
 

 

 

 

 

 

 

 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY 

EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES FACILITY 
 

David Fernández Linares 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



 
 
 
 
 
 

 

 

Multiperiod modelling planning and 
productivity and energy efficient 

assessment of an industrial gases facility 
 

 

David Fernández Linares 

 
 

 
 
 
 
 

DOCTORAL THESIS 
 

2018 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



             

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



             

 
 

David Fernández Linares 

 

Multiperiod modelling planning and productivity 

and energy efficient assessment of an industrial 

gases facility 

 

Doctoral Thesis 

 

Supervised by: 

Dr. Laureano Jiménez Esteller 

Dr. Carlos Pozo Fernández 

Dr. Gonzalo Guillén Gosálbez 
 

 

 

 

 

 

DEPARTMENT OF CHEMICAL 

ENGINEERING 
 

SUSCAPE Research Group 

 
 

UNIVERSITAT  

ROVIRA I VIRGILI  

MESSER IBÉRICA DE GASES S.A.U. 

 

 

 

 

 

 

 

TARRAGONA 
 

2018 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



 
 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



             

i 

ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA QUÍMICA 

DEPARTAMENT D’ENGINYERIA QUÍMICA 

Av. Països Catalans, 26 

Campus Sescelades 

43007 Tarragona (Spain) 

http://www.etseq.urv.es/deq/ 

 

 

I STATE that the present study, entitled “Multiperiod modelling planning and 

productivity and energy efficient assessment of an industrial gases facility” and 

presented by David Fernández Linares for the award of the degree of Doctor, has been 

carried out under our supervision at the Department of Chemical Engineering of this 

university. 

 

 

 

Tarragona, 18th July 2018 

 

 

 

Doctoral Thesis Supervisor/s 

 

 

 

 

 

Dr. Laureano Jiménez 

Esteller 

Dr. Carlos Pozo  

Fernández 

Dr. Gonzalo Guillén 

Gosálbez 

 

 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



             

iii 

 

 

 

 

 

 

 

 

 

 

Aquesta tesi s’ha realitzat amb el suport de la Secretaria d’Universitats i 

Recerca del Departament d’Empresa i Coneixement de la 

Generalitat de Catalunya 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



             

v 

 

 

Agradecimientos 

 

Para empezar, quisiera expresar mi más sincero agradecimiento a todas las 

personas que han estado presentes durante el desarrollo de esta tesis. Aunque muchas 

de ellas no estén aquí citadas explícitamente, agradezco su ayuda, dedicación y apoyo, 

ya que de una forma u otra han contribuido a la realización de esta tesis. 

 

Asimismo, quiero dar las gracias a mis supervisores de tesis: Dr. Laureano Jiménez 

Esteller, Dr. Gonzalo Guillén Gosálbez y Dr. Carlos Pozo Fernández. Ellos me 

ofrecieron la posibilidad de realizar este trabajo de doctorado y me han orientado y 

aconsejado constantemente. Me han demostrado su gran profesionalidad y agradezco 

todo el conocimiento que me han transmitido durante este tiempo. También doy las 

gracias al Sr. Rubén Folgado Girón, mi supervisor por parte de la empresa y la 

persona que me animó a realizar este doctorado industrial. Del mismo modo, quiero 

agradecerle a él y a José Manuel Montoro, toda la confianza que han depositado en mí 

desde que empecé a trabajar en Messer Ibérica de Gases S.A.U., permitiendo mi 

desarrollo profesional dentro de la empresa. Al mismo tiempo, quiero expresar mi 

gratitud a todo el personal de Messer Ibérica de Gases S.A.U. que me ha ayudado y 

apoyado durante el desarrollo de la tesis. Especialmente a mis compañeros del área de 

producción por su soporte y compañerismo durante todo este tiempo. Agradezco 

también la colaboración de todos los miembros del grupo de investigación SUSCAPE 

de la Universitat Rovira i Virgili. A pesar de no haber podido estar muy presente en su 

día a día, he podido aprender mucho de sus conocimientos.  

 

Esta tesis va dedicada especialmente a mi familia. Primeramente a mis padres, 

Enrique y Rosario, por inculcarme desde pequeño los valores de la perseverancia y el 

esfuerzo y por estar presentes en todo momento. También a mi hermano Daniel, que 

me ha ayudado a no bajar nunca los brazos. Gracias también a mis abuelos por el 

ejemplo y el cariño que me dan, y a mis tías Elena y Petri por la energía positiva que 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



 

vi 

siempre me han transmitido. Por último, doy las gracias a mi novia Olivia por estar a 

mi lado en los momentos buenos y malos, y por hacer que el camino hasta este día 

haya sido mucho más fácil. 

 

A todos vosotros muchas gracias. 

 

  

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



             

vii 

 

 

Summary 

 

Climate change, air pollution and non-renewable resources depletion are the main 

threats facing humanity in the 21st century. The growth of energy demand and the 

continuous technological development of society are surpassing the environmental 

limits of our planet. Without adequate measures, this situation can lead to serious 

problems that could cause irreversible damages to the environment and the well-being 

of humanity. 

The industrial sector is the largest energy consumer, with about one-third of global 

energy demand. Globally, the use of energy represents the largest source of 

greenhouse gas emissions, which are linked to burning fossil fuels to produce energy. 

In Europe, the energy processes are the largest emitters of greenhouse gases, being 

responsible for 78% of total European emissions in 2015 (European Environment 

Agency, 2017). There is an evident relationship between electric power consumption 

and climatic change (Ghulam et al., 2014), thus the challenge of mitigating climate 

change will not only imply changes in regulations, lifestyles and consumption habits, 

but also the industrial sector will play a crucial role. In this sense, the current use of 

energy in industry can be improved creating great opportunities for energy savings 

and, simultaneously, reduce its environmental impact. 

Energy efficiency stands as a new competitiveness factor in the industry, and goes 

through the transition of the model based on greater consumption and dependence of 

resources to another whose priority is the reduction of the energy needed to produce 

goods and services. In this sense, it is essential to obtain information derived from 

research and scientific analysis that allows developing solutions focused on the 

reduction of energy costs. This thesis has dealt with the needs of a segment of the 

industry, specifically the production of industrial gases, by creating tools based on 

mathematical optimization models which allow much more agile and effective 

operational decision makings as well as the detection of areas for energy 

improvement. 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



 

viii 

In this line, energy management should be regarded as an investment that will be 

amortized with energy savings, reduction of polluting emissions, lower consumption 

of hydrocarbons and improvement of industrial processes. With this contribution, we 

will try to address all these aspects proposing new tools to encourage and move 

towards a more efficient industry that allows a more sustainable future. 

Two main contributions are derived from this thesis. On the one hand, it creates a 

multiperiod optimization tool that allows to obtain the optimal operational 

configuration (from the economic and energetic point of view) of an industrial gas 

manufacturing process, taking into account all the variables that affect the system. On 

the other hand, a methodology named Data Envelopment Analysis is used to compare 

different industrial gas production units, identifying inefficiency sources and making 

recommendations to adopt the best practices. 

