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Summary

Obesity  is  one  of  the  major  public  health  problems in  the  21st century.  The  great

economic expansion of the last decades in developed countries has contributed to the

increased consumption of unhealthy foods and the excessive usage of energy-saving

technologies. These have in turn led to the development of unhealthy lifestyles and the

consequent increase of obesity prevalence. Thus, obesity has emerged as a natural

response  to  an  unnatural  environment.  With  the  continuous  increase  in  obese

population in each generation, the prevalence of obesity-associated disorders such as

type II diabetes and osteoarthritis is also on the rise, and the prospect of developing a

medical therapy specific for each patient earns increasing interest. In this regard, the

targets  protein  tyrosine  phosphatase  1B (PTP1B)  and  matrix  metalloproteinase  13

(MMP-13) are involved in both obesity and, respectively, type II diabetes mellitus and

osteoarthritis.  The  present  doctoral  thesis  focuses  on  developing  virtual  screening

strategies to identify compounds that modulate the activity of these two targets which

may have a positive influence on both obesity and its associated disorders.
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Resum

L'obesitat  és un dels principals problemes de salut  pública del  segle XXI.  La gran

expansió econòmica de les últimes dècades en els països desenvolupats ha contribuit

a l’increment del consum d’aliments poc saludables i a l’ús excessiu de tecnologies

d’estalvi  d’energia.  Aquests  canvis  han  generat  estils  de  vida  poc  saludables  i  el

consegüent augment de la prevalença d'obesitat.  Així doncs, l'obesitat sorgeix com

una resposta natural a un entorn antinatural. Amb l'augment continu de la població

obesa en cada generació,  la prevalença de trastorns associats a l'obesitat  com la

diabetis  tipus  II  i  l'artrosi  també  augmenta,  i  la  perspectiva  de  desenvolupar  una

teràpia mèdica específica per a cada pacient va guanyant interès. En aquest sentit, les

dianes proteïna tirosina fosfatasa 1B (PTP1B) i  la  metaloproteasa de la  matriu  13

(MMP-13) estan implicades tant en l’obesitat com, respectivament, la diabetis mellitus

de  tipus  II  i  l’artrosi.  La  present  tesi  doctoral  es  centra  en  el  desenvolupament

d'estratègies de cribratge virtual per tal d’identificar compostos que modulin l'activitat

d'aquestes  dues  dianes  i  puguin  influir  positivament  en  l'obesitat  i  els  trastorns

associats a l'obesitat.
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Resumen

La obesidad es uno de los principales problemas de salud pública del siglo XXI. La

gran  expansión  económica  de  las  últimas  décadas  en  los  países  desarrollados  a

contribuido al incremento del consumo de alimentos poco saludables y al uso excesivo

de tecnologías de ahorro de energía.  Estos cambios han generado estilos de vida

poco saludables y el consiguiente aumento de la prevalencia de obesidad. Así pues, la

obesidad surge como una respuesta natural a un entorno antinatural. Con el aumento

continuo  de  la  población  obesa  en  cada  generación,  la  prevalencia  de  trastornos

asociados a la obesidad como la diabetes tipo II y la artrosis también aumenta, y la

perspectiva  de  desarrollar  una  terapia  médica  específica  para  cada  paciente  va

ganando interés. En este sentido, las dianas proteína tirosina fosfatasa 1B (PTP1B) y

la metaloproteasa de la matriz 13 (MMP-13) están implicadas tanto en la obesidad

como, respectivamente, la diabetes mellitus de tipo II y la artrosis. La presente tesis

doctoral se centra en el desarrollo de estrategias de cribado virtual para identificar

compuestos  que  modulen  la  actividad  de  estas  dos  dianas  y  puedan  influir

positivamente en la obesidad y los trastornos asociados a la obesidad.
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Introduction

Overweight and obesity are defined as abnormal or excessive fat accumulation that

may  impair  health.1 The  prevalence  of  obesity  has  been  continuously  increasing

worldwide in the last  decades,2 having nearly tripled since 1975.1 In 2016, 39% of

adults aged 18 years and over (1.9 billion) were overweight, and 13% (650 million)

were obese.1 Obesity is associated with multiple pathologies, such as type II diabetes

mellitus, osteoarthritis, cardiovascular diseases, asthma, gallbladder disease, chronic

back pain  and  cancer.3–5 The increasing  prevalence of  childhood obesity  is  also  a

matter of  concern,  as it  is  associated with greater risk and earlier onset of  chronic

disorders.2 Consequently, as childhood obesity continues to rise,2 obesity-associated

morbidities are expected to develop earlier and more frequently in future generations,

thus increasing the need for more effective pharmacological treatment. In fact, most of

the world's population live in countries where overweight and obesity are associated

with a higher mortality rate than underweight.1 This supposes a great economic burden

and establishes obesity as one of the major public health problems of the 21st century.4

General recommendations body weight reduction include a healthy diet and regular

physical activity.6 However, if the patient presents obesity-associated morbidities and is

not able to achieve this reduction of body weight by lifestyle alone, medical treatments

including pharmacological  therapies and bariatric surgery are available.  As bariatric

surgery has more associated health risks and costs,7,8 it is reserved for clinically severe

obesity, making pharmacological therapy the initial treatment option for obese patients

with  comorbidities.6 Some of  the drugs used to  treat  obesity  include Phentermine,

Orlistat, Lorcasein, Naltrexone/bupropion, Lorcaserin and Liraglutide (see Table 1).6,9,10

17

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Introduction

Table 1. Current common pharmacological treatments for obese patients6,9,10

Pharmacological
treatment

Mechanism of
action

Effects Adverse effects
Recommended

patients

Orlistat
Pancreatic and
gastric lipase

inhibitor

Pancreatic and
gastric lipase

inhibitor

Fecal urgency, oily
stool, flatus with
discharge, fecal

incontinence

Patients with
hypercholesterolemia
and/or constipation
who can limit their
intake of dietary fat

Phentermine/
topiramate

Adrenergic
agonist and

neurostabilizer

Increases
resting energy
expenditure

and
suppresses

appetite

Paresthesias,
dizziness,
dysgeusia,
insomnia,

constipation, dry
mouth

Younger patients who
need assistance with
appetite suppression

Lorcaserin

Selective
serotonin
receptor
agonist

Reduces
appetite and

increases
satiety

Headache,
dizziness, fatigue,

nausea, dry mouth,
constipation

Patients who would
benefit from appetite

suppression

Naltrexone/
bupropion

Opiod
antagonist and
dopamine and
norepinephrine

reuptake
inhibitor

Reduces
appetite and
food cravings

Nausea, vomiting,
constipation,
headache,

dizziness, insomnia,
dry mouth

Patients who describe
addictive behaviors

related to food

Liraglutide

Glucagonlike
peptide-1

gastrointestinal
hormone

mimic

Reduces
hunger,

decreases food
intake, and

delays gastric
emptying

Nausea, vomiting,
diarrhea,

constipation,
dyspepsia,

abdominal pain

Patients who report
inadequate meal

satiety

Despite  the  availability  of  these  pharmacological  agents,  their  limited  efficacy  and

adverse effects constitute serious limitations for these drugs, and there is an unmet

need  for  safe,  efficacious  and  tolerable  anti-obesity  medications  (see  Table

1).7 Moreover,  these  treatments  are  directed  exclusively  at  the  modulation  of  food

intake and they are not aimed at treating obesity-associated disorders comorbidities

directly. Therefore, it would be interesting to identify drugs that could modulate other

metabolic  pathways  involved  in  obesity  and  that  were  able  to  address  obesity-

18
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Introduction

associated morbidities, as they should increase the effectiveness of the treatment in

patients presenting the corresponding comorbiditiy.

Given the impact of obesity in modern society, there is a need for new pharmacological

agents with  different  modes of  action aimed at  treating  obesity  and its  associated

diseases. The present thesis focuses on identifying inhibitors by virtual screening (VS)

that  target  obesity  and  obesity-associated  comorbidities.  Thus,  protein  tyrosine

phosphatase  1B  (PTP1B)  and  matrix  metalloproteinase  13  (MMP-13)  have  been

selected for their role in the progression of obesity and their respective implications on

type II  diabetes mellitus and osteoarthritis,  two morbidities associated with  obesity.

Here is a brief description of each target of interest and their implication in obesity and

the corresponding associated pathology as well as an introduction to virtual screening

techniques.

Protein tyrosine phosphatase 1B

Phosphorylation plays an essential role in cell signaling, as it modulates the activity of

many proteins in  the cell.  Many signaling  pathways involve  the phosphorylation of

proteins,  which  can  occur  at  different  stages  of  the  cell  signaling  cascade.  The

enzymes that catalyze protein phosphorylation and dephosphorylation are known as

protein  kinases  and  protein  phosphatases,  respectively.  In  phosphorylation  events,

protein kinases catalyze the addition of phosphoryl groups on a protein, activating or

deactivating it, depending on the target protein, thus triggering a cellular response. In

dephosphorylation events, protein phosphatases remove the phosphoryl group from

the protein to reverse the cycle and return the protein to its previous state. It has been

estimated that the human genome contains over 1000 genes that encode for kinases

and  phosphatases.  As  the  coordinated  interplay  between  these  two  partners  is

required  for  the  proper  functioning  of  the  cell,  this  illustrates  the  importance  and

complexity of phosphorylation processes, which regulate many metabolic pathways,

including  the  metabolism  of  glucides,  lipids  and  amino  acids.11 A  particular

19
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Introduction

phosphatase. PTP1B, has become a focus of attention in the last 20 years due to its

involvement in the regulation of the insulin and leptin signaling pathways.12

Figure 2. PTP1B involvement in the insulin and leptin signaling pathways.13

In the insulin signaling pathway, PTP1B dephosphorylates the insulin receptor14,15 and

insulin  receptor  substrate  1  (IRS1),16 resulting  in  a  down-regulation  of  the  insulin

signaling  pathway  (see  Figure  2).  In  vivo studies  confirm  the  role  of  PTP1B

antagonizing insulin action, as PTP1B knockout (KO) mice display enhanced insulin

sensitivity.17 Thus,  PTP1B KO mice  are  more  resistant  to  weight  gain  and  remain

insulin sensitive when they are fed with a high-fat diet. However, with the same diet,

mice with the active PTP1B gene rapidly gain weight and become insulin resistant.17

In  the  leptin  signaling  pathway,  PTP1B  dephosphorylates  the  leptin  receptor-

associated kinase JAK2 and alters the JAK-STAT pathway, attenuating the action of

20
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Introduction

leptin (see Figure 2).18,19 In vivo studies have shown that PTP1B KO mice exhibit leptin

hypersensitivity18 and an enhanced response toward leptin-mediated weight loss and

suppression of feeding.19

Taken together, these findings indicate that the inhibition of PTP1B should contribute to

the increase of insulin and leptin sensitivities and therefore have a positive impact in

diabetic and obese patients displaying insulin and leptin resistance. Therefore, PTP1B

has been established as a pharmacological target for both type II diabetes mellitus and

obesity.20,21 

Matrix metalloproteinase 13

The extracellular matrix (ECM) consists of a network of macromolecules which not only

provide physical support to the cell, but also transmit mechanical and molecular signals

to communicate with the surrounding cells.22 The three major components of the ECM

are: a) glycosaminoglycans (GAGs), usually covalently linked to protein in the form of

proteoglycans, are  large  and  highly  charged  polysaccharides that  form  a  highly

hydrated gel-like substance, resisting compressive forces and allowing the diffusion of

nutrients,  metabolites and hormones;  b) fibrous proteins (primarily  members of  the

collagen family), which confer both structure and elasticity to the ECM; and c) a large

and  varied  assortment  of  glycoproteins,  which  help  cells  migrate,  settle  and

differentiate in the appropriate locations (see Figure 3).22
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Introduction

Figure 3. Components of the extracellular matrix.

As important  as the ability  of  cells  to build  and bind to  the ECM is  their  ability  to

degrade it. ECM degradation is required in many cellular processes as cells may need

to either stretch out in order to divide, detach from other cells in order to migrate, or

remove cellular material in order for the tissue to grow, be repaired, and be maintained

in  a  continuous  turnover  of  ECM  components.  Proteases  are  responsible  for  the

degradation of matrix components. The largest group of proteases that degrade the

ECM are the matrix metalloproteases (MMPs),  a family of proteases dependent on

Ca2+ or Zn2+ that degrade different components of the ECM with different specificity

(see Table 2).22

22

Collagen

Integrin

Cytoplasm

Extracellular Fluid
Glycosaminoglycans

Glycoproteins

Cytoskeleton

Fibronectin

Cholesterol

Phospholipid bilayer

Glycolipid

Proteoglycan

Integral protein
Peripherial protein

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Introduction

Table  2. MMPs,  their  alternative  names,  functional  classification,  main  substrates  and  some  of  the
pathologies in which they are involved.

MMP Alternative names
Functional

classification
Main substrates Related Pathologies

MMP-1

- Interstitial
collagenase

- Collagenase 1
- Vertebrate
collagenase

- Collagenases
- Collagen types I, II and

III
- Rheumatoid arthritis24

- Cancer23,30

MMP-2
- Gelatinase A

- 72 kDa gelatinase
- Type IV collagenase

- Gelatinases
- Collagen type IV

- Gelatin
- Fibrinogen

- Asthma24,31

- Cancer32

- Cardiovascular
diseases24

- Heart failure24

- Liver fibrosis33

MMP-3
- Stromelysin 1

- Proteoglycanase
- Transin

- Stromelysins

- Proteoglycan
- Fibronectin

- Collagen types I,  III, IV,
V and IX

- Atherosclerosis34

- Coronary artery
disease36

- Inflammatory bowel
disease24

- Periodontitis35

MMP-7

- Matrilysin
- PUMP-1
- Putative

metalloproteinase-1
- Uterine

metalloendopeptidase

- Matrilysins

- Elastin
- Fibronectin

- Casein
- Laminin

- Cancer32

- Inflammatory bowel
disease27

- Lung fibrosis24

MMP-8
- Neutrophil
collagenase 

- Collagenases - Collagen types I and III

- Asthma24

- Cancer23

- Periodontitis24

- Rheumatoid arthritis34

MMP-9

- Gelatinase B 
- 92 kDa gelatinase

- Type IV collagenase
- Macrophage

gelatinase

- Gelatinases

- Collagen types I, III, IV,
V and XI

- Gelatin types I and V
- Laminin

- Asthma24

- Cancer33

- Heart failure24

- Inflammatory bowel
disease35

- Rheumatoid arthritis31

- Liver fibrosis37

MMP-10
- Stromelysin 2

- Transin 2
- Stromelysins

- Fibronectin
- Proteoglycan

- Gelatin types I, III, IV, V
- Collagen types I, III, IV

and V

- Atherothrombosis39

- Chronic obstructive
pulmonary disease38
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MMP-12
- Macrophage elastase

- Metalloelastase
- Metalloelastases

- Elastin
- Casein

- Fibronectin
- Gelatin
- Laminin

- Collagen type IV

- Chronic obstructive
pulmonary disease40

- Neurological
diseases24

MMP-13 - Collagenase 3 - Collagenases
- Collagen types I, II, III
- Fibrillin types 1 and 2

- Cancer23

- Inflammatory bowel
disease24

- Osteoarthritis27

- Rheumatoid arthritis26

- Obesity25

MMP-14
- Membrane-type

matrix
metalloproteinase-1

- Membrane-type
MMPs

- Collagen type I
- Fibronectin

- Laminin

- Aortic aneurysm28

- Cancer29

This information has been obtained from the BRENDA,41 KEGG,42 ExPASy43 and MEROPS44 databases.

As MMPs are expressed in different tissues and have different substrate specificities,

their  uncontrolled  activity,  and  thus  the  excessive  degradation  of  different  ECM

components in different tissues may originate a wide range of pathologies (see Table

2).  In  these  cases,  the  inhibition  of  MMPs  could  help  reduce  the  degradation  of

particular  ECM  components  responsible  for  these  diseases  and  have  a  positive

outcome on patient prognosis. Thus, at present, inhibitors of many members of the

MMP family are being searched for their therapeutical interest.

However, as each MMP fulfills its biological role in the cell, only the MMP (or MMPs)

involved in the pathology should be targeted by these inhibitors in order not to alter

biological processes other than the one which causes the disease in question.  This

becomes specially relevant when developing drugs directed at systemic administration,

as MMP inhibitors that target undesired MMPs on multiple tissues alter their respective

biological functions and may originate side effects. In fact, in the first years of MMP

inhibitor drug design, selectivity of MMP inhibitors was not considered a priority and

this caused the failure of many clinical trials as patients developed musculoskeletal

syndrome (MSS), whose cause, although it remains unknown, has been speculated to

be  the  result  of  the  nonselective  inhibition  of  multiple  MMPs.45–47 Moreover,  some

MMPs such as MMP-3, MMP-8 and MMP-9 confer a protective role to the cell and their

24
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inhibition  should  be  avoided,  as  it  could  lead  to  the  development  of  further

pathologies.48–50

In  light  of  these  facts,  the  current  trend is  to  search  for  selective  MMP inhibitors.

Nevertheless, this supposes a big challenge, as all these enzymes belong to the same

family and their binding sites present a high degree of homology. In order to design

inhibitors that are specific for a particular MMP, it is crucial to first identify the unique

features of that MMP that could allow its targeting while sparing other MMPs.

One MMP for which selective inhibitors are of interest is MMP-13. This metalloprotease

is highly expressed in osteoarthritis patients, which induces an excessive breakdown of

collagen that results in an imbalance between collagen synthesis and degradation in

the joint,  leading to the progressive degeneration of  articular cartilage and causing

pain, swelling, ankylosis and limited mobility of the joint.51 Therefore, selective MMP-13

inhibitors are seeked for the treatment of osteoarthritis. 

Obesity  is  regarded  as a  major  risk  factor  for  the  incidence  and  progression  of

osteoarthritis.5,52 Apart  from  the  fact  that  increased  body  mass  index  causes

inflammation in joints that bear body weight, such as the knees and the hip,53,54 leptin

produced in the joint white adipose tissue acts as a pro-inflammatory adipokine and

has  been  shown  to  induce  the  expression  of  MMP-13,  thus  contributing  to  the

progression of osteoarthritis.55–58 Interestingly, MMP-13 has recently been identified to

play a role in obesity,  as Shih  et al.26 have reported that  the inhibition of  MMP-13

prevents  diet-induced  obesity  in  mice  and  suppresses  adipogenesis  in  3T3-L1

preadipocytes, proposing the inhibition of MMP-13 as a potential strategy to prevent

obesity. Considering the roles of MMP-13 in both obesity and osteoarthritis and the well

established association between these disorders, the selective inhibition of MMP-13

could address both of these conditions simultaneously, making MMP-13 an ideal target

for patients with obesity and obesity-induced osteoarthritis.

General  strategies for the treatment of  osteoarthritis  combine both pharmacological

and non-pharmacological therapies.59 Non-pharmacological treatment options include

exercise to achieve weight loss,60,61 arthoplasty,62,63 spa and mud-bath therapies,64,65

25
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ultrasounds66 and  intra-articular  hyaluronic  acid  injections.67–70 Regarding

pharmacological treatment in osteoarthritis, the primary choice is the administration of

non-steroidal  anti-inflammatory  drugs  (NSAIDs)  such  as  diclofenac,  ibuprofen,

naproxen, mefenamic acid and celecoxib.71 Nevertheless, little is known of the disease-

modifying properties of some of these agents and, although they may provide modest

pain relief, these drugs have often been associated with unwanted cardiovascular and

gastrointestinal side effects and they present a challenge at evaluating the risk-benefit

ratio when prescribed to patients.72

Due to these limitations of NSAIDs, there is no consensus on the best pharmacological

treatment  for  osteoarthritis,  thus  highlighting  the  need  for  a  more  effective

pharmacological  agent.  Contrary  to  current  treatments,  which  focus  on  symptom

management and pain relief, research on osteoarthritis treatments should be directed

towards  halting  disease  progression  in  order  to  improve  the  overall  status  of  the

patient.  This  is,  for  instance,  the  case  of  mesenchymal  stem  cell  therapy,  which

benefits from the potential  of  stem cells to regenerate damaged tissue by injecting

these  cells  directly  to  the  synovial  fluid,  where  they  generate  growth  factors  and

cytokines that initiate the repair process in the joint.73–77 Similarly, the exploration of the

metabolic  pathways involved  in  the  development  of  osteoarthritis should  allow the

development of novel  pharmacological agents  with alternative mechanisms of action

directed  at  halting and reversing  joint  degradation  in  osteoarthritis patients.  In  this

sense,  as  MMP-13 is  actively  involved  in  the  degradation  of  collagen  in  the joint,

selective MMP-13 inhibitors may constitute a novel therapy for  osteoarthritis patients

that should restrain disease progression while avoiding adverse side effects.

Virtual screening

Overall, the identification of compounds able to inhibit PTP1B and MMP-13 is expected

to provide novel pharmacological alternatives for obesity,  type II diabetes mellitus and

osteoarthritis.  However,  randomly  testing  the  inhibitory  activity  of  thousands  of

compounds  in  the  laboratory  for  these  two  targets  would  be  an  expensive  and
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challenging  task.  Virtual  screening  can  prove  useful  in  this  regard,  as  it  allows  to

extract biologically active compounds from large compound databases with the use of

computational tools. In the next section, the most common techniques employed in

virtual screening will be introduced.

27
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Abstract

Virtual  screening  consists  in  the  usage  of  computational  tools  in  order  to  extract

potentially  bioactive  compounds  from  large  small-molecule  databases.  Virtual

screening is becoming increasingly popular in the field of drug discovery as  in silico

techniques are continuously being developed, improved and made available. As most

of these techniques are easy to use, both private and public organizations resort to

virtual screening methodologies in order to save resources in the laboratory. However,

it is often the case that the techniques implemented in virtual screening workflows are

restricted to those most known by the research team. Moreover, although the software

is often easy to use, each methodology has a series of pitfalls that should be avoided

so  that  false  results  or  artifacts  are  not  produced.  Here,  we  will  review the  most

common methodologies used in virtual screening workflows in order to both introduce

the  inexperienced  researcher  to  new  methodologies  and  advise  the  experienced

researcher on how to prevent common mistakes and the improper usage of virtual

screening methodologies.
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1. Virtual screening

Virtual screening (VS) consists in the usage of computational tools in order to extract

potentially  bioactive  compounds  from large  small-molecule  databases.  The  use  of

computers  allows  to  process  thousands  of  compounds in  a  matter  of  hours  while

decreasing the cost of experimentally testing the biological activity of all compounds.

Like  high-throughput screenings, VS protocols are normally used as an early step in

the  drug  discovery  process  in  order  to  enrich  the  initial  library  with  active

compounds.1 Thus, they should not be expected to obtain highly potent compounds to

be  successful  (which  should  be  achieved  in  subsequent  hit-to-lead  and  lead

optimization stages),  but rather generate a diverse library with a high proportion of

active molecules which may be used as starting points for drug design.1

VS  is  usually  approached  hierarchically  in  the  form  of  a  workflow,  incorporating

methods of different nature in a sequential manner, which act as filters that discard

undesirable compounds (see Figure 1). This allows to take advantage of strengths and

avoid limitations of individual methods.1,2 Compounds that survive all the filters of the

VS are usually referred to as hit compounds and they need to be tested experimentally

in the laboratory to confirm their biological activity. Virtual screening methods can be

classified in two major groups: a) ligand-based methods, which rely on the similarity of

the compounds  of interest with active compounds, and  b) receptor-based methods,

which  focus  on  the  complementarity of  the  compounds  of  interest  with  the  target

protein. The most common methodologies belonging to these two categories will be

summarized in this review.  Table 1 shows a list  of popular software used for each

methodology.
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Figure 1. General scheme of a virtual screening workflow

2. First steps

Before  developing  a  VS,  a  thorough  analysis  of  the  data  available  should  be

undergone  in  order  to  familiarize  with  the  target  of  interest  and  determine  which

methodologies can or can not be incorporated in the VS workflow:

• Bibliographic  research. First,  a  bibliographic  research  on  the  receptor  is

recommended, considering aspects such as its biological function, natural ligands and

catalytic  mechanism,  as  well  as  its  involvement  in  pathological  processes.  This

information can be found in databases such as UniProt3 or Brenda.4 It is also important

to review previous attempts to develop compounds that modulate the activity of the

receptor of interest and their mechanisms of action, as well as the current challenges

that  these  compounds  face  and  their  limitations.  In  this  regard,  the  analysis  of

structure–activity  relationship  (SAR)  studies  can  provide  useful  insights  on  how to

design inhibitors for a given target. SAR studies are experiments in which a compound

is modified by adding a series of substituents of different nature in one or several parts

of the molecule and evaluate the activity of the resulting compounds towards the target
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of interest. This provides information on the compound substituents that are preferred

by the target in each part of the molecule and therefore reveals which modifications

could be applied to a compound to further increase its activity towards the target and

which ones should not be applied, as they would result in activity losses. Although in

some cases molecular visualization software could aid us in rationalizing the causes of

the activity changes observed in SAR studies by analyzing them within the protein

environment with the naked eye, there are methods that help us to better understand

the nature of the interactions between the ligand and the protein. This is for example

the case of Flare,5 in which the electrostatic potentials and hydrophobicity of both the

ligand and the protein can be represented and compared to determine whether the

introduction of a particular functional group is favorable for activity or not. While this

type of information may be important to establish an appropriate VS strategy, it could

also be crucial in the final steps of the VS to: a) select hits that present features which

have  previously  been  reported  to  be  important  for  activity;  and  b) avoid  selecting

compounds that would perform unfavorable interactions with the target that can have

possibly been overlooked by earlier steps of the VS workflow.

• Activity  and  structural  data  collection. On  the  one  hand,  activity  data  of

previoulsy  reported  inhibitors  as  well  as  their  structure  should  be  retrieved  from

databases such as ChEMBL,6 Reaxys,7 BindingDB8 or PubChem,9 as a high amount

and structure variability of compounds will result in an improved performance of the

developed ligand-based models and a more representative computational validation of

the used VS methods.1 On the other hand, it is important to determine whether the 3D

structure of the receptor has been elucidated and, if  that is the case, the available

quantity  and  quality  of  crystallographic  structures.  A  careful  inspection  of  these

structures will allow us to assess the flexibility of the receptor and evaluate whether

receptor-based approaches can be implemented to the VS. Crystallographic models of

protein and protein-ligand complexes can be obtiained from the PDB10,11 database, but

it  should  be  kept  in mind  that  the  atoms  in  these  models  correspond  to  the

representation of the electron density maps created by the crystallographer and they

are  in  some  cases  susceptible  to  interpretations.  Therefore,  the  validation  of
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crystallized structures  with  specialized visualization software such as VHELIBS12 is

recommended before the use of crystal structures in VS.

• Library preparation. The collection of compounds to which the VS workflow will be

applied  is  referred  to  as  the  VS  library.  Apart  from  retrieving  the  structures  and

activities  of  compounds  with  known  activity  for  VS  development  and  validation

purposes, the structures of compounds to which the VS should be applied also need to

be  obtained,  generating  the  so-called  virtual  screening  library.  This  library  of

compounds can either proceed from an in-house collection of compounds of interest, it

can be obtained either from different databases, such as ZINC13 or Reaxys,7 or directly

from a compound supplier.  In many cases,  the structures of  these compounds are

collected  in  2D  format,  but  many  VS  methods  require  the  3D  conformation  of

compounds (i.e.  the arrangement  of  atoms of  a molecule  in  space).  Thus,  the 3D

conformations that molecules adopt usually need to be predicted in a process known

as conformational sampling, in which conformers are first generated by determining

bond-lengths, bond angles and torsion angles and then ranked to prioritize the low

energy  conformations  that  are  accessible  with  a  reasonable  probability  at  room

temperature.14 Software commonly used to perform these tasks are shown in Table 1.

In a recent benchmarking of conformer generator ensembles,15 commercial ensemble

generators like OMEGA16 or ConfGen17 showed a high performance, closely followed

by the freely available implementation of the Distance Geometry18 algorithm by RDKit,19

which  also  showed  a  high  robustness.  Generating  a sufficiently  wide  set  of

conformations for each compound is crucial to cover the compound’s conformational

space and achieve optimal results in many VS methodologies that depend on the 3D

conformation of compounds (e.g. 3D fingerprints, 3D-shape comparison, electrostatic

potential comparison, protein-ligand docking, pharmacophore screening). Otherwise, if

the bioactive conformation of interest is not included among the conformers generated

for a given compound, this supposes a limitation for subsequent methods.1 On the

other hand, the generation of high energy conformations with a low probability of being

accessed by the molecule at room temperature should be avoided as they may be

misleading and cause false positive results.1 In addition to the spatial distribution of
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atoms,  other  aspects  need  to  be  considered  when  preparing  molecules  for  VS

purposes. Many VS methodologies are dependant on the charge of molecules (e.g.

electrostatic potential comparison, protein-ligand docking, pharmacophore screening),

so it is important to ensure that the charges of compounds are properly defined as they

may not  be present  or  they may not  be assigned correctly.  The  different  possible

protonation states at the pH of interest also need to be generated for each molecule,

as well as its tautomeric states.1 In addition, other aspects such as stereochemistry

and the presence of salt  and solvent fragments also need to be considered during

molecule preparation. Software such as Standardizer20 or LigPrep21 and tools such as

MolVS22 can be used for this purpose.

Table 1. Popular and useful software in virtual screening.

Method Software Developer

Graphical user interface

Flare5 Cresset

Maestro36 Schrödinger

VIDA37 OpenEye

Validation set preparation DecoyFinder38 Universitat Rovira I Virgili

Crystal structure validation VHELIBS12 Universitat Rovira I Virgili

Molecule standardization

Standardizer20 ChemAxon

LigPrep21 Schrödinger

MolVS22 RDKit

Conformer generation

OMEGA16 OpenEye

ConfGen17 Schrödinger

Distance Geometry (DG)18 RDKit

ETKDG23 RDKit

ADME property prediction

QikProp24 Schrödinger

SwissADME25 Swiss Institute of Bioinformatics

FAFDrugs426 ChemAxon

Shape similarity
ROCS27 OpenEye

Shape screening28 Schrödinger

Electrostatic potential similarity EON29 OpenEye

Pharmacophore
Phase30 Schrödinger

Ligandscout31 Inte:Ligand GmbH
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Docking

Glide32 Schrödinger

GOLD33 The Cambridge Crystallographic Data
Centre

DOCK34 University of California San Francisco

Autodock35 The Scripps Research Institute

3. Ligand-based virtual screening

Ligand-based VS methods measure the similarity of the compounds in the library with

reference compounds which are active towards a target of interest or present desired

properties. The basis for these methods lies in the similar property principle introduced

by  Johnson  and  Maggiora,  which  states  that  similar  compounds  have  similar

properties.39 Thus, compounds with high similarity to reference compounds are likely to

behave in a similar fashion or act through the same mechanism as those and therefore

have  similar  effects.  Similarity  is  a  subjective  concept,  and  different  methods  use

different  similarity  measures  to  determine  the  similarity  of  two  compounds.  In  this

section,  the most  common ligand-based methods used  in  virtual  screening  will  be

summarized. Ligand-based  VS  methods  are  relatively  cheap  computationally

compared  to  receptor-based  methods,  as  no  macromolecules  are  involved  in  the

calculations. For this reason, they are used early in the VS workflow process when the

amount of compounds in the starting library is the highest.

