys Track Manager 

version 2.2 (QTM v2.2) (Qualisys, Gothenburg, Sweden). Kinematic data was measured as a 

participant moved through the performance volume with reflective markers attached to certain 

body landmarks as individual cameras capture images of these reflective markers. Ground 

reaction force (GRF) data were measured using an AMTI OR6-7 strain gauge force platform 

(508x464mm) (AMTI, MA, US). The GRF was measured as a participant walked over the force 

platform and clear contact was made between the participant’s foot and the platform. 

Measurements were made in three axes, namely vertical (Fz), anterior-posterior (Fy) and medio-

lateral (Fx). 

The cameras of the Qualisys Motion Capture System were connected in a serial fashion (Figure 

3.1). Camera 1 was connected to a desktop PC (Dell OptiPlex 990, Dell, Bracknell, UK) feeding 

kinematic data into QTM (Qualisys, Gothenburg, Sweden). Camera 1 was also connected to the 

sync input of a USB analogue to digital (A-D) converter (Qualisys USB-2533, Gothenburg, 

Sweden). The AMTI force platform was connected to an AMTI connection box (AMTI, MSA-6) 

via connection cables. The AMTI connection box was fed into the A-D converter (Qualisys USB-

2533, Gothenburg, Sweden) via coaxial cables and BNC connectors. The AMTI connection box 

was also connected to the desktop PC. Thus, for synchronisation purposes, both GRF data from 

the AMTI force platforms and kinematic data from the Qualisys cameras were fed into the USB 

A-D board and to the desktop PC. Finally, the A-D converter was connected to the desktop PC 

via a USB highspeed ribbon cable.  
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Figure 3.1 Illustration of equipment set-up. 

3.3.2 Kinematic Data Acquisition 

To create three-dimensional (3D) coordinates from two-dimensional (2D) images of the cameras, 

a linear relationship between the 2D image and 3D coordinates needs to be established (Payton 

& Bartlett, 2007). This was carried out through calibration of the system, ensuring that 2D images 

were accurately scaled to 3D coordinates. The calibration involved a series of control points on a 

rigid structure with known coordinates (Robertson et al., 2013), which in this research was an L-

shaped calibration frame with reflective markers of known dimensions (300mm & 600mm) 

(Figure 3.2). The frame was placed still in the performance volume so that it was seen by all 

cameras, whilst a T-shaped wand with markers on each end (600mm) was moved through the 

performance volume (Figure 3.2). The control points, i.e. the markers of the L-shaped calibration 

frame and the T-shaped wand were measured during movement. These measurements were 

utilised to scale digitised coordinates into real metric units through methods known as Functional 

Linear Transformation (FLT) or Direct Linear Transformation (DLT) (Robertson et al., 2013). 

Measurement accuracy depended on the accuracy of the calibration, which was determined by the 

residual error of each camera. The residual error indicates the precision of locating a marker’s 

position. In this research, the residual error for each camera had to be <2mm in order to be 

accepted for data acquisition. Prior to calibration, individual cameras were checked to ensure that 
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no unwanted objects were obstructing the view. The calibration created a global/laboratory 

coordinate system (z – vertical, y – anterior/posterior and x –medial/lateral), where markers in the 

corners of the L-shaped frame represent the laboratory origin or zero point of the laboratory 

coordinate system. Markers placed on certain body landmarks of a participant created a local 

coordinate system. The global coordinate system is fixed whilst the local coordinate system 

moves dependent on participant’s movements. Segment movement can be defined using both 

coordinate systems. 

 

Figure 3.2 T-shaped wand (left) and L-shaped reference frame (right). 

 

3.3.3 Biomechanical Modelling 

Markers were placed on certain bony landmarks in accordance with a six-degrees of freedom 

(6DoF) marker model shown in Figure 3.3 and Figure 3.4. In study 1 a 36-marker model (Figure 

3.3) and in studies 2-4 a 70-marker model (Figure 3.4) were used to measure kinematic data. 

Spherical reflective markers (14mm diameter) were attached on participants’ head, upper 

extremities, trunk (Leardini et al., 1999) and lower extremities (Cappozzo et al., 1995) (Figure 

3.3, Figure 3.4 and Table 3.2). Markers on the prosthetic limb of individuals with UTTA in studies 

2-4 were placed, estimated depending on the intact limb due to the absence of anatomical 

landmarks (Powers et al., 1998) to define segment geometry. The 6 DOF marker models describe 

segments being modelled independently of each other thus no assumptions were made regarding 

joint constraints (Cappozzo et al., 1995; Collins et al., 2009; Kirtley, 2006; Robertson et al., 

2014). Markers were either used as definition or tracking markers of individual segments, and at 

least three non-linear markers were used to define a segment’s position and orientation in the 3D 

space. Segments were treated as objects where the inertial properties of the object depended on 

its shape (Hanavan, 1964), and the shape, i.e. the segment geometries were computed depending 

on the segment definition (Section 3.3.4). 
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Figure 3.3 Diagram of 36-Marker Locations (Cappozzo et al., 1995; Leardini et al., 1999). 

Figure adopted from Visual3D. 

 

Figure 3.4 Diagram of 70-Marker Locations (Cappozzo et al., 1995; Leardini et al., 1999). 

Figure adopted from Visual3D. 
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Table 3.2 Anatomical positions of markers used to create a 36-marker and 70-marker model. 

All markers were 14mm in size. 

Anatomical Position Corresponding Marker Study 1 Study 2 - 4 

Head HEAD_ANT_L, 

HEAD_ANT_R, 

HEAD_POST_L, 

HEAD_POST_R 

 X 

Left/right acromion LCAJ/RCAJ X X 

Jugular notch SJN X X 

Xiphoid process SXS X X 

seventh cervical vertebrae CV7 X X 

Second and seventh thoracic vertebrae TV2, TV7 X X 

First, third and fifth lumbar vertebrae LV1, LV3, LV5 X X 

Left/Right anterior superior iliac spine LIAS/RIAS X X 

Left/Right posterior superior iliac spine LIPS/RIPS X X 

Greater trochanter LFTC/RFTC X X 

Cluster on thigh LTH/RTH  X 

Lateral femoral epicondyle LFLE/RFLE X X 

Medial femoral epicondyle LFME/RFME X X 

Fibula head LFAX/RFAX X X 

Tibial tuberosity LTTC/RTTC X X 

Cluster on shank LSK/RSK  X 

Lateral malleolus LFAL/RFAL X X 

Medial malleolus LTAM/RTAM X X 

Calcaneus LFCC/RFCC X X 

1st, 2nd and 5th metatarsal head LFM1/RFM1, LFM2/RFM2, 

LFM5/RFM5 

X X 

Distal end of toe LDM/RDM  X 

Shoulders LSHO/RSHO  X 

Humerus lateral epicondyle LHLE/RHLE  X 

Humerus medial epicondyle LHME/RHME  X 

Ulna-Styloid process LUSP/RUSP  X 

Radius-Styloid process LRSP/RRSP  X 

Distal end of middle finger LTIP/RTIP  X 

    

All markers were placed bilaterally, and in the absence of anatomical landmarks, i.e. on the prosthetic 

leg, markers were placed estimated from the intact limb. 
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3.3.4 Segment Definition 

3.3.4.1 Segment Definition of 36-Marker-Model 

3.3.4.1.1 Thorax Segment  

The thorax segment was defined using the anatomical locations of the jugular notch, the xiphoid 

process, the 7th cervical vertebrae and the 2nd thoracic vertebrae. The thorax was built as a cylinder 

where the markers of the vertebrae were considered the joint centre of the cylinder. The radii of 

the cylinder were defined as half the distances between the jugular notch and the 7th cervical 

vertebrae and the mid-point between the xiphoid process and the 2nd thoracic vertebrae, which 

define the proximal and distal ends of the cone, respectively. The segment was also tracked using 

the jugular notch, the xiphoid process, the 7th cervical vertebrae and the 2nd thoracic vertebrae. 

 

Figure 3.5 Marker location (a) and definition (b) of the thorax segment. 

 

Table 3.3 Thorax definition in Visual3D. 

Thorax segment 

Proximal joint and radius Joint Centre - TV2 Radius - 0.5*DISTANCE(TV2,SJN) 

Distal joint and radius Joint Centre - TV7 Radius - 0.5*DISTANCE(TV7,SXS) 

Extra target to define orientation Posterior Location - SJN  
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3.3.4.1.2 Coda Pelvis  

The coda pelvis was defined using the anatomical locations of the Anterior Superior Iliac Spine 

(ASIS) and the Posterior Superior Iliac Spine (PSIS). The origin of the pelvis was created at the 

mid-point between the ASISs. The sacrum location was defined as the mid-point between the 

PSISs, and a plane from the sacrum to the ASISs defining the pelvis location. The segment was 

built as a cylinder and tracked using the ASISs and PSISs. 

By building the pelvis the right and left hip joint centres were estimated as follows (Bell et al., 

1989; 1990): 

𝑅𝐻𝐽𝐶 = (0.36 × 𝐴𝑆𝐼𝑆_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,−0.19 × 𝐴𝑆𝐼𝑆_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,−0.3

× 𝐴𝑆𝐼𝑆_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 
(3.1) 

 

𝐿𝐻𝐽𝐶 = (−0.36 × 𝐴𝑆𝐼𝑆_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,−0.19 × 𝐴𝑆𝐼𝑆_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,−0.3

× 𝐴𝑆𝐼𝑆_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 
(3.2) 

 

Table 3.4 Landmark definition for the Coda pelvis in Visual3D. 

Landmark Starting point Ending point 

SCRM RIPS LIPS 

 

 

Figure 3.6 Marker location (a) and definition (b) of the coda pelvis. 
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3.3.4.1.3 Thigh Segment 

The thigh segment was defined using the anatomical locations of the hip joint centres, greater 

trochanter, medial and lateral femoral epicondyle. The thighs were built as a cone, where a quarter 

of the distance between the hip joint centres defined the proximal radius of the cone, and the distal 

end of the cone was defined by the medial and lateral femoral epicondyles. The segment was 

tracked using the hip joint centre, greater trochanter, medial and lateral femoral epicondyle. 

Table 3.5 Thigh definition in Visual3D. 

Thigh segment 

Proximal joint and radius Joint centre - RIGHT_HIP Radius - 0.25*DISTANCE(LFTC,RLTC) 

Distal joint and radius Lateral – RFLE Medial - RFME 

 

 

Figure 3.7 Marker location (a) and definition (b) of the thigh segment. 
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3.3.4.1.4 Shank Segment 

The shank segment was defined using the anatomical locations of the medial and lateral femoral 

epicondyles, fibula head, tibial tuberosity, medial and lateral malleoli. The mid-point between the 

medial and lateral femoral epicondyles was used to create a landmark (RKNEE). The shank was 

built as a cone, where at the proximal end the joint centre was defined by the RKNEE landmarks 

and the fibular head as the lateral border of the cone, and the distal end of the cone was defined 

by the medial and lateral malleoli. The segment was tracked using the fibula head, tibial 

tuberosity, medial and lateral malleoli. 

Table 3.6 Shank definition in Visual3D. 

Shank segment 

Proximal joint and radius Joint centre – RKNEE Lateral - RFAX 

Distal joint and radius Lateral – RFAL Medial - RTAM 

 

Table 3.7 Landmark definition for the shank segment in Visual3D. 

Landmark Starting point Ending point 

RKNEE RFLE RFME 

 

 

Figure 3.8 Marker location (a) and definition (b) of the shank segment. 
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3.3.4.1.5 Foot Segment 

The foot segment was defined using the anatomical locations of the medial and lateral malleoli, 

calcaneus, 1st, 2nd and 5th metatarsal heads. The mid-point between the medial and lateral malleoli 

was used to create a landmark (RANKLE). The foot was defined as a cone where the proximal 

end of the cone was defined by RANKLE as the joint centre, and the radius of the cone was 

defined as half the distance between the malleoli. The distal end of the cone was defined by 

RSM_PROJ as the joint centre and the 5th metatarsal head as the lateral border of the cone. The 

RSM_PROJ landmark was projected on a plane from the 2nd metatarsal head, where the plane 

was stretched from the calcaneus and the 1st metatarsal head to the lateral point of the 5th 

metatarsal head. The segment was tracked using the calcaneus, 1st, 2nd and 5th metatarsal heads. 

The foot segment was used for kinetic calculations. 

Table 3.8 Foot definition in Visual3D. 

Foot segment 

Proximal joint and radius Joint centre – RANKLE Radius - 0.5*DISTANCE(RFAL,RTAM) 

Distal joint and radius Joint Centre - RSM_PROJ Lateral – RFM5 

 

Table 3.9 Landmark definition for the foot segment in Visual3D. 

Landmark Starting point Ending point Lateral object Projected from 

RANKLE RFAL RTAM   

RSM_PROJ RFCC RFM1 RFM5 RFM2 

 

 

Figure 3.9 Marker location of the foot segment. 
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3.3.4.1.6 Virtual Foot Segment 

The virtual foot segment, created for kinematic measurements was built similar to the foot 

segment, except that the joint centre at the proximal end was defined by the calcaneus instead of 

the mid-point between the malleoli. The virtual foot segment was used for kinematic calculations.  

Table 3.10 Virtual foot definition in Visual3D. 

Foot segment 

Proximal joint and radius Joint centre – RFCC Radius - 0.5*DISTANCE(RFAL,RTAM) 

Distal joint and radius Joint Centre - RSM_PROJ Lateral – RFM5 

 

 

3.3.4.2 Segment Definition of 70-Marker-Model 

3.3.4.2.1 Head Segment  

The head segment was defined as an ellipsoid by four markers on the head, and two markers on 

the left and right acromion. The four markers the head were in line with the forehead. Landmarks 

were created at the mid-point between the two front markers and two back markers of the head 

(HEAD_FRONT and HEAD_BACK). The proximal end of the ellipsoid was defined between 

the left and right acromion, while the distal end was defined between the landmarks that were 

defined. The segment was tracked using the four markers, which were in line with the forehead. 

 

Table 3.11 Head definition in Visual3D. 

Head 

Proximal joint and radius Lateral - LCAJ Medial - RCAJ 

Distal joint and radius HEAD_FRONT HEAD_BACK 

 

Table 3.12 Landmark definition for the head segment in Visual3D. 

Landmark Starting point Ending point 

HEAD_FRONT HEAD_ANT_L HEAD_ANT_R 

HEAD_BACK HEAD_POST_L HEAD_POST_R 
 

 

 

Figure 3.10 Marker location of the head segment. 
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3.3.4.2.2 Thorax Segment  

The thorax segment was defined using the anatomical locations of the left and right acromion, 

jugular notch, the xiphoid process, the 7th cervical vertebrae and the 2nd thoracic vertebrae. 

Landmarks were created at the mid-points between the jugular notch and the 7th cervical vertebrae, 

and between the xiphoid process and the 2nd thoracic vertebrae. The thorax was built as a cylinder 

where the created landmarks defined the proximal and distal joint centres of the cylinder, and the 

radius of the cylinder was defined as half the distance between the left and right acromion. The 

segment was also tracked using the jugular notch, the xiphoid process, the 7th cervical vertebrae 

and the 2nd thoracic vertebrae. 

 

Table 3.13 Thorax definition in Visual3D. 

Thorax 

Proximal joint and radius Joint centre - SJN_CV7 Radius - 0.5*DISTANCE(RCAJ,LCAJ) 

Distal joint and radius Joint centre - SXS_TV7 Radius - 0.5*DISTANCE(RCAJ,LCAJ) 

 

Table 3.14 Landmark definition for thorax in Visual3D. 

Landmark Starting point Ending point 

SJN_CV7 SJN CV7 

SXS_TV7 SXS TV7 

 

 

3.3.4.2.3 Composite Pelvis Segment  

The composite pelvis was defined using the anatomical locations of the ASIS and PSIS. The 

origin of the pelvis was created at the mid-point between the mid-ASISs and mid-PSIS. The length 

of the pelvis is defined as the distance between the origin and the midpoint between the hip joint 

centres, where the hip joint centres were defined as described in Section 3.3.4.1.2. The segment 

was built as a cylinder and tracked using the ASISs and PSISs. 
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Figure 3.11 Definition of the composite pelvis. 

 

 

3.3.4.2.4 Thigh Segment 

The thigh segment was defined using the anatomical locations of the hip joint centres, medial and 

lateral femoral epicondyle. The thigh was built as a cone, where the joint centre at the proximal 

end was defined by the hip joint centre, and the radius was defined as a quarter of the distance 

between the two hip joint centres. The distal end of the cone was defined by the medial and lateral 

femoral epicondyles. The segment was tracked using four markers attached on a cluster to the 

thigh. 

Table 3.15 Thigh definition in Visual3D. 

Thigh segment 

Proximal joint and radius Joint centre - RIGHT_HIP Radius - 0.25*DISTANCE(RIGHT_HIP,LEFT_HIP) 

Distal joint and radius Lateral – RFLE Medial - RFME 

 

 

3.3.4.2.5 Shank Segment 

The shank segment was defined using the anatomical locations of the medial and lateral femoral 

epicondyle, and the medial and lateral malleoli. The mid-point between the medial and lateral 

femoral epicondyles was used to create a landmark (RKNEE). The shank was built as a cone, 

where at the proximal end the joint centre was defined by RKNEE, and the radius was defined as 

half the distance between the femoral epicondyles. The distal end of the cone was defined by the 

medial and lateral malleoli. The segment was tracked using four markers attached on a cluster to 

the shank. 
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Table 3.16 Shank definition in Visual3D. 

Shank segment 

Proximal joint and radius Joint centre – RKNEE Radius - 0.5*DISTANCE(RFLE,RFME) 

Distal joint and radius Lateral – RFAL Medial - RTAM 

 

Table 3.17 Landmark definition for the shank segment in Visual3D. 

Landmark Starting point Ending point 

RT_KNEE RFLE RFME 

 

 

3.3.4.2.6 Foot Segment 

The foot segment was defined using the anatomical locations of the medial and lateral malleoli, 

calcaneus, 1st, 2nd and 5th metatarsal heads. The mid-point between the medial and lateral malleoli 

was used to create a landmark (RANKLE). The foot was built as a cone, where the joint centre at 

the proximal end was defined by RANKLE, and the radius was defined by half the distance of the 

malleoli. The distal end of the cone was defined by the 1st and the 5th metatarsal heads. The 

segment was tracked using calcaneus, 1st, 2nd and 5th metatarsal heads. The foot segment was used 

for kinetic calculations. 

Table 3.18 Foot definition in Visual3D. 

Foot segment 

Proximal joint and radius Joint centre – RANKLE Radius - 0.5*DISTANCE(RFAL,RTAM) 

Distal joint and radius Lateral – RFM5 Medial – RFM1 

 

Table 3.19 Landmark definition for the foot segment in Visual3D. 

Landmark Starting point Ending point 

RTANKLE RFAL RTAM 

 

 

3.3.4.2.7 Virtual Foot Segment 

The virtual foot segment was defined using the anatomical locations of the medial and lateral 

malleoli, calcaneus, 1st, 2nd and 5th metatarsal heads. The joint centre at the proximal end of the 

foot was defined by the calcaneus and the radius was 0.01. The joint centre at the distal end of the 

foot was defined by RSM_PROJ, and the lateral border was defined by the 5th metatarsal head. 

The RSM_PROJ landmark was projected on a plane from the 2nd metatarsal head, where the plane 

was stretched from the calcaneus and the 1st metatarsal head to the lateral point of the 5th 

metatarsal head. The segment was tracked using the calcaneus, 1st, 2nd and 5th metatarsal heads. 

The virtual foot segment was used for kinematic calculations. 
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Table 3.20 Landmark definition for the virtual foot segment in Visual3D. 

Landmark Starting point Ending point Lateral object Project from 

RSM_PROJ RFCC RFM5 RFM1 RFM2 

 

 

3.3.4.2.8 Upper Arm Segment 

The upper arm was defined using the anatomical locations of the shoulder markers, and medial 

and lateral Humerus epicondyles. The upper arm was built as a cone, where the joint centre at the 

proximal end was defined by the shoulder marker and the radius was defined as half the length 

between the medial and lateral Humerus epicondyles. The distal end of the cone was defined by 

the medial and lateral Humerus epicondyles. The segment was tracked using the shoulder marker, 

medial and lateral Humerus epicondyles. 

 

Figure 3.12 Definition of the upper arm. 

 

 

3.3.4.2.9 Forearm Segment 

The forearm was defined using the anatomical locations of the lateral and medial Humerus 

epicondyles, the Ulna-Styloid Process and Radius-Styloid Process. A landmark was defined mid-

point between medial and lateral Humerus epicondyles. The forearm was built as a cone, where 

the joint centre at the proximal end of the cone was defined by the landmark and the radius was 

half the distance between the medial and lateral Humerus epicondyles. The distal end of the cone 

was defined by the Ulna-Styloid process and Radius-Styloid process. The segment was tracked 

using the medial and lateral Humerus epicondyles, the Ulna-Styloid Process and Radius-Styloid 

Process. 

Table 3.21 Forearm definition in Visual3D. 

Shank segment 

Proximal joint and radius Joint centre – RELBOW Radius - 0.5*DISTANCE(RHLE,RHME) 

Distal joint and radius Lateral – RRSP Medial - RUSP 
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Table 3.22 Landmark definition for the forearm segment in Visual3D. 

Landmark Starting point Ending point 

RELBOW RHLE RHME 

 

 

Figure 3.13 Definition of the forearm. 

 

 

3.3.4.2.10 Hand Segment 

The hand was defined using the anatomical locations of the Ulna-Styloid process, Radius-Styloid 

process and the distal end of middle finger. The hand was built as a sphere, where the proximal 

end of the sphere was defined by the Ulna-Styloid process and the Radius-Styloid process. The 

distal end of the sphere was by a joint centre along the axis of the marker on the distal end of the 

middle finger, and the radius was defined as half the distance between the Ulna-Styloid process 

and Radius-Styloid process. The segment was tracked using the Ulna-Styloid Process and Radius-

Styloid Process and the marker at the distal end of the middle finger. 

Table 3.23 Hand definition in Visual3D. 

Shank segment 

Proximal joint and radius Lateral – RRSP Medial - RUSP 

Distal joint and radius Joint centre – RTIP 0.5*DISTANCE(RRSP,RUSP) 

 

 

Figure 3.14 Definition of the hand. 
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3.3.5 Data Processing and Reduction 

Following kinematic and kinetic data collection, the data was processed in QTM before .c3d files 

were exported for further processing in Visual3D v5 (study 1) and v6 (study 2-4) (C Motion, 

Germantown, MD, USA). In QTM, reflective markers were labelled using acronyms as indicated 

in Table 3.2. This process was done manually or using the Automatic Identification of Markers 

(AIM) function. Marker trajectories were checked and edited where necessary. Files were cropped 

to start at the heel strike on the force platform and ended at the consecutive heel strike of the same 

limb (study 1), or they were cropped so that the maximum number of gait cycles of either limb 

was captured (study 2-4). Once this process was completed, the raw marker trajectories and force 

data were exported form each individual data file as .c3d files for further processing in Visual3D. 

In Visual3D, marker trajectories were used to model and determine segment properties such as 

proximal and distal ends of segments and segment geometry, as defined in Section 3.3.3. To do 

so, the dynamic files were imported and assigned to the appropriate static file, where the static 

file included all markers so that all segments could be defined. Medial and lateral landmarks 

defined anatomical frames from which segment coordinate systems were defined following the 

right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction and 

longitudinal, Cardan rotation sequence was used to define the order of rotations to calculate joint 

kinematics. Gait events of heel strike (HS) and toe off (TO) were determined. Gait events were 

based on a kinetic and a kinematic technique (Stanhope et al., 1990; Zeni et al., 2008). The first 

technique involved kinetic data from a force platform to determine the occurrence of the required 

events. Based on the kinematic information of these events during force platform contact, 

subsequent occurrences of the same event were identified (Stanhope et al., 1990). The events 

could only be detected where force platform data was available, thus for the events where there 

was no force platform contact an alternative method was used. The alternative technique was 

based on a coordinate based algorithm (Zeni et al., 2008) and involves the determination of HS 

and TO depending on the maximal displacement of the heel and toe relative to the sacrum marker. 

Markers on the feet were characterised by a sinusoidal curve when the x-coordination of the 

marker was displayed against time. The peak of the curve coincides with the time during which 

the foot comes into contact with the ground, and the valleys coincide with the time of swing phase 

initiation, i.e. toe-off. A display of the foot marker relative to the sacral marker was also a 

sinusoidal curve with the same characteristics. Thus, the mean value of this curve was used to 

determine a threshold which when exceeded identifies the peaks (HS) and valleys (TO): 
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 𝑡𝐻𝑆 = (𝑌ℎ𝑒𝑒𝑙 − 𝑌𝑠𝑎𝑐𝑟𝑢𝑚)𝑚𝑎𝑥 (3.3) 

 

 𝑡𝑇𝑂 = (𝑌𝑡𝑜𝑒 − 𝑌𝑠𝑎𝑐𝑟𝑢𝑚)𝑚𝑎𝑥 (3.4) 

 

Kinematic data were interpolated using a spline algorithm, and both kinematic and GRF data were 

filtered using 4th order, zero-lag Butterworth with 6Hz and 30Hz, respectively. Butterworth filter 

is a low-pass filter. Thus, low frequencies remained unchanged, and high frequencies were 

attenuated (Robertson et al., 2013). All data were normalised to 100% gait cycle. Different 

kinematic and kinetic variables were computed in Visual3D and exported to Excel files (Microsoft 

Windows, Redmond, Washington). In the Excel files, each column represented a variable, whilst 

each row represented a data point in time, normalised to 101 data points for 100% of the gait 

cycle. Data from the Excel spreadsheet was imported into MATLAB R2016a (MathWorks Inc., 

MA, USA) or SPSS v.23.0 (SPSS Inc., Chicago, USA) for statistical analysis. 

3.3.6 Definition of Variables 

3.3.6.1 Study 1 

Thirty biomechanical gait variables in the form of temporal waveforms were reported for study 1 

(Table 3.24).  

- The ground reaction force (GRF) was calculated for each right foot contact on the force 

platform and normalised to body weight (BW).  

- Joint angles for hip, knee and ankle joints were defined as the orientation of one segment 

relative to another segment, where the distal segment was calculated relative to the proximal 

segment. The proximal segment was considered the reference frame, i.e. the movement of the 

distal segment was defined by its local coordinate system. The Cardan sequence was defined 

as Z-X-Y, defining flexion/extension, abduction/adduction and longitudinal rotation, 

respectively. For ankle joint angle, a virtual foot segment was used to define the angle, 

removing the off-set and aligning the foot on the same plane to the lab floor. The joint angle 

was normalised to the standing trial. 

- Joint moments for hip, knee and ankle joints were calculated as the net internal moment, 

where the net internal moment was balanced by the net external moment created by the GRF. 

Mathematically, internal and external net forces are equal and opposite to each other, i.e. the 

forces from the force platforms are considered internal joint forces and are used to calculate 

joint moments using one of many inverse dynamics calculations (moment = force × 

perpendicular distance). The joint moment was normalised to body mass. 
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- Joint powers for hip, knee and ankle joints were computed as scalar values and normalised to 

body mass. Joint powers are the product of moment (mx, my, mz) and angular velocity (ωx, ωy, 

ωz):  

 

 𝑃𝑜𝑤𝑒𝑟 = [𝑀𝑥,𝑀𝑦,𝑀𝑧] ∙ [𝑤𝑥,𝑤𝑦, 𝑤𝑧] (3.5) 

 

 𝑃𝑜𝑤𝑒𝑟 =  𝑀𝑥.𝑤𝑥 +  𝑀𝑦.𝑤𝑦 +  𝑀𝑧.𝑤𝑧 (3.6) 

  

 

Table 3.24 Temporal waveforms of biomechanical variables reported for study 1. 

No. Temporal Waveforms of Biomechanical Variables Units 

1 Anterior-posterior GRF BW 

2 Medio-lateral GRF BW 

3 Vertical GRF BW 

4 Sagittal hip joint power W.kg-1 

5 Frontal hip joint power W.kg-1 

6 Transverse hip joint power W.kg-1 

7 Sagittal hip joint moment N.m.kg-1 

8 Frontal hip joint moment N.m.kg-1 

9 Transverse hip joint moment N.m.kg-1 

10 Sagittal hip joint angle Degrees 

11 Frontal hip joint angle Degrees 

12 Transverse hip joint angle Degrees 

13 Sagittal knee joint power W.kg-1 

14 Frontal knee joint power W.kg-1 

15 Transverse knee joint power W.kg-1 

16 Sagittal knee joint moment N.m.kg-1 

17 Frontal knee joint moment N.m.kg-1 

18 Transverse knee joint moment N.m.kg-1 

19 Sagittal knee joint angle Degrees 

20 Frontal knee joint angle Degrees 

21 Transverse knee joint angle Degrees 

22 Sagittal ankle joint power W.kg-1 

23 Frontal ankle joint power W.kg-1 

24 Transverse ankle joint power W.kg-1 

25 Sagittal ankle joint moment N.m.kg-1 

26 Frontal ankle joint moment N.m.kg-1 

27 Transverse ankle joint moment N.m.kg-1 

28 Sagittal ankle joint angle Degrees 

29 Frontal ankle joint angle Degrees 

30 Transverse ankle joint angle Degrees 
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3.3.6.2 Study 2 – 4 

Twenty biomechanical gait variables in the form of temporal waveforms were reported for the 

studies 2-4, and seven scalar values were reported for study 2 (Table 3.25 and Table 3.26). The 

GRFs, joint angles, moments and powers were computed as described in Section 3.3.6.1, with 

exception of the power in the prosthetic limb which was computed using unified deformable 

(UD) segment model (Takahashi et al., 2012). Anatomically relevant models are built containing 

a series of rigid segments joined together via mechanical joints, but this presents an issue when 

modelling LLA gait since some joints are missing. Thus, the UD segment was used to compute 

power on the prosthetic limb since it does not require the definition of a joint. 

