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We have simulated the ultra-high-temperature ceramic zirconium carbide (ZrC) in order to predict
electron and phonon scattering properties, including lifetimes and transport. Our predictions of heat
and charge conductivity, which extend to 3000 K, are relevant to extreme temperature applications
of ZrC. Mechanisms are identified on a first principles basis that considerably enhance or suppress
heat transport at high temperature, including strain, anharmonic phonon renormalization and four-
phonon scattering. The extent to which boundary confinement and isotope scattering effects lower

thermal conductivity is predicted.
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I. INTRODUCTION

Zirconium carbide (ZrC) is a stiff material (£ ~ 0.5
GPa),}? with moderate volumetric mass density (p =
6.73 g/cm?),3 metallic conductivity,* ultra-high melting-
point (T}, ~ 3700 K),>% and a low neutron scattering
cross-section.” Consequently, ZrC is relevant to the devel-
opment of advanced nuclear fuel clads and aerospace ma-
terials. In each instance good thermal transport proper-
ties are essential. Hypersonic flight for example requires
sharp leading edges capable of withstanding extreme-
temperature ablative environments,®® and in order to
mitigate thermal shock, the material must be able to ef-
fectively transport heat from the leading edge. Similarly
in the case of nuclear fuels, the clad must be able to de-
port thermal energy effectively at high temperatures for
safe reactor operation.

High-temperature conductivity measurements are non-
trivial to make so it is unsurprising that considerable
scatter exists across the reported thermal data.* 1% Our
computational predictions are therefore expected to be
of practical use, as well as providing valuable theoreti-
cal insight into the basic competing factors that deter-
mine high-temperature conductivity. Advances in the
computational treatment of phonons applied to ther-
mal conductivity,'?~* provide us with a timely opportu-
nity to present transport predictions for the prototypical
ultra-high-temperature ceramic ZrC.

In this paper we report DFT calculations on the elec-
tron and phonon scattering of phonons in bulk ZrC. The
results are used to predict charge and heat transport, elu-
cidating grain-size and isotopic effects, as well as estab-
lishing the importance of accounting for strain, isobaric
heat enhancement, and strong high-temperature anhar-
monicity.

This paper is set out as follows. The theoretical back-
ground and technical calculation details are listed in Sec.
ITA and Sec. IIB. Results are presented in two parts:
phonon-phonon interactions and electron-phonon inter-
actions in Sec. IITA, and heat and charge transport in
Sec. III B. Conclusions are presented in Sec. IV, and ad-
ditional scattering information and methodological com-
parisons are given in the Appendix.

II. METHODS
A. Theoretical background

The lattice contribution to conductivity is cal-
culated within the single-mode relaxation time
approximation!?1°

1
Kfph(‘/(h T) = T% Z vau ® VHTEh_ph ) (1)
I

where TEh_ph is the relaxation time, v, = h0qw, is the
phonon velocity and C}, = hw,0rn,, the heat capacity of
band p = nq, and Vj is the T'= 0 K volume of the cell
at equilibrium strain.

The strain dependence of rpn is usually neglected,
but in materials with large Griineisen parameters or
unusually high melting points, thermal expansion can
substantially affect heat transport. In ZrC we account
for the coupling to homogenous isotropic principle axis
strains by computing rpn(V;,T) at a series of volumes
spanning [Vy, Vr,, |. The volume-dependent conductivity
ren(V,T) = §p 2w COvu VT vy @ vy (V) TP (V,T)
is calculated by a simple procedure that linearly mixes



kpn(Vi, T) between pairs of volumes (temperatures) along
|

the quasiharmonic thermal expansion curve:

fpn (V. T) = Z {rpn (Vi, T) (1=t (T)) + sipn (Viga, T) i1 (T)} box (T) - (2)

Til Tsz ’
that interpolates the temperature dependence of kpp
between the pairs of volumes (temperatures). The
box function selects the interpolation temperature range
[Ti, Ti+1] as box (T) =0 (T - Tz) -0 (T - E+1)-