3.1. Fingerprint-Based Methods

Molecular fingerprints constitute a ligand-based method for similarity searching which

uses patterns in the structure of compounds in order to compare them. Fingerprints are

sequences of bits, in which each one includes certain information regarding a molecule

(see  Figure  2).40 As  these  bits  are  quantifiable,  this  allows  to  draw  comparisons

between two molecules (A and B) and determine their similarity. According to nature of

bits, fingerprints can be classified as:
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• Substructure keys-based fingerprints. In these type of fingerprints, the bit string

corresponds  to  a  series  of  predefined  structural  keys  and  each  bit  relates  to  the

presence  or  the  absence  of  a  given  feature  in  the  molecule.  Therefore,  these

fingerprints are effective when the structural keys used by the fingerprint are present in

the molecules to be compared, but they are not that meaningful otherwise. Examples

of  these  type  of  fingerprints  include  MACCS41,42,  PubChem  fingerprints9 or  BCI

fingerprints.43

• Topological or path-based fingerprints. In these types of fingerprints,  bits are

defined from fragments of the molecules themselves. For every atom in a molecule,

fragments  are  obtained  by  progressively  increasing  the  length  up  to  a  determined

number of bonds usually following a linear path. Then, these fragments are hashed to

generate the fingerprint. As fingerprints are generated from the molecules themselves,

every  molecule  produces a meaningful  fingerprint,  and its  length  can be  adjusted.

However, in topological fingerprints with a reduced number of bits, bit collisions may

occur as a result of assigning more than one different feature to a given bit.  Examples

of  these  type  of  fingerprints  include  the  Daylight  fingerprint44 and  OpenEye’s  Tree

fingerprints.45

• Circular  fingerprints. In  these  type  of  fingerprints,  bits  are  also  defined  from

molecule fragments, but these fragments are obtained from the environment of each

atom  up  to  a  determined  radius  instead  of  a  path.  Examples  of  these  type  of

fingerprints  include  Molprint2D,46,47 extended-connectivity  fingerprints  (ECFP)  and

functional-class fingerprints (FCFP).48

• Pharmacophore fingerprints. These fingerprints incorporate the features of  the

molecule in the fingerprint. The distances between features are considered in order to

encode 3D information into the fingerprint.49

Apart  from the fingerprint  types listed above,  other  fingerprint  types exist,  such as

fingerprints  based  on  molecule  SMILES50 or  protein-ligand  interaction  fingerprints,

which encode information regarding the type of interactions between the protein and
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the  ligand.51,52 Moreover,  fingerprints  can  also  derive  from  a  combination  of  the

approaches mentioned above, constituting what are known as hybrid fingerprints.53

Figure 2. Illustration of how fingerprint bits are derived from the structure of a molecule.

Once the fingerprints for each molecule have been calculated, different methods can

be used to enrich a library in active compounds through the use of fingerprints:

a) Similarity metrics

Several similarity metrics can be used to compare the fingerprints of two compounds

(e.g. Euclidean distance, Manhattan distance or Sørensen–Dice coefficient), but the

most popular one is the Tanimoto coefficent.54 The Tanimoto coefficient is a value in a

range form 0 to 1 that represents the similarity between two compounds based on the

fingerprint bits they match (the higher the value, the more similar the compounds). It is

expressed by:

Tanimoto coefficient =
c

(a+b+c)

where given the fingerprints of compounds A and B, a equals the amount of bits set to 1 in A, b equals the
amount of bits set to 1 in B and c equals the amount of bits set to 1 in both A and B.

With the help of these similarity metrics, the fingerprints of the compounds in a library

can be compared to the fingerprints of active compounds for the target of interest, thus

assessing the similarity between them. Next, in order to select the compounds in the

library with a higher probability of being active, compounds can be sorted according to

the Tanimoto coefficient or other similarity metrics and a cutoff can be applied, thus

keeping the compounds with  a  higher  similarity  to  known actives,  while  discarding

44
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compounds with a lower similarity to known actives. While this approach is easy to use

and well founded, it has some limitations:

• A high similarity coefficient value does not always imply that two compounds will

have the same activity.  Some minor  structural  changes could greatly  modulate the

activity  of  a  compound  depending  on  how  they  affected  the  interactions  with  the

protein. These great changes in activity due to small changes in compound structure

are commonly known as activity cliffs (see section 4) and they constitute the major

reason why activity values can not always be inferred from similarity measures. Thus,

the comparison of similarity coefficients should be seen as a simplification attempt that

bypasses medicinal chemistry in order to establish an automated approximation of the

activity of compounds.40,55

• There  is  not  a  universal  cutoff  value  to  determine  that  compounds  with  a

determined range of similarity to reference compounds will have similar activity values.

As fingerprints are designed in different ways, if we compare the similarities between

two  compounds  with  a  given  similarity  coefficient  using  two  different  types  of

fingerprints, the similarity values obtained will most likely differ. A similar situation will

occur  when comparing  two  compounds  using  the  same fingerprint,  but  a  different

similarity  metric.40,55 Therefore,  as  the  similarity  value  between  two  compounds  is

affected by both the type of fingerprint and the similarity coefficient used, the optimal

cutoff will also be dependent on these two factors and will have to be evaluated on a

case by case basis using the adequate statistical measures (see section 5). Moreover,

different  types  of  fingerprints  perform  differently  in  different  situations,1 so  the

fingerprint results obtained should be validated computationally in order to choose the

appropriate fingerprint (see section 5).

• Similarity coefficients assign equal importance to all fingerprint bits. This supposes

a limitation in the following two situations: a) on the one hand, compounds that do not

possess the critical features for activity that are present in the active compounds used

as  reference  but  still  accomplish  good  similarity  values  by  matching  most  of  the

fingerprint  bits  will  be  wrongly  predicted  to  be  active;  and  b) on  the  other  hand,

compounds that only match the critical features for activity with the active compounds
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used as reference and are structurally different from them will be wrongly predicted to

be inactive.1,40,55

Nevertheless,  as  fingerprint-based similarity  approaches display  a  virtual  screening

performance  similar  to  other  more  complex  methods  while  being  computationally

cheaper, they still are the preferred choice in many VS approaches.40

b) Supervised machine learning

Another common method for incorporating the information encoded in fingerprints is

the use of supervised machine learning methods. These consist on different algorithms

that, given a sample of the fingerprints of compounds with different activities, are to

obtain  a  model  that  relates  the  fingerprint  to  the  observed  activity  value  of  the

compound in order to apply the model to a new set of compounds and predict their

activity based on their fingerprints. Some examples of supervised machine learning

methods  include  random  forest,  support  vector  machines,  naive  Bayes,  k-nearest

neighbors or artificial neural networks.

Supervised learning can be divided into classification and regression tasks, depending

on the desired output. In classification tasks the objective is to identify to which class a

particular input belongs to (discrete output). In this case, an arbitrary threshold can be

established to divide compounds into active and inactive and the new compounds will

be classified in one of these two categories based on their fingerprints. In regression

tasks, the objective is to assign a continuous output value from the input. In this case,

the model will be asked to predict the corresponding activity value of a compound with

a given fingerprint. 

In order to build and validate the model, the input data (in this case, compounds with

known activity and their fingerprints) needs to be divided into training and test sets,

both sets containing active and inactive compounds. While the training set is used to

build the model, the test set is used to validate it and evaluate its performance. The

different metrics to evaluate model performance are discussed in section 5. Contrary to

typical similarity approaches, which are based on the overall similarity of compounds

placing  equal  importance  to  all  parts  of  the  molecule,1 machine  learning  methods
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circumvent this problem as they are built from multiple active molecules and fingerprint

bits are related independently to the bioactivity of compounds. Thus, they are able to

recognize the fingerprint bits that are critical for bioactivity. This constitutes their major

strength compared to other ligand-based methods.

3.2. 3D-shape similarity

In a ligand-receptor interaction, the shape of the ligand is crucial as the ligand needs to

fit in the binding pocket of the receptor to establish key interactions for the binding to

occur. The basis of 3D-shape similarity lies in the fact that two molecules with similar

shape are likely to fit in the same binding pocket and thereby exhibit similar biological

activity.56 In  this  approach,  the  3D  shape  of  the  compounds  in  the  VS  library  is

compared  to  the  3D  shape  of  known  active  compounds,  which  are  used  as  a

reference. Despite being based on similarity, different to other ligand-based methods,

this method does not take into account the particular structure or properties of  the

reference ligands and only relies on the shape of the molecules. This constitutes its

major advantage as it makes it a suitable method to identify new scaffolds that may

overlap well with known ligands which may be active towards the target of interest (see

Figure  3).  As  new chemotypes are  pursued  in  medicinal  chemistry  to  expand  the

horizon, structure novelty is highly valued in virtual  screening and  3D shape-based

similarity  analysis  is  gaining  attention  in  virtual  screening  campaigns

nowadays.56 Software  commonly  used  to  perform  3D  shape-based  similarity

comparisons are shown in Table 1. 
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Figure 3. Example of two compounds with a different molecular structure but a high 3D shape similarity. This
figure was obtained with Flare.5

Shape comparison methods can be classified in two major categories:

• Alignment-free  or  non-superposition  methods. As  these  methods  are

independent of the position and orientations of molecules, they are much faster and

could be used to screen large compound databases

• Alignment  or  superposition-based  methods. These  methods  require  a

superposition between the reference compounds and the compounds in the database.

Although they  are  highly  effective,  they  are  computationally  expensive  and  a  sub-

optimal  alignment  may lead to errors  in  comparing the molecules.  These methods

allow the visualization of the alignment together with their similarity values, which can

aid  in  the  design  of  new molecules  and guide  in  their  further  optimization.  As  an

alignment  is  performed,  these  methods  can  also  include  comparisons  of  surface

properties such as hydrophobicity and polarity. 

Several methods exist to attain the common end of evaluating shape similarity. Here is

a description of the most commonly used:

• Atomic Distance-Based Shape Similarity Methods. As the shape of a molecule

can be described by the relative positions of its atoms, these methods rely on the

computation and comparison of interatomic distance descriptors to determine shape

similarity. These methods do not require the alignment of the molecules involved and

therefore are faster than alignment-based methods.
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• Volume-Based Shape Similarity  Methods: Two molecules will  possess similar

shape if they have a similar volume. Therefore, shape similarity can be described in

terms  of  volume  occupancy.  The  most  widely  adopted  models  to  describe  shape

similarity in terms of volume are the hard sphere model57,58 and the Gaussian sphere

model.59,60 The hard sphere model treats each atom in the molecule as a sphere, and

the volume of each molecule is calculated based on the unions and intersections of

their  volumes.  The  Gaussian  sphere  model  represents  a  molecule  as  a  set  of

overlapping Gaussian spheres. The inclusion-exclusion principle is applied to obtain

the  volume  of  the  molecule  by  calculating  the  volume  of  all  Gaussians  and  their

intersections.

• Surface Based Shape Similarity Methods: Shape similarity can also be analyzed

by  comparing  the  molecular  surfaces  of  two  molecules.  Some  surface  definitions

commonly used for this purpose include the solvent-accessible surface61 and the van

der Waals surface.62,63

3.3. Electrostatic potential similarity

Another method to measure the similarity between two compounds is to compare their

electrostatic potentials. Electrostatic interactions often play a critical role in the binding

of the ligand as the target presents a particular electrostatic environment that must be

matched by the ligand in order for the binding to occur. Thus, using the electrostatic

potential of the ligand as a reference, we can obtain compounds that present a similar

electrostatic distribution and could potentially match the electrostatic environment of

the target,  therefore being candidates of  having an action on that  target.  Software

commonly used for electrostatic potential comparison is shown in Table 1.

Although  structurally  similar  compounds  are  likely  to  have  a  similar  electrostatic

potential, some small changes in structure can have a great impact on the electrostatic

distribution of the compound (see Figure 4A). Therefore, pairing this methodology with

2D fingerprints or 3D-shape analysis should result  in a reduction of false positives.

More interestingly,  compounds with a completely different  2D structure can present

similar electrostatic potentials (see Figure 4B). This allows to search for novel inhibitors

49

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Manuscript 1

with the same electrostatic properties as known ligands but with different structure that

should be able to bind to the target of interest.

Figure 4. Electrostatic potential  comparisons of  two pairs of  molecules.  Panel  A shows two structurally
similar compounds with a different electrostatic potential. Panel B shows two compounds with a different
molecular structure but a high electrostatic potential similarity. This figure was obtained with Flare.5

3.4. Ligand-based pharmacophores

According to the IUPAC, a pharmacophore is “the ensemble of steric and electronic

features that is necessary to ensure the optimal supramolecular interactions with a

specific  biological  target  and  to  trigger  (or  block)  its  biological  response.”64

Pharmacophores which are obtained from one or a set of ligands are called ligand-

based pharmacophores. These incorporate the common features throughout a set of

ligands that present bioactivity towards a common target. It is then assumed that these

features are responsible for the activity of the ligand and the pharmacophore is used to

search for other compounds presenting the same distribution of features in the VS

library  (see Figure 5). As the compounds that match the pharmacophore contain the

same features as known ligands, they are expected to perform the same interactions

with the biological target and their binding is expected to result in the same biological

response.  Software  commonly  used  in  pharmacophore-based  virtual  screenings  is
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shown in Table 1. The generation of a ligand-based pharmacophore consists of several

steps:

1. Select a set of active ligands to generate the pharmacophore. First a set of

active ligands is obtained, from which the pharmacophore features will be generated,

usually based on the common features of the ligands. Ligands that are not active for

the target of interest may also be used to discard pharmacophore hypotheses.

2. Generate 3D conformations of  the ligands. A determined number low energy

conformations is generated for each bioactive compound so that the conformation in

which the ligand binds to the receptor is likely to be included.

3. Identify ligand features. The substructures and functional groups of the ligand are

transformed to pharmacophoric features.  These features often include:  a) hydrogen

bond donor feature, b) hydrogen bond acceptor feature, c) negative charge feature, d)

positive  charge  feature,  e) hydrophobic  feature  and  f) aromatic  ring  feature.  The

distances between the features of the ligand are computed and the combination of

features and distances is used as an abstract representation of the ligand.

4.  Superimpose  ligands. Ligand  representations  are  superimposed  so  that  a

maximum number of features occupy the same regions of space. 

5. Generate pharmacophore. Features that occupy the same region and are present

in the majority of ligands are included in the pharmacophore.

6. Validation. The pharmacophore needs to be validated to ensure that it is able to

discriminate  active  compounds  from inactive  compounds.  This  is  usually  done  by

screening a set of actives and a set of decoys, which are compounds similar to actives

that do not present bioactivity for the target of interest (see section 5).
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Figure 5. Pharmacophore model and fitting compound. Panel A shows the pharmacophore model. Panel B
shows the compound and its pharmacophoric features. Panel C shows a superposition of the compound and
the pharmacophore, showing that the compound matches 4 sites in the pharmacophore. Hydrogen bond
acceptor, hydrogen bond donor, aromatic and negative ionizable features are shown in red, blue and orange
and red, respectively. The arrows in hydrogen bond acceptor and hydrogen bond donor features indicate the
direction of the hydrogen bond. This figure was obrtained with Maestro.36

As the definition of pharamacophoric features is arbitrary (the user determines the

number  of  pharmacophore  features  and  their  tolerances),  it  is  important  to

correctly evaluate the strictness of the pharmacophore model. While a very strict

model  should lead to better  activity  results  but  poor structural  diversity,  a very

fuzzy model is more likely to retrieve a larger number of false positives but achieve

a higher  structural  diversity.  Therefore,  an  adequate  trade-off  should  be  found

betweeen  strict  and  loose  criteria  (see  section  5).1 This  can  be  achieved  by

prioritizing features that  show a better performance or  that are associated with

higher compound activity. For instance, it is possible to develop and evaluate the

performance  of  a  particular  pharmacophore  with  and  without  the  presence  of

certain features or adjusting their tolerances in order to determine the importance

of  each  feature  for  the  performance  of  the  model.  In  order  to  prioritize

pharmacophoric features relevant for compound activity, information obtained from

SAR  studies  regarding  ligand-receptor  interactions  critical  for  activity  may  be

implemented in the pharmacophore model.

Although a pharmacophore model can be developed from a single or few active

molecules, it is recommended to use a rather large set of actives to develop the

model based on their common features,1 because using one or few ligands that do

not present certain features relevant for activity as the only reference compound/s

may  lead  to  missing  out  certain  features  important  for  bioactivity  and a  lower
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enrichment  in  active  compounds  after  applying  the  pharmacophore  to  the  VS

library.

4. Receptor-based virtual screening

Previously we have seen how ligand-based VS methods take advantage of the similar

property principle in  order to identify active compounds towards a particular target.

Nevertheless, although similar compounds often present similar activities, this is not

always the case, as some compound modifications may be prejudicial for the ligand-

target interaction and therefore result in a loss of activity for the target of interest. Thus,

this can lead to erroneous predictions if  the  similar  property  principle is  applied to

determine the activity of the new compound.1 For instance, if  a negatively charged

carboxylic acid group is introduced in a region of the molecule that is close to an acidic

residue of the target protein, such as Glu or Asp, even though the new compound and

the  original  compound  will  be  structurally  similar  as  they  present  the  same

substructure, this will most likely result in a loss of activity of the compound for that

target due to the electrostatic repulsion of the negative charges in the new compound

and the protein. These situations in which a small modification of the compound results

in  a  drastic  change of  activity  are  known as  activity  cliffs.  To  avoid  these  type  of

incompatibilities  between a compound and the receptor,  it  is  important  to  take the

receptor  into  account.  Nevertheless,  as  the  receptor  is  a  macromolecule,  more

information  needs  to  be  processed  and,  thus,  receptor-based  methods  are  more

computationally expensive than ligand-based methods.

4.1. Protein-ligand docking

Protein-ligand  docking  is  the  most  popular  structure-based  technique  in  virtual

screening.65 This methodology uses the crystallized structure of a protein to predict

how the compounds in the VS library would bind to the binding site (see Figure 6). The

different compound orientations in the binding site generated by docking are referred to
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as  docked  poses.  Software  commonly  used  to  perform protein-ligand  docking  are

shown in Table 1. Protein-ligand docking consists of the following steps:

1.  Protein  preparation. As  experimental  structures,  X-ray  crystallographic  protein

structures  present  problems  such  as  missing  hydrogen  atoms,  missing  residues,

incomplete side chains, undefined protonation states or the presence of crystallization

products that are not found  in vivo. These aspects need to be corrected before the

crystallographic structure can be used to perform protein-ligand docking. 

2. Grid generation.  A grid is defined around the area of the protein where the ligand is

expected to bind. Docked poses will be restricted to the space occupied by the grid.

3.  Conformational  sampling.  A search algorithm is  responsible  for  identifying the

possible conformations (docked poses) in which each compound may fit in the grid.

Constraints can be defined during docking to require the resulting docked poses to

bind to a certain region of the binding site or to perform a certain interaction with the

receptor.

4. Scoring. Finally, the affinity of each docked pose for the target is approximated with

a scoring function that predicts the strength of the interaction, generating a score for

each  docked  pose.  Then,  the  docked  poses  are  ranked  according  to  the  score

provided  by  the  docking  function  to  obtain  the  docked  pose  that  is  most  likely  to

represent the real binding mode of the compound.

Figure 6. Illustration of the docking simulation of a compound. Panel A shows the molecular structure of the
compound. Panel B shows the docked poses obtained after docking the compound in the binding site of the
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protein. The compound is colored in the CPK color scheme and the protein is colored in orange. Non-polar
hydrogen atoms have been omitted in the representation. This figure was obtained with Maestro.36

As docking is one of the most popular and available VS methods, docking results are

often misinterpreted by inexperienced researchers for the following reasons:

• Although the search algorithm provides potential orientations of the compound in

the binding site, this does not imply that the real binding mode of the compound is

among the docking poses, as the search algorithm can fail to predict it. Thus, docking

should be seen as a means of generating hypotheses on how the compound may bind

in the binding site of the target (i.e. docked poses), but not as definite proof that the

compound binds in a determined fashion.1,66 In order to determine the binding mode of

a compound, the experimental 3D structure of the complex formed between the protein

and the compound needs to be obtained with experimental methods, such as X-ray

crystallography or nuclear magnetic resonance. 

• Docking software are often wrongly used to predict the activity of compounds based

on the score provided by docking functions. Although this may be possible in some

cases for structurally similar compounds, scoring functions are not accurate enough to

predict the binding affinity of compounds that have different structures and different

predicted binding modes. The low success rate of scoring functions at predicting the

binding affinity of compounds should be taken into account when performing a docking

simulation.1,66 Instead of aiming at predicting compound activity, protein-ligand docking

should  be  used  to  enrich  the  initial  library  in  active  compounds  by  discarding

compounds that are not able to fit in the binding site of the protein and by keeping the

compounds that are more likely to show a good binding affinity as predicted by the

scoring function. The latter can be achieved, for instance, by establishing a docking

score threshold.

• The flexibility  of  the  protein  can  be accounted  for  in  docking  procedures  in  an

approach  known as  flexible  docking.  However,  this  is  often  not  the case  in  virtual

screening, as it would imply an added computational cost, and the receptor atoms are

usually not allowed to change their spatial location. This approach is known as rigid
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docking and it  is  important  to  respect  its  limitations.1 Therefore,  in  proteins  with  a

flexible binding site able to accommodate very diverse ligands, this may not be the

right  approach  and  allowing  the  movement  of  some  protein  residues  may  be

considered.  A possible workaround to account for the flexibility of the protein while

using a rigid docking approach may be to use all the available receptor conformations

for docking.

4.2. Structure-based pharmacophores

Pharmacophores can also be obtained taking into account the receptor. Although

the process is similar to a ligand-based pharmacophore, the main difference is the

way  of  obtaining  the  distribution  of  features.  Instead  of  obtaining  the  features

through the alignment of ligand conformations, the features that will constitute the

pharmacophore can be obtained by one of these processes: 

a) Using conformations of ligands that are co-crystallized with the receptor. In this

case, the pharmacophore features are also obtained from active compounds, but

as  they  are  co-crystallized  with  the  receptor,  their  bioactive  conformations  are

already known and there is no need to generate conformations. 

b) Using the residues in the binding site to determine pharmacophore features. In

this case, the pharmacophore features are not obtained from the ligands, but from

the receptor.  This  method allows  the  comparison of  pharmacophores  obtained

from different crystallographic structures of the same target.

c) Docking fragments into the binding site of the receptor. In this case, the docking

of  a  fragment  library  is  performed,  the  docked  fragments  are  clustered,  and

pharmacophore  features  are  generated  from these clusters.  The nature  of  the

interaction  of  the  cluster  of  fragments  determines  the  type  of  feature  and  the

docking scores  of  the fragments  in  the  cluster  determine the relevance of  the

feature.  This  method allows probe the binding site and identify  interactions not

considered in the design of previous inhibitors which could potentially be important
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for  activity.  An interesting utility  to evaluate the potential  activity  contribution of

each  pharmacophoric  feature  in  a  fragment-based  pharmacophore  is  the  E-

pharmacophores67 utility from Schrödinger, which assigns an energetic contribution

to each pharmacophore feature based on the docking scores of the fragments.

An added advantage of receptor-based pharmacophores is that the receptor cavity

can be considered in order to directly discard compound conformations that would

not fit in the binding site. This can be done by introducing excluded volumes in the

regions occupied by the protein atoms that can not be occupied by the compound

as  they  would  result  in  steric  impediments  with  the  protein  and  obstruct  the

binding.

5. Computational validation

Because  virtual  screening  workflows  consist  of  a  series  of  computational

methodologies,  ultimately  virtual  screening  hits  are  predictions  which  need  to  be

validated  both  in  silico and  in  vitro or  in  vivo to  prove  their  correctness.  In  silico

validation is often performed by applying the virtual  screening parallelly to a set of

active compounds and a set of inactive or decoy compounds:

• Actives. Active compounds (or simply actives) are compounds which have been

reported to present a high activity towards the target of interest. Compounds used as a

reference to generate the virtual screening fall  into this category. The exact activity

threshold  over  which  a  compound  is  considered  to  be  active  is  arbitrary,  but

compounds are often considered as actives if they have IC50, Ki or EC50 activity values

around the micromolar and nanomolar range. The higher the threshold selected, the

more restrictive the virtual screening. It  should be taken into account that even if  a

compound has been reported to have a certain activity for the target of interest, the

mechanism of action may differ from the mechanism of action seeked by the VS (e.g.

the compound may exert its action by binding to an allosteric site of the protein instead

of the catalytic site). The VS should not be able to identify these compounds as actives
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as their binding mode is different and this would result in a decrease of performance of

the VS. Therefore, active compounds with unreported protein binding modes represent

intrinsic limitations of the VS validation.1

• Inactives. Inactive compounds (or simply  inactives) are compounds which have

been reported to present a low activity towards the target of interest. Hit compounds

that are similar to inactives are considered to have a higher chance of being inactive

and therefore should be avoided. Analogously to actives, an arbitrary activity threshold

under which compounds are believed to be inactive should be predefined. The higher

the threshold, the more demanding the virtual screening, as it will be asked to discern

between  active  and  inactive  compounds  with  higher  accuracy  due  to  the  lower

difference of activity between the two groups. PubChem9 and ChEMBL6 are databases

of chemical compounds that include inactive compounds.

• Decoys. Decoy  compounds  (or  simply  decoys)  are  compounds  that  resemble

active compounds but for which the activity towards the target of interest has not been

reported and, since they are likely to be inactive, they are presumed to be so.38 Decoys

are typically obtained by searching compounds that have similar physical descriptors

(e.g. molecular weight, number of rotational bonds, total hydrogen bond donors, total

hydrogen bond acceptors and octanol–water partition coefficient) to active compounds,

but that are chemically different from them (which  can be determined by fingerprint

similarity).38 In validation protocols, decoys are usually used instead of inactives due to

the low amount of null results reported in the literature and the consequent the lack of

data on inactive compounds. Similarly to what occurs with active compounds that act

through different modes of action than the one assessed by the VS, as decoys are

putatively inactive compouds but their activity for the target of interest has not been

determined, a small portion of them may actually be active, and therefore this also

constitutes an intrinsic limitation to assess VS performance.1 Decoys can be obtained

either directly from databases such as DUD-E68 or through the use of tools such as

DecoyFinder,38 which allows to obtain sets of decoys that match the provided sets of

active compounds.
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Because each VS step essentially  behaves as a  binary  classifier  which labels  the

output compounds as active (positives) or inactive (negatives), once the active and

inactive/decoy  groups  have  been  defined  and  the  VS  has  been  applied,  each

compound will fall into one of the following four classes:

• True positives. Active compounds which are predicted to be active.

• True negatives. Inactive compounds which are predicted to be inactive.

• False positives. Inactive compounds which are predicted to be active.

• False negatives. Active compounds which are predicted to be inactive.

Table 2. Confusion matrix of a binary classifier.

True 

condition

Positive Negative

Predicted

condition

Positive
True positives

(TP)
False positives

(FP)

Negative
False negatives

(FN)
True negatives

(TN)

These classes conform the  so-called confusion matrix  of  the  binary  classifier  (see

Table 2) and they can be used to calculate a series of statistical measures which can in

turn be used to assess the performance of each VS step:

• Sensitivity. Also  referred  to  as  recall,  hit  rate  or  true  positive  rate  (TPR),  it

measures the proportion of actual positives that are correctly identified as such:

TPR=TP
P

= TP
TP+FN

=1−FNR
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• Specificity. Also referred to as selectivity or true negative rate (TNR), it measures

the proportion of actual negatives that are correctly identified as such:

TNR=TN
N

= TN
TN+FP

=1−FPR

• Precision. Also  referred  to  as  positive  predictive  value  (PPV),  it  measures  the

proportion of positive results that correspond to actual positives:

PPV= TP
TP+FP

• Negative predictive value (NPV). It measures the proportion of negative results

that correspond to actual negatives:

NPV= TN
TN+FN

• False  negative  rate  (FNR). Also   referred  to  as  miss  rate,  it  measures  the

proportion of actual positives incorrectly classified as such (it complements sensitivity):

FNR=FN
P

= FN
FN+TP

=1−TPR

• Fall-out. Also  referred to as false positive rate (FPR), it measures the proportion of

actual negatives that are incorrectly classified as such (it complements specificity):

FPR=FP
N

= FP
FP+TN

=1−TNR

• Accuracy. It measures the proportion of correctly predicted results among the total

number of cases examined:

ACC=TP+TN
P+N

= TP+TN
TP+TN+FP+FN
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• F1 score. It is a mesure obtained from the harmonic mean of the sensitivity and the

precision statistical  mesures.  It  considers both  measures in order to  determine the

performance of the classifier:

F1=2⋅ PPV⋅TPR
PPV+TPR

= 2⋅TP
2⋅TP+FP+FN

• Matthews correlation coefficient (MCC). It is a correlation coefficient between the

observed and predicted binary classifications that returns a value between −1 and +1.

A coefficient of +1 represents a perfect prediction, a coefficient of 0 indicates that the

prediction is no better than a random prediction and a coefficient of −1 indicates total

disagreement between prediction and observation. The MCC is generally regarded as

a balanced measure that can be used even if the classes are of very different sizes

and it is calculated using the following formula:

MCC= TP⋅TN−FP⋅FN
√(TP+FP)⋅(TP+FN )⋅(TN+FP)⋅(TN+FN )

Apart from these statistical measures, other methods are commonly used to assess

the performance of binary classifiers:

• Enrichment factor (EF). The EF is a measure of how much the sample is enriched

with actives after applying a determined filter or a series of filters. It is calculated as the

ratio between the proportion of actives after and before the VS step. 