Summarizing, this thesis offers a set of practical and effective tools that support the 

decision making process in industrial activities and allows the identification of 

opportunities for energy improvement. Contributions extracted from this thesis, 

although may seem minuscule in the face of the great challenge of curbing the 

environmental threat, will help move towards a more efficient industrial sector in 

which the decline in energy demand is going to become a structural phenomenon. 
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Resumen 

 

El cambio climático, la contaminación atmosférica y el agotamiento de recursos no 

renovables son las principales amenazas a las que se enfrenta la humanidad en el siglo 

XXI. El crecimiento de la demanda energética y el continuo desarrollo tecnológico de 

la sociedad está sobrepasando los límites medioambientales de nuestro planeta. Sin las 

medidas adecuadas, esta situación puede derivar en graves problemas que podrían 

ocasionar daños irreversibles para el medioambiente y el bienestar de la humanidad. 

El sector industrial es el mayor consumidor de energía, con alrededor de un tercio 

de la demanda energética global. A nivel mundial, el uso de la energía representa la 

mayor fuente de emisiones de gases de efecto invernadero, ya que éstas están 

vinculadas a la quema de combustibles fósiles para producir energía. En Europa, los 

procesos energéticos son los mayores emisores de gases de efecto invernadero, siendo 

responsables del 78% del total de emisiones europeas en 2015 (European Environment 

Agency, 2017). Existe una relación evidente entre el consumo de energía eléctrico y el 

cambio climático (Ghulam et al., 2014), por lo que el reto de mitigar el cambio 

climático comportará, no sólo modificaciones en normativas, estilos de vida y hábitos 

de consumo, si no que el sector industrial tenga también una labor crucial. En este 

sentido, el uso actual de la energía en la industria es mejorable, ofreciendo grandes 

oportunidades de ahorro energético y reduciendo, además, su impacto 

medioambiental.  

La eficiencia energética se erige como un nuevo factor de competitividad en la 

industria que pasa por lograr la transición del modelo actual, basado en un mayor 

consumo y dependencia de los recursos, a otro cuya prioridad sea la reducción de la 

energía necesaria para producir bienes y servicios. Para esto, es básico obtener 

información derivada de la investigación y el análisis científico que permita 

desarrollar soluciones con un nuevo paradigma que esté enfocado a la reducción de 

costes energéticos. Esta tesis ha tratado las necesidades de un segmento de la industria, 

concretamente la producción de gases industriales, mediante la creación de 
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herramientas basadas en modelos matemáticos de optimización que permiten una toma 

de decisiones operativas de una forma ágil y eficaz, así como la detección de 

posibilidades de mejora energética. 

En esta línea, la gestión energética debe considerarse como una inversión que se 

amortizará con los ahorros de energía, la reducción de emisiones contaminantes, el 

menor consumo de hidrocarburos y la mejora de los procesos industriales. Con esta 

contribución se intenta abordar todos estos aspectos proponiendo nuevas herramientas 

para incentivar y avanzar hacia una industria más eficiente que permita un futuro más 

sostenible. 

De esta tesis se derivan dos contribuciones principales. Por un lado se crea una 

herramienta de optimización multiperiodo que permite obtener la configuración 

operacional óptima (desde el punto de vista económico y energético) de un proceso de 

fabricación de gases industriales, teniendo en cuenta todas las variables que afectan al 

sistema. Por otro lado, se usa una metodología de análisis envolvente de datos (Data 

Envelopment Analysis) para el estudio de diferentes unidades de producción de gases 

industriales. Esta metodología permite comparar las plantas entre sí, evaluar sus 

parámetros y realizar recomendaciones para aumentar su eficiencia.  

En resumen, esta tesis ofrece un conjunto de herramientas prácticas y eficaces que 

apoyan al proceso de toma de decisiones en actividades industriales y permite la 

identificación de oportunidades de mejora energética. Las contribuciones extraídas de 

esta tesis, aunque pueden parecer minúsculas frente al gran desafío de frenar la 

amenaza medioambiental, ayudan a avanzar hacia un sector industrial más eficiente 

dentro de un modelo industrial en el que el descenso de la demanda energética va a 

convertirse en un fenómeno estructural. 
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1 

 

 

1. Introduction 

 

1.1. Background and motivation 

The world is currently faced with challenges in all three dimensions of sustainable 

development: economic, social and environmental. Millions of people are still living in 

extreme poverty, income inequality among countries is steadily growing and 

unsustainable consumption and production patterns have resulted in high economic and 

social costs and may endanger humans welfare. The satisfaction of the “Triple Bottom 

Line” aspects (Savitz and Weber, 2006) will require global actions to further economic 

and social progress while strengthening environmental protection. The efforts to 

address sustainability will be crucial and would benefit both the society and the 

environment by identifying proactive pathways towards sustainability. In this 

framework, research based information facing such problems may play a major role in 

decision and policy-making support to accelerate the effective shift toward a 

sustainable development. 

Industrial energy use accounts for 40% of global electrical usage (Enerdata, 2017) 

and is a substantial contributor to CO2 emissions causing global warming (EIA, 2017). 

The possibilities for improving the energy efficiency of industrial facilities are 

notorious, even in mature industries and technologies. Energy use in industry differs 

from energy use in commercial and residential sectors, since industrial sites are very 

large individual energy users which may change production volumes, schedules and 

the type of manufactured product many times during the useful life of the factory. 

Furthermore, industries are striving to improve the efficiency of their processes, which 

has led to the reduction of the energy use per unit of economic output in nearly 20% 

between 2000 and 2016 (IEA, 2017).  

This thesis points towards one of the main structural transformation needed to 

reconnect the human development to sustained progress  (Rockström et al., 2013), the 

energy transformation (Riahi et al., 2012; Tester et al., 2005, Van Vuuren et al., 2012). 

In essence, energy transformation supports the shift towards an environmentally 
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friendly economy to prevent exceeding the Earth limits, which would result in an 

irreversible situation threatening human well-being and the environment equilibrium 

(Rockström et al., 2009 and Steffen et al., 2015). 

Specifically, this thesis is focused in the cryogenic air separation technology, which 

is currently the only practical technology available for mass-production of air products 

such as oxygen, nitrogen and argon (Smith and Klosek, 2001). A high number of 

industries such as steel, petrochemical, metallurgy, medical or food demand large 

amounts of these air products. Inherent to its operation, cryogenic air separation plants 

are in general energy intensive, with the power input being the main factor on which 

the ultimate production cost will depend. Experience has shown that relatively small 

improvements in energy efficiency on these plants generally result in significant 

reduction of production cost. This dissertation discusses the means for effective energy 

management at these plants aimed at ultimately minimizing the energy consumption. 

Furthermore, this would not only bring down the electrical cost per amount of product 

obtained, but also reduce the overall environmental impacts (e.g., CO2 and greenhouse 

gas emissions) derived from the lower usage of energy resources.  

 

 
Figure 1.1. Industrial energy savings bring cost savings (profit increase in companies) and environmental 

benefits. 

 

This thesis aims to give decision and policy makers methods and tools to improve the 

energy efficiency in energy-intensive consumers and, in this way, contribute to the 
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global energy transformation required for a more sustainable world. Note that in the 

present contribution no environmental criterion has been considered explicitly, yet they 

have been implicitly addressed through energy management, since the cost in these 

processes is energy driven.  