As well as the effect of volume expansion on phonon
thermal conductivity, strong anharmonic effects become
increasingly important at high temperature. We account
for phonon frequency renormalization at finite tempera-
ture by explicitly considering anharmonicity up to fourth
order using a recently developed real-space-based anhar-
monic phonon renormalization scheme.'%!” The required
high-order anharmonic interatomic force constants were
constructed using compressive sensing lattice dynamics
(CSLD).*® Due to the computational expense, we only
performed calculations at selected temperatures, for ex-
ample, in the low (300 K), medium (1500 K), and high
(T,,) temperature regimes. Moreover, we explicitly cal-
culated the intrinsic phonon scattering rates from four-
phonon processes, as recently formulated by Feng and
Ruan,'® beyond the regularly used three-phonon scatter-
ings. To estimate the impacts of anharmonic renormal-
ization and four-phonon scattering on conductivity at a
range of temperatures, the effects on k,,(7') are inter-
polated in temperature between the weakly and strongly
anharmonic regimes, analogous to the interpolation spec-
ified in Eqn. 2.

The isobaric phonon conductivity xpn(p) is calculated
by

ti,i+1(T) is a mixing parameter, ¢; ;41(T) =

Fpn(p) = 7 R(V). 3)

The enhancement factor, v = Cp/Cl, is determined us-
ing Cp computed at the quasi-harmonic level of theory.
Three-phonon  relaxation lifetimes (Tﬁ’h'ph =

1/2P”’ph'ph) are calculated based on the imaginary
self-energies, ["ph-ph = [pph-ph 12,15 p7ph-ph g
computed both by strain-dependent third-order lattice
dynamics,'?' and by CSLD to also account for high-
temperature anharmonicity.'® Four-phonon scattering
times are computed by iterative solution to the BTE,6
at selected temperatures only (300 K, 1500 K and
3800 K). Three and four-phonon scattering times are
combined using Matheisen’s rule, and the total phonon
relaxation lifetime including other terms is estimated as

1
e .

for ¢ € {ph-ph, ph-iso, ph-boundary}.
defect scattering is treated perturbatively,

Isotope mass
12,20 414

(

boundary scattering as if providing a restriction on
pph-boundary — T /v by domain size L.
The total thermal conductivity Kiota is computed as

Rtotal = Rph + Kel (5)

with electron thermal conductivity ke treated semi-
classically?!-22

1

Kel = ——

T vr

/ds (e—p)? (=1 Z VARVATAO(E—Er), (6)

A

and electrical conductivity is computed similarly?!:22

1
va== [de(—f) Y va@vandle—ey), (7)
! V/s ;A ATAO (€ — €3

where A subsumes wavevector and band quantum num-
bers A = {n, k}, f' = 0.f(T,¢) is the electron occu-
pancy energy derivative, vy = Oxenk is the band velocity
tensor, and 7y is the electron relaxation time. The ef-
fect of thermal expansion on k. and o is accounted
for by computing each quantity for a series of volumes
along the quasiharmonic thermal expansion curve. Con-
ductivity tensors are determined, up to a factor of 7y,
from local density approximation (LDA) band structures
using Wannier functions, with methodological compar-
ison to Bloch functions and DFPT in Appendix.2?-27
The relaxation time 7, is equated with the electron-
phonon scattering time 75 ", 70" is determined from

le‘ph =1/ 22;’°l'ph, with the imaginary part of the self-

energy, E;’Cl'ph =Im Eil'ph, found using the method of

Poncé et al.?®2?°. This method is also used to compute
Hu’el'f’h, to determine the phonon relaxation time from
electron-phonon scattering.

B. Technical details

Three-phonon scattering rates are computed using the
second-order perturbation theory implemented by the
PHONO3PY code.'>'® Small-displacement third-order
force constants are calculated at seven volumes that span
the range of thermal expansion. For third-order force
constants at each dilation, 144 displacements are made
on the 2 x 2 x 2 (64 atom) of ZrC supercell. Second-order
force constant displacements are made on a 4 x4 x4 (512
atom) supercell at each volume. g-points are sampled at
a density equivalent to a 31 x 31 x 31 grid for the con-
ventional eight atom unit cell.



Compressive sensing lattice dynamics (CSLD)!® is
used to account for strong anharmonic effects at high
temperature, with force constant tensors (FCTs) up to
sixth order determined from snap-shots of uncorrelated
quasi-random configurations. Convergence is achieved
for ZrC by twenty configurations of a 128 atom supercell
(4 x 4 x 4 of the primitive cell).

