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Abstract
The capability of a given channel to transmit information is, a priori, distinct from its capability
to distribute random correlations. Despite that, for classical channels, the capacity to distribute
information and randomness turns out to be the same, even with the assistance of auxiliary
communication. In this work we show that this is no longer true for quantum channels when
feedback is allowed. We prove this by constructing a channel that is noisy for the transmission of
information but behaves as a virtual noiseless channel for randomness distribution when assisted
by feedback communication. Our result can be seen as a way of unlocking quantum randomness
internal to the channel.
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1 Summary

Randomness and information are different concepts. We think of information of as that which
is sent as a specific message to another person or machine. On the other hand, randomness
can be intuitively understood as the outcome of a noisy process. Information and randomness
being different concepts, the capability to distribute them over a channel could, a priori, be
inequivalent resources. More precisely, the capability to distribute a bit of randomness is
a weaker resource than the potential to communicate a bit of information over a channel,
because if Alice is capable of distributing a bit of information to Bob over a noisy channel
she can also locally generate a pair of correlated bits and transmit one to Bob, generating
a bit of shared randomness. Therefore, the capacity R(E) of randomness distribution of a
noisy channel E is in principle higher than that of information communication C(E), i.e.,
C(E) ≤ R(E).

We may also ask about the capacity of a channel to communicate or distribute randomness
when auxiliary classical communication is allowed. For communication, we thus have the
capacity of the channel assisted by feedback C←, the capacity assisted by auxiliary forward
communication C→ and the capacity assisted by two-way classical communication C↔. Since
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the auxiliary forward communication can be used to communicate by itself, we must subtract
the amount of auxiliary forward communication from the gross communication rates in
the definitions of the later two quantities. For the distribution of shared randomness we
can similarly define rates R←, R→, R↔, but in this case we must subtract both forward
and backward auxiliary communication, as both of these may be used to establish shared
randomness by themselves.

In the setting with feedback assistance, the tradeoff between the gross rate of randomness
distribution and the rate of feedback allowed was characterised (among many other things)
by Ahlswede and Csiszár in [2]. A corollary of their result is that R←(E) = C(E) for classical
channels. To our knowledge the only previous work studying the generation of shared
randomness in a quantum scenario was the work of Devetak and Winter [6] on the distillation
of common randomness from bipartite quantum states. That work considered a static scenario
of distillation of randomness from a quantum state already shared between Alice and Bob,
where in this manuscript we are interested on a dynamic scenario of randomness distribution
over quantum channels.

In section 3 we show that, for general quantum channels E , the entanglement-assisted
capacity [12] of E , CE(E), is an upper bound on the largest of the randomness distribution
capacities, R↔(E). Since CE(E) is equal to C(E) for classical-quantum channels (which
include classical channels), this establishes the equality

R(E) = R←(E) = R→(E) = R↔(E) = C(E)

for such channels. A simple argument can be used to show that we also have

C(E) = C←(E) = C→(E) = C↔(E)

for such classical-quantum channels, so in this case all eight quantities are then same. When
the channel is classical

C(E) = max
PX

I(X : Y ), (1)

where X and Y are the input and output to a single use of the channel E with X distributed
according to PX [1].

As opposed to the classical regime, where all capacities turn out to be equal, in the
quantum scenario randomness distribution and communication remain equivalent only when
we consider unassisted or forward assisted classical communication. That is, for general
channels E , we have C(E) = R(E) = C→(E) = R→(E), as shown in subsection 4.1.

In section 4.2 we show that, for quantum-classical channels E , feedback allows the upper
bound in terms of CE(E) to be achieved, and therefore

R←(E) = R↔(E) = CE(E).

On the other hand, since quantum-classical channels are entanglement-breaking, a result
of Bowen and Nagarajan [3] tells us that C←(E) = C(E), so any quantum-classical channel
with C(E) < CE(E) also demonstrates a separation C←(E) < R←(E). Holevo has shown that
there are many such channels [4], and we give an explicit example, where the randomness
distribution protocol is noiseless, in subsection 4.3.