- Centre of pressure (CoP) was computed from the force platform. The foot segment was 

assigned to the force, where the foot segment was defined from the ankle to the metatarsals. 

The signal was normalised relative to the segment’s length (distance between proximal and 

distal ends of the segment) and width (distal radius). The CoP velocity was computed as the 

first derivative from the CoP position.  

- Centre of mass (CoM) was defined relative to inertial properties calculated using the segment 

geometries as described in Sections 3.3.3 and 3.3.4.  

- Speed was defined depending on stride time and length. 

- Step width was defined by the medio-lateral distance between the proximal end positions of 

the leading foot at heel strike to the proximal end positions the heels strike of the contralateral 

limb (Figure 2.1). The step width was calculated by taking the cross product by taking the 

stride vector and the opposite step position. The left stride with was the perpendicular distance 

from the proximal end of the left foot segment to the right vector. The right step width was 

calculated as the perpendicular distance from the proximal end of the right foot segment to 

the left vector. Left and right stride width were reported as an average between both feet. 

- Step length was defined as the distance between the proximal end position of the contralateral 

foot at the previous heel strike to the proximal end position of the leading foot at heel strike. 

- Step frequency is the rate at which a person walks, and is better known as cadence, which is 

expressed in steps per minute: 

- Left steps per minute = 
60

𝑙𝑒𝑓𝑡 𝑠𝑡𝑒𝑝𝑠 𝑡𝑖𝑚𝑒
 

- Right steps per minute = 
60

𝑟𝑖𝑔ℎ𝑡 𝑠𝑡𝑒𝑝𝑠 𝑡𝑖𝑚𝑒
 

- Net-work at the ankle was determined through the summation of positive and negative power 

phases. This was done using time integration. Net-work was normalised to body mass. 

- The BW MoS and ML MoS of stability were computed as described in 2.5.1.1.1. 
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Table 3.25 Temporal waveforms of biomechanical variables reported for study 2 - 4. 

No. Temporal Waveforms of Biomechanical Variables Units 

1 Anterior-posterior GRF BW 

2 Medio-lateral GRF BW 

3 Vertical GRF BW 

4 Anterior-posterior CoP displacement m 

5 Medio-lateral CoP displacement m 

6 Vertical CoP displacement m 

7 Anterior-posterior CoP velocity m/s 

8 Medio-lateral CoP velocity m/s 

9 Vertical CoP velocity m/s 

10 Vertical CoM displacement m 

11 Vertical CoM velocity m/s 

12 Sagittal hip joint power W.kg-1 

13 Sagittal hip joint moment N.m.kg-1 

14 Sagittal hip joint angle Degrees 

15 Sagittal knee joint power W.kg-1 

16 Sagittal knee joint moment N.m.kg-1 

17 Sagittal knee joint angle Degrees 

18 Sagittal ankle joint power W.kg-1 

19 Sagittal ankle joint moment N.m.kg-1 

20 Sagittal ankle joint angle Degrees 

 

Table 3.26 Scalar values of biomechanical variables reported for study 2. 

No. Biomechanical Scalar Values Units 

1 Speed m/s 

2 Step width m 

3 Step length m 

4 Step frequency step/min 

5 Ankle net-work N.m.kg-1 

6 BW MoS m 

7 ML MoS m 
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3.4 Multivariate Statistical Analyses 

In this PhD thesis multivariate statistical analyses of PCA and DFA have been used to develop a 

machine learning algorithm. PCA was a method of choice as it can be used to reduce high 

dimensionality whilst important characteristics of the data set, which contribute to its variance are 

still retained (Badesa et al., 2014). DFA was used during the current research as compared to 

other machine learning algorithms it achieves maximum discrimination which helps to classify 

data accurately (Tharwat et al., 2017). PCA is an unsupervised algorithm which in the current 

PhD, was used for data reduction and feature selection, whilst DFA is a supervised algorithm 

which was used for classification. In an unsupervised approach, classes are not defined and its 

entities are not known, i.e. the characteristics of the class are defined by the data structure. In a 

supervised approach, however, algorithms are supplied with information regarding various 

entities whose class is known and from this, the characteristics of each class are formed. 

Multivariate statistical method of DFA can be considered a machine learning algorithm, whilst 

PCA is not. The concept of learning has been described as the ability to develop classification 

rules from experience. The learning stage can be described as having a set of training objects 

whose classes are known, usually using a supervised algorithm, to establish prediction rules using 

attribute values of each class of an unknown data set (Quinlan, 1990).  

3.4.1 Principal Component Analysis 

Principal Component Analysis (PCA) is multivariate statistical method used to establish variation 

between variables. Using PCA, data is presented in a new coordinate system, capturing the 

maximum variance of a data set (Badesa et al., 2014; Dillmann et al., 2014; Wu et al., 2007; Yang 

et al., 2012). PCA can be calculated using either the covariance or correlation matrices. The 

matrix used depends on the nature of the data, for example, if the variables under investigation 

share the same units the covariance matrix should be used whilst the correlation matrix should be 

used when the variables have different units. PCA was first applied to biomechanical data to 

derive a representation of signals instead of using signals themselves (Wootten et al., 1990), 

others used it as a data reduction method (Olney et al., 1998), whilst different researchers used it 

to assess entire gait waveforms retaining potentially valuable information (Deluzio et al., 1997). 

A visual example of PCA is shown in Figure 3.15. Suppose the spheres represent two variables 

that make up a data set represented in a 𝑥1 − 𝑥2 coordinate system (Figure 3.15 a). The direction 

in which most of the variance occurs between these two variables can be captured by the axis 𝑢 

(Figure 3.15 b). A second axis 𝑣, perpendicular to axis 𝑢, will represent the axis holding the 

second most variation between the data (Figure 3.15 c). The 𝑢 − 𝑣 coordinate system will 
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represent the mean of the variables, where the covariance between 𝑢 and 𝑣 variables would be 

zero. For a given data set, PCA finds the axis system defined by the principle direction of variance, 

i.e. 𝑢 − 𝑣 axis, were 𝑢 and 𝑣 are the principle components (PCs) (Figure 3.15 d). In a larger data 

set, with a greater number of variables, the number of PCs would match the number of variables, 

creating a high-dimensional space. 

 

Figure 3.15. Illustration of PCA analysis. The variance of the variables is captured using PCA 

and represented in a new data set of PCs.  

 

To compute PCA using covariance matrix the following methods are used (Robertson et al., 

2013). Firstly, the data under investigation should be represented in a matrix. 

 𝑋 = [

𝑥11 𝑥12 …
𝑥21 𝑥22 …
⋮

𝑥𝑛1

⋮
𝑥𝑛2

⋱
…

 

𝑥1𝑝

𝑥2𝑝

⋮
𝑥𝑛𝑝

] (3.7) 
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To find differences in the structure of the data, the covariance of columns of 𝑋 is calculated. 

 𝑆 = [

𝑠11 𝑠12 …
𝑠21 𝑠22 …
⋮

𝑠𝑛1

⋮
𝑠𝑛2

⋱
…

 

𝑠1𝑝

𝑠2𝑝

⋮
𝑠𝑛𝑝

] (3.8) 

Where: 

𝑆 = covariance or correlation matrix (of columns of 𝑋) 

𝑠𝑗𝑗= diagonal elements, that represent the variance at each instance of the temporal waveform. 

 

 

Where the diagonal elements of covariance are computed as follows: 

 𝑠𝑖𝑖 =
∑ (𝑥𝑘𝑖 − 𝑥̅𝑖)

2𝑛
𝑘=1

𝑛 − 1
 (3.9) 

 

Where: 

𝑖 = column 

𝑛 = number of rows (participants) 

 

 

The off-diagonal elements represent the covariance between each pair of time instants: 

 𝑐𝑜𝑣 (𝑖, 𝑗) =  𝜎𝑖,𝑦 = 𝑠𝑖𝑗 =
∑ (𝑥𝑘𝑖 − 𝑥̅𝑖)

𝑛
𝑘=1 (𝑥𝑘𝑗 − 𝑥̅𝑗)

𝑛 − 1
 (3.10) 

 

Where:  

𝑖 and 𝑗 = two columns 

𝑛 = number of rows (participants) 

𝑥̅ = mean value 

𝜎 = variance 

 

 

A covariance that is not equal to zero indicates a linear relationship between two variables. The 

strength of the linear relationship can be defined by the correlation coefficient: 

 𝑐𝑜𝑟𝑟(𝑖, 𝑗) = 𝜌𝑖,𝑗 = 𝑟𝑖𝑗 = 
𝑠𝑖𝑗

𝑠𝑖𝑖𝑠𝑗𝑗
 𝑜𝑟 

𝜎𝑖,𝑗

𝜎𝑖𝜎𝑗
𝑜𝑟 

𝑐𝑜𝑣(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
 (3.11) 

 

The variance of the original data (matrix 𝑋) is presented by the covariance matrix 𝑆. If the off-

diagonal elements of matrix 𝑆 are non-zero, they represent a correlation of the columns in matrix 

𝑋. The principal components (PC) are extracted from matrix 𝑆. Since the PCs are independent of 

each other i.e. uncorrelated, the off-diagonal elements of the covariance matrix 𝑆 are changed to 

equal zero. The process of changing all off-diagonal elements to zero from the covariance matrix 
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𝑆 to a covariance matrix 𝐷 is known as diagonalisation, or also referred to as orthogonal 

decomposition and is given by: 

 

 𝑈𝑇𝑆𝑈 = 𝐷 (3.12) 

 

Where: 

𝑆= covariance matrix 

𝑈= orthogonal transformation of X (columns of U are Eigenvectors of S known as loading 

vectors) 

𝑈𝑇= transpose orthogonal transformation of X 

D = diagonal covariance matrix of S (Eigenvalues are stored in D which indicate variance of PCs). 

 

If the covariance matrix of data is a diagonal matrix, such that the covariances are zero, then this 

means that the variances must be equal to the Eigenvalues . Matrix 𝑈 can be seen as a orthogonal 

transformation matrix of the original data set in a new coordinate system. The new coordinates 

represent PCs which are aligned in descending order of variance in the data. The columns of 𝑈 

are Eigenvectors of 𝑆 and are known as loading vectors which are the PCs. 

The diagonal covariance matrix 𝐷 has the elements 𝜆𝑖, which are the Eigenvalues of 𝑆. Each 

Eigenvalue is a measure of variance associated with each PC. The maximum number of PCs is 

presented by the non-zero diagonal elements of matrix 𝐷. This is equal to fewer of participant 

number 𝑛 or length of temporal waveform 𝑝 corresponding to the rank 𝑟 of matrix 𝑆. 

Matrix 𝑈 is the transformation of the original data set to new uncorrelated principal components 

(𝑌). 

 𝑌
(𝑛𝑥𝑟)

= [𝑋 − 𝑋̅]
(𝑛𝑥𝑟)

𝑈
(𝑝𝑥𝑟)

 (3.13) 

 

In matrix 𝑌 each column is a PC and the elements of these columns are PC scores. Following the 

computation of PCs, they are organised in descending order of variance so that the first PC 

displays the maximum amount of variance in the original data followed by the second PC 

orthogonal to the first, and so on. The Eigenvalues 𝜆𝑖 which are the diagonal elements of matrix 

𝐷 give the variance of each PCs.  

Hence PCA is a technique that conserves the variance of the original raw data through the PCs. 

To measure the total variation within the data the sum of variances can be computed which is 

corresponding to the sum of diagonal elements of 𝑆. The sum of the diagonal matrix in referred 

to as (𝑡𝑟) of a matrix therefore: 
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 𝑡𝑟(𝑆) = 𝑡𝑟(𝐷) (3.14) 

 

Quantifying the portion of total variance explained by each principal component, 

 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑃𝐶𝑖 =
𝜆𝑖

𝑡𝑟 (𝑆)
=

𝜆𝑖

∑𝜆
 (3.15) 

 

3.4.2 Discriminant Function Analysis 

Fisher Discriminant Analysis, also referred to as Discriminant Function Analysis (DFA) is a 

multivariate statistical analysis, which is used for the development of machine learning 

algorithms. It is a supervised analysis, used to project data onto lower-dimensional vector and 

provides the highest possible discrimination between different classes. DFA attempt to express a 

dependent variable as a linear or quadratic combination of other variables, referred to Linear 

Discriminant Analysis (LDA), or Quadratic Discriminant Analysis (QDA), respectively. LDA 

aims to find a linear combination of input features according to a least square sense by sorting 

input data into two or more classes (Badesa et al., 2014). Each feature has its own weighting 

factor which indicates its importance to the discrimination between the classes (Badesa et al., 

2014). The intra and inter-class distance between the features are determined to establish which 

class it belongs to. Discriminant Function Analysis can be calculated as follows (Badesa et al., 

2014; Sugavaneswaran et al., 2012; Swets, 1996) (for a detailed tutorial see Tharwat et al., 2017):  

For two different experimental groups, i.e. a two-class problem, the features of each data set are 

represented in a matrix. Consider a matrix with two columns, where each column represents a 

vector that corresponds to a variable. 

 𝑐𝑙𝑎𝑠𝑠 𝑖 =

[
 
 
 
 
𝑥11 𝑥12

𝑥21 𝑥22
⋯
⋯

𝑥𝑚1

⋯
⋯

𝑥𝑚2

 

]
 
 
 
 

𝑐𝑙𝑎𝑠𝑠 𝑗 =

[
 
 
 
 
𝑦11 𝑦12

𝑦21 𝑦22
⋯
⋯
𝑦𝑛1

⋯
⋯
𝑦𝑛2

 

]
 
 
 
 

 (3.16) 

 

In case where principal component 𝑌, is unable to separate the two obvious classes, then they are 

projected on to Z, providing a discriminant analysis procedure: 

 𝑍 = 𝑊𝑇𝑌 (3.17) 

 

Where: 

𝑊 = projection matrix 
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Firstly, the mean of each matrix, i.e. class is calculated, before merging them together. In case 

where principal components 𝑌 have not already been calculated, the covariance or correlation for 

each matrix must be computed. This is done in order to obtain the scatter coefficient within a 

group and between the groups. The scatter measure is given as: 

 𝑆𝑤 = ∑ 𝑝𝑖 × (𝑐𝑜𝑣𝑖);𝑖  𝑆𝑤 = ∑ 𝑝𝑗 × (𝑐𝑜𝑣𝑗)𝑗  (3.18) 

 

For a two-class problem with 𝑆𝑤 as the within-class and 𝑆𝑏as the between-class scatter measure 

is given as: 

 𝑆𝑤 = ∑ ∑ (𝑌𝑗 − 𝑀𝑖)(𝑌𝑗 − 𝑀𝑖)
𝑇𝑛𝑖

𝑗=1

𝑐

𝑖=1
 (3.19) 

 

Where: 

𝑌𝑗= principal component of class 𝑗 

𝑀𝑖= mean of class 𝑖 

 

 

 𝑆𝑏 = ∑ (𝑀𝑖 − 𝑀)(𝑀𝑖 − 𝑀)𝑇
𝑐

𝑖=1
 (3.20) 

 

Where:  

𝑀 = mean of a global mean computed from merged dataset 

𝑀𝑖= mean of class 𝑖 
 

 

Scatter measures are then optimised using maximisation within-class and between-class 

covariance criteria. This is done by calculating Euclidean distances for each data point, where the 

Euclidean distance is defined as the straight-line difference between two points in space. 

Therefore, a smaller measured distance corresponds to a vector (variable) that is classified to class 

j. 

 𝐷(𝑖) = 𝑠𝑖𝑔𝑛(𝑆𝑊 ×  𝑖 + 𝑆𝑏) (3.21) 

 

Where: 

𝐷(𝑖) = discriminative function 

 𝑖 = input feature vector of class 𝑖 
𝑆𝑤 = weighting vector 

𝑆𝑏 = intercept 
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The input feature vector 𝑖 is assigned to a class if 𝐷(𝑖) is positive and assigned to the other class 

if it is negative. Figure 3.16 shows the scatter of features and how the most discriminating features 

can be identified using DFA when missed by PCA. For the MATLAB codes of PCA and DFA, 

see Appendix 1. 

 

Figure 3.16 Problems with the most discriminating features (MDF) for class separation. In the x 

and y-axes, representing the principal components (PC), the classes are not separated. Projecting 

classes onto a different set of z-axes results in seperation of classes. Figure adopted from Swets 

(1996). 

 

3.4.3 Display of PCA and DFA Outcomes 

The PCA discrimination and DFA classification outcomes are represented using scatter plots 

(Figure 3.17 a, c) which illustrates the clustering or the lack of clustering between 

groups/conditions. Furthermore, eigenspectra (Figure 3.17 b) of PCA and DF spectra (Figure 3.17 

d) of DFA show the weighing of variables, i.e. their contribution to the discrimination/ 

classification procedure. The length of each bar emphasises the weighwhere large and small bars 

represent a large and small contribution to the discrimination/ classification process, respectively. 
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Figure 3.17 Outcome of PCA (a) and DFA (c) scatter plot, showing clustering of 

groups/conditions. Eigenspectra (b) and DF spectra (d) indicating the weighting factors of 

individual variables involved during analysis. 
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4.1 Introduction 

In a clinical setting, gait analysis can be particularly useful since it helps diagnose pathology, 

provide treatment recommendations and evaluate treatment outcomes. Data acquisition tools and 

processing procedures produce large amounts of gait data. This data is in the form of temporal 

waveforms and has typical characteristics such as high dimensionality, meaning it consists of 

multiple variables. A widely used approach to analyse and interpret movement data is through the 

description of graphical profiles of temporal waveforms, using summary statistic (mean, variance, 

correlations) and waveform parameterisation (peak amplitude) (Alaqtash et al., 2011a; Deluzio 

et al., 1999). However, these approaches are subject to researcher bias, and some of the gait 

characteristics are ignored. To overcome these drawbacks and handle data, recent studies 

implemented multivariate statistical analyses such as PCA and machine learning algorithms such 

as DFA. Principal Component Analysis is an unsupervised algorithm. It reduces data and 

highlights important generic features by evaluating the gross structure of a data set whilst 

maintaining the variance of the original data (Chau, 2001a). Discriminant Functional Analysis is 

a supervised algorithm, which reveals discriminating features within a data set through the 

evaluation of the detailed structure (von Tscharner et al., 2013). Together, PCA and DFA provide 

a method for assessing differences between experimental groups of people/conditions. The 

combination of an unsupervised and a supervised algorithm can be used to develop a machine 

learning algorithm, which refers to the ability of a device to independently conduct discrimination 

on a database without the input of a researcher. Therefore, in a clinical setting, it would provide 

an objective method, eliminating researcher bias and without compromising gait characteristics.  

Previous studies have used machine learning algorithms to identify gait differences between 

different groups and obtained high discrimination results such as 91.7% or 95.8% between older 

and younger individuals (Begg and Kamruzzaman, 2005; Eskofier et al., 2011; Reid et al., 2010), 

98-100% between males and females (Phinyomark et al., 2016), and 100% between pathological 

and non-pathological gait (Lemoyne et al., 2015). However, experimental data sets used to 

develop these algorithms were made up of discrete parameters such as walking speed and 

maximum vertical force at heel strike (Alaqtash et al., 2011a; Begg and Kamruzzaman, 2005; Wu 

et al., 2007). Limiting the information that could be provided by entire temporal waveforms which 

means important discriminating features may have been neglected (Deluzio et al., 1999). In some 

cases, high discrimination rates have been obtained, but the environment of discrimination was 

not challenging, as experimental groups were expected to be significantly different, e.g. 

experimental groups of young and older individuals (Begg & Kamruzzaman, 2005; Wu et al., 
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2007). Sophisticated numerical methods have been employed to pre-process data and conduct 

discrimination (Wu et al., 2007), but studies have shown that even the use of simple 

discrimination methods for tighter experimental conditions, enables a classification to be made 

(von Tscharner et al., 2013). Also, the quality of the data used to train the machine learning 

algorithm was not considered, effecting the quality of the discrimination outcome, because 

different individuals will exploit features in a different manner, which means that a feature could 

be strongly discriminating in one individual however not in another. A group of individuals will 

collectively display the strongest generic discriminating features between two experimental 

groups of people/conditions. Therefore, depending on the individuals that have been selected to 

develop the training database for the machine learning algorithm, its predictive abilities will vary. 

Thus using an iterative process to identify the individuals that express these generic features most 

predominantly and using their data as the training database, will optimise the algorithm, ensuring 

a reliable prediction every time the machine learning algorithm is used. Therefore, the aim of this 

study was to develop and optimise a machine learning algorithm using multivariate statistical 

analyses, namely Principal Component Analysis (PCA) and Discriminant Function Analysis 

(DFA) for processing of human locomotion.  

4.2 Methodology 

4.2.1 Participants 

A convenience sample of twenty recreationally active participants (14 males and 6 females; age 

24±4 years; height 1.75±0.86m; mass 72.0±8.5 kg) were drawn from the University community. 

These individuals had no lower limb pathologies and were free of injury during the time of the 

study. Ethical approval was granted by the Nottingham Trent University Ethics Committee 

(Humans). All participants provided informed consent prior to participation.  

4.2.2 Experimental Design and Data Acquisition 

The study investigated participants under two different experimental conditions; running with 

(shod) and without shoes (barefoot). Upon arrival, the participant was briefed, and consent was 

acquired. All activities were completed with participants wearing lycra shorts and running shoes. 

To obtain kinematic data 36 spherical 14mm, reflective markers were placed directly onto the 

skin or clothing using bi-adhesive tape, defining trunk (Leardini et al., 2011) and lower limb 

segments (Cappozzo et al., 1995) (for marker placement, refer to Section 3.3.3). Subsequently, 

participants conducted a short five minute warmed-up on a treadmill at self-selected speed. 
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Depending on the initial condition, foot markers were placed before or after the warm-up since 

warm-up was performed wearing shoes. 

A static trial was obtained for segment definition, followed by the dynamic trials. Dynamic trials 

were counterbalanced between conditions, thus participant would start with either barefoot or 

shod running trials. First, the participant’s starting position was defined, to ensure that force 

platform data was obtained. During the trials participant ran at a self-selected speed along a 15m 

runway. This process was repeated until five successful trials (force plate contacts) were collected 

on the right limb for each condition. Once the intial condition was completed, the second 

condition followed thus shoes were either put on or taken off, followed by marker placement. 

Ground reaction force (GRF) was measured at 1000Hz using a single floor-mounted strain gauge 

force platform (AMTI, Watertown, MA, USA) and kinematics were measured at 100Hz using a 

nine-camera motion capture system (Qualisys, Gothenburg, SE).  

4.2.3 Data Pre-Processing 

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3 and 

start and end points of a trial were adjusted to one gait cycle of the right limb. Marker trajectories 

and force data were exported as .c3d files and subsequently processed in Visual 3D v5 (C Motion, 

Inc., Germantown, MD, USA). Kinematic data were interpolated using a cubic-spline algorithm 

with kinematic and GRF data being subsequently filtered using 4th order, zero-lag Butterworth 

low-pass filters with 6Hz and 30Hz cut-off frequencies, respectively. All data were normalised to 

100% gait cycle. Medial and lateral landmarks defined anatomical frames from which segment 

coordinate systems were defined following the right-hand rule (Cappozzo et al., 1995). A flexion-

extension, abduction-adduction and longitudinal Cardan rotation sequence was used to define the 

order of rotations to calculate joint kinematics. Gait events of heel strike and toe off were 

determined using event detection algorithm (Stanhope et al., 1990) (Section 3.3.5). Joint angles 

(°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints, as well 

as the GRF (multiples of body weight; BW) were computed in Visual 3D (C-Motion, Inc, 

Germantown, USA) (Section 3.3.6). Results were reported in all three anatomical planes. Thus 

thirty temporal waveforms were reported for a single stride in each trial starting with heel strike 

of the right limb on the force platform and finished at the consecutive heel strike on the same 

limb. Processed data were exported from Visual3D in .c3d files, and individual signals from the 

.c3d files were imported to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis. 
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4.3 Development of a Machine Learning Algorithm 

4.3.1 Power Spectrum of Data 

The machine learning algorithm was developed using DFA. Prior to DFA, PCA was used for data 

reduction and feature selection, followed by DFA to classifying the data. Before PCA and DFA 

were applied, the data were linearly interpolated to the same digital length filling any missing 

gaps in the data. This was done so that the power spectrum (modulus of Fast Fourier transform 

(FFT)) could be computed for all variables. The power spectrum removes the absolute phasing of 

kinetic and kinematic waveforms which if not removed could compromise the quality of the 

discrimination process and therefore also the machine learning algorithm since the time lag would 

be considered a false discrimination feature (Figure 4.1). Apart from the absolute phasing of 

different frequency components of the data, the rest of the temporal information of the waveforms 

is kept intact in the power spectra. 

 

Figure 4.1 Display of ankle angle relative to time (a) and its power spectrum (b). 

 

The Power Spectral Density (PSD) describes the contribution of power as a function of the 

different frequencies components (Welch, 1967; Thomson, 1982). The log of the power spectrum 

was also assessed, however, as it did not improve the discrimination outcome, it was not included 

in the procedure. The first frequency component of the power spectrum is always an average of 

the raw data set and has a larger magnitude than all the other frequencies. Processing the data 

with and without the first frequency component did not improve the discrimination outcome and 

thus it was not included in the discrimination process, either. 
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4.3.2 Application of Principal Component Analysis 

After the power spectrum is applied, PCA followed. PCA is an orthogonal transformation turning 

dependent variables to a new set of independent variables or principal components, 𝑍, which 

represent the variance observed in the original variables 𝑋 (Chau, 2001a) (see Section 3.4.1). The 

principal components (PCs), making up the columns of the covariance and correlation matrices, 

are ordered in terms of decreasing variance such that the majority of variation in the data can 

usually be described by the first few PCs. Therefore the remaining PCs can be ignored reducing 

the dimensionality of the data. However, depending on the research question lower ordered PCs 

may provide the necessary information rather than higher ordered PCs (Phinyomark et al., 2015).  

4.3.2.1 Principal Component Analysis Ranking and Reduction Procedures 

An input matrix M was built containing the power spectra of the kinetic and kinematic waveforms 

extracted from each experimental trial. The matrix was ordered as follows: for each subject, five 

trials of each condition existed (twenty subjects and two conditions resulted in 200 trials) and 

every trial was made of 30 columns with 50 row vectors, where each column represented a 

measured variable and each row vector represented the spectral frequency of the 3D coordinate 

measure of the variable. The input matrix M, originally 3D with 200 × 30 × 50 points, was 

rearranged to be 2D, with 200 × 1500 points, in order to undertake the PCA on a collection of 

200 trials each comprising of 1500 points. The data were summarised using PCA, involving the 

diagonalisation of the covariance matrix which can be either 200 x 200 or 1500 x 1500. We chose 

the first option so 200 × 1500 points became 200×200. This choice was made because there are 

more features (variables/parameters) than individuals thus using the unconventional method of 

PCA to compute the PCs substantially reduces computer memory requirements. In this particular 

case a small complication arises when having to access the eigenspectra. The pseudo-inverse 

method was further employed as the matrix requiring inversion was not square (see Appendix 1. 

for code) (Hua and Liu, 1998). In the PCA plot each trial was shown by a single data point i.e. 

200 points (100 for barefoot and 100 shod trials). The coordinates of each data point are PC scores, 

these are obtained by the cross-correlation product (a.k.a. 'projection') of a given measurement 

(30 parameters spectra) by a given PCA eigenspectrum. However, since the PCA plot can only 

be shown in 2 or 3D, only two or three first PC scores are shown. In this study, the trials were 

shown in 2D. 

As previously mentioned, higher PCs hold most of the information whilst lower ones hold 

increasingly noise. The numerical analysis was made immune to overfitting artefacts originating 

from the over-exploitation of small details, by choosing the highest explored rank (12th) well 
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below the one still carrying information (20th). In Figure 4.2 the PCA rank is displayed using an 

exponentially decreasing graph. The line decreases up to rank no. 20, indicating the presence of 

information up to this point whilst noise is also increasing. The graph plateus beyond rank no. 20 

indicating that beyond this point the data consits mainly of noise, thus a PC rank beyond this point 

should be avoided. Selecting too few PC scores will result in neglect of important information 

(underfitting) and selecting PC score too high will introduce a lot of noise (overfitting) to the 

discrimination procedure. The number of PC scores that need to be considered depends on the 

complexity of the data. For more complex data sets a higher PC score should be considered which 

will also be evident in the PC rank.Thus, in the current study high dimensionality was reduced 

from the original 1500 points (for each trial) to 8, 10 or 12 points.  

The PC rank can also be displayed as an image scale (Figure 4.3), where x and y-axis are the PCs. 