Force-constants are calculated using the VASP den-
sity functional theory (DFT) code.?5:2¢ The PZ81 LDA3°
functional provides a satisfactory description of ZrC at
low temperature, giving a zero-point-corrected 7' = 0 K
value of a;,pp = 4.667 A, compared to an experimentally
reported value of aex, = 4.694 A% The difference is simi-
lar in magnitude but opposite in sign to PBE,3! however
we choose to work with the LDA due to reported superior
description of thermodynamics at high temperatures.3?

DFT calculations employ the projector-augmented
wave (PAW) method,® with 4s and 4p-Zr electron in-
cluded as valence states. Kinetic energy is cutoff above
700 eV and k-points are sampled at a density com-
mensurate to a 12 x 12 x 12 mesh for the conventional
cell. Methfessel-Paxton smearing is applied with 0.2 eV
broadening.?* Cell total energies and individual eigen-
values are converged to 1078 eV, and force differences to
1079 eV/A.

Electron-phonon lifetimes are calculated using the
Electron-Phonon-Wannier (EPW) code, interfaced with
Quantum-Espresso?® (QE).?Y k-space interpolation uses
maximally-localized Wannier functions generated using
WANNIER90.23:24:35-37

QE calculations use an LDA exchange-correlation
functional,393® with a projected augmented wave (PAW)
pseudopotential for Zr with 4524p%4d25s2 electrons con-
sidered as valence electrons, and a norm-conserving pseu-
dopotential for C used with 2s22p? electrons treated as
valence electrons. Convergence of 0.5 mRy is obtained
with a 12 x 12 x 12 I'-centered k-point mesh and a kinetic
energy cutoff of 200 Ry. Ionic minimization is performed
until energy differences are less than 1076 Ha and force
differences less than 107° Ha/Bohr. Electronic conver-
gence is at least 10710 Ry.

Electron-phonon interaction strengths are found using
dynamical matrices from DFPT.3?4! An irreducible I'-
centered 6 x 6 X 6 g-point mesh is used with convergence
criteria of at least 107!* Ry. Non-self-consistent calcu-
lations are performed on a coarse I'-centered 6 x 6 x 6
k-point mesh using the same energy criteria as the en-
ergy minimization. Both the coarse g-point and k-point
meshes were tested for convergence. These results are
then used for Wannier interpolation.

The Wannier functions are projected onto carbon sp3-
orbitals and three Zr d-orbitals. Four bands below the
Fermi level representing the Zr s-band and the three Zr
p-bands are not included in the calculation as well as the
highest conduction band. In each calculation the disen-
tangled method is used®” and the disentangled energy
window is set to between 12 eV below the Fermi level to
include the C s-orbital and 2 eV above the Fermi level.

These settings provide the best spreads (between 1.5—1.7
A2 per Wannier function). As Wannier interpolation on
homogeneous k and g-grids of 45 x 45 x 45 were unable
to achieve convergence, randomly generated grids were
used as suggested by Poncé et al.?® A grid of 50,000
randomly generated k-points and 150, 000 randomly gen-
erated g-points with a broadening of 20 meV is sufficient
for convergence.

The conductivity tensor in Eq. 7 is determined from
VASP-calculated?®26 LDA3% band structures. The tech-
nical parameters are identical to the VASP phonon
calculation details described previously except for the
reciprocal-space sampling density. The electronic band
structure calculations employed a dense k-point mesh
sampling of 39 x 39 x 39, from which the conduc-
tivity tensor is determined by i) linear response rou-
tines in VASP,2” ii) reciprocal-space band velocities via
BorrzTraP,2! and iii) by real-space band velocities via
BorrzWann.22724 Electrical transport tensors account for
the thermal expansion of the lattice although the effect
is marginal.

ITII. RESULTS
A. Phonon-phonon and electron-phonon scattering

The acoustic-type phonon bands in ZrC, which project
more than 98 % onto the motion of Zr atoms, are weakly
interacting compared to the carbon-projecting optic-type
phonon dispersion bands. This is shown for ZrC at 10 K
and at 300 K by the phonon-phonon interaction broad-
ened dispersion in Fig. la-b. Optic-type modes at q = 0
are the most strongly interacting for 7' > 300 K. For
T < 300 K, other lower symmetry wavevectors, for in-
stance between K-I' and L-I" in the Brillouin zone, be-
come more actively scattering than the zone-center I'-
point optic modes in Fig. la-b.

