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ABSTRACT 
 

A classic example of epigenetic gene regulation is X-Chromosome 

Inactivation (XCI) in female mammals, where one of the two X 

chromosomes is inactivated for dosage compensation between the 

sexes. However, XCI is reversed during mammalian development 

by reactivation of the inactive X chromosome (XCR) in the epiblast 

cell lineage in the inner cell mass of the late blastocyst and in germ 

cells, thereby coupling X-reactivation with pluripotency.  

To study XCR we used induced pluripotent stem cell (iPSC) 

reprogramming, which recapitulates the reactivation of the inactive 

X in vitro. We performed a screen during iPSC reprogramming by 

knocking down the expression of candidate genes picked from a 

single cell microarray expression screen in blastocysts. 

We thereby identified candidates, whose knockdown had an effect 

on both acquisition of pluripotency and X-Reactivation. However, 

we also identified factors, with a specific role in XCR, without 

affecting reprogramming to iPSCs. This suggests that XCR is not an 

absolute requirement for iPSC reprogramming and that the two 

processes can be uncoupled. Among these factors, there was the 

cohesin complex member Smc1a. In experiments based on Super 

resolution microscopy (STORM), we observed a preferential 

enrichment of Smc1a on the active compared to inactive X, 

suggesting a role in shaping the Xa structure. Therefore, we 

conclude that cohesin-mediated changes in X-chromosome structure 

are a key step during the XCR process. 
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RESUMEN 
 

Un ejemplo clásico de la regulación epigenética del genoma es la 

Inactivación del Cromosoma X (XCI) en los mamíferos femeninos, 

donde uno de los dos cromosomas X está inactivado para la 

compensación de dosis entre los sexos. Sin embargo, la XCI se 

revierte durante el desarrollo de los mamíferos mediante la 

reactivación del cromosoma X inactivo (XCR) en el linaje de las 

células epiblásticas en la masa celular interna del blastocisto tardío 

y en las células germinales, acoplando así la XCR con la 

pluripotencia. Para estudiar la XCR se utilizó la reprogramación de 

células madre pluripotentes inducidas (iPSC), que recapitula la 

XCR in vitro. Se realizó un cribaje reduciendo la expresión de 

genes candidatos, seleccionados a partir de un microarray de 

expresión en blastocitos. Este ensayo permitió identificar factores 

cuya expresión reducida tiene un efecto tanto en la adquisición de la 

pluripotencia como en la XCR. Sin embargo, también se 

identificaron factores con un rol específico en la XCR. Esto sugiere 

que la XCR no es un requisito absoluto para la reprogramación de 

las iPSC, y que los dos procesos se pueden desacoplar. Se identificó 

el miembro Smc1a del complejo de cohesina. Mediante microscopía 

de súper resolución (STORM) se observó un enriquecimiento 

preferencial de Smc1a en el cromosoma X activo en comparación 

con el X inactivo, lo que sugiere un papel en la configuración de la 

estructura del X activo. Por lo tanto, concluimos que los cambios 

mediados por cohesina en la estructura del cromosoma X son un 

paso clave durante el proceso de reactivación del X.
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Chapter 1. X dosage compensation     

                        
In numerous organisms there is a major difference in terms of 
chromosomes between sexes. Males and females differ in their dose of X 
chromosomes. In each species, an essential process called dosage 
compensation ensures that somatic cells of either sex express equal levels 

of X-linked genes. The strategies for dosage compensation are different 
but, in all cases, the X chromosome of one sex is targeted to modulate 
gene expression. In C.elegans XX worms are hermaphrodites and XO 
worms are male (Madl and Herman 1979). Hermaphrodite worms keep 
both X chromosomes active, but reduce transcript levels from each X 
chromosome by half (Meyer and Casson 1986). In Drosophila male flies 
double the transcription activity of their single X chromosome (Belote and 
Lucchesi 1980). In mammals, females (XX) silence the transcription of 

one X chromosome, therefore, both males and females have only one 
active X chromosome (Fig. I1). The first evidence of a mechanism of 
dosage compensation emerged in 1949 when Barr and Bertram described 
the presence of a structure in the nuclei of only female cells of various 
mammalian species (Barr and Bertram 1949). In 1957 Ohno and 
colleagues showed that this structure is derived from one of two female X 
chromosomes (Ohno 1967). Shortly later, in 1961, Mary Lyon described 

experiments on X-linked coat color genes expression in female mice. In
order to explain the heterogeneous pattern observed in mosaic mice, she 
hypothesized that in each female cell one of two X chromosomes is stably 
inactivated (Lyon 1961). Further experiments demonstrated the 
heritability of the inactive state from one cell generation to the next 
(Davidson et al. 1963) and confirmed the occurrence of X inactivation in 
human females (Beutler et al. 1962). Studies in human females with  
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multiple copies of X showed that all chromosomes in excess of one are 

inactivated. This has been generalized as “n-1 rule”, based on the fact that 
if an individual has n X chromosomes, then n-1 is inactivated (Ohno 
1967).  

 

 

1.1  X Chromosome Inactivation: Initiation 

 
X chromosome Inactivation (XCI) is one of the most remarkable 
examples of epigenetic gene regulation in mammals. One of the two X 
chromosomes of female cells is inactivated. XCI requires Xist (X-inactive-
specific transcript), a long non-coding RNA (lncRNA) that  

 
 

XXXY 

Gene expression of 
male X increases by 

2-fold

X0

Repression of both Xs by 
half  

XY XX

Inactivation of 
one female X

Flies Worms Mammals

Figure I1 Different mechanisms of dosage compensation. Organisms use 
different strategies to equalize X-linked gene expression between males (XY or 

XO) and females (or hermaphrodites; XX). Female mammals randomly 
inactivate one X chromosome. Male fruit flies double the transcription rate of 
their single X chromosome. Hermaphrodite worms half the expression of both X 
chromosomes. 
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binds in cis and accumulates along the entire chromosome from which is 

transcribed (Carolyn J. Brown et al. 1991; C J Brown et al. 1992). Coating 
of the chromosome with Xist RNA triggers the silencing of the X-
Chromosome (Penny et al. 1996; Lee et al. 1996).  
Xist expression is regulated by genetic loci within its chromosomal locus 
known as the X inactivation center (Xic), which contains several 
regulatory elements. Within the 3’ region are the promoter and regulatory 
elements for expression of the Tsix non-coding RNA gene. It is 
originating 15 kb downstream of Xist and is transcribed in antisense 

orientation of Xist and acts as its repressor (J T Lee and Lu 1999; J T Lee, 
Davidow, and Warshawsky 1999). Tsix is expressed in ESCs and 
becomes up-regulated during differentiation on the active X-Chromosome 
(Xa) and downregulated on the inactive X-Chromosome (Xi), where Xist 
is expressed. Studies in Tsix-mutant female cells show that X-inactivation 
takes place on the X where it is absent, leading to Xist upregulation and 
suggesting a role in Xa choice (J T Lee and Lu 1999). However, recent 

studies show that Tsix-mutant cells sometimes express Xist from both 
alleles so, those cells are removed and only the ones with Xist monoallelic 
expression remain (Gayen et al. 2015). Therefore, Tsix was suggested to 
not be required for the choice of which chromosome is active or inactive, 
but to be important to prevent Xist ectopic expression on the Xa only after 
X-inactivation has initiated. This supports a stochastic model in which 
each X chromosome in a nucleus initiates XCI independently (Monkhorst 

et al. 2008). Tsix is activated by its enhancers DXPas34 and Xite, non-
coding transcripts (Cohen et al. 2007; Ogawa and Lee 2003). Two other 
non-coding RNA genes Tsx and Linx, have been implicated in Tsix 
regulation. Tsx seems to be an activator of Tsix (Anguera et al. 2011) 
while Linx has been described as an activator (Nora et al. 2012a), 
however, a more recent paper indicates that Tsix and Linx show an 
opposite transcriptional activity (Giorgetti et al. 2014). Tsix facilitates 
binding of the pluripotency factor PRDM14 to Xist intron 1, which might 



Introduction 

 6 

allow the repression of Xist in pluripotent stem cells (Payer et al. 2013). 

Another factor recruited by Tsix is CCCTC binding factor (CTCF) (Kung 
et al. 2015). This architecture protein binds directly Tsix and Xite RNAs 
and seems to be involved in the pairing of the two X-chromosome at the 
time of random inactivation (N. Xu et al. 2007). It has been proposed that 
the X-chromosome pairing is involved in symmetry breaking leading to 
the choice of which chromosome has to be active and which the inactive. 
However, a recent study shows that random XCI can take place in absence 
of pairing (Barakat et al. 2014).  

 
 
Upstream of Xist, at the 5’ region, there is a non-coding RNA gene, Jpx, 
known as Xist activator during XCI (Tian, Sun, and Lee 2010). It repels 
CTCF, which is involved in the regulation of Xist by binding to the Xist 
promoter region. In fact, CTCF blocks the upregulation of Xist on the Xa 
while on the Xi it gets repelled by Jpx, allowing Xist upregulation (Sun et 

al. 2013). Similarly, another non-coding RNA encoded by Ftx locus, 
upstream of Jpx, is implicated in Xist activation (Chureau et al. 2011). A 
recent study shows that its function as Xist activator depends on Ftx 
transcription and not on the RNA products (Furlan et al. 2018b). 
Therefore, the hypothesis is that transcription across the 5’ is required for 
the recruitment of the machinery to the Xist promoter while Ftx RNA is 

not involved in XCI (J T Lee, Davidow, and Warshawsky 1999; 
Luikenhuis, Wutz, and Jaenisch 2001; Takashi Sado, Hoki, and Sasaki 
2005; Furlan et al. 2018a).  
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Located upstream of Ftx, there is Rnf12/Rlim, another activator of Xist 

(Barakat et al. 2011; Jonkers et al. 2009). RNF12 functions as E3 ligase 
for ubiquitin-mediated degradation of the pluripotency factor REX1, that 
acts at the promoter regions of both Xist and Tsix gene loci. Therefore, 
REX1 degradation mediated by RNF12 might up-regulate Xist and down-
regulate Tsix at the same time (Pablo Navarro et al. 2010). The loci that 
participate in Xist repression and Xist activation are summarized in Fig I2.  

 
 
 

 
 

Another important region along the Xic is Xist intron 1, a binding hub for 
pluripotency factors such as OCT4, NANOG, SOX2, PRDM14. It is 
involved in direct repression of Xist by pluripotency factors in ESCs (Ma 
et al. 2011; Donohoe et al. 2009; P. Navarro et al. 2008; Nesterova et al. 
2011). The depletion of OCT4, NANOG and PRDM14 leads to Xist 
upregulation but also to differentiation (Ma et al. 2011; P. Navarro et al. 
2008). However, ESCs lacking intron 1 do not dysregulate Xist expression 

in the undifferentiated state nor show perturbed XCI in vivo (Minkovsky 
et al. 2013; Barakat et al. 2011).  

Xic

Rnf12Xist Jpx Ftx Xpr

TsixTsx

Linx

Figure I2 The X-Inactivation Center (Xic). The key region on the mouse X 
chromosome includes known elements involved in Xist gene regulation as 

noncoding RNA (lncRNA) genes and protein-coding genes (Adapted from 
Brockdorff and Turner 2015). 
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Like for Xist, also Tsix control elements are bound by pluripotency factors 

such as OCT4, REX1, SOX2, KLF4 and c-MYC. However, in this case 
they act as activators of Tsix (Donohoe et al. 2009; Pablo Navarro et al. 
2010). The 5’ region of Rnf12 is also bound by NANOG, OCT4, SOX2 
and PRDM14 (Pablo Navarro et al. 2011; Payer et al. 2013) and their 
depletion leads to upregulation of Rnf12 in ESCs.  
Particularly, PRDM14 represses Rnf12 by recruitment of PRC2 
(Polycomb repressive complex) and the deposition of H3K27me3 mark 
upstream of Rnf12 (Chan et al. 2013; Yamaji et al. 2008; Payer et al. 

2013)(Fig. I3). 
 

 
1.2  X Chromosome Inactivation: Xist Spreading  

All the findings suggest that Xist is necessary and sufficient to trigger 
heterochromatin formation and transcriptional silencing on the X 

Figure I3 Xist and Tsix gene loci. The network of protein factors and lncRNAs 
implicated in Xist gene regulation is shown with arrows and bars indicating 
repressor and activator function, respectively. RNF12 mediates degradation of 
REX1, which functions both as a Xist repressor and a Tsix activator.(Adapted 

from Brockdorff and Turner 2015). 

Oct4
Sox2
Klf4
Prdm14
c-Myc
YY1
CTCF

V

Oct4
Sox2
Prdm14
Nanog

V

Rnf12

Rex1

Rnf12

Rex1PRC2

Xist

TsixXite Tsix RNA

Jpx RNA
Ftx RNA
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Chromosome. There are different regions on Xist RNA that are 

responsible for gene silencing and spreading along the X. Experiments in 
ESCs with an inducible Xist expression system showed that the silencing 
can be ascribed to a conserved repeat sequence, Repeat-A, located at the 
5’ of the molecule. Other sequences of the molecule are mediating the 
coating of the X (Wutz, Rasmussen, and Jaenisch 2002a). Particularly 
critical for the anchoring is the sequence Repeat-C (Beletskii et al.2001; 
Sarma et al. 2010). This region is bound by the protein YY1 (Yin Yang 
1), which traps Xist RNA at its nucleation center, formed by a trio of 

YY1-binding sites within the exon 1 Repeat F region of the Xist gene 
(Jeon and Lee 2011). RNAi experiments against YY1 or mutations in its 
binding sites abolish the loading of Xist RNA and chromosome coating. 
Moreover, YY1 has binding specificity for Xi and not for the same region 
on the Xa. This is explained by the fact that in YY1-binding sites located 
within Xist promoter, CpG islands are unmethylated on the Xi and 
methylated on the Xa (Hendrich, Brown, and Willard 1993; Norris et al. 

1994). Indeed, it has been shown that YY1 is bound only to the 
unmethylated Xist allele (Joomyeong Kim et al. 2003). 

Xist RNA is tightly linked with the nuclear matrix and one of the proteins 
critical for the anchoring is hnRNP U/SAF-A. It interacts directly with 
Xist and is required for the recruitment of repressive marks (Pullirsch et 

al. 2010; Yamada et al. 2015). hnRNP U loss of function results in 
diffusion of Xist RNA throughout the nucleoplasm and away from the X 
chromosome. This suggests that hnRNP U is involved in tethering of Xist 
to the Xi (Hasegawa et al. 2010; Chu et al. 2015; McHugh et al. 2015; 
Minajigi et al. 2015). Once Xist RNA localizes at its nucleation site, it has 
to spread across the X in order to achieve gene silencing (Fig.I4).  
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Figure I4 Xist spreading.  Factors involved in Xist spreading. YY1 tethers Xist 
RNA at the nucleation center formed by a trio of YY1 binding sites. YY1 is also 

interacting with Xist RNA to facilitate the spreading. Another critical protein is 
hnRNP U/SAF-A, which interacts with Xist RNA and is important for its 
localization (Adapted from Brockdorff and Turner 2015). 

 

 

 

 

 

 
 
 
 

 

 

 

 

1.3  X Chromosome Inactivation: Epigenetic regulation 

 

The epigenetic regulation of X Chromosome inactivation requires the 
involvement of chromatin-associated proteins that are members of the 
Polycomb group families PRC1 and PRC2. It has been observed that 
components of those complexes and their repressive marks are enriched 
on the Xi. Specifically, H2AK119u1 and H3K27me3 are deposited on Xi 

by the Polycomb repressive complexes PRC1 and PRC2, respectively (de 
Napoles et al. 2004; Jose Silva et al. 2003). The recruitment of those 
factors to the Xi has been discussed for long time, and they seem 
dependent on Xist RNA at initiation and maintenance phase of the 
silencing. PRC2 seems to be recruited by Xist RNA but in order to be 
active and deposit the H3K27me3 mark it needs the binding of the 
cofactor JARID2 (Cifuentes-Rojas et al. 2014; da Rocha et al. 2014) 

which can bind PRC1 mark H2AK119u1 (Cooper et al. 2016). Recently, it 
has been proposed that noncanonical PRC1 complexes are required for the 
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recruitment of PRC1 and PRC2 to the Xi (Almeida et al. 2017). In fact, 

current evidences suggest that noncanonical PRC1 is recruited by Xist 
RNA through hnRNP K (Pintacuda et al. 2017) while canonical PRC1 
recruitment may occur only when PRC2 is present (Almeida et al. 2017; 
Schoeftner et al. 2006). Both complexes seem to be dispensable for gene 
silencing initiation, in fact, in absence of Repeat A, they are recruited to 
the X but there is no transcriptional repression (Chaumeil et al. 2006; 
Kohlmaier et al. 2004). The Polycomb group proteins are a layer of XCI 
epigenetic regulation not essential for initiation of gene silencing 

mediated by Xist but important to propagate it (Leeb and Wutz 2007; 
Schoeftner et al. 2006) (Fig.I5). 

Another important epigenetic mark is H4K20me1, a histone modification 
enriched on Xi catalyzed by PRSET7 (Kohlmaier et al. 2004). Its function 
is still unclear, but it seems related to Xi structure. In fact, there is an 
evidence suggesting that its lack leads to global chromosomal 
decondensation (Oda et al. 2009a) and it also affects chromosome 

Figure I5 Epigenetic regulation. Recruitment of both PRC1 and PRC2 is 
dependent on Xist. Recent evidence suggests that non-canonical PRC1 is 

recruited through hnRNP K by Xist RNA. PRC2 recruitment depends on 
JARID2, which is able to interact with PRC1 mark, H2AK119ub. Canonical 
PRC1 recruitment occurs downstream of the PRC2 complex (Adapted from 
Galupa and Heard 2018).  
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compaction in C. elegans (Lau and Csankovszki 2015). Additional 

modifications occur on the Xi, H3K9me3 and H3K9me2, catalyzed by 
specific KTM enzymes: SUV39H1and G9a respectively. Those two 
methyl marks could be required together for the maintenance of the 
inactive state (Rougeulle et al. 2004; Chadwick and Willard 2004).   

 

 
1.4  X Chromosome Inactivation: Xist-Interactome 

 

XCI involves the recruitment of many proteins to the X chromosome. 

Early evidence suggest that Xist might interact with those proteins 
because of discrete regions of the RNA sequence: Repeat A for 
transcriptional silencing (Wutz, Rasmussen, and Jaenisch 2002b), Repeat 
B-F for PRC2 recruitment (da Rocha et al. 2014), Repeat C for DNA 
localization (Beletskii et al. 2001). Recently, several groups have focused 
the research on the Xist-interactome and the factors involved in silencing. 
Many proteins have been identified as required for Xist spreading and/or 

the transcriptional silencing of the X chromosome. There are five different 
studies which identify a common factor: SPEN/SHARP, (Minajigi et al. 
2015; Monfort et al. 2015; McHugh et al. 2015; Moindrot et al. 2015; Chu 
et al. 2015). According to their model, Xist recruits SPEN, which then 
recruits and/or activates HDAC3, a histone deacetylase. The deacetylation 
of histones leads to subsequent recruitment of PRC2 and H3K27me3 
deposition. Depletion or deletion of SPEN do not affect Xist recruitment 
but transcriptional silencing. Two other proteins, which have been 

reported as Xist interactors are RBM15, another component of SPEN 
family and, WTAP, a subunit of m6a RNA methyltransferase complex 
(Chu et al. 2015; McHugh et al. 2015; Minajigi et al. 2015). Knockdown 
of those proteins does not affect Xist localization but transcriptional 
repression (Moindrot et al. 2015; Monfort et al. 2015). Besides hnRNP U  
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as a common factor identified by those studies, an additional component 

of that family, hnRNP K, has been found as Xist interactor (Hasegawa et 
al. 2010; Chu et al. 2015; McHugh et al. 2015; Minajigi et al. 2015). Like 
SPEN, it is required for gene silencing and for the deposition of repressive 
marks. Besides hnRNP U there is another nuclear matrix protein, CIZ1, 
that has been identified among Xist RNA interactors (Chu et al. 2015) and 
contributes to cis-localization of Xist (Sunwoo et al. 2017; Ridings-
Figueroa et al. 2017). CIZ1 is specifically enriched on the Xi and its 
recruitment depends on a specific domain of Xist RNA, Repeat E 

(Ridings-Figueroa et al. 2017; Sunwoo et al. 2017). CIZ1 knockout leads 
to a dispersed Xist cloud in somatic cells with no effect on Xist expression 
levels. CIZ1 and hnRNP U interact with Xist RNA independently from 
each other and both are necessary for Xist localization to the Xi (Sunwoo 
et al. 2017) (Fig I6). 
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CIZ1

Figure I6 The Xist Interactome. Functions and interactors of Xist RNA repeat 
elements. The Repeat A is required for silencing and recruits many interactors as 

WTAP and SPEN/SHARP. The Repeat B interacts with JARID2 for chromatin 
remodeling. The Repeat C is important for tethering Xist to the Xi via interaction 
with YY1. The Repeat E tethers Xist to the Xi interacting with hnRNP U and 
CIZ1. Repeat F is also critical for JARID2 recruitment (Adapted from Furlan and 

Rougeulle 2016).  