Starting at the first PC with the highest variance, a great scatter of colours is present which 

gradually fades into a block colour as the presence of noise increases in the data. 

 

Figure 4.2 Principal components are ranked by the amount of variance they capture in the original 

data. 
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Figure 4.3 Image scale of PC ranking. The right hand image shows a zoom Section of the first 

20PCs, illustrating the complexity of the data shown by the scatter before it fades into a block 

colour moving down the PCs that hold reduced variance.  

 

4.3.3 Application of Discriminant Function Analysis 

The reduced data set from PCA was further analysed using DFA to identify generic discriminating 

features between the two experimental conditions, and cluster the data as required by the goal of 

the study into barefoot versus shod running. Discriminant Function Analysis (DFA), also known 

as Linear Discriminant Analysis (LDA), is a statistical analysis which works to attain the 

maximum discrimination between classes. The ratio of inter-class and intra-class variance for any 

given database is computed to achieve maximum separation. This results in linear class 

boundaries thus grouping the various class clusters in a given subspace (Badesa et al., 2014; 

Sugavaneswaran et al., 2012; Swets, 1996) (see Section 3.4.2).  

4.3.4 Development of the Machine Learning Algorithm 

As previously mentioned a robust machine learning algorithm is developed in three stages namely 

training, predictive and evaluation stage (Lever et al., 2016a; c). In this study, the training stage 

of a machine learning algorithm was optimised to distinguish between two experimental 

conditions, barefoot and shod running. All stages of data interpolation, application of power 

spectrum, dimensionality reduction and feature extraction using PCA, and classification using 

DFA, were combined to develop a machine learning algorithm (Figure 4.5). A machine learning 

algorithm is also referred to as a predictive algorithm when applied to data that did not contribute 

to the training stage.  
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Different approaches have been explored to determine which would provide the best predictive 

outcome (Figure 4.4). First, the discrimination was conducted on a single participant to try and 

discriminate between barefoot and shod running. Secondly, all participants’ data were included 

in the discrimination process. This was followed by the selection of random biomechanical 

variables and a random sample of participants to investigate whether this would improve the 

discrimination between the experimental condition. Finally, a systematic iteration process was 

explored. During this process, all possible combinations of ten individuals were explored during 

the training stage, and an error rate was computed for each iteration to indicate the accuracy of 

the discrimination during the predictive stage with the remaining ten individuals. This was done 

for discrimination between two clouds where each cloud corresponded to one condition, and it 

was done for multiple clouds. In the discrimination procedure of multiple clouds, one cloud would 

be made up of one condition, e.g. shod trials and multiple smaller clouds corresponding to the 

number of the participant would make up the other condition.  

 

Figure 4.4 Build-up of approaches to establish the method with the highest predictive outcome. 

 

4.3.4.1 Training and Predictive Stages 

In this study, during the training stage, data from ten participants were used to direct the search 

for generic features and identify which of these provided the greatest discrimination between the 

two experimental conditions. During the predictive stage, data of the remaining ten participants 

that had not contributed to the training of the machine learning algorithm were used to assess 

whether it could automatically and correctly assign data to the group with the same generic 

features. 
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Figure 4.5 Flow-chart of the development of the machine learning algorithm. 

 

4.3.4.2 Optimisation Process 

The machine learning algorithm was trained and tested using ten participants out of a total of 

twenty in both stages (Figure 4.6). In order to optimise the training stage, participants that would 

result in the greatest classification had to be identified. This was done by exploring all possible 

combinations of 10 out of 20 participants; a total of 184,756 iterations were identified. An error 

rate was computed for each individual iteration. The best iteration corresponded to the one 

yielding the combination of participants with the lowest error rate since this indicates the strongest 

generic discriminating features to have been identified and thus optimising the algorithm. There 

are common gait features among individuals, however, some individuals will express these 

features more strongly than others, i.e. identifying the participants with the strongest expression 

of these features will collectively allow the identification of the generic features that discriminate 

between barefoot and shod running. 
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The error rate was calculated as follows: each trial was projected onto a two dimensional DF 

space, yielding a set of two DF scores. In this space, the coordinates of the two centroids of each 

group were calculated, and for each trial, the Euclidean distances to both centroids were further 

calculated. The ratio of these two distances was used to assess whether the trial ended up in the 

‘shod’ or ‘barefoot’ category, with a value of 1 corresponding to the threshold dictating the 

membership. The trials ending up with the incorrect group were expressed as a percentage error 

rate, overall the 200 trials (20 individuals each undertaking 5 shod and 5 barefoot runs). 

 

 

Figure 4.6 Flow-chart of the iteration process used to optimise the machine learning algorithm. 

 

4.3.4.3 Evaluation of Classification 

In this study, positive instances relate to shod running trials, and negative instances relate to 

barefoot running trials. The sensitivity and specificity (Equation 2.7 and Equation 2.8) refer to 

positive and negative instances which have been correctly identified during the predictive 

procedure. In this study, entrie gait waveforms have been used in the evaluation rather than 

discrete parameters.  
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4.4 Results 

4.4.1 Discrimination Outcome of One Individual without Optimisation 

The PCA and DFA outcomes for the discrimination between barefoot and shod running of one 

individual are illustrated in Figure 4.7. There was a clear classification of the experimental 

conditions. However, these results did not include the generic discrimination features since they 

were based on the data of a single individual. The PC scores considered during this discrimination 

were few, as the complexity of data was minimal. Figure 4.8 shows the PC rank in a scateer plot 

demonstaring the fading of colour after PC rank no 4, thus a score beyond this point was avoided 

to eliminate risks of overfitting. 

 

Figure 4.7 PCA and DFA outcome of one individual. 

 

 

Figure 4.8 PCA ranking for one individual shown in an image scale. 
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4.4.2 Discrimination Outcome of a Group of Individuals without Optimisation 

The outcome of the PCA search (Figure 4.9) alone results in severely overlapping clouds. This 

demonstrates that the discrimination sought for is not residing in the main deviations found in the 

data of barefoot and shod running, illustrating the challenging nature of the conditions of interest. 

Instead, the discrimination required resides in subtle details of the spectra, necessitating the 

second stage numerical search, DFA, to be applied to the data after reduction of PCA. 

Discriminant Function Analysis is needed depending on the ability of PCA to cluster the data. 

Since PCA is an unsupervised algorithm and it works to maintain the variance of the original data 

set, it explores the gross structure only. In a challenging environment, where differences lie within 

the detailed structure of the data, it will not be able to identify differences between 

groups/conditions. In this case, a supervised algorithm such as DFA is needed since it seeks out 

differences in the data by assessing the details of the structure. Visual examination undertaken of 

both the time courses and the spectra of the barefoot and shod conditions showed no clear 

common discriminating characteristics emerged despite careful inspection. Following DFA the 

two clouds representing each condition start classifying. Using the entire database as the training 

database for the discrimination exercise yielded an error rate of 24% as seen in the DFA outcome 

of Figure 4.9 (d). Thus, even after the numerical search, the training stage of the machine learning 

algorithm results in a high error rate if not optimised.  

Figure 4.9 shows the outcome of PCA and DFA following classification. Each dot represents a 

trial of a participant and since there are 10 participants and each has conducted 10 trials (5 shod 

and 5 barefoot). The outcome did not improve when the first spectral frequency was included (c 

and d) relative to when it was not (a and b) thus it was not included in the processing procedure. 

Increasing the rank of the PCA scores fed to the DFA algorithm from 8 to 12 did not improve the 

outcome, and the data shown were obtained using 10 PCA scores.  
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Figure 4.9 PCA (a) and DFA (b) without the first frequency component of the spectral analysis 

and PCA (c) and DFA (d) with the first frequency component of the spectral analysis. 

 

4.4.3 Exploring Optimisation during Discrimination of a Multiple Class Problem  

Investigating all possible iterations, as shod trials were considered as one cloud, and barefoot 

trials were considered multiple clouds, indicating the error rates of trials which could not be 

correctly classified ranged between 9% to 50%, with the majority identified to have had an error 

rate of 31% (Figure 4.10). Investigating all possible iterations, as barefoot trials were considered 

as one cloud, and shod trials were considered multiple clouds, indicating the error rates of trials 

which could not be correctly classified ranged between 31% to 50%, with the majority identified 

to have had an error rate of 50% (Figure 4.11). 
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Figure 4.10 Histogram indicating the error rates of discrimination for each individual iteration 

during discrimination of one shod and multiple barefoot classes. 

 

 

Figure 4.11 Histogram indicating the error rates of discrimination for each individual iteration 

during discrimination of one barefoot and multiple shod classes. 
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4.4.4 Exploring Optimisation during Discrimination of a Two-Class Problem 

The outcome of all possible iterations, when comparing between two clouds, one corresponding 

to each condition, as shown in the histogram of Figure 4.12, indicated that the error rates of trials 

which could not be correctly classified ranged from 6.5% to 47.5%. The majority of iteration were 

identified to have an error rate of 22.5%. This clearly demonstrates how much the algorithm can 

be helped by the careful selection of the training database. As previously mentioned an iteration 

consisted of a different combination of 10 participants out of 20 for each the training and predicted 

database. The error is the percentage of trials that end up in the wrong category (shod or barefoot). 

The lowest error rate indicated the iteration with the strongest generic features and the highest 

predictive ability. Therefore, the iteration corresponding to 6.5% was used as the input for the 

optimised machine learning algorithm.  

 

Figure 4.12 Histogram indicating the error rates of discrimination for each individual iteration 

during discrimination of barefoot and shod running as two separate clouds. 
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The optimum iteration was further used to identify the most discriminating features between the 

two experimental groups of barefoot and shod running using DFA. The different bar charts 

correspond to different DF curves were integrated over all spectral frequencies (full frequency-

resolved DF curves are shown in Figure 4.13), where each bar represents a variable (Figure 4.14).  

The fact that they are dissimilar justifies the benefit of undertaking the discrimination in two 

dimensions rather than one. The length of each bar emphasises the weight factors of individual 

kinetic and kinematic variables (averaged over all frequencies). Large and small bars represent a 

large and small contribution to the discrimination process, respectively. Since the analysis was 

conducted for thirty variables, there are thirty bars for each integrated DF curve. Variables 

corresponding to individual bars have been ordered, in decreasing order of contribution, and 

displayed in Figure 4.15.  
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Figure 4.13 Full frequency-resolved DF curves. 
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Figure 4.14 DFA discrimination is showing two bar charts where each bar is equivalent to a 

measured variable from a DF curve, integrated over all spectral frequencies. Abbreviations are 

knee (KNE), ankle (ANK), angle (ANG), moment (MOM), power (POW), anterior-posterior 

(AP), medio-lateral (ML) and vertical (VERT). 

 

 

Figure 4.15 Measured variables in decreasing order of contribution to the discrimination process. 
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Figure 4.16 An illustrative representation of exemplary highly discriminating (A - sagittal plane 

ankle angle) and lower discriminating (B – sagittal plane knee angle) variables from a single 

participant during both shod (red limbs and lines) and barefoot (blue limbs and lines) running. 

Dashed lines represent the instance in the gait cycle that the illustrations are taken from. 

 

High contribution variables included ankle angle and power in the transverse plane, ankle angle 

in the sagittal plane and ankle moment in the coronal plane whereas low contribution variables 

corresponded to knee angle and moment in the frontal plane, and medio-lateral and the 

anterior/posterior GRFs. An example of a highly discriminating, and a low discriminating variable 

is shown in Figure 4.16. The quality of the discrimination obtained with the optimised DFA is 

illustrated in Figure 4.17 and Figure 4.18. The quality of discrimination is evidenced by the 

minimal amount of overlap between the two conditions; two well-discriminated groups will not 

occupy the same space. The outcome of the training database alone, used to develop the algorithm 

is shown in Figure 4.17 (a). Once developed the predictive ability of the algorithm was assessed 

as illustrated in Figure 4.17 (b). It can be seen that even though there is a slightly greater scatter 

in the predictive outcome it does not compromise the quality of discrimination when the software 

was given a chance to be trained with the ideal training database, Figure 4.17 suggest that the 

computer was further able to correctly discriminate those individuals that have a rather ‘unique’ 

or ‘rare’ way to run shod and barefoot. Combining both the outcomes from the training database 
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and the predictive data (Figure 4.18), it is clear that both experimental conditions of barefoot and 

shod running were clustered in separate clouds which were shifted to the left and right side 

respectively, with minimal overlap between the two clouds and a slight vertical slant between the 

two centroids. The overlap were representative of 6.5% of the trials which could not be correctly 

discriminated, where 5% and 8% overlap represent predicted and training data, respectively. The 

discrimination occurs mostly horizontally with a slight angle indicating that the discrimination is 

mostly achieved through the DF score 1. Projection onto a higher dimensional space did not yield 

any significant discrimination. The classification evaluation reinforces these results and shows 

that sensitivity, i.e. true positives (shod and truly identified as shod) would be correctly identified 

in 90% of cases and specificity, i.e. true negatives (barefoot and correctly identified as barefoot) 

would be correctly identified in 91%. 

 

Figure 4.17 Outcome of training database (a) following discrimination, from the 10 participants 

with the smallest error in prediction. Outcome of discrimination for the 10 participants not used 

to generate the machine learning algorithm (b). 

 

 

Figure 4.18 Combined display of trained and predicted data following discrimination. 
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4.5 Discussion and Conclusion 

The aim of this study was to develop and optimise a machine learning algorithm using 

multivariate statistical analyses, PCA and DFA to process human locomotion. The optimisation 

was achieved by implementing an iterative process, where the individuals contributing to the 

training stage were systematically permuted, to explore all possible iterations of 10 participants 

out of 20. This allowed generic discriminating features to be identified between the two 

experimental conditions. The optimised algorithm yielded a large discrimination accuracy of 

93.5%, typically 17.5 % higher than when using standard analysis.  

Instead of using a cross-validation method to assess the training and predictive stage, in this study 

an optimisation process was developed. Previous studies have achieved large classification results 

however the quality of data used as a training database for the machine learning algorithms were 

not considered which in turn affects the reliability of their predictive outcome (Alaqtash et al., 

2011a; Begg & Kamruzzaman, 2005; Eskofier et al., 2011; Federolf et al., 2012; Kobsar et al., 

2015; Lemoyne et al., 2015; Wu et al., 2007; Phinyomark et al., 2016). Factors affecting the 

reliability of an algorithm include data from an insufficient number of participants, i.e. too few 

participants. The classification results may be of great accuracy (Lemoyne et al., 2015), however, 

the training sample may not be reflective of the generic features of a particular population, and 

thus the outcome may not necessarily be reliable. Using generic features to train the machine is 

more likely to accurately evaluate a new data set since the machine is familiar with common 

discriminating variables. In instances where the machine learning algorithm is facing the 

challenge of a mixture of highly ‘generic’ and highly ‘singular’ trials in its training database, it is 

suggested that by homing onto the highly generic individuals, at the stage of training the 

computer, substantial improvements may be achieved over the entire group, including the highly 

‘singular’ individuals. High improvement in the software’s performance was achieved by using 

half of the data for training, and the other half for prediction. The iterative process facilitated the 

identification of generic features in ten participants used for the training data. Thus, unlike other 

published work, the discrimination of this study is free from artefacts resulting from training the 

computer with trials carrying somewhat rare or unique information (Lever et al., 2016a). 

The relatively small group size of this study prevents an estimation to the extent to which 

accidental spurious information may also have been harvested in the process but limiting the 

process to only 10 PCA scores severely limits the likelihood of such phenomena. Since the chosen 

rank (10th) was below the rank well below the one still carrying information (20th) ensuring the 

numerical analysis was made immune to overfitting artefacts originating from the over-
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exploitation of small details. An interesting question is whether it might be possible, in any study 

similar to this one, to identify the best group size to be used when optimising the training. 

Unfortunately, the extent to which specific volunteers provide a generic enough feature and the 

extent to which features of interest become spread between several PCA scores will depend on 

the particular study undertaken so that no general method can be recommended. A possibility to 

try and establish the best group size may be to use the iterative process of this study, in 

combination with a cross-validation method such as the leave-one-out method.  

For studies with large numbers of participants, i.e. a sample size which a considered atypical in 

biomechanics, one way forward is perhaps to start by following this optimisation procedure with 

the same group sizes for training and predicting, and then further refine the collection of ‘ideal’ 

individuals by swapping one of the ten individuals with a new one to see whether improved 

discrimination could be obtained. This way the collection of ‘ideal’ generic individuals could 

gradually be further improved. Using a larger sample then presented in this study would provide 

the option to validate the machine learning algorithm since individuals who did not contribute to 

the training and prediction stages could be used. In such large studies, it is also possible to 

somewhat reduce the effect of a second possible source of overfitting artefact, that coming from 

(possibly high magnitude) information accidentally helping the clustering and therefore biasing 

it. It is possible to quantitate and minimise such overfitting artefacts (Lever et al., 2016b) by 

splitting the individuals who did not contribute to the training into two groups respectively called 

‘evaluation’ and ‘test’ sets. The trained algorithm can be optimised on the ‘evaluation’ set only, 

and those iterations are yielding a performance much lower on the ‘test’ set can be deemed as 

suffering from overfitting and dismissed. Unfortunately, such a method is not reliable on the 

relatively small group size of our study, and the high performance of the optimised outcome of 

our work suggests that we would have reached the same result if we had implemented it, as both 

‘evaluation’ and ‘test’ sets would have benefitted from a similar performance. 

The context of the experimental protocol influences the results of a discrimination since some 

experimental groups or conditions are easier to distinguish than others, in particular in instances 

where the two groups to be discriminated are necessarily formed from different individuals, e.g. 

young vs. older individuals, normal vs. pathological gait and males vs. females (Alaqtash et al., 

2011a; Begg & Kamruzzaman, 2005; Eskofier et al., 2011; Federolf et al., 2012; Kobsar et al., 

2015; Lemoyne et al., 2015; Wu et al., 2007; Phinyomark et al., 2016). Thus in the development 

of this machine learning algorithm, the same heterogeneous sample of participants repeated both 

experimental conditions. This creates a more challenging environment when compared to having 

clearly discrete heterogeneous groups, e.g. healthy vs pathology, whose data is independent of 
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one another. Therefore, the outcome of the algorithm presented in this study was more likely to 

reflect the ability of the algorithm rather than experimental group differences. 

Developing a machine learning algorithm using scalar quantities extracted from the waveforms 

of kinetic and kinematic variables (Alaqtash et al., 2011a; Begg and Kamruzzaman, 2005; 

Phinyomark et al., 2016; Wu et al., 2007) could result in the dismissal of important temporal data, 

thus power spectra of full waveforms have been employed (Federolf et al., 2012; Kobsar et al., 

2015; Reid et al., 2010) since each individual feature provides complementary information (Ali 

& Shah, 2010). Scalar quantities have shown to result in high classification outcomes (Alaqtash 

et al., 2011a; Begg and Kamruzzaman, 2005; Phinyomark et al., 2016; Wu et al., 2007), however, 

the outcome was highly sensitive to various factors of the discrimination procedure such as type 

of variables, e.g. kinematic or kinetic only, and conditions, e.g. more than two classes or groups 

(Schöllhorn et al., 2002), since the complementary information of a full temporal waveform is 

missing, misclustering should be expected. In this study, the training database used to conduct a 

numerical search using PCA and DFA included the spectra of thirty full temporal waveforms of 

kinetic and kinematic variables for each trial thus the entire waveform of a variable was taken 

into consideration. The spectra data was used as the spectral analysis removes the phasing within 

the data, however this step is not needed since retrospectively it was established that the phasing 

in the data was removed by normalising temporal waveforms to 100% gait cycle. 

Despite the use of sophisticated three-dimensional motion capture system, most studies limited 

the classification to data of the sagittal plane (Dobson et al., 2007). However, in order to apply 

this type of data to clinical settings, three-dimensional data should be considered as done in this 

study since different planes of motion reveal additional information that will inform treatment or 

intervention. For example, during the assessment of the dynamic stability of individuals with 

LLA, it may be important to consider the frontal plane as it may help identify issues related to the 

medio-lateral direction. 

In previous studies, ankle kinematic and kinetic variables such as plantar flexion (Lieberman et 

al., 2010; Williams et al., 2012) were shown to differ between barefoot and shod running gait 

(Braunstein et al., 2010; Lieberman et al., 2010; Williams et al., 2012). Studies have also reported 

limited differences between barefoot and shod runners in GRFs (Divert et al., 2005; Kerrigan et 

al., 2009). Although not the specific focus of this study, the results of this study confirmed these 

findings, suggesting that these variables represent the key differences between shod and barefoot 

running gait. However, unlike previous research, the choice of variables selected in our study as 

an input to the machine learning algorithm were generic biomechanical features and were not 
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explicitly chosen, thus reducing researcher bias and reflecting the true ability of the algorithm to 

identify the generic discriminating features.  

In order to develop a robust machine learning algorithm, three stages need to be conducted, the 

training, prediction and the evaluation phase (Lever et al., 2016a; c). A significant limitation of 

this study is that the optimised machine learning algorithm was not evaluated using an 

independent sample. While 10 participants were used for training and the remaining 10 for 

predictions (testing) stages, by the time all iterations were covered, each participant was used both 

in stages. During the evaluation stage, the performance of the machine learning algorithm should 

be assessed using a truly independent test set, which was not involved in the training nor the 

predictive phase and whose classification outcome is not known to describe the model on unseen 

data. In this study, the evaluation was conducted on participants previously involved in the 

iterative process thus their classification outcome was known thus invalidating the evaluation 

outcome. However, the evaluations made for every model were on the 10 participants used for 

the predictive phase rather than the training phase.Therefore for future studies, an independent 

sample should be collected to evaluate the algorithm using a confusion matrix, i.e. accuracy, 

sensitivity and specificity, once trained and predictions have been made.  

The development of the machine learning algorithm described has many important applications 

in both clinical and research settings. In clinical settings, it allows for a more comprehensive and 

consistent assessment process across patients by utilising a wider range of data whilst 

simultaneously eliminating researcher bias. Furthermore, since all discriminating features are 

identified, in both a clinical and research setting, it will prevent important factors being neglected 

and ensure accurate and reliable diagnosis. This will enable analysis methods to be more 

objective, consistent and reliable across institutions.  

In conclusion, a machine learning algorithm, using PCA and DFA, was developed using power 

spectra of temporal waveforms to successfully identify barefoot and shod running gait. The 

predictive accuracy of the algorithm was optimised in a challenging environment by 

implementing an iterative process. All discriminating features between the two experimental 

groups were identified, and a strong machine learning algorithm was developed with a 93.5% 

accuracy in discriminating between conditions. This method can be implemented, to find 

informative features when the sample size is small and heterogeneous, as common during gait 

analysis and in clinical settings during the treatment of a particular patient. 
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5.1 Introduction 

Gait analysis facilitates better treatment of pathological gait (Kirtley, 2006; Levine et al., 2012). 

Using machine learning algorithms as automatic recognition tools during gait analysis can 

enhance subject-specific treatment methods enabling a comparison between pathological and 

able-bodied gait using non-invasive, quantitative methods (Alaqtash et al., 2011b; Lakany, 2008). 

Automatic gait recognition tools enable discimination and classification of data. In clinical 

settings, machine learning algorithms have demonstrated the ability to classify pathologies 

correctly that were initially misclassified by specialists (Lakany, 2008). Thus, these algorithms 

provide automatic and objective methods for clinicians to use that are also quick and cost-

effective (Alaqtash et al., 2011a; Lakany, 2008; Simon et al., 2016). The benefits of machine 

learning algorithms in gait rehabilitation include the ability to model complex non-linear 

relationships of gait data and incorporate multi-dimensional data (Figueiredo et al., 2018). The 

ability to add new data to the machine learning algorithm means its performance can be 

continously improved and thus its predictive performance is also improved (Figueiredo et al., 

2018).  

Through research, it has been suggested that multiple different variables such as temporal-spatial 

parameters, kinetic, kinematic and muscle activation data, should be incorporated to carry out an 

extensive gait analysis procedure (Figueiredo et al., 2018). Since pathological gait is 

heterogeneous and treatment varies among patients, no machine learning algorithm fits all 

applications and analysis procedures, but instead, the best performing algorithm depends on the 

features of a data set (Harper, 2005). A good gait recognition tool should provide an accurate 

classification and insights into the predictive structure of the data (Breiman, 1984). 

In LLA gait, machine learning algorithms have mainly been used to investigate powered 

prosthetic devices (Afzal et al., 2017; Chen et al., 2013; Dutta et al., 2011; Hargrove et al., 2015; 

Huang et al., 2011; Joshi & Hahn, 2016; Khan et al., 2018; Miller et al., 2013; Pew & Klute, 

2017; Simon et al., 2016; Woodward et al., 2016; Young et al., 2013; Young et al., 2014; Zheng 

et al., 2013; Zheng & Wang, 2017). Although the investigations of prosthetic devices are 

important, in the first instance, individuals who can benefit from these devices need to be 

identified. For this to be feasible, multivariate statistical analyses and machine learning algorithms 

can be implemented as diagnostic tools to assess and understand LLA gait. 

The majority of the studies that used automatic gait recognition tools during the investigation of 

LLA gait have focused on biomechanical gait variables recorded from wearable sensor systems 

such as footswitches and accelerometers (Taborri et al., 2016). Recent advances in technology 
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make these sensors smaller, lightweight and easier to put on and off. Furthermore, these sensors 

allow measuring variables in free-living conditions which can be advantageous in the 

advancement of robotic or powered therapies (Afzal et al., 2017; Chen et al., 2013; Dutta et al., 

2011; Hargrove et al., 2015; Huang et al., 2011; Joshi & Hahn, 2016; Khan et al., 2018; Miller et 

al., 2013; Pew & Klute, 2017; Simon et al., 2016; Woodward et al., 2016; Young et al., 2013; 

Young et al., 2014; Zheng et al., 2013; Zheng & Wang, 2017). Although wearable sensors have 

advantages, using non-ambulatory external sensors such as motion capture-systems or force 

platforms can provide more detailed information. These systems operate in a controlled 

environment (Sabatini et al., 2005), which is occasionally considered a disadvantage since it can 

be challenging to obtain consecutive gait cycles for long-term applications in a natural 

environment (Alahakone et al., 2010; Azhar et al., 2014). However, the accuracy of these systems 

cannot be underestimated, as they provide comprehensive and reliable biomechanical data 

(Bamberg et al., 2008; Howell et al., 2012). 

In order to improve prosthetic rehabilitation, the differences between LLA and able-bodied gait 

needs to be better understood. Some studies described LLA function using multivariate statistical 

analyses such as PCA (Detrembleur et al., 2005; Gao and Zhang 2013; Mouchnino et al., 2006). 

Trying to quantify symmetry, Gao and Zhang (2013) used PCA to identify important variables 

during a sit-to-stand and stand-to-sit task in an individual with UTFA. Measuring kinematic, 

kinetic and muscle activity, they were able to identify which variables were important during this 

task. Soares et al. (2016) used PCA to investigate whether GRF and CoP data of individuals with 

UTFA and able-bodied individuals can be discriminated. They report that using the first three 

principal components (PCs), between 74.5 - 93.9% variance of the data can be explained. The 

ability to compare between LLA and able-bodied gait to find differences, can assist decision-

making processes during prosthetic rehabilitation. Therefore, the aim of this study was to establish 

differences between UTTA and able-bodied gait using PCA and DFA providing a better 

understanding of LLA function. 
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5.2 Methodology 

5.2.1 Participants 

A convenience sample of eleven individuals with UTTA (age 50±12years; height 1.7±0.1m; mass 

83.94±13.59kg) and thirty able-bodied individuals (age 39±20years; height 1.7±0.1m; mass 

73.76±14.02kg) were recruited from the university and local communities. All participants met 

the inclusion and exclusion criteria detailed in Section 3.2.2. Ethical approval was granted by the 

Nottingham Trent University’s College of Science and Technology Ethical Review Committee 

(Humans), the NHS Research Ethics Committee, the NHS Health Research Authority and the 

NHS Research and Development. All participants provided written informed consent prior to 

participation.  

5.2.2 Experimental Design and Data Acquisition 

The study investigated individuals with UTTA and able-bodied individuals at self-selected 

walking speed. Upon arrival, the participants were briefed. All activities were completed with 

participants wearing lycra shorts and everyday shoes. Individuals with UTTA used their habitual 

prosthesis (Table 3.1). To obtain kinematic measurements 70 spherical 14mm, reflective markers 

were placed directly onto the skin or clothing using bi-adhesive tape, defining head, arms, trunk 

(Leardini et al., 2011) and lower limb segments (Cappozzo et al., 1995) (for marker placement, 

refer to Section 3.3.3). Marker placement on the prosthetic limb was estimated depending on 

marker placement of the intact limb (Powers et al., 1998).  

A static trial was obtained for segment definition, followed by the dynamic trials. First, the 

participant’s starting position was defined, to ensure that force platform data was obtained as the 

participant walked along the walkway. During dynamic trials, participants walked at a self-

selected speed along a 15m walkway. This process was repeated until five successful trials were 

collected for both limbs, where GRF was measured at 1000Hz using a single floor-mounted strain 

gauge force platform (AMTI, Watertown, MA, USA) and kinematics were measured at 100Hz 

using a nine-camera motion capture system (Qualisys, Gothenburg, SE). A successful trial was 

defined by a clear force plate contact. 