2 Definitions

Our definitions in this section are based on those used by Ahlswede and Csiszár in [2], and
Devetak and Winter [6].
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Figure 1 An example of a two-way assisted randomness distillation protocol which makes two
uses of the channel E . Time runs left to right. Classical systems are shown as double lines, quantum
systems as solid lines. Empty boxes represent local processing. We denote by Aj Alice’s system,
and by Bj Bob’s system, immediately after step j of the protocol. The communication is either
forward communication via one use of the noisy channel E , where Alice inputs Xi and Bob receives
the output Yi, or forward/backward auxiliary noiseless classical communication Zi.

A two-way assisted randomness distribution protocol for a channel E consists of local
generation of random variables A0 and B0 followed by a finite number of steps, each consisting
of communication followed by local processing. The communication is either (i) forward
communication via one use of the noisy channel E , where Alice makes an input Xi and Bob
receives the output Yi; (ii) forward auxiliary noiseless classical communication; (iii) backward
auxiliary noiseless classical communication.

Suppose we have a protocol of n+m steps where n of the steps are of type (i) and the
other m steps are of type (ii) or (iii). We denote by Aj Alice’s system, and by Bj Bob’s
system, immediately after step j of the protocol. At the end of the protocol, Alice must
produce random variable J and Bob must produce K, both of which take values in the same
alphabet AK , by local processing of their respective final systems Am+n and Am+n. An
example of such a protocol with n = m = 2 is illustrated in Figure 1.

We require that

log |AK | ≤ exp(cn) (2)

for some constant c independent of n (but depending on the channel E). We say that the
protocol is ε-good if Pr(J 6= K) ≤ ε. By Fano’s inequality and (2), an ε-good protocol has

H(K|J) ≤ εcn+ 1 (3)

We denote the data transmitted in each instance of auxiliary communication (regardless
of whether it is forward or backward) by Zk, where k ∈ {1, . . . ,m}, in temporal order.

If the total auxiliary communication Z := Z(m) := (Z1, . . . , Zm) has |AZ | possible values
(we require this number to be finite for any given protocol), then this alone would allow the
parties to establish log |AZ | bits of perfect common randomness without using E at all! We
therefore subtract log |AZ | from the final amount of common randomness established and
hence define the net rate of the protocol is

1
n

(H(K)− log |AZ |).

A forward-assisted randomness distribution protocol is one in which all steps are of
type (i) or (ii). A back-assisted randomness distribution protocol is one in which all steps
are of type (i) or (iii). An unassisted randomness distribution protocol is one in which all
steps are of type (i).
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I Definition 1. We say a net rate R is achieved by two-way protocols for channel E if for
all ε > 0 and all sufficiently large n, there is an ε-good protocol for n noisy channel uses
with net rate no less than R. We define R↔(E) to be the supremum of net rates achieved
by two-way protocols; R→(E) to be the supremum of net rates achieved by forward-assisted
protocols; R←(E) to be the supremum of net rates achieved by back-assisted protocols; and
R(E) to be the supremum of net rates achieved by unassisted protocols;

It follows immediately from the definitions that

R(E) ≤ R→(E) ≤ R↔(E) and R(E) ≤ R←(E) ≤ R↔(E). (4)

3 Classical equality between information and randomness distribution

In this section we will show that R↔(E) can be no larger than the entanglement-assisted
capacity of E , CE(E). Since CE(E) = C(E) for classical channels (and, more generally, for
classical-quantum channels), this establishes that

C(E) = R←(E) = R→(E) = R↔(E)

for such channels. We note that common randomness distribution via a classical channel E
and noiseless feedback was considered by Ahslwede and Csiszar in [2], and that the equality
C(E) = R←(E) is a corollary of their Theorem 4.3.

It was shown by Bennett, Shor, Smolin and Thapliyal [12], that the entanglement-assisted
classical capacity of a channel EY←X is given by

CE(E) = max
ρRX

I(R : Y)EY←XρRX . (5)

We will show that the same formula is an upper bound on R↔(E).

I Theorem 2. For any channel E, R↔(E) ≤ CE(E).