 
 
 

1.5  X Chromosome Inactivation: Maintenance 

 

A late event that occurs in XCI is DNA methylation of CpG islands on the 
Xi that requires the de novo methyltransferase DNMT3B whereas 

DNMT3A and DNMT3L are dispensable (Gendrel et al. 2012). DNA 
methylation is required to play a dual role during XCI. First of all, it is not 
essential for gene silencing but to maintain X-linked genes 
transcriptionally inactive (Panning and Jaenisch 1996; Takashi Sado et al. 
2004). And second of all, it ensures the repression of Xist on the Xa. 
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An atypical member of the SMC proteins (structural maintenance of 

chromosomes hinge domain containing 1), SMCHD1, is required for 
DNA methylation at many Xi CpG islands (Blewitt et al. 2008; Gendrel et 
al. 2012). It is enriched on the Xi and has been identified as a Xist-
interacting protein (Minajigi et al. 2015). It ensures the maintenance of the 
inactivate state by facilitating the incorporation of H3K27me3 and other 
epigenetic modifications at gene loci that have been silenced (Sakakibara 
et al. 2018). A recent study shows how SMCHD1 can play a role in Xi 
architecture to facilitate Xist spreading along the chromosome (Jansz et al. 

2018; Wang et al. 2018; Gdula et al. 2018).  
Another late event is the incorporation of the histone variant macroH2A 
on the Xi (Costanzi and Pehrson 1998; Mermoud et al. 1999). Xist RNA 
is required to retain macroH2A on the inactive X in the latest stages of 
differentiation (Csankovszki et al. 1999) but, it is not sufficient for the 
recruitment at early stages (Mermoud et al. 1999; Wutz, Rasmussen, and 
Jaenisch 2002a). MacroH2A is not essential for XCI because its loss after 

Xist depletion does not lead to reactivation of X-linked genes 
(Csankovszki et al. 1999). However, its main function is to safeguard the 
maintenance of XCI (Hadjantonakis et al. 2001) (Fig.I7). 
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1.6  Some genes escape XCI 

 
X-Chromosome Inactivation affects most of the X chromosome, however, 
there are some genes that escape the silencing (Berletch et al. 2011). 
Escapee genes show little or no silencing during early propagation of XCI. 
These genes include the ones located on the pseudo autosomal region on 
the X chromosome that pairs with the Y chromosome during male 
meiosis. Escapees do not require dosage compensation, because two 

copies are present on both male and female chromosomes. It has been  

Figure I7 DNA silencing maintenance. At the latest stages of XCI, PRC1 and 

PRC2 complexes are no longer enriched on the Xi, and macroH2A becomes 
associated with the X chromosome. The latest mark is DNA methylation, 
deposited on the promoters of X-linked genes thanks to DNMTs proteins. 
SMCHD1 may play a role in deposition or maintenance of DNA methylation 
(Adapted from Chalignè and Heard 2014).  
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shown that only 3% of X-linked mouse genes escape X inactivation and 

they are located in regions of silenced chromatin compared to humans 
where the percentage of escapee genes is around 15% (Carrel and Willard 
2005; F. Yang et al. 2010; Tsuchiya et al. 2004). The main difference 
could be the position of the centromeric heterochromatin that in mouse is 
at one end of the X which might facilitate Xist spreading. Examples of 
escapee genes are Kdm5c and Kdm6a that appear to be devoid of Xist 
RNA coating (Murakami et al. 2009). 

 
 

1.7  XCI regulation during early mouse development  

 
During mouse development, two modes of X Chromosome Inactivation 
ensure the silencing of one of the two female Xs in a stage-specific 
manner. Imprinted X-Inactivation silences preferentially the paternal X 
(Xp) in early embryos and the placenta. In random X-Inactivation either 
the Xp or the maternal X Chromosome (Xm) can be inactivated at the 

post-implantation stage and it persists through life. In metatherian 
mammals (such as marsupials) only imprinted XCI is observed, where the 
Xp is exclusively chosen for inactivation (Grant et al. 2012). In other 
eutherians than mouse, like humans or rabbits, only random X-
Inactivation appears to take place (Ikuhiro Okamoto et al. 2011). In case 
of heterozygous X-linked mutations, random X-Inactivation results in 
having half of the cells with the mutation on the inactive X and with the 
wild-type copy on the active one, allowing a healthy phenotype. This is a 

big advantage compared to other species where always the same X is 
active as a consequence of imprinted X-Inactivation (Fig.I8) 
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Figure I8 XCI and XCR during mouse development. Imprinted inactivation of 
the paternal X (yellow shading) occurs at the cleavage stage embryos. It is 
maintained in developing extra-embryonic tissues. The reactivation of the 
paternal X occurs in the inner cell mass of blastocyst (blue shading). Both X 

chromosomes are active in the developing epiblast between E3.5 and E5.5 (blue 
shading). Random XCI (red shading) of either paternal or maternal X starts 
around E5.5 and it is stably maintained in the somatic cells. Another wave of 
XCR occurs in the developing germ line (Adapted from Wutz 2011). 
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1.7.1 Imprinted and Random X-Inactivation 
 

Paternally imprinted X Inactivation has been observed for the first time in 

marsupials (Sharman 1971). Later, it has been described in trophectoderm 
(TE) and primitive endoderm (PE) in mouse embryo (Nobuo Takagi and 
Sasaki 1975). In this case always the paternal X gets inactivated 
regardless of how many chromosomes are present. In male the single X 
chromosome is derived from the mother, therefore, it does not undergo 
imprinted inactivation.  
Until the morula stage in mouse embryo there is a repressive imprint on 
the Xm preventing its inactivation. This imprint prevents Xist expression, 

keeping the X chromosome active. Nuclear transfer experiments have 
shown that this repressive Xist imprint is established during oocyte 
maturation (T. Tada et al. 2000). It has been thought that Tsix was 
required to repress Xist and prevent X-inactivation (Takashi Sado, Hoki, 
and Sasaki 2005; Pablo Navarro et al. 2005). It has been shown that Tsix 
is required to prevent Xist expression during imprinted XCI in the 
extraembryonic tissues (J T Lee 2000; T Sado et al. 2001). However, a 

recent study has shown that Tsix is dispensable for inhibiting Xist and 
XCI in the early embryo (Maclary et al. 2014).  
After embryo implantation, imprinted X inactivation is kept in 
extraembryonic tissues and is critical for survival. In fact, embryo lethality 
occurs at post-implantation stage in Xist- and Eed mutants with defective 
imprinted inactivation (Marahrens et al. 1997; J. Wang et al. 2001). 
Imprinted X inactivation is less stringent compared to the random one. In 
fact, it lacks some repressive marks as DNA methylation important for the 

maintenance of silencing, therefore, especially in trophoblast giant cells 
and trophoblast stem cells, X-linked genes might be occasionally 
reactivated (Corbel et al. 2013; Dubois et al. 2014; Hadjantonakis et al. 
2001; T Sado et al. 2000).  
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Random X-Inactivation starts at the early post-implantation stage. The 

cells use the n-1 rule described earlier and based on that, all X 
chromosomes except one are inactivated per diploid set. This process is 
often defined as a counting while the selection of active and inactive 
chromosomes is random, and it is referred as a choice. The two processes 
are tightly linked. As mentioned before, random X-Inactivation is 
stringently maintained compared to the imprinted form. Therefore, it is 
maintained in somatic cells and their progeny throughout life. In that way 
adult mice result in a mosaic of cells expressing either maternally or 

paternally derived alleles of X-linked genes (LYON 1962; H. Wu et al. 
2014).  

 
 
Chapter 2. X-Chromosome Reactivation 
 
In order to switch from imprinted XCI to random XCI, the paternal X has 
to be reactivated (Huynh and Lee 2003a). It takes place during blastocyst 
maturation between embryonic day (E) 3.5 and 4.5, specifically in the 
epiblast (EPI) lineage while the two extraembryonic tissues TE and PE 
maintain imprinted XCI. This process happens quickly, within a day and 
without cell division (Mak et al. 2004; I. Okamoto et al. 2004; L. H. 
Williams et al. 2011). As expected, it occurs by reversing the main 

hallmarks of XCI like Xist downregulation, removal of repressive marks 
and reactivation of X-linked genes. 
So far, few factors are known to play a role in XCR in blastocysts. One of 
them is PRDM14, a pluripotency factor, which is expressed in the inner 
cell mass (ICM) during XCR.  
XCR in vivo in Prdm14-/- mutant embryos has been shown to occur with 
a decrease in efficiency as a consequent failure of H3K27me3 removal 

from the Xp (Payer et al. 2013). In Prdm14 mutants, XCR occurs in half  
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of the epiblast cells compared to an efficiency of 90% in wild-type 

embryos.  
Like Prdm14 also Tsix is involved in XCR in blastocysts. It becomes 
biallelically expressed in the ICM when X-Reactivation occurs, and 
forcing Tsix expression on the paternal X, it induces Xist downregulation 
(Ohhata et al. 2011). Tsix-/- mutants show as well a defective and delayed 
XCR in epiblast cells (Payer et al. 2013). It is possible that Tsix and 
Prdm14 act through the same pathway as PRDM14 recruitment to Xist 
intron 1 is dependent on Tsix expression. Therefore, Tsix seems to ensure 

the recruitment of pluripotency factors for correct XCR but is not essential 
for the process as other mechanisms of compensation occur later on 
(Payer et al. 2013; Maclary et al. 2014). Nanog also switches from 
monoallelic to biallelic expression in blastocysts (Miyanari and Torres-
Padilla 2012) and could help overcoming the defect in XCR in late Tsix-/- 
blastocysts (Payer et al. 2013) (Fig. I9). 

 

Figure I9 PRDM14 promotes XCR by repressing Xist. During XCR in 
embryogenesis and in pluripotent stem cells, PRDM14 binds upstream of Rnf12 
whose repression is mediated by the methylation of H3K27 through PRC2. At 
the same time Tsix is expressed and facilitates the binding of PRDM14 to Xist 

intron 1. All those events lead to Xist repression as key step of XCR (Adapted 
from Payer et al., 2013).  
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A recent study, based on single cell RNA-Seq of mouse blastocysts, 

shows that there are different genes that are reactivated at different stages 
and that the ones that are reactivated slowly are more enriched for 
H3K27me3 (Borensztein et al. 2017). It also shows that in absence of 
UTX, a H3K27 demethylase, the erasure of the repressive mark 
H3K27me3 (Hong et al. 2007; Lan et al. 2007; Agger et al. 2007) is 
delayed, interfering with the reactivation of the late genes. However, there 
are some ICM cells whose H3K27me3 erasure is complete in UTX 
knockout embryos. This is explained as a compensation mediated by other 

demethylases or a passive loss of the repressive mark. This study suggests 
that UTX might play a role in facilitating the reactivation of the paternal 
X at the blastocyst stage (Borensztein et al. 2017).   
 
Another wave of XCR occurs after random X Inactivation in primordial 
germ cells (PGCs) (Monk and McLaren 1981). At this stage, it is 
necessary to reactivate the X chromosome in order to avoid the 

inheritance of an inactive Xm to the offspring. As in male embryos the 
Xm is the only X chromosome and in female the Xp is inactivated, the 
consequence of XCR failure in the germ line would be a functional 
nullisomy for X-linked genes. 
The XCR process in germ cells might be different from the one in the 
epiblast. In fact, XCR in germ cells is a slower process that takes several 
days with multiple cell divisions (Chuva de Sousa Lopes et al. 2008; 

Sugimoto and Abe 2007), while it occurs within a day in the epiblast in 
the absence of cell division. The difference might due to the fact that 
random XCI is more stringently maintained and that also DNA 
methylation needs to be erased in germ cells during XCR.  
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2.1 X-Reactivation and Pluripotency  

Besides its natural occurring context in vivo, XCR has been studied by 

using a number of experimental systems: nuclear transfer, cell fusion, 

induced pluripotent stem (iPS) cells and in vitro germ cell derivation.  
In the first case, a somatic nucleus is transferred into enucleated oocytes 
to recapitulate a fertilized egg. Cloned mice show random XCI, mirroring 
the normal XCR/XCI cycle during development. However, in the placenta 
of cloned mice the inactive state is maintained of the somatic donor cell, 
as extraembryonic tissues do not go through XCR (Eggan et al. 2000). 

The kinetics of XCR and XCI in cloned embryos is therefore consistent 
with the one that occurs during normal embryogenesis. However, in 
cloned embryos derived from ES cells as donor cells, with two active X 
chromosomes, random XCI also occurs in extra embryonic tissues, 
substituting for imprinted XCI.  

Experiments of cell fusion to study XCR have been performed with 

embryonic carcinoma (EC) cells, derived from teratocarcinoma that show 
some pluripotency and are able to differentiate into three germ layers. 

Fusion experiments between female somatic cells and ECs can induce the 

reactivation of the Xi of the somatic cells (N Takagi et al. 1983; Forejt 

et al. 1999). Similar fusion experiments have been realized with mouse 

ES cells showing the capability of promoting Xi reactivation in somatic 
cells (M. Tada et al. 2001a; José Silva et al. 2006; Evans and Kaufman 
1981). In addition, another type of cell fusion is the one with embryonic 
germ (EG) cells that can be derived from PGCs and maintained in culture 
showing the same characteristics as ES cells. The fusion between somatic 

cells and EGCs induces Xi reactivation and is also accompanied by the  
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erasure of genomic imprints consistent with PGC development (M. Tada 

et al. 1997). Furthermore, the recent generation of PGC-like cells 
(PGCLCs) from ES cells is very important in that regard as it also allows 
to study XCR in the germ cell lineage in vitro (Hayashi et al. 2012; Ohta 
et al. 2017) (Fig. I10). 

 

 

 

Figure I10 Experimental systems to study XCR. a) Upon differentiation of 
mouse female ES cells in somatic cells random XCI occurs. b) Experiments of 
somatic cell nuclear transfer into oocytes or cell fusion with mouse ES or EG 
cells can be used to study the reactivation of the X chromosome (Adapted from 

Ohhata and Wutz 2013). 
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2.2 X-Reactivation and Reprogramming of iPSCs. 

 
An alternative system to study XCR is the reprogramming of mouse 

somatic cells into induced pluripotent stem cells (iPSCs) by 
overexpressing four transcription factors OCT4, SOX2, KLF4 and c-
MYC (Takahashi and Yamanaka 2006b). Female mouse iPSCs have two 
active X chromosomes and upon differentiation they can undergo random 
XCI (Maherali et al. 2007) (Fig.I11). 

 

 
The big advantage of this system is that it allows to follow the sequence of 
events that lead to X chromosome reactivation (Pasque et al. 2014). It has 
been shown that XCR occurs as a late event in the reprogramming stage. 
The expression of reprogramming factors is not sufficient for the 
repression of Xist but, similar to XCR in the blastocyst, it happens after 

the reactivation of NANOG and PRDM14, which repress Rnf12 (Payer et 
al. 2013; Pablo Navarro et al. 2011). However, the reactivation of X-
linked genes occurs later, when other pluripotency factors such as DPPA4 
and PECAM1 become expressed (Pasque et al. 2014). Therefore, XCR 

Figure I11 iPS cell reprogramming. Expression of four factors Oct4, Sox2, 
Klf4 and c-Myc can reprogram somatic cells into pluripotent cells and 

recapitulate the reactivation of the Xi (Adapted from Ohhata and Wutz 2013).  

iPS cells
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seems to be linked to pluripotency induction during reprogramming to 

iPSCs.  
As Tsix is important to prevent Xist ectopic expression on the Xa (J T Lee, 
Davidow, and Warshawsky 1999; Luikenhuis, Wutz, and Jaenisch 2001; 
Takashi Sado, Hoki, and Sasaki 2005; Pablo Navarro et al. 2005) lead to 
the hypothesis that it might be also required for Xist repression and XCR 
during reprogramming. However, in iPS cells XCR takes place, even in 
the absence of Tsix (Pasque et al. 2014; Payer et al. 2013).  
 

In addition, it has been shown that the sequence of Tsix expression is 
reversed during reprogramming. In fact, it is reactivated first on the Xa 
and then on the Xi before reactivation of X-linked genes.  
In this regard, different is the expression pattern of macroH2A that is 
enriched on the Xi only late in differentiation (Pasque et al. 2011; 
Mermoud et al. 1999) and it is retained on the Xi until late stages of 
reprogramming (Pasque et al. 2014). 

Similar to macroH2A, the DNA demethylation on the Xi occurs late 
during reprogramming, only after Nanog reactivation. On major question 
is, if demethylation is due to passive and/or active mechanisms, for 

example involving TET proteins. It has been shown that TET1 and TET2 
are dispensable for XCR and Xi-demethylation that probably proceeds 
through a passive mechanism (Pasque et al. 2014). However, further 
studies will be needed to unequivocally reveal the mechanism of DNA-
demethylation during XCR. 

Together, those studies show that XCR is tightly linked to the activation 
of the pluripotency program (Fig.I12). 
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2.3 Epigenetic modifications in iPS cell 

reprogramming  
 
Reprogramming of somatic cells into induced pluripotent stem (iPS) cells 
involves major epigenetic changes regarding genome-wide modifications 
of histones and DNA methylation. The first iPSCs were generated in the 
lab of Yamanaka in 2006 by ectopic expression of four transcription 
factors: OCT4, SOX2, KLF4 and c-MYC (Takahashi and Yamanaka 

2006a; Takahashi et al. 2007). Since then, the efficiency and the 
completeness of the system have been improved with the development of 
alternative approaches (Di Stefano et al. 2014; Vidal et al. 2014; Bar-Nur 
et al. 2014; Rais et al. 2013).  
Cells undergo massive changes when reprogramming occurs. In particular 
many epigenetic modifiers are recruited to help the cells to go through this 
process. First of all, one of the earlier barriers to reprogramming is the 
histone modification H3K9me3 that marks heterochromatin in somatic 

cells. It has been shown that depletion of H3K9 methyltransferases such 
as SETDB1 increases the efficiency of iPSCs formation (Sridharan et al. 
2013). Another study showed that along the reprogramming process many  
 

Figure I12 Stages of X-Reactivation in mouse iPSC. Shown the sequential 
induction of CDH1, NANOG, ERRB, DPPA4 and PECAM1. Establishment of 

EZH2 is represented as a pink dot whereas Tsix is shown by a black dot (Adapted 
from Pasque and Plath 2015). 
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regions of the somatic cells genome are mostly characterized by the 

H3K9me3 chromatin mark that makes them resistant to the OKSM 
binding (Soufi, Donahue, and Zaret 2012). The removal of this mark leads 
to full iPSC reprogramming.  
In contrast, active chromatin marks such as H3K4me2 are distinctive of 
some enhancers involved in pluripotency at the early stages of the 
reprogramming (Koche et al. 2011). Other histone modifying enzymes are 
the H3K4me3 reader WDR5, which helps the interaction with OCT4 (Ang 
et al. 2011) or the H3K27 demethylase UTX that facilitates somatic cell 

reprogramming (Mansour et al. 2012). Other demethylases involved are 
KDM2A/2B that act on H3K36 and the histone remodeling complex BAF 
that increases the reprogramming efficiency by facilitating the interaction 
of OCT4 with its targets (Liang, He, and Zhang 2012; Singhal et al. 
2010). 
Then there is the histone variant macroH2A, known for its role as a 
repressive mark in gene silencing and XCI. Experiment of nuclear transfer 

showed that MacroH2A acts as barrier for somatic cell reprogramming 
(Pasque et al. 2011). Therefore, its removal increases iPSC formation up 
to 25-fold (Pasque et al. 2012).  
Another important role in reprogramming is played by histone 
chaperones. The histone H3/H4 tetramer chaperon, APLF, can accelerate 
the reprogramming by enhancing the expression of E-cadherin and 
helping the mesenchymal-epithelial transition (MET) (Syed et al. 2016). 

In a recent study, by performing two RNAi screens to identify players in 
iPSCs formation, two subunits of CAF-1 complex have been identified as 
the most important hits (Cheloufi et al. 2015). CAF-1 is a histone 
chaperone responsible for the incorporation of old and new histones into 
chromosomes (Smith and Stillman 1989). That study shows that the 
suppression of those two subunits makes the chromatin more accessible at 
enhancer elements at the early reprogramming stage (Cheloufi et al. 
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2015). The main histone variants and modifiers in reprogramming are 

summarized in Fig. I13.  
 

 
 
One of the distinctive marks of transcriptional silencing and 
heterochromatin formation is the methylation of CpG dinucleotides. Their 

methylation is catalyzed by DNA methyltransferases (DNMTs). There are 
three canonical DNMTs: DNMT3A/B are responsible for the de novo 
methylation while DNMT1 is required for methylation maintenance. It has 
been shown that DNA methylation acts as a barrier for somatic 
reprogramming. Therefore, the inhibition of DNMTs by addition of the 
inhibitor 5-aza-cytidine (5-AZA) increases the iPSC formation efficiency 
more than 30-fold (Mikkelsen et al. 2008). 

On the other hand, DNA demethylation can occur through two 
mechanisms: passive or active DNA demethylation. The passive  
 

SETDB1 CAF-1MacroH2A

OSKM Reprogramming

KDM2A/2B
APLFWDR5 UTX BAF

Somatic Pluripotent

Figure I13 Epigenetic modifiers in iPS cell reprogramming. The modifiers 

above can inhibit the reprogramming such as SETDB1, etc. whereas the ones at 
the below including UTX, BAF, etc. can act as reprogramming enhancers 
(Adapted from Wang et al., 2017).  
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mechanism is dependent on downregulation of DNMT expression and 

involves passive dilution of methylation during DNA replication. The 
active DNA demethylation is induced by catalyzing enzymes of the TET 
dioxygenases (TET1/TET2/TET3) family, which can convert 5-
methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) (Tahiliani et 
al. 2009). The 5hmC can be further converted to 5-formylcytosine (5fC) 
and 5-carboxylcytosine (5caC) by TET proteins, which can be recognized 
by thymine DNA glycosylase (TDG) and converted into unmodified 
cytosine to achieve active DNA demethylation (He et al. 2011).   

