Bounds on Entanglement Assisted Source-channel Coding Via the Lovász ϑ Number and Its Variants*

Toby Cubitt¹, Laura Mančinska², David Roberson³, Simone Severini⁴, Dan Stahlke⁵, and Andreas Winter⁶

- 1 Universidad Complutense de Madrid and University of Cambridge
- $\mathbf{2}$ University of Waterloo and National University of Singapore
- 3 Nanyang Technological University
- 4 University College London
- $\mathbf{5}$ Carnegie Mellon University
- 6 Universitat Autónoma de Barcelona and University of Bristol

- Abstract

We study zero-error entanglement assisted source-channel coding (communication in the presence of side information). Adapting a technique of Beigi, we show that such coding requires existence of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and H. Such vectors exist if and only if $\vartheta(\overline{G}) \leq \vartheta(\overline{H})$ where ϑ represents the Lovász number. We also obtain similar inequalities for the related Schrijver ϑ^- and Szegedy ϑ^+ numbers.

These inequalities reproduce several known bounds and also lead to new results. We provide a lower bound on the entanglement assisted cost rate. We show that the entanglement assisted independence number is bounded by the Schrijver number: $\alpha^*(G) \leq \vartheta^-(G)$. Therefore, we are able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is equal to the integer part of the Lovász number. Beigi introduced a quantity β as an upper bound on α^* and posed the question of whether $\beta(G) = |\vartheta(G)|$. We answer this in the affirmative and show that a related quantity is equal to $[\vartheta(G)]$. We show that a quantity $\chi_{\text{vect}}(G)$ recently introduced in the context of Tsirelson's conjecture is equal to $\left[\vartheta^+(\overline{G})\right]$.

1998 ACM Subject Classification E.4 Coding and Information Theory

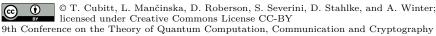
Keywords and phrases source-channel coding, zero-error capacity, Lovász theta

Digital Object Identifier 10.4230/LIPIcs.TQC.2014.48

1 Introduction

The zero-error source-channel coding problem is as follows. Suppose Alice wishes to send a message $x \in X$ to Bob through a noisy classical channel $\mathcal{N}: S \to V$ in such a way that Bob may deduce Alice's message with zero probability of error. Alice encodes her message via some function $f: X \to S$ before sending it through the channel. Bob is aided by some side

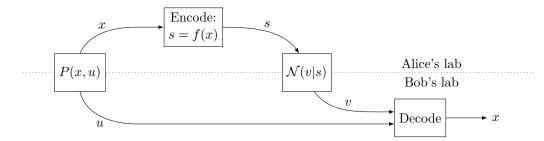
^{*} TC is supported by the Royal Society. LM is supported by the Ministry of Education (MOE) and National Research Foundation Singapore, as well as MOE Tier 3 Grant "Random numbers from quantum processes" (MOE2012-T3-1-009). DR is supported by an NTU start-up grant awarded to D. V. Pasechnik. SS is supported by the Royal Society and the British Heart Foundation. DS is supported by the National Science Foundation through Grant PHY-1068331. AW is supported by the European Commission (STREPs "QCS" and "RAQUEL"), the European Research Council (Advanced Grant "IRQUAT") and the Philip Leverhulme Trust; furthermore by the Spanish MINECO, project FIS2008-01236, with the support of FEDER funds.

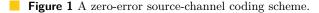


licensed under Creative Commons License CC-BY 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC'14). Editors: Steven T. Flammia and Aram W. Harrow; pp. 48-51

Leibniz International Proceedings in Informatics

```
LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
```





information $u \in U$ regarding Alice's message. Formally, we can imagine that the symbols x and u originate from a *dual source* with probability P(x, u). See Fig. 1.

The success of this protocol can be analyzed using a pair of graphs: G with vertices from X and H with vertices from V, having edges

$$x \sim_G y \iff \exists u \in U \text{ such that } P(x, u) P(y, u) \neq 0$$
 (1)

$$s \sim_H t \iff \mathcal{N}(v|s)\mathcal{N}(v|t) = 0 \text{ for all } v \in V,$$

$$(2)$$

where P(x, u) is the probability of input pair x, u and $\mathcal{N}(v|s)$ is the probability that the channel outputs v given input s. G is the characteristic graph of P and H is the complement of the confusability graph of \mathcal{N} . Intuitively, G represents the information that needs to be sent and H represents the information that survives the channel. Bob is able to decode x (with zero chance of error) if and only if Alice's encoding satisfies $x \sim_G y \implies f(x) \sim_H f(y)$ [11]. Such a function is called a homomorphism from G to H. If such a function exists then G is homomorphic to H, written $G \rightarrow H$.