EF=

a2
a2+d 2
a1

a1+d 1

in which:
a1 = actives before the VS step
a2 = actives after the VS step
d1 = decoys before the VS step 
d2 = decoys after the VS step
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With  the  help  of  these  measures,  we  are  able  to  evaluate  not  only  the  overall

performance of the model, but also other characteristics such as its ability to retrieve

actives or discard inactives. Depending on the priorities of the particular step of the

virtual screening in question, a determined measure can be prioritized over another in

order to select the adequate model in each situation. For instance, at the beginning of

the VS,  priority  may be given to  discarding inactive compounds as the number of

inactive compounds in the initial  library is higher.  In this case,  specificity would be

prioritized over  sensitivity.  On the  other  hand,  in  latter  stages of  the  VS workflow,

priority may be given to the retrieval of active compounds, as the proportion of active

compounds should be higher and compounds that are predicted to be active are also

expected  to  be  active  based on previous  filters.  In  this  case,  sensitivity  would  be

prioritized over specificity. 

Based on these statistical measures, model parameters can be tweaked until a more

satisfactory result is achieved. For instance, if after applying a determined workflow

filter,  the  resulting  number  of  compounds  was  considered  to  be  too  high,  the

parameters  of  that  filter  could  be  set  to  more  restrictive  parameters  in  order  to

decrease the number of inactives that surpass the filter (therefore reducing the number

of false positives) at the expense of losing the ability to correctly predict a proportion of

the actives (therefore increasing the number of false negatives). In this situation we

would  be  prioritizing  the  precision  of  the  model  over  its  accuracy.  In  a  different

situation,  for  instance,  if  the  proportion  of  actives  that  surpassed  the  filter  was

considered to be low (meaning that the model is too restrictive), the parameters of the

model could be tweaked to try to increase the proportion of actives that surpass the

filter  while  avoiding  the  retrieval  of  decoys  in  an  attempt  to  find  the  optimum

compromise between sensitivity and specificity.

Overall,  these  measures  allow  to  evaluate  different  aspects  of  the  model  in  an

objective manner and adjust its the parameters of according to the preferences of the

user in order to obtain the most suitable model for each situation.
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6. Hit selection

In order to demonstrate the usefulness of the VS, the activity of VS hits for the target of

interest needs to be determined in vitro (see Figure 1). This is usually done to a sample

of the hit compounds. Subjective cherry picking should be avoided in the selection of

compounds  in  order  to  obtain  a  representative  sample  that  allows  an  adequate

evaluation of  VS performance.69 For this,  it  is  crucial to select compounds that are

different from one another, and this can be achieved by grouping the hit compounds

according to their  structure using clustering.  Clustering is an unsupervised learning

method in which the algorithm is provided with input data and its goal is to find patterns

in the data and divide the input into groups. Fingerprint data can, for instance, be used

as input to cluster compounds according to their structures.  This allows to: a) select hit

compounds that belong to different clusters than known actives and are therefore more

novel and have a greater interest; b) avoid selecting compounds that cluster together

with inactives and therefore have a greater chance of being inactive; and c) select hit

compounds that belong to different clusters to ensure structural diversity. 

Different clustering methods exist, such as hierarchical clustering,  k-means clustering

or  HDBSCAN,70 and  the  choice  of  the  method  is  generally  influenced  by  the

characteristics of the dataset and the limitations of each method. For instance, in  k-

means clustering the number of clusters is predefined and they are circumferential,

whereas in HDBSCAN70 the minimum cluster size can be modified to alter the number

of clusters and it is also indicated for outlier detection. In hierarchical clustering, an

arbitrary  similarity  threshold  can  be  established  to  define  the  desired  number  of

clusters.

7. Experimental validation

As previously  mentioned,  VS hits  are  compounds which  are  expected  to  have  an

action on the target of interest, but this has to be demonstrated. The activity of the

compound for the target of interest can be tested in the laboratory and this is usually
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accomplished by using a commercial  enzymatic activity kit  or by developing an in-

house method for the detection of enzymatic activity and comparing the activities of the

target with and without the presence of the compound that was obtained as a hit. 

Nevertheless, the result  of a single experiment does not always guarantee that the

compound has an action of the target itself, as some compounds may give a positive

experimental  result  by interfering with the assay. Unlike in the case of a true drug,

which inhibits or activates a protein by fitting into its binding site, these compounds

give positive experimental results without performing a specific, drug-like interaction

with the protein.71 Compounds that produce such results are referred to as pan-assay

interference compounds (or simply PAINS),71 and they can be classified by their mode

of action:

• Fluorescent  or  highly  colored  compounds.  These  compounds  may  give  false

readouts in fluorimetrc and colorimetric assays, giving a positive signal even when no

protein is present.

• Compounds that trap the toxic or reactive metals used to synthesize molecules in a

screening library or used as reagents in assays. These metals give rise to signals that

have nothing to do with the compound’s interaction with the protein.

•  Compounds that sequester reactive metal ions necessary for the reaction.

• Compounds that coat the protein, altering it chemically and affecting its function in

an unspecific manner without fitting into its binding site.

Based on previous experience, a series of recommendations have been given on how

to discern between hits and PAINS:

• Identify potential PAINS based on structure. Most PAINS fall into 16 different

categories according to their chemotypes. Therefore, hits that are candidates of being

PAINS can be identified by checking if they present one of these chemotypes.71 While

this is more effectively done by eye, several  in silico tools that implement chemical

similarity and substructure searches have also been developed for this purpose. 26,72–74

Nevertheless,  this  does not  ensure that  all  PAINS are discarded and experimental
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testing  will  ultimately  be  needed to  identify  whether  hit  compounds giving  positive

experimental results are acting as PAINS or not.

• Perform more than one assay. To have more certainty that a hit compound which

gives a positive experimental result is not a PAIN compound, it is advisable to conduct

at least one more assay that detects activity with a different readout in order to check

whether the compound is interfering with the assay or not. It is also advisable to check

the activity of hits against unrelated targets and if the inhibition of the target of interest

is competitive to determine whether the binding of the hit compound is specific or not.

Another reason for which a compound may give a false positive experimental result is

aggregation. Some compounds form aggregates that adsorb and denature the protein,

inhibiting  it  in  an  unspecific  manner.72 Molecules  that  act  as  aggregators  can  be

predicted computationally75 and detected experimentally using different tests:

• Aggregates  can  be  observed  directly  by  dynamic  light-scattering  as  they  form

particles from 50 to 400 nm in diameter.72,76

• Inhibition by colloidal aggregates can be significantly attenuated by small amounts

of a non-ionic detergent such as Triton-X or Tween-20.77

• Inhibition by colloidal  aggregates can also be attenuated by increasing enzyme

concentration, whereas this should not affect the inhibition by well-behaved inhibitors if

the receptor concentration to Ki ratio is high.77

• Inhibition by colloidal aggregates is non-competitive. If the binding of the compound

in question is competitive, the compound is unlikely to be an aggregator72,77 

The combination of several of these tests is recommented to determine with a greater

confidence  whether  the  compound  acts  as  an  aggregator  or  a  true  drug-like

compound.77

Overall, although potential PAINS and aggregators can be discarded in silico, further

experimental tests should be performed upon confirming the activity of a hit compound

in order to determine whether the observed activity is a result of the desired interaction
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of the compound with the protein or, on the contrary, it corresponds to a false positive

result as the compound behaves as a PAIN compound or an aggregator. From a VS

design and validation perspective,  the fact  that  a  substantial  number of  molecules

reported to be active against a target protein are actually PAINS and aggregators that

provided false positive experimental results is a limitation1 that should be taken into

account when: a) selecting compounds as a reference to perform similarity searches;

and  b) evaluating the false negatives obtained in the VS validation, as PAINS and

aggregators may fall into this category.

8. ADME

Even if a compound is able to specifically bind to the target of interest and its activity is

confirmed in vitro, this does not imply that it will have the desired effect in vivo. First,

the compound will need to be properly absorbed by the organism and distributed to the

tissue of interest while avoiding being metabolized and excreted. The properties of a

compound that have an influence on its in vivo activity through the modulation of one of

these stages are commonly referred to as ADME (Absorption, Distribution, Metabolism

and Excretion) properties and they can be used to determine the druglikeness of the

compound, that is, how a compound resembles an actual drug and therefore can be

processed as such by the organism.

ADME properties include physical  properties of the compound like its solubility and

hydrophobicity.  Generally,  a drug needs to be soluble enough to be carried by the

blood stream, but also lipophilic enough to penetrate the lipidic bilayer that composes

the cell membrane. As these properties are inherent to the particular structure of the

compound, they can be predicted  in silico with the help of mathematical algorithms

(see Table 1). Other ADME properties such as the skin, gut-blood and blood brain

barrier  permeabilities  of  the  compound  can  also  be  approximated  computationally

based on the reported data for known drugs.
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One of the most critical aspects regarding the effectiveness of an oral drug, apart from

its potency, is its absorption and the proportion of the drug that  reaches the blood

stream, also referred to as bioavailability. If a compound presents high activity towards

a target  but  it  has low bioavailability,  it  will  not  exert  the desired effect.  The most

popular method to predict the bioavailability of a compound is the so-called Lipinski’s

rule of 5, which was developed 20 years ago by Lipinski et al.78 The rule is based on

the ADME properties of known drugs, stating that most of the orally active drugs in

humans fullfill 3 of the following 4 criteria:

1. A maximum of 5 hydrogen bond donors.

2. A maximum of 10 hydrogen bond acceptors.

3. A molecular weight of less than 500 daltons.

4. An octanol-water partition coefficient not greater than 5.

Therefore, compounds in the screening library that fulfill Lipinski’s rule of 5 are more

likely to be orally active and can be filtered either at early stages or at the end of the

VS. It should be kept in mind that Lipinski’s rule of 5 only applies to oral bioavailability,

and that drugs designed aiming at other administration routes routinely fall outside the

scope of this rule.1

9. Conclusions

In this review, we have introduced the most common methodologies used in VS and

given recommendations on how to  design,  build  and validate  a VS workflow.  With

these guidelines we hope to encourage the usage of VS, help researchers familiarize

with its capabilities and, most importantly, raise awareness of common mistakes in

order to promote the proper usage of VS techniques.
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Hypotheses and Objectives

According to the involvement of PTP1B and MMP-13 in obesity and its associated

disorders, three hypotheses have been proposed:

1. Structurally diverse PTP1B inhibitors can be obtained by virtual screening.

2. Targeting the S1’ pocket of MMPs constitutes a means of achieving selectivity

against other members of the MMP family.

3. Selective  MMP-13  inhibitors  can  be  obtained  through  virtual  screening  by

targeting its S1’’ pocket.

In order to test these hypotheses, the following objectives have been established:

1. Identify structurally diverse PTP1B inhibitors by virtual screening (Manuscript

2).

2. Assess the variability of the S1’ pocket among the members of the MMP family

and determine the characteristics of the S1’ pocket that govern the selectivity

of previously reported MMP inhibitors (Manuscript 3).

3. Identify selective MMP-13 inhibitors through virtual screening by targeting its

S1’’ pocket (Manuscript 4).
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Hypotheses and Objectives

D’acord amb la involucració de PTP1B i  MMP-13 en l'obesitat  i  els seus trastorns

associats, s'han proposat tres hipòtesis:

1. Es  poden  obtenir  inhibidors  PTP1B  estructuralment  diversos  mitjançant

tècniques de cribratge virtual.

2. La butxaca S1’ de les MMPs es pot utilitzar per obtenir inhibidors selectius

contra altres membres de la família de les MMPs.

3. Es poden obtenir inhibidors selectius de MMP-13 per mitjà de cribratge virtual

utilitzant la butxaca S1’’.

Per comprovar aquestes hipòtesis, s'han establert els següents objectius:

1. Identificar inhibidors estructuralment diversos de PTP1B mitjançant tècniques

de cribratge virtual (Manuscrit 2).

2. Avaluar la variabilitat de la butxaca de S1’ entre els membres de la família de

les MMPs i determinar les característiques de la butxaca S1’ que regeixen la

selectivitat dels inhibidors de MMP prèviament descrits (Manuscrit 3).

3. Identificar inhibidors selectius de MMP-13 mitjançant tècniques de cribratge

virtual utilitzant la butxaca S1’’ (Manuscrit 4).
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors

Combined ligand- and receptor-based virtual screening methodology to identify

structurally diverse PTP1B inhibitors

Herein we have developed a virtual screening workflow consisting of a combination of ligand- and receptor-
based methods which has been able to identify 15 structurally diverse PTP1B inhibitors, two of them with 
IC50 values in the 1 - 10 μM range.M range.
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors

Table S1. Purity and exact mass of the 20 compounds whose bioactivities have been tested.

Compound Specs ID
Purity

(%)
Formula

Pseudo
molecular
ion adduct

Theoretic
al m/z

Measured
m/z

1 AG-205/07930063 98.98 C18 H16 N2 O3 S [M+H]+ 341.0954 341.0999

2 AM-807/41462317 98.92 C18 H12 F3 N3 O5 S [M+H]+ 440.0523 440.052

3 AI-204/43362778 97.92 C16 H14 N2 O4 S2 [M+H]+ 363.0468 363.0466

4 AG-690/11836029 98.43 C12 H8 Br Cl O2 S [M]·+ 329.9111 329.9102

5 AF-399/15030257 97.77 C17 H10 N4 O4 [M+H]+ 335.0775 335.0766

6 AF-399/15285024 98.72 C21 H22 N2 O4 [M+H]+ 367.1652 367.1663

7 AK-968/41025519 99.64 C21 H16 N2 O4 S [M+H]+ 393.0904 393.095

8 AG-690/40107322 95.29 C18 H16 Br2 F N7 O2 [M+H]+ 539.9789 539.9781

9 AJ-077/33270018 97.56 C22 H14 N4 O4 [M+H]+ 399.1088 399.1092

10 AH-487/41936905 96.38 C9 H8 I2 O4 [M+NH4]+ 451.8850 451.884

11 AE-641/42119771 99.65 C13 H10 Cl N O5 S [M+H]+ 328.0041 328.003

12 AK-968/15361893 99.29 C19 H20 Cl N O5 S [M+H]+ 410.0823 410.0812

13 AG-205/37175018 87.96 C16 H16 N2 O6 [M+H]+ 333.1081 333.1074

14 AF-886/30566062 99.27 C16 H10 Cl N3 O3 [M+H]+ 328.0483 328.0475

15 AG-205/37169028 96.02 C18 H12 Cl F N2 O3 [M+H]+ 359.0593 359.0613

16 AK-968/11197127 99.33 C19 H16 Cl N3 O3 [M+H]+ 370.0953 370.0994

17 AF-962/02757026 93.56 C13 H10 N2 O5 S2 [M+H]+ 339.0104 339.0147

18 AM-879/12634007 96.84 C16 H8 Cl3 N O2 S2 [M+H]+ 415.9135 415.9108

19 AG-690/36826026 96.37 C11 H8 Br N O3 S2 [M+H]+ 345.9202 345.9189

20 AK-968/37202023 98.16 C14 H6 Br2 F3 N3 O2 [M+H]+ 463.8852 463.8832
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Figure S1. Histogram representation of the molecules used as references to establish a MW range for the
MW filter.

98

N
u

m
b

e
r 

of
 c

o
m

p
o

un
d

s

Molecular Weight

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Combined ligand- and receptor-based VS to identify PTP1B inhibitors

Figure S2. Histogram representation of the highest electrostatic Tanimoto (i.e. EON_ET_pb) values obtained

in the comparison of the validation set to each query. For each query, the PDB [34,35] code of the crystal
structure from which it was obtained and two histograms are shown: one corresponding to the actives and
one corresponding to the decoys. In the actives histogram, actives with pX lower than 4 are in red, actives
with pX from 4 to 7 are in blue and actives with pX higher than 7 are in green. In the decoys histogram,
decoys are in gray. The 11 queries selected for the in silico validation of the electrostatic similarity analysis
are underlined.
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Figure S3.  In  each panel,  a hit  compound is  represented in 2D,  together  with  the  most  similar  active
compound that was used during the clustering. In each case, the most similar active compound is labeled
with  its  Reaxys1 Registry  Number.  The  Tanimoto  similarity  value  resulting  from  the  comparison  of  the
OpenEyePath FP of both compounds is shown below. MarvinSketch2 was used to draw the structures. The
protonation state of each compound corresponds to the protonation state of the docked pose selected for
that compound.
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors

Figure S4. This figure shows the LC-UV/Vis and Q-TOF spectra for the 20 compounds whose bioactivities
have been tested. Panels A-T refer to compounds 1-20, respectively. The following information is provided
for each tested compound: a) the UV/Vis relative area percentage (calculated without considering the solvent
peak) on top of each chromatographic peak (with the corresponding retention time); b) the total wavelength
chromatograms (220-600 nm) from the LC-UV/Vis; c) the UV/Vis spectrum from 220 to 600 nm; and d) the
mass spectrum from 100 to 1000 m/z.
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors

Figure S5. In each panel, a hit compound reported by Ma et al.3 is represented in 2D, together with the most
similar active compound that was used for clustering in the current study. In each case, the hit compound is
labeled with its corresponding code in the original  publication and the most  similar  active compound is
labeled with its Reaxys1 Registry Number. The Tanimoto similarity value resulting from the comparison of the
OpenEyePath FP of both compounds is shown below. MarvinSketch2 was used to draw the structures.
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Figure S6. In each panel, a hit compound reported by Balaramnavar et al.4 is represented in 2D, together
with the most similar active compound that was used for clustering in the current study. In each case, the hit
compound is  labeled with its  corresponding code in the original  publication and the most  similar  active
compound is labeled with its Reaxys1 Registry Number.  The Tanimoto similarity value resulting from the
comparison of the OpenEyePath FP of both compounds is shown below. MarvinSketch2 was used to draw
the structures.
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors

[compound 5] in μM
Log([compound 5] in

μM])

PTP1B inhibition (%)

Replicate 1 Replicate 2 Replicate 3
Mean ±

standard
deviation

1000 3 118.7 118.9 87.0 108.2 ± 18.4

300 2.5 125.2 107.0 130.7 121.0 ± 12.4

100 2 122.1 115.0 122.7 120.0 ± 4.3

30 1.5 107.9 106.5 104.6 106.3 ± 1.6

10 1 103.0 103.2 106.4 104.2 ± 1.9

3 0.5 100.7 98.6 97.8 99.0 ± 1.5

1 0 36.1 55.2 43.3 44.9 ± 9.6

0.3 -0.5 6.9 -4.4 45.2 15.9 ± 26.0

0.1 -1 8.4 18.9 -7.6 6.6 ± 13.3

0.03 -1.5 28.6 26.2 -3.1 17.3 ± 17.6

0.01 -2 -6.7 45.6 16.4 18.4 ± 26.2

0.003 -2.5 34.8 26.2 51.8 37.6 ± 13.0

0.001 -3 14.0 36.5 16.4 22.3 ± 12.4

0.0003 -3.5 -27.6 18.9 n/a -4.3 ± 32.9
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[compound 7] in μM
Log([compound 7] in

μM])

PTP1B inhibition (%)

Replicate 1 Replicate 2 Replicate 3
Mean ±

standard
deviation

1000 3 137.3 121.8 139.2 132.7 ± 9.5

300 2.5 113.9 117.3 122.3 117.8 ± 4.2

100 2 108.9 108.6 107.0 108.2 ± 1.0

30 1.5 103.5 103.2 103.4 103.4 ± 0.1

10 1 102.5 102.3 102.5 102.4 ± 0.1

3 0.5 49.6 92.0 86.1 75.9 ± 23.0

1 0 18.3 7.2 55.7 27.1 ±  25.4

0.3 -0.5 1.3 -5.9 -2.4 -2.3 ± 3.6

0.1 -1 7.4 -1.0 -0.0 2.1 ± 4.6

0.03 -1.5 -9.0 28.0 18.4 12.5 ± 19.2

0.01 -2 32.4 14.4 47.9 31.6 ± 16.8

0.003 -2.5 1.8 -30.3 -25.8 -18.1 ± 17.4

0.001 -3 -17.8 -19.3 -2.7 -13.2 ± 9.2

0.0003 -3.5 6.7 21.1 n/a 13.9 ± 10.1

Figure S7. Panels A and B show the IC50 curves of compounds 5 and 7, respectively, and the data used to
represent  them.  In  both  cases,  the  percentages  of  inhibition  of  PTP1B  for  14  different  compound
concentrations were determined using triplicates. IC50 values were calculated using a four parameter logistic
regression.
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors

Figure  S8.  Representations  of  the  docking  score  (panel  A)  and  EON_ET_pb  (panel  B)  against  the
percentages of PTP1B inhibition obtained for the 20 hit compounds at the concentration of 100 μM.
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Combined ligand- and receptor-based VS to identify PTP1B inhibitors

Figure S9. Ligand interaction diagrams of the docked poses with the highest EON_ET_pb values of the 20
hit compounds. Negatively charged residues are colored in red, positively charged residues are colored in
blue, hydrophobic residues are colored in green, polar residues are colored in cyan, glycine residues are
colored in salmon, hydrogen bonds are represented as fuchsia arrows, salt bridges are represented as red
and  blue  lines,  π-π  stacking  interactions  are  erepresented  as  green  lines,  π-cation  interactions  are
represented  as  red  lines  and  atoms  exposed  to  the  solvent  are  circled  in  gray.  The  protein  surface
corresponding  to  the  residues  closest  to  the  ligand  is  represented  as  a  solid  line  colored  by  residue
according to the presviously describred color scheme. This representation has been obtained with the help of
Maestro5 v10.7.
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Figure S10.  Representations used to define the RF model parameters and evaluate its performance. The
training set is plotted in red and the validation set is plotted in green. In panel A, the validation curve is
plotted varying the number of trees, showing that the estimator is not overfitted as the training and test
scores are similar and that the number of trees chosen is adequate. In panel B, the learning curve is plotted
using  training  and test  sets  of  different  sizes.  It  shows that  the  training  set  needs  to  comprise  a  high
percentage of the data to reduce the error of variance.
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Abstract

Matrix metalloproteinases (MMPs) are a family of proteins involved in a wide range of

pathologies. Because MMP broad-spectrum inhibition is associated with severe side

effects, selectivity has become a priority in the design of MMP inhibitors and it is often

achieved by targeting the variable S1’ pocket. However, the specific characteristics of

the S1’ pocket that determine inhibitor selectivity are often not described and, in many

cases, challenging to identify. In this review we have inspected the variability of the S1’

pocket  across  the  MMP family  and  we  propose  explanations  for  the  selectivity  of

previously described inhibitors. These analyses provide valuable insights into how to

design novel inhibitors specific for a given MMP.
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1. Introduction

Matrix  metalloproteinases (MMPs)  are  a  family  of  proteases  that  degrade  various

components of the extracellular matrix (ECM) 1. MMPs are involved in the development

of a wide range of diseases, and thus, MMP inhibitors are of interest in different areas

of clinical therapy (see Table S1) 2–6. Early attempts to design MMP inhibitors failed in

clinical trials due to the development of musculoskeletal syndrome (MSS) 2,4. Although

none of the explanations for the occurrence of MSS proposed over the years have

been confirmed, MSS is believed to be a result of broad-spectrum MMP inhibition 7,8.

Therefore, MMP inhibitor research now focuses on the identification of selective MMP

inhibitors that can prevent these side effects. Moving towards this goal, other regions of

the binding site further away from the zinc-binding region have been targeted and, as a

result, new insight has been gained into the differences between MMP binding sites 9.

Concretely, the  S1’ pocket has been identified as one of the regions with the most

variability  among  the  MMPs  3,10.  This  constitutes  an  opportunity  for  the  design  of

selective MMP inhibitors.

The aim of  this  review is  to  analyze the differences  in  the  S1’ pocket  among the

different members of the MMP family and shed  light on unreported mechanisms of

MMP inhibitor selectivity so that they can be rationally exploited in the future to develop

novel selective inhibitors for specific MMPs. In this review we will:  (a) classify the S1’

pockets of the MMP  experimental structures deposited at the PDB  11,12;  (b) perform

protein-ligand  docking simulations to determine whether the differences in selectivity

can be attributed to steric hindrances resulting from differences in size and shape of

the S1’ pocket; and (c) compare the electrostatic properties and the hydrophobicity of

different S1’ pockets in order to explain the selectivity of several inhibitors for a specific

MMP. An examination of the recent literature revealed that the most inhibitors have

been developed for MMP-2, MMP-9, MMP-12 and MMP-13 (see Tables S2 to S10) and

they constitute the main focus of this review.  The inhibitors analyzed in this review

correspond to those that have been co-crystallized with a given MMP, whose electron
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density maps (EDMs) are available in the PDB 12,13 and whose selectivity against other

MMPs has been measured.

2. Moving from the zinc-binding site towards the S1’ pocket

Catalytic sites of MMPs are characterized by the presence of a zinc ion required for

coordination and catalysis (see Figure S1A). The first approach to the design of MMP

inhibitors  was  the  development  of  peptidomimetic  inhibitors  (e.g.,  batimastat  and

marimastat;  see Figure S2A) designed to block the cleavage of collagen by chelating

the zinc ion using a hydroxamic acid moiety as the zinc binding group (ZBG) 2–4.

Next,  small  molecule  inhibitors  with  different  ZBGs  were  developed  (e.g.,

hydroxamates,  carboxylates,  thiols  and  phosphorous-based ZBGs)  2.  However,  the

administration of these inhibitors resulted in the development of MSS and failure in

clinical trials. Although the reason for this side-effect remains unknown, it has been

hypothesized that the low selectivity profiles of these inhibitors may be the cause of

this  side-effect  3,14.  This  broad-spectrum  inhibition  of  MMPs  is  believed  to  be  a

consequence of the high structurally conserved zinc-binding region among the MMP

family 4 (see Figure S1B).

In light of these facts, other types of inhibitors have been developed for the purpose of

occupying the S1’ pocket, a region in the binding site adjacent to the zinc-binding site

which is less conserved among the different enzymes of the MMP family (see Figure

S1B).  The  S1’  pocket  is  accessed  through  a  tunnel  created  by  the  wall-forming

segment  (i.e.,  residues  Pro242,  Ile243  and  Tyr244;  MMP-13  numbering)  and  it  is

delimited by a loop of variable length and flexibility called the Ω-loop, which is made up

of different  residues in different  MMPs (see Table S11).  Another feature of  the S1’

pocket is the residue in position 218 (MMP-13 numbering),  which is different in some

MMPs (Arg in MMP-1, Tyr in MMP-7 and Leu in MMPs -2, -3, -8, -9, -10, -12, -13 and -

14). This variability has led to the identification of inhibitors that take advantage of the
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differences in size and shape of the S1’ pocket among the members of the MMP family

to achieve selectivity.

Furthermore, several inhibitors that bind to the S1’ pocket but that lack a ZBG have

been reported for MMP-13 15–18, MMP-8 19 and MMP-12 20. Although the presence of a

ZBG plays a role in determining the potency of MMP inhibitors  14,21, as MMP-13 and

MMP-8 have  deeper  S1’ pockets due to  the  length  and flexibility  of  their  Ω-loops,

inhibitors that do not posses a ZBG can be designed to occupy the side pocket of S1’,

which is  referred to as the S1’’ pocket  18 (see Figure S1A),  and therefore achieve

inhibitor selectivity against the rest of MMPs 15–19.

Overall, since the S1’ pocket is a clear focus of variability among the members of the

MMP family, it is the current general belief that it has great potential for the design of

selective inhibitors  and that  future generations of  MMP inhibitors should target  this

pocket given the success of recent inhibitors in achieving selectivity 5,9,10,14.

3. S1’ pocket classification and docking

The S1’ pockets of the different members of the MMP family are generally classified in

three  categories  based  on  their  depth  3,10:  (a) shallow  (MMP-1  and  MMP-7);  (b)

intermediate (MMP-2, MMP-8, MMP-9, MMP-12 and MMP-14); and (c) deep (MMP-3,

MMP-10 and MMP-13). Examining the experimental structures available in the PDB
11,12 reveals  that,  in  many  cases,  for  each  MMP,  the  Ω-loop  adopts  several

conformations  in  many  cases  (see  Figure  1).  For  a  better  understanding  of  the

variability of the S1’ pocket, we have classified the different MMPs according to the

conformations of their Ω-loop. For this purpose: a) all the X-ray structures for which the

EDM  was  available  were  downloaded  from  the  PDB  11,12;  b) the  fitting  of  the

coordinates  on  the  EDM  for  their  binding  sites  and  co-crystallized  ligands  was

validated with VHELIBS 22 and Jmol 23 for holo and apo structures, respectively; and c)

the binding sites that passed this validation were superposed and compared, grouping

experimental  structures  with  the  same  Ω-loop  conformation  and  choosing  a
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representative experimental structure in each case (see Tables  S12 to S21). In this

comparison,  the  residue  side  chains  facing  to  the  outside  of  the  S1’ pocket  were

omitted, as they do not have a direct influence on the size and shape of the S1’ pocket.

In  the  following  paragraphs  we  discuss,  for  each  MMP,  the  different  Ω-loop

conformations that resulted from this classification.

Figure 1. Superposition of the different Ω-loop conformations observed in each MMP. Panels A, B, C, D, E,
F, G, H and I show the superposition of representative structures for MMP-1, -2, -3, -7, -8, -9, -12, -13 and -
14, respectively. These structures correspond to the representative subunits from Tables S12 to S21. All
panels have the same orientation to facilitate comparison. This figure was obtained with Maestro24 v11.