TET1 and TET2 are up-regulated during reprogramming and they both 
interact with NANOG (Minor et al. 2013; Costa et al. 2013). TET2 
overexpression can increase the reprogramming efficiency and moreover, 
a recent study shows that ablation of TET2 almost completely abolishes 
reprogramming to iPSCs (Sardina et al. 2018). 
TET1, on the contrary,  can promote or suppress reprogramming 
depending on the absence or presence of vitamin C (Esteban et al. 2010). 

TET1 deficiency increases the reprogramming and its overexpression 
affects it in the presence of vitamin C by modulating the MET. In the 
absence of vitamin C, TET1 enhances reprogramming independently of 
MET (J. Chen et al. 2013). However, another study shows that depletion 
of TET1 or TDG impairs somatic cell reprogramming by inhibiting MET 
(Hu et al. 2014), suggesting that TET1 might enhance the reprogramming 
at the late stage. Besides the epigenetic chromatin modifications, a recent 

study identified N6-methyladenosine (m6A), a modification of eukaryotic 
mRNA mediated by METTL3, as a promoter of the reprogramming. 
However, how this modification plays a role in reprogramming in 
combination with DNA methylation is still unknown (T. Chen et al. 
2015).  
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Chapter 3. X Chromosome Architecture  

Differences between Xi and Xa territories have been described since long 
time. Ohno was the first one to hypothesize that the inactive X-
chromosome in Barr Body’s structure was more compact than its 
homologue. However, it was not clear if the difference was due to a 
reduced volume or a difference in terms of their relative shapes or surface 
areas (Ohno and Haushka 1960). Studies on female cells from amniotic 
fluid showed that, in terms of volume, the Xa was not significantly larger 

than the Xi, approximatively 1.2x. In contrast, a difference in their shapes 
was evident in fact, the surface area of the Xa was greater than that of the 
Xi around 1.9x (Bischoff et al. 1993). Further studies on the same cell 
type confirmed the Xi territory has a spherical shape and smooth surface 
while the Xa’s has a flattened shape and more irregular surface (Eils et al. 
1996; Dietzel et al. 1998). Experiments of quantitative 3D multicolor 
fluorescence in situ hybridization (FISH) provided an additional evidence 

that the Xi has spherical shape in contrast to an ellipsoidal Xa and the Xi 
compaction is 1.2-fold higher than the one observed for the Xa (Giorgetti 
et al. 2014; Teller et al. 2011a; Naughton et al. 2010a).  
The development of Chromosome Conformation Capture technique 
opened the possibility of investigating the 3D conformation of the 
chromosomes in the nucleus (Nagano et al. 2013; Lieberman-Aiden et al. 
2009a; Dekker et al. 2002). Specifically, though he 4C-seq method that 
allows to generate interaction profiles between one locus of interest and 

all other loci in the genome, it has been shown that silenced genes on the 
Xi make fewer long-range interactions than do genes on the Xa, where 
active genes interact with other active regions. Escapee genes on the Xi, 
however, make contacts with other escapee genes (Splinter et al. 2011).  
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Chromosome conformation carbon capture (5C) allows to obtain contact 

maps showing interactions between all loci within a region of interest. 
This technique has been used to investigate the 3D structure of the mouse 
X Chromosome.  
Particularly, it determined that the region around Xist locus is formed by 
discrete regions within which sequences preferentially contact each other 
and are called Topologically Associated Domains (TADs). Contacts 
across regions outside are much less frequent (Nora et al. 2012b). The Hi-
C protocol extends the 5C and allows to determine all DNA-DNA 

interactions (Lieberman-Aiden et al. 2009b). The use of this technique 
showed that TADs were not specific to the region around Xist, but were 
observed to occur along all chromosomes, both in mouse and human 
(Dixon et al. 2012). The development of in situ Hi-C performed on intact 
nuclei and the following sequencing permits to define contact maps for 
both the maternal and the paternal chromosomes in human cells. Those 
maps revealed differences between the Xa and the Xi. The map of the Xa 

shows features seen in all autosomes with TADs presence whereas the Xi 
is devoid of those features and is partitioned in two mega-domains 
separated by a hinge region containing the macrosatellite repeat DXZ4, 
which encodes a lncRNA and it is conserved across the mammals (Rao et 
al. 2014). Further experiments, performed in mouse cells, confirmed the 
same conformational differences between active and inactive X 
chromosomes (Deng et al. 2015; Minajigi et al. 2015). In mouse as well, 

the macrosatellite DXZ4 was found at the hinge domain of the inactive X 
but also the minisatellite Ds-TR, not found in human (Horakova, 
Calabrese, et al. 2012; Darrow et al. 2014). Overall the bipartite structure 
is conserved across the mammals however the hinge domain in mouse is 
located centrally while in human it is on the long arm of the chromosome 
(Deng et al. 2015) (Fig. I14).  
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Besides TADs formation, another type of long-range intra-chromosomal 
interactions are the “loops”. They are defined as enhanced contacts 
between distant loci which interact via CTCF. They can exist within and 
between TADs. High-resolution Hi-C data showed that the human Xi, but 
not the Xa, has a series of superloops, defined as extremely long range 
loops (Rao et al. 2014).  

Superloops formation occurs between Xist, DXZ4 and FIRRE, another 
lncRNA on the Xi (Hacisuleyman et al. 2014, 2016) which binds CTCF 
only on the Xi (Rao et al. 2014; Horakova, Moseley, et al. 2012). In 
mouse those superloops were not detected by two studies (Deng et al. 
2015; Giorgetti et al. 2016) but confirmed by a third one and, this might  

Figure I14 X-Chromosome topology. a) shown on the Xa the typical TAD 
organization of the active and repressive compartment. b) The Xi is organized 

into two repressive super domains separated by DXZ4 locus. A few TAD-like 
structures are visible and are associated with facultative and constitutive escapees 
(Adapted from da Rocha and Heard 2017). 
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reflect the difference in terms of cell type or methods (Darrow et al. 

2016).  
To investigate the role of the hinge in the Xi structure, a CRISPR/Cas9 
approach has been used to remove 200kb region including Dxz4 locus 
from the Xi. It revealed that the Xi bipartite structure was disrupted 
however, the XCI establishment was not affected (Giorgetti et al. 2016). 
The same experiment was performed in human deleting a large 300kb 
region. It resulted in the loss of the two megadomains and the Xi-specific 
DXZ4-FIRRE “superloop”. The same deletion on the Xa does not have 

effect (Darrow et al. 2016). The deletion of Xist leads to a restoration of 
TADs on the inactive X towards an Xa-like state, with a possible 
recovery of most Xa-specific CTCF sites (Splinter et al. 2011; Minajigi et 
al. 2015). This result demonstrates that Xist has a major role in defining 
the structure of the inactive X (Fig.I15). 
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This observation found a further confirmation in a recent study showing 
that the high order structures, megadomains and “superloops”, are not 
necessary for XCI biology (Froberg et al. 2018). In fact, as already shown 

in other studies, the deletion of DXZ4 disrupts the megadomains on the 
Xi but it has no effect on gene silencing (Giorgetti et al. 2016; Darrow et 
al. 2016; Bonora et al. 2018; Froberg et al. 2018). In the same manner, 
the ablation of FIRRE on the Xi causes the deletion of “superloops”, 
however, without any impact on the XCI. Indeed, those structures are not 
necessary for Xist spreading or chromosome wide silencing. They might 
occur in concomitance or as consequence thereof (Froberg et al. 2018).  

Figure I15 X-Chromosome topology (2). c) DXZ4 deletion leads to a loss of the 
bipartite structute of the Xi and merging of the two repressive domains d) Xist 

deletion leads to the restoration of TADs to an Xa-like state (Adapted from da 
Rocha and Heard 2017).   
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3.1 Structure of the Inactivation Center (Xic) and Xist 

spreading in 3D  

 
The Xist gene locus is part of a multi-megabase region of the X- 
Chromosome known as X Inactivation Center (Xic), which contains 

negative and positive regulators of the XCI. It has been shown that the X 
Inactivation Center is divided in two neighboring TADs with its boundary 
located between Xist and Tsix promoters. The Xist TAD contains the Xist 
promoter, its 5′ sequence and its positive regulators, including Jpx, Ftx, 
Xpr and Rnf12 loci. The Tsix TAD contains the Tsix promoter, the 5′ 
sequence of Tsix and its activators, Xite, Tsx (Nora et al. 2012a). Within 
the Xist TAD, Jpx, Ftx, Xist show physical interactions (Nora et al. 

2012a). In the same manner, it has been proposed that before XCI Tsix 
and Xite physically interact to promote Tsix expression and prevent Xist 
activation (Tsai et al. 2008). By contrast, on the future Xi, the interaction 
between Tsix and Xite is lost. Therefore, Tsix is repressed and the 
interaction between Xist and Jpx is activated (Nora et al. 2012a). The two 
TADs are separated by a region called RS14, located at 3’ end of Xist. 
This region can bind CTCF and forms the boundary between Xist and Tsix 
TADs (Nora et al. 2012a; Tsai et al. 2008; Spencer et al. 2011) (Fig.I16). 
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Once Xist is upregulated, it is still unclear how it can spread silencing on 
a 150Mb scale. However, recently, two high resolution RNA-DNA 
interaction detection methods, RAP (RNA Antisense Purification) and 
CHART-seq (Capture Hybridization Analysis of RNA Targets with deep 
sequencing), described the process (Engreitz et al. 2013; Simon et al. 
2013). Those two techniques show that Xist follows a two-step 
mechanism, initially it accumulates at the targeting gene-rich islands 

through the Repeat A and then, it spreads to silence neighboring gene-
poor domains. Moreover, it has shown that Xist does not spread linearly 
but it uses a proximity-mediated mechanism in a way that regions close to 
the locus in a 3D space are the first one coated, even if those sites are 
many megabases away when measured linearly on the chromosome 
(Engreitz et al. 2013). This result has been confirmed by ectopically 
expressing Xist from site away from its locus (Tang et al. 2010). In fact,  

Xic

Rnf12Xist Jpx Ftx Xpr

TsixTsx

Linx

Figure I16 Xist and Tsix TADs. Schematic representation of the X-Inactivation 
Center (Xic) partitioned in two topologically associated domains (TADs). The 

Tsix TAD includes repressors of XCI (in red), while the Xist TAD encompasses 

XCI activators (in green) (Adapted from Furlan and Rougeulle 2016). 
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in the same way it shows that Xist spreading depends on the existing 3D 

conformation of the X-chromosome. 

Once XCI takes place, the two chromosomes can move to different 
subnuclear positions. The Xa does not have a specific position in the 
nucleus whereas Xi has two preferential locations: the nuclear periphery 
and next to the nucleolus (perinucleolar). By microscopy it has been 

shown that the Xi is at the nuclear envelope in 75-80% of interphase cells. 
During cell differentiation, some TADs on the Xi become lamina 
associate domains (LADs). A new study has shown that the Xi is recruited 
to the nuclear lamina via lamin B receptor (LBR), a protein binding to 
Xist-lncRNA (C.-K. Chen et al. 2016; McHugh et al. 2015; Minajigi et al. 
2015) It is required to complete Xist coating across the chromosome. 
During S phase 80-90% of the Xi migrates to the perinucleolar site. The 

Xi seems to form a ring around the nucleolus which is enriched of SNF2 

H, required for heterochromatin replication (Zhang, Huynh, and Lee 

2007). The deletion of Xist causes a loss in association of the Xi to the 
nucleolus and as well Xist insertion on an autosome induces its association 
to the nucleolus. In addition to Xist, DXZ4 and FIRRE might help 
anchoring the Xi to the nucleolus. Both lncRNAs DXZ4 and FIRRE are 
bound by nucleophosmin, a protein located at the periphery of the 
nucleolus (Fan Yang et al. 2015). In addition, both DXZ4 and FIRRE on 
the Xi appear adjacent to the edge of the nucleolus and might tether it 

there. However, it is still not clear which is the mechanism behind it. A 
recent study shows that FIRRE is expressed from the Xi and its loss 
causes a decrease in association with the nucleolus and a loss of the 
repressive mark H3K27me3 on the Xi, but it does not cause reactivation 
of X-linked genes (Fan Yang et al. 2015). Both lncRNAs are also bound 
by CTCF and knocking down Ctcf expression causes a reduction in the 
association of FIRRE and DXZ4 with the perinucleolar region. CTCF also 

interacts with nucleophosmin and plays a role in tethering Xist and the 
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other lncRNAs to the nucleolus. Those data suggest that the association of 

the Xi to the nucleolus has a role in gene silencing and X-inactivation-
maintenance (Fig.I17). 

 

 

 

Figure I17 The final journey through the space. Before XCI, both X 
chromosomes are active and not strongly associated with nuclear lamina (left). 
Once Xist has been expressed, it starts spreading across the future inactive 
chromosome and interacts with the lamin B receptor (LBR) inducing the 

localization of the X chromosome to the nuclear lamina (middle). Finally, active 
genes are sequestered into the Xist compartment (red area) and silenced (right). 
During this process, two mega-domains appear on the inactive X, separated by a 
hinge at the Dxz4 locus. DXZ4 is associated with the nucleolus and forms super-
loops with specific loci including the ones encoding FIRRE (Adapted from da 

Rocha and Heard 2017). 
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3.2 Cohesin and CTCF code for 3D genome topology 

As explained earlier, the chromosome architecture is characterized by 
long range intra-chromosomal interactions: TADs and “loops” (Rao et al. 
2014). Another structural level is represented by “compartments”, formed 
by interactions between chromatin of similar epigenetic states. A-
compartments is characterized by regions enriched for active genes 
(euchromatin) whereas B-compartments harbor regions enriched for 
repressed genes (heterochromatin) (Rao et al. 2014, 2017; Schwarzer et al. 

2017; Lieberman-Aiden et al. 2009a; Nora et al. 2017; Rowley et al. 
2017). The boundaries of TADs and loops are enriched for the zinc finger 
protein, CTCF (Dixon et al. 2012). CTCF is a protein with insulator 
activity (Bell, West, and Felsenfeld 1999) and one of the first factors 
described as being involved in chromatin looping (Splinter et al. 2006; 
Handoko et al. 2011). It is associated and positions cohesins on chromatin, 
which are key chromatin components (Wendt et al. 2008) and together 

they lie at the anchor of the loops (Rao et al. 2014; Splinter et al. 2006) 
and TADs (Dixon et al. 2012; Rao et al. 2014; Nora et al. 2012a; 
Lieberman-Aiden et al. 2009b) to help regulating the genome folding. 

 

3.2.1 Cohesin structure and function 

As shown in Fig. I18, the multi subunit complex cohesin, is composed by 

two structural maintenance of chromosomes (SMC) subunits SMC1 and 

SMC3 which associate to form a tripartite ring including a-kleisin 

subunit, MCD1/SCC1/RAD21. SMC1 and SMC3 fold back to themselves 
to form antiparallel coiled-coils with a hinge domain to dimerize at one 

end.  At the other end there is a globular ATP head to connect to the a-

kleisin subunit in order to complete the cohesin ring structure and encircle 
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Figure I18 Structure of the cohesin complex. Cohesin is composed of four 
subunits (orange). SMC1 and SMC3 fold back to themselves to form antiparallel 
coiled-coils with a hinge domain to dimerize at one end. At the other end there is 

a globular ATP head to connect to the a-kleisin SCC1/RAD21 subunit in order to 

complete the cohesin ring structure. The a-kleisin subunit interacts with 

additional proteins as SCC3/STROMALIN (either SA1 or SA2 in vertebrate 
somatic cells), PDS5, and WAPL (blue) (Adapted from Remeseiro and Losada 
2013). 

the DNA strands (Haering et al. 2002). The a-kleisin subunit interacts 

with additional proteins as SCC3/STROMALIN (SA), PDS5, and 

WAPL. The PSD5/WAPL complex releases cohesins from the 

chromosome by opening the interface SMC3/RAD12, while other proteins 
as the dimer SCC2/MAU2, load cohesin onto the DNA (Kueng et al. 
2006b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
The cohesin complex has multiple roles in cell division, DNA damage 
repair, gene transcription and chromosome architecture. The best role 
characterized for cohesin is sister chromatid cohesion during cell cycle 
(Guacci, Koshland, and Strunnikov 1997; Michaelis, Ciosk, and Nasmyth 
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1997). In fact, cohesin holds sister chromatids together in S phase until 

cell division in anaphase. The complex SCC2/MAU2 loads them onto 
chromatin in early G1 to mediate cohesion during cell replication and then 
in prophase cohesin is released by the complex PSD5/WAPL (Panizza et 
al. n.d.; Kueng et al. 2006a). Complete loss of cohesin subunits is lethal, 
breaking the cohesion between sister chromatids and precocious 
separation in metaphase (Michaelis, Ciosk, and Nasmyth 1997).  
Cohesins have another important role in DNA double strand break repair. 
They accumulate near double strand breaks where they stabilize cohesion 

and contribute to DNA damage/repair (H. Xu et al. 2010).   

 

3.2.2 Cohesins and Chromosome architecture. 

In the last years one of the most explored function of cohesin is the role in 
gene regulation and chromosome architecture. Cohesins mediate gene 
regulation by long-range interaction loops between their binding sites and 
between enhancers and promoters. Their direct role in chromatin looping 
has been shown at several loci, where they interact with specific 

transcription factors (Kagey et al. 2010). In fact, after knocking down 
cohesin expression, the long-range interactions among regulatory regions 
are reduced. As described earlier, cohesins mediate chromatin loop 
formation in combination with CTCF. The current popular model to 
explain how cohesins organize chromosomes is the loop extrusion model 
(Alipour and Marko 2012; Goloborodko, Marko, and Mirny 2016). 
According to this model, the extrusion complex is formed by two cohesins 
rings and two CTCF proteins that act as DNA-binding subunits. When this 

complex is loaded onto the DNA, a tiny loop forms. The two subunits 
engage the DNA in an asymmetrical way, sliding in opposite directions 
and initiating loops formation. Loop extrusion stops either when cohesins 
dissociate from the DNA or when CTCF proteins detect a target motif and 
arrest the process, specifying the base of the loop (Rao et al. 2014; Vietri 
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Rudan et al. 2015; Davidson et al. 2016). Loop extrusion has been 

proposed to determine TADs formation. The loops are lost when cohesins 
are degraded but they reform when cohesins are restored (Fudenberg et al. 
2016). Interestingly, compartments are not lost upon cohesin depletion, 
suggesting the role of additional proteins in maintaining this level of 
chromosome organization (Zuin et al. 2014; Sofueva et al. 2013; Seitan et 
al. 2013). The loop extrusion model is an attractive model that suggests 
how cohesin proteins could organize domains of chromatin into loops that 
are topologically distinct from each other (Fig.I19). 

 

 

 

Figure I19 Loop extrusion model. The complex includes two DNA-binding 
subunits each has a cohesin ring (orange) and a CTCF protein (pink). A tiny loop 
begins to form when DNA is extruded from the complex. The two subunits 
involve the chromatin fiber in an antisymmetric manner, with their CTCF 

proteins facing the outside of the loop, scanning opposite DNA strands. The loop 
expands without knotting while the subunits move in opposite directions. When 
the CTCF proteins find a target motif on the proper strand, they can bind and 
arrest the progress of the subunit. Eventually the extrusion complex can 
dissociate (Adapted from Sanborn et al., 2015). 
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3.2.3 Xist RNA repels cohesins from the Xi.  

By forcing or disrupting Xist expression, it has been shown that it also 
contributes to shape X-Chromosome conformation. In fact, forced 
expression of Xist RNA in ESCs induces the appearance of insulation at 

the mega-domain boundary region (Giorgetti et al. 2016). Therefore, Xist 
seems to be involved in the formation of the mega-domain boundaries. 
Conditional ablation of Xist (XiΔXist) from the Xi in mouse fibroblasts 

induces its reorganization into a similar structure as the Xa. TADs are 
restored on the mutant Xi and there is also an increase of cohesin binding  
at the same sites bound on the Xa. There are evidences that show how the 
binding of cohesins on the Xa is different from the Xi.  Cohesins bind the 
X-Chromosome in a specific manner that favors the Xa conformation. In 

fact, there are 500-600 Xa cohesin specific sites and only 20 are specific 

for the Xi. The rest of ~200 sites are shared between the Xi and the Xa. 