Proof. Let us consider a protocol which makes n uses of the channel E and m auxiliary
communication steps. For k ∈ {1, . . . , n}, let Xk denote the input system, and Yk the output
system, for the k-th use of the noisy channel.

Initially, Alice and Bob have systems A0 and B0 which are uncorrelated in that I(A0 :
B0) = 0. We may assume without loss of generality that any local randomness used in
the protocol is already present in the state of these systems. We may assume without loss
of generality that at each step Alice and Bob have retained a full record of all auxiliary
communication up to that step.

Suppose that at step j of the protocol, Bob sends Alice Zk by auxiliary back communica-
tion. Then we may bound

I(Aj : Bj)
(a)
≤ I(Aj−1Zk : Bj)

(b)
≤ I(Aj−1Zk : Bj−1)

=I(Aj−1 : Bj−1) +H(Zk|Aj−1)−H(Zk|Aj−1Bj−1)
(c)
≤I(Aj−1 : Bj−1) +H(Zk|Aj−1)

(d)
≤ I(Aj−1 : Bj−1) +H(Zk|Z(k−1)) (6)

where (a) and (b) are data processing, (c) is because, since Zk is classical,H(Zk|Aj−1Bj−1) ≥
0 and (d) is because Aj−1 includes Z(k−1). A similar argument establishes the same inequality
when Alice sends Bob Zk by auxiliary forward communication, instead.

TQC’15
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Now consider the case where Alice makes an input Xk to the noisy channel E at step j,
with Bob receiving output Yk. Then

I(Aj : Bj)
(a)
≤ I(Aj : Bj−1Yk)
=I(Aj : Yk) + I(Aj : Bj−1|Yk)
=I(Aj : Yk) + I(AjYk : Bj−1)− I(Yk : Bj−1)

(b)
≤I(Aj : Yk) + I(AjYk : Bj−1)
(c)
≤I(Aj : Yk) + I(Aj−1 : Bj−1)
(d)
≤CE(E) + I(Aj−1 : Bj−1). (7)

Here, (a) and (c) are by data processing, (b) is positivity of mutual information, and (d) is
by the result of Bennett, Shor, Smolin and Thapliyal.

Recall that Z := Z(m) is the total record of auxiliary communication. Starting with
I(An+m : Bn+m), and repeatedly invoking the inequality (6) or (7) depending on the type of
step, we obtain

I(An+m : Bn+m) ≤I(B0 : A0) + nCE(E) +
m∑
k=1

H(Zk|Z(k−1))

=nCE(E) +H(Z)
≤nCE(E) + log |AZ |, (8)

where the equality is by the chain rule and I(B0 : A0) = 0. Finally, we bound the net rate R
of the protocol by

R = 1
n

(H(K)− log |AZ |) = 1
n

(I(K : J) +H(K|J)− log |AZ |)
(a)
≤ 1
n

(I(An+m : Bn+m) +H(K|J)− log |AZ |)
(b)
≤ 1
n

(nCE(E) + log |AZ |+ ncε+ 1− log |AZ |)
(c)=CE(E) + cε+ 1/n

where (a) is data processing, (b) is by inequalities (8) and (3), and (c) by is Shannon’s noisy
channel coding theorem. Recalling the definition of R↔, we have established that

R↔(E) ≤ CE(E). (9)

J

We also claimed that C(E) = C←(E) = C→(E) = C↔(E) for classical-quantum channels.
In fact, we can show that this is true of any entanglement-breaking channel. The general
equality C(E) = C←(E) is established in the next section. Now, note that we can write

C↔(E) = sup
m
{C←(E ⊗ Am)− logm}

where Am is a classical identity channel with m input symbols. Since E and Am are both
entanglement-breaking, we have

C←(E ⊗ Am) = C(E ⊗ Am) = C(E) + C(Am) = C(E) + logm
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Figure 2 Relations between the communication (C) and randomness distribution (R) capacities.
Note that an equality means that both capacities are equal for all channels; On the other hand,
an inequality means that we know of at least one channel where one is strictly higher, which does
not preclude the possibility that for other channels they may be equal. (1) It is easy to prove
C = R = C→ = R→, see Section 4.1 below. (2) Corollary of [11], using echo-correctable channels.
(3) Corollary of [9], using random-phase coupling channels. (4) Our result in subsection 4.2. The
relations between R←(E), R↔(E) and C↔(E), i.e., whether they are equal for all channels or there
are some examples of strict separation between them, remains an open question.

by Bowen-Nagarajan [3], the HSW theorem [7, 8], and the fact that the Holevo information
is additive for entanglement breaking channels [10]. Therefore,

C←(E) = C↔(E) = C(E)

for entanglement-breaking E .