This thesis has been done within the framework of the “Industrial Doctorates Plan” 

developed by the Generalitat de Catalunya with the aim of contributing to the industry 

competitiveness. The essential element of the industrial doctorate process is that the 

research project is carried out within a company (in this case Messer Ibérica de Gases 

S.A.U), where the doctoral student further develops its research in collaboration with a 

university (in this case Universitat Rovira i Virgili). Therefore, the industrial doctorate 

act as a bridge for knowledge transfer between industry and university. In this context, 

the mathematical models posed in the following sections represent real facilities and, 

thus, their formulation allows to optimize existing industrial activities and provide 

solutions for plant managers and/or decision makers. Results are presented in such a 

way that the confidential agreement is not violated. 

Despite there is a large number of approaches to solve the emerging problems, 

mathematical optimization/programming appears as an effective tool to find the best 

solution to them. For this reason, it has been widely used to aid decision-making in 

many scientific or engineering problems. Mathematical programming allows solving 

real problems by building a model based on equations, which are later solved with the 

proper solver alternatives.  

In the cryogenic air separation field, the complexity of optimally managing this 

kind of facilities is very high due to the interactions between process variables (e.g., 

flow rates, levels, quality requirements, etc.), utilities and product prices, fluctuations 

in customers’ product demand, electricity varying prices, etc. In order to deal with this 

complexity, we developed a tailored multiperiod model, taking the form of a mixed-

integer linear programming (MILP) problem, which was applied to the Messer plant 

located in Tarragona. This model allows to determine the optimal production schedule 

of an industrial cryogenic air separation process so as to maximize the net profit by 

minimizing energy consumption [1]. In the context of cryogenic air separation, some 

tools were presented to determine the optimal operating schedule depending on the 
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power costs (Ierapetritou et al., 2002), as well as depending on demand, contractual 

obligations and variable electricity pricing (Zhu et al., 2011). These works simplify the 

models to keep a manageable size by means of reductions in the number of periods and 

abbreviating the linear models, and they also assume non-realistic product demand and 

power pricing. The work of this thesis [1], extends previous proposals increasing the 

granularity in the modeling of the electricity price pattern in order to account for hourly 

variations considering electricity markets peculiarities, and including real demand 

levels (both for gas and for liquid) when optimizing the production schedule. 

Furthermore, the network boundaries of the air separation process are amplified by 

including the complete system: production, compression, liquefaction, storage and 

delivery. The model formulation is further complemented with the possibility to 

purchase a certain amount of product from an external supplier by means of 

economical and power pricing contracts, thereby offering the possibility to achieve 

significant reductions in operational costs if properly managed. Finally, the model also 

takes into account idle times occurring during equipment start-ups (until the desired 

product loads and purities are reached). 

The proposed model [1] allows to optimize the operation of a given facility, yet it 

cannot identify other inefficiency sources arising for instance from its design. 

Therefore, additional tools are required to identify further inefficiency sources in air 

separation units. To this end, we also present the application of a standard 

mathematical programming method (Data Envelopment Analysis) to compare the 

relative performance of a set of Air Separation Units (ASUs) according to energy 

efficiency and productivity criteria [2]. The dataset considered in this case study 

includes a great number of Messer plants worldwide. As demonstrated in this thesis, 

this tool provides insight on how to improve the efficiency of inefficient facilities by 

identifying inefficiency sources and reference facilities that could be used for 

benchmarking. Figure 1.2 summarizes the work done in this thesis. 
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Figure 1.2. Thesis roadmap. 

 

This PhD thesis is divided in three main chapters. Chapter 1 introduces the 

problems addressed, the main objectives to achieve and a general background of the 

mathematical programming techniques used. The main conclusions, future work and 

references are presented as well. Chapters 2 and 3 describe in further detail the two 

decision-aided tools used to solve each particular problem. Specifically, Chapter 2 

presents the multi-period optimization tool developed to increase the final profit 

(which implies energy savings) in an energy-intensive process producing industrial 

gases, while Chapter 3 presents the application of Data Envelopment Analysis for the 

assessment of the energy efficiency of several air separations units. Finally, Chapter 4 

presents a brief curriculum vitae of the PhD student, the main contributions published 

during the thesis period as well as the works that have been presented in oral 

communications.   

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



Chapter 1. Introduction 
 

6 

1.2. Objectives 

As previously described, the aim of this thesis is to contribute in the efficient use of 

energy resources in industry as well as to identify opportunities to reduce their energy 

consumption and boost their competitiveness, while simultaneously reducing their 

environmental impact. To this end, the main goal is to develop mathematical 

programming tools to solve real problems in an industrial framework related with 

process management. These tools will find alternatives and improvements in the 

industrial process that can result in significant economic and environmental benefits 

which could be hard to identify otherwise by using standard heuristics or rules of 

thumb. 

Several particular objectives are identified as necessary to achieve the overall goal: 

 

• To formulate a deterministic multi-period optimization model capable of 

determining the operation of the air separation network (i.e., equipment startup 

and shutdown times, stream flow rates, product purchases to external suppliers, 

etc.) that optimizes its economic performance. This model has to improve  

current models in several areas such as scope, granularity, consideration of idle 

times, etc. to be more realistic. This tool will assist engineers in their daily 

activities by effectively optimizing production planning, energy rules, sales 

and product stocks, while simultaneously considering external constraints and 

dynamic market conditions.  

• To apply a Data Envelopment Analysis (DEA) model to assess the 

performance of a set of air separation units with the aim of identifying the best 

ones according to energy efficiency and productivity criteria and define 

improvement targets for those found inefficient.  

• To apply the Malmquist Productivity Index (MPI) to analyze the temporal 

evolution of the efficiency scores of the air separation units to provide insight 

on efficiency changes and detect those plants showing larger improvements in 

the recent past. 

• To demonstrate the capabilities of the tools and methodology developed 

through their application to existing plants. 
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1.3. Industrial gases 

The term industrial gases refers to all gases produced at large scale (e.g., nitrogen, 

oxygen, argon, xenon, hydrogen, carbon dioxide, acetylene, ethylene, ammonia, etc.) 

which are manufactured for a broad use in industry. On the basis of their application, 

the industrial gases market is highly segmented, where the main sectors covered are: 

chemical, petrochemical, automotive, metallurgy, energy and oil & gas, transportation, 

food, medical, pharmaceutical, among others. Metallurgy industry is currently the 

segment dominating this market and it is expected that it will maintain its dominance 

over the next years. Industries use these gases in a great range of applications: medical 

gases, cutting and welding, refrigeration or food processing and packaging, etc. For 

instance, oxygen is used in many oxidation reactions in the chemical industry, in 

sewage treatment plants, in chemical synthesis, in burners to supplement or replace air, 

in the transportation of live fish, in hospitals for assisted breathing, etc.; nitrogen is 

used in the chemical industry for blanketing, in purging and pressure transfer of 

flammable chemicals, as a purge gas, in freeze and protect food, in cryogenic grinding 

of plastics, in cryosurgery, etc.; and argon is used as a shielding gas for arc welding, as 

carrier gas in gas chromatography, in filling incandescent lamps, etc.  