3.1. MMP-1

Of the 11 X-ray experimental structures deposited in the PDB 11,12 for MMP-1, three

demonstrate a good fit between the EDM and the atomic coordinates of the residues of

the binding site and have been analyzed (see Table  S12).  The three experimental

structures analyzed for MMP-1 correspond to apo structures and all of them present
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the  same  Ω-loop  conformation  (see  Figures  1A  and  S3).  However,  the  specific

conformation of  the  Ω-loop may not  be relevant  in  the design of  MMP-1 inhibitors

because the residue Arg214 closes the S1’ pocket preventing the interaction of the

ligands  with  the  residues  of  the  Ω-loop.  This  residue  should  constitute  a  steric

hindrance for those MMP inhibitors that extend to the S1’ pocket and it would provide

an explanation for the lack of activity against MMP-1 observed in MMP inhibitors such

as 1 and  2 reported by Johnson  et al.  15; 1 and  2 reported by Pochetti  et al.  19;  21k

reported by Nara  et al.  18;  15 reported by Taylor  et al.  17;  1,  6c and  7a reported by

Holmes et al. 25; 1 and 2 reported by Heim-Riether et al. 26; 12 reported by Shieh et al.
27;  19v reported by Becker  et al.  28;  24f reported by Monovich et al.  29;  3 reported by

Devel  et  al.  30;  44 reported  by  Nara  et  al. 31;  AM-409 and  MS-560 reported  by

Tochowicz et al. 32; 1 and 3 reported by Nuti et al. 33; 3 reported by Camodeca et al. 34;

and 2 reported by Nuti  et al.  35 (see Figure S2B). To illustrate this fact, protein-ligand

docking was performed using MMP inhibitors of different sizes that do not show activity

on MMP-1 and that were obtained from experimental complexes with other MMPs (see

Figure S4). In their respective co-crystallized MMPs, some of these inhibitors occupy

the S1’’ pocket interacting with the Ω-loop (see Figure S4A), others partly occupy the

S1’ pocket without establishing many interactions with the  Ω-loop (see Figure S4B),

and others just reach the region that is occupied by Arg214 in MMP-1 (see Figure

S4C). Despite their differences, in all cases, the docked poses of these compounds in

MMP-1 could not simultaneously occupy the zinc binding region and the S1’ pocket

due to the blockade by Arg214, resulting in a different predicted binding mode, which

would explain their low bioactivity for MMP-1. This supports the idea that selectivity

over  MMP-1  can  be  achieved  simply  by  occupying  the  S1’  pocket,  preferably  by

seeking an interaction with the Ω-loop deep in the S1’ pocket to ensure that MMP-1 will

not be able to accommodate the compound.

3.2. MMP-2

Of the seven X-ray experimental structures deposited in the PDB 11,12 database for

MMP-2, only one has available EDMs and has been analyzed (see Table S13). The Ω-

loop in MMP-2 is shorter than in MMP-8 or MMP-13 (see Table S11). This has allowed
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certain inhibitors to achieve selectivity for these MMPs by aiming to occupy the S1’’

pocket. This is the case of the MMP-8 inhibitor  2 reported by Pochetti  et al.  19; the

MMP-13 inhibitors 1, 2 reported by Johnson et al. 15; 21k reported by Nara et al. 18 and

15 reported by Taylor  et al.,17 which show a low activity against MMP-2  (see Figure

S2C).  To illustrate this, protein-ligand docking with MMP-2 was performed with these

compounds, which were obtained from their respective experimental structures.  The

docked poses were unable to occupy the S1’’ pocket as in their original experimental

structures, resulting in a different predicted binding mode of the inhibitor and explaining

their selectivity over MMP-2 (see Figure S5 for the docking of 2 15 on MMP-2 compared

with  its  experimental  complex  at  MMP-13).  Therefore,  the  design  of  MMP-13 and

MMP-8 inhibitors with bulky groups in the S1’’ pocket should give them selectivity over

MMP-2. In the case of MMP-8 inhibitor  1 reported by Pochetti  et al. 19,  (see Figure

S2C) although it does not reach the S1’’ pocket in MMP-8, its docked poses on MMP-2

reveal a different binding mode than that observed in MMP-8 (see Figure S6). The

different  binding  mode  can  be  attributed  to  the  difference  in  length  of  the  Ω-loop

between  MMP-8  and  MMP-2,  providing  a  possible  explanation  for  the  selectivity

observed for this compound.

3.3. MMP-3

Of the 31 X-ray experimental structures deposited in the PDB 12,13 for MMP-3, 11 have

available EDMs and have been analyzed (see Table S14). The abundance of residues

that constitute the Ω-loop of MMP-3 (see Table S11) makes it highly flexible, which is

manifested in the wide variety of conformations that this loop adopts in different MMP-3

experimental structures (see Figures 1C and S7). The Ω-loop conformations A and B

are observed in the absence of ligands (see Table S14). The C conformation of the Ω-

loop is very similar to the D conformation with the exception that the ligand induces an

alternate conformation of the residue His224, which faces outwards, thus enlarging the

pocket (see Figures S7D and S7E). Owing to the sequence length of the  Ω-loop in

MMP-3, the S1’ pocket of MMP-3 is frequently classified as large, in the same category

as MMP-13  10. However, despite the similarity between these two proteins regarding

the number of residues that constitute their respective Ω-loops (see Table S11), the
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residue differences between them allow specific residue conformations to be adopted

in each MMP that play an important role in the definition of the shape and size of the

S1’ pocket.  While  in  all  the conformations of  the MMP-3 Ω-loop,  the side-chain  of

residue Leu229 (and in some conformations also the side chains of residues Leu226

and Thr227) hinders access to the bottom of the S1’ pocket, this is not the case for

MMP-13, in which no residue side-chains face the S1’ pocket with the exception of the

small side chain of Thr247 (see Figure 1H). As a result, the S1’’ pocket of MMP-13 is

bigger than that of MMP-3, enabling it to accommodate larger ligands. Many MMP-13

inhibitors including 1 and 2 reported by Johnson et al. 15, 21k reported by Nara et al. 18

and 15 reported by Taylor et al. 17 have taken advantage of this larger size to achieve

selectivity against MMP-3 (see Figures S2D and S8) and we propose following this

strategy to  obtain  MMP-13 inhibitors  that  are  selective over  MMP-3.  Even the  S1’

pocket of MMP-8 may prove to be larger than that of MMP-3 in some cases, despite

being classified as intermediate  10. This can occur because the Ω-loop of MMP-8 is

able to adopt a particular conformation in which the conformation of the residues from

Arg222  to  Tyr227  is  different,  and  the  different  orientations  of  the  side  chains  of

residues  Thr224  and Tyr227  allow for  a  larger  S1’ pocket  cavity  (see  Figure  1E).

Triggering this conformational change may be a useful strategy in developing MMP-8

inhibitors that are selective over MMP-3, as is the case of MMP-8 inhibitor 2 reported

by Pochetti et al. 19 (see Figure S2D).

3.4. MMP-7

Of the five X-ray experimental structures deposited in the PDB 12,13 for MMP-7, only two

have available EDMs and have been analyzed (see Table S15). They both correspond

to holo structures, each of them presenting a different S1’ pocket (see Figures 1D and

S9). In MMP-7, the residue equivalent to Leu218 of MMP-13 is Tyr215. Because of this

particular residue,  the S1’ pocket of MMP-7 is typically classified as shallow, in the

same category as MMP-1 10. Similar to Arg214 in MMP-1, in MMP-7, Tyr215 adopts a

conformation that faces the zinc-binding region and prevents the binding of ligands

with the S1’ pocket. Therefore, this residue should constitute a steric hindrance for

those ligands which interact  with the  Ω-loop and it  provides an explanation for the
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selectivity observed in the majority of ligands that perform these type of interactions.

This  is  illustrated  by the  docking  on  MMP-7  of  several  MMP inhibitors  that  show

selectivity  over  MMP-7  (i.e.,  1 reported  by  Pochetti  et  al.  19,  AM-409 reported  by

Tochowicz et al. 32, 20 reported by Mannino et al. 36, 1 reported by Holmes et al. 25, 36

reported by Devel et al. 37, 3 reported by Devel et al. 30, 2 reported by Johnson et al. 15,

24f reported by Monovich  et al.  29,  1 and  2 reported by Heim-Riether  et al.  26,  19v

reported by Becker et al. 28, 12 reported by Shieh et al. 27 and 44 reported by Nara et

al. 31; see Figure S2E), whose docked poses present a different binding mode than that

observed in their  original  MMP (Figure S10 shows the docking of  inhibitor  19v  28).

However, an experimental structure of MMP-7 with a large ligand has been reported to

show an  alternate  conformation  of  residue  Tyr215,  opening  the  access  to  the  S1’

pocket in order to accommodate the ligand 38 (see Figures 1D and S9C). Nevertheless,

although the coordinates of the residues from Gly242 to Asn248 were not included in

the  experimental  structure  due  to  a  lack  of  electron  density,  as  the  side-chain  of

residue Tyr215 in this conformation faces the S1’ pocket (see Figures 1D and S9C), it

could be argued that the size of the S1’ pocket of MMP-7 in this particular conformation

may still be significantly smaller than that of other MMPs such as MMP-8 or MMP-13.

Thus, the targeting of the S1’ pocket by MMP inhibitors directed to these MMPs should

provide their selectivity over MMP-7. Actually, inhibitors that target the S1’’ pocket of

MMP-8  and  MMP-13  have  been  shown  to  present  high  selectivity  over  MMP-7,

supporting the previous idea. This is the case of the MMP-8 inhibitor  2 reported by

Pochetti  et al.,  19 MMP-13 inhibitors  1 and  2 reported by Johnson  et al.  15, MMP-13

inhibitor 21k reported by Nara et al. 18 and MMP-13 inhibitor 15 reported by Taylor et al.
17 (see Figure S2E).

3.5. MMP-8

Of the 25 X-ray experimental structures deposited in the PDB 12,13 for MMP-8, 16 have

available  EDMs  and  have  been  analyzed  (see  Table  S16).  In  the  most  common

conformation  of  the Ω-loop for  MMP-8 (conformation  A),  the side  chain  of  residue

Tyr227 faces to the inside of the S1’ pocket (see Figures 1E and S11B). Although both

apo and holo structures present this Ω-loop conformation (see Table S16), the ligands
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of  those  structures do not  reach  the bottom of  the  S1’ pocket.  Conformation  B  is

observed in holo structures with large ligands which are able to establish contacts with

the Ω-loop. In this conformation, the overall arrangement of the residues of the omega

loop is altered to better accommodate the ligand (i.e., the side chains of Arg222 and

Tyr227 face slightly outwards, thus granting the ligand access to the S1’ pocket, and

the side chain of Thr224, which faced the outside of the S1’ pocket in conformation A,

faces the inside of the S1’ pocket, allowing it to interact with the ligand; see Figures 1E

and S11C).  Yet another conformation has been observed for the Ω-loop of  MMP-8

(conformation C)  in  which Tyr227 has  an open conformation  (see  Figures 1E and

S11D). However, only one structure has been determined with this conformation, in

which  the  2-(N-morpholino)-ethanesulfonic  acid  moiety  of  the  ligand  is  in  close

proximity to Tyr227, which therefore could be the cause of this conformation. Although

the S1’ pocket of MMP-8 is often classified as medium-sized 10, the Ω-loop of MMP-8

demonstrates  a  certain  degree  of  flexibility  by  adopting  a  different  conformation

(conformation B) and being able to accommodate large ligands in the S1’ pocket. This

conformation should be considered when discussing selectivity against MMP-8 since,

in terms of size, it is more comparable to the S1’ pocket of MMP-13 than to the S1’

pocket of other MMPs with the same Ω-loop length, such as MMP-12 or MMP-14 (see

Table S11). Nevertheless, as the S1’ pocket of MMP-13 is still larger than that of MMP-

8, it is possible for MMP-13 inhibitors that bind to the S1’ pocket to achieve selectivity

by targeting the S1’’ pocket. The protein-ligand docking on MMP-8 of several MMP-13

inhibitors  that  show  selectivity  over  MMP-8  (see  Figure  S2F)  predicts  that  these

inhibitors are not able to interact with MMP-8 in the same binding mode as they do in

MMP-13 (see Figure S12). Although some docked poses for the MMP-13 inhibitors 2

and  21k  reported respectively by Johnson  et al. 15 and Nara  et al. 18 reach the S1’’

pocket of MMP-8, none of the docked poses are able to place the carboxylic group at

the S1’’ pocket while extending to the zinc-binding region at the same time (see Figure

S12 for the docking of 21k on the three Ω-loop conformations for MMP-8). This could

be attributed to the  difference in size and shape between the S1’ pockets of these

MMPs and may offer an explanation for the selectivity observed in these inhibitors.
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3.6. MMP-9

Of the 24 X-ray experimental structures deposited in the PDB 11,12 for MMP-9, 17 have

available EDMs and have been analyzed (see Table S17). The  Ω-loop in MMP-9 is

special  in the sense that  it  presents two consecutive proline residues (Pro254 and

Pro255, see Table S11). Given the exceptional conformational rigidity of proline and the

low spatial  variability  of  the  Ω-loop residues in  the MMP-9  experimental structures

obtained, it can be inferred that the presence of these two proline residues significantly

reduces  the  flexibility  of  the  MMP-9  Ω-loop  (see  Figure  1F).  In  fact,  most  of  the

structures analyzed present the same conformation, regardless of the presence of a

ligand (see Table S17 and Figure S13B). Only in one  experimental structure did we

observe a slightly different arrangement of the Ω-loop (conformation B; see Figures 1F

and S13C). This rigidness of the Ω-loop together with the small size of its S1’ pocket

allows for an easier identification of inhibitors of MMPs with a long and more flexible Ω-

loop that are selective against this protein just by introducing a bulky group in the S1’

pocket which can be accommodated by these proteins, but not by MMP-9. Protein-

ligand docking on MMP-9 of several MMP inhibitors that are selective over MMP-9 (i.e.,

1 and  2 reported by Pochetti  et al. 19,  1 and  2 reported by Johnson  et al. 15,  21k

reported by Nara et al. 18, 44 reported by Nara et al. 31 and 15 reported by Taylor et al.
17;  see Figure S2G) has been conducted in order to illustrate this fact (Figure S14

shows the docking of inhibitor  2  19). Some of these inhibitors occupy the larger S1’

pocket in their  original  experimental structure (sometimes reaching the S1’’ pocket,

which is not present in MMP-9), but are not able to do so in MMP-9. Because of the

difference in size and shape of the S1’ pocket between MMP-9 and the original MMP of

these inhibitors, their docked poses fail to reproduce the binding mode observed in the

original MMP, which offers an explanation for their selectivity.

3.7. MMP-10

For human MMP-10, only three X-ray experimental structures have been determined

by X-ray diffraction and are deposited in the PDB 11,12. All of them have EDMs and have

been analyzed (see Table S18). MMP-10 has a very flexible Ω-loop, showing variability
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among different experimental structures and often low electron density for some of its

Ω-loop residues (see Figure S15). For example, the coordinates of residue Phe242

have not been obtained for any of the experimental structures analyzed here due to the

lack of electron density in that region, probably indicating the flexibility of that region of

the  loop.  However,  despite  this  flexibility,  the  S1’ pocket  of  MMP-10  may  present

differences in size, shape or electrostatic properties when compared to the S1’ pockets

of MMPs which also present a long Ω-loop, which would explain the high selectivity

values of the MMP-13 inhibitors 21k and 15 reported by Nara et al. 18 and Taylor et al.
17 against MMP-10 (see Figure S2H). Unfortunately, the lack of electron density for

some residues makes it difficult to relate this selectivity to size, shape or electrostatic

differences between MPP-10 and MMP-13.

3.8. MMP-12

Of the 64 X-ray experimental structures deposited in the PDB 11,12 for MMP-12, 50 have

available EDMs and have been analyzed. All of them show the same conformation of

the Ω-loop (see Table S19 and Figure S16) except for one particular structure (i.e., the

B  conformation)  whose  main  characteristics  are  the  conformations  adopted  by

residues Tyr242 and Met236 (i.e.,  Tyr242 faces out  of  the S1’ pocket  and Met236

blocks  the  access  to  the  S1’  pocket;  see  Figures  1G  and  S15C). Despite  the

reasonably large amount of residues that conform the Ω-loop in MMP-12 and define an

S1’ pocket classified as medium-sized compared to other MMPs 10, the low variability

of the  Ω-loop observed among the  experimental structures of MMP-12 indicates that

this loop has limited flexibility. Apart from residue Lys241, which seems to adopt a wide

range of  conformations,  the  other  residues  of  the  Ω-loop  do  not  present  alternate

conformations. Assuming that conformation A is the only conformation of the MMP-12

Ω-loop that allows the ligand to reach the S1’ pocket, achieving selectivity over MMP-

12 by inhibitors directed to MMPs with a larger and more flexible  Ω-loop should be

possible by targeting the S1’’ pocket, which is blocked by residue Ile245 in MMP-12. To

illustrate this, protein-ligand docking was performed using ligands selective over MMP-

12 (i.e.,  2 reported by Pochetti  et al.  19,  1 and 2 reported by Johnson et al.  15 and 15

reported by Taylor et al. 17; see Figure S2I) obtained from their respective experimental
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structures (Figure S17 shows the docking of inhibitor  15 17). In all cases, the docked

poses of  these compounds in MMP-12 could not  occupy the S1’ pocket  due to its

smaller  size,  therefore  resulting  in  a  different  hypothetical  binding  mode  of  the

inhibitors than that observed in their experimental structures, which would explain their

selectivity over MMP-12.

3.9. MMP-13

Of the 44 X-ray experimental structures deposited in the PDB 12,13 for MMP-13, 31 have

available EDMs and have been analyzed (see Table S20). The Ω-loop of MMP-13 is

composed by 13 residues (see Table S11) and its S1’ pocket is classified as deep 10.

The large Ω-loop of MMP-13 gives a high degree of flexibility, manifested in several

conformations adopted by this loop (see Figures 1H and S18). From the structures

classified  here,  four  subunits  corresponded  to  the  apo  form  and  42  subunits

corresponded to holo forms. We found that all the apo forms had the same Ω-loop

conformation (conformation A) whereas the holo forms show different conformations

depending on the type of ligand that binds to MMP-13. In structures where the ligand

reaches  only  the  S1’ pocket,  we  saw conformations  from A to  F.  However,  some

ligands occupy the S1’’ pocket. In most of these cases, the conformation of the loop is

different (conformations from G to I),  meaning that  the high flexibility  of the Ω-loop

allows it to adapt in order to allow ligands to bind to the S1’’ pocket.

3.10. MMP-14

Of the nine X-ray experimental structures deposited in the PDB 11,12 for MMP-14, only

one has an available EDM and has been analyzed (see Table S21). The S1’ pocket of

MMP-14 is classified as intermediate and its Ω-loop has the same length as those of

MMP-13 and MMP-8 (see Table S11). However, recent molecular dynamics simulation

analyses have showed that the Ω-loop in MMP-14 is less flexible than that of MMP-13

or MMP-8 39. A closer look at the side chains of the Ω-loop in MMP-14 that are oriented

towards the S1’ pocket reveals that the side chain of residue Met264 occupies part of

the pocket (see Figures 1I and S19). The low flexibility of the loop might not allow the
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adoption of a different conformation for this residue side-chain; therefore, seeking a

steric clash with this particular residue may provide an anchor for identifying inhibitors

selective against MMP-14. When performing docking simulations on MMP-14 with co-

crystallized inhibitors selective towards this MMP (i.e., 1 and 2 reported by Pochetti et

al. 19, 36 reported by Devel et al.  37, 3,  16 and 18 reported by Devel et al. 30,  1 and 2

reported by Johnson et al. 15, 24 reported by Savi et al. 40, 2 reported by Heim-Riether

et al.  26,  21k reported by Nara  et al.  18,  44 reported by Nara  et al.  31 and  1 and  15

reported  by  Taylor  et  al.  17;  see  Figure  S2J),  in  some  cases  residue  Met264

represented a steric hindrance for these inhibitors that does not allow them to bind to

the S1’ pocket as they would in their original MMPs, or at least not in the same fashion

(Figure S20 shows the docking of inhibitor 3 30). This would provide an explanation for

the selectivity observed in these inhibitors. Based on these observations, inhibitors that

reach the S1’ pocket can generally be expected to have selectivity over MMP-14.

4. Different sequence, different pocket

While the previous section illustrated how the size and shape of the S1’ pocket are

crucial  determining  factors  in  the  selectivity  of  many  MMP inhibitors,  the  residue

differences in different  Ω-loop sequences may also translate into different hydrogen

bond interactions and Van der  Waals contacts  with  the ligand among the different

MMPs, as well as different electrostatic and hydrophobic properties of the S1’ pocket.

These type of differences also constitute an opportunity to achieve inhibitor selectivity.

Here  we will  examine the characteristics  of  several  MMP-2,  MMP-9,  MMP-12 and

MMP-13 inhibitors  and propose the possible causes of their selectivity against other

MMPs in order to gain insight into the particular characteristics of the S1’ pocket of

these MMPs.
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4.1. Selectivity towards MMP-2

A critical aspect in the design of MMP-2 inhibitors for cancer therapy is avoiding the

inhibition  of  anti-targets  such  as  MMP-3,  MMP-8,  MMP-9  and  MMP-14,  whose

inhibition could be detrimental to cancer prognoses  41–43. In the previous section we

have already proposed how to achieve selectivity against MMP-14 and here we will

focus on how MMP-2 inhibitors have been able to achieve selectivity against MMP-8

and MMP-9. As MMP-2 inhibitors that spare MMP-3 have not been co-crystallized with

either protein, we have not been able to analyze this particular case.

Regarding selectivity against MMP-8, the MMP-8 inhibitor 2b co-crystallized with MMP-

8 by Campestre et al. 44 was found to be more active for MMP-2 than for MMP-8 (see

Figure  S2K).  Although  the  authors  attribute  the  increase  in  MMP-2  affinity  to  the

possible  release of the torsional strain of the two rings of the biphenyl group in the

wider  S1’ pocket  of  MMP-2  44,  this  increased activity  could  also  be  related  to  the

different electrostatic nature of the two S1’ pockets. In this regard, Figure 2A shows

that  the  negative nitro group of the ligand has a better electrostatic complementarity

with  the  S1’ pocket  of  MMP-2 than with  the  S1’ pocket  of  MMP-8.  Therefore,  the

inclusion of negative groups in MMP-2 inhibitors targeting this region of the S1’ pocket

should provide them selectivity against MMP-8.
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Figure 2. Inhibitors selective against MMP-8. The five screen captions that form each panel have the same
orientation to facilitate comparison and, from left  to right,  show: (i) the electrostatic potential  around the
ligand; (ii) the electrostatic potential around the binding site of the MMP that is compared with MMP-8; (iii)
the electrostatic potential around the binding site of MMP-8; ( iv) the electrostatic complementarity between
the ligand and the MMP that is compared with MMP-8; and (v) the electrostatic complementarity between the
ligand and MMP-8. In the first three screen captions of each panel, the positive and negative electrostatic
potentials  are  shown in  blue  and red,  respectively.  In  the  last  two screen captions  of  each panel,  the
molecular surface of the protein is colored by the electrostatic complementarity between the ligand and the
protein:  green and red represent  the areas of  good and bad complementarity,  respectively.  The protein
backbone of the MMP that has not been crystallized with the inhibitor (in purple) has been superposed to the
experimental complex (in orange) to determine its relative position to the co-crystallized ligand (in green).
The co-crystallized inhibitors shown in panels from A to F are 2b,44 PD-0359601,21 16,30 19v28 and 1830 (which
were co-crystallized with MMP-8, MMP-12, MMP-12, MMP-12, MMP-13 and MMP-13, respectively). A circle
indicates the region (either from the corresponding MMP or from the ligand) involved in differences in the
bioactivity of the same ligand relative to the two MMP that are compared in each panel. This figure was
obtained with Flare45 v2.0.

MMP-9 is another clear anti-target  usually considered in the development of MMP-2

inhibitors  due  to  its  reported  anti-angiogenic  and  anti-tumorigenic  properties  42.

Interestingly, Tochowicz et al. 32 reported two inhibitors co-crystallized in MMP-9, An-1

and  MS-560, which displayed higher activity for MMP-2 than for MMP-9 (see Figure

S2K). The authors hypothesize that the mobility of the side-chain of residue Arg249 in

MMP-9 is responsible for this difference in activity 32. This residue is replaced with the

less bulky residue Thr224 in MMP-2, which would result in much weaker hindering by

its  side-chain  32.  Nevertheless,  given  the  rigidity  of  the  MMP-9  Ω-loop,  whose

conformation is conserved among almost all the reported crystal structures (see Table

S17 and Figure S13), another possible explanation could be that residue Phe148 in

MMP-2  may  be  able  to  get  closer  to  the  ligand  and  establish  better  hydrophobic

interactions than residue Pro255 in MMP-9 (see Figure 3).
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Figure 3. Inhibitors seective against MMP-9. The three screen captions that form each panel have the same
orientation to facilitate  comparison and, from left to right, they show: (a) the hydrophobic area around the
ligand; (b) the hydrophobicity of the MMP-2 binding site; (c) the hydrophobicity of the MMP-9 binding site. In
the first screen caption of each panel, the hydrophobic surface of the ligand is shown in beige. In the next
two screen captions of each panel, the molecular surface of the protein is colored by its polarity: while the
hydrophilic areas are shown in blue, the hydrophobic areas are in beige. The inhibitors shown in panels A
and B are An-132 and MS-560,32 respectively, which were both co-crystallized with MMP-9. A circle indicates
the region (either from the corresponding MMP or from the ligand) involved in differences in the bioactivity of
the same ligand relative to the two MMP that are compared in each panel.

4.2. Selectivity towards MMP-9

Interestingly, while searching for MMP-12 inhibitors, Morales et al. 20 obtained the high-

throughput  screening hit  CP-271485,  which has higher  activity  for  MMP-9 than for

MMP-12  (see  Figure  S2L).  While  we could  not  relate  this  difference  in  activity  to

electrostatics or hydrophobics, given the smaller size of this inhibitor compared to the

other ones obtained and the narrower shape of the S1’ pocket of MMP-9 compared to

that of MMP-12, the authors hypothesized that the higher activity of this inhibitor for

MMP-9 could be explained by its better accommodation in the MMP-9 S1’ pocket 20.

4.3. Selectivity towards MMP-12

The S1’ pocket of MMP-12 is mostly characterized by its high hydrophobicity  20. The

combination of a series of hydrophobic residues (i.e., Ala234, Val235, Phe237, Lys241,

Val243 and Phe248),  provide the S1’ pocket  with a more hydrophobic environment

compared  to  other  MMPs  20.  The  selectivity  of  many MMP-12 inhibitors  has  been

attributed to this hydrophobic nature. Morales et al. 20 identified the MMP-12 inhibitors

PD-0359601 and PF-00356231, which are highly selective against MMP-2 (see Figure

S2M).  The  authors  claim  that  these  ligands  are  less  stabilized  by  hydrophobic
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interactions in the more open MMP-2 S1’ pocket than in that of MMP-12  20.  These

inhibitors were also selective against MMP-3, which the authors attribute to the fact

that MMP-3 has a larger S1’ pocket and the ligands are not able to occupy its volume

to the same degree as in MMP-12  20. These hypotheses are in agreement with our

docking simulations  showing that the lipophilic interactions of these two ligands with

the protein are stronger for MMP-12 than for MMP-2, and MMP-3 (see Table S22).

Likewise, our docking simulations of compounds  3 and  16 reported by Devel  et al.
30 show that  lipophilic  interactions of  these ligands with the protein are significantly

stronger for MMP-12 than for MMP-2, -3, -8, -9 and 13, MMPs against which these

inhibitors are selective (see Table S22 and Figure S2M). A similar situation may occur

in the case of compounds 1, 6c and 7a reported by Holmes et al. 25 and compound 36

reported by Devel  et al.  37 (see Table S22 and Figure S2M), since these inhibitors

introduce hydrophobic moieties in the S1’ pocket and are also selective against other

MMPs.

Overall,  the  predominance  of  hydrophobic  residues  in  the  S1’ pocket  of  MMP-12,

makes its hydrophobic environment an attractive characteristic to target in the design

of selective inhibitors. Furthermore, electrostatics can also play a part in determining

selectivity for MMP-12. For instance, in the case of PD-0359601, the ethoxy group of

the ligand (see Figure S2M) places a negative electrostatic surface in the S1’ pocket of

MMP-12 that results in a better electrostatic complementarity with MMP-12 relative to

MMP-8 (see Figure 2B). This higher electrostatic complementarity would explain why

this ligand displays a higher bioactivity for MMP-12 than for MMP-8. A similar situation

occurs in the case of the MMP-12 inhibitors 16 and 3 reported by Devel et al. 30 (see

Figures 2C, 2D and S2M), as the π system of the phenyl ring of these ligands projects

a  negative  electrostatic  surface  to  both  sides  of  the  ring  resulting  in  a  better

electrostatic complementarity with MMP-12 than with MMP-8.

Differences in the electrostatics of the S1’ pocket  can also be exploited to achieve

selectivity against MMP-3. In the case of the MMP-12 inhibitor 1 reported by Holmes et

al. 25 (see  Figure  S2M),  the  negative  electrostatic  surface  of  the  π system of  the

ligand's phenyl ring makes the ligand more suitable to interact with the S1’ pocket of
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MMP-12 than with the S1’ pocket of MMP-3 (see Figure 4A). This is in agreement with

the lower affinity of this ligand for MMP-3 than for MMP-12 (see Figure S2M). Similarly,

the MMP-12 inhibitors 16 and  3 reported by  Devel  et al. 30, which are  also selective

against MMP-3  (see Figure S2M)  present a negative electrostatic surface projecting

from their  thiophene and phenyl  rings  towards  the  S1’ pocket  of  this  protein  (see

Figures 4B and 4C). In all these cases, the negative electrostatic surface of the ligand

shows better  electrostatic complementarity with MMP-12 than with MMP-3 and this

could explain the selectivity of these ligands against MMP-3 (see Figure S2M).
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Figure 4. Inhibitors selective against MMP-3. This figure has been prepared using the same guidelines as
Figure 2. The co-crystallized inhibitors shown in panels from A to D are 1,25 16,30 330 and 19v28 (which were
co-crystallized with MMP-12, MMP-12, MMP-12 and MMP-13, respectively).

4.4. Selectivity towards MMP-13

Although as discussed in the previous section, the more secure approach to selectively

inhibiting MMP-13 is considered to be the targeting of the S1’’ pocket, some MMP-13

inhibitors have shown selectivity against other MMPs without reaching this subpocket.

This is for example the case of the MMP-13 inhibitor 19v reported by Becker et al. 28,

which presents selectivity  against  both  MMP-3 and MMP-8  (see Figure S2N).  The

analysis  of  the  potential  electrostatic  interactions  between  the  ligand  and  the  two

proteins reveals that if the binding mode observed by the inhibitor in MMP-13 were

conserved in the binding sites of MMP-3 and MMP-8, the electrostatic complementarity

of this compound and the corresponding binding site would be worse for MMP-3 and

MMP-8 relative to MMP-13 (see Figures 4D and 2E, respectively). Therefore, both of

these situations would result  in a decrease in bioactivity for either MMP relative to

MMP-13. These observations correlate with the observed selectivity of this MMP-13

inhibitor  against  both  of  these  MMPs (see  Figure  S2N).  The  MMP-13 inhibitor  18

reported by Devel et al. 30 (see Figure S2N) also places a negative electrostatic surface

in the S1’ pocket of MMP-8 through the  π system of  its last  phenyl ring, therefore

decreasing the affinity of the ligand for this MMP (see Figure 2F). Interestingly though,

the MMP-8 inhibitor 17 also reported by Devel et al. 30 can in its turn take advantage its

higher electrostatic complementarity with the S1’ pocket of MMP-8 relative to the S1’

pockets of MMP-13, MMP-2 or MMP-3 to achieve selectivity against these MMPs (see
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Figure S2O) by placing a methyl group bearing a positive electrostatic surface in this

region of the S1’ pocket (see Figure 5).