4 Quantum scenario

As opposed to the classical scenario, where all capacities of randomness distribution and
information transmission, collapse into a single quantity given by Shannon’s capacity, quantum
channels have a richer behaviour depicted in Figure 2. The only similarity between the
quantum and classical scenario is restricted to the unassisted and forward assisted capacities
where, as shown in subsection 4.1 below, one can prove the equality

C(E) = R(E) = C→(E) = R→(E). (10)

The situation changes radically for feedback and two-way assisted capacities. It was shown
in [11] that by concatenating an echo-correctable channel and a depolarizing channel one
can obtain an entanglement-breaking channel exhibiting a strict separation C←(E) < C↔(E).
Subsequently, in [9], the possibility of a strict separation C→(E) < C←(E) was shown using
random-phase coupling channels (also informally called rocket channels). In subsection 4.2
below we show that there can be a separation C←(E) < R←(E). As a corollary we also
obtain the separation R→(E) < R←(E).

4.1 Equality between unassisted and forward-assisted capacities
It is straightforward to see that C(E) ≤ C→(E) and R(E) ≤ R→(E) (assistance can only
increase the rate), C(E) ≤ R(E) (if you can send a bit of information you can also distribute

TQC’15
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Figure 3 An example of a forward assisted randomness distillation protocol which makes two
uses of the channel E . Without loss of generality, Bob waits until receiving all communication from
Alice to perform his local processing, and obtain K.

a bit of shared randomness) and similarly C→(E) ≤ R→(E), because in both cases we
only subtract the assisting forward communicaiton. In order to prove the equality between
unassisted and forward-assisted capacities in eq. (10), it is sufficient to prove that the
highest of the four capacities, R→(E), is upper-bounded by the lowest of them, i.e. that
R→(E) ≤ C(E).

Since Bob does not send anything back to Alice during a forward-assisted protocol, there
is no loss of generality if Alice makes all n uses of the noisy channel, sends all auxiliary
classical communication and computes her share of the common randomness, J , before Bob
does anything, as illustrated in Figure 3. We denote by R all systems retained by Alice, from
which she computes her share of the common randomness.

Let Xn be the n input systems, and Yn the n output systems, for the n uses of the
noisy channel E⊗n. We introduce a register Z which stores the value of the auxiliary
forward communication Z, which can take one of |AZ | values. After Alice has made all her
communication to Bob, the state of the ZYnR system is

σZYnR =
∑
z

p(z)|z〉〈z|Z ⊗ E⊗nYn←Xnρ
(z)
XnR (11)

where ρ(z)
XnR is the state of the XnR, conditioned on Z = z. Now, Alice performs a measurement

E(j) (POVM of outcome j) on the system R to obtain her share J of the common randomness,
which is stored in register J. At this point the state of the system is

τJZYn =
∑
z

q(j|z)p(z)|j〉〈j|J ⊗ |z〉〈z|Z ⊗ E⊗nYn←Xnρ
(z,j)
Xn , (12)

where

q(j|z)ρ(z,j)
Xn := TrRE(j)Rρ

(z)
XnR

defines the states ρ(z,j)
Xn and conditional distribution q(j|z).