 

The industrial gas industry is relatively stable in economic terms (as shown in 

Figure 1.3), since this market has a diversified end-customer industries and most 

industrial gases are not easily replaceable in production processes as they offer quality 

and productivity gains (Research and markets, 2017).  
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Figure 1.3. Global industrial gases market. Adapted from Eurostat. 

 

The global market for industrial gases is expected to grow over the next few years 

as a result of the strong demand from various end-use industries (especially in energy 

and oil & gas sectors). A Compound Annual Growth Rate (CAGR) of 7.7% is 

estimated for the period between 2017 and 2025, reaching 114.5$bn in revenue in 2025 

(Persistence Market Research, 2018).  

By product type, industrial gases market includes oxygen, nitrogen, helium, 

acetylene, argon, hydrogen, carbon dioxide and others (krypton, xenon, methane, 

carbon monoxide, etc.). In 2017, the hydrogen gas segment market was the dominant 

in terms of revenue contribution, and it is expected to further remain dominant during 

the period from 2017 to 2025.  

Regarding regions, Europe and Asia Pacific showed the largest market for industrial 

gases in 2016, while Asia Pacific, China and India are the regions expected to show a 

higher market potential for industrial gases in the next ten years (Persistence Market 

Research, 2018).  

By companies, Air Liquide S.A., Linde Group and Praxair Inc. are the three major 

players in the industrial gases market, with a collective market share of more than 50%. 

In this field, Messer is the largest privately managed industrial gases specialist, 

achieving consolidated sales of 1146 billion euros and an operating profit (EBITDA) of 

249 million euros in the 2016 financial year (Messer Group, 2018). The company is a 

family-owned gas producer with a product portfolio concentrating on European and 
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Asian customers, and is active in over 36 countries with more than 90 operating 

companies. The current leader in Iberian industrial gases market is Air Liquide (38% 

market share), commanding the largest share of revenues in both Spain and Portugal. 

Conversely, the Iberia market share of Messer is around 3% (Gasworld, 2017). 

This thesis focuses on Air Separation Units, whose history and technology are 

briefly described in the following sections. 

 

1.3.1. Brief history 

The history of industrial gases is linked to the industrialization of the nineteenth 

century. The liquefaction of air proposed by Carl von Linde (Figure 1.4) found the 

birth of a whole new industry, and the generation of gases at large-scale drove to new 

types of technologies and production processes.  

Linde used the Joule–Thomson effect, which consists in decreasing the temperature 

of a gas by means of an adiabatic expansion. The experiments performed by Linde 

were based in James Prescott Joule and William Thomson findings (1853). They 

discovered that when compressed gases are expanded in a valve, their temperature 

decreases. Johannes van der Waals gave an explanation for this effect (1873), saying 

that the molecules in compressed gases are no longer freely movable and the 

interaction among them leads to a temperature decrease after decompression. 

In 1895, Linde could generate in a continuous mode 3 L/h of liquid air in his 

laboratory in Munich (Dienel, 2004). For this invention, air was compressed from 20 

bar to 60 bar in a compressor, and cooled down in a water cooler to ambient 

temperature. The pre-cooled air was fed into a countercurrent heat exchanger and 

expanded in a Joule-Thomson valve until liquefaction temperature. The gaseous 

content of the air was then warmed up again in the heat exchanger and fed into the 

suction side of the compressor. During the following years, the first small commercial 

air liquefaction plants were constructed and delivered. 

In 1902, Linde applied a rectification process to separate liquid air for continuous 

oxygen production with purity above 99%, and in 1905 the first high-purity nitrogen 

was recovered. In 1910, the double column rectifier allowed the simultaneous 

production of oxygen and nitrogen. Figure 1.5 shows one of these plants. Georges 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



Chapter 1. Introduction 
 

10 

Claude also had an important role in further developing the air separation technology 

and obtaining important improvements. A deeper analysis about historical steps and 

developments in industrial gases industry can be found in Almqvist et al. (2003), 

Winnacker-Küchler (1983), Linde (1997) and Häring (2008). 

 

 
Figure 1.4. Carl Paul Gottfried Linde: 11 June 1842 (Berndorf, Germany) – 16 November 1934 (Potsdam, 

Germany). 

 

 
Figure 1.5. Small air liquefaction plant shown by Linde in the Bavarian Industrial and Commercial 
Exhibition in Nuremberg, Germany (1896). 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



Chapter 1. Introduction 

 
11 

1.3.2. Air Separation Process 

Nitrogen, oxygen and argon are the three main components of the atmospheric air 

as shown in Table 1.1. Three main methods have been used historically to separate the 

air components: membrane separation, pressure swing adsorption (PSA) and cryogenic 

distillation. These techniques have different process properties, investment and 

operating costs. Figure 1.6 compares these techniques by their production and 

consumption capacities and gas purity, and identifies two main industrial gases 

consumption methods (i.e., bottles and tankers).  

 

Table 1.1. Composition of dry air 
  Volume fraction in the air Boiling point [ºC] 

N2 Nitrogen 78.08% -195.8 

O2 Oxygen 20.95% -183.0 

Ar Argon 0.93% -185.9 

CO2 Carbon dioxide 400 ppm -78.5 

Ne Neon 18 ppm -246.1 

He Helium 5.2 ppm -268.9 

Kr Krypton 1.14 ppm -153.2 

H2 Hydrogen 0.5 ppm -252.7 

Xe Xenon 0.086 ppm -108.0 

 

 
Figure 1.6. Capacities and purities of the main production (cryogenic distillation, PSA and membrane) and 
consumption methods (bottles and tankers) of industrial gases. 
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Cryogenic distillation is the state of the art technology for air separation units, used 

more than 90% on the worldwide production. In addition, the Messer plant located in 

El Morell (Tarragona), in which this thesis is based on, uses this technology. It will be 

presented in more detail in the following sections. 

The separation of the air into its constituents using cryogenic distillation requires a 

large part of the air volume to be liquefied. The air, as well as any other gas, can only 

be transformed into liquid state at temperature and pressure conditions below those of 

its critical point. The critical temperature of air is -140.7ºC (132.5 K) and its critical 

pressure 37.7 bar. The vapor pressure curve of Figure 1.7 illustrates the allocation of 

temperatures and pressures at which the air and its components condense or evaporate. 

We can see that air below atmospheric pressure (1 bar) must be chilled to -192ºC (81 

K) before it condensates, and at pressures below 6 bar, air must be chilled to -172ºC 

(101 K) before condensation begins.  
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Figure 1.7. Vapour pressure curves of atmospheric gases. Adapted from The Linde Group (2018). 

 

The cryogenic distillation process enables separating with a high purity and yield 

the individual components of the air mixture, despite their boiling points are relatively 

close. Due to the different vapor pressures of the individual components (pN2 > pO2) the 

composition of the vapor mixture differs from the composition of the liquid mixture. 

Therefore, a higher percentage of the component with the greater pressure vaporizes 

during the evaporation process. In the oxygen/nitrogen mixture, the vapor produced 

from the boiling liquid of the mixture has a higher nitrogen concentration than the 

liquid mixture from which it originates. Accordingly, the condensate produced when 

the oxygen/nitrogen vapor mixture is liquefied displays a higher oxygen concentration 

because the component with the lower partial pressure tends to transform into liquid. 