Proteomic studies show that Xist directly interacts with both CTCF and 
cohesins (Minajigi et al. 2015). So, the hypothesis is that Xist interferes 
with the binding of cohesins to the Xi. It seems to act by repelling the 
binding in cis of a set of cohesins, preventing the establishment of Xa-

like binding pattern (Minajigi et al. 2015). Therefore, as mentioned 
earlier, deletion of Xist causes the restoration of TADs and also the re-
establishment of Xi-cohesins binding, proving how Xist is necessary for 
the maintenance of the 3D organization of the Xi (Splinter et al. 2011) 
(Fig.I20). 
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An atypical member of the SMC proteins, SMCHD1 (structural 
maintenance of chromosomes hinge domain containing 1), is required for 
DNA methylation at many Xi CpG islands (Blewitt et al. 2008; Gendrel et 

al. 2012). This protein has been previously implicated in the compaction 
of human Xi (Nozawa et al. 2013). However, recent studies suggest that it 
is required for promoting the loss or attenuation of TADs on the Xi. 
Depletion of SMCHD1 induces an increase of short-range interactions at 
the level of TADs (Gdula et al. 2018; C.-Y. Wang et al. 2018; Jansz et al. 
2018). Changes in 3D architecture of the Xi upon Smchd1 are not 
dependent on transcriptional changes (Gdula et al. 2018; Jansz et al. 
2018). Therefore, it might play different roles at the structural and 

transcriptional levels. 

XCI

Xa

TADs

Cohesin

Xist RNA
v

Xi

Cohesin

Cohesin TADs Xist RNA

Figure I20 Xist RNA repels cohesin from the Xi. The Xa is divided in TADs 
and cohesin play a role in organizing this structure (left). On the Xi, Xist RNA 
displaces cohesins from critical sites leading to the loss of TADs and a more 
disorganized chromosome structure (right) (Adapted from Payer 2017). 
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Although X-Chromosome Inactivation (XCI) has been well studied, 
multiple open questions remain to elucidate the inverse process of X-
Chromosome Reactivation (XCR). To better understand it, a single cell 
microarray screen at the blastocyst stage of embryo development has been 
performed previously by my supervisor Bernhard Payer (unpublished), 
which is the starting point of my thesis. The screen aimed at identifying 
regulators of XCR, whose expression profile is anti-correlated with Xist 

during XCR in the epiblast of mouse blastocysts. My Thesis work has 
focused on a secondary functional screen during the reprogramming in 
iPSCs, testing the role of the candidates picked from the expression 
profiling in blastocysts. Differentiated somatic cells can be reprogrammed 
into induced pluripotent stem (iPS) cells by overexpressing the four 
transcription factors OCT4, SOX2, KLF4 and c-MYC. During this 
process female iPS cells reactivate the inactive X-chromosome when they 

start to express endogenous pluripotency factors. Thus, the hypothesis was 
raised that among the candidates, some of them could play a role in 
Pluripotency and/or X-Reactivation.  
 

Therefore, the objectives of the Thesis work were the following: 
 

I. To investigate if candidate factors play a role in pluripotency 

establishment; 
II. To investigate their potential function in X-Reactivation; 
II. To investigate the mechanistic role of one of the top candidates. 

the cohesin complex member Smc1a, during X-Reactivation. 
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1. Work leading up to the project 
 

1.1 Single-cell expression screen for differentially 

expressed genes correlated with XCR in mouse 

blastocysts. 
 

Transcriptional reactivation of the Xp occurs in the mouse blastocyst 
during pre- to peri-implantation development. In the trophectoderm (TE) 
and the primitive endoderm (PE), which contribute to the placenta and 

yolk sac, respectively, imprinted silencing of the Xp is maintained. In 
contrast, in the epiblast (EPI) cells within the inner cell mass (ICM) of the 
blastocyst, the Xp is reactivated (Huynh and Lee 2003a). In order to 
identify novel factors involved in XCR, single cell microarray expression 
profiling has been performed by my supervisor Bernhard Payer 
(unpublished) looking at the blastocyst at different stages: early (E3.5), 
intermediate (E4.25) and late (E4.5). The main purpose was to cover the 

entire process before, during and after XCR.  
Blastocyst embryos have been dissociated and single cells were picked 
from PE and EPI tissues to perform amplification and single cell 
microarrays (Kazuki Kurimoto et al. 2007; K. Kurimoto et al. 2006) 
(Fig.R1a).                                                                                                        
After generating expression profiles, 228 candidate genes with a potential 
role in XCR have been identified, which were selected according to the 
following criteria. First of all, they are lowly expressed in PE and in EPI 

before reactivation at E3.5. They become upregulated in female epiblast 
during XCR (E4.25-E4.5) and therefore are anti-correlated to Xist-
expression, which is downregulated during XCR. The candidate factors 
may be also upregulated in male epiblast, which only have one X 
chromosome, as male pluripotent stem cells have XCR activity in fusion  
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experiments with female somatic cells (M. Tada et al. 2001b).  
Anticorrelation with Xist expression in female epiblast of the first five top 
candidates is shown in Fig.R1b. In epiblast they are upregulated while in 
primitive endoderm, where there is no X-Chromosome Reactivation, their 
expression is low. In a similar way in male epiblast their expression is 

rising whereas Xist expression remains low. Among the candidates that 
came out there is the lncRNA Tsix, confirming its role in XCR described 
before (Payer et al. 2013). Based on expression change and expected 
likelihood of involvement in XCR according to gene ontology, 57 
candidates were picked for further validation with 3 internal controls 
(Fig.R1c).  
In general, it is possible to classify those candidates in different categories 

according to their function: transcriptional regulation, cell cycle 
regulation, chromatin-related factors and other/unknow function category 
(Fig.R1d). A complete list with the 57 candidates and controls (*) it is 
provided in Table MM4 in Material and Methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Results 

 55 

 

 

Figure R1 Single cell microarray in blastocyst. a) Microarray experiment 
workflow (B.Payer). b) Expression profile of the first five top candidates of the 
microarray in female EPI, female PE and male EPI. c) Schematic representation 

of the screen work-flow. d) Pie chart of candidates-related pathways.  
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2. Secondary functional shRNA-knockdown screen 

during iPSC-reprogramming. 
 

 
2.1. In vitro iPSCs reprogramming system 

 
 

As Xist-anticorrelation is indicative but does not guarantee a role in XCR, 
a secondary functional screen has been devised to validate real XCR 

regulators. Therefore, we used the in vitro iPSCs reprogramming system 
in which differentiated somatic cells can be reprogrammed into induced 
pluripotent stem (iPS) cells.  
Along this process female iPS cells reactivate the inactive X-
Chromosome and when re-differentiated in culture, they undergo again 
random X-inactivation, indicating the erasure of epigenetic memory of 
the previously inactive X-Chromosome during their generation 

(Maherali et al. 2007). This system gives us the big advantage to follow 
the XCR dynamics in vitro. We have used mouse embryonic fibroblasts 
(MEFs) derived from “reprogrammable” mice which are converted into 
iPSCs using a doxycycline (Dox)-inducible Oct4, Klf4, Sox2 and c-Myc 
(OKSM) cassette (Stadtfeld et al. 2010). Moreover, we took advantage 
of boosting the reprogramming efficiency with ascorbic acid (Vitamin 
C) (Esteban et al. 2010). 

In order to follow the XCR process along the reprogramming, the cells 
carry a GFP-transgene on the inactive X (Hadjantonakis et al. 2001) 
(Fig. R2). It is based on the use of an X-linked GFP marker gene (XGFP) 
and MEFs that bear the XGFP transgene on the Xi (XGFP-negative cells) 
were sorted by FACS (fluorescence-activated cell sorting).  
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However, previous experiments have shown that about 0-20% (cell line-
specific variation) of XaGFP seems to be silent in primary fibroblasts 

indicating occasional X-inactivation-unrelated silencing of the XGFP  
 

Figure R2 RNAi screen. Experimental design of the RNAi screen work- flow 

(B. Payer). 
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transgene (Eggan et al. 2000). In order to obtain populations of cells with a 
clear-cut XCI state, it is necessary to get rid of those dark cells that have 
GFP on the active X-chromosome. We applied a drug selection scheme 
based on the endogenous X-linked HPRT gene for that purpose. In fact, our 
cell line besides carrying an XGFP transgene also has a mutation in one of 
the two HPRT alleles on the counter X-Chromosome. So, after FACS-
sorting the cells to be XiGFP/XaHprt–, we grow them in 6-thio-guanine (6-
TG) medium, where only cells with a mutated HPRT gene can survive, 

killing those cells with a wildtype HPRT allele on the active X-
Chromosome (Eggan et al. 2000). The sorted and 6-TG-selected XGFP- 
cells are reprogrammed and used to determine XCR efficiency by scoring 
for XGFP reactivation. 

 

2.2. System characterization 
 

Fig. R3a shows a schematic representation of the kinetics of iPSC 
reprogramming with our cell line. The first step was to score the 
reprogramming efficiency as a percent of primary colonies formed per 
input MEFs after Dox induction (Fig. R3b). The efficiency of our system 
was more than 2%, improved in comparison to what has been published 
about the same inducible system (around 1.4% efficiency) (Stadtfeld et 
al. 2010). This is confirmed by one of the most common assays to assess 

the pluripotency state: the formation of alkaline phosphatase (AP)-
positive colonies (Fig. R3b). 
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Few days after dox addition, cells started to change morphology and form 
aggregates. The first colonies emerged after 4-5 days of OKSM 
expression leading to proper iPSCs around day 10. As expected, X-
Chromosome Reactivation occurred as well. The first evidence of XGFP 
reactivation was visible around day 8, where few cells within the colonies 
started to become green. The percentage increased along the 
reprogramming up to reach full XCR at the endpoint of the 

reprogramming (Fig. R4a) To further refine the kinetics of iPSC 
reprogramming, we examined cell surface markers of pluripotency (Polo  
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Figure R3 In vitro iPSC system (I). a) Schematic representation of the 
reprogramming experiment. b) Reprogramming efficiency graph: OKSM-MEF 

no dox control versus OKSM-MEF +dox. Reprogramming efficiency was scored 
as the percent of primary colonies formed per input MEFs after 14 days of dox 
induction. Each graph depicts data from one experiment performed in triplicate 
(error bars = SEM). On top is shown the alkaline phosphatase (AP) staining of 
d14 iPSC colonies. 
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et al. Cell 2012), which identified early (SSEA1) and late (EpCAM1) 
iPSC stages by FACS. At the beginning in absence of dox, non-
reprogrammed MEFs and feeders were completely negative for any 
pluripotency marker (Fig. R4b). At day 6, after emerging of the first 
colonies, the early marker SSEA1 showed up. At day 8, it became 
possible to visualize a nascent population of cells that were double-
positive for SSEA1 and the late marker EpCAM1. That population 
became clearer at day 10. At the last stages of reprogramming the 

majority of cell, about 80%, was SSEA1/EpCAM1 double-positive. 
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Figure R4 In vitro iPSC system (II).  a) Imaging of reprogramming time points 
(d0-d14) showing in brightfield (BF) the colony formation and in green the 
XGFP reactivation. b) FACS analysis of different reprogramming time points 
staining the cells by two surface markers EpCAM1(y-axis) and SSEA1. 
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An important feature of iPS cells is the expression of endogenous 
pluripotency genes and independent self-renewal without exogenous 
OKSM expression (Polo et al. 2012; Stadtfeld et al. 2008). To ensure that 
the iPSCs analyzed at the end of our time-course were fully 
reprogrammed, we therefore withdrew dox at day 12 of reprogramming. 
We further characterized reprogramming by analyzing transcriptional 
levels of pluripotency genes such as Oct3/4 and Nanog at different time 
points: d6, d8, d10, d12, d14 and no dox control (Fig. R5). It is important 

to specify that we were looking at the bulk population, meaning that it was 
a mixed population of reprogrammed cells, feeders and non-
reprogrammed cells. We observed an upregulation of both genes starting 
from d6 and the levels were kept stable in the latest days when proper 
iPSCs were formed. We also followed the kinetics of XGFP reactivation 
at the transcriptional level. In agreement with what we saw by 
microscopy, XCR occurred from d8 of reprogramming onwards. Related 

to X-Chromosome dynamics, we also checked expression of Xist, the 
master regulator of XCI and its counterpart, Tsix. Around day 8 Xist 
started to be downregulated and at the same time Tsix started to be 
expressed.  
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Figure R5 Transcriptional changes during iPSC reprogramming. 
Assessment by Real time PCR of mRNA expression levels at different 
reprogramming time points of key genes such as Oct4, Nanog, Tsix, Xist and 
XGFP-transgene reactivation. Expression levels are normalized by GAPDH 

relative to no dox control (set to 1) (Error bars=SEM). 
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3. RNAi screen in iPSCs 

 
To investigate the putative involvement of the 57 candidates we selected 
from the single cell microarray screen in XCR and reprogramming, we 
performed a secondary RNAi screen. 

We infected OKSM-MEFs with lentiviruses (Stadtfeld et al. 2010; Moffat 
et al. 2006) expressing either an shRNA with a not mammalian-target 
sequence (shLacZ) as a negative control or using 3 different shRNAs 
against each candidate in order to knockdown their expression (Fig. R6a). 
We grouped the 60 candidates into two batches of 30 candidates and we 
performed the RNAi screen three times for each batch having two 
technical replicates. 24h after infecting the fibroblasts, we seeded them 

onto feeders and induced reprogramming by adding dox. As expected, the 
first colonies appeared around day 4-5. At day 8, we started seeing XGFP 
reactivation and at day 10 we counted total colony and XGFP+ colony 
numbers for each condition. The day after, we performed a FACS analysis 
looking at the pluripotent cells by staining them with two surface markers, 
SSEA1 and EpCAM1. Moreover, within the double positive population 
(SSEA1+EpCAM1+) we looked at the percentage of GFP positive cells. 

We used day 12 as second time point to count again the total number of 
colonies and the number of XGFP+ ones.  

 
Once we started the screen, we faced the difficulty to check the 
knockdown efficiency for each shRNA in each screening run. Therefore, 
we decided to get an overall idea of knockdown efficiency by assessing 
the expression level of internal controls for both reprogramming and XCR 
process and whose virus titer was in the same range as the majority of the 

lentiviruses used. Specifically, we looked at Oct3/4 and GFP shRNA 
knockdown by Real Time PCR (RT-PCR) and in both cases, on average,  
 



Results 

 64 

 
for all three shRNAs the efficiency was around 80% as shown in a 
representative graph in Fig. R6b.  

  
 

 
3.1  Factors involved in pluripotency 

 
The first aspect we looked at was reprogramming efficiency, by assessing 
how the knockdown of the candidate factors was affecting iPSC colony 
formation. As all the picked candidates are upregulated in the epiblast 

lineage, which is the precursor to ESCs and all embryonic cell types, we 
expected many candidates to have a general role for pluripotency and 
stem cell reprogramming. Indeed, we observed that the knockdown of the 
majority of the candidates had an effect on pluripotency (Fig. R7a-b). 
 
 

Figure R6 RNAi screen during iPSC reprogramming. a) Schematic 
representation of the lentiviral infection and reprogramming time course. b) 

Assessment of mRNA levels of Oct4 and GFP by Real time PCR 72h post 
infection and 48h after inducing the reprogramming by dox addition. LacZ 
shRNA as a control. Expression levels are normalized by GAPDH relative to 
LacZ shRNA (set to 1) (Error bars=SEM). 

a

d0 d6 d8 d14d10 d12

+ d
ox

MEFs iPSCs

-2 -1

sh
RN

A 
inf

ec
tio

n

Co
lon

y c
ou

nti
ng

d11

Co
lo

ny
 co

un
tin

g 0,0

0,2

0,4

0,6

0,8

1,0

1,2

La
cZ

 TR
CN_2

40
GFP

 TR
CN_1

99
GFP

 TR
CN_1

81
GFP

 TR
CN_1

94
Oct4

 TR
CN

_7
81

Oct4
 TR

CN
_6

12
Oct4

 TR
CN

_6
15

re
la

tiv
e e

xp
re

ss
io

n

b



Results 

 65 

 
We analyzed the absolute colony number and then calculated the 
reprogramming efficiency, normalizing by LacZ shRNA as negative 
control and compared two replicates. In order to classify our candidates 

into different categories, either enhancers or repressors of reprogramming,  
we used some positive controls whose role in pluripotency has been 
extensively described. First of all, known reprogramming enhancers such 
as OCT4 and NANOG, showed as expected low reprogramming 
efficiency when their expression was reduced (Jose Silva et al. 2009; 
Takahashi and Yamanaka 2006b). On the other hand, TCF3 and DNMT1, 
known repressors of reprogramming, showed an increase in terms of 

reprogramming efficiency when their expression was knocked down 
(Lluis et al. 2011; Mikkelsen et al. 2008).  
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We identified some factors that might play a role in iPSC reprogramming 
as potential enhancers or repressors. Enhancers of reprogramming 
included factors for which at least two shRNAs showed a similar effect in 
different screen runs in reducing reprogramming efficiency comparable to 
Oct4 or Nanog knockdown. Indeed, we set a cutoff according to OCT4 
efficiency value and we considered 20 out 57 candidate list potential 
enhancers of the reprogramming. In the second group we had two factors 
that showed a similar effect on the reprogramming as TCF3 that we set as 

cutoff efficiency. 
We pointed our attention on ERas, a factor that has been already described 
in the literature as a player in pluripotency (Takahashi, Mitsui, and 
Yamanaka 2003; Yu et al. 2014). We saw from the microarrays how in 
blastocyst its expression is up-regulated between E3.5 and E4.5 in the 
epiblast where Nanog is expressed (Fig. R8a). When looking at iPSC 
colony formation, ERas knockdown showed a similar effect in colony 

reduction as Nanog shRNA (Fig.R8b). 
Among the other screened candidates, we also identified a novel factor, 
FOXP4, whose potential role in reprogramming has never been reported 
in literature so far (Jonghwan Kim et al. 2008; S. Li, Weidenfeld, and 
Morrisey 2004). It is a transcription regulator and in our screen its 
knockdown has a drastic effect on colony number with two shRNAs and, 
the third one showed as well as a decrease in iPSCs formation. In 

blastocyst, Foxp4 expression increases in the epiblast and is low in 
primitive endoderm. In terms of colony number, Foxp4 knockdown 
drastically reduces the reprogramming efficiency. (Fig. R8a-b).  
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3.2 Factors involved in XCR 
 

Our second and main focus was related to XCR. We scored the number of 
XGFP-positive colonies at two different time points: day 10 and day 12 of 
the reprogramming and calculated the XCR efficiency as the ratio of 
XGFP-positive colonies divided by the total colony number (Fig. R9).  

 
 

 
 
 

Figure R8 Selected candidates with a role in iPSC reprogramming.  

a) Expression profile of ERas, Foxp4 and Nanog in Epiblast (EPI) and primitive 
endoderm (PE) of E3.5 and E4.5 blastocysts. b) The graph shows the 
reprogramming efficiency scored upon knockdown of ERas, Foxp4 and Nanog 
with 2 different shRNAs compared to LacZ control shRNA set to 1. 
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We focused on those factors whose knockdown caused reduced XGFP-
reactivation indicating a role in the process. In Fig. R10 and R11 we show 
for batch1 and batch2 respectively, two different graphs: the combined 

graph with total number of colonies (red line) and the relative number of 
XGFP positive colonies (green bars). The factors have been ordered 
according to the number of XGFP positive colonies (Fig. R10a and 
R11a). In the second graph we show the X Chromosome Reactivation 
efficiency scored at day 10 of reprogramming and we normalized 
according to the one scored for LacZ shRNA as our negative control  
(Fig. R10b and R11b). 
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Figure R9 Schematic representation of the lentiviral infection and 
reprogramming time course. Day 10 and day 12 as timepoints to score the 
number of XGFP positive colonies. 
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We identified six factors that might play a specific role in XCR as 
potential enhancers. We included factors for which at least two shRNAs 
showed a similar effect in reducing the reactivation of the XGFP 
comparable to the effect that we assessed upon GFP transgene expression 
knockdown.  

Among the candidates we highlighted in Fig. R10a, CNIH4 (Sauvageau et 
al. 2014), a GPCR-interacting protein, whose knockdown showed a 
decrease in the total colony number as Oct4 knockdown as well. But 
concomitantly there was a decrease in XGFP reactivation as shown in Fig. 
R10b where the scored ratio for this factor is similar to the value of the 
negative control LacZ shRNA. This suggests that Cnih4 knockdown 
affects the reprogramming efficiency and might as a consequence have an 

effect on XCR, for which pluripotency is a prerequisite. Therefore, in this 
case the two processes, XCR and pluripotency, are coupled.  
However, we were mainly interested in factors specifically involved in 
XCR. Among the six factors that we identified, there was SUV420H2, a 
histone methyltransferase required to di- and tri-methylate lysine 20 of 
histone H4 (H4K20me2/3) (Schotta 2004). In Fig. R10a it is highlighted 
as one of the factors that showed a discrepancy between the total colony 
number, that was not affected upon knockdown and the number of XGFP 

positive colonies that, on the contrary, was reduced. This is scored in a 
low reactivation efficiency ratio (Fig. R10b), suggesting that it might play 
a specific role in XCR.  

 
Another interesting factor, that belongs to the category of chromatin 
remodelers, was a cohesin complex component, SMC1A (Minajigi et al. 
2015). In fact, in terms of XCR, we saw a dramatic decrease in XGFP  
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reactivation upon knockdown (Fig. R10a-b). However, the 
reprogramming efficiency seemed not to be affected by Smc1a 
knockdown, suggesting a specific role in X-Chromosome Reactivation 

(Fig.R10a). 
Furthermore, we saw an effect on XCR after knocking down the 
expression of FYN, a novel factor, that belongs to the Src-family kinases 
and which has been described in literature as important for the completion 
of meiosis in mouse oocytes (McGinnis, Kinsey, and Albertini 2009). In 
our screen its knockdown showed a specific decrease of XGFP 
reactivation without affecting iPSC colony formation in general (Fig. 