Figure 5. Inhibitor  17,30 selective for MMP-8. This figure has been prepared using the same guidelines as
Figure 2. Panels A, B and C show the comparison between the binding site of MMP-8 and the binding sites
of MMP-13, MMP-2 and MMP-3, respectively.

Nevertheless, targeting the S1’’ pocket in MMP-13 offers the advantage that selectivity

against MMP-1, -2, -3, -7, -8, -9, -12 and -14 is generally achieved as these proteins

either lack this subpocket or have a smaller one and this constitutes a steric hindrance

for MMP-13 inhibitors to bind to these proteins.  However, given the large size of the

MMP-8  S1’  pocket,  the  selectivity  of  some  MMP-13  inhibitors  should  not  be  a

consequence of steric hindrances as the inhibitors should fit well in the MMP-8 binding
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site. This is for instance the case of the MMP-13 inhibitor 15 reported by Taylor et al. 17

(see Figure S2N). The electrostatic analysis of this inhibitor in the S1’ pocket of MMP-

13 reveals that its negatively-charged carboxylic acid group located at the S1’’ pocket

shows a high electrostatic complementarity with that region of the protein, which has a

positive electrostatic potential caused partly by the basic residue Lys140 in MMP-13,

which is not present in MMP-8 (see Figure 6). Thus, the presence of this negative

group of the ligand boosts the activity of this inhibitor for MMP-13. Moreover, in MMP-

8, an acidic residue (i.e., Asp115) is present in this region of the pocket, making the

electrostatic environment of MMP-8 less suitable for a negatively charged group (see

Figure  6).  Therefore,  this  feature  of  the  ligand  may  also  be  responsible  for  the

selectivity observed against MMP-8 (see Figure S2N). This feature is also present in

other co-crystallized MMP-13 inhibitors that extend deeply in the S1’’ pocket, such as

inhibitor 2 reported by Johnson et al. 15, inhibitor 29b reported by Schnute et al. 16 and

inhibitor  21k reported by Nara  et al.  18 (see Figure S2N).  All of these inhibitors have

been reported to be highly potent and selective against all the other members of the

MMP family for which bioactivities have been measured.

Figure 6. MMP-13 inhibitor  15,17 selective over MMP-8. This figure has been prepared using the same
guidelines as Figure 2 and it compares the binding site of MMP-13 and the binding site of MMP-8.

Based on this analysis, we can propose two mechanisms for obtaining potency and

selectivity for MMP-13 given two characteristic features of this target:  a) extension to

the  S1’’  pocket,  as  MMP-13  is  the  MMP  with  the  deepest  S1’  pocket;  and  b)

incorporation  of  a  negatively  charged group  in  the  compound able  to  establish  an

electrostatic interaction with the residue Lys140, not present in other MMPs.
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4.5. Selectivity against MMP-3 and MMP-8

Overall, in this section, apart from establishing several criteria for finding inhibitors able

to attain higher potency for a certain MMP compared to others, we have also acquired

novel  valuable  information  on  how  to  avoid  the  preference  of  specific  targets  by

inhibitors of other MMPs. In order to avoid the inhibition of MMP-3 and MMP-8, the

inhibitor should be able to project a negative electrostatic surface to the S1’ pocket of

both proteins, so that a repulsive interaction can occur due to their negative potential.

In  the  case  of  MMP-3,  its  S1’ pocket  has  been  shown  to  have  a  more  negative

electrostatic region than MMPs such as MMP-12 or MMP-13 (see Figure 4). In the

case of MMP-8, its S1’ pocket has been shown to have a more negative electrostatic

character  than  MMPs  such  as  MMP-2,  MMP-12  and  MMP-13  (see  Figure  2).

Therefore, based on these observations, it should be possible to take advantage of the

electrostatic  characteristics  of  the  S1’ pockets  of  these  MMPs by  designing  MMP

inhibitors  which  incorporated  functional  groups  that  would  generate  a  repulsive

electrostatic interaction in these environments while maintaining a high affinity for the

targeted MMP.

5. Conclusions

In this review we have proposed several mechanisms  for MMP inhibitors to achieve

selectivity  against  other  MMPs which have been  summarized in Table 1.  We have

shown how to take advantage of differences in the size and shape of the S1’ pocket, as

is the case for the shallow pockets of MMP-1 and MMP-7, and the deeper pockets of

MMP-13 and MMP-8, as well as how to exploit the differences in residues between S1’

pockets.  More  importantly,  we  have  showed  that  the  variability  in  the  S1’  pocket

characterizes each MMP in terms of hydrophobicity and electrostatic properties and

therefore these aspects need to be considered as they constitute an opportunity for

new MMP inhibitors to achieve better selectivity profiles.
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Table 1. Summary of means of achieving selectivity for MMP-2, MMP-9, MMP-12 and MMP-13 against other
MMPs. Different colors refer to different means of achieving selectivity.
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Table  S1. MMPs,  their  alternative  names,  functional  classification,  main  substrates  and  some  of  the
pathologies in which they are involved.

MMP Alternative names
Functional

classification
Main substrates Related Pathologies

MMP-1

- Interstitial collagenase
- Collagenase 1

- Vertebrate
collagenase

- Collagenases
- Collagen types I, II and

III
- Rheumatoid arthritis4

- Cancer1,8

MMP-2
- Gelatinase A

- 72 kDa gelatinase
- Type IV collagenase

- Gelatinases
- Collagen type IV

- Gelatin
- Fibrinogen

- Asthma4,9

- Cancer10

- Cardiovascular
diseases4

- Heart failure4

- Liver fibrosis11

MMP-3
- Stromelysin 1

- Proteoglycanase
- Transin

- Stromelysins

- Proteoglycan
- Fibronectin

- Collagen types I,  III,
IV, V and IX

- Atherosclerosis13

- Coronary artery
disease14

- Inflammatory bowel
disease4

- Periodontitis12

MMP-7

- Matrilysin
- PUMP-1
- Putative

metalloproteinase-1
- Uterine

metalloendopeptidase

- Matrilysins

- Elastin
- Fibronectin

- Casein
- Laminin

- Cancer10

- Inflammatory bowel
disease5

- Lung fibrosis4

MMP-8
- Neutrophil
collagenase 

- Collagenases - Collagen types I and III

- Asthma4

- Cancer1

- Periodontitis4

- Rheumatoid arthritis13

MMP-9

- Gelatinase B 
- 92 kDa gelatinase

- Type IV collagenase
- Macrophage

gelatinase

- Gelatinases

- Collagen types I, III, IV,
V and XI

- Gelatin types I and V
- Laminin

- Asthma4

- Cancer11

- Heart failure4

- Inflammatory bowel
disease12

- Rheumatoid arthritis9

- Liver fibrosis15
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MMP-10
- Stromelysin 2

- Transin 2
- Stromelysins

- Fibronectin
- Proteoglycan

- Gelatin types I, III, IV,
V

- Collagen types I, III, IV
and V

- Atherothrombosis17

- Chronic obstructive
pulmonary disease16

MMP-12
- Macrophage elastase

- Metalloelastase
- Metalloelastases

- Elastin
- Casein

- Fibronectin
- Gelatin
- Laminin

- Collagen type IV

- Chronic obstructive
pulmonary disease18

- Neurological
diseases4

MMP-13 - Collagenase 3 - Collagenases
- Collagen types I, II, III
- Fibrillin types 1 and 2

- Cancer1

- Inflammatory bowel
disease4

- Osteoarthritis5

- Rheumatoid arthritis2

- Obesity3

MMP-14
- Membrane-type matrix

metalloproteinase-1
- Membrane-type

MMPs

- Collagen type I
- Fibronectin

- Laminin

- Aortic aneurysm7

- Cancer6

This information has been obtained from the BRENDA,19 KEGG,20 ExPASy21 and MEROPS22 databases.
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Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

Table S2. Summary of manuscripts reporting MMP inhibitors since 2010.

MMP

Number of
manuscripts
identifying

inhibitors for
each MMP
since 2010

Number of manuscripts in which MMP bioactivities are measured

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

MMP-1 2 2 1 1 0 0 1 0 1 1 0

MMP-2 16 6 16 3 4 6 11 1 3 3 3

MMP-3 0 0 0 0 0 0 0 0 0 0 0

MMP-7 1 1 1 0 1 0 0 0 1 1 1

MMP-8 1 0 1 0 0 1 0 0 0 0 0

MMP-9 10 1 7 0 0 0 10 1 0 0 1

MMP-10 1 0 0 0 0 0 0 1 0 1 0

MMP-12 9 5 7 4 4 5 6 2 9 5 4

MMP-13 25 13 19 14 11 14 14 7 12 25 17

MMP-14 2 2 2 0 0 1 2 2 0 0 2

Table S3. Manuscripts reporting compounds with inhibitory activity against MMP-1 since 2010.23,24

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

29270028 2018          

23353736 2013          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.
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Table S4. Manuscripts reporting compounds with inhibitory activity against MMP-2 since 2010.25–40

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

30342958 2018          

29614516 2018          

29674965 2018          

27452283 2016          

27455162 2016          

27038494 2016          

26061284 2015          

26346367 2015          

25418204 2015          

25907368 2015          

24246091 2014          

24028490 2013          

23989288 2013          

23873724 2013          

23395821 2013          

21552627 2011          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.

Table S5. Manuscripts reporting compounds with inhibitory activity against MMP-7 since 2010.41

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

21520417 2011          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.
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Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

Table S6. Manuscripts reporting compounds with inhibitory activity against MMP-9 since 2010.35,38,40,42–48

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

30079817 2018          

29473954 2018          

28623487 2017          

27317634 2016          

27455162 2016          

26346367 2015          

25907368 2015          

24473069 2014          

22520332 2012          

22248361 2012          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.

Table S7. Manuscripts reporting compounds with inhibitory activity against MMP-10 since 2010.49

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

28953404 2017          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.
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Table S8. Manuscripts reporting compounds with inhibitory activity against MMP-12 since 2010.50–58

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

29727184 2018          

29660282 2018          

27356908 2016          

26351407 2015          

22771631 2012          

22153340 2012          

21111619 2012          

21532196 2011          

20817735 2010          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.
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Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

Table S9. Manuscripts reporting compounds with inhibitory activity against MMP-13 since 2010.54,59–82

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

28814230 2017 - - - - - - - -  -

28653849 2017          

27966948 2017          

27981835 2017          

27825552 2016          

27362887 2016          

26938528 2016          

26653735 2016          

25330343 2014          

25264600 2014          

25192810 2014          

23894097 2013          

23810497 2013          

22771631 2012          

22175799 2012          

22153941 2012          

22088955 2012          

22017539 2011          

22018790 2011          

21937229 2011          

21669521 2011          

21661113 2011          

20675133 2010          

19902332 2010          

20005097 2010          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.
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Table S10. Manuscripts reporting compounds with inhibitory activity against MMP-14 since 2010.43,83

PubMed
Identifier

Year

Measured activities

MMP-
1

MMP-
2

MMP-
3

MMP-
7

MMP-
8

MMP-
9

MMP-
10

MMP-
12

MMP-
13

MMP-
14

29473954 2018          

28087697 2017          

MMPs for  which bioactivities have been measured have been labeled with a tick,  and MMPs for  which
bioactivities have not been measured have been labeled with a cross.

Table S11. Ω-loop length and residue sequence for MMP-1, -2, -3, -7, -8, -9, -10, -12, -13, -14.

MMP
Number of

residues in Ω-
loop

Ω-loop sequence

MMP-1 11 238 – PSYTFSGDVQL – 248

MMP-2 11 140 – PIYTYTKNFRL – 150

MMP-3 14 221 – PLYHSLTDLTRFRL – 234

MMP-7 13 239 – PTYGNGDPQNFKL – 251

MMP-8 13 217 – PNYAFRETSNYSL – 229

MMP-9 11 246 – PMYRFTEGPPL – 256

MMP-10 14 237 – PLYNSFTELAQFRL – 250

MMP-12 13 238 – PTYKYVDINTFRL – 250

MMP-13 13 242 – PIYTYTGKSHFML – 254

MMP-14 13 259 – PFYQWMDTENFVL – 271

The residues conserved among all MMPs  are highlighted. The numbers before and after each sequence
segment indicate the location of the first and last segment residue for each MMP.

Table S12.  Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-1 classified by the conformation of their Ω-loop.

Ω-loop
conformation

Representative
subunit

MMP-1 crystal structure subunits

A 2J0T (A) 2CLT (B), 2J0T (A), 2J0T (B), 2J0T (C), 3SHI (A), 3SHI (G), 3SHI (M)

The subunit label is shown in parentheses next to the PDB ID of the structure. A representative subunit
presenting the specified conformation of the Ω-loop is shown. All the structures correspond to apo structures.
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Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

Table S13.  Subunits of experimental  structures deposited in the PDB84,85 with available EDMs for human
MMP-2 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-2 crystal structure subunits

A 3AYU (A) 3AYU (A)

The subunit label is shown in parentheses next to the PDB ID of the structure. A representative subunit
presenting the specified conformation of the Ω-loop is shown. All the structures correspond to apo structures.

Table S14. Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-3 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-3 crystal structure subunits

A 1HFS (A) 1C3I (B), 1C8T (B), 1HFS (A), 1SLM (A), 1SLN (A), 4DPE (A), 4JA1 (A)

B 4G9L (A) 1C3I (A), 4G9L (A)

C 2D1O (A) 2D1O (A), 2D1O (B)

D 4DPE (B) 4DPE (B), 4G9L (B), 4JA1(B)

E 1C8T (A) 1C8T (A)

n/a - 3OHL (A), 3OHO (A)

The chain label  is shown in parentheses next  to the PDB ID of  the structure.  A representative subunit
presenting the specified conformation of  the  Ω-loop is shown.  Subunits  that  belong to the n/a set  lack
coordinates for some of their Ω-loop residues in the corresponding PDB file and, therefore, they cannot be
classified by the conformation of that loop (see also Figure S7G). The subunits that correspond to holo forms

have been underlined.
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Table S15. Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-7 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-7 crystal structure subunits

A 2Y6C (A) 2Y6C (A)

B 2Y6D (A) 2Y6D (A)

The subunit label is shown in parentheses next to the PDB ID of the structure. A representative subunit
presenting the specified conformation of the Ω-loop is shown. All subunits have been underlined indicating
that they correspond to holo forms.

Table S16.  Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-8 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-8 crystal structure subunits

A 1I73 (A)
1BZS (A), 1I73 (A), 1I76 (A), 1JH1 (A), 1JJ9 (A), 1ZP5 (A), 1ZS0 (A),
1ZVX (A), 2OY2 (A), 2OY2 (F), 2OY4 (A), 2OY4 (F), 3TT4 (A), 4QKZ

(A)

B 3DNG (A) 3DNG (A), 3DPE (A), 3DPF (A), 3DPF (B) 

C 5H8X (A) 5H8X (A)

The subunit label is shown in parentheses next to the PDB ID of the structure. A representative subunit
presenting the specified conformation of the  Ω-loop is shown. The subunits that correspond to holo forms
have been underlined.
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Table S17. Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-9 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-9 crystal structure subunits

A 4WZV (A)

1GKC (A), 1GKC (B), 1GKD (A), 1GKD (B), 2OVX (A), 2OVX (B),
2OVZ(A), 2OVZ(B), 2OW0 (A), 2OW0 (B), 2OW1 (A),  2OW1 (B),

2OW2 (A), 4H3X(A), 4H3X(B), 4H82 (A), 4H82 (B), 4H82 (C), 4H82 (D),
4HMA(B), 4HMA (A), 4JIJ (A), 4JIJ (B), 4JQG (A), 4JQG (B), 4WZV (A),

4WZV (B), 4XCT (A), 5CUH (A), 5CUH (B), 5I12 (A)

B 4H2E (A) 4H2E (A), 4H2E (B)

The subunit label is shown in parentheses next to the PDB ID of the structure. A representative subunit
presenting the specified conformation of the  Ω-loop is shown. The subunits that correspond to holo forms
have been underlined.

Table S18. Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-10. 

Ω-loop
conformation

Representative
subunit

MMP-10 crystal structure subunits

n/a - 1Q3A (A), 1Q3A (B), 1Q3A (C), 3V96 (B), 4ILW (D), 4ILW (F)

All of these structures lack coordinates for some of their Ω-loop residues in the corresponding PDB file and,
therefore, they cannot be classified by the conformation of that loop (see also Figure S15). The subunit label
is shown in parentheses next to the PDB ID of the structure. The subunits that correspond to holo forms
have been underlined.
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Table S19. Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-12 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-12 crystal structure subunits

A 1JIZ (A)

1JIZ (A), 1JIZ (B), 1OS2 (A), 1OS2 (B), 1OS2 (C), 1OS2 (D), 1OS2 (E),
1OS2 (F), 1OS9 (A), 1OS9 (B), 1OS9 (C), 1OS9 (D), 1OS9 (E), 1OS9
(F), 1ROS (A), 1ROS (B), 1RMZ (A), 1UTT (A), 1UTZ (A), 1UTZ (B),

1Y93 (A), 2HU6 (A), 2OXU (A), 2OXW (A), 2OXZ (A), 2W0D (A), 2W0D
(B), 2W0D (C), 2W0D (D), 2WO8 (A), 2WO8 (B), 2WO8 (C), 2WO8 (D),

2WO9 (A), 2WO9 (B), 2WO9 (D) 2WOA (B), 2WOA (C), 2WOA (D),
3EHX (A), 3EHY (A), 3F1A (A), 3F15 (A), 3F16 (A), 3F17 (A), 3F18 (A),

3F19 (A), 3LIK (A), 3LIL (A), 3LIR (A), 3LJG (A), 3LK8 (A), 3LKA (A),
3N2U (A), 3N2V (A), 3NX7 (A), 3RTS (A), 3RTT (A), 3TS4 (A), 3TSK
(A), 3UVC (A), 3UVC (B), 4EFS (A), 4GR0 (A), 4GR3 (A), 4GR8 (A),
4GUY (A), 4H30 (A), 4H30 (B), 4H49 (A), 4H49 (B), 4H49 (C), 4H49

(D), 4I03 (A), 4IJO (A), 4H76 (A), 4H84 (A), 4H84 (B)  

B 3BA0 (A) 3BA0 (A)

The subunit label is shown in parentheses next to the PDB ID of the structure. A representative subunit
presenting the specified conformation of the  Ω-loop is shown. The subunits that correspond to holo forms
have been underlined.
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Table S20. Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-13 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-13 crystal structure subunits

A 4FU4 (B)
4FU4 (A), 4FU4 (B), 4FVL (A), 4FVL (B), 4G0D (A), 4G0D (B), 4G0D

(C), 4G0D (D)

B 2YIG (B)
2YIG (B), 3ELM (B), 3WV3 (B), 3ZXH (B), 4JP4 (B), 4JPA (B), 4L19 (A),

5B5O (B), 5B5P (B), 5BOT (B), 5BOY (B), 5BPA (A), 5BPA (B)

C 1YOU (A) 1YOU (A), 1YOU (B)

D 2D1N (B) 2D1N (A), 2D1N (B), 3TVC (A), 4A7B (A)

E 3KRY (A) 3KRY (A), 3KRY (B)

F 3KRY (C) 3KRY (C)

G 3WV1 (B)
2OW9 (A), 2OW9 (B), 3KEC (A), 3KEC (B), 3KEJ (A), 3KEJ (B), 3KEK

(A), 3KEK (B), 3WV1 (A), 3WV1 (B)

H 2OZR (A) 2OZR (A), 2OZR (B), 2OZR (C), 2OZR (D)

I 2OZR (F) 2OZR (F), 2OZR (G)

n/a -

2OZR(E), 2OZR (H), 2YIG (A), 3ELM (A), 3I7G (A), 3I7G (B), 3I7I (A),
3I7I (B), 3KRY (D), 3LJZ (B), 3LJZ (C), 3LJZ (D), 3O2X (A), 3O2X (B),
3O2X (C), 3WV2 (B), 3WV3 (A), 3ZXH (A),   4JP4 (A)  , 4JPA (A), 5B5O

(A), 5B5P(A), 5BOT (A), 5BOY (A)

Subunits that belong to the n/a set lack coordinates for some residues of their Ω-loop in the corresponding
PDB file and, therefore, they cannot be classified by the conformation of that loop (see also Figure S18K).
The subunit label is shown in parentheses next to the PDB ID of the structure. A representative subunit
presenting the specified conformation of the  Ω-loop is shown. The subunits that correspond to holo forms
have been underlined.

Table S21. Subunits of experimental structures deposited in the PDB84,85 with available EDMs for human
MMP-14 classified by the conformation of their Ω-loop. 

Ω-loop
conformation

Representative
subunit

MMP-14 crystal structure subunits

A 3MA2 (A) 3MA2 (A), 3MA2 (D)

The subunit label is shown in parentheses next to the PDB84,85 code of the structure. A representative subunit
presenting the specified conformation of the Ω-loop is shown. All the structures correspond to apo structures.
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Table  S22. LipophilicEVdW term  obtained  from  protein-ligand  docking  using  GlideXP84,85 for  different
compounds against different MMPs. 

Compound
LipophilicEVdW

MMP-2 MMP-3 MMP-8 MMP-9 MMP-12 MMP-13

3 -5.52 -5.99 -6.48 -5.66 -7.19c -5.7

16 -5.25 -5.53 -5.63 -5.37 -6.67a -5.41

PD-0359601 -5.91 -5.95 -5.46 -5.37 -6.54b -5.46

CP-271485 -4.98 -5.39 -4.96 -5.38 -5.41 -4.21

PF-00356231 -5.92 -6.49 -6.57 -6.08 -7.00c -6.29

1 -5.21 -5.26 -5.72 -4.78 -5.41 -5.58

6c -5.30 -5.83 -5.35 -4.92 -6.17 -5.40

7a -5.26 -5.62 -5.79 -4.91 -6.53c -5.39

36 -5.69 -6.37 -6.54 -5.80 -6.88 -6.48

LipophilicEVdW corresponds  to  a  term  from  the  GlideXP  scoring  function  which  is  derived  from  the
hydrophobic grid potential at the hydrophobic ligand atoms. The MMP-2, -3, -8, -9 and -13 structures used
for docking were the structures with PDB86 codes 3AYU (A),84,85 1HFS (A),87 1I73 (A),88 4WZV (A)89 and 2YIG
(A),90 respectively. The MMP-12 structure used for docking in each case corresponded to the structure with
which the compound was co-crystallized (i.e., structures with the PDB IDs 3TS4 (A),71 4EFS (A),91 1ROS
(A),91 1UTT (A),90 1UTZ (A),90 2WO8 (A),90 2WO9 (A),92 2WOA (C)92 and 3LIK (A)92 for inhibitors 3,58 16,91 PD-
0359601,91 CP-271485,90 PF-00356231,90 1,90 6c,92 7a92 and 36,92 respectively.).  a, b, c Statistically significant
outlier values determined by Dixon’s Q test at 99%, 90% and 80% confidence, respectively.
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Figure S1.  Binding site of MMPs. In Panel A, the binding site of MMP-12 is represented (structure with
PDB58 ID 1ROS84,85), showing the different regions of the binding site of MMPs. The residues of the Ω-loop
are in in green, the residues of the wall-forming segment are in purple and other residues of the binding site
are in gray. The ligand is in yellow and the catalytic zinc ion is represented in spacefill format. In Panel B, a
superposition of different structures of MMP-1, -2, -3, -7, -8, -9, -12, -13 and -14 is shown. These structures
correspond to the representative subunits from Tables S12 to S21. Residues for which the electron density
has been considered insufficient to ensure the correctness of their conformation are shown in red. Residues
corresponding to non-natural mutations are in green. Both panels show the same orientation to facilitate
comparison. This figure was obtained with Maestro90 v11.
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Figure S2. Structures and activities of MMP inhibitors.52,58,60,61,67,71,75,91–103 Panel A: peptidomimetic inhibitors;
Panels from B to J: inhibitors sparing MMP-1, -2, -3, -7, -8, -9, -10, -12 and -14, respectively. Panels from K
to O: Inhibitors selective towards MMP-2, -9, -12, -13 and -8, respectively. The highest MMP activity of the
inhibitor is shown at the top (except in panel A) and the rest of MMP activities are sorted in alphanumeric
order, based on the name of the corresponding MMP. Marvin v16.10104 was used to draw the 2D structures of
the inhibitors. The bioactivity data shown in panel A was obtained from Reaxys.105

Figure  S3.  Ω-loop  conformations  of  MMP-1.  Panel  A shows  a  representative  structure  of  the  Ω-loop
conformation of MMP-1 (see Table S12). Panel B shows the superposition of the subunits with available
EDMs that present this conformation (see Table S12). Residues for which the electron density has been
considered insufficient to validate their conformation are shown in red. Non-natural mutations are in green.
For clarity reasons, in all panels  the side-chains facing out of the S1’ pocket were not represented.  This
figure was obtained with Maestro105 v11.
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Figure S4. Docking of 1106 (panel A), 36103 (panel B) and RO-206-022258 (panel C) on MMP-1 compared with
their respective experimental complexes at MMP-13 [PDB98 ID and subunit: 2OW9 (A)84,85], MMP-12 [(PDB103

ID and subunit: 3LIK (A)84,85] and MMP-9 [PDB58 ID and subunit: 2OVX (A)84,85]. The MMP-1 structure used
for docking [PDB98 ID and subunit: 2J0T (A)84,85] is shown in purple, the docked poses for 1107, 36103 and RO-
206-022258 are shown in gray and the ligands and MMP structures from the experimental complexes are
shown in green and orange, respectively. All  panels are in the same orientation to facilitate comparison.
Docking was performed with Glide108 SP. This figure was obtained with Maestro98 v11.

Figure S5. Docking of  2106 on MMP-2 compared with its experimental complex at MMP-13 [PDB103 ID and
subunit:  2OZR (A)84,85].  The MMP-2 structure used for  docking [PDB103 ID and subunit:  3AYU (A)84,85] is
shown  in  purple,  the  docked  poses  are  shown  in  gray  and  the  ligand  and  MMP structure  from the
experimental complex are shown in green and orange, respectively. Docking was performed with Glide108 SP.
This figure was obtained with Maestro87 v11.
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Figure S6.  Docking of  1106 on MMP-2 compared with its experimental complex at MMP-8 [PDB93 ID and
subunit: 3DPE (A)84,85]. The MMP-2 structure used for docking [PDB93 ID and subunit: 3AYU (A)84,85] is shown
in purple, the docked poses are shown in gray and the ligand and MMP structure from the  experimental
complex are shown in green and orange, respectively. For clarity reasons, only the docked poses in which
the ring system of the ligand occupies the S1’ pocket have been represented. Docking was performed with
Glide108 SP. This figure was obtained with Maestro87 v11.
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Figure  S7. Ω-loop  conformations  of  MMP-3.  Panels  B-F  show  the  superposition  of  the  subunits  with
available EDMs that present the conformations from A to E (see Table S14). Panel A shows a superposition
of the representative structures with different Ω-loop conformations in MMP-3, the conformations from A to E
in light green, blue, read, orange and pink, respectively (see Table S14). Panel G shows a superposition of
the subunits that could not be classified due to the lack of coordinates for some residues of the Ω-loopin the
corresponding PDB file. Residues for which the electron density has been considered insufficient to validate
their conformation are in red. Non-natural mutations are shown in green. For clarity reasons, in all panels the
side-chains facing out of the S1’ pocket were not represented.  All panels are in the same orientation to
facilitate comparison. This figure was obtained with Maestro106 v11.
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Figure S8. Docking of 21k106 on MMP-3 compared with its experimental complex at MMP-13 [PDB60 ID and
subunit: 3WV1 (B)84,85]. Panels from A to E show the dockings of 21k60 on MMP-3 structures presenting the
Ω-loop conformations from A to E (see Figure S7 and Table S14). The MMP-3 structures used for docking
[PDB60 IDs and subunits 1HFS (A),84,85 4G9L (A),88 2D1O (A),109 4DPE (B),110 and 1C3I (B)109 for panels from
A to E, respectively] are shown in purple, the docked poses are shown in gray and the ligand and MMP
structure  from the  experimental complex  are  shown  in  green  and  orange,  respectively.  Docking  was
performed with Glide108 SP. This figure was obtained with Maestro111 v11. 

Figure S9. Ω-loop conformations of MMP-7.  Panels B and C show the subunits with available EDMs that
present  the  conformations  A and  B  (see  Table  S15).  Panel  A shows  a  superposition  of  the  A and  B
conformations  in  light  green  and  blue,  respectively.  Residues  for  which  the  electron  density  has  been
considered insufficient to validate their conformation are shown in red. For clarity reasons, in all panels the
side-chains facing out of the S1’ pocket were not represented.  All  panels are in the same orientation to
facilitate comparison. This figure was obtained with Maestro106 v11.
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Figure S10. Docking of 19v106 on MMP-7 compared with its experimental complex at MMP-13 [PDB96 ID and
subunit: 3KRY (A)84,85]. The MMP-7 structure used for docking [PDB96 ID and subunit: 2Y6C (A)84,85] is shown
in purple, the docked poses are shown in gray and the ligand and MMP structure from the  experimental
complex are shown in green and orange, respectively. Docking was performed with Glide108 SP. This figure
was obtained with Maestro41 v11.
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Figure S11. Ω-loop conformations of MMP-8.  Panels from B to D show the subunits with available EDMs
that  present  the  conformations  from  A to  C  (see  Table  S16).  Panel  A shows  a  superposition  of  the
representative structures with different Ω-loop conformations in MMP-8 (see Table S16) with conformations
A, B and C in light green, blue and red respectively.  Residues for  which the electron density has been
considered insufficient to validate their conformation are shown in red. For clarity reasons, in all panels the
side-chains facing out of the S1’ pocket were not represented.  All  panels are in the same orientation to
facilitate comparison. This figure was obtained with Maestro106 v11.