See Figure 1.8 and Figure 1.9 for a graphical explanation. 
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Figure 1.8. Pressure/composition diagram in a O2/N2 mixture. Adapted from The Linde Group (2018). 

 

 
Figure 1.9. Temperature/composition diagram in a O2/N2 mixture. Adapted from The Linde Group (2018). 

 

A typical Air Separation Unit (as depicted in Figure 1.11) consists of four main 

sections: (1) Air compression and precooling system; (2) Molecular sieve station; (3) 

Heat exchanger network; and (4) Tanks and pumping systems. 

In the first section, the air (represented by red lines in Figure 1.11) is compressed 

and precooled. The atmospheric feed air is absorbed and an air filter is used to remove 
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dust and other particles. Then, air is compressed to around 6 bar(a) in a multistage 

turbo-type air compressor. The compressed air leaves the compressor at about 70ºC 

and enters at the bottom of an air cooler equipment named Direct Contact After Cooler 

(DCAC). In the DCAC, the air passes through a set of packed beds while it is washed 

by trickling water (water streams are represented by green lines in Figure 1.11). The air 

is cooled down to around 9ºC before leaving the DCAC by the top. The DCAC has two 

cooling water feeding points: one is placed in the intermediate part of the equipment 

and uses water from the cooling water system (~25ºC), while the second is located in 

the upper part and uses chilled water (~8ºC), obtained from the refrigeration unit called 

Chill Tower and/or other mechanical coolers. In the Chill Tower, water is cooled in 

counter-current flow with the nitrogen-rich residual gas from the separation which is 

saturated with moisture. The required evaporation heat is withdrawn from the water, 

what causes its cooling. The cooling water and condensed water resulting of this 

process is collected by the bottom of DCAC and recycled to the cooling water system.  

The air leaving the DCAC still has contaminants (at molecular level) such as H2O, 

CO2, and potentially hazardous hydrocarbons, which are removed in the molecular 

sieve station. They pass through one of the two Molsieve adsorbers to guarantee that 

these molecules would not gradually block the heat exchanger located downstream. In 

the case of hydrocarbons, they would accumulate in the liquid oxygen bath formed in 

the evaporator and they could cause an explosion if their concentration surpasses the 

solubility and explosion limit. The Molsieve operates in semi-batch (one adsorber is 

working while the other is regenerated); with one unit typically operating during 

roughly seven hours before its capacity is exhausted. The regeneration gas coming 

from the distillation heats up in the regeneration gas heater during the heating period 

and then, during the cooling period, the electric heater is switched off and the cooling 

gas pushes the heat out of the adsorber. The adsorbent material can operate up to ten 

years until it must be replaced. 

The air which leaves the Molsieve is divided in two streams that go through the heat 

exchanger network. The main fraction (around 90%) is sent to the heat exchanger 

where it is cooled in counter-flow using gaseous nitrogen, gaseous residual nitrogen 

and gaseous oxygen from the low-pressure column. The second fraction is further 
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compressed in a booster, cooled in a water heat exchanger and expanded via a turbine. 

The turbine controls the plant refrigeration balance and it is coupled with a work unit 

used by the associated booster compressor. The expanded air fraction enters the low 

pressure column partially liquefied.  

In air separation plants, the main column system employed is typically a double 

column system. The double column consists of a low pressure (LP) column and a 

medium pressure (MP) column where the feed air enters at the bottom at 

approximately 5.5 bar(a). Both columns are thermally linked by a condenser/reboiler. 

The enriching section of the MP column is determined by the volatilities of its 

components (see Table 1.1). The vapor becomes enriched in nitrogen, thus at the top of 

the MP column the vapor stream is highly pure nitrogen (~1 ppm O2). This vapor 

nitrogen stream (nitrogen streams are represented by orange lines in Figure 1.11) is 

sent to the main condenser where it is totally condensed against boiling liquid oxygen 

in the sump of the LP column (oxygen streams are represented by blue lines in Figure 

1.11). This liquid nitrogen stream is used as a reflux in two different places: one 

portion is sent to the top of the MP column and the other one is sent to the top of the 

LP column. The liquid nitrogen stream going down through the MP column serves to 

condense the oxygen, and at the bottom of the MP column a liquid stream enriched in 

oxygen (~35% oxygen) is obtained. This liquid stream is sent to an intermediate feed 

stage within the LP column. The LP column works with the same principle as the MP 

column, but it operates a lower pressure (~1.3 bar(a)). The turbine air stream is fed to 

the LP column, since this location is designed to be at a point within the LP column 

where the composition is very close to that of air. The turbine provides the low level 

(cold temperature) refrigeration required by the process. Some stages below the 

location of the turbine air feed, the enriched oxygen liquid stream from MP column is 

fed to the LP column, serving as an intermediate source of reflux to enhance the 

separation within the LP column. The final separation takes place in the LP column, 

obtaining pure oxygen at the bottom and pure nitrogen (GAN) at the top (~99.5% and 

99.9% purity, respectively). An additional stream is recovered at an intermediate stage 

of the LP column, called waste nitrogen stream since it is nitrogen with a small oxygen 
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content. This stream is used to be heated in the regeneration heater of Molsieves and is 

also used in the heat exchangers in order to cool the air. 

In the LP column some of the liquid oxygen in the sump is boiled by the main 

condenser (also reboiler). This vaporized oxygen provides the necessary vapor flow for 

the distillation, since the heat required to vaporize this oxygen is provided by the 

condensing of the nitrogen at the top of the MP column (both columns are thermally 

linked). The reason why the MP column is operated at a higher pressure than the LP 

column is that the temperature at which the nitrogen condenses (boiling point) must be 

raised so that the vaporizing liquid oxygen can condense it.  

Oxygen product can be withdrawn as gaseous (GOX) or liquid (LOX) product from 

the lower part and the bottom of the LP column, respectively. In order to withdraw 

more liquid product from the distillation column, more refrigeration is required. This is 

achieved by adding liquid nitrogen (LIN) from an external source (e.g., tank or a 

nitrogen liquefier) to the top of the LP column. 

Finally, in an intermediate stage of the LP column, the concentration of argon 

(argon streams are represented by purple lines in Figure 1.11) reaches a peak of 10-

15% and the composition of nitrogen is very low (a few ppm). At this point, a portion 

of the vapor stream (~3%) is sent to the bottom of the crude argon column, where it is 

concentrated into crude argon as top product (~97.5% argon, 1ppm O2 and 0.5% N2). 

The bottom liquid product from this crude argon column is returned to the LP column 

at the same stage where the crude feed is withdrawn. In the pure argon column, the 

residual nitrogen is rectified towards the top and ejected into the atmosphere by 

blowing off a small amount of waste gas with a typical nitrogen content of 40%. Then, 

the liquid argon product (LAR) is sent to the tank from the bottom of the pure argon 

column.  