Many graph quantities can be defined in terms of homomorphisms [8, 9], and the above protocol puts these in an operational context. If there is no side information then $G = K_n$, the complete graph on n = |X| vertices. The largest n such that $K_n \to H$ is the clique number $\omega(H)$. Thus the largest number of error-free messages that can be sent through \mathcal{N} is $\omega(H)$ (equivalently, $\alpha(\overline{H})$, the independence number of the complementary graph). If \mathcal{N} is the perfect channel then $H = K_n$ with n = |S|. The smallest n such that $G \to K_n$ is the chromatic number $\chi(G)$. This is the size of the smallest channel that suffices to communicate inputs from a dual source with characteristic graph G.

Source-channel coding may also be considered in the case where Alice and Bob make use of an entanglement resource, Fig. 2 [3]. Now Alice's encoding operation consists of a POVM $\{M_s^x\}_{s\in S}$ depending on her input x and producing a value s to be sent to Bob through the channel. Bob can successfully decode if and only if

$$\rho_s^x \perp \rho_t^y \text{ for all } x \sim_G y \text{ and } s \not\sim_H t,$$
(3)

where ρ_s^x is Bob's share of the post-measurement entanglement resource after POVM outcome M_s^x . By analogy to the above, a successful protocol is called an *entanglement assisted* homomorphism from G to H. If such a thing exists, one writes $G \xrightarrow{*} H$. Also by way of analogy, the *entanglement assisted independence number* $\alpha^*(\overline{H})$ is the largest n such that $K_n \xrightarrow{*} H$ and the *entanglement assisted chromatic number* $\chi^*(G)$ is the smallest n such that $G \xrightarrow{*} K_n$. These have similar operational interpretations as $\alpha(\overline{H})$ and $\chi(G)$ discussed above.

We consider two relaxations of condition (3) for $G \xrightarrow{*} H$. The first we denote $G \xrightarrow{B} H$ since it reduces to a construction of Beigi [2] when $G = K_n$. We say $G \xrightarrow{B} H$ if there are vectors $|w\rangle$ and $|w_s^x\rangle$ such that

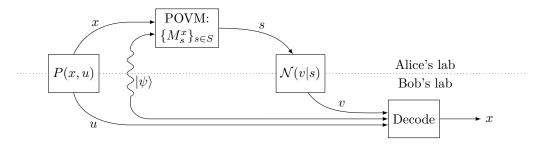


Figure 2 An entanglement assisted zero-error source-channel coding scheme.

- 1. $\langle w | w \rangle = 1$
- 2. $\sum_{s} |w_s^x\rangle = |w\rangle$
- **3.** $\langle w_s^x | w_t^y \rangle = 0$ for all $x \sim_G y$, $s \not\sim_H t$
- 4. $\langle w_s^x | w_t^x \rangle = 0$ for all $s \neq t$.

Another relaxation $G \xrightarrow{+} H$ is defined similarly, except that the last condition is replaced by **4.** $\langle w_s^x | w_t^y \rangle \ge 0.$

Since these are relaxed conditions, $G \stackrel{*}{\to} H$ implies $G \stackrel{B}{\to} H$ and $G \stackrel{+}{\to} H$. All of our results follow from two theorems. With $\bar{\vartheta}(G)$, $\bar{\vartheta}^-(G)$, and $\bar{\vartheta}^+(G)$ being the Lovász, Schrijver, and Szegedy numbers of the complementary graph \overline{G} , we have

- ▶ Theorem 1. $G \xrightarrow{B} H$ if and only if $\overline{\vartheta}(G) \leq \overline{\vartheta}(H)$.
- ▶ Theorem 2. If $G \xrightarrow{+} H$ then $\bar{\vartheta}(G) \leq \bar{\vartheta}(H)$, $\bar{\vartheta}^-(G) \leq \bar{\vartheta}^-(H)$, and $\bar{\vartheta}^+(G) \leq \bar{\vartheta}^+(H)$.

A number of original results follow as immediate corollaries:

- Entanglement assisted zero-error source-channel coding $(G \xrightarrow{*} H)$ requires $\bar{\vartheta}(G) \leq \bar{\vartheta}(H)$, $\bar{\vartheta}^-(G) \leq \bar{\vartheta}^-(H)$, and $\bar{\vartheta}^+(G) \leq \bar{\vartheta}^+(H)$.
- The average number of channel uses required per input, in the asymptotic limit, is known as the *entanglement assisted cost rate* $\eta^*(G,\overline{H})$. Since $\overline{\vartheta}$ is multiplicative under appropriate graph products, $\eta^*(G,\overline{H}) \ge \log \overline{\vartheta}(G) / \log \overline{\vartheta}(H)$.
- Beigi defined $\beta(\overline{H})$ to be the largest *n* such that $K_n \xrightarrow{B} H$ (paraphrased into our terminology) and asked whether $\beta(\overline{H}) = \lfloor \overline{\vartheta}(H) \rfloor$. The answer is "yes" this follows directly from Theorem 1.
- By considering instead $G \xrightarrow{B} K_n$ one can define a quantity similar to Beigi's, equal to $\lceil \overline{\vartheta}(H) \rceil$.