Then Bob performs a measurement on the ZYn system to obtain his share of randomness
K. We can bound the mutual information between the shares by

I(J : K)
(a)
≤ I(J : ZYn)τ = I(J : Yn)τ + I(J : Z|Yn)τ
=I(J : Yn)τ +H(Z)τ − I(Z : Yn)τ −H(Z|J,Yn)τ

(b)
≤I(J : Yn)τ +H(Z)τ

(c)
≤ χ(E⊗n) + log |AZ | (13)
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where (a) is data processing, (b) is because τ is separable with respect to the Z/JYn

bipartition so H(Z|JYn) ≥ 0, and by positivity of mutual information, and (c) is because
I(J : Yn) ≤ χ(E⊗n). We use this to bound the net rate R of the protocol thus

R = 1
n

(H(K)− log |AZ |) = 1
n

(I(K : J) +H(K|J)− log |AZ |)

≤ 1
n

(χ(E⊗n) + log |AZ |+H(K|J)− log |AZ |) ≤
1
n
χ(E⊗n) + cε+ 1/n,

and therefore R→(E) ≤ limn→∞
1
nχ(E⊗n) = C(E), where the equality is the Holevo-

Schumacher-Westmoreland theorem [7, 8].

4.2 Quantum-classical channels; separation C←(E) < R←(E)
Suppose that EY←X is a quantum-classical channel. That is, a channel of the form

EY←X : ρX 7→
∑
y∈AY

|y〉〈y|Y trE(y)XρX (14)

where {E(y)X : y ∈ AY } is a POVM on X. In this case we can show that there is a
back-assisted randomness distribution which achieves the upper-bound CE(E) for two-way
assisted protocols, and therefore:

I Theorem 3. For quantum-classical channels EY←X, R←(E) = R↔(E) = CE(E).

We just need to show achievability: One way that n uses of a quantum-classical channel
can be used to produce randomness with auxiliary back communication is as follows. Alice
locally prepares n copies of a state ψRX and applies the n uses of the channel to Xn. This
results in n copies of a quantum-classical state∑

y

p(y)ρ(y)R ⊗ |y〉〈y|Y = EY←XψRX (15)

being shared between Alice and Bob, with Bob holding the classical register Y , and p(y) :=
trRXE(y)XψRX and ρ(y)R := trXE(y)XψRX/p(y). Now, in the proof of the classical-quantum
Slepian-Wolf theorem of Devetak and Winter [5] it was shown that, for any 0 < ε < 1/2 and
δ > 0, and all sufficiently large n, we can find |AZ | disjoint subsets {Cz : z ∈ AZ} of AnY
such that
(i) the probability that Y n fails to belong to one of the subsets is not more than 2ε,
(ii) given the knowledge Y n ∈ Cz, Alice can perform a measurement on Rn which identifies

Y n with probability of error no more than ε,
(iii) 1

n log |AZ | ≤ H(Y |R) + 2δ.
This suggests the following protocol: Bob takes K = Y n as his share of the common

randomness (so H(K) = nH(Y )) and sends Alice the identity Z of a subset CZ containing
Y n (if such exists) whereupon Alice measures Rn to obtain an estimate J of Y n. This
protocol has Pr(K 6= J) ≤ 3ε and net rate

1
n

(H(K)− log |AZ |) ≥ H(Y )−H(Y |R)− 2δ = I(Y : R)− 2δ.

Therefore, by optimising over the choice of ψXR in the protocol, we have established that

R←(E) ≥ max
ψXR

I(Y : R)EY←XψXR = CE(E), (16)

TQC’15



188 Quantum Enhancement of Randomness Distribution

where CE(E) is the entanglement-assisted capacity of E , and the equality is the theorem of
Bennett, Shor, Smolin and Thapliyal [12].

Now, quantum-classical channels are entanglement breaking. It was shown by Bowen and
Nagarajan [3] that classical feedback cannot increase the classical capacity of entanglement
breaking channels, so we have C←(E) = C(E). Meanwhile, in [4], Holevo has given examples
of quantum-classical channels with CE(E) > C(E). By Theorem 3 and Bowen-Nagarajan,
these channels also exhibit a separation R←(E) > C←(E). To be more specific, consider the
case where the POVM elements determining E are rank-one projectors onto pair-wise linearly
independent subspaces. Then C(E) ≤ CE(E) = log d, and Holevo shows that the inequality
is strict unless the the POVM is a orthonormal basis measurement [4].