Figure 1.10 shows a typical purity profile of a low pressure distillation column. 
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Figure 1.10. Low pressure column composition profile. 
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Figure 1.11. Process flow diagram of an Air Separation Unit. (GOX: Gaseous Oxygen, GAN: Gaseous Nitrogen, LIN: Liquid Nitrogen; LOX: Liquid Oxygen, LAR: 
Liquid Argon) 
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Once the separation of the air in its different components has been done, these products 

are sent to the final customers in different ways. For large consumer customers located 

in large industrial areas (around the air separation unit), products are supplied through 

a network of gas pipelines to ensure flexibility and reliability of supply; for medium 

consumer customers (located at larger distances), oxygen, nitrogen and argon are 

stored in liquid phase in tanks and, then, they are transported to customers by means of 

road tankers; and for small consumer consumers, product is sent to bottling units where 

cylinders are filled and, then, they are distributed in delivery trucks to end customers. 

Figure 1.12 shows a graphical representation of the different delivery methods. 

In the case of pipeline distribution, before fed the pipeline, gas products are sent to 

the plant compressors, which are operated accordingly to guarantee a constant pipeline 

pressure and to manage peak volume demands in a prompt and cost-effective way. On 

the other hand, products obtained in liquid phase are stored in cryogenics tanks before 

being sent to customers in road tankers. To this end the liquefaction units are normally 

used, in which part of the gas product (obtained from the air separation unit at a 

temperature between 20ºC and 30°C and approximately at 1.1 bar(a)) is fed. This gas 

stream is compressed into two turbo compressors (the first compressor is known as 

"feed compressor" and the second one as "recycling compressor") until reaching a 

pressure between 26 and 28 bar(g). The refrigeration is generated in two stages, 

expanding the high pressure nitrogen to the suction pressure of the recycle compressor 

and, consequently, performing a work on the booster compressors associated with the 

turbines. There are two booster compressors associated with their corresponding 

turbines. The resulting stream of the series compressors, is the point where the highest 

pressure is reached in the plant, about 56 bar(a). The hot turbine provides cold for the 

cold turbine feed that generates the decompression and the consequent nitrogen 

cooling. The liquid nitrogen is subcooled to a temperature of -192ºC to be able to store 

it in the tank with minimum losses due to the flash effect. 
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Figure 1.12. Industrial gases distribution to final customers 

 

In section 2.3., we present a mathematical formulation to optimize the process 

shown in Figure 1.11, which is complemented with the compression and liquefaction 

units and the possibility to purchase product from an external supplier to cover the 

entire demand. Furthermore, the model also incorporates the possibility of sending 

products in liquid phase to external tanks, which are used as an additional storage 

station. This allows avoiding interruptions in the production stemming from shortages 

in storage capacity, and therefore, taking full advantage of the time periods with 

cheaper tariffs.  

The complexity to optimally manage this kind of facilities is very high due to the 

large number of interactions between variables, changing product prices, fluctuations 

in customers’ product demand, utilities price, etc. Furthermore, this process is a high 

electricity consumer, and in the last few years, the electricity prices and the instability 

of the Spanish electrical market (in which the process studied in section 2 is located) 

have increased. The electricity price can change every hour since it is daily set for the 

following 24 hours based on the electricity supply and demand balance of the market. 

Electricity supply and demand do not match in the same way throughout the hours of 

the day depending on the weather conditions, nuclear plants shutdowns, working days, 
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and consumers’ energy use. In order to hedge against the instability of daily market, 

companies with large energy consumption have the possibility to purchase certain 

power blocks that will be consumed in the future at a price fixed in the present (this is 

known as future market). In this scenario, the need of planning and scheduling tools 

that can improve the process behavior in each time period is crucial, and the computer-

aided tools presented in this thesis constitute a promising strategy to deal with the 

fluctuations in process variables, increasing the business competitiveness and reducing 

the energy usage.  

 

1.4. Decision making tools 

Decision making tools attempt to apply mathematical methods to solve the difficult 

problems confronting modern managers (Winston and Albright, 1997). Their 

application cover a wide variety of business, industrial, military, and public-sector 

problems. In fact, management science tailored for efficiency and profitability 

constitutes the main goal of this thesis where mathematical programming is employed 

to increase the managerial effectiveness. Mathematical programming, and especially 

linear programming, is one of the best developed and most used branches of 

management science (Charnes and Cooper, 1957). In our case, the aim is to develop 

mathematical programing tools to provide guidelines to managers for making effective 

decisions within the state of the current information, and to seek further information if 

current knowledge is not enough to reach a proper decision. 

The essence of management science is the model-building approach, which is an 

attempt to capture the most significant features of the decision under consideration by 

means of a mathematical abstraction. Models are simplified representations of the real 

world and, in order to be useful in supporting management decisions, they have to be 

simple to understand and easy to use. At the same time, they have to provide a 

complete and realistic representation of the decision environment by incorporating all 

the elements required to characterize the essence of the problem under study. This is 

not an easy task but, if done properly, it will supply managers with a formidable tool to 

be used in complex decision situations. Second, through this model-design effort, 
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management science tries to provide guidelines to managers or, in other words, to 

increase managers’ understanding of the consequences of their actions. 

The process of solving a decision-making problem is shown schematically in Figure 

1.13. 

 
Figure 1.13. Steps to solve decision-making problems programming 

 

The first step of such process is to identify a real problem or opportunity, and then, 

it is necessary to collect and analyze the required information to define and understand 

such problem/opportunity. The next step consists in building the model to solve the 

stated problem, which requires a set of mathematical functions containing the decision 

variables and parameters used to represent the problem under study. Sometimes, 

problems are extremely difficult to handle with mathematical techniques and 

simplifications, approximations or assumptions are required.  

In order to solve the mathematical models and obtain solutions, different strategies 

can be used, each with advantageous features for a particular subset of problems 

(further information on this is provided in the next section). Furthermore, several 

modelling software systems as well as ad hoc and commercial solvers are available to 

assist the computer implementation of the optimization-based model. In this thesis 

GAMS (Brooke et al., 1998) has been used as modelling system. 
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Finally, the optimal solution(s) representing the best solution(s) of the stated 

problem, is(are) obtained as a result of the mathematical programming simulation. 

Then, it is convenient to check the feasibility of the proposed solution by coming back 

to the real problem and assessing its robustness in light of uncertainties. Once 

mathematical programming provides an optimal solution to the decision-makers, these 

are capable of combining it with their knowledge in order to implement the solution. 

This solution is often not feasible in the real world and it is necessary to slightly adjust 

the model until it is able to reproduce reality more accurately. In this step, decision-

makers play a fundamental role by introducing their preferences in an iterative process 

until a satisfactory solution is obtained (Jaimes et al., 2009). At the end, the framework 

obtained after the iterative process stated in Figure 1.13, constitutes a powerful tool to 

make decisions achieving efficient solutions. 

This model-design effort, tries to provide guidelines to managers and support 

management actions. It is critical, then, to recognize the strong interaction required 

between managers and models. Models can expediently and effectively account for the 

many interrelationships that might be present among the alternatives being considered, 

and can explicitly evaluate the economic consequences of the actions available to 

managers within the constraints imposed by the existing resources and the demands 

placed upon the use of those resources. Managers, on the other hand, should formulate 

the basic questions to be addressed by the model, and then interpret the model’s results 

in light of their own experience and intuition, recognizing the model’s limitations. The 

complementarity between the superior computational capabilities provided by the 

model and the higher judgmental capabilities of the human decision-maker is the key 

to a successful management-science approach. In this regard, the “Industrial Doctorates 

Plan” offers an ideal environment to test and validate such modelling efforts. 