5.2.3 Data Processing 

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3. and 

trial start and end periods were adjusted to one gait cycle of each limb starting at heel strike on 

the force platform. Marker trajectories and force data were exported as .c3d files and subsequently 
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processed in Visual3D v5 (C Motion, Inc., Germantown, MD, USA). Kinematic data were 

interpolated using a cubic-spline algorithm with kinematic and GRF data being subsequently 

filtered using 4th order, zero-lag Butterworth low-pass filters with 6Hz and 30Hz cut-off 

frequencies, respectively. All data were normalised to one gait cycle. Medial and lateral 

landmarks defined anatomical frames from which segment coordinate systems were defined 

following the right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction 

and longitudinal Cardan rotation sequence was used to define the order of rotations to calculate 

joint kinematics. Gait events of heel strike and toe off were determined using kinetic and 

kinematic event detection algorithms (Stanhope et al., 1990; Zeni et al., 2008) (Section 3.3.5). 

Twenty seven biomechanical variables which are typically reported in the literature for forward 

progression and dynamic stability were included in the analysis (Table 3.25 and Table 3.26) since 

the continuous interchange between mobility and stability are essential for efficient walking 

(Lakany, 2008). The biomechanical variables were computed in Visual3D (C-Motion, Inc, 

Germantown, USA). Processed data were exported from Visual3D as .c3d files, and individual 

signals were imported to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis. 

5.3 Multivariate Statistical Analysis 

5.3.1 Principal Component Analysis and Discriminant Function Analysis 

Comparing UTTA and Able-Bodied Gait 

Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were 

successively applied to compare the gait of a group of eleven individuals with UTTA with a group 

of thirty able-bodied individuals. PCA was used for data reduction and feature selection, whilst 

DFA was used for the classification. Twenty temporal gait waveforms (Table 3.25) and seven 

scalar values (discrete parameters) (Table 3.26) were reported for each limb, i.e. the prosthetic 

limb (PROS) and intact limb (NONPROS) of the individuals with UTTA, and the control limbs 

(RIGHT and LEFT) of the able-bodied individuals. Different methods were explored (Figure 5.1) 

to establish the most suitable technique to compare between UTTA and able-bodied gait. 
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Figure 5.1 Investigative approach to establish a technique for the comparison between UTTA 

and able-bodied gait. Abbreviations are Principal Component Analysis (PCA), Discriminant 

Function Analysis (DFA), scalar values (SV). 

 

First, the form of input data was considered i.e. scalar values (Figure 5.1 a), temporal waveform 

(Figure 5.1 b) or both scalar values and temporal waveforms together (Figure 5.1 c). Second, the 

version of input data was considered i.e. normalised or not normalised. This has been investigated 

because the different scaling and weighting of variables influence the outcome. Using the 

covariance matrix variables’ weightings depend on the range of their magnitude. In biomechanics, 

a variable’s typical magnitude may simply be based on the joint that it is derived from, some 

joints move through a small ROM and others through a large ROM, some are driven by small 

muscle groups others by large. Therefore, investigating the difference between joints may incur 

bias if the difference between the two groups is based on the absolute magnitude. The 

normalisation accounted for the variable’s units, i.e. variables with the same unit were processed 

as a group and scaled to their specific maximum value. Thus, the using the covariance matrix the 

variables contribute equally, irrespective of their units, but the range of magnitude variation of a 

variable is retained. Third, PCA or a combination of PCA followed by DFA was considered and 

applied to the data. Lastly, the number of scalar values included during the analysis varied, to 

evaluate if additional scalar values could improve the outcome, i.e. either five biomechanical 

variables (step length, step frequency, ankle net-work, BW and ML MOS), or seven (including 

walking speed and step width) were comprised during the analysis. The five scalar values were 

calculated separately for each limb, whilst speed and step width were collected for the individual 

rather than for each limb. Speed was defined by stride time and length. To perform the analysis 

using two additional variables, speed and step width, the input arrays of both limbs included each 

of these variables so that there would be no bias due to an uneven number. 
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In this analysis, no power spectrum was applied to the data, as results from the previous study 

presented in Chapter 4, showed that it did not improve the discrimination outcome since the 

phasing in the data was removed by the normalisation of temporal waveforms to 100% gait cycle, 

done in Visual3D. Depending on the input data, i.e. temporal waveform, scalar values, or both, 

the input matrix 𝑀 varied. For the temporal waveforms of each subject, one mean trial was made 

of 20 columns with 101 row vectors, where each column represented a variable and each row 

vector represented a data point in the normalised gait cycle. The original 3D input matrix M, for 

the individuals with UTTA, was 101 x 20 x 11 points for either the prosthetic or the intact limb. 

For the able-bodied individuals, the original 3D input matrix was 101x 20 x 30 for the right or the 

left limb. The third dimension represented the number of people, where one group was made up 

of eleven individuals with UTTA and the other group was made up of thirty able-bodied 

individuals. In 2D, the matrices were rearranged to 2020 x 82 points since each of the participants’ 

limbs was considered separately. After applying PCA, this matrix was reduced to 82 x 82 points. 

For the scalar values, the original input matrix 𝑀 was 5 x 82 or 7 x 82, depending on the number 

of scalar values. The numerical analysis was made somewhat immune to overfitting artefacts 

(originating from the over-exploitation of small details) by choosing the highest explored PC rank 

to be 10 for temporal waveforms (Figure 5.2 (a)) and 2 for scalar values (Figure 5.2 (b)). Figure 

5.2 illustrates the decay of variance with the PC scores in an exponential-like decreasing curve, 

which indicates the information contained within each PC score. As described in Chapter 4, when 

a plateau is reached in the data, the content is mainly noise, and the PC scores beyond this point 

bring no meaningful information in the analysis. 

 

Figure 5.2 PCA ranking for temporal waveform data (a) and five scalar values (b). 
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5.4 Results 

The overall results indicated that the prosthetic and intact limbs of the individuals with UTTA 

differed from the control limbs of the able-bodied individuals. Exploring different methods 

implied that for this application, PCA on temporal waveforms which were normalised to units 

provided the best outcome. The overall results are shown in Table 5.1, where in column 1 the type 

of data is described, i.e. temporal waveforms (a), scalar values (b) or the combination of both (c). 

Column 2 shows the PC holding the discriminating factors and which of the limbs differed in that 

dimension. Column 3 describes the main variables causing the difference between the two groups, 

whilst column 4 describes the DFA outcome and which limbs were clustered here, and column 5 

describes the variables that caused the separate clusters in DFA. 

 

Table 5.1 PCA and DFA outcomes of all analyses including the variables responsible for the 

differences and classification identified by the Eigenspectra and DF spectra, respectively. 

Type of data PCA Variables responsible 

for difference 

DFA Variables responsible for 

classification 

Not norm temp wave  PROS limb in 
PC2 

sagittal hip joint ang 
sagittal knee joint ang 

sagittal ankle joint ang  

No clustering - 

     
Norm temp wave Both groups in 

PC2 

vertical GRF 

sagittal hip joint mom 
sagittal knee joint ang 

Both groups, and PROS 

and NONPROS 
separately 

ML GRF 

vertical GRF 
sagittal knee joint ang 

     

Not norm 5 SV No difference - No clustering - 
     

Norm 5SV PROS limb in 

PC1 

ankle net-work 

ML MoS 

PROS limb  ankle net-work 

ML MoS 
     

Not norm 7 SV No difference - No clustering - 

     
Norm 7 SV PROS limb in 

PC1 

speed 

ankle net-work 

ML MoS 

PROS limb  speed 

ankle net-work 

ML MoS 
     

Norm temp wave and 5 

SV 

Both groups in 

PC2 

vertical GRF 

sagittal hip joint mom 
sagittal knee joint ang 

sagittal ankle joint ang  

ankle net-work 
ML MoS 

Both groups, and PROS 

and NONPROS 
separately 

ML GRF 

vertical GRF 
sagittal knee joint ang 

speed 

ankle net-work 
ML MoS 

     

Norm Temp wave and 7 
SV 

Both groups in 
PC2 

vertical GRF 
sagittal hip joint mom 

sagittal knee joint ang 

sagittal ankle joint ang 
speed  

ankle net-work 

ML MoS 

Both groups, and PROS 
and NONPROS 

separately 

ML GRF 
vertical GRF 

sagittal knee joint ang 

speed 
step length 

ankle net-work 

ML MoS 

Abbreviations are intact limb (NONPROS), ground reaction force (GRF), margin of stability 

(MoS), angle (ang), medio-lateral (ML), moment (mom), normalised (norm), principal 

component (PC), prosthetic limb (PROS), scalar values (SV), temporal waveforms (temp wave). 
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5.4.1 Analyses of Normalised and Non-Normalised Temporal Waveforms  

The PCA outcome is shown in four different views, where each view is between two dimensions 

and a dimension is a PC. The PCA outcome of the temporal waveform data without normalisation 

displayed no difference between the UTTA (red diamonds) and able-bodied (black circles) gait, 

as reflected by the lack of separation between the two clouds (Figure 5.4 a). Between PC1 and 

PC2 (outcome number 1), and the PC2 and PC3 (outcome number 3), the prosthetic limb (solid 

red diamonds) clustering at the edge of the remainder of the cloud that consisted of NONPROS 

(open red diamonds) and control limbs (open and solid black circles), indicating that the PROS 

limb differs from other limbs in PC2. The Eigenspectrum of PC2 for the temporal waveforms 

highlighted variables number 17, 20 and 14 (Figure 5.4 b), which corresponded to sagittal knee, 

ankle and hip joint angles. 

The PCA outcome of temporal waveforms which were normalised to units (Figure 5.4 c) showed 

a difference between the gait of individuals with UTTA (red diamonds) and able-bodied 

individuals (black circles) in PC2 (outcome number 1 and 3) as reflected by the separation of 

clouds with a minimal overlap between the clusters of the groups. In outcome number 1, the 

groups separated horizontally, i.e. to the top and bottom of the graph and in outcome number 3 

they separated vertically, i.e. to the right and left of the graph. These results also indicate that the 

factors responsible for the difference are held in PC2. The Eigenspectrum of PC2 for the temporal 

waveforms highlighted variables number 3, 17 and 13 (Figure 5.4 d), which corresponded to 

vertical GRF, sagittal knee joint angle and sagittal hip joint moment, respectively. The differences 

in the temporal waveform profile of the vertical GRF between limbs is shown in Figure 5.3. 

 

Figure 5.3 The mean ± SD of the vertical GRF temporal waveform profile of the lower-limbs of 

individuals with UTTA (PROS and NONPROS) and able-bodied individuals (RIGHT and 

LEFT).  
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Figure 5.4 PCA outcome (a, c) and Eigenspectrum (b, d) comparing between individuals with 

UTTA and able-bodied individuals using temporal waveforms without (a, b) and with 

normalisation to units (c, d). 
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There was no separation between the red diamond and black circles in the DFA outcome 

indicating that there was no clear classification between the gait of individuals with UTTA (red 

diamonds) and able-bodied individuals (black circles) when the temporal waveforms were not 

normalised to units (Figure 5.5 a). The limbs of both groups are aligned next to each other and 

overlapping at a slight diagonal. The DFA outcome of the temporal waveforms, which were 

normalised to units (Figure 5.5 c) showed a classification between the limbs of the individuals 

with UTTA and able-bodied individuals. Furthermore, it showed a classification between the 

PROS limb (solid red diamonds) and NONPROS limb (open red diamond) which were clustered 

separately. 

 

Figure 5.5 DFA classification outcome (a, c) and DF spectrum (b, d) between individuals with 

UTTA and able-bodied individuals using temporal waveforms without (a, b) and with 

normalisation to units (c, d). In the DF spectrum, each bar is equivalent to a measured variable 

from a DF curve, integrated over all spectral frequencies. 
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The DFA analysis was conducted in two dimensions. Similar to the study 1 described in Chapter 

4, the DF spectra are dissimilar thus justifying the benefits to undertake the discrimination in two 

dimensions rather than one (Figure 5.5 b and d). The length of the bar emphasises the weight 

factors of the 20 individually measured variables presented in the table included in Figure 5.5. 

Large and small bars represent a large and small contribution to the discrimination process, 

respectively. The DFA outcome of temporal waveform data which was not normalised, did not 

classify the data thus the DF spectra did not provide any information regarding important features 

(Figure 5.5). The DF spectrum of the temporal waveforms which were normalised to units, 

however, highlighted variables number 17 and 3 (Figure 5.5 d) which corresponded to sagittal 

knee joint angle and vertical GRF, respectively. 

5.4.2 Analyses of Five and Seven Normalised Scalar Values 

The scalar values were normalised to units since previous results of the temporal waveforms 

demonstrated that normalisation was required to obtain accurate results. For further analysis of 

the scalar values without normalisation see Appendix 2. The PCA outcome of the scalar values 

with normalisation to units showed that the PROS limb (solid red diamonds) differed compared 

to the other limbs (NONPORS limb = open red diamonds, LEFT limb = closed black circle, 

RIGHT limb = open black circle) (Figure 5.6). The PROS limb formed a cluster at the edge of 

the remainder of cloud in PC1 (outcome number 1 and 2) (Figure 5.6 a). Repeating the PCA 

analysis with an additional two scalar values of speed and step width, did not improve clustering 

outcome (Figure 5.6 c). However, speed was identified as a discriminating factor as can be seen 

in the Eigenspectrum (Figure 5.6 d). Ankle joint net-work and ML MoS were also identified as 

discriminating variables between the PROS limb, and other limbs (Figure 5.6 b and d). 
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Figure 5.6 PCA outcome (a, c) and Eigenspectrum (b, d) comparing between individuals with 

UTTA and able-bodied individuals using five (a, b) and seven scalar values (c, d), normalised to 

units. 
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The DFA outcome for both five (Figure 5.7 a) and seven (Figure 5.7 c) scalar values, showed that 

the PROS limb (solid red diamonds) was classified from the remainder of the other limbs 

(NONPORS limb = open red diamonds, LEFT limb = closed black circle, RIGHT limb = open 

black circle). The discrimination of scalar values using a supervised algorithm did not improve 

the classification outcome but similar to the PCA outcome, speed was identified as a 

discriminating feature (Figure 5.7 d). Furthermore, similar to the Eigenspectra, the DF spectra 

highlighted ankle net-work and ML MoS to cause the classification between the PROS limb and 

remainder of the limbs (Figure 5.7 b). 

 

Figure 5.7 DFA classification outcome (a, c) and DF spectrum (b, d) comparing between 

individuals with UTTA and able-bodied individuals using five scalar values (a, b) and seven scalar 

values (c, d), normalised to units. In the DF spectrum, each bar is equivalent to a measured 

variable from a DF curve, integrated over all spectral frequencies. 
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5.4.3 Analyses of Temporal Waveforms and Five Scalar Values, Normalised 

The PCA outcome of both, temporal waveform data and scalar values, normalised to units showed 

that there is a difference between UTTA (solid and open red diamonds) and able-bodied (solid 

and open black circles) gait in PC2 (outcome number 1 and 3, Figure 5.8 a). In outcome number 

1 the groups separated horizontally, i.e. they separated to the top and bottom of the graph and in 

outcome number 3, they separated vertically, i.e. to the right and left of the graph. Similar results 

were observed in the PCA analysis of temporal waveform data alone (Section 5.4.1), suggesting 

that scalar values did not add any additional information to the discrimination procedure. The 

Eigenspectrum of PC2 for the temporal waveforms (Figure 5.8 b) highlighted variables number 

3, 17, 13 and 20, which corresponded to vertical GRF, sagittal knee joint angle, sagittal hip joint 

moment, and sagittal ankle joint angle. The Eigenspectrum of PC for the scalar values (Figure 5.8 

c) highlighted variables number 3 and 5, which corresponded ankle net-work and ML MoS (For 

the outcome of PCA on temporal waveform data and scalar values, which were not normalised 

and with 7 scalar values see Appendix 2). 

 

Figure 5.8 PCA outcome (a) and Eigenspectrum (b, c) comparing between individuals with 

UTTA and able-bodied individuals using temporal waveforms (b) and five scalar values (c), 

normalised to units. 
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The DFA outcome showed a classification between the gait of individuals with UTTA (solid and 

open red diamonds) and able-bodied individuals (solid and open black circles) and between the 

PROS and NONPROS limbs (Figure 5.8), similar to the classification of temporal waveform data 

alone (Section 5.4.1, Figure 5.5 c). The DF spectrum for this analysis corresponded with previous 

findings of individual analyses of temporal waveform data and scalar values, separately. The DF 

spectrum of temporal waveforms highlights variables number 17, 4 and 3, which correspond to 

sagittal knee joint angle, vertical GRF and medio-lateral GRF. The DF spectrum of the scalar 

values highlights variables 1, 3 and 5, which correspond to step length, ankle joint net-work and 

ML MoS. (For the outcome of DFA on temporal waveform data and scalar values, which were 

not normalised and with 7 scalar values see Appendix 2). 

 

 

Figure 5.9 DFA classification outcome (a) and DF spectrum comparing between individuals with 

UTTA and able-bodied individuals using temporal waveforms (b) and five scalar values (c). 
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5.5 Discussion and Conclusion 

The aim of this study was to establish differences between UTTA and able-bodied gait using PCA 

and DFA providing a better understanding of LLA function. Differences in gait between the two 

groups were found and attributed to vertical GRF, sagittal hip joint moment and sagittal knee joint 

angle. The biomechanical variables measured in this study consisted of temporal-spatial, kinetic 

and kinematic variables, which were commonly reported in the literature during the investigation 

of forward progression and dynamic stability. These variables were chosen in particular because 

the continuous interchange between mobility and stability is required for walking without the risk 

of falling (Lakany, 2008) which is a common concern for individuals with LLA (Jayakaran et al., 

2012). Different analysis methods were explored to establish a technique, which would allow 

important variables that differ between UTTA and able-bodied gait to be identified. The results 

demonstrated that for this particular application of multivariate statistical analyses methods, PCA 

on normalised temporal waveforms was the most suitable technique. However, there is not a 

single method that is applicable to all data and applications, instead, the best performing algorithm 

depends on the features of a data set (Harper, 2005). 

In current methods, biomechanical variables were normalised to units, which was important as 

reflected by the Eigenspectra and DF spectra. This is because, using the covariance approach 

during PCA, the variables’ weightings depend on their magnitude. In biomechanics, a variable’s 

magnitude may be small or large depending on the joint or muscle groups driving it. Thus, 

investigating the difference between joints may incur bias if the difference between the two 

groups is based on the absolute magnitude. Hence, during the assessment of biomechanical 

variables using automatic gait recognition tools, normalisation of data should be incorporated. 

In this study, different multivariate statistical analyses of PCA and PCA followed by DFA, have 

been explored. Both methods identified differences between UTTA and able-bodied gait, 

however, since DFA is a supervised algorithm it seeks out differences. During the treatment of 

pathological gait, the aim is not to seek out differences but rather find naturally occurring 

differences that could be treated. Therefore, using PCA alone is sufficient since it highlights 

differences that occur in the gross structure of the data which can also be identified in the graphical 

profile of temporal waveforms as highlighted in the current results. Differences in the detailed 

structure may imply that an issue is present, however, these differences may not be easily 

identified in graphical profile and thus may be more difficult to treat.  

Although differences may be identified in the graphical profile of the temporal waveform and 

traditional statistical approaches can be used to establish if a variable differs significantly between 
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a group/condition, it is still advantageous to use PCA for a number of reasons: (1) Interpretation 

of the graphical profile of temporal waveform and the selection of discrete parameters to perform 

the statistical analysis are subject to researcher bias, whilst PCA is an objective measure. (2) Since 

PCA can be used to analyse the entire temporal waveform, characteristics of biomechanical data 

such as time-dependance, are considered which would otherwise be ignored if discrete parameters 

were used to perform traditional statistical tests. (3) Although differences could be identified in 

the graphical profile, PCA can be used to quantify these differences (as will be demonstrated in 

Chapter 6) and different parts of the profile could be ranked in terms of variance using PC scores, 

as demonstrated by Soares et al. (2016). (4) PCA enables many variables to be compared 

simultaneously, and it does not only reveal if variables differ between groups/conditions as 

traditional statistical approaches do, but it also ranks the variables in terms of variance as shown 

in the Eigenspectrum of the current results. Thus in clinical applications it can provide an 

indication of which variables need to be targeted. 

The results of the PCA outcome revealed that the differences between the gait of individuals with 

UTTA and able-bodied individuals were in PC2, indicating that PC1 does not necessarily always 

hold the information of interest. Thus, although PC1 holds the majority of the variance of the 

original data set, it cannot be expected that it contains the variables responsible for the 

discrimination between experimental groups which is a common, yet false assumption. This 

highlights the importance of the remaining PCs, as previously discussed by Phinyomark et al. 

(2016). Having said that, variables in the first few PCs have larger weighting factors and 

discriminating variables in lower ranked PCs have smaller weighting factors. Thus, similar to the 

DFA outcome, discriminating variables in lower ranked PCs may be more difficult to identify in 

2D plots of temporal waveforms. 

The Eigenspectrum of the PCA with the biomechanical variables of normalised temporal 

waveform data highlighted that in PC2 vertical GRF, sagittal knee joint angle and sagittal hip 

joint moment were the main variables to cause a difference between the gait of individuals with 

UTTA and able-bodied individuals. Soares et al. (2016) previously identified that the vertical 

GRF discriminated in PC1 between the control limb and the prosthetic limb, while PC2 

discriminated between the control limbs and both the intact and prosthetic limbs. The magnitude 

of the vertical GRF was found to be much smaller on the prosthetic limb, which may have been 

a protective mechanism to reduce loading on the residual limb. However, it should be noted that 

the participants in the study by Soares et al. (2016) were individuals with UTFA, whilst in this 

study, individuals with UTTA were investigated. The discrimination may have occurred at 
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different PC since the level of amputation differed, i.e. fewer joints remain and thus larger 

compensation was required.  

The results showed that temporal waveforms provided more information since they span the entire 

gait cycle compared to scalar values (Chau, 2001a). Previous studies suggest that continuous data 

provide a better discriminatory approach relative to discrete parameters (Deluzio et al., 1997). 

Schöllhorn et al. (2002) found that one in every three discrete parameters (scalar values) is likely 

to be misclassified. In this study, adding more scalar values to the analysis procedure did not 

improve the outcome. It should be noted, however, that although additional variables did not 

improve the classification outcome, one of the additional variables (speed) indicated 

discriminatory properties between the gait of individuals with UTTA and able-bodied individuals. 

Thus, the variables chosen during a discrimination procedure are of great importance. During the 

analysis of scalar values alone using PCA, the prosthetic limb differed from the intact limb of the 

individuals with UTTA and also the control limbs of the able-bodied individuals, but during the 

analysis of temporal waveforms alone both prosthetic and intact limbs differed from the control 

limbs. Using DFA did not only classify individuals with UTTA from the able-bodied individuals 

but also clustered prosthetic and intact limb separately. Previous studies investigating LLA gait 

using traditional statistics, reported similar findings, thus depending on the aims of a study, 

researchers may prefer to use DFA in addition to PCA since it provides a greater discrimination 

outcome. 

The data in this study consisted of twenty temporal waveforms and seven scalar values of kinetic, 

kinematic and GRF variables, and demonstrates the ability of automatic gait recognition tools 

with large data sets. Previous research that compared between the gait of individuals with LLA 

and able-bodied individuals using automatic gait recognition tools limited the investigations to 

either kinematic, kinetic, GRF or EMG data (Miller et al., 2013), but recent studies demonstrated 

that the classification of only kinetic or kinematic variables alone might compromise the outcome 

(Schöllhorn et al., 2002). Assessing many variables simultaneously is not only time efficient but 

provides an instantaneous in-depth understanding, which can have great implications in clinical 

applications. 

Biomechanical variables chosen for this analyses were often reported in the literature for the 

assessment of forward progression and dynamic stability, however, these variables were reported 

in the sagittal plane only. Previous studies that used automatic gait recognition report that 

variables from different planes have the potential to improve the classification results, thus 

providing a more comprehensive understanding of pathological gait (Schöllhorn et al., 2002). For 

example, studies report that the regulation of whole-body angular momentum is important to 



 

Chapter 5: Discussion and Conclusion 

 
 

 

 
127 

 

prevent falls, particularly in the frontal plane (Miller et al., 2018). Furthermore, anterior-posterior 

CoM from the sagittal trajectory may provide more information regarding forward progression, 

however, in the current study, similar to previous research, only vertical CoM displacement and 

velocity were assessed, which were commonly reported for the assessment of dynamic stability. 

Thus, variables from different planes of motion are worthy of inclusion in future analyses.  

In this study, PCA was applied for data reduction and feature selection and DFA was applied for 

classification and were found to effectively compare between UTTA and able-bodied gait. Other 

studies have compared classification performance of different machine learning algorithms such 

as SMV, ANN and NB in order to assess powered prosthetic devices (Afzal et al., 2017; Chen et 

al., 2013; Joshi & Hahn, 2016; Khan et al., 2018; Miller et al., 2013; Pew & Klute, 2017). 

Findings indicated that some methods provide better discrimination and classification than others. 

Therefore, future research should explore the use of different machine learning algorithms to 

investigate if these provide more information and thus a better understanding of LLA function.  

In conclusion, investigating different techniques to compare UTTA and able-bodied gait in order 

to provide a better understanding of LLA function, has demonstrated that using PCA to assess 

normalised temporal waveforms of kinetic, kinematic and GRF data was an effective technique 

to evaluate LLA gait. It was established that both prosthetic and intact limbs differed from control 

limbs due to vertical GRF, sagittal knee joint angle and sagittal hip joint moment. This study 

demonstrates the ability of automatic gait recognition as a powerful diagnostic tool in a clinical 

setting. 
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6.1 Introduction 

Gait analysis is used to diagnose, assess and monitor pathological gaits (Kirtley, 2006; Levine et 

al., 2012) such as cerebral palsy (CP) (Novacheck et al., 2010), multiple sclerosis (MS), 

Parkinson’s disease (Roiz et al., 2010; Švehlík et al., 2009) and other movement-related 

pathologies. However, it is not common practice in the treatment of individuals with LLA 

(Ramstrand & Brodtkorb, 2008). The treatment these individuals with LLA is influenced by 

multiple factors including but not limited to the age of the individual and level of amputation 

(Leung et al., 1996), making it difficult to predict therapy outcomes. Studies suggest that there 

are no objective measures to evaluate prosthetic rehabilitation, but instead, it depends on 

clinicians experience (van der Linde et al., 2004; Schaffalitzky et al., 2011). Gait analysis can 

provide a greater understanding and inform clinical decisions more effectively (Esquenazi, 2014). 

In individuals with LLA, it can help monitor prosthetic rehabilitation and therapy effectiveness 

(Skinner & Effeney, 1985). 

Research commonly focuses on group effects, whilst clinical practice is patient-specific, thus 

research outcomes may not always be easily integrated into clinical practice (Schöllhorn et al., 

2002). During the assessment of group effects, individual differences among people within the 

same group are not commonly investigated (Horst et al., 2017). Thus, even when group effects 

are established, the individual variability within the groups remains unknown, making it difficult 

to translate group effects from research into clinical practice. Hoerzer et al. (2015) refer to 

“functional groups” which describes a group of individuals that share similar characteristics, so 

the response of these individuals to an intervention may be comparable. Although, participant 

recruitment in research projects is based on certain inclusion/exclusion criteria, participants may 

not necessarily fall into a “functional group”, making it difficult to apply findings to clinical 

practice.  

Using machine learning algorithms, studies found that individuals exhibit unique gait 

characteristics (Horst et al., 2017; Schöllhorn et al., 2002). These gait characteristics did not only 

differ between individuals but also remained constant over weeks and even months for the same 

participant (Horst et al., 2016; 2017). This suggests that using automatic gait recognition methods 

such as machine learning algorithms, diagnosis and therapy procedures could be patient-specific, 

which would help overcome challenges as the “best” interventions for the individual could be 

predicted (Schöllhorn et al., 2006; 2010). This method has yet to be applied to LLA gait to 

investigate whether individual gait characteristics can be identified. Therefore, the aim of this 

study was to determine subject-specific gait characteristics of one individual with UTTA using 
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PCA when compared to a group of able-bodied individuals. We hypothesized that (1) using PCA 

an individual with UTTA could be discriminated from a group of able-bodied individuals and (2) 

the Eigenspectrum would reveal subject-specific discrimination features that characterise the 

UTTA’s gait. 

6.2 Methodology 

The methods used for this study were similar to those presented in Chapter 5. However the 

analysis of the data differed, since the recommendations from the previous findings were 

implimented (Section 5.5) and further analysis techniques using covariance and correlation 

matrices in PCA, were explored. 

6.2.1 Participants 

A convenience sample of eleven individuals with UTTA (age 50±12years; height 1.7±0.1m; mass 

83.94±13.59kg) and thirty able-bodied individuals (age 39±20years; height 1.7±0.1m; mass 

73.76±14.02kg) were recruited from the university and local communities. All participants met 

the inclusion and exclusion criteria detailed in Section 3.2.2. Ethical approval was granted by the 

Nottingham Trent University’s College of Science and Technology Ethical Review Committee 

(Humans), the NHS Research Ethics Committee, the NHS Health Research Authority and the 

NHS Research and Development. All participants provided written informed consent prior to 

participation.  