R11a-b).  
 

In Fig R12a, the graph specifically shows the X-Reactivation efficiency 
of the factors mentioned until now as potential players in XCR. On the 
other hand, as a confirmation of the adequacy of our system for 
monitoring XCR kinetics, we saw that knocking down the DNA 
methyltransferase DNMT1 showed a clear increase of XGFP reactivation 
in accordance with its role during maintenance of X-inactivation (T Sado 

et al. 2000; Csankovszki, Nagy, and Jaenisch 2001). 
In blastocyst, looking at the expression profile of the factors described as 
specific for XCR, we saw them to be up-regulated in the epiblast between 
E4.25 and E4.5 when XCR occurs in anti-correlation with Xist expression 
profile. In primitive endoderm and in the epiblast at E3.5 when Xist is 
expressed their expression is low (Fig. R12b).  
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In order to analyze XCR more quantitatively, we looked at the bulk 
population by FACS. We stained the cells with two surface markers for 
pluripotency: SSEA1 and EpCAM1 to define the reprogrammed cells 
(Polo et al. 2012) and then we checked the percentage of 
SSEA1+/EpCAM1+ double-positive cells that were also GFP-positive 
(Fig. R13). 

 
 
 
 
 

Figure R12. Selected candidates with a role in XCR. a) The graph shows the 
XCR efficiency scored upon knockdown of DNMT1, CNIH4, SUV420H2, 
SMC1A and FYN with 2 different shRNAs compared to LacZ control shRNA set 
to 1. b) Expression profile of Dnmt1, Cnih4, Suv420h2, Smc1a and Fyn in 
Epiblast (EPI) and primitive endoderm (PE) of E3.5 and E4.5 blastocysts in 

comparison with Xist expression (black line). 
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In line with our results obtained by colony scoring (Fig. R10b and R11b), 
flow cytometry analysis (Fig. R14a-b) confirmed that factors previously 
highlighted such as CNIH4, SMC1A and FYN show a reduction of around 
10%, in terms of XGFP within the pluripotent population in comparison 
with LacZ shRNA control (25% XGFP reactivation). On the other hand, 
DNMT1, as expected, showed high percentage of XGFP cells, around 
30% and 45%, within the EpCAM1+SSEA1+ population. 
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Figure R13. Schematic representation of lentiviral infection and 

reprogramming time course. Flow cytometry analysis was performed at day 12 
of the reprogramming by staining iPSCs with SSEA1 and EpCAM1 and checking 
the percentage of XGFP positive cells within the pluripotent population.  
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4. Characterization of top candidates 
 
 

In order to narrow down the number of factors for follow up analysis after 
the RNAi screen, we looked at the knockdown efficiency of the different 

hairpins and their toxicity. Therefore, we infected MEFs with different 
lentiviral vectors carrying shRNAs and after 24h we analyzed which ones 
were impairing cell proliferation, leading to cell death. That led us to 
conclude that in some cases the low reprogramming efficiency was linked 
to the toxic effect of some hairpins on cell growth rate. Indeed, we 
excluded 19 hairpins for their toxicity (data not shown).  
The next step was to check the knockdown efficiency information of each 

shRNA provided by the Broad Institute from where we have purchased 
them. We set a threshold, excluding those hairpins whose knockdown 
efficiency was lower than 50% in agreement with the data reported by the 
provider. In this case we excluded 6 hairpins.  
Indeed, as shown in Fig. R15a, we selected 31 candidates out of 60 by 
looking at:  

a) the primary screen results; 

b) the likelihood of involvement in reprogramming and/or XCR 
according to the scientific literature; 

c) hairpin toxicity; 
d) remaining transcripts expression (Broad Institute). 
 

We classified them based on their GO-term function and as shown in the 
pie chart in Fig R15b, the majority acts as transcriptional regulator such 
as pluripotency factors (ZFP42, OCT4, NANOG), followed by the other 

two main categories: chromatin factors (SUV420H2, KDM6A/UTX, 
SMC1A) and cell cycle regulators (SMC1A). However, there are also 
factors whose function is not known as for example CNIH4. 
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As next step we checked the knockdown efficiency of the selected factors 
in our cell line, as for the secondary screen three different hairpins have 
been used for each factor. We infected MEFs with homemade lentiviral 
preparations and 24h later we induced reprogramming by addition of dox. 
The main purpose was to maintain the same conditions as in our screen. 
Setting expression levels for each gene to 1 in our LacZ shRNA negative 
knockdown control, we set a threshold around 0.5 as successful 
knockdown in order to exclude hairpins where remaining transcript levels 

were higher (Fig. R15c). 
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4.1 Effect of candidate knockdown on pluripotency and XCR 

 
In order to validate the candidates identified in the shRNA reprogramming 
screen, we repeated the experiment using the system used previously. In 
this case we are able to narrow down the number of candidates according 
to the outcome, the knockdown efficiency values and by replacing some 
hairpins that were not working in the previous experiments. First of all, 
after knocking down the expression of the selected candidates, we counted 
the number of total colonies at different time points and then we scored 
the reprogramming efficiency, using LacZ-control set as 1 to normalize 

the data. Confirming our first screen, the majority of the candidates had an 
effect on pluripotency in accordance with their up-regulation in the 
epiblast tissue (Fig. R16a). For instance, ERas, FOXP4 and ZFP42 
showed a decrease in terms of reprogramming efficiency after knocking 
down their expression. Whereas for DNMT1 and TCF3, as expected, there 
was a higher number of colonies when their expression was reduced by 
shRNA knockdown. 

In terms of XCR, we looked at the efficiency of the process by scoring the 
ratio between the number of colonies XGFP positive and the total colony 
number (Fig. R16b). On one hand we have factors whose knock down is 
affecting the reprogramming efficiency, and thereby also indirectly affects 
XCR. This is the case for ZFP42, FOXP4 and CNIH4. On the other hand, 
we have factors such as SMC1A, SUV420H2 and FYN, whose decreased 
expression is not affecting the capability of the cells to reprogram but to 
reactivate X-Chromosome based on XGFP-reactivation. 
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Therefore, according to the outcome, we highlighted the candidates that 
give a consistent phenotype in line with first screen by grouping them 
into two different categories:  

 
I. Factors that have an effect on both iPSC and XCR. 

II. Factors that have a specific effect on XCR; 
 
In Fig. R17 the results are shown in a Venn diagram.  

 
 

 
 

 
 
 
 

Figure R17. Top candidates. Venn diagram shows two different groups of 
factors: factors that have an effect on reprogramming and XCR and factors that 
have a specific role in XCR.  

iPSC
formation XCR

ERas
FOXP4

CNIH4

TCF3*

DNMT1* SMC1A

SUV420H2

FYN



Results 

 83 

 

In the following Table R1 the top candidates are listed for function and 
potential role.  

 

 

4.2 Effect on endogenous X-linked gene: Hprt 
 

So far, we have shown the kinetics of reactivation of the XGFP located on 

the X-Chromosome as a simple and useful tool to follow XCR. However, 
as XGFP is a transgene inserted into the X-chromosome by random  
 

Factors Function Literature Potential role

CNIH4 GPCR protein Sauvageau et al. 
2014

Reprogramming 
enhancer

ERAS Small GTPase
Protein Yu et al. 2014

Reprogramming 
enhancer

FYN Src kinase McGinnis et al. 2009 XCR

FOXP4 Transcription 
factor

Li et al. 2004; Kim 
et al. 2008

Reprogramming 
enhancer

SMC1A Chromatin factor Minajigi et al. 2015 XCR

SUV420H2 Histone 
methyltransferase Schotta 2004 XCR

DNMT1* DNA methylase Mikkelsen et al. 
2008 XCR

TCF3* Transcription 
factor Lluis et al. 2011 Reprogramming 

repressor

Table R1 shows a list of the top candidates, their known function and their 
potential role according to our screen. (*) factors used as controls which show the 
expected phenotype. 
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integration (Hadjantonakis et al. 2001), we were not looking at an 
endogenous gene on the X. Therefore, in order to confirm that XGFP 
reactivation corresponds also to the reactivation of endogenous X-linked 
genes, we analyzed the Hprt locus. We took advantage from the fact that 
our reprogrammable cell line, besides carrying an XGFP transgene, also 
has a mutation in the Hprt allele on the opposite X-Chromosome (Eggan 
et al. 2000). In fact, if we grow the cells in 6-thio-guanine (6-TG) 
medium, only the cells with a mutated Hprt gene on the Xa and the 

wildtype allele on the Xi can survive. Those also carry the XGFP 
transgene on the Xi (Fig.R18). 
 

 
 

XXXi
Hprt-/Xa

GFP

MEFs
XHprt-/XGFP

6TG selection No selection

XXXa
Hprt-/Xi

GFP XXXa
Hprt-/Xi

GFP

XXXi
Hprt-/Xa

GFP

100% dark cells 50% dark cells and
50% green cells

Figure R18 6TG selection scheme. Drug selection scheme for obtaining 
populations of MEFs with a predeterminate X-Inactivation state. 
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So, this particular feature makes it possible to apply a drug selection 
scheme after reprogramming. Specifically, we performed the same 
reprogramming experiment by knocking down the expression of the 
candidates at the beginning and following the reprogramming until 
day10. At this point we trypsinized the colonies and we seeded them on 
Hprt (-) feeders, able to survive in 6TG medium and we applied the 
selection for 6 days.  
The aim was to analyze by flow cytometry the iPS cells able to survive 

upon selection, as only cells which did not reactivate the Hprt allele 
would survive in 6TG medium (XaHprt-/XiGFP), while cells, which have 
reactivated Hprt on the X would be selectively killed (XaHprt-/XaGFP) 
(Fig.R19a). As expected, only the XGFP-negative colonies were able to 
survive because of the presence on the same chromosome of the wildtype 
Hprt allele, indicating that XGFP-reactivation is a good proxy for 
reactivation of endogenous X-linked genes like Hprt. The outcome 

confirmed some of the candidates that came out in the previous screen as 
potentially important for XCR such as SMC1A, FYN and SUV420H2 
(Fig R19b). In fact, upon knockdown of those factors, a percentage of 
colonies failed to reactivate the X, remaining XGFP negative.  As 
expected, in the case of DNMT1, whose knockdown causes an increase 
of XCR, none of the iPSCs survive, and the same for those factors such 
as TCF3, that causes an increase of the reprogramming efficiency and 

XCR as well. 
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Figure R19. Reactivation of endogenous X-linked gene Hprt. a) 6TG selection 
scheme upon knockdown and reprogramming induction. At day 10 6TG drug is 
added to the iPS cells and maintained for 6 days. At day 16 FACS analysis is 
performed by staining the iPS cells with SSEA1 and EpCAM1. b) The graph 
shows the percentage of pluripotent cells stained by EpCAM1 and SSEA1, which 

survived upon 6TG selection. The more cells survive, the bigger is the effect on 

XCR by candidate knockdown. 
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4.3 Do candidate factors for XCR act through Xist or not? 

 
Downregulation of Xist RNA, the master-regulator of X-inactivation, is 

an essential hallmark of XCR (Maherali et al., 2007, Payer et al. 2013, 
Pasque et al. 2014). Therefore, we wanted to understand, if the function of 
our candidate factors was repression of Xist during XCR, as we initially 
identified them by anticorrelated expression to Xist in mouse blastocysts. 
To do so, we decided to knock down the expression of the candidate 
factors in ESCs, where Xist is not expressed and observe, if that would 
lead to de-repression and upregulation of Xist. 

24h after lentiviral shRNA infection, we put the cells under puromycin 
selection for 48h to select infected cells and then extracted RNA for RT-
PCR analysis. First, we assessed the knockdown efficiency of our 
candidates and after excluding non-functional hairpins, we checked Xist 
expression. Overall, we did not see a clear effect on Xist expression except 
after knocking down factors, whose role in Xist repression has been 
already described such as Nanog and Oct4 (Fig. R20a) (P. Navarro et al. 
2008; Nesterova et al. 2011). Then, we checked the expression of Rnf12, a 

positive regulator of Xist (Barakat et al. 2011), and we only saw an 
increase of Rnf12 expression when we knocked down Oct4, a known 
repressor of Rnf12 (Fig. R20b) (Pablo Navarro et al. 2011).  
Furthermore, we looked at Tsix expression, which is a negative regulator 
of Xist and which has been implicated in XCR in mouse blastocysts 
(Payer et al. 2013). We only observed reduced Tsix expression after 
knocking down Zfp42/Rex1, which is a known activator of Tsix (Navarro 

et al. 2010) (Fig. R21). 
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Gadd45a TRCN_88

Gadd45a TRCN_92

Gadd45a TRCN_90

Hdac5 TRCN_33

Hdac5 TRCN_31

Hdac5 TRCN_30

Mst1 TRCN_499

Mst1 TRCN_97

Nanog TRCN_333

Nanog TRCN_35

Nanog TRCN_34

Nr0b1 TRCN_229

Nr0b1 TRCN_222

Nr0b1 TRCN_217

Phc1 TRCN_67

Phc1 TRCN_73

Phc1 TRCN_61

Pou5f1 TRCN_010

Pou5f1 TRCN_11

Pou5f1 TRCN_613

Rnf2 TRCN_81

Rnf2 TRCN_68

Rnf2 TRCN_579

Scarb1 TRCN_75

Scarb1 TRCN_76

Smc1a TRCN_030

Smc1a TRCN_72

Smc1a TRCN_034

Smc1b TRCN_49

Smc1b TRCN_047

Smc1b TRCN_48

Suv420h2 TRCN_750

Suv420h2 TRCN_21

Suv420h2 TRCN_00

Tcea3 TRCN_63

Tcea3 TRCN_98

Tcea3 TRCN_97

Tcf3 TRCN_16

Tcf3 TRCN_12

Tet1 TRCN_47

Tet1 TRCN_50

Tet2 TRCN_530

Tet2 TRCN_770

Top3b TRCN_938

Top3b TRCN_940

Top3b TRCN_5850

Kdm6a TRCN_43

Zfp42 TRCN_65

Zfp42 TRCN_66

Zfp42 TRCN_64

Zfp57 TRCN_85

Zfp57 TRCN_84

Zfp57 TRCN_83

Aes TRCN_17

Aes TRCN_15

Aes TRCN_18

Tsix relative expression

c LacZ
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In conclusion, despite the fact that one of the criteria to select our 
candidates from the microarray was their anti-correlation with Xist 
expression, none of our novel candidates seems to control XCR by acting 

through Xist or its regulators, but rather do so through other unknown 
mechanisms. On the other hand, we performed the same experiment 
during the iPS cell reprogramming to check Xist expression upon 
knockdown of our candidates at different timepoints before and after X-
Chromosome Reactivation. However, this experiment needs to be 
repeated because the result was not conclusive mainly due to its technical 
complexity. 

                   
 

5. Cohesin is a pluripotency-independent regulator of 

XCR 
 
 

The validation screen allowed us to narrow down the number of factors 
from 31 to 6 that have shown a consistent phenotype either in 
pluripotency and/or XCR (ERas, CNIH4, FOXP4) or XCR-specific 
(SMC1A, FYN, SUV420H2).  
Among them we decided to focus our attention on the cohesin complex 
member SMC1A, due to its implication in regulation of X-chromosome 

3D-structure (Minajigi et al. 2015) (Fig. R22). 
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Throughout the different screening runs, SMC1A showed consistently a 
potential role in XCR. By imaging we could see that colony formation 
was not impaired after its knockdown, whereas XGFP reactivation was 
affected (Fig. R23a). As shown in Fig. R23b, knocking down Smc1a 

expression with two different hairpins, decreased XCR efficiency, on 
average, by around 80% compared to the lacZ control shRNA.    

 
 
 

 

Microarray analysis
output:

228 candidates

57 candidates + 3 controls:
Primary screen

31 candidates + 3 controls:
Validation 6 candidates Selected candidate: 

Smc1a

Criteria:
• Expression change in blastocyst;
• Expected likelihood of involvement 

in XCR.

Criteria:
• Primary screen results;
• Expected likelihood of involvement in 

reprogramming and/or XCR;
• Hairpin toxicity and knockdown efficiency.

Criteria:
• Primary screen and validation 

results;
• Expected likelihood of involvement 

in reprogramming and/or XCR.

Criteria:
• Specific phenotype in XCR;
• Evidence in literature.

Figure R22. Schematic representation of the different steps of the screen.  
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This effect of Smc1a knockdown became even more evident by FACS 
analysis. We induced reprogramming after knocking down Smc1a and 
lacZ shRNA and then stained iPS cells by EpCAM1 and SSEA1 

pluripotency markers at day 11. In Fig. R24a FACS plots for both LacZ 
shRNA control and Smc1a knockdown are shown. We did not detect any 
difference in terms of the EpCAM1+SSEA1+ pluripotent cell population, 
which, was between 46% and 40% respectively of total live cells. 
However, when we looked at the percentage of XGFP-positive cells 
within the EpCAM1+SSEA1+ double-positive population, we could see a 
drastic difference. At day 11 in the LacZ shRNA control the percentage of 
pluripotent cells XGFP+ was around 23% whereas in Smc1a knockdown 

the percentage decreased down to 4%. This leads us to hypothesize that 
Smc1a might be a specific XCR regulator and that this process can be  
 

Figure R23 Smc1a knockdown effect on XCR. a) Images of iPSC colonies with 
(bottom, shRNA) or without (top, LacZ shRNA) knocking down Smc1a. BF, 

bright field; GFP, XGFP expression. c) XCR efficiency upon Smc1a knockdown 
with two different shRNAs compared to LacZ control shRNA. 
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uncoupled from the emergence of pluripotency, as it was not affected after 
Smc1a knockdown (Fig. R24b)  

 

 
 

5.1 How is Smc1a affecting XCR?  
 
 
SMC1A is known to play a role in chromosome architecture and 
particularly has been described as important in maintaining autosome-like 
TAD-structures on the active X Chromosome. On the inactive X-
chromosome TADs are nearly absent, as SMC1A is repelled by Xist RNA 

(Minajigi et al. 2015). Therefore, in order to understand how SMC1A  

Figure R24: Flow cytometry analysis of Smc1a knockdown. a) iPSC colonies 
w/wo Smc1a knockdown stained by EpCAM1 and SSEA1 at d11 of the 
reprogramming. b) XGFP percentage scored within pluripotent population 

(EpCAM1 and SSEA1 double-positive cells). SSC-A, side scatter. 
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could play a role in XCR we focused our attention on X chromosome 
structure.  
In collaboration with Marie Victoire Neguembor, a Postdoc in Maria Pia 
Cosma lab (CRG), we performed an experiment of Super Resolution 
Stochastic Optical Reconstruction Microscopy (STORM) in MEFs with 
and without knocking down Smc1a expression (Ricci et al. 2015). 
Specifically, we performed immuno-DNA FISH experiments, using 
sequentially an X-Paint to identify by DNA FISH the whole two X 

chromosomes in the nucleus followed by immunofluorescence. We 
stained the cells with H3K27me3 antibody to discriminate the two X-
chromosomes by marking the inactive X in combination with an antibody 
able to recognize the cohesin SMC1A. Representative images are shown 
in Fig. R25. In MEFs LacZ shRNA control sample, as expected, there was 
a distinct nuclear distribution of SMC1A when imaged by conventional 
microscopy. The pattern was much more defined in super resolution as it 

allowed to identify single protein localizations within the nucleus. 
Furthermore, even by conventional imaging we could see how the inactive 
X chromosome looked much more compact compared to the active X, in 
agreement with published data (Giorgetti et al. 2014; Teller et al. 2011a; 
Naughton et al. 2010a). 
In MEFs with shRNA against SMC1A the reduced amount of cohesin was 
evident in the nucleus and super resolution imaging confirmed almost 

complete absence of single localizations of SMC1A protein, with just few 
spots remaining. 
Regarding the two X Chromosomes, we could see how the conformation 
of the active X looked much more compact than expected, similar to the 
Xi after knocking down Smc1a.   
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By overlapping the localization of SMC1A in super resolution on top of 
the two X chromosomes, we could see how the amount of cohesin 
appeared to be higher on the active X than the inactive one in LacZ 

shRNA control sample which is in agreement with published ChIP-Seq 
data (Minajigi et al. 2015). Whereas in the SMC1A shRNA sample both X 
chromosomes appeared more compacted and showed few Smc1a 
localizations (Fig. R26). 

 
 
 
 
 
 

Figure R25 The X-Chromosome and Smc1a (I). Experiment of Immuno-DNA 
FISH in combination with Super resolution microscopy (STORM). MEFs w/wo 
Smc1a knockdown stained by X-Paint (green), H3K27me3 (orange) and SMC1A 

(magenta). The arrows point out the two X-Chromosomes (red=inactive X; 
white=active X) (bar=1um). 
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After collecting different images for both conditions, we analyzed them 
by: 

 

a) selecting the area of the active and inactive X chromosomes; 

b) scoring the number of SMC1A localizations; 

c) performing a protein localization cluster analysis; 

d) and comparing active versus inactive X chromosome. 

 
Our first analysis was based on the comparison of the area of the active 
versus inactive X chromosome in both conditions upon LacZ shRNA and  

Figure R26 The X-Chromosome and SMC1A (II). Overlap of SMC1A protein 
localizations (magenta) and X-Chromosomes (green). The arrows point out the 
two X-Chromosomes (red=inactive X; white=active X) (bar=1um). 
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Smc1a shRNA. In agreement with the literature, in the control sample 
(LacZ shRNA) the area occupied by the active X is significant bigger than 
the area occupied by the inactive X that results more compact (Fig. 