 

1.5. Mathematical programming 

Mathematical programming or optimization devotes to the formulation of models 

aiming at finding the best element (under some conditions) from a set of alternatives. 

In other words, an optimization problem consists of maximizing or minimizing a 
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system by systematically choosing the best values for the continuous or integer 

decision variables. 

Mathematical models are formed by one (or several) objective function and 

constraints (i.e., expressions which impose bounds in the variables) in form of either 

equalities or inequalities. Each of these functions can be formulated by means of either 

linear or nonlinear algebraic equations. All the feasible solutions of the stated problem 

satisfy the set of constraints, but the optimal solution is the one with the best 

performance as ranked by the objective function. Therefore, the objective function is 

the mathematical representation of a goal for use in decision analysis, operations 

research or optimization studies. The objective function can be an economic (e.g., 

maximize the profit of a firm), an environmental (e.g., minimize the environmental 

impact) or a social (e.g., minimize the obesity) goal, among others. 

The mathematical programming techniques used as a methodological basis of this 

thesis (single-objective optimization (SOO), multi-period optimization, data 

envelopment analysist (DEA) and Malmquist productivity index (MPI)) are next 

explained in more detail . Then, section 1.6 and sections 2 and 3 describe how these 

methods can be used to address the complexity in operating air separation networks 

attaining economic and energy savings as well as guidelines to improve the efficiency 

of existing plants and reference facilities that could be used for benchmarking.  

 

1.5.1.  Objective optimization problems 

Standard single-objective optimization (SOO) models are canonically stated 

(Grossmann et al., 2000) as in Eq. 1-1:  

 

SOO min ƒ(x,y) 

  s.t. h(x,y) = 0                Eq. 1-1 

   g(x,y) ≤ 0 

x ϵ R, y ϵ Z 

 

where ƒ(x,y) represents the objective function (unique) to be minimized. If the 

objective function has to be maximized, then -ƒ(x,y) is used. x and y are the vectors of 
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continuous and integer decision variables, respectively. Continuous variables can 

represent physical quantities such as operating conditions, equipment sizes and 

capacities while integers variables can denote switches between process units or 

equipment startups and shutdowns, among others. A particular case of integer variables 

are binary variables (y ϵ {0, 1}), which allow modeling logical decisions. The set of 

feasible solutions is defined by the set of constraints which impose boundaries on 

variables. In Eq. 1-1, h(x,y) represents equality constraints whereas g(x,y) denotes 

inequality constraints. The (x,y) point which satisfies all the imposed constraints is a 

feasible point and this means a feasible solution to the problem. Feasible points create 

the feasible region of the problem and, finally, the optimization selects the optimal 

point from the feasible solutions set. A point from the feasible region is a local 

minimum (maximum) if it is the lower (higher) function value in some feasible 

proximities. In an optimization problem there can be many local minimums 

(maximums) but in most cases only one of them is the global minimum (maximum). 

Figure 1.14 illustrates these concepts. 

 

 
Figure 1.14. Graphical representation of optimality concept 

 

There are properties affecting the feasible region and objective function which 

imply that any local optimum is indeed a global optimum. One of these properties is 

the convexity. A feasible region � is convex if, and only if, for any two points x1 and 
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x2, their linear combination lies in the feasible region � (� = ��1 + (1 – �)�2 � � ∀��[0,1]). If h(x,y) is linear and g(x,y) is convex, then the feasible region � is a convex 

region. A function f is convex if, an only if, for any two points x1 and x2 the following 

is satisfied: f(��1 + (1−�)x2) ≤ �� (�1) + (1−�)�(�2 ) ∀��[0,1]. If the function f is 

convex and the feasible region � defined by the equality and inequality constraint is 

convex, then any local optimum will be a global optimum. Figure 1.15 illustrates 

convexity concepts. 

 

 
Figure 1.15. Graphical representation of convexity concept 

 

Mathematical models can be classified depending on the nature of their objective 

function and constraints in either linear or nonlinear models, and depending on the 

typology of their decision variables in continuous or binary (or integers in the more 

general case) models. The combination of these two features gives rise to four main 

groups where mathematical models can be classified in: linear programming (LP), 

nonlinear programming (NLP), mixed-integer lineal programming (MILP) and mixed 

integer nonlinear programming (MINLP). These types of model are depicted in Figure 

1.16 and described later.  
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Figure 1.16. Illustration representing the four main types of mathematical optimization problems. Blue 
lines represent the linear equations, green regions represent the feasible region, red points represent the 
feasible region of integer solutions, and green points represent the hypothetical optimal solution. 

 

A linear program (LP) is an optimization problem where the variables are 

continuous, the objective function is linear and the constraints consist of linear 

equalities and linear inequalities. In Figure 1.16 blue lines represent the linear 

equations (equalities and inequalities) and the region formed within them (depicted in 

green color) is the corresponding feasible region. The optimal solution of an LP is 

represented by a green dot and is always a vertex of the feasible region that is optimal. 

Usually, the simplex method (Dantzig et al., 1995) is used to solve LP problems, in 

which successive checking is performed along the vertexes of the feasible region until 

the optimal solution is identified. There are several commercial solvers optimizers 

suitable to solve LP problems such as CPLEX (IBM, 2009), LINDO (Schrage, 1995) 

or GUROBI (Optimisation, 2012), among others. 
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NLP arise when at least one of the model equations is non-linear (either objective 

function or constraints) and all variables are continuous. NLPs can be convex or non-

convex. In convex NLPs, a local optimum is as well a global optimum. In the case of 

non-convex NLPs, multiple local optima may appear, causing standard gradient 

methods to get trapped thereby offering no guarantee of reaching the global optimum. 

The optimizer BARON (Sahinidis, 1996) is a general non-linear optimizer capable of 

solving nonconvex optimization problems to global optimality. 

MILP models contain only linear equations (as LPs), but include both continuous 

and integer variables. Note that in the special case that all variables are restricted to be 

integer, these models are known as integer linear programing (ILP or simply IP). The 

standard procedures to solve MILP problems are cutting plane methods, and the most 

common is the branch-and-bound algorithm (Land and Doig, 2010), which consist in 

relaxing the original integer variables imposing restrictions over them. Specifically, in 

the branch-and-bound, the original MILP is divided into several LP sub problems that 

are solved until all integrality restrictions are satisfied, since this implies that the 

solution found for the relaxed problem is an optimal solution to the original MILP. 

Common commercial solvers that combine those strategies are CPLEX (IBM, 2009), 

GUROBI (Optimization, 2012) or XPRESS (Optimization, 2007), among others.  

Finally, MINLPs are problems that contain at least one non-linear equation and both 

continuous and integer variables. MINLP problems are hard to solve, however several 

algorithms and commercial solvers have been developed to tackle them: BARON 

(Sahinidis, 1996), DICOPT (Grossmann et al., 2002) or SBB (Bussieck and Drud, 

2001) are examples of such methods. 