Figure S12. Docking of 21k106 on MMP-8 compared with its experimental complex at MMP-13 [PDB60 ID and
subunit: 3WV1 (B)84,85]. Panels from A to C show the dockings of 21k60 on MMP-8 structures presenting the
Ω-loop conformations from A to C (see Table S16). The MMP-8 structures used for docking [PDB60 IDs and
subunits 1I73 (A),84,85 3DNG (A)89 and 5H8X (A)93 for panels A, B and C, respectively] are shown in purple,
the docked poses are shown in gray and the ligand and MMP structure from the experimental complex are
shown in green and orange, respectively. Docking was performed with Glide108 SP. This figure was obtained
with Maestro112 v11.
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Figure S13. Ω-loop conformations of MMP-9. Panels B and C show the subunits with available EDMs that
present the conformations A and B (see Table S17). Panel A shows a superposition of the representative
structures with different Ω-loop conformations in MMP-9 (see Table S17) with the A and B conformations in
light green and blue, respectively. Residues for which the electron density has been considered insufficient to
validate their conformation are shown in red. For clarity reasons, in all panels the side-chains facing out of
the S1’ pocket were not represented.  All panels are in the same orientation to facilitate comparison. This
figure was obtained with Maestro106 v11.

Figure S14. Docking of  2106 on MMP-9 compared with its experimental complex at MMP-8 [PDB93 ID and
subunit: 3DNG (A)84,85]. Panels A and B show the dockings of 293 on MMP-9 structures presenting the Ω-loop
conformations A and B (see Table S17). The MMP-9 structures used for docking [PDB93 IDs and subunits
4WZV (A)84,85 and 4H2E (A),99 respectively] are shown in purple, the docked poses are shown in gray and the
ligand and MMP structure from the experimental complex are shown in green and orange, respectively. All
panels are in the same orientation to facilitate comparison. Docking was performed with Glide108 SP.  This
figure was obtained with Maestro113 v11.

205

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Manuscript 3

Figure S15. Superposition of the subunits of MMP-10 that could not be classified due to missing residues
(see Table S18). Residues for which the electron density has been considered insufficient to validate their
conformation are shown in red. For clarity reasons, in all panels the side-chains facing out of the S1’ pocket
were not represented. This figure was obtained with Maestro106 v11.

Figure S16. Ω-loop conformations of MMP-12. Panels B and C show the subunits with available EDMs that
present the conformations A and B (see Table S19). Panel A shows a superposition of the representative
structures with different Ω-loop conformations in MMP-12 (see Table S19) with conformations A and B in light
green and blue, respectively. Residues for which the electron density has been considered insufficient to
validate their conformation are shown in red. Non-natural mutations are in green. For clarity reasons, in all
panels  the  side-chains  facing  out  of  the  S1’ pocket  were  not  represented.  All  panels  are  in  the  same
orientation to facilitate comparison. This figure was obtained with Maestro106 v11.
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Figure S17. Docking of 15106 on MMP-12 compared with its experimental complex at MMP-13 [PDB67 ID and
subunit:  5BPA (B)84,85]. Panels A and B show the dockings of 1567 on MMP-12 structures presenting the Ω-
loop conformations A and B (see Table S19).  The MMP-12 structures used for  docking [PDB67 IDs and
subunits 1JIZ (A)84,85 and 3BA0 (A),114 respectively) are shown in purple, the docked poses are shown in gray
and  the  ligand  and  MMP  structure  from the  experimental complex  are  shown  in  green  and orange,
respectively.  All  panels are in the same orientation to facilitate comparison. Docking was performed with
Glide108 SP. This figure was obtained with Maestro115 v11.
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Figure S18. Ω-loop conformations of MMP-13. Panels from B to J show the subunits with available EDMs
that present the conformations from A to I (see Table S20), in light green, blue, red, orange, pink, yellow, dark
green, grey and black, respectively. Panel A shows a superposition of the representative structures with
different Ω-loop conformations in MMP-13 (see Table S20). Panel K shows a superposition of the subunits
that  could not  be classified due to missing residues. Residues for  which the electron density  has been
considered insufficient to validate their conformation are shown in red. For clarity reasons, in all panels the
side-chains facing out of the S1’ pocket were not represented.  All  panels are in the same orientation to
facilitate comparison. This figure was obtained with Maestro106 v11.
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Figure S19. Ω-loop conformations of  MMP-14.  Panel  A shows a representative structure of  the Ω-loop
conformation of MMP-14 (see Table S21). Panel B shows the superposition of the subunits with available
EDMs that present this conformation (see Table S21). Residues for which the electron density has been
considered insufficient to determine their conformation are shown in red. For clarity reasons, in all panels the
side-chains facing out of the S1’ pocket were not represented. This figure was obtained with Maestro106 v11.

Figure S20. Docking of 3106 on MMP-14 compared with its experimental complex at MMP-12 [PDB91 ID and
subunit:  3TS4 (A)84,85].  The MMP-14 structure used for  docking [PDB91 ID and subunit:  3MA2 (A)84,85] is
shown  in  purple,  the  docked  poses  are  shown  in  gray  and  the  ligand  and  MMP structure  from the
experimental complex are shown in green and orange, respectively. For clarity reasons, only the docked
poses in which the ring system of the ligand occupies the S1’ pocket have been represented. Docking was
performed with Glide108 SP. This figure was obtained with Maestro116 v11.

209

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Manuscript 3

References

(1) Ala-aho, R.; Kähäri, V.-M. Collagenases in Cancer. Biochimie 2005, 87 (3–4), 273–286.

(2) Shih, C.-L.  M.;  Ajuwon, K. M. Inhibition of MMP-13 Prevents Diet-Induced Obesity in Mice and
Suppresses Adipogenesis in 3T3-L1 Preadipocytes. Mol. Biol. Rep. 2015, 42 (7), 1225–1232.

(3) Li,  H.;  Wang,  D.;  Yuan,  Y.;  Min,  J.  New  Insights  on  the  MMP-13  Regulatory  Network  in  the
Pathogenesis of Early Osteoarthritis. Arthritis Res. Ther. 2017, 19 (1), 248.

(4) Hu, J.; Van den Steen, P. E.; Sang, Q.-X. a; Opdenakker, G. Matrix Metalloproteinase Inhibitors as
Therapy for Inflammatory and Vascular Diseases. Nat. Rev. Drug Discov. 2007, 6 (6), 480–498.

(5) Rath, T.; Roderfeld, M.; Graf, J.; Wagner, S.; Vehr, A.-K.; Dietrich, C.; Geier, A.; Roeb, E. Enhanced
Expression of  MMP-7 and MMP-13 in Inflammatory Bowel Disease: A Precancerous Potential?
Inflamm. Bowel Dis. 2006, 12 (11), 1025–1035.

(6) Solovуeva, N. I.; Timoshenko, O. S.; Gureeva, T. A.; Kugaevskaya, E. V. Matrix Metalloproteinaseseva, N. I.; Timoshenko, O. S.; Gureeva, T. A.; Kugaevskaya, E. V. Matrix Metalloproteinases
and Their Endogenous Regulators in Squamous Cervical Carcinoma (Review of the Own Data).
Biomeditsinskaya Khimiya 2015, 61 (6), 694–704.

(7) Rabkin, S. W. The Role Matrix Metalloproteinases in the Production of Aortic Aneurysm. Prog. Mol.
Biol. Transl. Sci. 2017, 147, 239–265.

(8) Arakaki, P. A.; Marques, M. R.; Santos, M. C. L. G. MMP-1 Polymorphism and Its Relationship to
Pathological Processes. J. Biosci. 2009, 34 (2), 313–320.

(9) Radosinska, J.; Barancik, M.; Vrbjar, N. Heart Failure and Role of Circulating MMP-2 and MMP-9.
Panminerva Med. 2017, 59 (3), 241–253.

(10) Overall, C. M.; López-Otín, C. Strategies for MMP Inhibition in Cancer: Innovations for the Post-Trial
Era. Nat. Rev. Cancer 2002, 2 (9), 657–672.

(11) Kurzepa, J.; M, A.; Czechowska, G.; Kurzepa, J.; Celiński, K.; Kazmierak, W.; Slstrokomka, M. Role
of MMP-2 and MMP-9 and Their Natural Inhibitors in Liver Fibrosis, Chronic Pancreatitis and Non-
Specific Inflammatory Bowel Diseases. Hepatobiliary Pancreat. Dis. Int. 2014, 13 (6), 570–579.

(12) Siloşi, I.; Boldeanu, M. V.; Mogoantă, S. Ş.; Ghiluşi, M.; Cojocaru, M.; Biciuşcă, V.; Cojocaru, I. M.;
Avrămescu, C. S.; Gheonea, D. I.; Siloşi, C. A.; et al. Matrix Metalloproteinases (MMP-3 and MMP-
9) Implication in the Pathogenesis of Inflammatory Bowel Disease (IBD). Rom. J. Morphol. Embryol.
2014, 55 (4), 1317–1324.

(13) Romero, A. M.; Mastromatteo-Alberga, P.; Escalona, L.; Correnti, M. [MMP-3 and MMP-8 Levels in
Patients with Chronic Periodontitis before and after Nonsurgical Periodontal Therapy]. Invest. Clin.
2013, 54 (2), 138–148.

(14) Beton, O.; Arslan, S.; Acar, B.; Ozbilum, N.; Berkan, O. Association between MMP-3 and MMP-9
Polymorphisms and Coronary Artery Disease. Biomed. reports 2016, 5 (6), 709–714.

(15) Huang, H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors:
Recent Advances. Sensors (Basel). 2018, 18 (10), 3249.

210

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

(16) Gharib, S. A.; Manicone, A. M.; Parks, W. C. Matrix Metalloproteinases in Emphysema. Matrix Biol.
2018, 73, 34–51.

(17) Rodriguez, J.  A.;  Orbe, J.;  Martinez de Lizarrondo,  S.;  Calvayrac, O.;  Rodriguez, C.;  Martinez-
Gonzalez, J.; Paramo, J. A. Metalloproteinases and Atherothrombosis: MMP-10 Mediates Vascular
Remodeling Promoted by Inflammatory Stimuli. Front. Biosci. 2008, 13, 2916–2921.

(18) Chelluboina, B.; Nalamolu, K. R.; Klopfenstein, J. D.; Pinson, D. M.; Wang, D. Z.; Vemuganti, R.;
Veeravalli,  K.  K.  MMP-12,  a  Promising  Therapeutic  Target  for  Neurological  Diseases.  Mol.
Neurobiol. 2018, 55 (2), 1405–1409.

(19) Placzek, S.; Schomburg, I.; Chang, A.; Jeske, L.; Ulbrich, M.; Tillack, J.; Schomburg, D. BRENDA in
2017: New Perspectives and New Tools in BRENDA.  Nucleic Acids Res. 2017,  45 (D1), D380–
D388.

(20) Kanehisa, M.; Sato, Y.; Furumichi, M.; Morishima, K.; Tanabe, M. New Approach for Understanding
Genome Variations in KEGG. Nucleic Acids Res.

(21) Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel,
V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB Bioinformatics Resource Portal. Nucleic Acids Res.
2012, 40 (W1), W597–W603.

(22) Rawlings, N. D.; Barrett, A. J.; Thomas, P. D.; Huang, X.; Bateman, A.; Finn, R. D. The MEROPS
Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with
Peptidases in the PANTHER Database. Nucleic Acids Res. 2018, 46 (D1), D624–D632.

(23) Li,  Y.;  Voorhees,  J.  J.;  Fisher,  G.  J.  Identification  of  Dihydrogambogic  Acid  as  a  Matrix
Metalloproteinase  1  Inhibitor  by  High-Throughput  Screening.  Clin.  Cosmet.  Investig.  Dermatol.
2017, Volume 10, 499–502.

(24) Yuan, H.; Lu, W.; Wang, L.; Shan, L.; Li, H.; Huang, J.; Sun, Q.; Zhang, W. Synthesis of Derivatives
of Methyl Rosmarinate and Their Inhibitory Activities against Matrix Metalloproteinase-1 (MMP-1).
Eur. J. Med. Chem. 2013, 62, 148–157.

(25) Wang, Z.-C.; Shen, F.-Q.; Yang, M.-R.; You, L.-X.; Chen, L.-Z.; Zhu, H.-L.; Lu, Y.-D.; Kong, F.-L.;
Wang, M.-H. Dihydropyrazothiazole Derivatives as Potential MMP-2/MMP-8 Inhibitors for Cancer
Therapy. Bioorg. Med. Chem. Lett. 2018.

(26) Shamsara, J. Identification of Non-Zinc Binding Inhibitors of MMP-2 Through Virtual Screening and
Subsequent Rescoring. Drug Res. (Stuttg). 2018, 68 (09), 529–535.

(27) Romanchikova,  N.;  Trapencieris,  P.;  Zemītis,  J.;  Turks,  M.  A Novel  Matrix  Metalloproteinase-2
Inhibitor  Triazolylmethyl  Aziridine  Reduces  Melanoma  Cell  Invasion,  Angiogenesis  and  Targets
ERK1/2 Phosphorylation. J. Enzyme Inhib. Med. Chem. 2014, 29 (6), 765–772.

(28) Gooyit, M.; Song, W.; Mahasenan, K. V; Lichtenwalter, K.; Suckow, M. A.; Schroeder, V. A.; Wolter,
W. R.; Mobashery, S.; Chang, M. O-Phenyl Carbamate and Phenyl Urea Thiiranes as Selective
Matrix Metalloproteinase-2 Inhibitors That Cross the Blood-Brain Barrier.  J. Med. Chem. 2013,  56
(20), 8139–8150.

(29) Fabre, B.; Filipiak, K.; Zapico, J. M.; Díaz, N.; Carbajo, R. J.; Schott, A. K.; Martínez-Alcázar, M. P.;
Suárez, D.; Pineda-Lucena, A.; Ramos, A.; et al. Progress towards Water-Soluble Triazole-Based
Selective MMP-2 Inhibitors. Org. Biomol. Chem. 2013, 11 (38), 6623.

211

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Manuscript 3

(30) Di Pizio, A.; Laghezza, A.; Tortorella, P.; Agamennone, M. Probing the S1’ Site for the Identification
of Non-Zinc-Binding MMP-2 Inhibitors. ChemMedChem 2013, 8 (9), 1421–1482.

(31) Higashi, S.; Hirose, T.; Takeuchi, T.; Miyazaki, K. Molecular Design of a Highly Selective and Strong
Protein Inhibitor against Matrix Metalloproteinase-2 (MMP-2). J. Biol. Chem. 2013, 288 (13), 9066–
9076.

(32) Zapico, J. M.; Serra, P.; García-Sanmartín, J.; Filipiak, K.; Carbajo, R. J.; Schott, A. K.; Pineda-
Lucena,  A.;  Martínez,  A.;  Martín-Santamaría,  S.;  de Pascual-Teresa,  B.;  et  al.  Potent  “Clicked”
MMP2 Inhibitors: Synthesis, Molecular Modeling and Biological Exploration.  Org. Biomol. Chem.
2011, 9 (12), 4587.

(33) Bencsik, P.; Kupai, K.; Görbe, A.; Kenyeres, É.; Varga, Z. V; Pálóczi, J.; Gáspár, R.; Kovács, L.;
Weber,  L.;  Takács,  F.;  et  al.  Development  of  Matrix  Metalloproteinase-2  Inhibitors  for
Cardioprotection. Front. Pharmacol. 2018, 9, 296.

(34) Adhikari,  N.;  Halder,  A. K.;  Mallick,  S.;  Saha,  A.;  Saha,  K. D.;  Jha, T. Robust Design of Some
Selective  Matrix  Metalloproteinase-2  Inhibitors  over  Matrix  Metalloproteinase-9  through  in
Silico/Fragment-Based  Lead  Identification  and  de  Novo  Lead  Modification:  Syntheses  and
Biological Assays. Bioorg. Med. Chem. 2016, 24 (18), 4291–4309.

(35) He,  W.;  Jiang,  J.;  Yu,  Z.-Q.;  Zhou,  J.-H.  Novel  5-Hydroxy,  5-Substituted  Benzenesulfonamide
Pyrimidine-2,4,6-Triones Attenuate Lipopolysaccharide-Induced Acute Lung Injury via Inhibition of
the Gelatinases, MMP-2 and MMP-9. Drug Dev. Res. 2016, 77 (5), 251–257.

(36) Song, J.; Peng, P.; Chang, J.; Liu, M. M.; Yu, J. M.; Zhou, L.; Sun, X. Selective Non-Zinc Binding
MMP-2  Inhibitors:  Novel  Benzamide  Ilomastat  Analogs  with  Anti-Tumor  Metastasis.  Bioorganic
Med. Chem. Lett. 2016, 26 (9), 2174–2178.

(37) Wang, P.-F.; Qiu, H.-Y.; Baloch, S. K.; Gong, H.-B.; Wang, Z.-C.; Zhu, H.-L. Synthesis, Biological
Evaluation, and Docking of Dihydropyrazole Sulfonamide Containing 2-Hydroxyphenyl Moiety:  A
Series of Novel MMP-2 Inhibitors. Chem. Biol. Drug Des. 2015, 86 (6), 1405–1410.

(38) Yan, X. Q.; Wang, Z. C.; Li, Z.; Wang, P. F.; Qiu, H. Y.; Chen, L. W.; Lu, X. Y.; Lv, P. C.; Zhu, H. L.
Sulfonamide Derivatives Containing Dihydropyrazole Moieties Selectively and Potently Inhibit MMP-
2/MMP-9: Design, Synthesis,  Inhibitory Activity and 3D-QSAR Analysis.  Bioorganic Med. Chem.
Lett. 2015, 25 (20), 4664–4671.

(39) Rane, R. A.; Naphade, S. S.; Bangalore, P. K.; Palkar, M. B.; Patel, H. M.; Shaikh, M. S.; Alwan, W.
S.;  Karpoormath, R. Synthesis  of  Novel  Hybrids Inspired from Bromopyrrole Alkaloids Inhibiting
MMP-2 and -12 as Antineoplastic Agents. Chem. Biol. Drug Des. 2015, 86 (2), 210–222.

(40) Nanjan, P.; Nambiar, J.; Nair, B. G.; Banerji, A. Synthesis and Discovery of (I-3,II-3)-Biacacetin as a
Novel Non-Zinc Binding Inhibitor  of  MMP-2 and MMP-9.  Bioorganic Med. Chem. 2015,  23 (13),
3781–3787.

(41) Edman, K.; Furber, M.; Hemsley, P.; Johansson, C.; Pairaudeau, G.; Petersen, J.; Stocks, M.; Tervo,
A.;  Ward,  A.;  Wells,  E.;  et  al.  The Discovery of  MMP7 Inhibitors Exploiting a Novel  Selectivity
Trigger. ChemMedChem 2011, 6 (5), 769–773.

(42) Hou,  J.;  Zou,  Q.;  Wang,  Y.;  Gao,  Q.;  Yao,  W.;  Yao,  Q.;  Zhang,  J.  Screening for  the Selective
Inhibitors  of  MMP-9 from Natural  Products  Based on Pharmacophore  Modeling  and Molecular

212

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

Docking in Combination with Bioassay Experiment, Hybrid QM/MM Calculation, and MD Simulation.
J. Biomol. Struct. Dyn. 2018, 1–50.

(43) Shirian, J.; Arkadash, V.; Cohen, I.; Sapir, T.; Radisky, E. S.; Papo, N.; Shifman, J. M. Converting a
Broad Matrix Metalloproteinase Family Inhibitor into a Specific Inhibitor of MMP-9 and MMP-14.
FEBS Lett. 2018, 592 (7), 1122–1134.

(44) Gao, Q.; Wang, Y.; Hou, J.; Yao, Q.; Zhang, J. Multiple Receptor-Ligand Based Pharmacophore
Modeling and Molecular Docking to Screen the Selective Inhibitors of Matrix Metalloproteinase-9
from Natural Products. J. Comput. Aided. Mol. Des. 2017, 31 (7), 625–641.

(45) Zheng,  X.-Z.;  Zhou,  J.-L.;  Ye,  J.;  Guo,  P.-P.;  Lin,  C.-S.  Cardioprotective  Effect  of  Novel
Sulphonamides-1,3,5-Triazine  Conjugates  against  Ischaemic-Reperfusion  Injury  via  Selective
Inhibition of MMP-9. Chem. Biol. Drug Des. 2016, 88 (5), 756–765.

(46) Kalva, S.; Azhagiya Singam, E. R.; Rajapandian, V.; Saleena, L. M.; Subramanian, V. Discovery of
Potent Inhibitor for Matrix Metalloproteinase-9 by Pharmacophore Based Modeling and Dynamics
Simulation Studies. J. Mol. Graph. Model. 2014, 49, 25–37.

(47) Mori,  M.;  De Lorenzo,  E.;  Torre,  E.;  Fragai,  M.;  Nativi,  C.;  Luchinat,  C.;  Arcangeli,  A.  A Highly
Soluble Matrix Metalloproteinase-9 Inhibitor for Potential Treatment of Dry Eye Syndrome.  Basic
Clin. Pharmacol. Toxicol. 2012, 111 (5), 289–295.

(48) Wang, J.;  O’Sullivan, S.;  Harmon, S.;  Keaveny, R.;  Radomski,  M. W.;  Medina, C.;  Gilmer,  J.  F.
Design of Barbiturate-Nitrate Hybrids That Inhibit  MMP-9 Activity and Secretion.  J. Med. Chem.
2012, 55 (5), 2154–2162.

(49) Senn, N.; Ott, M.; Lanz, J.; Riedl, R. Targeted Polypharmacology: Discovery of a Highly Potent Non-
Hydroxamate Dual Matrix Metalloproteinase (MMP)-10/-13 Inhibitor. J. Med. Chem. 2017,  60 (23),
acs.jmedchem.7b01001.

(50) Nuti, E.; Cuffaro, D.; Bernardini, E.; Camodeca, C.; Panelli, L.; Chaves, S.; Ciccone, L.; Tepshi, L.;
Vera, L.; Orlandini, E.; et al. Development of Thioaryl-Based Matrix Metalloproteinase-12 Inhibitors
with  Alternative  Zinc-Binding  Groups:  Synthesis,  Potentiometric,  NMR,  and  Crystallographic
Studies. J. Med. Chem. 2018, 61 (10), 4421–4435.

(51) Butsch,  V.;  Börgel,  F.;  Galla,  F.;  Schwegmann,  K.;  Hermann,  S.;  Schäfers,  M.;  Riemann,  B.;
Wünsch, B.; Wagner, S. Design, (Radio)Synthesis, and in Vitro and in Vivo Evaluation of Highly
Selective and Potent Matrix Metalloproteinase 12 (MMP-12) Inhibitors as Radiotracers for Positron
Emission Tomography. J. Med. Chem. 2018, 61 (9), 4115–4134.

(52) Nuti,  E.;  Cuffaro,  D.;  D’Andrea,  F.;  Rosalia,  L.;  Tepshi,  L.;  Fabbi,  M.;  Carbotti,  G.;  Ferrini,  S.;
Santamaria, S.; Camodeca, C.; et al. Sugar-Based Arylsulfonamide Carboxylates as Selective and
Water-Soluble Matrix Metalloproteinase-12 Inhibitors. ChemMedChem 2016, 11 (15), 1626–1637.

(53) Aerts, J.; Vandenbroucke, R. E.; Dera, R.; Balusu, S.; Van Wonterghem, E.; Moons, L.; Libert, C.;
Dehaen, W.; Arckens, L. Synthesis and Validation of a Hydroxypyrone-Based, Potent, and Specific
Matrix Metalloproteinase-12 Inhibitor with Anti-Inflammatory Activity In Vitro and In Vivo. Mediators
Inflamm. 2015, 2015, 510679.

(54) Santamaria, S.; Nuti, E.; Cercignani, G.; Marinelli, L.; La Pietra, V.; Novellino, E.; Rossello, A. N-O-
Isopropyl Sulfonamido-Based Hydroxamates: Kinetic Characterisation of a Series of MMP-12/MMP-
13 Dual Target Inhibitors. Biochem. Pharmacol. 2012, 84 (6), 813–820.

213

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Manuscript 3

(55) Wu, Y.; Li, J.; Wu, J.; Morgan, P.; Xu, X.; Rancati, F.; Vallese, S.; Raveglia, L.; Hotchandani, R.;
Fuller,  N.;  et  al.  Discovery of  Potent  and Selective Matrix  Metalloprotease 12 Inhibitors for  the
Potential Treatment of Chronic Obstructive Pulmonary Disease (COPD). Bioorg. Med. Chem. Lett.
2012, 22 (1), 138–143.

(56) Badland,  M.;  Compère,  D.;  Courté,  K.;  Dublanchet,  A.-C.;  Blais,  S.;  Manage,  A.;  Peron,  G.;
Wrigglesworth, R. Thiophene and Bioisostere Derivatives as New MMP12 Inhibitors. Bioorg. Med.
Chem. Lett. 2011, 21 (1), 528–530.

(57) Ando, N.; Terashima, S. Synthesis and Matrix Metalloproteinase-12 Inhibitory Activity of Ageladine A
Analogs. Chem. Pharm. Bull. (Tokyo). 2011, 59 (5), 579–596.

(58) Devel, L.; Garcia, S.; Czarny, B.; Beau, F.; Lajeunesse, E.; Vera, L.; Georgiadis, D.; Stura, E.; Dive,
V. Insights from Selective Non-Phosphinic Inhibitors of MMP-12 Tailored to Fit with an S1’ Loop
Canonical Conformation. J. Biol. Chem. 2010, 285 (46), 35900–35909.

(59) Ramezani,  M.;  Shamsara,  J.  Virtual  Screening on MMP-13 Led to  Discovering  New Inhibitors
Including a Non-Zinc Binding and a Micro Molar One: A Successful Example of Receptor Selection
According to Cross-Docking Results for a Flexible Enzyme. Comb. Chem. High Throughput Screen.
2017, 20 (8), 719–725.

(60) Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.;
Terauchi, J.; et al. Discovery of Novel, Highly Potent, and Selective Quinazoline-2- Carboxamide-
Based  Matrix  Metalloproteinase  (MMP)-13  Inhibitors  without  a  Zinc  Binding  Group  Using  a
Structure-Based Design Approach. J. Med. Chem. 2014, 57 (21), 8886–8902.

(61) Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.;
Terauchi, J.; et al. Thieno[2,3-d]Pyrimidine-2-Carboxamides Bearing a Carboxybenzene Group at 5-
Position: Highly Potent, Selective, and Orally Available MMP-13 Inhibitors Interacting with the S1’’
Binding Site. Bioorganic Med. Chem. 2014, 22 (19), 5487–5505.

(62) Fischer, T.; Riedl, R. Strategic Targeting of Multiple Water-Mediated Interactions: A Concise and
Rational  Structure-Based  Design  Approach  to  Potent  and  Selective  MMP-13  Inhibitors.
ChemMedChem 2013, 8 (9), 1457–1461.

(63) De Savi, C.; Waterson, D.; Pape, A.; Lamont, S.; Hadley, E.; Mills, M.; Page, K. M.; Bowyer, J.;
Maciewicz, R. A. Hydantoin Based Inhibitors of MMP13 - Discovery of AZD6605. Bioorganic Med.
Chem. Lett. 2013, 23 (16), 4705–4712.

(64) Gege, C.; Bao, B.; Bluhm, H.; Boer, J.; Gallagher, B. M.; Korniski, B.; Powers, T. S.; Steeneck, C.;
Taveras, A. G.; Baragi, V. M. Discovery and Evaluation of a Non-Zn Chelating, Selective Matrix
Metalloproteinase 13 (MMP-13) Inhibitor for Potential Intra-Articular Treatment of Osteoarthritis.  J.
Med. Chem. 2012, 55 (2), 709–716.

(65) De  Savi,  C.;  Morley,  A.  D.;  Nash,  I.;  Karoutchi,  G.;  Page,  K.;  Ting,  A.;  Gerhardt,  S.  Lead
Optimisation of Selective Non-Zinc Binding Inhibitors of MMP13. Part 2.  Bioorganic Med. Chem.
Lett. 2012, 22 (1), 271–277.

(66) La Pietra, V.; Marinelli, L.; Cosconati, S.; Di Leva, F. S.; Nuti, E.; Santamaria, S.; Pugliesi, I.; Morelli,
M.; Casalini, F.; Rossello, A.; et al.  Identification of Novel Molecular Scaffolds for the Design of
MMP-13 Inhibitors: A First Round of Lead Optimization. Eur. J. Med. Chem. 2012, 47 (1), 143–152.

214

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

(67) Taylor, S. J.; Abeywardane, A.; Liang, S.; Muegge, I.; Padyana, A. K.; Xiong, Z.; Hill-Drzewi, M.;
Farmer,  B.;  Li,  X.;  Collins,  B.;  et  al.  Fragment-Based  Discovery  of  Indole  Inhibitors  of  Matrix
Metalloproteinase-13. J. Med. Chem. 2011, 54 (23), 8174–8187.

(68) Roth,  J.;  Minond,  D.;  Darout,  E.;  Liu,  Q.;  Lauer,  J.;  Hodder,  P.;  Fields,  G.  B.;  Roush,  W.  R.
Identification  of  Novel,  Exosite-Binding  Matrix  Metalloproteinase-13  Inhibitor  Scaffolds.  Bioorg.
Med. Chem. Lett. 2011, 21 (23), 7180–7184.

(69) Tommasi, R. A.; Weiler, S.; Mcquire, L. W.; Rogel, O.; Chambers, M.; Clark, K.; Doughty, J.; Fang,
J.; Ganu, V.; Grob, J.; et al. Potent and Selective 2-Naphthylsulfonamide Substituted Hydroxamic
Acid Inhibitors of Matrix Metalloproteinase-13.  Bioorganic Med. Chem. Lett. 2011,  21 (21), 6440–
6445.

(70) Choi, J. Y.; Fuerst, R.; Knapinska, A. M.; Taylor, A. B.; Smith, L.; Cao, X.; Hart, P. J.; Fields, G. B.;
Roush,  W.  R.  Structure-Based  Design  and  Synthesis  of  Potent  and  Selective  Matrix
Metalloproteinase 13 Inhibitors. J. Med. Chem. 2017, 60 (13), 5816–5825.

(71) Savi, C. De; Morley, A. D.; Ting, A.; Nash, I.; Karabelas, K.; Wood, C. M.; James, M.; Norris, S. J.;
Karoutchi, G.; Rankine, N.; et al. Selective Non Zinc Binding Inhibitors of MMP13. Bioorganic Med.
Chem. Lett. 2011, 21 (14), 4215–4219.

