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Abstract
We study zero-error entanglement assisted source-channel coding (communication in the presence
of side information). Adapting a technique of Beigi, we show that such coding requires existence
of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and
H. Such vectors exist if and only if ϑ(G) ≤ ϑ(H) where ϑ represents the Lovász number. We
also obtain similar inequalities for the related Schrijver ϑ− and Szegedy ϑ+ numbers.

These inequalities reproduce several known bounds and also lead to new results. We provide
a lower bound on the entanglement assisted cost rate. We show that the entanglement assisted
independence number is bounded by the Schrijver number: α∗(G) ≤ ϑ−(G). Therefore, we are
able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is
equal to the integer part of the Lovász number. Beigi introduced a quantity β as an upper bound
on α∗ and posed the question of whether β(G) = bϑ(G)c. We answer this in the affirmative
and show that a related quantity is equal to dϑ(G)e. We show that a quantity χvect(G) recently
introduced in the context of Tsirelson’s conjecture is equal to dϑ+(G)e.
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1 Introduction

The zero-error source-channel coding problem is as follows. Suppose Alice wishes to send a
message x ∈ X to Bob through a noisy classical channel N : S → V in such a way that Bob
may deduce Alice’s message with zero probability of error. Alice encodes her message via
some function f : X → S before sending it through the channel. Bob is aided by some side
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Figure 1 A zero-error source-channel coding scheme.

information u ∈ U regarding Alice’s message. Formally, we can imagine that the symbols x
and u originate from a dual source with probability P (x, u). See Fig. 1.

The success of this protocol can be analyzed using a pair of graphs: G with vertices from
X and H with vertices from V , having edges

x ∼G y ⇐⇒ ∃u ∈ U such that P (x, u)P (y, u) 6= 0 (1)
s ∼H t ⇐⇒ N (v|s)N (v|t) = 0 for all v ∈ V, (2)

where P (x, u) is the probability of input pair x, u and N (v|s) is the probability that the
channel outputs v given input s. G is the characteristic graph of P and H is the complement
of the confusability graph of N . Intuitively, G represents the information that needs to be sent
and H represents the information that survives the channel. Bob is able to decode x (with
zero chance of error) if and only if Alice’s encoding satisfies x ∼G y =⇒ f(x) ∼H f(y) [11].
Such a function is called a homomorphism from G to H. If such a function exists then G is
homomorphic to H, written G→ H.

Many graph quantities can be defined in terms of homomorphisms [8, 9], and the above
protocol puts these in an operational context. If there is no side information then G = Kn,
the complete graph on n = |X| vertices. The largest n such that Kn → H is the clique
number ω(H). Thus the largest number of error-free messages that can be sent through N
is ω(H) (equivalently, α(H), the independence number of the complementary graph). If N
is the perfect channel then H = Kn with n = |S|. The smallest n such that G→ Kn is the
chromatic number χ(G). This is the size of the smallest channel that suffices to communicate
inputs from a dual source with characteristic graph G.

Source-channel coding may also be considered in the case where Alice and Bob make use
of an entanglement resource, Fig. 2 [3]. Now Alice’s encoding operation consists of a POVM
{Mx

s }s∈S depending on her input x and producing a value s to be sent to Bob through the
channel. Bob can successfully decode if and only if

ρx
s ⊥ ρ

y
t for all x ∼G y and s 6∼H t, (3)

where ρx
s is Bob’s share of the post-measurement entanglement resource after POVM outcome

Mx
s . By analogy to the above, a successful protocol is called an entanglement assisted

homomorphism from G to H. If such a thing exists, one writes G ∗→ H. Also by way of
analogy, the entanglement assisted independence number α∗(H) is the largest n such that
Kn

∗→ H and the entanglement assisted chromatic number χ∗(G) is the smallest n such that
G
∗→ Kn. These have similar operational interpretations as α(H) and χ(G) discussed above.
We consider two relaxations of condition (3) for G ∗→ H. The first we denote G B→ H

since it reduces to a construction of Beigi [2] when G = Kn. We say G B→ H if there are
vectors |w〉 and |wx

s 〉 such that
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Figure 2 An entanglement assisted zero-error source-channel coding scheme.