The linear temperature dependence of the ZrC
linewidths is shown for a range of wavevectors in Fig.
1c, with average values comparable to those reported for
other materials.'? For example the average three-phonon
linewidth is 0.05 THz at 300 K, which is lower than the
CuCl 300 K linewidth (1.3 THz) and slightly larger than
GaAs (0.03 THz). In ZrC we emphasize the limited in-
sight from quoting nq averaged values, as the linewidths
are quite strongly anisotropic (as pictured, Fig. 1b). On
the validity of the perturbative quasi-particle formalism
within which lifetimes are determined, acoustic modes
are weakly interacting to T,, but caution is necessary
on the interpretation of optic modes at high-symmetry
points for which linewidths can be of the order 1 THz for
temperatures exceeding 0.6 Ty, .

ZrC is unusual in exhibiting ceramic and metallic
bonding characteristics. To describe the electrical con-
ductivity of ZrC we account for electron-phonon scatter-
ing. The average time for the scattering of electrons by
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Figure 1. a-b) Interaction broadened harmonic phonon dispersion at 10 K and 300 K. FWHM F:’ph‘ph(w, q,7T) line broadening
is Lorentzian and specified by the contour brightness scale on the right axis which ranges from 0-10 GHz for 10 K to 0-100 GHz
for 300K. c) Linewidth vs temperature at selected points (labelled) in the Brillouin zone.

phonons, calculated by

1
Feph () = / de —— 3" 7PN T)5(e — i) £, T),
Nnk nk
(8)
is shown in Fig. 2a. The average relaxation

time decreases with temperature, for example from
7ePR(500 K) = 6.3 fs to 7°PE(2500K) = 1fs. As ZrC is
semi-metallic, 7P (T") is enhanced with temperature as
' = 0-f(T,¢e) samples states that increase in concentra-
tion away from the Fermi energy. This is demonstrated
in Fig. 2a-inset in the electron self-energy X" °P2 which
is a local minimum about the Fermi energy. Recent work
has shown intrinsic defects such as Frenkel defects, which
are predicted to spontaneously generate at high temper-
ature in ZrC, can as much double the density of states
at the Fermi energy.#? This is likely to modulate ¥ -¢-ph
and electron transport at high temperature, though ex-
plicit characterisation with first principles calculations is
beyond the scope of this work.

In experiments the width of a phonon line may be mea-
surable, while the origin of the broadening remains ob-
scured, so it is interesting to compare phonon linewidths
from electron-phonon interactions oI1"-ePh and from
three-phonon interactions 2I" *Ph-Ph Values for 21" -Ph-ph
and 211" IPh are listed for selected temperatures in Table

I. At 300 K, 2T Ph-ph

// q=0,optic
than QHQfEi};“C, but for higher temperatures phonon-
phonon interaction is many times greater than electron-
phonon (ca. x8). As a crystal with partially occupied
states at the Fermi energy, it is a point of interest that the
room temperature total phonon linewidth has compara-
ble contributions from anharmonic and electron-phonon
interactions. This observation for the linewidth in con-
ducting crystalline systems is however not exceptional,
and has recently been reported at room temperature in
a number of systems, including graphite,*344 noble met-
als with small DOS(EF) such as Cu, Ag and Au,* 47 as
well as more exotic systems such as the superconductor
palladium hydride.*?

peak values are smaller (ca. x3)

Table I. Phonon linewidths from electron-phonon and
phonon-phonon interactions.