6.2.2 Experimental Design and Data Acquisition 

The study investigated individuals with UTTA and able-bodied individuals at self-selected 

walking speed. Upon arrival, the participants were briefed. All activities were completed with 

participants wearing lycra shorts and everyday shoes. Individuals with UTTA used their habitual 

prosthesis (Table 3.1). To obtain kinematic measurements 70 spherical 14mm, reflective markers 

were placed directly onto the skin or clothing using bi-adhesive tape, defining head, arms, trunk 

(Leardini et al., 2011) and lower limb segments (Cappozzo et al., 1995) (for marker placement, 

refer to Section 3.3.3). Marker placement on the prosthetic limb was estimated depending on 

marker placement of the intact limb (Powers et al., 1998).  

A static trial was obtained for segment definition, followed by the dynamic trials. First, the 

participant’s starting position was defined, to ensure that force platform data was obtained as the 

participant walked along the walkway. During dynamic trials, participants walked at a self-

selected speed along a 15m walkway. This process was repeated until five successful trials were 
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collected for both limbs, where GRF was measured at 1000Hz using a single floor-mounted strain 

gauge force platform (AMTI, Watertown, MA, USA) and kinematics were measured at 100Hz 

using a nine-camera motion capture system (Qualisys, Gothenburg, SE). A successful trial was 

defined by a clear force plate contact. 

6.2.3 Data Processing 

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3. and 

trial start and end periods were adjusted to one gait cycle of each limb starting at heel strike on 

the force platform. Marker trajectories and force data were exported as .c3d files and subsequently 

processed in Visual3D v5 (C Motion, Inc., Germantown, MD, USA). Kinematic data were 

interpolated using a cubic-spline algorithm with kinematic and GRF data being subsequently 

filtered using 4th order, zero-lag Butterworth low-pass filters with 6Hz and 30Hz cut-off 

frequencies, respectively. All data were normalised to one gait cycle. Medial and lateral 

landmarks defined anatomical frames from which segment coordinate systems were defined 

following the right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction 

and longitudinal Cardan rotation sequence was used to define the order of rotations to calculate 

joint kinematics. Gait events of heel strike and toe off were determined using kinetic and 

kinematic event detection algorithms (Stanhope et al., 1990; Zeni et al., 2008) (Section 3.3.5). 

Twenty biomechanical variables which are typically reported in the literature for forward 

progression and dynamic stability were included in the analysis (Table 3.25) since the continuous 

interchange between mobility and stability are essential for efficient walking (Lakany, 2008). The 

biomechanical variables were computed in Visual3D (C-Motion, Inc, Germantown, USA). 

Processed data were exported from Visual3D as .c3d files, and individual signals were imported 

to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis. 

6.3 Multivariate Statistical Analysis 

6.3.1 Principal Component Analysis using both Covariance and Correlation 

Matrices 

Principal Component Analysis was applied (for data reduction and feature selection) to compare 

between the gait of one individual with UTTA and a group of thirty able-bodied individuals. 

Twenty temporal gait waveforms (Table 3.25) were reported for each limb, i.e. the prosthetic limb 

(PROS) and intact limb (NONPROS) of the individual with UTTA, and the control limbs (RIGHT 

and LEFT) of the able-bodied individuals. PCA was conducted by means of the diagonalization 

of the covariance matrix (a) and the correlation matrix (b). 
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The weightings of variables of the covariance matrix depend on their magnitude as described in 

Chapter 5 Section 5.3.1. Hence, using the covariance matrix, variables have been normalised 

depended on the variables’ units, i.e. variables with the same unit were scaled to their own specific 

maximum. The correlation matrix is obtained by normalising the covariance matrix to the 

standard deviation of the data. During this normalisation procedure, variables with different 

variances (or dynamic ranges) are made equivalent. Although this can sometimes be considered 

to be a 'fairer' way of dealing with large complex data, it will bring forward the contribution of 

parameters that may exhibit small and irrelevant variations at the same level to those parameters 

that are potentially far more important. In instances where variation in the data is a valued aspect 

of discrimination, the covariance method is better suited to identifying differences between groups 

(Tinsley & Tinsley, 1987). Using the two different PCA approaches, the varying normalisation 

procedures will be reflected in the results.  

 

Figure 6.1 Temporal waveform data from one individual with UTTA and a group of able-bodied 

individuals will be compared using both, the covariance or the correlation matrices during PCA. 

 

The input matrix 𝑀, was comprised of data from one individual with UTTA and thirty able-bodied 

individuals Therefore, the original 3D matrix was 101 x 20 x 62 points since one mean trial was 

made of 20 columns (variables) and 101 row vectors (101 data points which are equivalent to 

100% of gait cycle) and the total number of limbs were 62 (the prosthetic and intact limbs of the 

individual with UTTA and 60 control limbs of able-bodied individuals). The 2D matrix was 2020 

x 62, which was further reduced to 62 x 62 using PCA. 
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6.3.2 Euclidean Distances Defining Limb Variation 

The distances (in PC score space) of each limb location to the origin (Figure 6.2 a) and to the 

cloud centre (Figure 6.2 b), were calculated to provide a measure of how different an individual 

limb is from these averages. The origin of PC scores coordinates is the mean value. During 

orthogonal transformation from the original variables into principal components, the new set of 

axes with rank '1', PC1, holds the maximum variance of the original data and all other axes (with 

PC ranks higher than 1) are orthogonal to that particular axis (and to each other). Therefore, 

depending on the PC rank under scrutiny, the relationship between limb location and axes will 

vary, and this was quantified using the Euclidean distance. This measure identifies whether a 

particular limb varies from the average and by how much. For example, in the second dimension, 

PC2, the intact and prosthetic limbs of participant X differed from the average by 2 standard 

deviations (2SD), whilst the control limb of participant Y varied from the average in PC4 by 2SD. 

The distance (in PC score space) from each limb relative to the control limbs cloud centre was 

also measured using the Euclidean distance using 20 ranks, indicating the difference of individual 

limbs relative to the average of all control limbs, since the cloud centre was quantified only using 

control limbs. Thus, the former measure is important because it indicates where a particular limb 

differs from the mean and by how much, whilst the latter measure is also important since it 

indicates how a particular limb differs with regards to all other control limbs. The normal 

distribution of the data was assessed using Kolmogorov-Smirnov test. 

 

Figure 6.2 Quantification of the distance, in PC score space, of individual limbs to (a) the origin 

and (b) the control limbs cloud centre using Euclidean distances. The origin of the red and blue 

axes in (a) and (b) respectively shows where the distances are measured to. The PROS and 

NONPROS limbs are illustrated by full and open red diamonds and the LEFT and RIGHT control 

limbs are illustrated by full and open black circles. The distance from the average is measured in 

terms of SD (dashed green lines). 
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6.4 Results 

The PCA outcome differed for both the correlation matrix and the covariance matrix (Figure 6.3 

a and b) and differed for each individual with UTTA. Below is an example of the data for the 

individual with UTTA number 1. For all results of each individual with UTTA see Appendix 3. 

Figure 6.3 (a) shows the PCA outcome for the individual with UTTA when compared to the able-

bodied individuals using covariance matrix on data normalised to units. The PCA outcome is 

shown in four different views between two dimensions each, where a dimension is made up of a 

PC component. The individual with UTTA differed from the group of able-bodied individuals in 

PC2 (outcome number 1 and 3). The PROS and the NONPROS limbs (solid and open red 

diamonds) sat at the edge of the cloud constituted of RIGHT and LEFT control limbs (solid and 

open black circles). In PCA outcome number 4, the PROS limb differed from the control limbs, 

whilst NONPROS limb was embedded within the cloud of control limbs. This demonstrated that 

in some instances only one of the limbs of the individual with UTTA differed not necessarily 

both. Therefore, the PC2 (Eig. rank 2 in Figure 6.3 a) holds discriminating features for both the 

PROS and NONPROS, whilst PC4 (Eig. rank 4 in Figure 6.3 a) holds discriminating features of 

PROS limb only. Similar to the previous study in Chapter 5, a difference did not occur in every 

dimension (PCs 1 and 3). In order to establish which biomechanical variables resulted in the 

difference between the individual with UTTA and the group of able-bodied individuals, the 

average Eigenspectra for the first four PCs are displayed in Figure 6.3 (b). The biomechanical 

variables included in the procedure are displayed in decreasing order of contribution to the 

discrimination, larger bars indicated larger contribution. Since the covariance matrix revealed that 

the PC2 discriminated between the individual with UTTA and the able-bodied individuals, the 

second Eigenspectrum is investigated (Eig. rank 2 in Figure 6.3 b), where the greatest contributors 

were variable numbers 14, 13 and 10 which corresponds to sagittal hip joint angle, sagittal hip 

joint moment and vertical CoM displacement. Furthermore, PC4 showed that the PROS limb 

differed from the control limbs, where variable numbers 7, 4 and 17 were responsible for the 

discrimination, which corresponded to medio-lateral CoM velocity, medio-lateral CoP 

displacement and sagittal knee joint angle. 

Figure 6.3 (c) shows the PCA outcome for the individual with UTTA number 1 using the 

correlation matrix. The individual with UTTA did not differ from the able-bodied individuals 

when using the correlation matrix. Thus, the variables displayed in the Eigenspectrum of different 

PCs did not reveal any discriminatory features that provided any additional information. As 

previously mentioned, the different result between the covariance and the correlation matrices 

can be expected since the normalisation procedure between the two PCA approaches differed. 
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Figure 6.3 PCA outcome (a, c) and Eigenspectra (b, d) comparing between the gait of the 

individual with UTTA number 1 and a group of able-bodied individuals using the covariance (a, 

b) and the correlation (c, d) approaches. 
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Comparing between the gait of one individual with UTTA and the group of able-bodied 

individuals, the PCA outcome for each individual with UTTA varied (Table 6.1). For example, 

using the covariance approach both PROS and NONPROS limbs of individual number 1 differed 

in PC2 and the PROS limb differed in PC4 (Figure 6.3 a), but for individual number 2 only the 

PROS limb differed from control limbs in PC1 instead of both limbs in PC2 (Figure 6.4 a). Again, 

using the correlation approach individual number 1 did not differ from able-bodied individuals 

(Figure 6.3 c), however, in individual number 2 the PROS limb differed in PC2 (Figure 6.4 c). 

Furthermore, the variables responsible for the differences between the individuals with UTTA 

and able-bodied individuals varied, indicating that each of the individuals with UTTA displays 

unique gait characteristics. 

The PCs that held the main discriminating features varied between individuals with UTTA. 

Nevertheless, the Eigenspectra corresponding to these PCs illustrated some common 

discriminating features among individuals (Table 6.1). The discrimination features, which 

occurred most commonly in both the covariance and the correlation approaches were sagittal hip 

joint moment (discriminating variable number 13) and sagittal hip joint angle (discriminating 

variable number 14). Other discriminating features were unique to one individual with UTTA and 

did not appear in the Eigenspectrum of many or any other individuals, for example, the sagittal 

ankle joint angle in individual number 11. 

 

Table 6.1 PCs in which the prosthetic and intact limbs (PROS and NONPROS, respectively) of 

one individual with UTTA were discriminated from the control limbs (RIGHT and LEFT) of a 

group of able-bodied individuals using the covariance or the correlation approach during the PCA 

and the number corresponding to the top 3 variables attributed to the difference. The variables 

corresponding to these numbers are detailed in Table 3.25.  

Individual 

No. 

Covariance Matrix Discriminating 

Variables 

Correlation Matrix Discriminating 

Variables 

1 Both limbs in PC2 14, 13, 10 No discrimination - 

2 PROS limb in PC1 13, 19,15 PROS limb in PC2 13, 12, 16 

3 PROS limb in PC1 13, 19, 3 PROS limb in PC2 2, 13, 16 

4 PROS limb in PC1 13, 15, 16 PROS limb in PC2 13, 15, 12 

5 Both limbs in PC1 14, 17, 10 Both limbs in PC1 14, 17, 11 

6 PROS limb in PC2 14, 13, 15 No discrimination - 

7 Both limbs in PC1 14, 13, 3 Both limbs in PC1 10, 14, 5 

8 Both limbs in PC1 14, 13, 15 PROS limb in PC2 14, 13, 15 

9 No discrimination - No discrimination - 

10 NONPROS limb in PC1 13, 3, 15 No discrimination - 

11 PROS limb in PC1 13, 14, 19 Both limbs in PC3 4, 20, 10 
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Figure 6.4 PCA outcome (a, c) and Eigenspectra (b, d) comparing between the gait of the 

individual with UTTA number 2 and a group of able-bodied individuals using the covariance (a, 

b) and the correlation (c, d) approaches. 
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From the PCA outcome of the individual with UTTA number 1 using the covariance approach, it 

was established that both PROS and NONPROS limbs differed in PC2. The average 

Eigenspectrum of PC2 revealed which variables were responsible for this difference. In order to 

quantify the relative difference between the PROS and NONPROS limbs from the control limbs, 

the Euclidean distance of each limb to the PC origin (0,0) was measured. In Figure 6.5 the standard 

deviation (SD) is shown by the dashed lines, where outer lines represent 2SD from the (0,0). If 

PROS and NONPROS limbs fall within ±2SD, they are considered close to average, and if they 

are outside of 2SD, they are considered to be outside the normal range. The red bell curve shows 

the distribution of data and is purely for graphical purposes. 

 

Figure 6.5 The distance of individual limbs from the origin (0,0) of PCA outcome in the first four 

dimensions for (a) the covariance and (b) the correlation approach. The four graphs for each 

approach correspond to PCs, where top left is PC1, top right PC2, bottom left PC3 and bottom 

right PC4. The x-axis is 1D dimension, indicating the distance in that particular dimension from 

(0,0), whilst the y-axis describes the number of limbs occurring at that particular distance. The 

PROS and NONPROS limbs are shown by the solid and open red diamonds.  
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Since the PCA outcome illustrated that the PROS and NONPROS limbs differed for the control 

limbs in PC2 using the covariance approach, it was expected that the Euclidean distance measured 

for the limbs in PC2 would be 2SD away, which was reflected in the results (PROS = 15.96; 

NONPROS = 18.51) (Figure 6.5 a). The Euclidean distance measured, revealed a greater 

difference for the NONPROS limb relative to the control limbs when compared to the PROS limb. 

Furthermore, since PC4 showed the PROS limb to differ from the control limbs whilst NONPROS 

limb was embedded within the cloud, the Euclidean distance measure revealed that the PROS 

limb lied outside 2SD (PROS = -10.15) and the NONPROS limb within 2SD (NONPROS = -

1.35). For all the dimensions that did not show a difference between the individual with UTTA 

number 1 and able-bodied individuals the limbs were within ±1 or ±2 SD (Figure 6.5 a and b).  

The distance of each limb to the centre of the cloud of control limbs was also measured using the 

Euclidean distance (Figure 6.6). The x-axis in Figure 6.6 shows the distance to the cloud centre 

(where zero is the centre) whilst the y-axis is the number of occurrences of the limbs at a particular 

distance. Similar to other measurements, the PROS and NONPROS limbs are represented by the 

solid and open red diamonds, respectively. The SD is shown by the dashed lines, where outer 

lines represent 2SD from the centre of the cloud. If the PROS and NONPROS fall within the 2SD, 

they were considered within normal range of the control limbs, and vice versa. The red bell curve 

shows the distribution of data and is purely for graphical purposes. Figure 6.6 shows that for the 

covariance matrix (a), the PROS limb lies 1SD away, and the NONPROS lies 2SD away 

compared to the remainder of the control limb, i.e. the NONPROS differed more than the PROS 

relative to the average of control limbs. With regards to the correlation matrix (b), both limbs fall 

between 1SD to 2SD of the control limbs, i.e. the individual with UTTA did not differ from the 

able-bodied individuals. For all results of each individual with UTTA see Appendix 3. 

 

Figure 6.6 Euclidean distance of limbs from the cloud centre using (a) the covariance and (b) the 

correlation approach. The x-axis indicates the distance from the cloud centre, where the zero value 

represents the cloud centre. The y-axis defines the number of limbs that occur at that particular 

distance. 
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6.5 Discussion and Conclusion 

The aim of this study was to determine subject-specific gait characteristics of one individual with 

UTTA using PCA when compared to a group of able-bodied individuals. The first hypothesis that 

using PCA could discriminate the gait of one individual with UTTA and a group of able-bodied 

individuals was supported. The majority of individuals with UTTA were discriminated from the 

group of able-bodied individuals using the covariance and correlation approaches when compared 

individually. However, a few were not discriminated, which may be attributed to the strong 

similarity between their gait and that of able-bodied individuals, perhaps because these 

individuals were well-established and had at least a year’s worth of experience walking with a 

prosthetic limb. Furthermore, the PCA outcome varied, i.e. in some instances the prosthetic limb, 

intact limb or both limbs of the individual with UTTA were discriminated from the control limbs. 

Both limbs were not necessarily discriminated in all instances. These findings could be due to 

compensatory mechanisms adopted on each limb, i.e. if both limbs adopt compensatory 

mechanisms, which differ from control limbs, it can be expected that the variables between both 

the limbs of the UTTA differ from the control limbs of able-bodied individuals. However, if only 

one limb adopts compensatory mechanisms in order to generate a gait for the alternative limb 

similar to a control limb, only the limb with the compensatory mechanism will display different 

biomechanical variables.  

The second hypothesis that the Eigenspectrum would reveal subject-specific discrimination 

features that characterise the gait of an individual with UTTA was also supported. The 

Eigenspectrum revealed discriminating features corresponding to each individual, of which some 

were common between individuals and others were specific to the particular individual, indicating 

that there are some generic features among individuals with UTTA but also subject-specific 

features, characterising unique gait. Previous research indicated that individual gait characteristics 

could be identified (Horst et al., 2016; 2017; Schöllhorn et al., 2002), but may be compromised 

by (a) the type of data e.g. discrete parameters rather than temporal waveforms, (b) single type of 

variables rather than a combination of variables e.g. only kinetic or kinematic rather than kinetic 

and kinematic data, and (c) the inclusion of multiple conditions in the same discrimination 

procedure (Schöllhorn et al., 2002).  

The outcome of this study also supports the idea of a “functional group” as defined by Hoerzer et 

al. (2015), since some discrimination features could be identified for a number of individuals with 

UTTA. These may be the consequence of the study’s inclusion/exclusion criteria that specify the 

selection of the individuals with UTTA. In the literature, group responses have been attributed to 
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characteristics such as gender, anthropometrics, and age (Begg and Kamruzzaman, 2005), and are 

reflected in gait similarities (Hoerzer et al., 2015). Individuals recruited for the experimental 

group of this study all had a UTTA and had used a prosthesis for at least a year after inpatient 

treatment. Furthermore, individuals had to be able to walk for three-minute periods at once whilst 

they are free from pain or other musclo-skeletal disorders. These traits can all contribute to the 

commonality across individuals. However, the individuals with UTTA may not necessarily have 

fallen into common functional groups, since other factors influence their gait such as the time 

since amputation, the cause of amputation and the prosthetics used. 

The discrimination between an individual UTTA and the group of able-bodied individuals did not 

always occur in the first PC and occasionally occurred in the second or even in lower ranked PCs. 

In some instances, discrimination would occur in multiple different PCs, and the discrimination 

was for either the prosthetic, the intact or both limbs. Thus, the Eigenspectra would reveal 

discriminatory features for either one of the limbs or both limbs. Similar to findings of Chapter 5, 

although PC1 holds the greatest variance, it does not necessarily hold a particular feature of 

interest, as previously been reported by Phinyomark et al. (2015). Principal components as low 

as numbers 5 and 6 revealed discrimination features, however, these PCs hold features with small 

weighting factors relative to higher PCs such as 1 and 2. 

Two different approaches of PCA were used in this study, i.e. correlation and covariance matrices. 

The results of the approaches differed, which was expected due to differences in the normalisation 

procedures. The covariance approach describes the outcome depending on the variance within 

variables whilst the correlation approach describes the outcome depending on the magnitude of 

variables. Previous studies that refer to both approaches do not explain the advantages of using 

one method over the other (Badesa et al., 2014; Chau, 2001a; Daffertshofer et al., 2004). From 

the result of this study, it was established that depending on the application, one may choose one 

method over the other, but both reveal important information and thus there is no ‘ideal’ method, 

only one that fits the purpose. In this study, in some cases, individuals with UTTA were 

discriminated by both matrices, in other cases, discriminating features only occurred in one matrix 

but not the other. Thus, where possible both approaches should be explored since differences may 

be due to the variance or the magnitude of certain variables. 

The most common discriminating features revealed among individuals with UTTA were sagittal 

hip joint moment and hip joint angle. In Chapter 5, during the discrimination between a group of 

individuals with UTTA and a group of able-bodied individuals, sagittal hip joint moment was also 

identified as a discriminating factor, but sagittal hip joint angle was not. Previous studies found 

that the sagittal hip moment of individuals with LLA is twice as large as that of able-bodied 



 

Chapter 6: Discussion and Conclusion

 
 

 

 
142 

 

individuals during heel strike (McNealy & Gard, 2008). Also, a large eccentric flexor moment in 

the hip joint was identified during the late-mid stance phase (Lemaire et al., 1993). Similar results 

are shown in this study, but moreover, this study has indicated the magnitude of ‘importance’ of 

any one variable. Furthermore, whilst previous studies have revealed that variables different 

between experimental groups, only a few variables were included during the analysis, in this 

study, however, a wide range of variables were explored. This indicates that the automatic gait 

recognition tool can be used to explore a wide range of variables simultaneously, revealing 

instantly more information. 

As recommended by study 2 discussed in Chapter 5, the analysis was conducted by means of an 

unsupervised search algorithm, i.e. PCA, to investigate variables that naturally differ between one 

individual with UTTA and a group of able-bodied individuals rather than seeking out difference 

through the use of a supervised algorithm. Furthermore, continuous gait data was used in the form 

of temporal waveforms, which have been normalised to 100% of the gait cycle. From research, 

presented in Chapter 5 and other previous research (Deluzio et al., 1999), temporal waveforms 

provide more information compared to scalar values and enable a more comprehensive and 

reliable discrimination procedure.  

Previous research reports that the greatest discrimination at an individual level was observed when 

continuous data (temporal waveforms) of multiple variables (kinematics, forces and joint 

moments) in different planes of motion were analysed together (Schöllhorn et al., 2002). In this 

study, similar to the one presented in Chapter 5, the data set considered different gait variables, 

which were commonly reported in the literature for forward progression and dynamic balance. 

Thus, the number of variables were limited to the sagittal plane, with a few exceptions such as 

the GRF. The lack of incorporation of variables from multiple planes of motion may have 

compromised the discrimination outcome. Thus, in future studies, variables from all anatomical 

planes should be included in the analysis since these may not only yield greater discrimination 

results but also provide a better understanding of gait as a wider spectrum of data would be 

investigated.  

In conclusion, an individual with UTTA displays subject-specific gait characteristics which can 

be identified using PCA. Also, there are certain characteristics which are common in a group of 

individuals with UTTA. Furthermore, both the covariance approach (with normalised data to 

units) and the correlation approach can reveal important information, and so where possible both 

analyses methods should be implemented. 

 



 

Chapter 7: Effects of Attempted Symmetrical Temporal-Spatial Symmetry on the Dynamic 

Stability of Individuals with Unilateral Trans-Tibial Amputation. 

 
 

 

 
143 

 

Chapter 7: Effects of Attempted Symmetrical Temporal-

Spatial Symmetry on the Dynamic Stability of Individuals 

with Unilateral Trans-Tibial Amputation. 

 

 

Bisele, M., Bencsik, M., Lewis, M.G., & Barnett, C.T. (2018) Does attempting symmetry affect 

dynamic balance during gait un unilateral transtibial prosthesis users? In Proceedings of the 44th 

Annual Meeting and Scientific Symposium American Academy of Orthotists and Prosthetists, New 

Orleans, LA. 

 

Bisele, M., Bencsik, M., Lewis, M.G., & Barnett, C.T. (2017) How does attempting to walk 

symmetrically affect dynamic balance in unilateral transtibial amputees? In Proceedings of the 

International Society of Prosthetics and Orthotics (ISPO) UK MS Annual Scientific Meeting and 

Exhibition, Clare College, Cambridge, UK. 

 



 

Chapter 7: Introduction 

 
 

 

 
144 

 

7.1 Introduction 

A detrimental, functional limitation of LLA gait is impaired stability and control of balance 

(Jayakaran et al., 2012). Individuals with LLA are known to fall more often relative to age-

matched able-bodied individuals (Miller et al., 2001a; b), which has been attributed to 

compromised dynamic balance and stability. Because of a high falling incidences, these 

individuals often develop a fear of falling which consequently prevents them from taking part in 

everyday activities (Miller et al., 2001a). Although falling is a significant problem (Jayakaran et 

al., 2012), the underlying mechanisms of it are still not well understood (Curtze et al., 2010). 

Walking is an unstable system, which can be stabilised through active control (Hof et al., 2007). 

Individuals with LLA are known to walk with a lower speed, lower step frequency and higher 

step width relative to able-bodied individuals (Hak et al., 2013c) and they have been shown to 

adopt compensatory mechanisms similar to able-bodied individuals in order to regulate stability 

by adjusting step parameters (Bolger et al., 2014). 

The Mos is a measure of stability, which is quantified by the distance between the CoM motion 

state (i.e. position and velocity) relative to the BoS. In response to a decrease in dynamic stability, 

individuals with LLA and able-bodied individuals have shown to increase BW and ML MoS, 

permitting greater stability (Hak et al., 2013a; b; c; Hak et al. 2015). In response to continuous 

perturbations through a translating walking surface (Hak et al., 2012; Hak et al., 2013c), 

individuals with LLA and able-bodied individuals, both increased step frequency and step width, 

decrease step length and kept walking speed constant, which consequently increased BW MoS 

and ML MoS in an attempt to regulate stability more effectively (Hak et al., 2013c). In a gait 

adaptability task, both groups decreased step length and increased step width, but did not change 

step frequency and step walking speed. As a result, BW MoS and ML MoS did not change (Hak 

et al., 2013c). The BW MoS was found to be smaller for individuals with LLA relative to the 

able-bodied individuals, which was attributed to their naturally slower self-selected speed (Hak 

et al., 2013c). 

Compensatory mechanisms in individuals with LLA are known to result in asymmetrical gait, 

which is typically viewed as unwanted, since it is associated with secondary health issues such as 

lower back pain (Kulkarni et al., 2005) and arthritis in the intact hip and knee joints (Burke et al., 

1978). Thus, during prosthetic rehabilitation, a more symmetrical gait is often sought to minimise 

these secondary issues. Previous research, however, suggests that asymmetrical step parameters, 

such as step length may play a functional role (Hak et al., 2014). Generally, individuals with LLA 

were found to have a shorter step length on the intact limb relative to the prosthetic limb (Barnett 
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et al., 2009; Isakov et al., 1996; Mattes et al., 2000; Zmitrewicz et al., 2006), which has been 

attributed to reduced push-off capacity on the prosthetic limb (Houdijk et al., 2009; Zmitrewicz 

et al., 2006). Hak et al. (2014), however, found that the shorter step length on the intact limb 

contributes to a larger BW MoS at heel strike of the intact limb. The lack of ankle push-off on the 

prosthetic limb during the double support phase decreases the CoM velocity limiting the increase 

of BW MoS during this phase. Thus, a smaller distance between the leading foot and the CoM is 

needed to compensate for the limited increase in BW MoS and to decrease the risk of interrupting 

forward progression. Therefore, in well-established individuals with LLA, temporal-spatial 

asymmetry aids MoS to be maintained stable (Bolger et al., 2014; Hak et al., 2014). However, 

the effects of symmetrical gait on stability, which is often desired during prosthetic rehabilitation, 

are unknown. Therefore, the primary aim of this study was to identify the effects of attempting 

temporal-spatial symmetry on the dynamic stability of individuals with UTTA and the secondary 

aim was to understand the biomechanical function of gait when attempting temporal-spatial 

symmetry. 

7.2 Methodology 

7.2.1 Participants 

A convenience sample of eleven individuals with UTTA (age 50±12years; height 1.7±0.1m; mass 

83.94±13.59kg) were recruited from the university and local communities. All participants met 

the inclusion and exclusion criteria detailed in Section 3.2.2. Ethical approval was granted by the 

Nottingham Trent University’s College of Science and Technology Ethical Review Committee 

(Humans), the NHS Research Ethics Committee, the NHS Health Research Authority and the 

NHS Research and Development. All participants provided written informed consent prior to 

participation.  

7.2.2 Experimental Design 

Participants visited the biomechanics laboratory on two occasions to collect measurements for 

four conditions; walking at self-selected speed (NORM), walking with attempted symmetrical 

step length (SYMSL), walking with attempted symmetrical step frequency (SYMSF), and walking 

with both attempted symmetrical step length and step frequency (SYMSL+SF). During visit 1, 

participants walked along a 15m walkway collecting data for the NORM condition. During visit 

2, habitual step length and frequency derived from visit 1 were manipulated, so that individuals 

with UTTA walked at attempted symmetries. The manipulations for visit 2 were calculated using 

(7.1) and (7.2). For the ‘new’ symmetrical step length, insulating tape was used to mark the 
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measurements on the floor, and for the ‘new’ symmetrical step frequency a metronome was used. 