R27a). On the contrary, upon knockdown of Smc1a, no significant 
differences are detected between the two X chromosomes. In particular 
the active X, on average, has a reduced area, similar to the inactive X 
(Fig. R27b). This result is in line with what observed by imaging (Fig. 
R25), suggesting an increase of compaction upon Smc1a knockdown on 
the active X. 

 
 
 
 

 

Figure R27 Active X area bigger than Inactive X. a) The graph shows the 

comparison of the X-Chromosome area between active and inactive in the 
control. b) Xa versus Xi area comparison upon Smc1a knockdown.  
For all plots Mean+/- SD is displayed. Stars indicate P-values (***P ≤ 0.001) for 
two-tailed paired t-test. 
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The Fig. R28a shows the average number of localizations per locus 
comparing both conditions, control and knockdown, active and inactive X. 
There was a significant and preferential SMC1A enrichment on the Xa in 
LacZ shRNA control compared to the Xi in the same sample. Upon 
knockdown, there was a substantial SMC1A reduction on both 
chromosomes. Looking at the median number of localizations per cluster, 
the cluster size between Xi and Xa was comparable in LacZ shRNA 
control. A cluster size reduction occurred upon Smc1a knockdown 

showing comparable levels between Xa and Xi (Fig. R28b). 
 

 
 
 

Figure R28 Preferential SMC1A enrichment on the Xa in scramble control 
MEFs. a) Average number of Smc1a localizations in scramble control and 
Smc1a knockdown MEFs for both active and inactive X Chromosomes. b) 

Median number of SMC1A localizations per cluster w/wo Smc1a knockdown. 
For all plots Mean ± SD is displayed. Stars indicate P-values (**P ≤ 0.01) for 
two-tailed paired t-test. 
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By scoring the ratio between Xa and Xi within the same nucleus, there 
was a preferential Smc1a enrichment on the Xa compared to its respective 
Xi in terms of number of localizations and number of clusters in the 

sample control (Fig. R29a-b). A drastic reduction and not significant 
difference in terms of localization and clusters number between active and 
inactive X have shown in shRNA Smc1a sample (Fig. R29a-b). 

 

 

Indeed, we observed a preferential enrichment of SMC1A on the active 
compared to inactive X, suggesting a role in shaping the Xa structure. 
Therefore, we conclude that cohesin-mediated changes in X-chromosome 
structure are a key step during the XCR process. 
 

Figure R29 Preferential SMC1A enrichment in Xa compared to its 

respective Xi. a) Ratio Xa\Xi scored per number of localizations.  
b) Ratio Xa\Xi per number of clusters of SMC1A localizations. For all plots 
Mean ± SD is displayed. Stars indicate P-values (**P ≤ 0.01 and *P ≤ 0.05) for 
one sample t-test. 
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Single cell microarray expression profile in blastocyst. 
 
As a starting point of my project I used the data generated by a single cell 
microarray in blastocyst that has been previously performed by my 
supervisor (Bernhard Payer, unpublished). 
According to the dynamics of the process in vivo, the reactivation of the 
inactive X chromosome (XCR) occurs in the epiblast cell lineage of the 
late blastocyst (Huynh and Lee 2003a) whereas in the extra embryonic 

tissues such as primitive endoderm (PE) and trophectoderm (TE) the 
imprinted X-inactivation form is maintained (Nobuo Takagi and Sasaki 
1975). Therefore, in order to identify factors playing a role in XCR, the 
microarray has been performed considering different developmental 
stages of the blastocyst in order to cover the entire process. Specifically, at 
the E (embryonic day) 3.5, E4.25 and E4.5 which means before, during 
and after X-Reactivation respectively.  
This was based on the hypothesis that potential factors actively involved 

in the process could be up-regulated between E4.25 and E4.5 when XCR 
occurs. In particular, they could thereby show an anti-correlation with 
Xist, the master regulator of the opposite XCI process, whose expression 
is down-regulated at that stage. In fact, one of the candidates that came 
out from the microarray screen was Tsix, a long non-coding RNA 
expressed during X-Reactivation in the mouse epiblast. Tsix is known for 
its role as antisense Xist repressor on the active X during X-inactivation (J 

T Lee and Lu 1999) and has been implicated in the XCR process in 
blastocysts (Payer et al. 2013). 
Therefore, out of 228 candidates that came out from the microarray, 57 
were selected according to their expression change and their expected 
likelihood involvement in the process. In this regard, we selected 
chromatin modifiers such as histone deacetylases methyltransferase, DNA  
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methylases and demethylases that might play a role in epigenetic 
remodeling of the process. Nevertheless, chromatin factors involved in 
XCR, not necessarily have to show a change in expression as they might 

be specifically recruited during XCR. We also selected transcription 
factors, which due to their Xist anti-correlation might act as Xist-
repressors similar to Tsix or pluripotency factors like PRDM14, NANOG 
and OCT4 (P. Navarro et al. 2008; Donohoe et al. 2009; Ma et al. 2011; 
Nesterova et al. 2011). 

 
Are the screened factors acting on Xist-regulation? 
 
One of the main criteria we used to select our candidates from the 
microarray was their anti-correlated expression with Xist. Therefore, we 
were wondering whether they could potentially act as Xist repressors. To 
answer this question, we performed an experiment in ESCs, where Xist is 
downregulated, by knocking down the expression of our candidates and 

see if the consequence was a de-repression or up-regulation of Xist. 
Thus, we looked at Xist expression levels and we could not detect any 
significant change except for known pluripotency factors such as NANOG 
and OCT4. In fact, as described in the literature, upon their knockdown 
Xist is up-regulated in ESCs (P. Navarro et al. 2008; Nesterova et al. 
2011). One of the reasons why we could not see an effect on Xist levels 
for the screened factors might be the involvement of other factors in 
repressing Xist. It is known that Xist intron 1 is bound by multiple 

pluripotency factors, presumably recruiting repressive histone 
modifications. However, it has been shown that even the deletion of this 
region is not sufficient to induce an up-regulation of Xist (Minkovsky et 
al. 2013). This suggests that Xist de-repression might require a balance 
between down-regulation of repressors such as Tsix and pluripotency  
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factors and an up-regulation of its Xist activators as RNF12 and Jpx. 

Therefore, we also looked at the expression of those activators and 
repressors upon knockdown of our candidates. In the first case we 

checked Rnf12 expression and we could not detect any major effect on its 
expression except upon knocking down its known repressor OCT4 (Pablo 
Navarro et al. 2011). 
In the same manner for Tsix we could not see a correlation between its 
expression levels and the knockdown of our candidates. We could only 
detect a decreased expression after knocking down ZFP42/REX1, known 
to be its activator (Pablo Navarro et al. 2010). Indeed, we could not 
conclude that our candidates were acting on XCR through Xist or its 

regulators but probably did so through other mechanisms. 
 
We also hypothesized that in a transition state it would have been easier to 
detect a change in Xist expression. Therefore, we tried to assess the down-
regulation of Xist during reprogramming. We knocked down our 
candidates and followed reprogramming and XGFP reactivation dynamics 
up to day 10 when Xist should be down-regulated. Then, we sorted for 

each candidate the iPSCs into two groups: XGFP+ (reactivated 
population) and XGFP- (no reactivated population) and checked Xist 
expression in both. We could see that in our negative control LacZ 
shRNA Xist levels were higher in XGFP negative cells as expected, 
because no reactivation occurred. However, due to a lower knockdown 
efficiency, our positive control NANOG was not showing a difference in 
Xist expression between the two populations. Therefore, we could not 
obtain a conclusive result from this experiment. However, our plan is to 

repeat this experiment improving the condition of the experiment and 
minimizing the technical complexity. We think that in a transition state 
and checking different time points of the reactivation process we might  
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get a more conclusive answer about the role of the anti-correlation of our 
candidates with Xist. 

 
 
Pluripotency and X-dosage.   
 
Female cells undergo X-Chromosome Reactivation in the mouse inner 
cell mass (ICM) resulting in two active X chromosomes and this state is 
maintained in reprogrammed iPSCs (Maherali et al. 2007), thereby 
coupling pluripotency and X-Reactivation. The reprogramming of 
somatic cells into iPSCs is an important system to study the erasure of 

epigenetic memory and pluripotency.  
XaXa gives to mouse ESCs/iPSCs a double dose of X-linked genes 
compared to male (XY) cells and shifts them to a naïve pluripotent state. 
Recent studies suggest that X-Chromosome dosage can modulate the 
properties of ESCs/iPSCs (Choi, Clement, et al. 2017; Schulz et al. 
2014; Song et al. 2018). In fact, two active X chromosomes stabilize the 
pluripotency network, blocking the exit from the pluripotent state, 
delaying the differentiation (Schulz et al. 2014). This is further 

supported by the fact that the loss of one X in female ESCs/iPSCs leads 
to a loss of sex-dependent differences (Choi, Huebner, et al. 2017; 
Schulz et al. 2014). 
Female ESCs display global DNA hypomethylation (Zvetkova et al. 
2005) and recent work confirmed this in iPSCs as well (Milagre et al. 
2017). Differences in global DNA methylation have been also attributed 
to X-Chromosome dosage. In fact, female XaXa ESCs/iPSCs display a 

global DNA hypomethylation but in case they lose one X (XO), they 
display a male-like methylation level (Schulz et al. 2014; Choi, Clement, 
et al. 2017; Song et al. 2018).  
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It has been shown that at the molecular level X-dosage affects three 
pathways that regulate pluripotency and differentiation: the MAPK/Erk, 
GSK3 and Pi3K/AKT. The MAPK/Erk pathway downregulates Nanog 

whereas GSK3 mediated WNT signaling represses pluripotency factors 

such as ESRRB, NANOG and KLF2 via b-catenin and TCF3. 

Pi3K/AKT signaling promotes pluripotency and blocks differentiation 
(Lanner and Rossant 2010; Welham et al. 2011). Specifically, the 
presence of two XaXa inhibits MAPK/Erk and Gsk3 signaling, which 
increases activity of Pi3K/AKT pathway and decreases the global DNA 
methylation in ESCs/iPSCs. These X dosage effects are likely attributed 

to one of more X-linked genes, present in higher dose in XX female 
cells compare to male XY. 
A recent study indicates that the X-linked gene ERK phosphatase, 
DUSP9, modulates DNA hypomethylation in female ESCs/iPSCs (Choi, 
Clement, et al. 2017). In fact, the heterozygous deletion of Dusp9 in 
female ESCs/iPSCs causes an increase in global methylation while its 
overexpression in male cells induces partial hypomethylation. It has also 

been shown that Dusp9 deletion causes up-regulation of MAPK/Erk 
target genes (Choi, Clement, et al. 2017; Song et al. 2018). In our screen 
among the candidates we focused on an X-linked gene, ERas, as 
potential enhancer in iPSC reprogramming (Welham et al. 2011). 
Indeed, upon ERas knockdown we saw a decrease in reprogramming 
efficiency. This is in line with what has been reported in the literature 
about its role in sustaining pluripotency. In fact, ERas is expressed at 

high levels in ESCs and is an activator of the Pi3K/AKT pathway 
(Welham et al. 2011). It has been shown that it increases the levels of 
Erk phosphorylation in female ESCs/iPSCs compared to male promoting 
the activation downstream of key pluripotency factors such as NANOG 
and SOX2. However, how ERas might mediate an increase of AKT  
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signaling in XX ESCs/iPSCs remains to elucidate. Notably, ERas was 

included in the original list of 24 factors screened for the ability to 

generate iPSC by the Yamanaka group (Takahashi and Yamanaka 
2006a). At that time, it showed a marginal effect on reprogramming, 
however, the screening strategies were different, and have been 
improved substantially since then (Blelloch et al. 2007; Okita, Ichisaka, 
and Yamanaka 2007; Meissner, Wernig, and Jaenisch 2007).  
Our hypothesis is also supported by a study showing that the pathway 

ERas-Akt-FoxO1 can play a role in somatic cell reprogramming (Yu et 
al. 2014). The enhancing role of ERas in reprogramming is also 
consistent with another study, where this factor was selected out by 
expression profiling during iPS cell reprogramming (Polo et al. 2012). 
 
Other potential players in iPSCs reprogramming. 
 
Another factor that came out from our screen was the transcription 

factor FOXP4 (S. Li, Weidenfeld, and Morrisey 2004). In our study 
upon its knockdown, we obtained a drastic reduction of iPSC colony 
formation. This result was consistent through the different 
reprogramming runs and was obtained with two different hairpins. Thus, 
FOXP4 might play a novel role in somatic cell reprogramming. 
However, very little is known about this factor. FOXP4 belongs to the 
FOXP family, forkhead transcription proteins, which play a key role in 

embryonic development and cell cycle regulation (Teufel et al. 2003). 
So far, it has not been described to have a role either in pluripotency or 
iPS cell reprogramming but has been described to have functions in 
heart and neural development (S. Li, Weidenfeld, and Morrisey 2004; 
Rousso et al. 2012). However, in a study on the OCT4 interaction 
network in embryonic stem cells, which revealed interactors with  
 
 



Discussion 

 109 

 

documented roles in self-renewal such as ESRRB and DAX1, FOXP4 
has been identified as OCT4 partner (van den Berg et al. 2010). Indeed, 
it might be worth to further characterize this factor by exploring also the 
function for its interaction with OCT4. 
Among the novel unexpected factors we pointed out, there is CNIH4, a 
GPCR-protein about which very little is known from the literature 
(Sauvageau et al. 2014). In our screen upon knockdown of this 
candidate, we observed a decrease in terms of colony formation and X-

Reactivation efficiency. Our hypothesis is that as a signaling protein 
CNIH4 might act through a specific pathway such as ERas thereby 
possibly affecting the activation of the pluripotency network. Further 
work will be needed to investigate CNIH4’s exact role during 
reprogramming.  

 
X-Reactivation and pluripotency can be uncoupled. 
 
We were interested in studying the XCR process that occurs in the 
epiblast cell lineage in the inner cell mass of the late blastocyst to revert 
imprinted X-inactivation (Huynh and Lee 2003a). To do that we used as 

in vitro system iPS cell reprogramming. However, this system does not 
mimic exactly the reactivation of the paternal X-Chromosome in 
blastocyst. In fact, MEFs are somatic cells characterized by random X-
inactivation and the reactivation of the X occurs as late event and 
concomitantly with endogenous Nanog gene up-regulation. In vivo, the 
reactivation of the Xp in blastocyst occurs in 24 hours and without cell 
division (Mak et al. 2004; I. Okamoto et al. 2004; L. H. Williams et al. 
2011; Payer et al. 2013). Moreover, imprinted XCI is less stringently 

maintained than random XCI, because of less involvement of DNA  
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methylation as additional layer of silencing (T Sado et al. 2000). In fact, 
in extra-embryonic tissues, where imprinted XCI is maintained, X-
linked genes can sporadically reactivate (Corbel et al. 2013; Dubois et 
al. 2014; Hadjantonakis et al. 2001). Nevertheless, using terminally 
differentiated cells to induce the reprogramming to iPS cells gave us the 
big advantage of a complete and stable XCI as starting point to study the 
XCR process. As described in the literature, pluripotency is a 
prerequisite in order to achieve XCR. Indeed, in our screen we could see 

how that factors with negative effects on iPS cell reprogramming had 
consequences on XCR efficiency as well. However, one of the most 
interesting findings in our study is that it is possible to uncouple the two 
processes. In other words, XCR is not a prerequisite for pluripotency. In 
fact, there are factors whose knockdown has a specific effect for the 
XCR without affecting the reprogramming.  

 
SUV420H2, a histone methyltransferase for XCR. 
 
One of the features of XCI is the enrichment of H4K20me1 on the 
inactive X where it acts as repressive mark (Kohlmaier et al. 2004). In 
C. elegans many studies have described the mechanism underlying the 
presence of this repressive mark on the X chromosomes (Liu et al. 2011; 
Vielle et al. 2012; Wells et al. 2012; Kramer et al. 2015). It has been 
shown that there is a correlation between the presence of H4K20me1 on 

the X and its condensed state (Oda et al. 2009b). Indeed, a recent study 
showed that the enrichment of H4K20me1 controls X chromosome 
topology by facilitating compaction and therefore, reducing gene 
expression (Brejc et al. 2017; Bian et al. 2017).  
There are different methyltransferase and demethylases that regulate 
H4K20me1. PRSET-7 converts H4K20me into H4K20me1 which then 
can be further methylated by Suv420h1/2 into H4K20me2/me3  
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(Pannetier et al. 2008; Schotta 2004). Recently, a novel H4K20me2 
Jumonji demethylase has been identified in C. elegans, DPY-21 which 
converts H4K20me2 into H4K20me1. Interestingly, it has been shown 
that mutants of DPY-21 present low levels of H4K20me1 and an increase 
in X-linked gene expression, suggesting its role in X chromosome 
silencing by enriching H4K20me1 on the X (Lau, Nabeshima, and 
Csankovszki 2014). 
The histone methyltransferase SUV420H2 is one of the top candidates 

that came out from our screen. Its knockdown shows an effect on XCR 

by decreasing its efficiency without affecting the iPSCs formation. This 

suggests that SUV420H2 might play a specific role in XCR. It has been 

observed that SUV420H2 overexpression leads to a decrease in 
H4K20me1 and an increase of H4K20me3 in facultative 
heterochromatic regions on the X chromosome (Tsang, Hu, and 
Underhill 2010). Another study in C. elegans shows that the inhibition 
of a SUV420 ortholog, SET-4, might be responsible for H4K20me1 
enrichment on the X (Vielle et al. 2012). In line with what has been 

described in the literature, we think that SUV420H2 might act by erasing 
the enrichment of H4K20me1 on the inactive X. As a consequence, this 
leads to a change in X chromosome topology by releasing the 
compaction and promoting reactivation of X-linked genes. 

  
 
SMC1A: a candidate with specific effect on X-
Reactivation. 
 
We focused on a candidate, SMC1A, that could have a specific role in X-
Reactivation. SMC1Ais a part of the cohesin complex and plays many key  
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roles in cell cycle, DNA repair and genome organization (Haering et al. 
2002; Guacci, Koshland, and Strunnikov 1997; Michaelis, Ciosk, and 
Nasmyth 1997; H. Xu et al. 2010). 
In our screen, we detected a decrease in X-Reactivation efficiency upon 
SMC1A knockdown as the number of XGFP-positive colonies was 
reduced compared to control. This result was confirmed by FACS 
analysis. In fact, while the control was showing at day 10 of 
reprogramming, a percentage of XGFP positive cells of around 25%, in 

the SMC1A knockdown sample this percentage decreased down to 4%. 
This suggested that SMC1A could have a role in XGFP reactivation. 
Besides that, another interesting aspect to point out is that in terms of 
percentage of reprogrammed cells there was no a significant difference 
between the control cells and SMC1A knock down cells. In fact, in both 
cases the percentage of SSEA1/EpCAM1-positive cells was the same of 
around 40%. This observation suggested that the two processes, 

pluripotency and X-Reactivation, can be uncoupled. We further checked if 
the effect of SMC1A knockdown was evident only for GFP-transgene 
reactivation or if it could also affect endogenous X-linked genes. To 
address that question, we checked the reactivation of Hprt, an X-linked 
gene, after selecting our reprogrammed cells in 6-TG (Eggan et al. 2000). 
From this experiment we assessed that upon knock down of SMC1A, iPS 
cells were able to survive in 6-TG medium, which were all XGFP-

negative. This result suggested that not only the GFP transgene, but also 
the endogenous Hprt gene was not reactivated upon SMC1A knockdown 
showing that SMC1A plays a general role in reactivating X-linked genes.  
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What role can SMC1A play in X-Reactivation? 
 
We decided to focus our attention on SMC1A and try to find out how 

this factor was able to have an effect on X-Chromosome reactivation. As 
mentioned earlier, cohesins play roles in different biological processes.  
In recent years, it has been shown that cohesin is important in mediating 
architectural chromatin loops and topologically associated domains 
(TADs) and how this important function defines genome topology in 
association with CTCF (Wendt et al. 2008; Parelho et al. 2008; Rubio et 
al. 2008).  

Related to X-Chromosome structure, it is known that the two Xs have a 
different topology. The active X has a pretty well-organized structure 
divided in TADs similar to autosomes, while the inactive X is almost 
devoid of TADs and is characterized by two megadomains separated by 
a hinge within the microsatellite repeat Dxz4 (Naughton et al. 2010b; 
Teller et al. 2011b; Giorgetti et al. 2014; Rao et al. 2014). Regarding the 
role of cohesin on the X chromosome, a recent paper showed how 

SMC1A binds the active X differently than the inactive one (Minajigi et 

al. 2015). In fact, it seems that cohesin binds the X in a specific manner 
that favors the Xa conformation. There are specific binding sites on the 
Xa that are not present on the Xi and that help to maintain the organized 
TAD structure. On the inactive X are only few specific Smc1a binding 

sites and when the X is coated by Xist RNA during inactivation, SMC1A 
is largely displaced from the X that then acquires a disorganized 
structure. When Xist is ablated from the inactive X, Xa-specific SMC1A 

binding sites are restored and the Xi acquires an Xa-like structure.  