T 2H",e1_ph

q=0,optic

1"
,ph-ph
2Fq:0,optic

300 K 0.50 THz (17 cm™) 0.17 THz (5.7 cm™)
3000 K 0.32 THz (11 em™) 2.4 THz (80 cm™)

B. Heat and charge transport

Unlike most ceramics ZrC is a relatively good conduc-
tor of electricity.451948 We have calculated the electrical
conductivity (oe) of ZrC within a first principles Boltz-
mann transport approach, using the Wannier function
DFT method to determine the electron-phonon relax-
ation time and band velocities. This method is compared
to other approaches in the Appendix. The predicted val-
ues of oo range from o (500K) = 1.4 x 1079 Q~1m~1! to
0.1(2500K) = 3.8 x 1077 Q 'm™!, with 04 (T) shown
in Fig. 3a, alongside experimentally measured values
from multiple sources.*%1%48 The electron thermal con-
ductivity ke (T') is shown in Fig. 3b. Starting at zero
temperature r(7) exhibits a sharp increase initially,
then increases almost linearly, rising from ke (500 K) =
17Wm K™ to k(2500 K) = 40 Wm 'K,

In each instance the oo and ke values in Fig. 3a-
b computed from first principles give reasonable agree-
ment with experiment. This even appears to be true as
the system nears the Mott-Ioffe-Regel limit where resis-
tivity usually saturates.*8752 The physical origin of ad-
ditional transport channels leading to saturation can be
somewhat debatable but is often well-described in an em-
pirical sense by a parallel shunt model. It is therefore
likely our high-temperature conductivity predictions are
a lower limit for the conductivity of the defect-free crys-
tal. The reasonable agreement of our transport predic-
tions with experimentally reported ones at high tempera-
tures is partially explained by electron quasi-momentum
quantum numbers that remain moderately good up to
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Figure 2. a) Electron relaxation time and associated imaginary self-energy E;’eh)h (e,T) inset. b) Imaginary phonon self-energy
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Figure 3. a) Electrical conductivity oe predictions (solid line). b) Thermal conductivity predictions for Kotal = Kph + Kel and

Kel- Dashed and dotted lines denote the experimental measurements

quite high temperatures — for example, at 3000 K the
electron mean-free path is still ca. x3a lattice parame-
ters. Above this temperature the electron transport plots
in Fig. 3a-b are extended for reference only and with un-
derlined caution due to the inadequacy of the Boltzmann
electron transport picture close to T, when scattering
lengths and lattice parameters become close.

The total phonon and electron thermal conductiv-
ity, Kiotal = Kph + Kel, is shown versus temperature in
Fig. 3b. Whether kp, or ke is the larger contribu-
tion to Kiotal depends on temperature and other fac-
tors such as geometric constraints. For example, grain
boundaries introduce a restriction on maximum phonon
path length for weakly scattering Zr modes that con-
siderably changes fpn. Large domains (L = 10 pum)
permit the transport of heat by long-wavelength high-
velocity modes in ZrC, resulting in high values such as
Ktotal (300 K) = 87 Wm 'K~ !. Grains of moderate sizes

4,6,10,48 11

and computed results of Crocombette.

suppress phonon transport at low temperatures, with
our model predicting Kota1(300K) = 55 Wm 1K™ ! at
L = 0.1 pm. Small domain sizes such as L = 0.01 ym
severely limit transport processes from weakly scatter-
ing high-velocity modes, further lowering ktota1(300 K)
to 27Wm~1K~!. The size dependence of kiotal SUEEESES
grain control by sintering or synthesis temperature is im-
portant to design the transport behavior of ZrC. More
details on grain boundary scattering and the extent of
mean-free path saturation expected at high temperature
are given in the Appendix.

In Fig. 4 we show a range of temperature-dependent
mechanisms that can enhance or suppress phonon ther-
mal conductivity. Note, each effect that is analyzed has
been included the prior calculation of k¢ota1 that was pre-
sented Fig. 3b.

Dilation of ZrC by tensile principal axis strains is found
to lower kpy considerably. For instance thermal expan-



sion decreases phonon conductivity by up to 65% rela-
tive to kpn at the 0-K equilibrium volume, as shown by
the enhancement factor Hgﬂa[V(Tﬂ /KPR (V) versus tem-
perature in Fig. 4a. One way to rationalize the large
change is by considering how the stiffness (specifically,
isothermal bulk modulus Kt) and volumetric mass den-
sity (p) change with temperature relative to each other.