1. 〈w|w〉 = 1
2.

∑
s |wx

s 〉 = |w〉
3. 〈wx

s |w
y
t 〉 = 0 for all x ∼G y, s 6∼H t

4. 〈wx
s |wx

t 〉 = 0 for all s 6= t.
Another relaxation G +→ H is defined similarly, except that the last condition is replaced by
4. 〈wx

s |w
y
t 〉 ≥ 0.

Since these are relaxed conditions, G ∗→ H implies G B→ H and G +→ H. All of our results
follow from two theorems. With ϑ̄(G), ϑ̄−(G), and ϑ̄+(G) being the Lovász, Schrijver, and
Szegedy numbers of the complementary graph G, we have

I Theorem 1. G B→ H if and only if ϑ̄(G) ≤ ϑ̄(H).

I Theorem 2. If G +→ H then ϑ̄(G) ≤ ϑ̄(H), ϑ̄−(G) ≤ ϑ̄−(H), and ϑ̄+(G) ≤ ϑ̄+(H).

A number of original results follow as immediate corollaries:
Entanglement assisted zero-error source-channel coding (G ∗→ H) requires ϑ̄(G) ≤ ϑ̄(H),
ϑ̄−(G) ≤ ϑ̄−(H), and ϑ̄+(G) ≤ ϑ̄+(H).
α∗(H) ≤ ϑ−(H) (previously only α∗(H) ≤ ϑ(H) was known [2, 4]).
The average number of channel uses required per input, in the asymptotic limit, is
known as the entanglement assisted cost rate η∗(G,H). Since ϑ̄ is multiplicative under
appropriate graph products, η∗(G,H) ≥ log ϑ̄(G)/ log ϑ̄(H).
Beigi defined β(H) to be the largest n such that Kn

B→ H (paraphrased into our
terminology) and asked whether β(H) = bϑ̄(H)c. The answer is “yes” – this follows
directly from Theorem 1.
By considering instead G B→ Kn one can define a quantity similar to Beigi’s, equal to
dϑ̄(H)e.

Also as immediate corollaries, we reproduce the following known results:
χ∗(G) ≥ ϑ̄+(G) [3].
There is a notion of a quantum homomorphism G

q→ H defined in the context of a
quantum pseudo-telepathy game [14, 13]. Since G q→ H =⇒ G

∗→ H =⇒ G
+→ H, the

inequalities of Theorem 2 apply to G q→ H as well.

These various generalized homomorphisms can be arranged in a sequence of most to least
strict:

G→ H =⇒ G
q→ H =⇒ G

∗→ H =⇒ G
+→ H =⇒ G

B→ H. (4)

It is known that the converse of the first implication does not hold [5, 14], and we show the
converse of the last does not hold. The other two are open. The second converse holds if
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and only if entanglement assisted source-channel coding can always be accomplished using
projective measurements and a maximally entangled state. The third converse holds if,
loosely speaking, it is permissible to drop all mathematical structure from (3) except for the
basic properties related to inner products 〈ρx

s , ρ
y
t 〉.

It is not known whether there can be a gap between the asymptotic entanglement assisted
zero-error capacity Θ∗ and ϑ. To show such a gap requires a stronger bound on α∗. Since
Beigi’s β is now shown to be essentially no different from ϑ, this dashes the hope that β
could be used to show such a gap. Our bound α∗(H) ≤ ϑ−(H) would imply a gap, unless
ϑ− regularizes to ϑ in the asymptotic limit. Haemers provided a bound on Shannon capacity
which is sometimes stronger than Lovász’s bound [6, 7, 1, 12]; however, this bound does not
apply to the entanglement assisted case [10].
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