Also as immediate corollaries, we reproduce the following known results:

$$\qquad \chi^*(G) \ge \bar{\vartheta}^+(G) \ [3]$$

There is a notion of a quantum homomorphism $G \xrightarrow{q} H$ defined in the context of a quantum pseudo-telepathy game [14, 13]. Since $G \xrightarrow{q} H \implies G \xrightarrow{*} H \implies G \xrightarrow{+} H$, the inequalities of Theorem 2 apply to $G \xrightarrow{q} H$ as well.

These various generalized homomorphisms can be arranged in a sequence of most to least strict:

$$G \to H \implies G \xrightarrow{q} H \implies G \xrightarrow{*} H \implies G \xrightarrow{+} H \implies G \xrightarrow{B} H.$$
 (4)

It is known that the converse of the first implication does not hold [5, 14], and we show the converse of the last does not hold. The other two are open. The second converse holds if

and only if entanglement assisted source-channel coding can always be accomplished using projective measurements and a maximally entangled state. The third converse holds if, loosely speaking, it is permissible to drop all mathematical structure from (3) except for the basic properties related to inner products $\langle \rho_s^x, \rho_y^y \rangle$.

It is not known whether there can be a gap between the asymptotic entanglement assisted zero-error capacity Θ^* and ϑ . To show such a gap requires a stronger bound on α^* . Since Beigi's β is now shown to be essentially no different from ϑ , this dashes the hope that β could be used to show such a gap. Our bound $\alpha^*(H) \leq \vartheta^-(H)$ would imply a gap, unless ϑ^- regularizes to ϑ in the asymptotic limit. Haemers provided a bound on Shannon capacity which is sometimes stronger than Lovász's bound [6, 7, 1, 12]; however, this bound does not apply to the entanglement assisted case [10].

— References -

- 1 Noga Alon. The shannon capacity of a union. Combinatorica, 18(3):301–310, 1998.
- 2 Salman Beigi. Entanglement-assisted zero-error capacity is upper-bounded by the Lovász ϑ function. *Physical Review A*, 82:010303, July 2010.
- 3 Jop Briët, Harry Buhrman, Monique Laurent, Teresa Piovesan, and Giannicola Scarpa. Zero-error source-channel coding with entanglement, 2013.
- 4 Runyao Duan, S. Severini, and A. Winter. Zero-error communication via quantum channels and a quantum Lovász θ-function. In Proc. IEEE International Symposium on Information Theory (ISIT), 2011, pages 64–68, August 2011.
- 5 Viktor Galliard and Stefan Wolf. Pseudo-telepathy, entanglement, and graph colorings. In *Proc. IEEE International Symposium on Information Theory (ISIT), 2002*, page 101, 2002.
- 6 Willem H. Haemers. An upper bound for the Shannon capacity of a graph. Colloquia Mathematica Societatis Janos Bolyai, 25:267–272, 1978.
- 7 Willem H. Haemers. On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Transactions on Information Theory, 25:231–232, 1979.
- 8 Geňa Hahn and Claude Tardif. Graph homomorphisms: structure and symmetry. In *Graph symmetry*, pages 107–166. Springer, 1997.
- 9 Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms (Oxford Lecture Series in Mathematics and Its Applications). Oxford University Press, USA, 9 2004.
- 10 Debbie Leung, Laura Mančinska, William Matthews, Maris Ozols, and Aidan Roy. Entanglement can increase asymptotic rates of zero-error classical communication over classical channels. *Communications in Mathematical Physics*, 311(1):97–111, 2012.
- 11 Jayanth Nayak, Ertem Tuncel, and Kenneth Rose. Zero-Error Source-Channel Coding With Side Information. *IEEE Transactions on Information Theory*, 52(10):4626–4629, 2006.
- 12 René Peeters. Orthogonal representations over finite fields and the chromatic number of graphs. Combinatorica, 16(3):417–431, 1996.
- 13 David E. Roberson. Variations on a Theme: Graph Homomorphisms. PhD thesis, University of Waterloo, 2013.
- 14 David E. Roberson and Laura Mančinska. Graph Homomorphisms for Quantum Players, 2012.