The conditions during visit 2 were randomised across participants.  

 
𝑆𝐿𝑆𝑌𝑀 = 

𝑆𝐿𝑅 + 𝑆𝐿𝐿

2
 

(7.1) 

 

Where: 

SLSYM = symmetrical step length 

SLR and SLL = right and left step length, respectively 

 

 
𝑆𝐹𝑆𝑌𝑀 = 

𝑆𝐹𝑅 + 𝑆𝐹𝐿

2
 

(7.2) 

 

Where: 

SFSYM = symmetrical step frequency 

SFR and SFL = right and left step frequency, respectively 

 

7.2.3 Data Acquisition 

Upon arrival, the participants were briefed. All activities were completed with participants 

wearing lycra shorts and everyday shoes. Individuals with UTTA used their habitual prosthesis 

(Table 3.1). To obtain kinematic measurements 70 spherical 14mm, reflective markers were 

placed directly onto the skin or clothing using bi-adhesive tape, defining head, arms, trunk 

(Leardini et al., 2011) and lower limb segments (Cappozzo et al., 1995) (for marker placement, 

refer to Section 3.3.3). Marker placement on the prosthetic limb was estimated based on marker 

placement of the intact limb (Powers et al., 1998).  

A static trial was obtained for segment definition, followed by the dynamic trials. First, the 

participant’s starting position was defined, to ensure that force platform data was acquired as the 

participant walked along the walkway. For visit 1, during dynamic trials, participants walked at a 

self-selected speed along a 15m walkway (Figure 7.1 a). This process was repeated until five 

successful trials were collected for both limbs, where a successful trial was defined by a clear 

force plate contact. For visit 2, during attempted SYMSL participants were asked to land with their 

heel on the tape markings for each step (Figure 7.1 b). The tape was placed along the 15m 

walkway at a set length as defined by Equation (7.1). During attempted SYMSF, the metronome’s 

frequency was defined by Equation (7.2) and participants were asked to take a step with each 

sound when walking along the 15m walkway (Figure 7.1 c). Finally, during attempted SYMSL+SF, 

participants were required to take a step and land with the heel on the tape every time the 
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metronome sounded (Figure 7.1 d). Each condition was repeated until five successful trials were 

collected for each limb. Ground reaction force (GRF) was measured at 1000Hz using a single 

floor-mounted strain gauge force platform (AMTI, Watertown, MA, USA) and kinematics were 

measured at 100Hz using a nine-camera motion capture system (Qualisys, Gothenburg, SE).  

 

Figure 7.1 Data acquisition method. Data for four conditions were measured during two visits: 

NORM (a), SYMSL (b), SYMSF (c) and SYMSL+SF (d). The green and the blue ovals show feet 

placements. Abbreviations are walking at self-selected speed (NORM), walking with attempted 

symmetrical step length (SYMSL), walking with attempted symmetrical step frequency (SYMSF), 

and walking with both attempted symmetrical step length and step frequency (SYMSL+SF).  

 

7.2.4 Data Processing 

Markers were labelled in QTM v2.2 (Qualisys, Gothenburg, SE) as defined in Section 3.3.3. and 

trial start and end periods were adjusted so that the maximum number of gait cycles of both limbs 

were captured. Marker trajectories and force data were exported as .c3d files and subsequently 

processed in Visual3D v5 (C Motion, Inc., Germantown, MD, USA). Kinematic data were 

interpolated using a cubic-spline algorithm with kinematic and GRF data being subsequently 

filtered using 4th order, zero-lag Butterworth low-pass filters with 6Hz and 30Hz cut-off 

frequencies, respectively. All data were normalised to one gait cycle. Medial and lateral 

landmarks defined anatomical frames from which segment coordinate systems were defined 

following the right-hand rule (Cappozzo et al., 1995). A flexion-extension, abduction-adduction 

and longitudinal Cardan rotation sequence was used to define the order of rotations to calculate 
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joint kinematics. Gait events of heel strike and toe off were determined using kinetic and 

kinematic event detection algorithms (Stanhope et al., 1990; Zeni et al., 2008) (Section 3.3.5). 

Twenty seven biomechanical variables which are typically reported in the literature for forward 

progression and dynamic stability were included in the analysis (Table 3.25 and Table 3.26) since 

the continuous interchange between mobility and stability are essential for efficient walking 

(Lakany, 2008). The biomechanical variables were computed in Visual3D (C-Motion, Inc, 

Germantown, USA). Processed data were exported from Visual3D as .c3d files, and individual 

signals were imported to MATLAB® R2016a (MathWorks Inc., MA, USA) for further analysis. 

7.2.5 Statistical Analysis 

Two statistical analyses were performed. To answer the primary aim of this study a two-way 

repeated measure analysis of variance (ANOVA) was used and to answer the secondary aim of 

the study PCA was used. The ANOVA was used to assess the difference between the four 

conditions (NORM, SYMSL, SYMSF, SYMSL+SF) and the two limbs (PROS and NONPROS) for 

BW MOS, ML MOS, step length, step frequency, step width and speed. The normality of all the 

data was assessed using the Shapiro – Wilk Test of Normality (P > 0.05). All statistical analyses 

were conducted in IBM SPSS v.24 (IBM, Portsmouth, UK). Where the assumption of sphericity 

was violated, a Greenhouse-Geisser correction factor was applied to control for Type I errors 

(Field, 2013). Effect sizes (partial eta squared) were calculated for each statistical comparison, 

and posthoc comparisons of significant effects were conducted using the Bonferroni adjustment 

when statistical significance was identified between conditions/limbs for any of the given 

variables analysed (Vincent & Weir, 2012). The alpha level (𝛼) of statistical significance was set 

at 𝑝 < 0.05. During this analysis data from, all eleven individuals with UTTA were assessed. 

During the second statistical analysis the effect of the conditions on twenty biomechanical 

variables (Table 3.25) were assessed using PCA. Both the covariance and the correlation 

approaches were used as recommended in Chapter 6, since the covariance matrix identifies the 

differences with regards to variation, whilst the correlation matrix identifies the differences with 

regards to magnitude. During this analysis, only data from seven individuals with UTTA were 

assessed. This was due to missing data form four of the individuals. The analyses were conducted 

as follows: 

(1) All individuals with UTTA at NORM were compared to one individual with UTTA during 

either SYMSL, SYMSF or SYMSL+SF. 

(2) All individuals with UTTA at NORM were compared to all individuals with UTTA during 

either SYMSL, SYMSF or SYMSL+SF. 
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(3) All individuals with UTTA at NORM were compared to all individuals with UTTA during 

all conditions. 

Procedure (3) comparing all individuals with UTTA at NORM with all individuals with UTTA 

during all other conditions yielded the best discrimination outcome and thus are presented in the 

results below. For results of procedures (1) and (2) see Appendix 4. 

 

7.3 Results 

7.3.1 Effects of Attempted Symmetry on Backward and Medio-lateral Margin of 

Stability 

The BW MoS (a) and ML MoS (b) relative to the four conditions (NORM, SYMSL, SYMSF, 

SYMSL+SF) are illustrated in Figure 7.2. The BW MoS of each limb appeared to increase/decrease 

depending on the condition, but the symmetry/asymmetry that exists between the limbs was 

preserved. These results could also be observed in the PCA outcome (Figure 7.3 and Figure 7.4) 

since individual conditions were not separated but instead clustered, possibly because of the 

preserved symmetry/asymmetry in the data. 

The BW MoS showed a significant difference with a large effect size between PROS and 

NONPROS limbs (F(1,10) = 11.44, 𝑝 = 0.007, 𝜂𝑝
2 = 0.534). The PCA outcome also highlight this 

difference between PROS and NONPROS limbs which formed separate clusters. The difference 

between the limbs were attributed to vertical GRF, and sagittal hip, knee and ankle joint angles 

(Figure 7.3 and Figure 7.4, Eigenspectrum number 2). The BW MoS showed a significant 

difference between the attempted symmetrical step parameters with medium effect (F(1.47,14.71) 

= 6.01, 𝑝 = 0.018, 𝜂𝑝
2= 0.376), where the attempted SYMSL decreased the BW MoS more than 

any other condition, whilst the attempted SYMSF increased it. The ML MOS showed no 

significant difference between limbs (F(1,10) = 0.91, 𝑝 = 0.362, 𝜂𝑝
2 = 0.084) nor between 

conditions (F(3,30) = 1.32, 𝑝 = 0.285, 𝜂𝑝
2 = 0.117). 
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Figure 7.2 BW MoS (a) and ML MoS (b) during the four conditions of NORM, SYMSL, SYMSF, 

and SYMSL+SF. 
 

The PROS and NONPROS limbs seemed to form separate clusters for each individual with 

UTTA, where each cluster contained all conditions. The conditions were scattered differently for 

individuals, whilst some individuals were clustered relatively close together, others were 

separated, such as participant number 5. The Eigenspectrum of PC1 using the covariance 

approach identified sagittal hip joint angle (variable number 14) as a causal factor for these 

individual clusters for each participant, whilst the correlation approach highlighted sagittal hip 

joint angle (variable number 14) as well anterior-posterior GRF (variable number 1) as causal 

factors. 
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Figure 7.3 PCA outcome (a) and its Eigenspectra (b) of the covariance matrix comparing 

individuals with UTTA during all conditions. The different colours indicate conditions, where 

solid and open circles are the PROS and NONPROS limbs, respectively. The numbers refer to 

the individual participants. 
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Figure 7.4 PCA outcome (a) and its Eigenspectra (b) of the correlation matrix comparing 

individuals with UTTA during all conditions. The different colours indicate conditions, where 

solid and open circles are the PROS and NONPROS limbs, respectively. The numbers refer to 

the individual participants. 
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7.3.2 Effects of Attempted Symmetry on Step Parameters 

The results show that the step length was larger on the PROS limb relative to the NONPROS 

(F(1,10) = 9.14, 𝑝 = 0.013, 𝜂𝑝
2 = 0.477) (Figure 7.5 a). Furthermore, the step length increased 

during the attempted symmetry step parameters relative to the NORM condition (F(1.24, 12.42) 

= 6.40, 𝑝 = 0.021, 𝜂𝑝
2= 0.390). The Bonferroni post hoc revealed a significant difference between 

the NORM and attempted SYMSL+SF and SYMSL (𝑝 = 0.001), also between NORM and SYMSF 

(𝑝 = .043). The step frequency was lower on the PROS limb relative to the NONPROS but there 

was no significant difference between them (F(1,10) = 0.53, 𝑝 = 0.483, 𝜂𝑝
2 = 0.050). However, 

step frequency differed significantly between conditions with medium effect (F(1.74, 17.37) = 

4.58, 𝑝 = 0.029, 𝜂𝑝
2= 0.314). The step width did not change significantly between the four 

conditions (F(3,30) 0.81, 𝑝 = 0.499, 𝜂𝑝
2 = 0.075 ). The effects of NORM, SYMSL, SYMSF and 

SYMSL+SF on speed were not normally distributed, thus a Friedman’s ANOVA was conducted. 

Speed differed significantly between conditions, χ2(5) = 9.25, 𝑝 = 0.026 and using Wilcoxon tests 

there were no apparent difference between NORM and SYMSL (𝑝 = 0.449), or NORM and SYMSF 

(𝑝 = 0.059), but there was a significant difference between NORM and SYMSL+SF (𝑝 = 0.011). 

 

Figure 7.5 The interaction results of NORM, SYMSL, SYMSF and SYMSL+SF on step length (a), 

step frequency (b), step width (c) and speed (d). 
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7.4 Discussion and Conclusion 

The primary aim of this study was to identify the effects of attempting temporal-spatial symmetry 

on the dynamic stability of individuals with UTTA and the secondary aim was to understand the 

biomechanical function of gait when attempting temporal-spatial symmetry. The results show that 

although symmetrical step parameters were attempted, individuals with UTTA adjusted their 

limbs and asymmetry was preserved, as evident by the results for the BW MoS. The attempted 

symmetrical step length (SYMSL) decreased the BW MoS, whereas the attempted symmetrical 

step frequency (SYMSF) increased BW MoS, thus when combined, these symmetries appeared to 

counterbalance one another. Speed was found to increase during the attempt of SYMSF and 

SYMSL+SF, although not significantly during SYMSF. A significant increase in speed during the 

attempt of SYMSL+SF was probably the consequence of greater step length and step frequency 

during this condition, which both lead to increased velocity. Previous research suggests that 

greater velocity improves dynamic coordination between the limbs and thus may lead to increased 

stability (Donker & Beek, 2002). Furthermore, backward fall can be reduced by a decrease in step 

length or increase in CoM velocity (Espy et al., 2010; Pai & Patton, 1997), whilst CoM velocity 

is directly related to increased walking speed (Hak et al., 2012). 

Attempted SYMSF increased BW MoS. An increase in BW MoS implies that during the following 

single-support phase defined by the new stance limb, the CoM can pass the posterior border of 

the BoS, indicating that the risk of backward loss of balance decreases (Hak et al., 2014). 

Attempting SYMSL, increased the step length on the intact limb whilst the step length on the 

prosthetic limb remained constant, i.e. the intact limb adjusted to meet the required symmetry. 

However, BW MoS decreased indicating a compromise of dynamic stability. Previous findings 

by Hak et al. (2012) and Hak et al. (2013c) showed that in response to perturbations individuals 

with LLA increase step frequency and shorten step length while keeping walking speed constant. 

Thus, step length was shortened in order to maintain stability, rather than lengthened. Studies 

have implied that the shorter step length commonly found in the intact limb is a compensation for 

the lack of CoM velocity when stepping with the prosthetic limb due to reduced push-off capacity, 

which constrains the BW MoS during the double support phase of the intact limb (Hak et al., 

2013c). Therefore, as a result of the attempt to introduce SYMSL in this study, the individuals with 

UTTA may have lost this compensatory mechanism since the step length on the intact limb 

increased. The reason for the adjustment on the intact limb rather than the prosthetic limb remains 

unknown and needs further investigation. A possible explanation would be the inability of the 

prosthetic limb to adjust to certain changes due to the restrictions proposed by the prosthesis. 
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The attempted symmetrical step parameters did not have a significant effect on ML MoS. In 

response to perturbations, individuals with LLA have shown to increase step width probably as a 

control mechanism to allow ML MoS to increase. Hof et al. (2007) state that ML MoS increased 

because of increased step width and step frequency, where step frequency coincides with an 

increased in walking speed. However, in this study, the attempted symmetrical step frequency 

increased the step frequency and speed but did not increase step width. Consequently, this may 

be why there was no change to ML MoS, which might imply that step frequency and step length 

are predominantly associated with forward progression and BW MoS. During the assessment of 

individuals with UTTA in the encounter of uneven surfaces, Curtze et al. (2011) reported no 

change in lateral MoS during the investigation of foot placement with respect to the XCoM. 

However, Hof et al. (2007) reported larger MoS on the prosthetic side during the investigation of 

individuals with UTFA. Thus, levels of amputation may affect foot placement, although the loss 

of the ankle structure affects the CoP adjustment in both individuals with UTTA and UTFA. 

The PCA outcomes revealed differences between the intact and the prosthetic limb, similar to the 

results of Chapter 5. These differences were found to be predominantly due to vertical GRF, 

sagittal hip joint moment, and hip and knee joint angles when using the covariance approach. The 

correlation approach highlighted sagittal ankle joint angle to be the main driver for a difference 

between prosthetic and intact limbs. These results are similar to previous findings, which indicate 

that the ankle joint angle changes between limbs since the prosthetic foot component is rigid 

compared to the biological ankle joint. Furthermore, the PCA outcome revealed multiple smaller 

clusters of each individual with UTTA. The clusters were made up of the four conditions, i.e. 

attempted symmetrical step parameters did not change the way an individual with UTTA walks 

instead the individual seemed to adjust and preserve asymmetry, as seen by the shift of the limb 

from its NORM position to various directions in the PC space whilst remaining in close proximity. 

Previous studies reported similar results of individual clusters of people (Schöllhorn et al., 2002; 

Chapter 6), and support the need for subject-specific evaluation. Using PCA for subject-specific 

evaluation can help improve treatment recommendations specifically prosthetic prescriptions, 

leading to more tailored and effective rehabilitation goals. 

A limitation of this study was the small sample size (N=11) used to carry out PCA. Most research 

concludes that large sample size is required for an accurate analysis to be made (Halilaj et al., 

2018). However, in gait analysis, the sample size of populations under investigation is often small 

due to characteristics of pathologies since it can be difficult to find individuals who have these 

characteristics. The location of the investigation might place further constrain since there might 

not be many individuals in certain areas who have these characteristics. Although larger sample 
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size seems to be more reliable there must be a tradeoff with regards to sampling effort and cost. 

This study demonstrated that a sample size of N=11 was enough to achieve the stability of 

eigenvalues and eigenvectors of PCA. However further research is needed, to establish if there is 

a particular number of participants which would satisfy the criteria for a reliable analysis. 

In conclusion, the findings of this study suggest asymmetrical temporal-spatial parameters play a 

functional role in LLA stability. The PCA outcome further confirmed that asymmetry was 

preserved during attempted symmetrical conditions since data did not cluster due to conditions, 

but instead, the prosthetic and intact limbs of individuals with UTTA formed multiple small 

clusters, suggesting that each individual with UTTA has highly individualised gait characteristics.  
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8.1 Discussion 

The general aim of this PhD was to adopt multivariate statistical analyses and machine learning 

algorithms to develop analytical techniques for the assessment and understanding of LLA 

function. The number of individuals with LLA is expected to increase drastically (Ziegler-Graham 

et al., 2008). Individuals with LLA lose musculoskeletal mechanisms, joint structures and sensory 

input vital for movement such as walking, thus the ability to take part in activities of daily living 

is impacted (Pezzin et al., 2000). Using automatic gait recognition tools in gait analysis, could 

provide non-invasive diagnosis methods, patient-specific treatment recommendations and 

evaluation of treatment outcome (Alaqtash et al., 2011b; Lakany, 2008; Pogorelc et al., 2012), 

thus it could potentially provide a guide for prosthetic prescriptions and rehabilitation 

programmes during the treatment of individuals with LLA. 

In the first study of this thesis presented in Chapter 4, the aim was to develop and optimise a 

machine learning algorithm. Principal Component Analysis (PCA) was used for data reduction 

and feature selection, and Discriminant Function Analysis (DFA) was used for classification 

between barefoot and shod running. To optimise this procedure, all possible iterations of ten 

individuals out of a total of twenty were explored to establish which combination of participants 

would provide the best discrimination between the conditions. An error rate was calculated to 

indicate the number of trials misclassified. The combination of ten individuals with the smallest 

error rate (6.5% misclassified) was used to train the algorithm, thus optimising it. The best 

iteration correctly classified footwear condition 93.5% of the time, although the error rates ranged 

from 6.5% - 50% for other combinations of participants. Thus, the quality of data used to train 

the machine learning algorithm was improved through the identification of individuals carrying 

generic features. In instances where the machine learning algorithm is facing the challenge of a 

mixture of highly ‘generic’ and highly ‘singular’ trials in its training database, it is suggested that 

by homing onto the highly generic individuals, at the stage of training the computer, substantial 

improvements may be achieved over the entire group, including the highly ‘singular’ individuals. 

The classification method used in this study was conducted in a challenging scenario of the same 

individual with a subtle change to their gait, as compared to examples found in the literature, 

which have used clearly discrete heterogeneous groups e.g. healthy vs pathology (Kobsar et al., 

2015; Laroche et al., 2014) or young vs. old (Begg & Kamruzzaman, 2005; Eskofier et al., 2013). 

Therefore, the outcome of the algorithm presented in this study was more likely to reflect the 

ability of the algorithm rather than the differences between experimental groups. Biomechanical 

research studies are often conducted using a small sample size, which may have subtle differences 
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between groups/conditions that are difficult to detect. This study demonstrated a technique that 

could be implemented during the development of machine learning algorithms to improve their 

classification performance. Individuals with LLA have shown to have kinematic variables, similar 

to those of able-bodied individuals (Sanderson & Martin, 1997). Thus such a method could have 

the potential to facilitate a better understanding of the differences between LLA and able-bodied 

gait. 

The relatively small sample size of this study prevented an estimation to the extent to which 

accidental spurious information may also have been harvested in the process, i.e. overfitting the 

data. Nevertheless, by limiting the process to only 10 PCA scores, which was below the rank that 

still carried information (20th), the likelihood of such phenomena was limited. This ensured the 

numerical analysis was made immune to overfitting artefacts originating from the over-

exploitation of small details (Lever et al., 2016b). Moreover, finding the generic features through 

the optimisation procedure would also limiting the risks of overfitting. An interesting question is 

whether it might be possible, in any study similar to this one, to identify the best group size to be 

used when optimising the training. 

Previous studies have limited the amount or type of measured variables used, i.e. variables would 

only be measured in one plane of motion rather than all three, and only kinetic, kinematic or GRF 

data would be assessed instead of a combination of the three data types. This study demonstrated 

that it is possible to analyse large amounts of different types of data, e.g. thirty kinetic, kinematic 

and GRF variables in different planes of motion, and acquire a large classification accuracy. 

Assessing many variables simultaneously is not only time efficient but provides an instantaneous 

in-depth understanding. Furthermore, previous studies demonstrated that including variables from 

the frontal plane provide better classification results (Schöllhorn et al., 2002). Thus, in order to 

improve the classification outcome, data from multiple planes should be included during the 

analysis. 

Machine learning algorithms are typically developed in three stages of training, prediction and 

evaluation (Lever et al., 2016b). A limitation of this study was the absence of the evaluation using 

an independent sample. An evaluation procedure provides an indication of the accuracy of a 

classifier’s performance. In this study, the evaluation indicated that the sensitivity, i.e. true 

positives (shod and truly identified as shod) were correctly identified 90% of cases and the 

specificity, i.e. true negatives (barefoot and correctly identified as barefoot) were correctly 

identified 91% of cases. However, the evaluation stage was not conducted using an independent 

sample, but instead, the classification of the sample was known. 
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Machine learning algorithms can provide a better understanding of pathological gait. In LLA gait, 

it has been used extensively to improve prosthetic components (Afzal et al., 2017; Chen et al., 

2013; Dutta et al., 2011; Hargrove et al., 2015; Huang et al., 2011; Joshi and Hahn, 2016; Khan 

et al., 2018; Miller et al., 2013; Pew and Klute, 2017; Simon et al., 2016; Woodward et al., 2016; 

Young et al., 2013; Young et al., 2014; Zheng et al., 2013; Zheng and Wang, 2017), however to 

be able to provide an individual with LLA with a better prosthesis, his/her function needs to be 

better understood to identify their requirements. Thus, in the second study (Chapter 5), different 

techniques were explored to compare the gait of individuals with LLA and able-bodied 

individuals providing a better understanding of LLA function. Using the Eigenspectra, it was 

highlighted that variables such as vertical GRF, sagittal hip joint moment, and sagittal knee joint 

angle caused the differences, providing a better understanding of what distinguishes between 

individuals with and without a UTTA. It was also established that in this particular application of 

PCA the use of normalised temporal waveforms provided a better method to identify important 

variables and understanding the gait differences between individuals with UTTA and able-bodied 

individuals: 

- the normalisation ensured that all variables were considered of equal weighting regardless of 

the magnitude when using the covariance matrix, 

- the waveforms included the information of the scalar values and also additional information 

which suggests that the use of scalar values extracted from the temporal gait waveforms may 

be redundant, 

- PCA was sufficient without implementing DFA since DFA is supervised and seeks out 

differences, but instead, PCA highlights differences that occur in the gross structure which 

may be more suitable for clinical applications.  

In this study highlights that no single method would be suitable in every application but instead 

the method depends on the features of a data set which also been previously reported by Harper 

(2005). The technique established in this study could be implemented to provide a better 

understanding of LLA gait.  

Using temporal waveforms is more advantageous compared to scalar values since data spans the 

entire gait cycle, and so provides more information (Deluzio et al., 1997). However, in cases 

where only scalar values (discrete parameters) are available, the researcher should be aware that 

misclassification may be likely to occur (Schöllhorn et al., 2002). It should also be noted that the 

selection of relevant variables is important as demonstrated by this study. Using 7 scalar values 

did not improve the classification outcome, but speed which was one of the additional variables 
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added was identified as a discriminating variable between the gait of individuals with UTTA and 

able-bodied individuals. 

Studies often compare the variables of groups of people/condition to investigate whether they 

differ or not. In this study, it was demonstrated that multivariate statistical analyses could reveal 

if groups differ as well as order variables that cause the differences according to their contribution 

to this difference by means of the weighting factors. This may have great implications as it may 

highlight which variables need to be addressed during an intervention. Furthermore, the results of 

the PCA outcome revealed that the differences between the UTTA and able-bodied gait were in 

lower ranked PCs, indicating that PC1 does not necessarily always hold the variables of interest, 

although it holds the greatest variance. This highlights the importance of the remaining PCs, as 

previously discussed by Phinyomark et al. (2016). It should be noted, however, that lower PCs 

holds lower variance and thus variables may have smaller weighting factors. Thus, the difference 

observed in the lower ranked PCs may only make up very small, almost unidentifiable sections 

in a 2D profile of temporal waveforms. 

In this study, the main variables identified as discriminating factors between UTTA and able-

bodied gait were vertical GRF, sagittal hip joint moment and sagittal knee joint angle. Previous 

studies found that between UTFA and able-bodied gait the vertical GRF discriminated between 

the control limb and the prosthetic limb in PC1, while PC2 discriminated between the control 

limbs and both the limbs of the individuals with UTFA (Soares et al., 2016). The magnitude of 

the vertical GRF was found to be much smaller on the prosthetic limb, which may have been a 

protective mechanism to reduce loading on the residual limb. In the current study using PCA, no 

discrimination was observed in PC1, but a similar outcome was observed in PC2, which is most 

likely due to the varying levels of amputation since the current study investigated individuals with 

UTTA. 

The biomechanical variables included in studies 2-4 presented in Chapters 5-7 were commonly 

reported in the literature for the assessment and investigation of forward progression and dynamic 

stability of LLA gait. The majority of these variables were reported in the sagittal plane. However, 

it has been demonstrated that data in the frontal plane improves classification outcome and 

provides more information (Schöllhorn et al., 2002, Chapter 4). Thus, referring to a previous 

discussion point, data from multiple planes should be included. However, the use of data from 

different planes should be approached with caution since ambiguous and erroneous data such as 

soft tissue artefacts can negatively affect the results (Phinyomark et al., 2018). 
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Studies have used a combination of different machine learning algorithms, seeking the highest 

classification outcome (Afzal et al., 2017; Chen et al., 2013; Joshi & Hahn, 2016; Khan et al., 

2018; Miller et al., 2013; Pew & Klute, 2017). Thus, in future studies a combination of different 

methods may reveal more information and better understand of LLA gait, which could potentially 

help better treatment recommendations. Exploring different methods can help identify a technique 

to reduce time consumption during training and testing procedures of a machine learning 

algorithm as previously done by Woodward et al. (2016). In a clinical setting, a quick diagnosis 

would be more cost effective and could help reduce the financial burden on health institutions.  

Since clinical analysis is commonly based on patient-specific assessments, the third study 

presented in Chapter 6 was conducted to investigate if distinct gait characteristics can be identified 

for one individual with UTTA. Therefore, an individual with UTTA was discriminated from a 

group of able-bodied individuals. The covariance and correlation approaches of PCA were used 

during this analysis. The results demonstrated that some characteristics were common among 

individuals with UTTA whilst others were specific to an individual. These findings were similar 

to previous research which reported subject-specific gait characteristics of able-bodied 

individuals (Schöllhorn et al., 2002) as well as “functional groups” which describes a group of 

individuals that share similar characteristics (Horst et al., 2017). This study demonstrates that 

multivariate statistical analyses could aid as a patient-specify diagnosis tool in clinical settings. 

The outcome of the covariance and correlation matrices differed, which was due to the varying 

normalisation procedure of the two approaches. Previous studies that mentioned the use of both 

the covariance and the correlation matrices during gait analysis did not recommend one approach 

over the other (Badesa et al., 2014; Chau, 2001a; Daffertshofer et al., 2004). This study 

demonstrates the importance of using both approaches since the covariance matrix takes into 

consideration the range whilst the correlation matrix considers the magnitude of the data, 

providing important information. Thus the researcher was supplied with varying information from 

these approaches which were equally important since one approach indicated the differences 

between participants as a result of the variation of variables and the other as a result of the 

magnitude of variables. Therefore, where possible both approaches should be implemented.  

In the literature, it is commonly reported that compensatory mechanisms in individuals with LLA 

lead to asymmetrical gait, which is associated with secondary health issues such as lower back 

pain (Kulkarni et al., 2005) and arthritis in the intact hip and knee joint (Burke et al., 1978). 

Recent studies, however, have found that asymmetrical gait may play a functional role in well-

established individuals with LLA. Therefore, the fourth and final study presented in Chapter 7 

investigated the effects of attempted symmetrical step parameters on the dynamic stability of 
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individuals with UTTA. Furthermore, the multivariate statistical analysis, PCA, was used to 

establish if underlying mechanisms of these effects can be identified. The main finding of this 

study was that asymmetry was preserved in UTTA gait although symmetrical step parameters 

were attempted, which was also reflected by the lack of clustering of conditions in the PCA 

outcome.  