4.3 Specific example
Given two rank-1 projective measurements E(0) and E(1) on a d-dimensional system X with
outcomes in {1, . . . , d} we may construct a quantum-classical channel FY←X whose input
system is X and whose output is a pair Y = (M,G) where M is a bit chosen uniformly at
random, and G is the result of performing the measurement E(M) on X. So, M tells us which
basis was measured and G tells us the result of that measurement. Without loss of generality
we can take E(0) to be the computational basis measurement.

Since the POVM corresponding to this classical-quantum channel has rank-one elements
we already know that

R←(F) = CE(F) = log d. (17)

In Figure 4 we illustrate a protocol which distributes 1 + log d bits of perfectly correlated
randomness with one use of F and a single bit of communication from Bob to Alice, thus
attaining a net rate of log d bits per channel use, perfectly.

On the other hand, if we choose E(1) so that the two measurement bases are mutual
unbiased, it is not hard to establish that C←(F) = C(F) = χ(F) ≤ 1

2 log d: The first two
equalities are because the channel is entanglement breaking. It remains to upper bound the
Holevo information χ(F). Suppose that the input to the channel is drawn from an ensemble
{(p(w), ψ(w)) : w = 1, . . . k} with ensemble average ρ =

∑k
w=1 p(w)ψ(w). Maximising

H(M,G)ρ −
∑
w

p(w)H(M,G)ψ(w) (18)

over all ensembles, we obtain the Holevo information χ(F), and since the channel is entan-
glement breaking, we know that C←(F) = C(F) = χ(F). Clearly

H(M,G)ρ ≤ 1 + log d (19)

while, for any state ψ,

H(M,G)ψ =H(M) +H(G|M = 0)ψ Pr(M = 0) +H(G|M = 1)ψ Pr(M = 1)

=1 + 1
2 (H(G|M = 0)ψ +H(G|M = 1)ψ) .

If the measurements correspond to mutually unbiased bases then, according to Maassen and
Uffink’s entropic uncertainty relation [14], we have

H(M,G)ψ ≥ 1 + 1
2 log d, (20)
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Figure 4 Sharing 1 + log d bits of perfect randomness with one use of the channel F (the contents
of the dashed rectangle) and one bit of back communication: Alice locally prepares a maximally
entangled state φRX and inputs X to the channel. We can view the channel as performing a unitary
controlled by the bit M and then performing a computational basis measurement to yield G. Alice
sets Z = M and sends Z to Bob, who performs Ū (the complex conjugate of U) iff Z = 1 and then
performs a computational basis measurement on R to yield a value Ĝ. By the U ⊗ Ū invariance
of φ, Ĝ = G with probability one, so if Alice sets J = (Ĝ, Z) and Bob sets K = (G,M) then
Pr(K = J) = 1, and K is uniformly distributed. Local operations are surrounded by dotted lines.

and substituting the bounds (19) and (20) into (18),

C←(E) = C(E) = χ(E) ≤ 1
2 log d.

This upper bound is indeed tight for both, C←(E) and C(E), as the channel E can be
transformed with some post-processing on Bob’s side into an erasure channel (if M = 1 erase
register G) of error probability 1/2. Therefore (feedback-assisted) error-correcting codes for
the erasure channel can be used to saturate the bound C(E) = C←(E) = 1/2 log d.

5 Conclusion

Despite being, a priori, different things, we have seen that the capacity for a classical channel
to distribute shared randomness and to send information are the same, with arbitrary
classical assistance. For quantum channels, we have shown that the entanglement-assisted
capacity CE(E) is a general upper bound for R↔(E), and shown that this bound can be
achieved using only back-communication for quantum-classical channels. Using this result we
have established that strict separations C←(E) < R←(E) are possible for quantum-classical
channels. We give an explicit example for which R←(E) = log d while C←(E) = 1

2 log d.
Our result shows that contrary to what is predicted by classical information theory, where

the optimal way of distributing randomness is to generate it locally and distribute it through
the channel, quantum mechanics allows for the activation of randomness initially locked
inside the channel, which boost the amount of shared randomness generated in the process.
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