Provided |3KT | /‘
expansion. Indeed this is the case and a decrease of 39
% is observed from T' = 10K to T;,. As KT/p is equal to
the long wavelength-limit band V61001ty v2, the decrease

n /Kt /p is equivalent to decrease in acoustlc band ve-
locity from 52.1 THzA (5210 m/s) to 44.1 THzA (4410

m/s). This drop accounts for a considerable part of the
decrease in kpn with temperature in Fig. 4a.

< 1, kpn decreases with thermal

Quantum zero-point motion modifies the equilibrium
configuration through tensile strain. In ZrC this softens
modes and decreases kpn by a temperature-independent
factor of ca. 5%, which is shown in Fig. 4b. Conversely
the isobaric heat capacity enhancement factor (see Eqn.
3) is negligible at low temperature, but increases kpn by
as much as 35 % at high temperature, as shown in Fig.
4f.

At low temperature mass scattering at the natural iso-
topic abundance in ZrC is important. For instance xpp
in Fig. 4c is more than 50 % lower than an artificially
prepared isotopically pure crystal at low temperature,
but effect quickly falls off with increasing temperature.
Grain size effects are also substantial at low temper-
ature, as illustrated in the prior discussion mean-free
path constraints for Fig. 3b. For length scale effects
from the opposite limit, minimum phonon conductivity
saturation®®°* is expected to be comparatively smaller
even at high temperatures. This is based on the accu-
mulated phonon thermal conductivity as a function of
mean-free path, which is given in Fig. 9, in the Ap-
pendix.

For high temperatures (> 0.57y,) perturbative third-
order lattice dynamics becomes insufficient as the sys-
tem explores atomic displacements far from the equilib-
rium configuration. Strong anharmonicity renormalizes
dispersion bands to higher frequencies, opposite to the
%111;@ < 0 typical volume softening of frequencies with
positive thermal expansion. The high-temperature an-
harmonic renormalization considerably enhances rpy as
shown in Fig. 4d. The effect as a fraction of the high-
temperature conductivity can be large, for example in-
creasing kpn by ca. 100 % for temperatures in excess of
2000 K.

It has recently been noted that four-phonon scattering
plays a critical role in determining the lattice thermal
conductivities in both weakly and strongly anharmonic
systems, e.g., BAs'? and PbTe!® respectively. In ZrC
we observe that four-phonon scattering processes become
very prominent at high temperature for kpn. As with
PbTe,' renormalization enhances rp, and four-phonon
processes suppress fpn. Lhe degree of cancellation be-
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Figure 4. Phonon thermal conductivity enhancement

and suppression mechanisms in ZrC. a) Thermal expan-
PalV(D)]/KP" (Vo). b) Zero-
point motion lowers conductivity by &P"(Vzp)/sP* (Vo).
c) Isotope purity enhances conductivity by factor of
K,pure ana V(T )/KRE qnalV(T)] compared mass scattering at
the natural isotopic abundance. d) Anharmonic phonon
renormalization enhances conductivity by xEh,(V)/ tha(V)
relative to a crystal with quasiharmonic frequency depen-
dence. e) Additionally including four-phonon scattering sup-
f) Isobaric heat

effect enhances conductivity xP"(po)/xP™ (V).

sion lowers conductivity by x

presses conductivity by I€4ph( )/KRe (V).

tween these anharmonic effects can be observed by con-
sidering Fig. 4d-e, and is illustrated by noting the renor-
malization enhancement of kpp at 300 K (3800 K) is +4.2
W/mK (+6.2W/mK), while four-phonon scattering low-
ers Kkpn by -4.1 W/mK (-5.8 W/mK). Additional details
on four-phonon scattering and anharmonic phonon renor-
malization are given in the Appendix.



IV. CONCLUSIONS

We have reported first principles calculations on the
scattering and transport properties of electrons and
phonons in the ultra-high-temperature ceramic ZrC. The
nature of the phonon linewidth in ZrC has been examined
in terms of the energy dependence, anisotropy across the
Brillouin zone and temperature dependence of phonon-
phonon and electron-phonon interactions. In each in-
stance phonons primarily scatter via optic modes at the
I" point. The total phonon linewidth is predominantly
phonon-phonon in character rather than electron-phonon
for all but the lowest temperatures.