In previous research, it was found that individuals with LLA increased step frequency and 

decreased step length in order to maintain stability (Hak et al., 2013c). In the current study, 

attempting symmetrical step length reduced BW MoS. Previous studies highlight that shorter step 

length on the intact limb is a compensatory mechanism attributed to reduced push-off capacity on 

the prosthetic limb since attempting symmetrical step length increased the step on the intact limb 

this mechanism was removed, explaining the reduction of BW MoS observed. Thus, the results 

of this study confirmed previous findings by Hak et al. (2013c) who suggested that temporal-

spatial asymmetry may be playing a functional role.  

The PCA outcome further revealed individual clusters comprised of the conditions of the same 

individual with UTTA, confirming previous results (Schöllhorn et al., 2002; Chapter 6). The 

clusters also highlighted the difference between the prosthetic and the intact limb of individuals 

with UTTA previously seen in the DFA outcome presented in Chapter 5. 

A limitation of this study was the small sample size used during PCA. However, the investigation 

of pathological groups in gait analysis is often performed using a small sample since 

characteristics of certain pathology place a constraint in finding individuals who are suited for the 

analysis. Although larger sample size seems to be more reliable, the first study of this PhD, 

presented in Chapter 4, introduces a method which could be used to optimise a machine learning 

algorithm and overcome the dangers of overfitting even when working with small sample size. 

However further research is needed, to establish the specific number of participants which would 

satisfy the criteria for a reliable analysis. 

This thesis demonstrates that multivariate statistical analyses such as PCA can help understand 

certain phenomenon of gait which were previously not well understood. In a clinical environment, 

such findings have the potential to improve treatment recommendations. In individuals with LLA, 

it may assist in the choice of a suitable prosthesis or help set rehabilitation goals. Furthermore, 

these methods could be used to define the cost functions of a computer simulation, which can 

help facilitate individualised treatment by identifying the effects of certain factors on the computer 

simulation. In the case where the computer simulation reveals an outcome, which is sought for, it 

could be translated into clinical practice to inform treatment. The advantage of using multivariate 
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statistical analyses to inform a computer simulation means that a possible treatment outcome 

could be predicted, prior to applying the treatment to the patient. Thus, it can be identified if a 

treatment may be suitable or an alternative is required.  

8.2 Conclusion 

In conclusion, LLA and able-bodied gait differed as well as prosthetic and intact limbs differed. 

Individuals with UTTA reveal common group gait characteristics and unique subject-specific gait 

characteristics. Principal Component Analysis could be used to compare between individuals at 

group and subject-specific levels, providing a better understanding of gait. In a clinical setting, 

PCA may be a useful assessment tool. 

Different multivariate statistical analyses and machine learning algorithms can be used to assess 

and understand gait, however there is not a single best method that can be standardised for all 

applications of gait analysis. Instead, the best performing algorithm depends on the features of a 

data set. The methods of this research have demonstrated that certain techniques can be 

implemented to improve classification accuracies of machine learning algorithms providing a 

better understanding of pathological gait. For example, the training and prediction data sets of a 

machine learning algorithm should be optimised using an iteration procedure when working with 

a small sample size to overcome issues of overfitting. Furthermore, entire temporal waveforms 

should be implemented instead of discrete parameters since they provide more information and 

characteristics of gait data are considered. Where entire temporal waveforms are not available the 

discrete parameters should be selected with care. Also, both the correlation and the covariance 

approaches of PCA should be implemented since they reveal information regarding magnitude 

and variance of the data which can both be relevant during the treatment of a patient. When using 

the covariance matrix, variables need to be normalised since scaling of variables will influence 

the classification accuracy.  

This research demonstrates that in a clinical setting the analysis involving all possible variables 

resulted in comprehensive ranking order. This is in contrast with other studies which compared a 

lower number of variables, therefore, having a limited scope of the problem. The ability to 

investigate a large number of variables and establish the order in which these deviate from what 

is considered healthy for a particular group of people with pathological gait, allows treatment to 

be targeted at particular variables which have been highlighted as an issue. Additionally, ranking 

of variables can be identified at patient-specific level. These findings could have great impact in 

the medical world, since they present a potential for tailored treatment thus in turn the treatment 

outcome may be more successful improving patient’s quality of life.  
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Appendix 1 – Multivariate Statistical Analyses Codes 

Appendix 1.1 Principal Component Analysis Code 

Appendix 1.1.1 – Covariance Approach  

The following code was written in Matlab and illustrates how to upload data using the dlmread 

function, followed by developing a training data base and reshaping the data prior to the 

application of PCA. 

 
%Upload data 

folder_data = 'E:\Experimental Studies\Forward Progression and Dynamic 

Balance\Results'; 

  

% Select an amputee at a timE: 

amputee_array = [1:6 8:12]; 

Volunteers_No = 11; 

  

  

%Select Group - PROSParticipants 

counter = 1; 

for person_No = amputee_array 

     

    File_name1 = ['PROSParticipant00',num2str(person_No),'_NormalPROS.txt']; 

    File_name2 = 

['PROSParticipant00',num2str(person_No),'_NormalNONPROS.txt']; 

     

    A_pro = dlmread([folder_data,'\',File_name1],'\t','B6..AO106'); 

    A_non_pro = dlmread([folder_data,'\',File_name2],'\t','B6..AO106'); 

     

    A_pro = A_pro(:,[1:3 7:9 13:15 19:2:40]); 

    A_non_pro = A_non_pro(:,[1:3 7:9 13:15 19:2:40]); 

     

    %Define measurement (columns in matrix) 

    for measurement_No = 1:size(A_pro,2) 

        training_data_base_non_pro(:,measurement_No,counter) = 

A_non_pro(:,measurement_No); 

        training_data_base_pro(:,measurement_No,counter) = 

A_pro(:,measurement_No); 

    end 

    counter = counter+1; 

end 

  

  

training_data_base(:,:,1:Volunteers_No) = training_data_base_pro; 

training_data_base(:,:,(Volunteers_No+1):2*Volunteers_No) = 

training_data_base_non_pro; 

  

%Define condition - PROSParticipants 

PROSNormal = size(training_data_base,3); 

  

  

%Upload data 

folder_data = 'E:\Experimental Studies\Forward Progression and Dynamic 

Balance\Results'; 

  

% Select total number of volunteers: 

No_volunteers = 30; 

counter = 1; 

%Select Group - PROSParticipants 

for person_No = [1 3 5:32] 

     

    File_name3 = ['CONParticipant00',num2str(person_No),'_NormalL.txt']; 



 

Chapter10: Appendices 

 
 

198 
 

    File_name4 = ['CONParticipant00',num2str(person_No),'_NormalR.txt']; 

     

    A_right = dlmread([folder_data,'\',File_name3],'\t','B6..AO106'); 

    A_left = dlmread([folder_data,'\',File_name4],'\t','B6..AO106'); 

     

    A_right =  A_right(:,[1:3 7:9 13:15 19:2:40]); 

    A_left = A_left(:,[1:3 7:9 13:15 19:2:40]); 

     

    %Define measurement (columns in matrix) 

    for measurement_No = 1:size(A_left,2) 

        training_data_base_left(:,measurement_No,counter) = 

A_left(:,measurement_No); 

        training_data_base_right(:,measurement_No,counter) = 

A_right(:,measurement_No); 

    end 

    % 

    counter = counter + 1; 

end 

  

training_data_base(:,:,(PROSNormal+1):(PROSNormal + No_volunteers)) = 

training_data_base_right; 

training_data_base(:,:,(PROSNormal + 1 + No_volunteers):(PROSNormal + 

2*No_volunteers)) = training_data_base_left; 

  

% Normalise the measurements: 

training_data_base = normalise_data(training_data_base); 

  

%Reshape the data so that one 'run' ends up being one long array of 

numbers(all measurements are put into one string of data): 

reshaped_training_data_base = 

reshape(training_data_base,size(training_data_base,1)*size(training_data_base,

2),size(training_data_base,3)); 

  

%Undertake Principal Component Analysis of the training data base: 

  

% Centre the data set: 

temp2 = mean(reshaped_training_data_base,2); 

centred_data_set = (reshaped_training_data_base - 

temp2*ones(1,size(reshaped_training_data_base,2)))'; 

  

% Calculate the PCA scores and eigenvectors: 

L = centred_data_set*centred_data_set'; % L is the covariance matrix C=A*A'. 

[V D] = eig(L); % Diagonal elements of D are the eigenvalues for both L=A'*A 

and C=A*A'. 

  

% Calculate the pseudo inverse (because centred_data_set2'*V is not a 

% square matrix) to access the eigenvectors: 

temp = centred_data_set'*V; 

eigendata = pinv(temp'); 

  

% Calculate the PCA scores for all measurements: 

scores = temp'*centred_data_set'; 

scores = flipud(scores); 

eigendata = fliplr(eigendata); 
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Appendix 1.1.1.1 – Normalisation of Data for Covariance Matrix  

Since the data is comprised of variables with different units, this needs to be accounted for,thus 

the data has been normalised using following code. 

 

function y = normalise_data(X); 

  

% data in body weight: 

max_magnitude = max(max(max(abs(X(:,[1:3],:))))); 

for limb = 1:size(X,3) 

  X(:,1:3,limb) = (1/max_magnitude)*X(:,1:3,limb); 

end 

  

% data in meters: 

max_magnitude = max(max(max(abs(X(:,[4:6 10],:))))); 

for limb = 1:size(X,3) 

  X(:,[4:6 10],limb) = (1/max_magnitude)*X(:,[4:6 10],limb); 

end 

  

% data in meters/s: 

max_magnitude = max(max(max(abs(X(:,[7:9 11],:))))); 

for limb = 1:size(X,3) 

  X(:,[7:9 11],limb) = (1/max_magnitude)*X(:,[7:9 11],limb); 

end 

  

% data in Watt/kg: 

max_magnitude = max(max(max(abs(X(:,[12 15 18],:))))); 

for limb = 1:size(X,3) 

  X(:,[12 15 18],limb) = (1/max_magnitude)*X(:,[12 15 18],limb); 

end 

  

% data in N.m/kg: 

max_magnitude = max(max(max(abs(X(:,[13 16 19],:))))); 

for limb = 1:size(X,3) 

  X(:,[13 16 19],limb) = (1/max_magnitude)*X(:,[13 16 19],limb); 

end 

  

% data in degrees: 

max_magnitude = max(max(max(abs(X(:,[14 17 20],:))))); 

for limb = 1:size(X,3) 

  X(:,[14 17 20],limb) = (1/max_magnitude)*X(:,[14 17 20],limb); 

end 

  

y = X;  
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Appendix 1.1.2 – Correlation Approach  

Principal Component Analysis can be computed using a covariance and correlation matrices. The 

following code illustrates how to implement the correlation matrix. If the variables to hand have 

different units one may choose to use the correlation matrix instead of normalising the data to 

units and using the covariance matrix. The normalisation procedure for both methods differs thus 

the answers will differ.  

 

% Divide by the standard deviation in order to diagonalise the correlation 

matrix rather than the covariance matrix: 

%centred_data_set2 = 

centred_data_set./((std(centred_data_set')')*ones(1,size(centred_data_set,2)))

; 

centred_data_set = 

centred_data_set./(ones(size(centred_data_set,1),1)*std(centred_data_set)); 

  

centred_data_set(isinf(centred_data_set)) = 0; 

centred_data_set(isnan(centred_data_set)) = 0; 

  

% Calculate the PCA scores and eigenvectors: 

L = centred_data_set*centred_data_set'; % L is the correlation matrix C=A*A'. 

[V D] = eig(L); % Diagonal elements of D are the eigenvalues for both L=A'*A 

and C=A*A'. 

  

% Calculate the pseudo inverse (because centred_data_set2'*V is not a 

% square matrix) to access the eigenvectors: 

temp = centred_data_set'*V; 

eigendata = pinv(temp'); 

  

% Calculate the PCA scores for all measurements: 

scores = temp'*centred_data_set'; 

scores = flipud(scores); 

eigendata = fliplr(eigendata); 

 

  



 

Chapter10: Appendices 

 
 

201 
 

Appendix 1.2 Discriminant Functional Analysis Code 

The following code was used to compute DFA. 

 

function [U,V,eigenvals] = DFA(X,group,maxfac) 

%[U,V,eigenvals] = DFA(X,group,maxfac) 

% Performs DISCRIMINANT FUNCTION ANALYSIS 

% 

% INPUT VARIABLES 

% 

% X       = data matrix that contains m groups 

%         Dim(X) = [N x M]. All columns must be independent. 

% group     = a vector containing a number corresponding 

%         to a group for every row in X. If you have  

%         m groups there will be numbers in the range  

%         1:m in this vector. 

% maxfac     = the maximum number of DFA factors extracted 

% 

% OUTPUT VARIABLES 

% 

% U       = DFA scores matrix (Dim(U) = [N x maxfac]) 

%         the eigenvalues are multiplied with each column 

%         in this matrix. 

% V       = DFA loadings matrix, Dim(V) = [M x maxfac] 

% eigenvals   = a vector of DFA eigenvalues 

% 

% 

% Copyright, B.K. Alsberg, 1996 

  

[T,W]=TW_gen(X,group); 

  

B = T-W; 

  

invW = inv(W); 

P = invW*B; 

  

[vec1,val]=eig(P); 

d=(diag(val))'; 

eigenvals = d(1:maxfac); 

  

% Here we sort the eigenvectors w.r.t. the eigenvalues: 

[dummy,idx]=sort(-eigenvals); 

vec = vec1(:,idx); 

eigenvals = eigenvals(idx); 
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%% V is the matrix of canonical variates directions 

V = vec(:,1:maxfac); 

  

%% U is the matrix of scores 

U = X*V; 

  

% new line to multiply eigenvalues to DFA directions: 

U = U*diag(eigenvals); 

U = real(U); 
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Appendix 1.3 – Euclidean Distance Codes 

The following code was used to calculate the standard deviation in order to quantify deviation. 

Appendix 1.3.1 – Euclidean Distance from Centre of Cloud 

  figure(5) 

  clf 

  for PC_score = 1:6 

    subplot(2,3,PC_score) 

    %subplot(2,2,PC_score) 

    imagesc(reshaped_eigendata(:,:,PC_score)) 

    xlabel('Measured variables','FontName','Times','FontSize',15) 

    ylabel('Gait cycle','FontName','Times','FontSize',15) 

    title(['Amputee No. ',num2str(amputee_No),', Eig. rank = 

',num2str(PC_score)],'FontName','Times','FontSize',15) 

  end 

 

Appendix 1.3.2 – Euclidean Distance from Origin of Principal Components 

  figure(6) 

  clf 

  for PC_score = 1:6 

    subplot(2,3,PC_score) 

    %subplot(2,2,PC_score) 

    temp = mean(abs(reshaped_eigendata(:,:,PC_score))); 

    [a b] = sort(temp,'descend'); 

    bar(temp(b),'w') 

    set(gca,'XTick',(1:20)) 

    for uu = 1:20 

      lab{uu} = num2str(b(uu)); 

    end 

    set(gca,'XTicklabel',lab') 

    xlabel('Measured variables','FontName','Times','FontSize',15) 

    ylabel('Weighting factor','FontName','Times','FontSize',15) 

    title(['Amputee No. ',num2str(amputee_No),', Eig. rank = 

',num2str(PC_score)],'FontName','Times','FontSize',15) 

    axis tight 

  end 
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Appendix 2 – Supplementary Results of Study 2 Presented in Chapter 5 

Appendix 2.1 – Results of Scalar Values, Not Normalised 

 

Figure 10.1 PCA outcome (a, c) and Eigenspectrum (b, d) comparing between individuals with 

UTTA and able-bodied individuals using five scalar values (a, b) and seven scalar values (c, d) 

not normalised to units. 
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Figure 10.2 DFA classification outcome (a, c) and DF spectrum (b, d) of individuals with UTTA 

and able-bodied individuals using five scalar values (a, b) and seven scalar values (c, d), not 

normalised to units. In the DF spectrum, each bar is equivalent to a measured variable from a DF 

curve, integrated over all spectral frequencies. 
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Appendix 2.2 – Results of Temporal Waveforms and Seven Scalar Values, 

Normalised 

 

Figure 10.3 PCA (a) outcome and Eigenspectrum (b, c) of individuals with UTTA and able-

bodied individuals using temporal waveforms and seven scalar values, normalised to units. 
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Figure 10.4 DFA classification outcome and DF spectrum comparing between individuals with 

UTTA and able-bodied individuals using temporal waveforms and seven scalar values. 
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Appendix 3 – Supplementary Results of Study 3 Presented in Chapter 6 

Appendix 3.1 – Covariance and Correlation Matrices for Comparing One 

Individuals with Unilateral Trans-Tibial Amputation with a Group of Able-Bodied 

Individuals 

 

 

Figure 10.5 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 3. 
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Figure 10.6 PCA outcome using the correlation approach (a), the corresponding Eigenspectra (b), 

the Euclidian distance from the origin of the principal component (c) and the Euclidian distance 

from the centre of the cloud of individual with UTTA number 3. 



 

Chapter10: Appendices 

 
 

210 
 

 

 

Figure 10.7 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 4. 
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Figure 10.8 PCA outcome using the correlation approach (a), the corresponding Eigenspectra (b), 

the Euclidian distance from the origin of the principal component (c) and the Euclidian distance 

from the centre of the cloud of individual with UTTA number 4. 



 

Chapter10: Appendices 

 
 

212 
 

 

 

Figure 10.9 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 5. 
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Figure 10.10 PCA outcome using the correlation approach (a), the corresponding Eigenspectra 

(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian 

distance from the centre of the cloud of individual with UTTA number 5. 
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Figure 10.11 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 6. 
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Figure 10.12 PCA outcome using the correlation approach (a), the corresponding Eigenspectra 

(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian 

distance from the centre of the cloud of UTTA individual with number 6. 
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Figure 10.13 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 7. 
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Figure 10.14 PCA outcome using the correlation approach (a), the corresponding Eigenspectra 

(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian 

distance from the centre of the cloud of individual with UTTA number 7. 
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Figure 10.15 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 8. 
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Figure 10.16 PCA outcome using the correlation approach (a), the corresponding Eigenspectra 

(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian 

distance from the centre of the cloud of individual with UTTA number 8. 
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Figure 10.17 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 9. 
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Figure 10.18 PCA outcome using the correlation approach (a), the corresponding Eigenspectra 

(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian 

distance from the centre of the cloud of individual with UTTA number 9. 
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Figure 10.19 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 10. 
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Figure 10.20 PCA outcome using the correlation approach (a), the corresponding Eigenspectra 

(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian 

distance from the centre of the cloud of individual with UTTA number 10. 
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Figure 10.21 PCA outcome using the covariance approach with data normalised to units (a), the 

corresponding Eigenspectra (b), the Euclidian distance from the origin of the principal component 

(c) and the Euclidian distance from the centre of the cloud of individual with UTTA number 11. 

 



 

Chapter10: Appendices 

 
 

225 
 

 

 

Figure 10.22 PCA outcome using the correlation approach (a), the corresponding Eigenspectra 

(b), the Euclidian distance from the origin of the principal component (c) and the Euclidian 

distance from the centre of the cloud of individual with UTTA number 11. 
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Appendix 4 – Supplementary Results of Study 4 Presented in Chapter 7 

Appendix 4.1 – Unilateral Trans-Tibial Amputation During Attempted Symmetrical 

Step Parameters Compared to Self-Selected Speed 

 

Figure 10.23 PCA outcome (a) and Eigenspectrum (b) using the covariance approach to compare 

individuals with UTTA at NORM and attempted SYMSL. The different colours indicate the limbs, 

where the prosthetic limb is shown by green and blue numbers, and intact limb by red and black 

numbers, where the numbers refer to the individual. 

 

Figure 10.24 (a) PCA outcome and (b) Eigenspectrum using the correlation approach to compare 

individuals with UTTA at NORM and attempted SYMSL. The different colours indicate the limbs, 

where the prosthetic limb is shown by green and blue numbers, and intact limb by red and black 

numbers, where the numbers refer to the individual. 
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Figure 10.25 PCA outcome (a) and Eigenspectrum (b) using the covariance approach to compare 

individuals with UTTA at NORM and attempted SYMSF. 

 

Figure 10.26 PCA outcome (a) and Eigenspectrum (b) using the correlation approach to compare 

individuals with UTTA at NORM and attempted SYMSF.  
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Figure 10.27 PCA outcome (a) and Eigenspectrum (b) using the covariance approach to compare 

individuals with UTTA at NORM and attempted SYMSL+SF. 

 

Figure 10.28 PCA (a) outcome and Eigenspectrum (b) using the correlation approach to compare 

individuals with UTTA at NORM and attempted SYMSL+SF. 
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Appendix 4.2 – One Individual with a Unilateral Trans-Tibial Amputation During 

Symmetrical Step Length Compared to a Group of Individuals with a Unilateral 

Trans-Tibial Amputation During Self-Selected Walking Speed. 

 

Figure 10.29 Individual with UTTA number 1 discriminated using the covariance matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of the individual with UTTA 

number 1. 

 

Figure 10.30 Individual with UTTA number 1 discriminated using the correlation matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of the individual with UTTA 

number 1. 
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Figure 10.31 Individual with UTTA number 2 discriminated using the covariance matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 2. 

 

Figure 10.32 Individual with UTTA number 2 discriminated using the correlation matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 2. 
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Figure 10.33 Individual with UTTA number 3 discriminated using the covariance matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 3. 

 

Figure 10.34 Individual with UTTA number 3 discriminated using the correlation matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 3. 
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Figure 10.35 Individual with UTTA number 4 discriminated using the covariance matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 4. 

 

Figure 10.36 Individual with UTTA number 4 discriminated using the correlation matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 4. 
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Figure 10.37 Individual with UTTA number 5 discriminated using the covariance matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 5. 

 

Figure 10.38 Individual with UTTA number 5 discriminated using the correlation matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 5. 
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Figure 10.39 Individual with UTTA number 6 discriminated using the covariance matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 6. 

 

Figure 10.40 Individual with UTTA number 6 discriminated using the correlation matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 6. 
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Figure 10.41 Individual with UTTA number 7 discriminated using the covariance matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 7. 

 

Figure 10.42 Individual with UTTA number 7 discriminated using the correlation matrix during 

attempted SYMSL (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 7. 
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Appendix 4.3 – One Individual with a Unilateral Trans-Tibial Amputation During 

Symmetrical Step Frequency Compared to a Group of Individuals with a Unilateral 

Trans-Tibial Amputation During Self-Selected Walking Speed. 

 

Figure 10.43 Individual with UTTA number 1 discriminated using the covariance matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 1. 

 

Figure 10.44 Individual with UTTA number 1 discriminated using the correlation matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 1. 
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Figure 10.45 Individual with UTTA number 2 discriminated using the covariance matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 2. 

 

Figure 10.46 Individual with UTTA number 2 discriminated using the correlation matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 2. 
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Figure 10.47 Individual with UTTA number 3 discriminated using the covariance matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 3. 

 

Figure 10.48 Individual with UTTA number 3 discriminated using the correlation matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 3. 
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Figure 10.49 Individual with UTTA number 4 discriminated using the covariance matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 4. 

 

Figure 10.50 Individual with UTTA number 4 discriminated using the correlation matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 4. 
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Figure 10.51 Individual with UTTA number 5 discriminated using the covariance matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 5. 

 

Figure 10.52 Individual with UTTA number 5 discriminated using the correlation matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 5. 
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Figure 10.53 Individual with UTTA number 6 discriminated using the covariance matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 6. 

 

Figure 10.54 Individual with UTTA number 6 discriminated using the correlation matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 6. 
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Figure 10.55 Individual with UTTA number 7 discriminated using the covariance matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 7. 

 

Figure 10.56 Individual with UTTA number 7 discriminated using the correlation matrix during 

attempted SYMSF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 7. 
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Appendix 4.4 – One Individual with a Unilateral Trans-Tibial Amputation during 

Symmetrical Step Length and Step Frequency compared to a Group of Individuals 

with a Unilateral Trans-Tibial Amputation during Self-Selected Walking Speed. 

 

Figure 10.57 Individual with UTTA number 1 discriminated using the covariance matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 1. 

 

Figure 10.58 Individual with UTTA number 1 discriminated using the correlation matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 1. 
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Figure 10.59 Individual with UTTA number 2 discriminated using the covariance matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 2. 

 

Figure 10.60 Individual with UTTA number 2 discriminated using the correlation matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 2. 
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Figure 10.61 Individual with UTTA number 3 discriminated using the covariance matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 3. 

 

Figure 10.62 Individual with UTTA number 3 discriminated using the correlation matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 3. 
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Figure 10.63 Individual with UTTA number 4 discriminated using the covariance matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 4. 

 

Figure 10.64 Individual with UTTA number 4 discriminated using the correlation matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 4. 
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Figure 10.65 Individual with UTTA number 5 discriminated using the covariance matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 5. 

 

Figure 10.66 Individual with UTTA number 5 discriminated using the correlation matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 5. 
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Figure 10.67 Individual with UTTA number 6 discriminated using the covariance matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 6. 

 

Figure 10.68 Individual with UTTA number 6 discriminated using the correlation matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 6. 
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Figure 10.69 Individual with UTTA number 7 discriminated using the covariance matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 7. 

 

Figure 10.70 Individual with UTTA number 7 discriminated using the correlation matrix during 

attempted SYMSL+SF (black squares) from a group of individuals with UTTA during NORM (red 

diamonds). Diamonds with black circle illustrate the NORM trial of individual with UTTA 

number 7. 
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Appendix 5 - Participant Information Sheet for and Consent Form for Study 1 

Presented in Chapter 4 

Appendix 2a 

Participant Statement of Consent to Participate in the Investigation Entitled: 

 

Biomechanical adaptations to barefoot running in habitually shod runners. 

 

1)  I, _______________________________agree to partake as a participant in the above 

study. 

 

2)  I understand from the participant information sheet, which I have read in full, and from 

my discussion(s) with_____________________ that this will involve me running in three 

conditions: with your normal running shoes (SHOD), with minimal shoes i.e. plimsolls (MIN) 

and without shoes i.e. barefoot (BRFT) and then a repeat of these conditions with a change in 

direction, in the biomechanics laboratory on three occasions for duration of approximately one 

hour. 

 

3)  It has also been explained to me by______________________that the risks and side 

effects which may result from my participation are as follows: allergic reaction to sticky tape, 

falling from a treadmill and muscle pain and/or strain due to exercising.  

 

4)  I confirm that I have had the opportunity to ask questions about the study and, where I 

have asked questions, these have been answered to my satisfaction. 

 

5)  I undertake to abide by University regulations and the advice of researchers regarding 

safety.  

 

6)  I am aware that I can withdraw my consent to participate in the procedure at any time and 

for any reason, without having to explain my withdrawal and that my personal data will be 

destroyed. 
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7) I understand that any personal information regarding me, gained through my participation in 

this study, will be treated as confidential and only handled by individuals relevant to the 

performance of the study and the storing of information thereafter. Where information concerning 

myself appears within published material, my identity will be kept anonymous.  

 

8)  I confirm that I have had the University’s policy relating to the storage and subsequent 

destruction of sensitive information explained to me. I understand that sensitive information I 

have provided through my participation in this study, in the form of personal contact details and 

motion capture data will be handled in accordance with this policy. 

 

9) I confirm that I have completed the health questionnaire and know of no reason, medical or 

otherwise that would prevent me from partaking in this research. 

 

Participant signature:        Date: 

 

 

Independent witness signature:       Date: 

 

 

Primary Researcher signature:       Date: 

 



 

Participant information sheet date of issue:     [2nd May 2017] 

Participant information sheet version number: [PIS007_CON] 

Appendix 6 – Participant Information Sheet for Studies 2-4 Presented in Chpaters 

5-7 

Appendix 6.1 – Participant Information Sheet for Prosthetic User 

 

 

PARTICIPANT INFORMATION SHEET FOR PROSTHESIS USER  

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee 

walking gait and dynamic stability. 

IRAS ID: 203582 

Name of Researcher: Miss Maria Bisele 

Contact Details: Email maria.bisele2014@my.ntu.ac.uk  

We would like to invite you to take part in a research study. Before you decide, we would like 

you to understand why the research is being done and what it would involve for you. 

Please take time to carefully read the following information and talk to others about the study if 

you wish. 

 

Part 1 will tell you about the purpose of the study and what will happen if you decide to take part. 

Part 2 gives you more detailed information about the conduct of the study. 

Please ask us if there is anything that is not clear or if you would like more information. We would 

like to know if you would like to take part in this research study. You have up to two weeks 

following your appointment to decide whether or not you would like to take part.  

 

PART 1 

What is the purpose of this study? 

People with a lower limb amputation have been shown to fall more often when compared to age-

matched individuals without lower limb amputation. Prosthesis users adopt certain compensatory 

mechanisms to have more efficient gait. Rehabilitation intervention are aimed to re-educate 

amputees to abandon these mechanisms and walk in a manner similar to non-amputees. However 

it has become apparent that these mechanisms facilitate the amputee’s balance thus changing them 

would result in the reduction of balance leading to an increased risk of falling. Therefore, the aim 

of this study is to investigate whether walking in a manner which is similarly to non-amputees 

causes a reduction of balance in amputees. 

mailto:maria.bisele2014@my.ntu.ac.uk
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Participant information sheet version number: [PIS007_CON] 

Why have I been invited? 