Therefore, our hypothesis was that SMC1A could have a role in X-
Reactivation by shaping the structure of the X chromosome. In order to 
investigate that aspect, we started a collaboration with M. Victoire 
Neguembore from M. Pia Cosma lab, where we used a Super Resolution  
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Microscopy (STORM) approach. We chose this strategy to have a single 
cell read-out due to the high resolution of the technique in order to look 
at the global structure of the X chromosome, its compaction and single 
cohesin localizations on the X. 
First, we performed an experiment in MEFs, where by random 
inactivation the cells have one active and one inactive X. We stained the 
two X chromosomes with a DNA Paint, identifying the inactive X by its 
characteristic H3K27me3 mark and compared the SMC1A localization 

on the two X-chromosomes. We performed the experiment with and 
without knocking down SMC1A. It is important to mention that even 

when upon knockdown the amount of cohesin was greatly reduced in the 

nucleus, the cells were perfectly viable. As shown in the literature, the 

active X showed a greater area than the inactive X which was more 
compacted (Naughton et al. 2010a; Teller et al. 2011c; Giorgetti et al. 
2014). In agreement with published ChIP-seq data (Minajigi et al. 2015), 
we observed a preferential and significant enrichment of SMC1A 

binding on the Xa compared to the Xi in control cells. Upon knockdown 
we saw a drastic reduction of SMC1A on both chromosomes and the size 

of cohesin localizations, defined clusters, was comparable between the 
Xi and Xa. In particular, upon knockdown, the area of the two 

chromosomes was comparable displaying an Xi-like compacted 
configuration even on the Xa. This was an indication that SMC1A can 

have a role in shaping the X Chromosome into an active Xa structure 
and its depletion could affect it thereby as a consequence causing 
reduced X-Reactivation during iPSC reprogramming. However, these 

are only preliminary data and in order to prove that hypothesis, we will 
need to perform further experiments. 
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Future outlook 

In summary we could identified through our screen potential players in 

both processes, pluripotency (Fig.D1a) and XCR (Fig.D1b). 

 

This opens up to the opportunity of developing different projects in the lab 

to characterize some of those factors and try to understand their molecular 

mechanism. We are now focusing on the follow up of SMC1A and 

SUV420H2 as XCR-specific factors.  

Regarding SMC1A we are now performing the same experiment realized 

in MEFs, during the reprogramming at different time points. Our aim 
will be to follow the changes in X-Chromosome structure upon cohesin 
knockdown and possibly to see how TADs formation is affected. 

For SUV420H2 we would like to confirm the exchange between 
H4K20me1 and H4K20me3 on the inactive X during X Chromosome 
Reactivation process. Furthermore, we will investigate possible changes 
of the chromosome structure across the transition from one histone  
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Figure D1 Schematic representation describing potential pathways of our top 
screen candidates related to pluripotency and XCR. 
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modification to the other. Another interesting question to answer is what 
happens if we knock down or knock out our candidates in vivo at the 
blastocyst stage when XCR occurs. Thereby we could study the effect 
on XCR function in vivo and also on cell fate and embryo development.  
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 Main Conclusions  

 

 
 

• Established screening conditions in iPS cells. 
 
 

• RNAi screen for 60 selected candidates in iPSCs. 
 

 
• Some factors show a phenotype in both Pluripotency and X-

Reactivation. 
 

 
• ERas, FOXP4 and CNIH4 show an effect on Pluripotency 

 
 

• X-Reactivation can be uncoupled from Pluripotency. 
 
 

• SUV420H2 and SMC1A as XCR-specific factors. 
 

 
• SMC1A shows a preferential enrichment on the active X 

compared to the inactive one. 

 

 

 
 
 
 
 
 
 



 

 122 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 123 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Material and Methods 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 124 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 



Material and Methods 

 125 

 
Material and methods  

 
1. Cell culture 
1.1  Cell lines 

 
The following cell lines have been used in this work: 

• MEFs: wild-type female or male mouse embryonic fibroblasts 
were derived from E14.5 embryos. The sex was determined by 

genotyping for Ube1. Female MEFs containing a single 
polycistronic, DOX-inducible cassette carrying the four 
reprogramming factors Oct4, Sox2, Klf4, and c-Myc in the Col1A 
locus and the reverse tet-transactivator M2rtTA in the R26 locus 
were derived as described before (Stadtfeld et al. 2010). Cells also 
carry an XGFP transgene on the X-chromosome and a mutation 
on one of the two Hprt allele. XGFP/Y males are crossed with 

homozygous hypoxanthine guanin phosphoribosyl transferase 
(Hprt–) mutant females (XHprt–/XHprt–) and mouse embryonic 
fibroblasts are derived from daughters carrying the transgene 
(XHprt–/XGFP). XiGFP/XaHprt (Hadjantonakis et al. 2001). 

• EL16.7: Mouse embryonic stem cell line 16.7 (40XX, 129 
×[M.castaneus × 129) (J T Lee and Lu 1999) . 

• HEK-293T: epithelial cell line derived from human embryonic 
kidney transformed with the SV40 virus large T antigen. 

MEFs were cultured at 37°C in a 5% CO2 and 5%O2, waterlogged 

atmosphere using Dulbecco’s Modified Eagle’s Medium (DMEM, 
GIBCO®, Invitrogen), supplemented with 10% fetal bovine serum (FBS) 
(Life Tech.), penicillin/streptomycin (Ibian Tech), sodium pyruvate  
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(1mM, Invitrogen), Hepes (30mM, Life Tech), non-essential amino acid 
(NEAA) (Life Tech), 2-mercaptoethanol (0,1mM, Life Tech).                   
EL16.7 (ESCs) were maintained in gelatin (reference)-coated plates with 
DMEM supplemented with 15% ES-Cell fetal bovine serum (ES-FBS)    
(Life Tech), penicillin/streptomycin (Ibian Tech), sodium pyruvate (1mM, 
Life Tech), Hepes (30mM, Life Tech), non-essential amino acid (NEAA) 
(Life Tech), 2-mercaptoethanol (0,1mM, Life Tech) and LIF (0,01g/ml, 
Orf Genetics). 
Both EL16.7 and HEK293T were cultured at 37°C in a 5% CO2 

waterlogged atmosphere. 
 

1.2 iPSC induction 
 

The reprogramming experiment of female OKSM-MEFs were routinely 
conducted on a feeder layer of male MEFs that were inactivated by 
irradiation, in the ESC culture medium supplemented with 15% fetal 
bovine serum (ES-cell FBS), with doxycycline (1ug/ml, Biogen 
Cientifica), ascorbic acid (25ug/ml, Sigma-Aldrich) and LIF (0,01ug/ml, 
Orf Genetics). After addition of dox, the medium was changed after 4 
days and every two days from then. After Dox withdrawal at day 12, 

iPSCs were cultured in the ESC medium supplemented with ascorbic acid 
and LIF.   

 

1.3 Plasmids 
 

Short hairpin targeting the 60 genes cloned into pLKO-vector were 
purchased by the Broad Institute. A list of shRNAs divided in two batches 
is provided in Table MM1 (Batch1) and Table MM2 (Batch2). 
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Table MM1. List shRNAs Batch1 

 

Gene Clone ID Target sequence 
Bap1 TRCN0000030721 CCCACAACTATGACGAGTTTA 
Bap1 TRCN0000030722 CGTCTGTGATTGATGATGATA 
Bap1 TRCN0000315583 CCCTCAGTATTACCATGTCTT 
Bex1 TRCN0000249062 CTGCCTTGTGATGTACAAATT 
Bex1 TRCN0000257858 TTATGTAGATCTCTCCCTGTT 
Bex1 TRCN0000257838 AGCCCATCGCTCACTATAGAT 
Carm1 TRCN0000039114 GCCATGAAGATGTGTGTGTTT 
Carm1 TRCN0000039118 CCCGACCAACACCATGCACTA 
Carm1 TRCN0000039117 CCACGATTTCTGTTCTTTCTA 
Cnih4 TRCN0000174324 CGTCTACTTCATCATTACATT 
Cnih4 TRCN0000176170 GATTACATTAACGCCAGATCA 
Cnih4 TRCN0000173594 GCTATACTACACACTGCACAA 
Cobl TRCN0000177543 CCAAGTATCATCACTTTAGAA 
Cobl TRCN0000182082 CGAAACAGACACTCCACCTAT 
Cobl TRCN0000177705 CCACAGTTACATCACTTGTTT 
Eras TRCN0000077699 GACTCACCAATGCTTCGTGAA 
Eras TRCN0000077698 GTCTCATGTCAAGGTGACAAT 
Eras TRCN0000077702 GCTTGGGCACAGTGCAAAGAT 
Foxp4 TRCN0000071485 CCGCAGGAGAAGTAATGACAA 
Foxp4 TRCN0000071486 CAGAGCTGGAAACGATGAGAT 

Foxp4 
TRCN0000071484 CCCTCCTTCACTTAAGTTATT 
TRCN0000274894 CCAGTTTATCAAACACCTCAA 

Fst TRCN0000066260 TGTCGAATGAACAAGAAGAAT 
Fst TRCN0000066262 GAGGAGGATGTGAACGACAAT 
Fst TRCN0000066261 GCAACTCCATCTCGGAAGAAA 
Gadd45a TRCN0000054690 CCTGCCTTAAGTCAACTTATT 
Gadd45a TRCN0000054688 CCCACATTCATCACAATGGAA 
Gadd45a TRCN0000054692 GCTCGGAGTCAGCGCACCATT 
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Gadd45b TRCN0000234403 TGAAGAGAGCAGAGGCAATAA 
Gadd45b TRCN0000234402 CACGAACTGTCATACAGATTC 
Gadd45b TRCN0000234404 GACCCACTCCAAACATCTAAA 
GFP TRCN0000072181 ACAACAGCCACAACGTCTATA 
GFP TRCN0000072189 CCTACGGCGTGCAGTGCTTCA 
GFP TRCN0000072194 CCACATGAAGCAGCACGACTT 
Ifitm1 TRCN0000066579 GTCATCGTTGTCTGTGCCATT 
Ifitm1 TRCN0000066580 CACAATCAACATGCCTGAGAT 
Ifitm1 TRCN0000066578 CCTGTTCAATACACTCTTCAT 
Kdm6a TRCN0000096243 CCTTCTCCTAAGTCCACTGAA 
Kdm6a TRCN0000331919 GCTACGAATCTCTAATCTTAA 
Kdm6a TRCN0000305237 TGGACTTGCAGCACGAATTAA 
Klf7 TRCN0000084230 CTCAACGCAGTGACCTCATTA 
Klf7 TRCN0000084232 CCCATGCATTGAGGAGAGCTT 
Klf7 TRCN0000232328 TAACGGGTGCCGGAAAGTTTA 
LacZ TRCN0000072240 TCGTATTACAACGTCGTGACT 
Luciferase TRCN0000072256 ACGCTGAGTACTTCGAAATGT 
Meis2 TRCN0000301408 CCACGAACTATGTGATAACTT 
Meis2 TRCN0000301327 CCCACAATGTTAAATTCTGTA 
Meis2 TRCN0000310875 TCTATGGGCACCCGTTGTTTC 

Mst1 
TRCN0000220496 CCAGGAATGTAACACGAAGTA 
TRCN0000308495 CCCGAATGTTGAGCGAGAATT 

Mst1 TRCN0000220497 CGGACCTGCATTATGGACAAT 
Mst1 TRCN0000220499 CCCGAATGTTGAGCGAGAATT 
Nanog TRCN0000075333 GCCAACCTGTACTATGTTTAA 
Nanog TRCN0000075334 GCCAGTGATTTGGAGGTGAAT 
Nanog TRCN0000075335 CCTGAGCTATAAGCAGGTTAA 
Nr0b1 TRCN0000026217 CATCCTCTACAATCTACTGAT 
Nr0b1 TRCN0000026229 CGCAGCTATGTGTGCGGTGAA 
Nr0b1 TRCN0000026222 CCAGGCCATCAAGAGTTTCTT 
Ntn1 TRCN0000071478 CGGAAGACTGTGATTCCTATT 
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Ntn1 TRCN0000071480 GTGGAAGTTCACCGTGAACAT 
Ntn1 TRCN0000071481 GACCTATGTGAGCCTGCAATT 
Pde9a TRCN0000114892 CCACCTTTGATGTCTGGCTTT 
Pde9a TRCN0000114891 GACCTGCTACAGACCATGTTT 
Pde9a TRCN0000114894 GCTGAGCTGTTTAGAACATAT 
Pou5f1 TRCN0000009611 GCCGACAACAATGAGAACCTT 

Pou5f1 
TRCN0000009612 CCTACAGCAGATCACTCACAT 
TRCN0000430010 CCACTTCACCACACTCTACTC 

Pou5f1 TRCN0000009615 CAAGGGAGGTAGACAAGAGAA 
Rab4a TRCN0000088974 GATAATAAATGTCGGTGGTAA 
Rab4a TRCN0000088975 AGATGACTCAAATCATACCAT 
Rab4a TRCN0000088977 CTCAAATCATACCATAGGAAT 
Rnf2 TRCN0000218768 GTAATCTGTGCCATAAGATTT 
Rnf2 TRCN0000040581 CCATGACTACAAAGGAGTGTT 

Rnf2 
TRCN0000226018 TGAGAAGCAGTACACCATTTA 
TRCN0000040579 CCCATCCAACTCTTATGGAAA 

Slc7a3 TRCN0000079384 CCGTACTACTAACTGTTCTTT 
Slc7a3 TRCN0000079386 GCCCAAACTATAGACCTTGAT 
Slc7a3 TRCN0000079387 GCCCGCTACTTGGTGGCTATT 
Slc9a3r2 TRCN0000314066 CTCCACATGTTTCTAGTTAAT 
Slc9a3r2 TRCN0000068616 CCAGGTGGTACAGAGGATCAA 
Slc9a3r2 TRCN0000317802 GCGAGAGATCTTCAGCAACTT 
Smc1a TRCN0000324672 ACTCTATCTTCTTGTCTGGAT 

Smc1a 
TRCN0000324674 GCTTCAAATGCGGCTGAAGTA 
TRCN0000109030 ACTCTATCTTCTTGTCTGGAT 

Smc1a 
TRCN0000324673 GCAGGCATTTGAACAGATAAA 
TRCN0000109034 GCTTCAAATGCGGCTGAAGTA 

Smc1b TRCN0000109048 GCCTCAGTACATTAAGGCTAA 

Smc1b 
TRCN0000109046 CCATTGTTGTAGCCTCAGAAA 
TRCN0000109047 GCTCCATTCTTTGTATTAGAT 

Smc1b TRCN0000109049 GCTGAAGAAGATGCACAATTT 
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Table MM2. List shRNAs Batch2. 
 

Gene Clone ID Target sequence 
Aes TRCN0000097717 TGACGGAGAGAAGTCGGATTA 

Aes 
TRCN0000097719 CGACTCCTGTGACCGCATCAA 
TRCN0000097718 AGGCATTACGTCATGTACTAT 

Aes TRCN0000097715 CCCAGAATGTACACAACGCTA 
Car14 TRCN0000114434 GAGACTGAGAATCCAGCTTAT 
Car14 TRCN0000114431 CTGCTAGGTAACCCTCTCTAT 
Car14 TRCN0000114433 CCTTTGGATCTACACAATAAT 
Dnmt1 TRCN0000039028 GCAAAGAGTATGAGCCAATAT 
Dnmt1 TRCN0000225698 TATATGAAGACCTGATCAATA 

Dnmt1 
TRCN0000225700 ACCAAGCTGTGTAGTACTTTG 
TRCN0000225699 CTATCGCATCGGTCGGATAAA 

Enox1 TRCN0000248603 TGTGCCTTTGAAGGAATTAAA 
Enox1 TRCN0000248602 AGCGCAAGAACATAGACATTT 
Enox1 TRCN0000248605 CCAGACCTGTCCCTATGAATA 
Etv4 TRCN0000295522 TCGGCCACAGAGGTGGATATT 
Etv4 TRCN0000295466 TGGAGGCAGGCCAAATCTAAA 
Etv4 TRCN0000055132 GTGATGGGTTATGGCTATGAA 
Fgf17 TRCN0000067138 CCTGTGCTTGCAGCTATTGAT 

Suv420h2 
TRCN0000039199 CCACTCCTGATTTCATCCCTA 
TRCN0000375750 AGAGCTGATCCTTGTTCTATG 

Suv420h2 
TRCN0000039203 CCGTGCTTGGAAGAAGAATGA 
TRCN0000340221 GAATGGAGTGCAGAGTCTATC 

Suv420h2 TRCN0000039200 GAGAAGAATGAGCACTGTGAA 
Tcf3 TRCN0000233416 GCACATCGTGCCTAAGCATTT 
Tcf3 TRCN0000233412 TTTGACCCTAGCCGGACATAC 
Tcf3 TRCN0000233415 CTGCACCTCAAGTCGGATAAG 
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Fgf17 
TRCN0000067141 CATCGTGGAGACAGATACATT 
TRCN0000067140 CCACTTCATCAAGCGCCTCTA 

Fgf17 TRCN0000067139 GAGCGAGAAGTACATCTGTAT 
Fntb TRCN0000190455 GTACAACATTGGACCTGAGAA 
Fntb TRCN0000340247 CCTCAAGAAGGAACGTTCTTT 
Fntb TRCN0000200895 CCAATGCTGAAATGGAAGATA 
Fyn TRCN0000023379 GCTCGGTTGATTGAAGACAAT 

Fyn 
TRCN0000023380 CCTGTATGGAAGGTTCACAAT 
TRCN0000023382 GCTCTGAAGTTGCCAAACCTT 

Fyn TRCN0000023381 CCTTTGGAAACCCAAGAGGTA 
GFP TRCN0000072199 TGACCCTGAAGTTCATCTGCA 
GFP TRCN0000072181 ACAACAGCCACAACGTCTATA 
GFP TRCN0000072194 CCACATGAAGCAGCACGACTT 

Hdac5 TRCN0000238233 GACGCCTCCCTCCTACAAATT 
Hdac5 TRCN0000238231 CCGTAGCCATCACAGCTAAAC 
Hdac5 TRCN0000238230 CATCGCTGAGAACGGCTTTAC 
Hmga1 TRCN0000235120 GACCAAAGGGAAGCAAGAATA 
Hmga1 TRCN0000235119 GTGAAGTGCCAACTCCGAAGA 
Hmga1 TRCN0000235122 AGTGATCACCACTCGCAGTGC 
LacZ TRCN0000072240 TCGTATTACAACGTCGTGACT 
Luc TRCN0000072250 AGAATCGTCGTATGCAGTGAA 
Maz TRCN0000238895 TCTGTGAGCTCTGCAACAAAG 
Maz TRCN0000238893 GATGCTGAGCTCGGCTTATAT 
Maz TRCN0000238897 GAGTAAGGTTGGGTGGTTAAA 

Nap1l4 TRCN0000110216 CCCAACGACTACTTCACCAAT 
Nap1l4 TRCN0000309401 GCAGTTCAGAATAGGAGATTA 
Nap1l4 TRCN0000110219 GCAGCTTTGCAGGAACGTCTT 
Phc1 TRCN0000273067 CACCTGAACCAACCTCTAAAC 

Phc1 
TRCN0000273005 GCCTGGCTGTTCAGGTTATAA 
TRCN0000012561 GCTTATTAGCTCAGCCACATA 
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Phc1 TRCN0000321173 CAACCTAATGCGGCTCAATAT 

Pou5f1 
TRCN0000426781 CAAGTTGGCGTGGAGACTTTG 
TRCN0000009613 CGTTCTCTTTGGAAAGGTGTT 

Pou5f1 TRCN0000009612 CCTACAGCAGATCACTCACAT 
Pou5f1 TRCN0000009615 CAAGGGAGGTAGACAAGAGAA 
Rarg TRCN0000222432 GCTCAGCATTGCCGACCAGAT 
Rarg TRCN0000279195 AGCCTGGGTCTAGACTCTAAA 
Rarg TRCN0000222433 CAATGACAAGTCTTCTGGCTA 
Sbk1 TRCN0000088467 CTGCGTATGTTCCAGCGGCTT 
Sbk1 TRCN0000088464 CCCGAGAATGTGCTGCTGTTT 
Sbk1 TRCN0000088463 CCCTACAGTATTCCATCCAAA 

Scarb1 TRCN0000066573 CGTCTCTGCTATGTCACTGAA 
Scarb1 TRCN0000066575 CCCTTTCTACTTGTCTGTCTA 
Scarb1 TRCN0000066577 CCTGTGTTGTCAGAAGCTGTT 
Pde9a TRCN0000114891 GACCTGCTACAGACCATGTTT 
Pde9a TRCN0000114894 GCTGAGCTGTTTAGAACATAT 
Sin3b TRCN0000287547 CCGTATAGACATTCCCAAGAA 
Sin3b TRCN0000294959 AGATGGTGTTCATCGTCAATT 
Sin3b TRCN0000039366 CCGCACCTTATCTTCGTGTAT 

Slc20a2 TRCN0000317073 CCACAGCTCATCTTCCAGAAT 
Slc20a2 TRCN0000068440 CCCATCTCCAATGGTACATTT 
Slc20a2 TRCN0000068442 GAGTTACACAAGAAGCTGCTA 