(72) Vicini,  P.;  Crascì,  L.;  Incerti,  M.;  Ronsisvalle,  S.;  Cardile,  V.;  Panico,  A.  M.
Benzisothiazolyliminothiazolidin-4-Ones  with  Chondroprotective  Properties:  Searching  for  Potent
and Selective Inhibitors of MMP-13. ChemMedChem 2011, 6 (7), 1199–1202.

(73) Gao, D. A.; Xiong, Z.; Heim-Riether, A.; Amodeo, L.; August, E. M.; Cao, X.; Ciccarelli, L.; Collins, B.
K.;  Harrington,  K.;  Haverty,  K.;  et  al.  SAR  Studies  of  Non-Zinc-Chelating  MMP-13  Inhibitors:
Improving Selectivity and Metabolic Stability.  Bioorganic Med. Chem. Lett. 2010,  20 (17), 5039–
5043.

(74) Piecha, D.; Weik, J.; Kheil, H.; Becher, G.; Timmermann, A.; Jaworski, A.; Burger, M.; Hofmann, M.
W. Novel Selective MMP-13 Inhibitors Reduce Collagen Degradation in Bovine Articular and Human
Osteoarthritis Cartilage Explants. Inflamm. Res. 2010, 59 (5), 379–389.

(75) Schnute, M. E.; O’Brien, P. M.; Nahra, J.; Morris, M.; Howard Roark, W.; Hanau, C. E.; Ruminski, P.
G.; Scholten, J. A.; Fletcher, T. R.; Hamper, B. C.; et al. Discovery of (Pyridin-4-Yl)-2H-Tetrazole as
a Novel Scaffold to Identify Highly Selective Matrix Metalloproteinase-13 Inhibitors for the Treatment
of Osteoarthritis. Bioorg. Med. Chem. Lett. 2010, 20 (2), 576–580.

(76) Nara, H.; Kaieda, A.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.;
Kanzaki,  N.;  et  al.  Discovery  of  Novel,  Highly  Potent,  and  Selective  Matrix  Metalloproteinase
(MMP)-13 Inhibitors with a 1,2,4-Triazol-3-Yl Moiety as a Zinc Binding Group Using a Structure-
Based Design Approach. J. Med. Chem. 2017, 60 (2), 608–626.

(77) Hugenberg, V.; Wagner, S.; Kopka, K.; Schäfers, M.; Schuit, R. C.; Windhorst, A. D.; Hermann, S.
Radiolabeled Selective Matrix Metalloproteinase 13 (MMP-13) Inhibitors: (Radio)Syntheses and in
Vitro and First in Vivo Evaluation. J. Med. Chem. 2017, 60 (1), 307–321.

(78) Nara, H.; Sato, K.; Kaieda, A.; Oki, H.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.;
Kori, M. Design, Synthesis, and Biological Activity of Novel, Potent, and Highly Selective Fused
Pyrimidine-2-Carboxamide-4-One-Based  Matrix  Metalloproteinase  (MMP)-13  Zinc-Binding
Inhibitors. Bioorganic Med. Chem. 2016, 24 (23), 6149–6165.

215

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Manuscript 3

(79) Kothapalli,  R.;  Sivaraman  Siveen,  K.;  Tan,  T.  Z.;  Paul  Thiery,  J.;  Kumar,  A.  P.;  Sethi,  G.;
Swaminathan,  K.  Functional  Characterization  of  Selective  Exosite-Binding  Inhibitors  of  Matrix
Metalloproteinase-13  (MMP-13)  -  Experimental  Validation  in  Human  Breast  and Colon Cancer.
Biosci. Biotechnol. Biochem. 2016, 80 (11), 1–10.

(80) Fischer, T.; Riedl, R. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based
Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand
Efficiencies. Int. J. Mol. Sci. 2016, 17 (3), 314.

(81) Ruminski, P. G.; Massa, M.; Strohbach, J.; Hanau, C. E.; Schmidt, M.; Scholten, J. A.; Fletcher, T.
R.; Hamper, B. C.; Carroll, J. N.; Shieh, H. S.; et al. Discovery of N-(4-Fluoro-3-Methoxybenzyl)-6-
(2-(((2S,5R)-5-(Hydroxymethyl)-1,4-Dioxan-2-Yl)Methyl)-2H-Tetrazol-5-Yl)-2-Methylpyrimidine-4-
Carboxamide. A Highly Selective and Orally Bioavailable Matrix Metalloproteinase-13 Inhibitor for
the Potential Treat. J. Med. Chem. 2016, 59 (1), 313–327.

(82) Spicer, T. P.; Jiang, J.; Taylor, A. B.; Choi, J. Y.; Hart, P. J.; Roush, W. R.; Fields, G. B.; Hodder, P.
S.; Minond, D. Characterization of Selective Exosite-Binding Inhibitors of Matrix Metalloproteinase
13 That Prevent Articular Cartilage Degradation in Vitro. J. Med. Chem. 2014, 57 (22), 9598–9611.

(83) Arkadash, V.; Yosef, G.; Shirian, J.; Cohen, I.; Horev, Y.; Grossman, M.; Sagi, I.; Radisky, E. S.;
Shifman,  J.  M.;  Papo,  N. Development  of  High Affinity  and High Specificity  Inhibitors  of  Matrix
Metalloproteinase 14 through Computational Design and Directed Evolution.  J. Biol. Chem. 2017,
292 (8), 3481–3495.

(84) RCSB PDB http://www.rcsb.org.

(85) Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 2000, 28 (1), 235–242.

(86) Friesner,  R.  a;  Murphy,  R.  B.;  Repasky,  M.  P.;  Frye,  L.  L.;  Greenwood,  J.  R.;  Halgren,  T.  a;
Sanschagrin, P. C.; Mainz, D. T. Extra Precision Glide: Docking and Scoring Incorporating a Model
of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 2006, 49 (21), 6177–6196.

(87) Hashimoto, H.; Takeuchi, T.; Komatsu, K.; Miyazaki, K.; Sato, M.; Higashi, S. Structural Basis for
Matrix  Metalloproteinase-2  (MMP-2)-Selective  Inhibitory  Action  of  β-Amyloid  Precursor  Protein-
Derived Inhibitor. J. Biol. Chem. 2011, 286 (38), 33236–33243.

(88) Esser, C. K.; Bugianesi, R. L.; Caldwell, C. G.; Chapman, K. T.; Durette, P. L.; Girotra, N. N.; Kopka,
I. E.; Lanza, T. J.; Levorse, D. A.; MacCoss, M.; et al. Inhibition of Stromelysin-1 (MMP-3) by P1’-
Biphenylylethyl Carboxyalkyl Dipeptides. J. Med. Chem. 1997, 40 (6), 1026–1040.

(89) Gavuzzo, E.; Pochetti, G.; Mazza, F.; Gallina, C.; Gorini, B.; D’Alessio, S.; Pieper, M.; Tschesche,
H.; Tucker, P. A. Two Crystal Structures of Human Neutrophil Collagenase, One Complexed with a
Primed-  and the  Other  with  an Unprimed-Side Inhibitor:  Implications for  Drug Design.  J.  Med.
Chem. 2000, 43 (18), 3377–3385.

(90) Morales, R.; Perrier, S.; Florent, J. M.; Beltra, J.; Dufour, S.; De Mendez, I.; Manceau, P.; Tertre, A.;
Moreau,  F.;  Compere,  D.;  et  al.  Crystal  Structures  of  Novel  Non-Peptidic,  Non-Zinc  Chelating
Inhibitors Bound to MMP-12. J. Mol. Biol. 2004, 341 (4), 1063–1076.

(91) Devel, L.; Beau, F.; Amoura, M.; Vera, L.; Cassar-Lajeunesse, E.; Garcia, S.; Czarny, B.; Stura, E.
A.;  Dive, V. Simple Pseudo-Dipeptides with a P2’ Glutamate: A Novel  Inhibitor  Family of  Matrix
Metalloproteases and Other Metzincins. J. Biol. Chem. 2012, 287 (32), 26647–26656.

216

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Understanding the variability of the S1’ pocket to improve MMPI selectivity profiles

(92) Holmes, I. P. P.; Gaines, S.; Watson, S. P. P.; Lorthioir, O.; Walker, A.; Baddeley, S. J. J.; Herbert,
S.; Egan, D.; Convery, M. A. M. A. M. A. A.; Singh, O. M. P. M. P.; et al. The Identification of β-
Hydroxy Carboxylic Acids as Selective MMP-12 Inhibitors.  Bioorganic Med. Chem. Lett. 2009,  19
(19), 5760–5763.

(93) Pochetti, G.; Montanari, R.; Gege, C.; Chevrier, C.; Taveras, A. G.; Mazza, F. Extra Binding Region
Induced by Non-Zinc Chelating Inhibitors into the S1’ Subsite of Matrix Metalloproteinase 8 (MMP-
8). J. Med. Chem. 2009, 52 (4), 1040–1049.

(94) Heim-Riether, A.; Taylor, S. J.; Liang, S.; Gao, D. A.; Xiong, Z.; Michael August, E.; Collins, B. K.;
Farmer, B. T.; Haverty, K.; Hill-Drzewi, M.; et al. Improving Potency and Selectivity of a New Class
of Non-Zn-Chelating MMP-13 Inhibitors. Bioorganic Med. Chem. Lett. 2009, 19 (18), 5321–5324.

(95) Shieh,  H.  S.;  Tomasselli,  A.  G.;  Mathis,  K.  J.;  Schnute,  M.  E.;  Woodard,  S.  S.;  Caspers,  N.;
Williams, J. M.; Kiefer, J. R.; Munie, G.; Wittwer, A.; et al. Structure Analysis Reveals the Flexibility
of the ADAMTS-5 Active Site. Protein Sci. 2011, 20 (4), 735–744.

(96) Becker,  D. P.;  Barta,  T. E.;  Bedell,  L.  J.;  Boehm, T.  L.;  Bond, B.  R.;  Carroll,  J.;  Carron,  C. P.;
Decrescenzo,  G.  A.;  Easton,  A.  M.;  Freskos,  J.  N.;  et  al.  Orally  Active  MMP-1  Sparing  α-
Tetrahydropyranyl and α-Piperidinyl Sulfone Matrix Metalloproteinase (MMP) Inhibitors with Efficacy
in Cancer, Arthritis, and Cardiovascular Disease. J. Med. Chem. 2010, 53 (18), 6653–6680.

(97) Monovich, L. G.; Tommasi, R. A.; Fujimoto, R. A.; Blancuzzi, V.; Clark, K.; Cornell, W. D.; Doti, R.;
Doughty, J.; Fang, J.; Farley, D.; et al. Discovery of Potent, Selective, and Orally Active Carboxylic
Acid Based Inhibitors of Matrix Metalloproteinase-13. J Med Chem 2009, 52 (11), 3523–3538.

(98) Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, M.; Bode, W.;
Goettig, P. Crystal Structures of MMP-9 Complexes with Five Inhibitors: Contribution of the Flexible
Arg424 Side-Chain to Selectivity. J. Mol. Biol. 2007, 371 (4), 989–1006.

(99) Nuti, E.; Cantelmo, A. R.; Gallo, C.; Bruno, A.; Bassani, B.; Camodeca, C.; Tuccinardi, T.; Vera, L.;
Orlandini,  E.;  Nencetti,  S.;  et  al.  N-O-Isopropyl  Sulfonamido-Based  Hydroxamates  as  Matrix
Metalloproteinase Inhibitors: Hit Selection and in Vivo Antiangiogenic Activity. J. Med. Chem. 2015,
58 (18), 7224–7240.

(100) Camodeca, C.; Nuti, E.; Tepshi, L.; Boero, S.; Tuccinardi, T.; Stura, E. A.; Poggi, A.; Zocchi, M. R.;
Rossello, A. Discovery of a New Selective Inhibitor of A Disintegrin and Metalloprotease 10 (ADAM-
10) Able to Reduce the Shedding of NKG2D Ligands in Hodgkin’s Lymphoma Cell Models. Eur. J.
Med. Chem. 2016, 111, 193–201.

(101) Mannino,  C.;  Nievo,  M.;  Machetti,  F.;  Papakyriakou,  A.;  Calderone,  V.;  Fragai,  M.;  Guarna,  A.
Synthesis of Bicyclic Molecular Scaffolds (BTAa): An Investigation towards New Selective MMP-12
Inhibitors. Bioorganic Med. Chem. 2006, 14 (22), 7392–7403.

(102) Campestre, C.; Agamennone, M.; Tortorella, P.; Preziuso, S.; Biasone, A.; Gavuzzo, E.; Pochetti,
G.;  Mazza,  F.;  Hiller,  O.;  Tschesche,  H.;  et  al.  N-Hydroxyurea as Zinc Binding Group in Matrix
Metalloproteinase Inhibition: Mode of Binding in a Complex with MMP-8.  Bioorganic Med. Chem.
Lett. 2006, 16 (1), 20–24.

(103) Johnson, A. R.; Pavlovsky, A. G.; Ortwine, D. F.; Prior, F.; Man, C. F.; Bornemeier, D. A.; Banotai, C.
A.; Mueller, W. T.; McConnell, P.; Yan, C.; et al. Discovery and Characterization of a Novel Inhibitor

217

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Manuscript 3

of Matrix Metalloprotease-13 That Reduces Cartilage Damage in Vivo without Joint Fibroplasia Side
Effects. J. Biol. Chem. 2007, 282 (38), 27781–27791.

(104) Marvin 16.10.10.0, 2016, ChemAxon http://www.chemaxon.com.

(105) Reaxys https://www.reaxys.com/.

(106) Schrödinger Release 2018-1: Maestro, Schrödinger, LLC, New York, NY, 2018.

(107) Iyer,  S.;  Wei,  S.;  Brew,  K.;  Acharya,  K.  R.  Crystal  Structure  of  the Catalytic  Domain of  Matrix
Metalloproteinase-1 in Complex with the Inhibitory Domain of Tissue Inhibitor of Metalloproteinase-
1. J. Biol. Chem. 2007, 282 (1), 364–371.

(108) Schrödinger Release 2018-1: Glide, Schrödinger, LLC, New York, NY, 2018.

(109) Belviso, B. D.; Caliandro, R.; Siliqi, D.; Calderone, V.; Arnesano, F.; Natile, G. Structure of Matrix
Metalloproteinase-3 with a Platinum-Based Inhibitor. Chem. Commun. 2013, 49 (48), 5492.

(110) Kohno,  T.;  Hochigai,  H.;  Yamashita,  E.;  Tsukihara,  T.;  Kanaoka,  M.  Crystal  Structures  of  the
Catalytic  Domain  of  Human  Stromelysin-1  (MMP-3)  and  Collagenase-3  (MMP-13)  with  a
Hydroxamic Acid Inhibitor SM-25453. Biochem. Biophys. Res. Commun. 2006, 344 (1), 315–322.

(111) Steele, D. L.; El-Kabbani, O.; Dunten, P.; Windsor, L. J.; Kammlott, R. U.; Crowther, R. L.; Michoud,
C.;  Engler,  J.  A.;  Birktoft,  J.  J.  Expression,  Characterization and Structure Determination of  an
Active Site Mutant (Glu202-Gln) of Mini-Stromelysin-1. Protein Eng. 2000, 13 (6), 397–405.

(112) Tauro, M.; Laghezza, A.; Loiodice, F.; Piemontese, L.; Caradonna, A.; Capelli, D.; Montanari, R.;
Pochetti,  G.;  Di  Pizio,  A.;  Agamennone,  M.;  et  al.  Catechol-Based  Matrix  Metalloproteinase
Inhibitors with Additional  Antioxidative Activity.  J. Enzyme Inhib.  Med. Chem. 2016,  31 (October
2017), 25–37.

(113) Antoni,  C.;  Vera,  L.;  Devel,  L.;  Catalani,  M.  P.;  Czarny,  B.;  Cassar-Lajeunesse,  E.;  Nuti,  E.;
Rossello, A.; Dive, V.; Stura, E. A. Crystallization of Bi-Functional Ligand Protein Complexes.  J.
Struct. Biol. 2013, 182 (3), 246–254.

(114) Nar, H.; Werle, K.; Bauer, M. M.; Dollinger, H.; Jung, B. Crystal Structure of Human Macrophage
Elastase (MMP-12) in Complex with a Hydroxamic Acid Inhibitor. J. Mol. Biol. 2001,  312 (4), 743–
751.

(115) Bertini, I.; Calderone, V.; Fragai, M.; Jaiswal, R.; Luchinat, C.; Melikian, M.; Mylonas, E.; Svergun,
D. I. Evidence of Reciprocal Reorientation of the Catalytic and Hemopexin-like Domains of Full-
Length MMP-12. J. Am. Chem. Soc. 2008, 130 (22), 7011–7021.

(116) Grossman,  M.;  Tworowski,  D.;  Dym, O.;  Lee,  M.-H.;  Levy,  Y.;  Murphy,  G.;  Sagi,  I.  The Intrinsic
Protein Flexibility of Endogenous Protease Inhibitor TIMP-1 Controls Its Binding Interface and Affects
Its Function. Biochemistry 2010, 49 (29), 6184–6192.

218

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Identification of selective MMP-13 inhibitors by virtual screening

Manuscript 4

Identification of selective MMP-13 inhibitors by

virtual screening

Aleix Gimeno[a], Elisa Nuti[b], María José Ojeda-Montes[a], Sarah Tomás-Hernández[a],

Adrià Cereto-Massagué[a], Raúl Beltrán-Debón[a], Miquel Mulero[a], Armando Rossello[b],

Gerard Pujadas[a],[c],*, Santiago Garcia-Vallvé[a],[c]

[a]Research group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat

Rovira i Virgili, Campus de Sescelades, 43007 Tarragona, Catalonia, Spain

[b]Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy

[c]EURECAT, TECNIO, CEICS, Avinguda Universitat, 1, 43204 Reus, Catalonia, Spain

*Correspondence to: Gerard Pujadas,  Research group in Cheminformatics & Nutrition, phone: +34 977 55

95 65, fax: +34 977 55 82 32. Departament de Bioquímica i Biotecnologia, Facultat de Química, Universitat

Rovira i Virgili, C/  Marcel·lí  Domingo  1,  Edifici  N4, 43007  Tarragona, Catalonia, Spain.  E-mail:

gerard.pujadas@urv.cat

219

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Identification of selective MMP-13 inhibitors by virtual screening

Abstract

Osteoarthritis is a pathology of the joint characterized by pain, swelling, ankylosis and

limited mobility. Matrix metalloproteinase 13 plays a central role in osteoarthritis as its

over-expression in osteoarthritis patients induces an excessive breakdown of collagen

that results in an imbalance between collagen synthesis and degradation in the joint,

leading to  the progressive degradation of articular collagen. Therefore MMP-13 has

been  proposed  as  a  key  therapeutical  target  for  osteoarthritis.  Here  we  have

developed  a  virtual  screening  workflow  aimed  at  identifying  selective  MMP-13

inhibitors by targeting the deep S1’ pocket of MMP-13, which is not present in other

MMPs. The virtual screening workflow consisted of a molecular weight filter, a shape

similarity analysis and a protein-ligand docking step. Compounds were selected based

on  the  data  reported  in  previous  structure-activity  relationship  studies  of  MMP-13

inhibitors. As a result, three MMP-13 inhibitors with IC50 values of 91 μM, 105 μM and

15 μM were obtained, one of which displayed at least 4-fold selectivity against MMP-1,

MMP-2, MMP-8, MMP-9, MMP-12 and MMP-14.
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Identification of selective MMP-13 inhibitors by virtual screening

1. Introduction

Osteoarthritis (OA) is the most common form of arthritis,1,2 affecting half of the aged

population (> 65 years).3 It is characterized by the progressive degradation of articular

collagen  and  can  ultimately  result  in  the  prosthetic  replacement  of  joints  as  they

become completely dysfunctional.3

Matrix metalloproteinase 13 (MMP-13) plays a central role in the pathology, as it is the

main responsible for the cleavage of type II collagen in patients with OA. 4,5 Several

signaling pathways result in the modulation of MMP-13 activity in OA, both directly by

regulatory factors such as LRP1,6 leptin7 and microRNAs that directly target MMP-13

(e.g. miR-9,8 miR-146a,9–11 miR-127-5p,12 miR-27b,13 miR-32014 and miR-13615); and at

the epigenetic,  transcriptional  and post-transcriptional  levels  by transcription factors

(e.g. LEF1,16 NF-κB,B,17 ELF3,17 HIF2α17 and RUNX-218)  and  non-coding  microRNAs

(e.g. miR-27a,19 mirR-140,19 miR-488,20 miR-24,21 miR-148a,22 miR-222,23 miR-

22,24 miR-181b,25 miR-33a,26 miR-145,27 miR-48328).  As  a  result,  MMP-13  is

significantly over-expressed in the joints and articular cartilage in patients with OA and

therefore has been proposed as a key therapeutical target for the treatment of OA.3

MMP-13 belongs to the MMP family, which consists of a series of enzymes responsible

for the degradation of different extracellular matrix (ECM) components.29 In addition to

tissue remodelling, MMPs are involved in the cleavage of many non-matrix targets,

such as cell surface receptors, cytokines, chemokines, cell-cell adhesion molecules,

clotting factors and other proteinases.30 Moreover, some MMPs have been identified to

play protective roles and thus they are considered antitargets, as is the case of MMP-3

and MMP-8, which have been attributed anti-tumoral properties.31 Actually, many broad

spectrum  MMP  inhibitors  have  failed  clinical  trials  as  patients  developed

musculoskeletal  syndrome  (MSS),  possibly  resulting  from  the  alteration  of  the

physiological  functions  of  different  members  of  the  MMP  family.32,33 Therefore,

selectivity is currently considered a priority in the development of MMP inhibitors.
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The main challenge in the development of selective MMP inhibitors arises from the fact

that the catalytic sites of the enzymes in the MMP family present a high degree of

homology. In this regard, the characteristics of the ligand binding site of MMP-13 are

slightly  different  from other  MMPs,  thus  providing  an  edge on  the  identification  of

selective inhibitors for this enzyme. More specifically, an adjacent region to the catalytic

site,  known as the S1’ pocket, is  different  in MMP-13 as the loop that  delimits the

pocket  (Ω-loop)  is  longer  and  shows  more  flexibility  in  MMP-13  than  in  other

MMPs.34 This allows for an opportunity to identify inhibitors with a different  binding

mode not possible in the binding sites of other enzymes of the MMP family. Several

inhibitors use this difference in the MMP-13 binding site to achieve selectivity for this

enzyme, as it is shown by their X-ray structures.35–38 The aim of the present work is to

use this crystallographic data to design a virtual screening (VS) methodology able to

identify  MMP-13  inhibitors  that  can  adopt  a  similar  binding  mode,  and  therefore

achieve selectivity towards MMP-13.

2. Results and Discussion

Co-crystallized MMP-13 inhibitors that bind to the S1’ pocket show a similar binding

mode.35–38 All  of  them  present  two  common  characteristics:  a) they  contain  two

aromatic rings or ring systems at both ends of the molecule (with the exception of the

co-crystallized inhibitor in the structure with PDB code 3KEK,36 which instead presents

a cyclohexyl group at one of its ends); and  b) they adopt a characteristic  U shape,

establishing hydrogen bond interactions between the core of the molecule and Thr245,

Thr247, or both residues. We use here these characteristics to design a VS workflow

capable of identifying compounds that bind in a similar manner to the S1’ pocket of

MMP-13.  The  VS  workflow,  which  was  applied  to  an  initial  library  of  212,713

compounds obtained from Specs,39 consisted of  4 steps that  are  described in  this

section (see Figure 1). First, the compounds were filtered by MW; then, a shape-based

alignment was performed to keep only the compounds that could adopt a conformation

similar to that of the co-crystallized ligands; next, protein-ligand docking was performed

224

UNIVERSITAT ROVIRA I VIRGILI 
IDENTIFICATION BY VIRTUAL SCREENING OF PROTEIN TYROSINE PHOSPHATASE 1B AND MATRIX  
METALLOPROTEINASE 13 INHIBITORS FOR THE TREATMENT OF OBESITY AND OBESITY-ASSOCIATED DISORDERS 
Aleix Gimeno Vives 
 

ºº 
  
   



Identification of selective MMP-13 inhibitors by virtual screening

on MMP-13; and, finally, compounds were selected based on the interactions with the

binding site of MMP-13 that improved MMP-13 inhibitor activity in previously reported

structure-activity relationship (SAR) studies.

Figure 1. Diagram of the virtual screening workflow that indicates the different filters used and the number of
compounds that overcome each one of them.

2.1. Molecular weight filter

The compounds obtained from the Specs database were filtered by molecular weight

(MW) in order to  discard compounds too small  to fulfill  the posterior  protein-ligand

docking constraints and compounds too large compared to the reference ligands used

for the subsequent shape-based alignment, therefore reducing the computational time

of the subsequent steps. The 300 – 700 Da range was selected as filter, taking in to

account that the compounds used as reference in the shape-based alignment step

have a MW between 392 and 491 Da. As a result of this first step, 83,222 compounds

were filtered out (see Figure 1).

2.2. Shape-based similarity

Next,  a  maximum  of  10  conformations  were  generated  for  each  compound  that

survived  the  MW filter.  These  conformations  were  compared  to  those  of  selective
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MMP-13 inhibitors co-crystallized with MMP-13 that bind to the S1’ pocket and do not

contain a zinc-binding group. Only the conformations similar to those of co-crystallized

ligands were kept in order to reduce the computational cost of the VS, as compounds

unable to adopt a similar shape than that of the co-crystallized ligands would likely not

fit  in the S1’ cavity during the protein-ligand docking step. As a result  of this step,

30,693 compounds were filtered out (see Figure 1).

2.3. Protein-ligand docking

The ligands resulting from the shape similarity filter were docked onto MMP-13, using

the crystal structure with PDB40,41 code 3WV1,37 as it contains an inhibitor that binds to

the S1’ pocket. In order to discard ligands unable to adopt a similar binding mode in the

S1’ pocket  to  that  of  previously  known selective  MMP-13 inhibitors,  two  positional

constraints were defined (one closer to the zinc binding region and another one deep

in the S1’ pocket) to be fulfilled by aromatic atoms. Moreover, it was required that the

ligand performed a hydrogen bond interaction with Thr245 or Thr247, as all  the co-

crystallized inhibitors performed at least one of these interactions with the core of the

molecule.

2.4. Analysis of SAR data

In order to select the compounds that performed the appropriate interactions in the S1’

pocket of MMP-13, several SAR studies were analyzed to obtain information regarding

which interactions are important to achieve high activity towards MMP-13. Eventually,

several conclusions were reached on how to increase the bioactivity of inhibitors by

targeting different areas of the S1’ pocket. The main features that a potent MMP-13

inhibitor should have are:

1. Have a negatively charged ring substituent that can establish a salt bridge

interaction with Lys140 in the S1’’ pocket

In a SAR study reported by Nara  et al.,37 the modification of compound  21h by the

addition of a carboxylic acid group in the para position of the ring that occupies the S1’’
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pocket resulted in compound 21k, which presented a 10-fold increase of bioactivity for

MMP-13. As compound 21k is able to establish a salt bridge interaction with Lys140,

this could be the reason for the notable increase in potency. In another study reported

by Nara  et al.,42 the authors incorporated a carboxylic acid group to compound  26a,

generating compound  26c,  which displayed >25-fold increase in MMP-13 bioactivity

compared to the original compound. In similar structures with different linkers to the

S1’’ pocket, they also incorporated this modification to compounds 32a, 29a, 35a and

41 to generate the compounds 32c, 29c, 35c, and 38, respectively. In all these cases,

the incorporation of  the carboxylic  acid group resulted in  an increase of  bioactivity

compared  to  the  original  compound (5-fold,  8-fold,  3-fold  and  2-fold,  respectively).

Similarly, in a study reported by Taylor et al.,38 compounds presenting a carboxylic acid

in  this  region  (i.e. 15 and  16)  also  showed  a  higher  bioactivity  (up  to  150-fold)

compared to compounds with a different substituent (i.e. 13,  14 and  17).  This data

indicates that a negatively charged substituent (preferably a carboxylic acid) that can

establish a salt bridge interaction with Lys140 is highly favored in this position.

2. Make a π-π interaction with Tyr246 and Phe252

In a SAR study reported by Nara et al.,37 the compound 9m bearing a phenyl moiety

displayed  slightly  higher  bioactivity  (1.4-fold)  than  the  compound  21f bearing  a

cyclohexyl moiety, indicating that the formation of a π-π interaction with Tyr246 and

Phe252  results  in  an  increase  of  bioactivity  for  MMP-13.  In  the  same  study,  the

modification of  compound  21h bearing a phenyl  moiety  to generate compound  21i

bearing a p-fluorophenyl moiety resulted in a 3-fold decrease of bioactivity. This case

could be explained by the weakening of the π-π interaction in 21i respect to 21h, as

the fluor atom in para position of the benzyl ring acts as an electron withdrawing group,

thus weakening the negative charge of the π system and therefore weakening the π-π

interactions of the compound with Tyr246 and Phe252. This data indicates that a π-π

interaction with Tyr246 and Phe252 slightly favors compound bioactivity towards MMP-

13.
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3. Have a hydrophobic moiety occupying the S1’’ pocket

In a SAR study reported by Nara et al.,37 compound 37 was modified by incorporating a

substituent that extended to the S1’’ pocket. In most cases (i.e., compounds 26b, 26c,

21a, 9m, 21b, 21c, 21d, 21e, 26d, 34, 36 and 21f) this resulted in an increase of the

inhibitory activity (5-fold, 23-fold, 39-fold,17-fold, 23-fold, 8-fold, 3-fold, 1.2-fold, 4-fold,

7-fold, 75-fold and 12-fold, respectively). Similarly, in a study reported by Taylor et al.,38

compound 11 was modified to further extend to the S1’’ pocket. In this case, most of

the resulting compounds (i.e., 13, 14, 15, 16 and 17) showed a considerable increase

in bioactivity (i.e., 28-fold, 21-fold, 2500-fold, 833-fold and 17-fold, respectively). This

data indicates that designing compounds that occupy the S1’’ pocket of MMP-13 can

have a very favorable effect on inhibitor bioactivity.