You have been invited to take part in this study as you fit the criteria required to participate in this 

study. 

 

Do I have to take part? 

No. Participation in this study is entirely voluntary. 

If you do decide to take part in this study, you will be free to stop taking part at any time without 

giving a reason. This will not affect your care, your future treatment or your legal rights in any 

way. 

 

What will happen if I decide to take part? 

If you decide to take part in the study then great! You will need to contact Miss Maria Bisele 

(maria.bisele2014@my.ntu.ac.uk, Dr. Cleveland Barnett 01158483824) to let her know you are 

keen to take part and you will then be invited to the Biomechanics Laboratory, at Nottingham 

Trent University. You will be asked to bring along a pair of shorts, a t-shirt or vest and some 

comfortable shoes you can walk in. No high heels are permitted in the laboratory. If you do not 

have shorts, they will be provided for you. You are also advised to bring along food and drink. 

When you arrive, you will be asked to change into your shorts and t-shirt. Reflective markers will 

be placed on your skin with double sided sticky tape. The markers are about the size of a marble, 

made of polystyrene and covered in reflective tape. Electromyography electrodes will also be 

placed on your skin. To place these a standardised skin preparation will be performed during 

which the area of interest will be shaved until free of hair, the surface will then be lightly abrading 

to remove dead skin cells and wiped clean with alcohol to remove oils from the skin. Once 

markers and the electrodes are in place you will be asked to perform a gait analysis task (which 

is described in more details in the Section ‘What do I have to do’). 

 

Are there any costs involved? 

No. The University will reimburse any costs that you incur as a result of travelling to the 

University at a standard University rate of 25p per mile travelled if coming by car. Your fare will 

be reimbursed if you come by train or taxi. 
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Participant information sheet version number: [PIS007_CON] 

What do I have to do? 

The testing will be conducted over seven visits, you will be asked to attend the first two sessions 

for a gait analysis test and if you feel fit to it you will be asked to attend an additional five sessions 

for a dynamometer test. The overall time commitment of the your visits should not exceed 32 

hours in a four week period. 

During visit 1.(gait analysis) you will be walking across a 15m walkway at self-selected speed. 

This will be repeated for each leg five times. You are then asked to repeat these trials at both self-

selected slow and self-selected fast speeds. 

If you are a non- prosthesis user, you will be equipped with an ankle-foot orthosis and the same 

tasks are repeated. 

During visit 2. (gait analysis) step length and step frequencies measured during the visit 1. are 

altered by the researcher so that you will follow a walking pattern which is not habitual to you. 

If you are used to conducting vigorous-intensity activity without experiencing any complications 

and distress, and you decide you will carry on, you will be asked to come in for an additional five 

visits to conduct a dynamometer test using an isokinetic dynamometer as displayed below in 

Figure 1. During this test maximum strength of hip, knee and ankle joints are measured. However 

if you do not wish to conduct any further testing, it is not a problem. Participation in this study is 

entirely voluntary and you are free to withdraw at any time without giving a reason. 

During visit 3. and 4. you will be familiarised with the use of the dynamometer. During visit 5., 

6. and 7. you will perform the test. The dynamometer test involves you being tightly strapped into 

a chair whilst pushing or pulling your leg with full force against the resistance of the crank arm 

which extends from the dynamometer. The strength exerted during the actions of pulling and 

pulling are recorded. This process will be repeated for the extension and flexion of hip, knee and 

ankle joints and in various seating positions e.g. upright and lying down flat on your back. 
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Figure 1. Dynamometer. 

 

Are there any risks involved? 

When performing the gait analysis tasks, you may feel unstable. However, you will not be asked 

to perform any tasks that you feel are not within your capabilities. 

It is extremely rare but one possible side effect of sticky tape being placed on the skin is a skin 

reaction to the tape. Your skin will be checked when the markers have been removed and, if there 

has been any reaction, appropriate treatment would be recommended. There is also a miniscule 

risk of an infection because of the skin preparation which is done to place the EMG electrodes, 

however new equipment will be used during each session to minimise the chance of this 

happening.  

You may experience fatigue or tiredness associated with walking so you will be advised to bring 

along food and drink, and will be afforded generous rest periods in order to recuperate. 

Prosthesis users may experience abrasion at the socket-residuum interface. Thus you will be asked 

to bring your usual sock and liner and you will be able to remove/attach your prosthetic at your 

leisure. 

Non- prosthesis user may experience musculoskeletal soreness and abrasions from the use of the 

ankle-foot orthosis. You will be afforded generous rest periods in order to recuperate. 

When performing the dynamometer testing, you will be required to exert multiple maximal 

voluntary hip, knee and ankle extension and flexion tasks which may result in some fatigue. You 

may also feel short of breath after efforts and may feel some delayed muscle soreness following 

each session. You will be afforded generous rest periods in order to recuperate and will be invited 

to stop the data collection sessions if abrasions occur and impact upon your ability to perform the 

tasks pain free. 
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Being tightly constrained by straps keeping you in place and repeated application of force may 

result in soreness, which will be prevented or reduced by providing additional cushioning.  

There is a risk that you may faint or experience a heart attack during the dynamometer testing due 

to the nature of the physical activity, however it is very unlikely assuming you meet the required 

inclusion criteria. First aiders are available during the duration of the testing protocol in the events 

of any unexpected emergencies. If you are suffering from any cardiovascular complaints you do 

not meet the inclusion/exclusion criteria and are unable to participate in this study due to the risks 

involved with exercising on a dynamometer. 

The correct health and safety measures are taken at all times in the Biomechanics Laboratory and 

first aiders from the sport’s department are on site at all times during the testing period. First aider 

will be sampled from the following list of current first aiders within the department and on site: 

Terry Campion (Laboratory Technician in Sport Science, First Aid Certificate), Alan MaNally 

(Reader in Bioscience, First Aid Certificate), Paul Lester (PhD Student and Hourly Paid Lecturer 

in in Sport and Exercise Science, TQUK Level 2 Award in Emergency First Aid at Work (QCF)). 

 

What happens when the research study stops? 

The results from the study will be published in scientific and clinical publications as well as being 

presented at international conferences. You will not be identified in any of this material to 

preserve your confidentiality. You may request a copy of any published results from Miss Maria 

Bisele. 

 

What if there is a problem? 

Any complaint about the way you have been dealt with during the study or any possible harm you 

might suffer will be addressed. Please contact Professor Mary Nevill, Head of Department of 

Sport Science (mary.nevill@ntu.ac.uk, 011584883918) if this is the case. 

If the information in Part 1 has interested you and you are considering taking part in the study, 

please read on to Part 2 for additional details. 
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PART 2 

Confidentiality 

All information and data from the study will be kept strictly confidential., Your name and details 

will not be disclosed at any time and you will be assigned a code number to identify you in the 

study. All data and information will be kept on record electronically on a password protected 

computer and in locked filling cabinets. 

Miss Maria Bisele has responsibility to safeguard the data and information and only those 

individuals involved with the study will have access to these sources. 

All data and information will be kept by Miss Maria Bisele at Nottingham Trent University for 

the duration of the study and 5 years beyond as to conform with regulations related to challenges 

that could be made in terms of publication of data stemming from this study. 

In case that you withdraw from the study, data already collected with consent will be retained and 

used in the study.  

Please be aware that, when giving consent to participate, you are agreeing with the conditions 

outlined above. 

 

Your Rights 

Your participation in this study is voluntary. You are allowed to withdraw from the study at any 

time without reason. This will not affect any future treatment or any legal rights. Withdrawal is 

totally without prejudice. 

For more advice on the project please contact Miss Maria Bisele, email 

maria.bisele2014@my.ntu.ac.uk. 

 

Trial-Related Injury 

It is unlikely that you will experience an injury or illness as a result of taking part in this research 

study. However, indemnity is provided by the Nottingham Trent University and any 

compensation will be as per the University’s usual standards. For more information please contact 

Miss Maria Bisele. 

 

Who is organising the study? 

Miss Maria Bisele, School of Science and Technology, Nottingham Trent University.  

Thank you for your time and I look forward to speaking to you soon. 

Miss Maria Bisele 

School of Science and Technology 

Nottingham Trent University 

mailto:maria.bisele2014@my.ntu.ac.uk
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Appendix 6.2 – Participant Information Sheet for Non-Prosthetic User 

 

 

PARTICIPANT INFORMATION SHEET FOR NON-PROSTHESIS USER 

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee 

walking gait and dynamic stability. 

IRAS ID: 203582 

Name of Researcher: Miss Maria Bisele 

Contact Details: Email maria.bisele2014@my.ntu.ac.uk  

We would like to invite you to take part in a research study. Before you decide, we would like 

you to understand why the research is being done and what it would involve for you. 

Please take time to carefully read the following information and talk to others about the study if 

you wish. 

 

Part 1 will tell you about the purpose of the study and what will happen if you decide to take part. 

Part 2 gives you more detailed information about the conduct of the study. 

Please ask us if there is anything that is not clear or if you would like more information. We would 

like to know if you would like to take part in this research study. You have up to two weeks 

following your appointment to decide whether or not you would like to take part.  

 

PART 1 

What is the purpose of this study? 

People with a lower limb amputation have been shown to fall more often when compared to age-

matched individuals without lower limb amputation. Prosthesis user adopt certain compensatory 

mechanisms to have more efficient gait. Rehabilitation intervention are aimed to re-educate 

amputees to abandon these mechanisms and walk in a manner similar to non-amputees. However 

it has become apparent that these mechanisms facilitate the amputee’s balance thus changing them 

would result in the reduction of balance leading to an increased risk of falling. Therefore, the aim 

of this study is to investigate whether walking in a manner which is similar to non-amputees 

causes a reduction of balance in amputees. 
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Why have I been invited? 

You have been invited to take part in this study as you fit the criteria required to participate in this 

study. 

 

Do I have to take part? 

No. Participation in this study is entirely voluntary. 

If you do decide to take part in this study, you will be free to stop taking part at any time without 

giving a reason. 

 

What will happen if I decide to take part? 

If you decide to take part in the study then great! You will need to contact Miss Maria Bisele 

(maria.bisele2014@my.ntu.ac.uk, Dr. Cleveland Barnett 01158483824) to let her know you are 

keen to take part and you will then be invited to the Biomechanics Laboratory, at Nottingham 

Trent University. You will be asked to bring along a pair of shorts, a t-shirt or vest and some 

comfortable shoes you can walk in. No high heels are permitted in the laboratory. If you do not 

have shorts, they will be provided for you. You are also advised to bring along food and drink. 

When you arrive, you will be asked to change into your shorts and t-shirt. Reflective markers will 

be placed on your skin with double sided sticky tape. The markers are about the size of a marble, 

made of polystyrene and covered in reflective tape. Electromyography electrodes will also be 

placed on your skin. To place these a standardised skin preparation will be performed during 

which the area of interest will be shaved until free of hair, the surface will then be lightly abrading 

to remove dead skin cells and wiped clean with alcohol to remove oils from the skin. Once 

markers and the electrodes are in place you will be asked to perform a gait analysis task (which 

is described in more details in the Section ‘What do I have to do’). 

 

Are there any costs involved? 

No. The University will reimburse any costs that you incur as a result of travelling to the 

University at a standard University rate of 25p per mile travelled if coming by car. Your fare will 

be reimbursed if you come by train or taxi. 

 

What do I have to do? 

The testing will be conducted over seven visits, you will be asked to attend the first two sessions 

for a gait analysis test and if you feel fit to it you will be asked to attend an additional five sessions 

for a dynamometer test. The overall time commitment of the your visits should not exceed 32 

hours in a four week period. 
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During visit 1.(gait analysis) you will be walking across a 15m walkway at self-selected speed. 

This will be repeated for each leg five times. You are then asked to repeat these trials at both self-

selected slow and self-selected fast speeds. 

If you are a non- prosthesis user, you will be equipped with an ankle-foot orthosis and the same 

tasks are repeated. An ankle-foot orthosis is a brace, made of plastic (as seen in Figure 1.), which 

holds the lower leg and the foot in place to limit movement at the ankle.  

 

Figure 1. Ankle-Foot Orthosis. 

During visit 2. (gait analysis) step length and step frequencies measured during the visit 1. are 

altered by the researcher so that you will follow a walking pattern which is not habitual to you. 

If you are used to conducting vigorous-intensity activity without experiencing any complications 

and distress, and you decide you will carry on, you will be asked to come in for an additional five 

visits to conduct a dynamometer test using an isokinetic dynamometer as displayed below in 

Figure 2. During this test maximum strength of hip, knee and ankle joints are measured. However 

if you do not wish to conduct any further testing, it is not a problem. Participation in this study is 

entirely voluntary and you are free to withdraw at any time without giving a reason. 

During visit 3. and 4. you will be familiarised with the use of the dynamometer. During visit 5., 

6. and 7. you will perform the test. The dynamometer test involves you being tightly strapped into 

a chair whilst pushing or pulling your leg with full force against the resistance of the crank arm 

which extends from the dynamometer. The strength exerted during the actions of pulling and 

pulling are recorded. This process will be repeated for the extension and flexion of hip, knee and 

ankle joints and in various seating positions e.g. upright and lying down flat on your back. 
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Figure 2. Dynamometer. 

 

Are there any risks involved? 

When performing the gait analysis tasks, you may feel unstable. However, you will not be asked 

to perform any tasks that you feel are not within your capabilities. 

It is extremely rare but one possible side effect of sticky tape being placed on the skin is a skin 

reaction to the tape. Your skin will be checked when the markers have been removed and, if there 

has been any reaction, appropriate treatment would be recommended. There is also a miniscule 

risk of an infection because of the skin preparation which is done to place the EMG electrodes, 

however new equipment will be used during each session to minimise the chance of this 

happening.  

You may experience fatigue or tiredness associated with walking so you will be advised to bring 

along food and drink, and will be afforded generous rest periods in order to recuperate. 

Prosthesis users may experience abrasion at the socket-residuum interface. Thus you will be asked 

to bring your usual sock and liner and you will be able to remove/attach your prosthetic at your 

leisure. 

Non- prosthesis user may experience musculoskeletal soreness and abrasions from the use of the 

ankle-foot orthosis. You will be afforded generous rest periods in order to recuperate. 

When performing the dynamometer testing, you will be required to exert multiple maximal 

voluntary hip, knee and ankle extension and flexion tasks which may result in some fatigue. You 

may also feel short of breath after efforts and may feel some delayed muscle soreness following 

each session. You will be afforded generous rest periods in order to recuperate and will be invited 
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to stop the data collection sessions if abrasions occur and impact upon your ability to perform the 

tasks pain free. 

Being tightly constrained by straps keeping you in place and repeated application of force may 

result in soreness, which will be prevented or reduced by providing additional cushioning.  

There is a risk that you may faint or experience a heart attack during the dynamometer testing due 

to the nature of the physical activity, however it is very unlikely assuming you meet the required 

inclusion criteria. First aiders are available during the duration of the testing protocol in the events 

of any unexpected emergencies. If you are suffering from any cardiovascular complaints you do 

not meet the inclusion/exclusion criteria and are unable to participate in this study due to the risks 

involved with exercising on a dynamometer. 

The correct health and safety measures are taken at all times in the Biomechanics Laboratory and 

first aiders from the sport’s department are on site at all times during the testing period. First aider 

will be sampled from the following list of current first aiders within the department and on site: 

Terry Campion (Laboratory Technician in Sport Science, First Aid Certificate), Alan MaNally 

(Reader in Bioscience, First Aid Certificate), Paul Lester (PhD Student and Hourly Paid Lecturer 

in in Sport and Exercise Science, TQUK Level 2 Award in Emergency First Aid at Work (QCF)). 

 

What happens when the research study stops? 

The results from the study will be published in scientific and clinical publications as well as being 

presented at international conferences. You will not be identified in any of this material to 

preserve your confidentiality. You may request a copy of any published results from Miss Maria 

Bisele. 

 

What if there is a problem? 

Any complaint about the way you have been dealt with during the study or any possible harm you 

might suffer will be addressed. Please contact Professor Mary Nevill, Head of Department of 

Sport Science (mary.nevill@ntu.ac.uk, 011584883918) if this is the case. 

If the information in Part 1 has interested you and you are considering taking part in the study, 

please read on to Part 2 for additional details. 

 

 

 

 

 

mailto:mary.nevill@ntu.ac.uk


 

Participant details sheet date of issue:     [8th September 2016] 

Participant details sheet version number: [PDS005] 

PART 2 

Confidentiality 

All information and data from the study will be kept strictly confidential., Your name and details 

will not be disclosed at any time and you will be assigned a code number to identify you in the 

study. All data and information will be kept on record electronically on a password protected 

computer and in locked filling cabinets. 

Miss Maria Bisele has responsibility to safeguard the data and information and only those 

individuals involved with the study will have access to these sources. 

All data and information will be kept by Miss Maria Bisele at Nottingham Trent University for 

the duration of the study and 5 years beyond as to conform with regulations related to challenges 

that could be made in terms of publication of data stemming from this study. 

In case that you withdraw from the study, data already collected with consent will be retained and 

used in the study.  

Please be aware that, when giving consent to participate, you are agreeing with the conditions 

outlined above. 

 

Your Rights 

Your participation in this study is voluntary. You are allowed to withdraw from the study at any 

time without reason. Withdrawal is totally without prejudice. 

For more advice on the project please contact Miss Maria Bisele, email 

maria.bisele2014@my.ntu.ac.uk. 

 

Trial-Related Injury 

It is unlikely that you will experience an injury or illness as a result of taking part in this research 

study. However, indemnity is provided by the Nottingham Trent University and any 

compensation will be as per the University’s usual standards. For more information please contact 

Miss Maria Bisele. 

 

Who is organising the study? 

Miss Maria Bisele, School of Science and Technology, Nottingham Trent University.  

Thank you for your time and I look forward to speaking to you soon. 

 

Miss Maria Bisele 

School of Science and Technology 

Nottingham Trent University 

mailto:maria.bisele2014@my.ntu.ac.uk
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Appendix 7 – Participant Consent Form experimental for Studies 2-4 Presented in 

Chapters 5-7 

Appendix 7.1 – Participant Consent form for Prosthetic User 

   

Patient Identification Number for this trial: 

CONSENT FORM FOR PROSTHESIS USER 

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee 

walking gait and dynamic stability. 

IRAS ID: 203582 

 

Name of Researcher: Miss Maria Bisele 

Please initial all 

boxes  

1. I confirm that I have read and understand the information sheet dated 

____/____/____ (version PIS006_PROS) for the above study. I have had the 

opportunity to consider the information, ask questions and have had these answered 

satisfactorily. 

   

2. I understand that my participation is voluntary and that I am free to withdraw at any 

time without giving any reason, without my medical care or legal rights being 

affected. 

 

3. I understand that relevant Sections of my medical notes and data collected during 

the study, may be looked at by individuals from Nottingham Trent University and 

The Mobility Centre, Nottingham University Hospitals NHS Trust, from 

regulatory authorities or from the NHS Trust, where it is relevant to my taking part 

in this research. I give permission for these individuals to have access to my records. 

 

4. I agree to take part in the above study.    
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Name of Participant   Date    Signature 

                 

            

Name of Person   Date    Signature  

taking consent 

 

A copy of this form will be retained by the researchers, a copy will be given to the participant 

and a copy will be placed in the medical notes of the prosthetic user. 
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Appendix 7.2 – Participant Consent form for Prosthetic User 

   

Patient Identification Number for this trial: 

CONSENT FORM FOR NON-PROSTHESIS USER 

Title of Project: Understanding the influence of symmetry manipulations on lower limb amputee 

walking gait and dynamic stability. 

IRAS ID: 203582 

 

Name of Researcher: Miss Maria Bisele 

Please initial all 

boxes  

5. I confirm that I have read and understand the information sheet dated 

____/____/____ (version PIS007_CON) for the above study. I have had the 

opportunity to consider the information, ask questions and have had these answered 

satisfactorily. 

   

6. I understand that my participation is voluntary and that I am free to withdraw at any 

time without giving any reason, without my medical care or legal rights being 

affected. 

 

 

7. I understand that relevant Sections of my data collected during the study, may be 

looked at by individuals from Nottingham Trent University and The Mobility 

Centre, Nottingham University Hospitals NHS Trust, from regulatory 

authorities or from the NHS Trust, where it is relevant to my taking part in this 

research. I give permission for these individuals to have access to my records. 

 

8. I agree to take part in the above study.    
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Name of Participant   Date    Signature 

                 

            

Name of Person   Date    Signature  

taking consent 

 

A copy of this form will be retained by the researchers and a copy will be given to the 

participant. 
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Appendix 8 – Participant Health Screen for Studies 2-4 Presented in Chapters 5-7 

 

Patient Identification Number for this trial: 

Date: 

PARTICIPANT DETAILS OF PROSTHESIS USER 

Information with regards to Limb-Loss 

Date of Amputation ____________________________________________________________ 

 

Side of Amputation (Right or Left Limb): ___________________________________________ 

 

Amputation Level (Above knee or Below knee): ______________________________________ 

 

Reason for amputation___________________________________________________________ 

 

Do you experience any phantom limb pain? _________________________________________ 

 

Frequency/intensity of pain? _____________________________________________________ 

 

Information with regards to Prosthesis 

How long have you been using your current 

prosthesis?___________________________________ 

Socket type ___________________________________ 

Liner type ____________________________________ 

Suspension type _______________________________ 

Prosthetic components __________________________ 

Residuum Dimension: __________________________ 

Proximal circumference _________________________ 

Distal circumference ____________________________ 

Length (from knee joint centre to tip) _______________ 
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Do you sometimes use any ambulatory aids (ie: walker, crutches, etc.)? How frequently? 

_____________________________________________________________________________ 

Do you have any issues in relation to the non- prosthetic limb e.g. osteoarthritis in knee? 

_____________________________________________________________________________ 

 

Exercising Details 

Do you do any exercise? 

_____________________________________________________________________________ 

How many days during the week do you exercise? 

_____________________________________________________________________________ 

For how many hours does your exercise session last on average? 

_____________________________________________________________________________ 

Do you do any vigorous-intensity activity? 

_____________________________________________________________________________ 

Have you previously performed a maximum strength test using a dynamometer? 

_____________________________________________________________________________ 
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Patient Identification Number for this trial: 

Date: 

PARTICIPANT DETAILS OF NON-PROSTHESIS USER 

Exercising Details 

Do you do any exercise? 

_____________________________________________________________________________ 

How many days during the week do you exercise? 

_____________________________________________________________________________ 

For how many hours does your exercise session last on average? 

_____________________________________________________________________________ 

Do you do any vigorous-intensity activity? 

_____________________________________________________________________________ 

Have you previously performed a maximum strength test using a dynamometer? 

_____________________________________________________________________________ 
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Patient Identification Number for this trial: 

MEDICAL AND HEALTH SCREEN 

Please complete this brief questionnaire to confirm fitness to participate: 

 

1. In general, how would you describe your health? 

Excellent ____ Very good ____ Good ____ Fair ____ Poor ____ 

2. At present, do you have any health problem for which you are: 

(a)  on medication, prescribed or otherwise                                                                           Yes     No      

(b) attending your general practitioner (GP)                                                                        Yes     No      

(c) on a hospital waiting list                                                                                                 Yes     No      

If YES, please describe the condition(s): 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

3. Do you currently : 

(a) Have a pace maker                                                                                                          Yes     No      

(b) Take medication daily (i.e. hypertension, oestrogen replacement therapy                    Yes     No      

(c) Suffer from high blood pressure                                                                                     Yes     No      

(d) Have any physical disabilities (e.g. visual or hearing problems)                                   Yes     No      

(e) Use an assistive device for walking                                                                                Yes     No      

(f) Sustain any regular limb pain when performing daily movement tasks                         Yes     No      

(g) Have osteoporosis                                                                                                           Yes     No      

(h) Numbness, tingling, swelling or arthritis in hands or feet                                              Yes     No      

(i) Any other illness or condition that affects your general health or interferes                  Yes     No      

with your mobility and may affect your participation in this study?                                   Yes     No      
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Smoke cigarettes                                              Yes     No      

➢ If NO, have you ever smoked?                    Yes     No      

➢ How many years? _______   

➢ How many years since stopped _______ 

➢ Number formally smoked on an average day _______ 

3. In the past five years, have you had any illness which require you to: 

(a) consult your GP                                         Yes     No      

(b) attend a hospital outpatient department     Yes     No      

(c) be admitted to hospital                               Yes     No      

If YES, please describe the condition(s): 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

4. Have you ever had any of the following? 

(a) Airway/chest problems or significant breathing difficulties                                        Yes     No      

(e.g. bronchitis, asthma or wheezy chest)?  

(b) Allergy to nuts, alcohol etc                                                                                          Yes     No      

(c) Back problems                                                                                                             Yes     No      

(d) Blood/blood vessel disorders                                                                                       Yes     No      

(e.g. thrombosis, aneurysm, stroke, blood clots)   

(e) Bone problems (e.g. osteoporosis, loss of height)                                                       Yes     No      

(f) Broken or fractured any bones                                                                                     Yes     No      

(g) Cerebrovascular disease                                                                                               Yes     No      

(h) Convulsions/epilepsy                                                                                                   Yes     No      

(i) Diabetes or any other metabolic disease (please state if insulin dependent)               Yes     No      

(j) Disturbance of balance /coordination                                                                          Yes     No      

(k) Disturbance of vision                                                                                                   Yes     No      

(l) Ear /hearing problems                                                                                                  Yes     No      

(m) Emotional distress or psychiatric problems                                                                 Yes     No      

(worse than mild anxiety or depression) 

(n) Head injury                                                                                                                   Yes     No      

(o) Heart problems (inc. heart attack, valve disease, palpitations, serve angina)              Yes     No      

(p) Joint surgery                                                                                                                 Yes     No      

(q) Kidney or liver problems                                                                                             Yes     No      

(r) Major illness now or in the last 20 years                                                                     Yes     No      

(e.g. rheumatoid arthritis, blood disorders, cancer) 
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(s) Problems with bones or joints                                                                                      Yes     No      

(t) Suffered from significant memory loss                                                                        Yes     No      

(u) Thrombophlebitis or pulmonary embolus                                                                    Yes     No      

(v) Thyroid problems                                                                                                         Yes     No      

If yes to ANY of the above questions, please provide details on condition(s) 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

5. Has any, otherwise healthy, member of your family under the age of 50 died  

Yes     No      

suddenly during or soon after exercise? 

6. Has a close relative had a heart attack before age 55 (father or brother)    

Yes     No      

or before age 65 (mother or sister)? If YES, who and at what age: _____________________ 

7.  Have you had a cold, flu or any flu like symptoms in the last month?  

Yes     No      

9. Have you had febrile illness within the previous 6 months  

Yes     No      

9.  Have you lost any mobility for greater than 1 week in the previous 6 months,  

Yes     No      

or greater than 2 weeks in the previous year? 

If yes to ANY of the above questions, please provide details on condition(s) 

_____________________________________________________________________________ 

_____________________________________________________________________________ 
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10. Lifestyle and Exercise 

Work 

Does your work involve vigorous-intensity activity that causes large increases in breathing or heart rate like 

[carrying or lifting heavy loads, digging or construction work] for at least 10 minutes continuously?  

Yes     No      

In a typical week, on how many days do you do vigorous intensity activities as part of your work? 

 

How much time do you spend doing vigorous-intensity activities at work on a typical day? 

 

Does your work involve moderate-intensity activity, that causes small increases in breathing or heart rate 

such as brisk walking [or carrying light loads] for at least 10 minutes continuously?  

Yes     No      

In a typical week, on how many days do you do moderate intensity activities as part of your work? 

 

How much time do you spend doing moderate-intensity activities at work on a typical day? 

 

Activities 

Do you do any vigorous-intensity sports, fitness or recreational (leisure) activities that cause large increases 

in breathing or heart rate like [running or football] for at least 10 minutes continuously?  

Yes     No      

 

In a typical week, on how many days do you do vigorous intensity sports, fitness or recreational (leisure) 

activities? 

 

How much time do you spend doing vigorous-intensity sports, fitness or recreational activities on a typical 

day? 

 

In a typical week, on how many days do you do moderate intensity sports, fitness or recreational (leisure) 

activities? 

 

How much time do you spend doing moderate-intensity sports, fitness or recreational (leisure) activities on 

a typical day? 



 

Participant details sheet date of issue:     [8th September 2016] 

Participant details sheet version number: [PDS005] 

 

11. Women only 

Are you pregnant, trying to become pregnant or breastfeeding?  

Yes     No      

If YES to any question, please describe briefly if you wish (e.g. to confirm problem was/is short-

lived, insignificant or well controlled. 

_____________________________________________________________________________ 

Participant Name (Please print): 

____________________________________________________ 

Signature: _________________________ Date:_____________________ 

Researcher Name (Please print): 

____________________________________________________ 

Signature: _________________________ Date:_____________________ 

 

Thank you for completing this questionnaire. 

 

In case of emergency details: 

Name: 

_____________________________________________________________________________ 

Relationship to participant: 

_____________________________________________________________________________ 

Contact detail (1): 

_____________________________________________________________________________ 

Contact detail (2): 

_____________________________________________________________________________ 

 



 

 

Appendix 9 – Journal Article 