The electrical and thermal conductivities oo and kg
have been predicted at ambient pressure as a function
of temperature, along with total thermal conductivity
Ktotal = Kel + Kph. Thermal expansion of crystal vol-
ume notably suppresses thermal conductivity, decreasing
the phonon contribution by more than 50% at 0.75T},.
Suppression of thermal conductivity by strain sources,
such as thermal expansion and grain boundaries, should
be considered when engineering heat dissipation of an
ultra-high temperature ceramic for extreme environment
applications. At low temperature spn is considerably
lowered by isotope mass defect scattering, and by fea-
tures that enforce geometric constraints such as grain
boundaries that prevent the crystal supporting long-
lived phonon modes. Isobaric heat capacity, and anhar-
monic phonon renormalization, provide substantial en-
hancements in kp, at high temperature (ca. 0.75Ty,).
Four-phonon scattering strongly suppresses thermal con-

ductivity at high temperature, almost cancelling the an-
harmonic frequency renormalization effect.

The examination of point and extended defects and
sub-stoichiometry on transport is beyond the scope of
this work, but would be a valuable future extension to
this work. As would the examination of saturation effects
and non-quasiparticle transport for 7 > 0.75T,,.
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Figure 5. Comparison of the ZrC phonon thermal conductiv-
ity computed with the PBE and LDA exchange-correlation
functionals at a = 4.667 A.
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Figure 6. Comparison of conductivity from compressive

sensing'® and third-order lattice dynamics (Phono3py'?), at
zero-temperature equilibrium and high-temperature volumes.

APPENDIX
METHODOLOGICAL COMPARISONS

The ZrC phonon conductivity calculated using the
LDA and PBE exchange-correlation functionals are
shown in Fig. 5. At fixed equal volumes, the difference
in phonon conductivity is negligible.

In Fig. 6 the phonon thermal conductivities are com-
pared from the compressive sensing'® and third-order!?
lattice dynamics approaches. Compressive sensing pre-
dicts a similar but marginally smaller thermal conduc-
tivity.

The electrical conductivity from Wannier function,
Bloch function and DFPT LDA DFT calculations is
shown in Fig. 7. The conductivity with Wannier func-
tions is expected to provide the most accurate predic-
tions.
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Figure 7. Comparison of computational approaches to deter-
mine electrical conductivity. 1) LDA + Wannier functions,
2) LDA + DFPT linear response, 3) LDA + Bloch functions,
and 4) PBE + snapshots from classical potential MD!!.

PHONON SCATTERING GEOMETRIC
CONSTRAINTS

The effect of size constraints on phonon thermal con-
ductivity is shown in Fig. 8. The geometry restriction ef-
fect is strongly temperature dependent, lowering the ZrC

phonon conductivity most acutely at low temperature.

Temperature mean-free path saturation effects are ex-
pected to be weak until very high temperatures based
on Fig. 9. At 300 K, xpn from mean-free paths shorter
than 10 A is negligible. At 1500 K, less than 1% of the
computed kp, arises from mean-free paths comparable to
the lattice parameter. Even at 3800 K, when the scat-
tering rate is extremely high for the material, more than
90% of the computed sp, comes from mean-free paths
greater than a, with approximately 0.2 Wm 'K™' as-
sociated with mean-free paths shorter than the lattice
parameter.

PHONON RENORMALIZATION AND
FOUR-PHONON SCATTERING

At high temperature quasiharmonic and anharmonic
frequency renormalization, along with four-phonon scat-
tering, are expected to play increasingly more important
roles. Quasiharmonic volume expansion generally lowers
phonon frequencies, as shown in Fig. 10a-c, while anhar-
monic phonon renormalization tends to have the oppo-
site effect and harden frequencies in ZrC. Compared to
three-phonon scattering, four-phonon scattering is a mi-
nor effect at low temperature (300 K), but becomes very
prominent for temperatures exceeding 1500 K as shown
in Fig. 10d-f.
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Figure 8. Grain-size effects estimated by geometric re-
strictions on phonon conductivity at a series of tempera-
tures in perfect ZrC. Phonon cutoff lengths span the interval
[1072, 10°] pm.
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Figure 9. Accumulated phonon thermal conductivity as a
function of mean-free path, shown in solid lines, left axis. Per-
centage accumulated phonon thermal conductivity is shown
in dashed lines, right axis.
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