4. Have an appropriate linker to join the S1’ pocket with the S1’’ pocket

Nara  et al.42 reported several  compound derivatives with different  linkers extending

from the core of the compound designed in order to reach the S1’’ pocket. Compounds

32a,  29a,  35a and  41, which contained  amide linkers (i.e. (CH2)CONH,  (CH2)NHCO,

CONH(CH2) and  NHCO(CH2), respectively) showed higher bioactivity values towards

MMP-13 than compounds 26a,  26d,  26f, which contained oxygen (i.e.  (CH2)O(CH2)),

sulphur (i.e. (CH2)S(CH2)) and NMe (i.e. (CH2)NMe(CH2)) linkers, respectively. Among

the different  amide linkers,  the one which had the greatest  contribution to inhibitor

activity  was the linker  (CH2)NHCO,  present  in  compounds  29a and  29c,  as  these

compounds showed higher bioactivitiy values compared to the respective compounds

with other amide linkers (i.e. 32a, 35a and 41; and 32c, 35c and 38). This data shows

that amide linkers can be accommodated well in the region between the S1’ and the

S1’’ pockets, thus opening a window to further increase MMP-13 inhibitor bioactivity.

5. Have a hydrogen or halogen bond acceptor towards Met253 Ni

In a SAR study reported by Nara et al.,37 substituents were incorporated to interact with

the  MMP-13  residue  Met253.  Substituting  a  hydrogen  atom (compound  37)  for  a
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fluorine atom (compound 9e) in that position led only to a slight increase in bioactivity

(1.1-fold),  possibly  due  to  the  formation  of  a  weak  halogen  bond  with  Met253.

Nevertheless, introducing  methoxy  (compound  9b),  ethoxy (compound  17) and  SMe

(compound 19a) groups in this position resulted in greater bioactivity gains (3-fold and

5-fold, respectively). These groups may enhance bioactivity by accepting the hydrogen

atom of the backbone nitrogen of Met253. The introduction of hydrophobic substituents

(e.g. methyl  group in compound  9f and trifluoromethyl group in compound  9g) and

bulkier  substituents  (e.g. OCF3 in  compound  9h,  OBn in  compound  9l,  SO2Me in

compound  19b)  in  this  position  led to  losses in  bioactivity,  presumably  due to  the

hydrophilic character and size of this region of the pocket. Therefore, this data shows

that a small hydrophilic substituent able to establish a hydrogen bond with Met253 by

accepting its main chain hydrogen atom is beneficial for MMP-13 inhibitory activity. On

the other hand, introducing a hydrophobic group towards this region should be avoided

as it results in a decrease of bioactivity.

6. Make a hydrophobic interaction with Pro255

In a SAR study reported by Schnute et al.,36 a methyl group was introduced to several

compounds in the region close to Pro255. Compounds that presented the methyl group

in  this  position  (i.e.  compounds  16b,  17b,  18b,  19b,  20b and  23b)  had  higher

bioactivity values than their respective non-methylated analogues (i.e. compounds 16a,

17a,  18a,  19a,  20a and  23a).  The  methyl  substituent  on  the  pyridine  ring  of  the

compounds which significantly improved MMP-13 inhibition (12-fold, 3-fold, 12-fold, 9-

fold, 12-fold and 7-fold, respectively) was found to fill the hydrophobic region of the S1’

pocket, buttressing against Pro255. Therefore, hydrophobic interactions with Pro255

may contribute to a tighter binding by MMP-13 inhibitors and the increase of inhibitor

bioactivity. In another study, Nara et al.,42 introduced modifications in the same region,

obtaining that a thiophene was preferred to a furan ring in that position (e.g. compound

7d displayed a 13-fold  increase in  bioactivity  respect  to  compound  7e).  They also

obtained that a  NH-containing ring was preferred to a  N(CH3)-containing ring in that

position  (e.g.  compound  7j displayed  a  79-fold  increase  in  bioactivity  respect  to

compound 7i). In both of these cases, the varying atoms face the residue Pro255 and
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thus it  can  be assumed that  the hydrophobic  character  of  the substituents  in  that

position confers these compounds a higher MMP-13 inhibitory  activity,  probably  by

establishing hydrophobic interactions with Pro255.

7. Have a hydrogen bond acceptor towards the side chain of Thr247

In a SAR study reported by Nara  et al.,37 substituents were introduced in the region

facing Thr247. The modification of compound 37 for compound 9l, which presented a

methyl group towards this area, resulted in a 2-fold decrease in bioactivity, possibly

due to unfavorable contacts between this substituent and the side chain of Thr247. In

contrast, the addition of atoms able to accept the hydroxyl group hydrogen in the side

chain of Thr247 resulted in the generation of compounds with greater potency. For

instance,  compound  9m,  which  contained  an  O-based  linker,  displayed  a  6-fold

improvement in potency compared to compound 21d, which instead contained a NH-

based linker.  Compound  9m also  displayed  14-fold  and  4-fold  potency  increases

compared to compounds  21e and  26d, which contained more hydrophobic  S-based

and  CH2-based linkers, respectively. This data shows that forming a hydrogen bond

with  Thr247  by  accepting  the  hydrogen  atom  of  its  side-chain  thiol  group is  the

preferred way of increasing inhibitor bioactivity by targeting this residue. Introducing a

hydrophobic group towards this region should be avoided as it results in a decrease of

bioactivity. 

8. Establish hydrophobic contacts in the S1’ pocket

In a study by Nara et al.,42 adding methyl substituents in different positions of the ring

system that occupied the S1’ pocket resulted in higher bioactivities (e.g. compounds

7b,  7c and  7d respectively showed 22-fold, 8-fold and 20-fold increased bioactivity

respect to compound 7a). In the same study, modifications of the ring system size and

polarity also resulted in changes of bioactivity. More concretely, the substitution of a

phenyl-based ring system in compound 44 for more polar pyridine-based ring systems

in  compounds  7m  and  7l  decreased  inhibitor  bioactivity  by  17-fold  and  267-fold,

respectively.  This data  shows how maximizing the hydrophobic  contacts in  the S1’

pocket is an important factor for MMP-13 inhibitor potency.
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9. Hydrogen bond acceptor towards Thr245 Ni

In a study by Nara  et al.,42 compounds with several linkers between the core of the

molecule and the part  of  the molecule closer  to the zinc atom were reported.  The

amide linker in compound 46 displayed >385-fold higher potency than the secondary

amine linker in compound 13 and the reverse amide linker in compound 10. While the

replacement  of  the  amide  nitrogen  in  compound  46 with a  methylene  group  in

compound  23  resulted only in a minor drop of potency (8-fold), the reduction of this

carbonyl group to a secondary hydroxyl group in compound  21 resulted in a drastic

drop in potency (>45-fold). This can be explained by the ability of the carbonyl group

present in compounds 46 and 23 to establish a hydrogen bond with Thr245.

10. Have a hydrogen bond donor towards Ala238 Ci

In the study by Nara et al.,42 the 8-fold higher potency displayed by compound 46, with

an amide linker, compared to compound 23, with a carbonyl linker, may be attributed to

the ability of the amide linker to establish a hydrogen bond interaction with Ala238.

Therefore,  establishing  a  hydrogen bond with  Ala238 should  contribute  to  a  slight

increase of inhibitory potency. 

11. Have an appropriate ring substituent in the region close to the zinc-binding

group

The substituents of the ring close to the zinc region also have been shown to have an

effect  on bioactivity.  Taylor  et al.38 showed that  the introduction of  a  COO(CH2)CH3

group in  para position resulted in increases in bioactivity compared to the compound

with no ring substituents (>26000-fold in compound  15 respect to compound  19) as

well as compounds with other substituents (25000-fold and 250-fold in compound 15

respect  to compounds  18  and  20,  respectively, >13-fold in  compound  1 respect  to

compounds 2 and 3 and 7-fold in compound 4 respect to compound 5. The introduction

of a (CH2)O(CH2)CH3 group (compound 20) in  para position also resulted in a >104-

fold  increase  in  bioactivity  compared  to  the  compound  with  no  ring  substituents
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(compound 19). In a study by Schnute et. al.,36 compounds that beared a p-methoxy

substituent  in  the  ring  located  in  the  same  position  showed  higher  activity  than

compounds that  beared other substituents. For instance, compound  19a had 2-fold

and 6-fold higher bioactivity than compounds 16a and 21a, which contained a fluorine

and a chlorine atom in that position, respectively.  The same occurred with compound

19b, which had 5-fold and 1.2-fold higher bioactivity than compounds 15b and 16b that

contained a hydrogen and a fluorine atom in that position, respectively. In that study,

modifications were also introduced in the meta position, the methoxy group resulting to

confer the highest potency as well. Compound 20a displayed 36-fold, 9-fold and 8-fold

higher bioactivity compared to compounds  17a,  22a and  23a, with fluoro, cholo and

trifluoromethyl groups, respectively, in that position. Compound 20b displayed 159-fold,

124-fold and 14-fold higher bioactivity compared to compounds 17b, 15b and 23b, with

a flouro substituent, a hydrogen atom and a trifluoromethyl substituent, respectively, in

that position. Compound  29g displayed 196-fold, 138-fold, 42-fold, 9-fold and 9-fold

higher bioactivity compared to compounds 29a,  29d,  29e,  29f and 29h, which in that

position presented respectively a hydrogen atom, a fluoro group, a cyano group, a

hydroxyl group and a OCH(CH3)2 group. Compound 29k displayed 25-fold, 15-fold, 5-

fold and 2-fold higher bioactivity compared to compounds 29i, 29b, 29j and 29m, with

a  fluoro  group,  no  substituent,  a  hydroxyl  group  and  a  trifluoromethyl  group,

respectively, in that position.

2.5. Hit selection

After docking, the top 100 docked poses for each compound were selected based on

their docking scores. The interactions they performed with the protein were carefully

inspected in order to select  the compounds that  accomplished the criteria obtained

through  the  analysis  of  SAR data.  Ideally  in  this  step  we  would  like  to  obtain  a

compound that accomplished all the 11 criteria. However, this was not the case, as the

compound  that  accomplished  more  criteria  was  compound  1,  with  a  total  of  8.

Therefore,  this  compound  and  compounds  that  fulfilled  most  of  the  criteria  were

selected, obtaining 20 compounds for  in vitro tests (see Figure 2). The structures of

these 20 compounds were compared, using their molecular fingerprints, to those of
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previously reported MMP-13 inhibitors in the Reaxys43 database. Except for compound

14, which showed a Tanimoto value of 0.71 with a described MMP-13 inhibitor,  the

Tanimoto  similarity  values  of  the  selected  compounds  with  any  of  the  previously

reported  MMP-13  inhibitors  analyzed  were  below  0.5.  Upon  visual  inspection,

compound 14 was not considered structurally similar to the MMP-13 inhibitor obtained

from Reaxys43 (see Figure S1). Moreover, hit compounds that were structurally similar

to  previously  selected  hit  compounds  were  discarded  to  ensure  that  the  final  20

compounds selected for  in vitro tests were structurally different from each other (see

Figure 3). Therefore, the hit compounds obtained by this virtual screening methodology

not only proved to be different from previously reported MMP-13 inhibitors, but also

structurally diverse. 

Figure 2.  2D structures of the 20 hit compounds. Each compound is identified with its Specs ID number.
MarvinSketch44 was used to draw the structures. The protonation state of each compound corresponds to the
protonation state of the docked pose selected for that compound.
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Figure 3.  Dendogram based on fingerprints showing the structural diversity of the 20 hit compounds. The
fingerprint used to obtain the distance matrix was the OpenEyePath fingerprint.45 iTOL46 was used to draw
the dendogram.

2.6. Activity assays

After the selection of the 20 hit compounds, they were purchased from Specs39 and

their activity for MMP-13 was analyzed in vitro at a concentration of 100 μM (see Table

1). Compounds  11,  12 and  13 displayed the highest MMP-13 inhibitory activity and

their IC50 values were obtained (91  μM, 105  μM and 15  μM, respectively). Next, the

inhibitory activities of these three compounds towards MMP-1, MMP-2, MMP-8, MMP-

9, MMP-12 and MMP-14 were determined (see Table 1). Whereas compounds 11 and

12 did not show a preference for the inhibition of MMP-13 respect to other MMPs,

compound  13 displayed at least 4-fold selectivity towards MMP-13 compared to the

rest of the MMPs tested.
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Table 1. In vitro activity of compounds 1-20 (percentage of MMP-13 inhibition at 100 μM and ICM and IC50 values for
different MMPs).

Compound
MMP-13

inhibition at
100 μM (%)

MMP-1
IC50 (μM)

MMP-2
IC50 (μM)

MMP-8
IC50 (μM)

MMP-9
IC50 (μM)

MMP-12
IC50 (μM)

MMP-13
IC50 (μM)

MMP-14
IC50 (μM)

1 12.5 ND ND ND ND ND ND ND

2 18.1 ND ND ND ND ND ND ND

3 5.8 ND ND ND ND ND ND ND

4 22.8 ND ND ND ND ND ND ND

5 NDa NDa NDa NDa NDa NDa NDa NDa

6 2.6 ND ND ND ND ND ND ND

7 29.1 ND ND ND ND ND ND ND

8 8.8 ND ND ND ND ND ND ND

9 NDa NDa NDa NDa NDa NDa NDa NDa

10 15.2 ND ND ND ND ND ND ND

11 54.2 99 ± 8 60 ± 4.6 89 ± 10 66 ± 4.6 97 ± 13 91 ± 8.5 94 ± 5.5

12 48.7 75 ± 4 47 ± 1.6 76 ± 6.9 72 ± 4.8 77 ± 7.7 105 ± 5.8 67 ± 4.6

13 63.1 91 ± 0.8 99 ± 6 95 ± 4.4 68 ± 3 63 ± 9 15 ± 1.6 63 ± 5.4

14 28.5 ND ND ND ND ND ND ND

15 NDa NDa NDa NDa NDa NDa NDa NDa

16 NDb NDb NDb NDb NDb NDb NDb NDb

17 20.9 ND ND ND ND ND ND ND

18 1.9 ND ND ND ND ND ND ND

19 11.1 ND ND ND ND ND ND ND

20 0 ND ND ND ND ND ND ND

IC50 activity assays were run in triplicate. The final values given here are the mean ± standard deviation of

three independent experiments. ND refers to “not determined”.  a  Fluorescent at 400 nm.  b Not soluble in
DMSO.

4. Experimental section

4.1. Shape-based similarity

Conformations were generated using Omega47,48 with default parameters and requiring

a maximum of 10 conformations. The co-crystallized inhibitors used as reference in the
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shape  comparison  corresponded  to  the  ligands  of  the  crystal  structures  with  the

following  PDB40,41 codes:

2OW9,35 2OZR,35 3KEC,36 3KEJ,36 3KEK,36 3WV1,37 5BPA.38 Shape similarity between

the  library  compounds  and  the  reference  compounds  was  calculated  with

ROCS49,50 using the ShapeTanimoto coefficient, a value between 0 and 1 calculated by

the following equation:

ShapeTanimoto f,g = O f,g / (I f + I g − O f,g)

in which the I terms are the self-volume overlaps of each molecule, while the O term is the overlap between
the two functions.

Conformations with a  ShapeTanimoto value lower than 0.5 to any of  the reference

compounds were discarded.

4.2. Ligand setup for docking

Before docking, ligand molecules were prepared with LigPrep51 with default parameter

values except for the following options: a) respect chiralities from input geometry when

generating stereoisomers; b) use Epik52 for ionization and tautomerization; c) use 7.0

as effective pH; and d) use 2.0 as pH tolerance for generated structures.

4.3. Protein preparation

After verifying the fitting of the coordinates of the residues in the binding site relative to

their  corresponding electron density map with VHELIBS, the B chain of  the crystal

structure  with  PDB40,41 code  3WV137 was  prepared  by  using  Maestro’s  Protein

Preparation Wizard53 through the following procedure:  a) align to: 1ROS, chain A;  b)

remove original hydrogens; c) cap termini; d) generate ionization and tautomeric states

of the ligand with Epik;52 e) assign hydrogen bonds at pH 7 with PROPKA; f) use force

field  OPLS_2005  to  minimize  the  structure  at  0.30  Å;  and  g) remove  all  water

molecules from the structure.
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4.4. Grid generation

The grid  for  protein-ligand  docking  was generated  with  Maestro54 by  using  default

parameter values except for the following settings: a) the grid center coordinates were

(46.0, 80.0, -1.0);  b) halogens were included as acceptors; c) the inner box size was

(10, 10, 10); d) the outer box size was (30, 30, 30); e) hydrogen bond constraints were

defined on the backbone nitrogens of the residues Thr245 and Thr247 as well as the

side-chain oxygen of the residue Thr245; and f) two positional constraints with a radius

of  2Å were  defined  on  the  coordinates  (46.3,  80.1,  -7.5)  and  (51.2,  80.5,  4.6),

respectively.

4.5. Docking

Protein-ligand docking was performed with Glide55 by using default parameter values

except for the following settings: a) SP precision; b) enhance planarity of conjugated π

groups; c) include halogens as acceptors; d) write out at most 10 poses per ligand; e)

include  50  poses  per  ligand  in  post-docking  minimization;  g)  require  the

accomplishment of both positional constraints by aromatic atoms; and  f) require the

accomplishment of one hydrogen bond constraint.

4.6. MMP inhibition assays

Recombinant human MMP-14 catalytic domain was a kind gift of Prof. Gillian Murphy

(Department of Oncology, University of Cambridge, UK). Pro-MMP-1, pro-MMP-2, pro-

MMP-9, pro-MMP-8 and pro-MMP-13 were purchased from Merck Millipore. Pro-MMP-

12 was purchased from Bio-Techne. p-Aminophenylmercuric acetate (APMA) was from

Sigma-Aldrich. Proenzymes were activated immediately prior to use with APMA 2 mM

for 1 h at 37 °C for MMP-2 and MMP-8, APMA 2 mM for 2 h at 37 °C for MMP-1, APMA

1 mM for 30 min at 37 °C for MMP-13, APMA 1 mM for 4 h at 37 °C for MMP-12 and

APMA 1 mM for 1 h at 37 °C for MMP-9). For assay measurements, the purchased

compound stock solutions (10 mM in DMSO) were further diluted for each MMP in the

fluorimetric assay buffer (FAB: Tris 50 mM, pH = 7.5, NaCl 150 mM, CaCl2 10 mM, Brij

35 0.05% and DMSO 1%). Activated enzyme (final concentration 0.56 nM for MMP-2,
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0.3 nM for MMP-13, 1.3 nM for MMP-9, 1.4 nM for MMP-8, 1 nM for MMP-14cd, and

2.0 nM for MMP-1, 2.3 nM for MMP-12) and inhibitor solutions were incubated in the

assay buffer for 3 h at 25 °C. After the addition of 200 μM and ICM solution of the fluorogenic

substrate Mca-Lys-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH2 (Merck Millipore) in DMSO

(final  concentration  2  μM and ICM),  the  hydrolysis  was monitored  every  15  sec  for  15 min

recording the increase in fluorescence (λex = 325 nm, λem = 400 nm) using a Molecular

Devices SpectraMax Gemini XPS plate reader. The assays were performed in triplicate

in a total volume of 200 μM and ICL per well in 96-well microtitre plates (Corning, black, NBS).

The MMP inhibition activity was expressed in relative fluorescent units (RFU). Percent

of inhibition was calculated from control reactions without the inhibitor. The inhibitory

effect of the tested compounds was routinely estimated at a concentration of 100 μM and ICM

towards  MMP-13.  Those  derivatives  found  to  be  active  were  tested  at  additional

concentrations  and  IC50 was  determined  using  at  least  five  concentrations  of  the

inhibitor causing an inhibition between 10% and 90%, using the formula: V i/Vo = 1/(1 +

[I]/ IC50), where Vi is the initial velocity of substrate cleavage in the presence of the

inhibitor at concentration [I] and Vo is the initial velocity in the absence of the inhibitor.

Results were analyzed using SoftMax Pro software and Origin 6.0 software.

3. Conclusions

In order to obtain potent and selective MMP-13 inhibitors, here we have developed a

virtual screening workflow aimed at identifying compounds that target the S1’ pocket of

MMP-13, a region in the MMP binding site that has been shown to be different for

MMP-13 respect to other MMPs. For this, we have first applied MW filter to discard

compounds unlikely to survive subsequent filters. Next, we have used a shape-based

similarity analysis to restrict the initial library of compounds to those able to adopt the

characteristic  U shape adopted by co-crystallized selective MMP-13 inhibitors. Then,

we have performed protein-ligand docking simulations to predict the binding modes of

these  compounds.  Finally,  we  have  analyzed  previously  reported  SAR  studies  to

identify MMP-13 inhibitor interactions with the protein that are important for activity and
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we have selected the docked poses obtained in the protein-ligand docking according to

these  criteria.  The  bioactivity  assays  have  revealed  that  three  hit  compounds  are

capable of inhibiting MMP-13 at the  μM range, one of which displays at least 4-fold

selectivity against MMP-1, MMP-2, MMP-8, MMP-9, MMP-12 and MMP-14.
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Figure S1.  In  each panel,  a hit  compound is  represented in 2D,  together  with  the  most  similar  active
compound found in the Reaxys1 database, which is labeled with its Reaxys Registry Number. The Tanimoto
similarity value resulting from the comparison of the OpenEyePath2 fingerprint of both compounds is shown
below. MarvinSketch3 was used to draw the structures.
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Summarizing Discussion

In the present thesis we focused on the identification of PTP1B and MMP-13 inhibitors

by VS for the treatment of obesity and obesity-associated disorders.

As the inhibition of PTP1B has been shown to have a positive effect on obesity and

type  2  diabetes,  we  developed  a  virtual  screening  workflow  in  order  to  identify

structurally diverse PTP1B inhibitors  (Manuscript 2). The virtual screening consisted

of a combination of ligand- and receptor-based methods. First, a molecular weight filter

was applied to discard molecules that were considered either too small or too large to

fit on the PTP1B binding site. Secondly, a random forest model based on fingerprints

was  applied  to  rapidly  rule  out  the  compounds  least  likely  to  be  active.  Next,  a

constrained protein-ligand docking was conducted in order to discard compounds that

would  not  fit  in  the  binding  site  and  compounds  that  would  not  be  capable  of

establishing hydrogen bonds with the P-loop residues, as this particular interaction was

performed  by  all  the  ligands  co-crystallized  with  PTP1B.  Then,  the  electrostatic

potential similarity between docked poses and co-crystallized ligands was analyzed to

prioritize compounds with similar electrostatic properties as active PTP1B inhibitors.

Finally, the hits obtained were clustered to select a diverse subset of 20 compounds for

which PTP1B activity was tested in vitro. Of these 20 hit compounds, 15 were found to

inhibit  PTP1B and  2 of  them had IC50 values  of  1.4  μM and 2.1 μM, the highestM and 2.1  μM and 2.1 μM, the highestM,  the  highest

bioactivity reported by a PTP1B inhibitor in any VS.

The inhibition of MMP-13 has been postulated to have a positive effect on obesity and

osteoarthritis. However, the design of MMP inhibitors that bind to the catalytic zinc ion

in the binding site of MMPs has often resulted in the identification of broad-spectrum

MMP inhibitors, which have been reported to produce severe side effects in clinical

trials. Thus, in order to obtain relevant MMP-13 inhibitors, first we needed to determine

how to achieve selectivity for MMP-13. Although selective inhibitors of different MMPs

have been successfully identified by targeting the variable S1’ pocket adjacent to the

catalytic region of the binding site, the characteristics of the S1’ pocket that determine

inhibitor selectivity are often not described and, in many cases, challenging to identify.

Therefore, we performed an analysis of the variability of the S1’ pocket among the

members of the MMP family in order to search for particular characteristics of each
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MMP that would affect inhibitor activity respect to other MMPs  (Manuscript 3). This

analysis consisted of:  a) a classification of  crystal  structures according to their  S1’

pocket  for  each  MMP;  b) protein-ligand  docking  simulations of  previously  reported

selective MMP inhibitors to assess possible steric hindrances with the protein; and c) a

comparison of the electrostatic properties and the hydrophobicity of MMP S1’ pockets

and previously reported MMP inhibitors. In the end, we identified concrete regions of

the MMP binding site that play a crucial role in inhibitor selectivity, either due to their

size, shape, electrostatic potential or hydrophobicity. In the case of MMP-13, the major

reason for inhibitor selectivity was the larger size of its S1’ pocket respect to other

MMPs, which presents an adjacent subpocket referred to as S1’’ pocket, not present in

other members of the MMP family. In addition, we observed that the presence of a

negatively charged group at the region of the MMP-13 inhibitor that occupied the S1’’

pocket in MMP-13 could prevent its interaction with MMP-8.

Once we had established that targeting the S1’’ pocket of MMP-13 was a legitimate

approach of achieving MMP-13 selectivity, we designed a virtual screening workflow to

identify selective MMP-13 inhibitors  in  which compounds would aim to occupy this

region of the binding site  (Manuscript 4). This VS consisted of the following steps:

First, a molecular weight filter was applied to discard compounds either too small or too

large to survive subsequent VS filters. Secondly, a shape-based similarity analysis was

performed to discard compounds unable to adopt the characteristic U shape observed

in co-crystallized ligands that occupy the S1’’ pocket of MMP-13. Next, a constrained

protein-ligand docking was conducted in order to select the compounds that were able

to fit in the MMP-13 binding site while occupying the S1’’ pocket. Then, SAR studies of

previously  reported  MMP-13  inhibitors  were  evaluated,  thus  extracting  a  series  of

protein-ligand interactions that had been shown to contribute to an increase of MMP-13

inhibitory activity. The docked poses obtained were then classified according to the

fulfillment of these interactions and, finally, 20 diverse compounds were selected for

experimental activity tests. Of these 20 hit compounds, 3 were found to inhibit MMP-13

(IC50 values of 91 μM, 105 μM and 15 μM) and one of them displayed at least 4-fold

selectivity against MMP-1, MMP-2, MMP-8, MMP-9, MMP-12 and MMP-14.
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Conclusions

The conclusions reached in this thesis are the following:

1. We have developed a new virtual screening procedure to identify structurally

diverse  PTP1B  inhibitors.  This  VS  procedure  consists  of  four  steps:  (i)  a

molecular weight filter; (ii) a random forest model based on fingerprints; (iii) a

constrained protein-ligand docking and (iv) an electrostatic potential similarity

search using previously reported PTP1B inhibitors.

2. Using the above VS procedure we have identified 15 new and diverse PTP1B

inhibitors. Two of these compounds,  5 and  7, have respective IC50 values of

1.4 μM and 2.1 μM, being the most potent PTP1B inhibitors reported by anyM and 2.1 μM and 2.1 μM, being the most potent PTP1B inhibitors reported by anyM, being the most potent PTP1B inhibitors reported by any

VS.

3. MMP inhibitor selectivity can be achieved by taking advantage of the variability

of the S1’ pocket of MMPs, as the analysis of the differences in size, shape

and electrostatic  potential  of  this  pocket  among the members  of  the  MMP

family has allowed us to identify particular characteristics of each MMP binding

site that are relevant for inhibitor selectivity.

4. Selective MMP-13 inhibitors can be obtained by targeting its S1’’ pocket. The

presence  of  a  negatively  charged  group  at  the  region  of  the  inhibitor  that

occupies the S1’’ pocket of MMP-13 could prevent its interaction with MMP-8.

5. We  have  developed  a  new  VS  procedure  to  identify  selective  MMP-13

inhibitors.  This  VS procedure consists  of  four  steps:  (i)  a  molecular  weight

filter;  (ii)  a  shape-based  similarity  search  using  known  MMP-13  selective

inhibitors; (iii)  a constrained protein-ligand docking and (iv) an inspection of

protein-ligand  interactions  relevant  for  MMP-13  activity  obtained  from

previously reported SAR studies.

6. Using  the  above  VS  procedure  we  have  identified  three  diverse  MMP-13

inhibitors (i.e. compounds 11,  12, and 13;  with IC50 values of  91 μM, 105 μM

and 15  μM, respectively), one of  which  displayed at  least  4-fold  selectivity

against MMP-1, MMP-2, MMP-8, MMP-9, MMP-12 and MMP-14.
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Conclusions

Les conclusions obtingudes en aquesta tesi són les següents:

1. Hem  desenvolupat  un  nou  procediment  de  cribratge  virtual  per  identificar

inhibidors de PTP1B estructuralment diversos. Aquest procediment consta de

quatre passos: (i) un filtre de pes molecular; (ii) un model random forest basat

en fingerprints; (iii) un docking proteïna-lligand i (iv) un anàlisi de similitud de

potencial electrostàtic amb inhibidors de PTP1B prèviament descrits.

2. Utilitzant  el  procediment  de  cribratge  virtual  anterior  hem  identificat  15

inhibidors de PTP1B nous i d’estructures diverses. Dos d'aquests compostos,

5 i 7, tenen valors d’IC50 d'1,4 μM and 2.1 μM, being the most potent PTP1B inhibitors reported by anyM i 2,1 μM and 2.1 μM, being the most potent PTP1B inhibitors reported by anyM respectivament, sent els inhibidors

de PTP1B més potents obtinguts per qualsevol cribratge virtual.

3. La  selectivitat  dels  inhibidors  de  MMPs  es  pot  aconseguir  aprofitant  la

variabilitat de la butxaca S1’, ja que l'anàlisi de les diferències de mida, forma i

potencial electrostàtic d'aquesta butxaca entre els membres de la família de

les MMP ens ha permès identificar característiques particulars dels llocs d’unió

de cada MMP que són rellevants per a la selectivitat dels inhibidors.

4. Es poden obtenir inhibidors selectius per MMP-13 utilitzant la seva butxaca

S1’. La presència d'un grup carregat negativament a la regió de l'inhibidor que

ocupa la butxaca S1’ de MMP-13 pot evitar la seva interacció amb MMP-8.

5. Hem  desenvolupat  un  nou  procediment  de  cribratge  virtual  per  identificar

inhibidors  selectius  per  MMP-13.  Aquest  procediment  consta  de  quatre

passos: (i) un filtre de pes molecular; (ii)  un anàlisi de similitud d’estructura

tridimensional  utilitzant  inhibidors  selectius  per  MMP-13  coneguts;  (iii)  un

docking proteïna-lligand  i  (iv)  la  inspecció  d’interaccions  proteïna-lligand

rellevants per a l'activitat MMP-13 obtingudes a partir d’estudis SAR.

6. Utilitzant  el  procediment  de  cribratge  virtual  anterior  hem  identificat  tres

inhibidors de MMP-13 d’estructura diversa (11, 12 i 13, amb valors d’IC50 de 91

μM and 2.1 μM, being the most potent PTP1B inhibitors reported by anyM, 105 μM and 2.1 μM, being the most potent PTP1B inhibitors reported by anyM i 15 μM and 2.1 μM, being the most potent PTP1B inhibitors reported by anyM), un dels quals té almenys quatre vegades més activitat

per MMP-13 que per MMP-1, MMP-2, MMP-8, MMP-9, MMP-12 i MMP-14.
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