Stat4 TRCN0000235842 ACGGTGCAAACGGACACTTTA 
Stat4 TRCN0000081642 CGCTGCAAGAAATGCTTAATA 
Stat4 TRCN0000235844 AGCAATATTGGACCTAATTAA 
Syce2 TRCN0000200645 CAGGAAAGACTACAAGAATTT 
Syce2 TRCN0000201499 CCATGCACTTATGACCAACTT 
Syce2 TRCN0000190656 GCTTCCATCTCAATGTGAGAA 
Tcea3 TRCN0000084851 GAAGCTGAACAGTTGCCAGAT 

  TRCN0000301963 GAAGCTGAACAGTTGCCAGAT 
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Tcea3 TRCN0000301898 CCATATCTATCAAGAACTCAA 
Tcea3 TRCN0000301897 GCCTCAGAAATAGAAGACCAT 
Tet1 TRCN0000341847 CAACTTGCATCCACGATTAAT 
Tet1 TRCN0000341848 TTTCAACTCCGACGTAAATAT 
Tet1 TRCN0000341917 TCTAACCAGTGTGCTAATATA 

  TRCN0000341850 CCTACGGGAAGCGACCATAAT 
Tet2 TRCN0000201087 CGCTGGACATTTGTCTTGAAA 
Tet2 TRCN0000217530 CTTGTACTGTATAGGCATAAG 
Tet2 TRCN0000192770 CCAACTCATGGGTCAATTCTT 

Top3b TRCN0000366938 TGGGAAGTGCCATCGATTTAT 
Top3b TRCN0000366940 ACTATGTCCCTACTGCTATAA 
Top3b TRCN0000375850 ATATCTGCCAGCGCAACTATG 
Zfp42 TRCN0000096365 GCTCGAAACTAAAGCGACATT 
Zfp42 TRCN0000096364 GCAGTAGTCAACAAATGAATA 

Zfp42 
TRCN0000096367 GTGTGTACTGTGGTGTCTTAT 
TRCN0000096366 AGCTCGAAACTAAAGCGACAT 

Zfp423 TRCN0000084712 CGTGGAAGATGAGTCAATTTA 
Zfp423 TRCN0000084709 CGGTGCATTACATGACTACAT 
Zfp423 TRCN0000084708 CCCTGAATGTAACGTGAAGTT 
Zfp462 TRCN0000095831 CGCAACATGATCGACCACATA 
Zfp462 TRCN0000095832 GCAGGAACGAAATCCATACAA 
Zfp462 TRCN0000095833 CCCTTAAAGAGCGAAACAGTA 
Zfp57 TRCN0000256685 ATGTCAGATCCAACTCTATTA 
Zfp57 TRCN0000256684 TAGCTCAGATCTGCAAGATAA 

 
 
 
 

1.4 Virus preparation and cell infection 

 
For MEF infection, lentiviral particles were produced following the RNA 
interference Consortium (TRC) instructions for lentiviral particle  
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production and infection in 6-well plates 

(http://www.broadinstitute.org.rnai.public/). Briefly, 5x105 HEL293T 
cells/well were seeded in 6-well plates in DMEM, supplemented with 
10% fetal bovine serum (FBS), without penicillin and streptomycin. The 
day after plating, the cells were co-transfected with 500ng of pLKO-
shRNA for each factor, 500ng pCMV-dR8.9 and 25ng pCMV-VSV-G, 
using TransiT-LT1 as transfectant reagent (Mirus Bio). The day after 
transfection, the HEK293T medium was replaced with fresh one. The 
lentiviral-containing medium was harvested from HEK293T cells at 48h 

and 72h after transfection, filtered, concentrated with Lenti-X-
Concentrator (Clontech). After concentration, the lentiviral-containing 
medium was centrifugated at 1500g for 45min at 4°C, the pellet 
resuspended in 500ul DMEM and stored at -80°C. Then 3x103 MEFs/well 
were plated on 96-well plate. After 24h, cells were infected with 4ul of 
virus in combination with polybrene (Merk Chemicals and Life Science) 
at the concentration of 8ug/mml and centrifugated at 2250rpm for 30min 

at room temperature. The day after infection, these MEFs were washed in 
PBS, trypsinised and seeded on feeders in reprogramming medium.  

 

1.5 Flow cytometry 
 
For analysis and/or sorting, cells were trypsinised, washed in PBS and 
resuspended in PBS with 2% FBS and 1% Pen/Strep. Those harvested 
cells were incubated with antibodies against SSEA1 (APC, 1:20, 

eBioscience) and EpCAM1 (PE, 1:50, eBioscience) for 30min on ice, 
washed twice in PBS and stained with DAPI (1:1000, Biogen Cientifica) 
for viability. Then they were sorted or analyzed as indicated. Unstained 
cells were used as negative staining control. 
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1.6 RNA extraction and quantitative PCR detection of mRNA 

 
RNA was extracted and purified using RNeasy kits (Qiagen), according to 
manufacturer instructions. Total RNA was treated with DNAse I (Qiagen) 
to prevent DNA contamination.  
The cDNA was produced with High Capacity RNA-to-cDNA kit (Life 
Technologies) starting from 100ng RNA. Real-time quantitative PCR 
reactions from 10ng of cDNA were set up in triplicate using Power SYBR 
green PCR Master Mix (Thermo Fisher Scientific). The RT-PCR has been 
run with Viia 7 Real-Time PCR system (Applied Biosystem). For oligo 

sequences see Table MM3. 
 
 
Table MM3. RT Primers sequences. 
 

Target Forward Reverse 
Aes CCTCAGCAGCTCAA

GTTCACC 
CTTCAGGCTGTGATACTG
CG 

Bex1 
(Rex3) 

TAGATGGGACCTGA
TGCAGA 

GAAGCTGGTAACAGGGA
GAGA 

Carm1 TGACATCAGTATTG
TGGCACAG 

CTGAGGAGCCTAAGGGA
ATCA 

Cnih4 TCTCGCTCCTCGACT
GTTG 

CGGGATCACCCACTTGTT
TAAT 

Cobl CTTAGGGGGAAGCT
ATGGACT 

ACACATCCCTGTCATAAC
ACCT 

Dnmt1 GGCCATGGCTGACA
CTAAGCTG 

CACCTGCACAGTGGCAGA
TCTG 

Eras TGCCTACAAAGTCT
AGCATCTTG 

CTTTTACCAACACCACTT
GCAC 

Fgf17 GCTGCCTAACCTTA
CCCTGTG 

CCTGGTCCCTCACGTACT
G 

Foxp4 ATGATGGTGGAGTC
TGCATCG 

AGAGCCTGTTGCTGTTGG
AAG 

Fyn ACCTCCATCCCGAA
CTACAAC 

CGCCACAAACAGTGTCAC
TC 

Gadd45a CCGAAAGGATGGAC TTATCGGGGTCTACGTTG
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ACGGTG AGC 
Gapdh ATGAATACGGCTAC

AGCAACAGG 
CTCTTGCTCAGTGTCCTTG
CTG 

Hdac5 TGCAGCACGTTTTG
CTCCT 

TGCAGCACGTTTTGCTCC
T 

Kdm6a 
(Utx) 

CGGGCGGACAAAAG
AAGAAC 

CATAGACTTGCATCAGAT
CCTCC 

Jpx TTAGCCAGGCAGCT
AGAGGA 

AGCCGTATTCCTCCATGG
TT 

Mst1 CTCACCACTGAATG
ACTTCCAG 

AAGGCCCGACAGTCCAG
AA 

Nanog CTTTCACCTATTAAG
GTGCTTGC 

TGGCATCGGTTCATCATG
GTAC 

Nr0b1 GGTCCCTCTTGTACC
GCTG 

TCTTCTCCGCAGAAACAA
CAG 

Oct4 
(Pou5f1) 

ACATCGCCAATCAG
CTTGG 

AGAACCATACTCGAACCA
CATCC 

Phc1 TAGCACAGATGTCC
CTGTATGA 

TTGCTGGAGCATGAACTG
GTG 

Prdm14 ACAGCCAAGCAATT
TGCACTAC 

TTACCTGGCATTTTCATTG
CTC 

Rnf2 GAGTTACAACGAAC
ACCTCAGG 

CAATCCGCGCAAAACCGA
TG 

Rnf12 
(Rlim) 

GGTCCACCACCACA
GAGC 

TGACCACTTCTTGTTGTAT
TTCC 

Scarb1 TTTGGAGTGGTAGT
AAAAAGGGC 

TGACATCAGGGACTCAGA
GTAG 

Smc1a CCATTCCGTGGCAT
GTCTGA 

CAGGTGCTCCATGTATCA
GGT 

Smc1b TCGGACCATTTCAG
AGGTTTACC 

CAGGTTTTCCAGTATGTG
CTCC 

Sox2 ACAGATGCAACCGA
TGCACC 

TGGAGTTGTACTGCAGGG
CG 

Suv420h2 GAGAATTTCAAGTC
GTGGCGA 

ACAGGCAGTATTCCCATC
TGA 

Tcea3 GCAGAGCTGCGTGA
AGAGG 

GCAGCCGCTTCCAGTTTT
TAAT 

Tcf3 GGGTGCCAGCGAGA
TCAAG 

ATGAGCAGTTTGGTCTGC
GG 

Tet1 ACACAGTGGTGCTA
ATGCAG 

AGCATGAACGGGAGAAT
CGG 

Tet2 AGAGAAGACAATCG
AGAAGTCGG 

CCTTCCGTACTCCCAAAC
TCAT 

Top3b GGGTGGAGGCTACA
AGCAG 

GACCTTTCCAAGGGCGGT
T 

Tsix TGGGTCATTGGCAT CCCAGGGTGTCTGATCTC



Material and Methods 

 137 

 
 

 

1.7 Fluorescence in situ hybridization (FISH) 
 

5x104 cells were grown in 8-well Lab-Tek chamber slides (Thermo Fisher 

Scientifc) and fixed in 4% paraformaldehyde for 10min at room 
temperature. Then, washed three times in PBS. Fixed cells were 
permeabilized in 0,5% Triton X-100 (Sigma- Aldrich) in PBS buffer for 
10min at room temperature. And then washed in PBST (PBS with 0.1% 
Tween (Sigma-Aldrich)) and incubated for 2min at RT. Then the cells 
were incubated with 0.1N HCL for 5min at RT and washed twice in 
2xSSCT for 1min each time at RT. Then washed in 2xSSCT+ 50% 

Formamide (Panreac AppliChem) for 2min at RT and stored in the same 
buffer at 4°C for up to 2 weeks.  
For DNA-FISH 2xSSCT+ 50% Formamide was aspirated and any excess 
liquid was dried off.  
10ul of X-Chromosome Paint (Metasystem) mix were added to the cells. 
Cells and the probe were denaturated at 78°C for 3min on a hot plate. A 
cover was placed over the hot plate to protect form the light during 
denaturation. The following step was the incubation of cells with the 

probe at 37°C overnight in a light-tight humidified chamber. To humidify, 
paper towels were placed in a light-tight box and dampen with water.  
The day after cells were washed twice in 2xSSCT+50% Formamide at 
45°C for 5min and then washed in 2xSSCT at 45°C for 5min. Another 
wash was done in 2XSSCT at RT for 5min. Then, the cells were incubated  

CTTAGTC TT 
Zfp42 
(Rex1) 

ATGGCAGCTAGGAA
ACAGTCT 

TGGTAAAGGGTCTTCTGT
GTAGA 

Zfp57 CCCTCGACAGACTG
ACCCTAA 

TCGGGGCTAATCTCACTT
TCAT 

Xist CCCGCTGCTGAGTG
TTTGATATG 

CAGAGTAGCGAGGACTTG
AAGAG 
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in 2xSSCT + DAPI (1:1000) at RT for 5min and washed in PBS for 5min 

before immunofluorescence. 
 

1.8 Immunofluorescence staining 
 
As described earlier, 5x104 cells were grown in 8-well Lab-Tek chamber 
slides and DNA-FISH was performed. Once aspirated the PBS, cells were 
incubated in blocking solution containing 10% bovine serum albumin 
(BSA, Sigma) and 0.01% Triton X-100 for 1h at room temperature. The 

cells were then left at 4°C overnight in blocking solution containing the 
primary antibody. The next day, the cells were washed three times in PBS 
and then, incubated with the secondary antibody for 45min at room 
temperature. The primary antibodies used are given in Table 2. Goat anti-
mouse IgG, goat anti-rabbit IgG and anti-chicken IgG (1:500, Life 
Technologies) conjugated to Alexa Fluor-488, Alexa Fluor-555, Alexa 
Fluor-647, Alexa Fluor-TRITC were used as secondary antibodies.  For 

STORM as secondary antibody has been used an AF405-AF647 dye pair 
(Ricci et al. 2015). Nuclear staining was performed with DAPI (1:1000, 
Biogen Cientifica).  

 

1.9 Super Resolution Microscopy (STORM) 

Immuno-FISH images were acquired in a N-STORM 4.0 microscope 

(Nikon) with an iXon Ultra 897 camera (Andor), a CFI HP Apochromat 
TIRF 100X 1.49 oil objective (Nikon), a Quad-band filter and TIRF/Hilo 
inclined illumination mode. X chromosome FISH, H3K27me3 and 
SMC1a signals were detected with 488 nm, 560 nm and 647 nm lasers 
respectively. Diffraction limited fluorescence images were taken at the 
beginning of each imaging cycle for all previously mentioned signals and 
were used as reference to identify the position and areas occupied by Xa  
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and Xi chromosomes. SMC1a STORM signal was acquired for 60 000 

frames at 10 ms frame rate using sequential activation regime, meaning 
alternating one frame of 405 nm activation with three frames of 647 nm 
reporter. 405 nm activation was gradually increased over the imaging 
duration while 647 nm was maintained constant at 70% power over the 
whole acquisition. In order to allow proper blinking of molecules, imaging 
buffer was changed regularly, every hour. Imaging buffer was composed 
by 100 mM Cysteamine MEA (#30070, Sigma-Aldrich)—1% Glox 
Solution (0.5 mg/ml glucose oxidase, 40 mg/ml catalase (#G2133 and 

#C100, Sigma-Aldrich))—5% Glucose (#G8270, Sigma-Aldrich) in 
PBS.SMC1 signal was analyzed and rendered in Insight3 (Bates et al. 
2007; Rust, Bates, and Zhuang 2006). Localizations were identified based 
on a minimum intensity threshold of 1200 and fit to a simple Gaussian 
with a width between 200 and 400 nm and a maximum axial ratio of 1.5. 
Images were rendered with localizations represented as uniform Gaussian 
peaks having a width of 9 nm and the same contrast parameters were 

applied to each image. In order to selectively analysis SMC1a signal 
belonging to X chromosomes, the area occupied by Xa and Xi (X paint 
signal) was manually drawn in Fiji and used as masks to select the 
overlapping SMC1a localizations. Chromosome selected localizations 
were analyzed with FindCluster (Ricci et al. 2015) a Matlab based code 
that identifies clusters of SMC1a signal and provide quantitative 
information regarding their size and distribution. Values obtained from 

FindCluster were plotted and analysed statistically with Graphpad Prism7.  

2. Statistical analysis 
 

Average from two independent experiments were calculated for most of 
the shown experiments. Two tailed paired t-test or one sample t-test.  
p <0.05 defined statistical significance.  
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Table MM4. List of 57 candidates and controls (*). 
 
 

Factor Function Potential role Reference 
AES/ 
GRG5 

Transcriptional 
corepressor 

  

BAP1 Deubiquitylase   

BEX1 Signaling molecule   

CAR14 Zinc metalloenzyme   

CARM1 Chromatin modifier 
Role in 

pluripotency 
maintenance 

(Q. Wu et al. 
2009) 

CNIH4 GPCR coupled 
protein 

  

COBL Actin-binding protein   

DNMT1* DNA 
methyltransferase 

Reprogramming 
repressor, role in 

XCR 

(Mikkelsen et 
al. 2008; T 
Sado et al. 

2000) 
ENOX1 NADH oxidase   

ERAS GTPase Role in 
reprogramming 

(Yu et al. 
2014) 

ETV4 Transcriptional factor Upregulated in 
vivo iPS 

(Abad et al. 
2013) 

FGF17 Growth factor   

FNTB Farnesyltransferase   

FOXP4 Transcription factor   

FST Activin-binding 
protein 

  

FYN Kinase protein Function in 
oocyte meiosis 

(McGinnis, 
Kinsey, and 

Albertini 
2009) 

GADD45A Nuclear protein 

Role in DNA 
demethylation/ 

Reprogramming 
enhancer 

(K. Chen et al. 
2016; Z. Li et 

al. 2015) 

GADD45B Nuclear protein Role in DNA 
demethylation 

(Sultan et al. 
2012) 

HDAC5 Histone deacetylase   

HMGA1 Architectural factor 
Role in 

reprogramming/X
ist promoter 

binding in vole  

(Shah et al. 
2012; 

Orishchenko 
et al. 2012) 
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IFITM1 Transmembrane 
protein 

Role in PGCs 
repulsion 

(Tanaka et al. 
2005) 

KDM6A/ 
UTX* 

H3k27me3 
demethylase 

Somatic cell 
reprogramming 

regulator 
(Mansour et 

al. 2012) 

KLF7 Transcription factor   

MAZ Transcription factor   

MEIS2 Transcription 
regulator 

  

MST1 Kinase protein   

NANOG* Pluripotency factor 
Role in 

pluripotency and 
reprogramming 

(Jose Silva et 
al. 2009) 

NAP1L4 Histone chaperone   

NR0B1 Nuclear receptor Required for testis 
determination 

(Meeks, 
Weiss, and 
Jameson 

2003) 
NTN1 Signaling molecule   

PDE9A Phosphodiesterase   

PHC1  
Component of 

Polycomb 
repressive 
complex 1 

(Isono et al. 
2005) 

OCT4* Pluripotency factor 
Role in 

pluripotency and 
reprogramming 

(Takahashi 
and Yamanaka 

2006a) 
RAB4A GTPase   

RARG Receptor Reprogramming 
enhancer 

(W. Wang et 
al. n.d.) 

RNF2 E3 ubiquitin-protein 
ligase 

Essential to stably 
maintain an 

undifferentiated 
state of mouse ES 

cells 

(van der Stoop 
et al. 2008) 

SBK1 Kinase protein   

SCARB1 Receptor 
Infertility and 
exencephaly in 

females 

(Santander et 
al. 2013) 

SIN3B Transcription 
regulator 

  

SLC20A2 Receptor Female specific 
growth defect 

(Wallingford, 
Gammill, and 

Giachelli 
2016) 

SLC7A3 Protein transport   
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SLC9A3R2 Scaffold protein   

SMC1A Cohesin Chromosome 
structure 

(Minajigi et al. 
2015) 

SMC1B Cohesin 
Sister chromatid 

cohesion in 
meiosis of human 

oocytes 

(Garcia-Cruz 
et al. 2010)  

STAT4 Transcription factor   

SUV420H2 H4K20me3 methylase Chromatin 
remodeler 

(Tsang, Hu, 
and Underhill 

2010) 

SYCE2 Synaptonemal 
complex 

Necessary for XY 
body formation, 
spermatogenesis 
and oogenesis 

(Bolcun-Filas 
et al. 2007)  

TCEA3 Transcription factor 
Self-renewal 

and/or pluripotent 
differentiation 

potential control 

(Park et al. 
2013)  

TCF3* Transcription factor Reprogramming 
repressor 

(Lluis et al. 
2011) 

TET1* Dioxygenase 

DNA 
demethylation/ 
reprogramming 

enhancer or 
repressor 

(Esteban et al. 
2010) 

TET2* Dioxygenase 
DNA 

demethylation/rep
rogramming 

enhancer 

(Costa et al. 
2013) 

TOP3B DNA topoisomerase Role in meiosis 
and XY body 

(Kwan, 
Moens, and 
Wang 2003) 

ZFP42/ 
REX1 Pluripotency factor 

Rex1, repressor of 
xist, activator of 

tsix 

(Pablo 
Navarro et al. 

2010) 
ZFP423 Transcription factor   

ZFP462 Zinc finger protein   

ZFP57 Transcriptional 
repressor 

Involved in 
imprinting  

(X. Li et al. 
2008) 
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Abbreviations 

 
 
6TG 6-Tio-Guanine  

AP Alkaline Phosphatase     

CTCF CCCTC-binding factor 

E Embryonic day of development                                                               

EPI Epiblast                                                                                             

ESCs Embryonic stem cells     

FACS Fluorescence-activated cell sorting 

FISH Fluorescent in situ hybridization 

HAT Hypoxanthine-aminopterin-thymidine                                                                                                                                                        

ICM Inner Cell Mass 

iPSCs Induced Pluripotent Stem Cells   

KD Knockdown 

lncRNA long non-coding RNA 

MEFs Mouse embryonic fibroblasts    

OKSM Oct4-Klf4-Sox2-c-Myc                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

PE Primitive Endoderm                                                                           

PGCs Primordial Germ Cells 

RT-PCR Real time PCR  

shRNA short hairpin RNA 

STORM Stochastic Optical Reconstruction Microscopy 

TAD Topologically Associated Domain 

TE Trophectoderm 

Xa Active X-Chromosome 

Xi Inactive X-Chromosome 
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Xic X-Inactivation Center 

XCI X-Chromosome Inactivation 

XCR X-Chromosome Reactivation 

Xm Maternally Inherited X-Chromosome 

Xp Paternally Inherited X-Chromosome 

Xist X-Inactive Specific Transcript                                                                                                                                                                

YY1 Yin Yang 1 
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