As will be shown next, the problems addressed in this thesis are LPs and MILPs, 

and have been solved by means of the commercial solver CPLEX (IBM, 2009). 

 

1.5.1. Multiperiod optimization problems 

Plant production scheduling decisions must be made weekly or in a certain future 

time period. These decisions are affected by changing conditions (e.g., demand, 

inventories, power boundaries, electricity prices, etc.), which complicate the 

identification of effective solutions just by problems inspection. To overcome these 
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issues, in this thesis has been developed a tailored multiperiod formulation for the 

optimal scheduling of the ASU operated by Messer Ibérica de Gases S.A.U. in El 

Morell (Tarragona). 

Multiperiod planning/scheduling is one of the most important uses of optimization. 

Multiperiod optimization does not mean solving multiple optimization problems for 

different periods, either simultaneously or sequentially. In multiperiod optimization the 

problem is viewed as a single optimization problem, and it involves input data for 

multiple time periods to produces optimal solutions for the whole time span. The 

objective function of the multiperiod optimization is a weighted sum of the objective 

functions of its component periods. The objective function for each period is a single-

period objective function. The constraints of the multiperiod optimization can be per-

period constraints and cross-period constraints. Per-period constraints are specific and 

apply for each respective period (some periods may have the same or similar 

constraints). Cross-period constraints apply to at least two periods, and control certain 

interactions among periods (e.g., tank inventories). Multiperiod optimization requires 

users to provide input data for all periods beforehand to obtain the optimal solution for 

the whole time span. Most large linear programs encountered in practice are multi-

period models, and are widely used in batch processes. See for instance (Birewar and 

Grossmann, 1990) that presented a multiperiod linear programming model for 

production planning of batch plants that considers benefits and product inventory cost, 

and (Susana and Marcelo, 2009) which proposed a multiperiod model to optimize 

simultaneously production planning and design decisions applied to multiproduct batch 

plants. Despite this, multiperiod models are also applied in the continuous industry. In 

the case of the present thesis, the multiperiod model proposed takes the form of a 

MILP problem with variable size depending on the amount of time periods addressed. 

Further details on the problem formulation can be found in section 2.3. 

 

1.5.2. Data Envelopment Analysis 

Multiperiod models can identify and optimize operation problems of a given 

facility, yet it cannot identify design problems. Therefore, to identify design problems 

as well as further inefficiency sources, comparison between different facilities is 
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necessary. To this end, a standard mathematical programming method named Data 

Envelopment Analysis (DEA) is used. DEA is a non-parametric mathematical 

technique used to evaluate observations representing the performances of a set of 

entities. DEA has been used to assess a wide range of different kinds of entities (from 

business firms to government and non-profit agencies such as schools, hospitals, 

police, countries, regions, etc.). 

In DEA context, the term "Decision Making Unit" (DMU) refers to any entity to be 

evaluated as part of a set of entities that utilize similar inputs to produce similar 

outputs. In our case, the DMUs correspond to the existing ASUs around the world (see 

section 3.3 for further details). The evaluation of each DMU results in a performance 

score that ranges between zero and one, which represents the degree of efficiency 

obtained by the entity. DEA identifies the DMUs which form the "efficient frontier" 

(those with efficiencies equal to one), and also shows the sources and amounts of 

inefficiency in each input and output for every inefficient DMU. DEA provides useful 

findings to guide the changes required to turn the inefficient units into efficient ones, 

for instance by identifying the so-called peer (comparison) group: a set of efficient 

units that could be used as reference to obtain these improvements. Furthermore, DEA 

allows to combine many metrics into a single score without the need of defining 

subjective weights since, in  DEA, weights are optimized so as to favor the assessed 

DMU (and therefore, optimal weights generally change from one DMU to another). 

The first DEA model, proposed by Charnes Cooper and Rhodes in 1978 (Charnes et 

al., 1978), is based on Farrell’s work (Farrell, 1957) and named the CCR model. It 

measures, using a nonlinear (i.e., fractional) model, the efficiency of each DMU as the 

ratio between the weighted sum of its outputs to  the weighted sum of its inputs.  

In DEA models, inefficient DMUs are projected onto the efficient frontier in order 

to obtain improvement targets for them (see Figure 1.17). These projections can be 

done using different orientations, where two main variants exist. One approach aims to 

minimize inputs while satisfying at least the given output levels (input-oriented model), 

while the output-oriented model attempts to maximize outputs without requiring more 

of any of the input values. The orientation (input or output oriented) of DEA models 

depends on the application (Lozano et al., 2009). Usually, input oriented models are 
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used when the defined inputs are more easily manipulated than outputs. For instance, 

the DEA model applied in this thesis (section 3.3) is input orientated since the outputs 

considered (i.e., amount of products) are connected to the customer’s demand, thus 

offering little opportunity for influence (if any). In the case of output oriented models, 

they are normally used when inputs are very hard to control and manage, while outputs 

allow a greater margin of incidence.  

We next present the formulation of the original DEA CCR model (Eq. 1-2), defined 

for each of the |J| DMUs j (j=1,…,|J|) , each using |I| inputs xij (i=1,…,|I|) to produce 

|R| outputs yrj (r=1,…,|R|): 

 

���	
� = ∑ ������∈�∑ ������∈�  

�. �. ∑ ����� −�∈� ∑ ����� ≤ 0									∀� ∈ ��∈�                        Eq. l-2 

��, �� ≥ 0				∀" ∈ #, $ ∈ % 

 

Here, 
� is the technical efficiency of the DMU being assessed (DMUo); ur and vi are 

variables representing the weights given to each output r and input i, respectively; ���, 

is the amount of input i consumed by DMUj and ��� is the amount of output r produced 

by DMUj. When 
� = 1, DMUo is efficient, while 
� < 1 means that DMUo is 

inefficient. CCR model assumes that DMU’s outputs and inputs change in the same 

scale, which means that the CCR model considers constant returns to scale (CRS).  

The original input-oriented CCR DEA model (Charnes et al., 1978) stated in Eq. 

1-2 is nonlinear and nonconvex. However, it can be reformulated (from fractional to 

linear) into the LP model stated below (Cooper et al., 2004):  
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��� 
� = ( ������∈�
�. �. ( ������∈� = 1	

( ������∈� − ( ������∈� ≤ 0										∀� ∈ �
	��, �� ≥ 0										∀" ∈ #, $ ∈ %

 Eq. 1-3 
 

where the subscript o denotes the specific DMU being assessed.  

The fractional program (Eq. 1-2) is equivalent to the linear program (Eq. 1-3). The 

previous LP problem in (Eq. 1-3) can be formulated as a dual partner problem 

(duality), providing the same information (i.e., efficiency scores) but calculating in turn 

targets for the inefficient DMUs so as to become efficient. The LP DEA dual model is 

formulated by assigning one dual variable to each constraint in the primal model as 

follows (Cooper et al., 2011). Note that slack variables have been appropriately added 

to transform inequalities into equality constraints. As will be discussed next, these 

slacks have a clear physical interpretation in DEA, reason why their incorporation to 

the objective function is convenient. 

�$) 
� − * +( ,�-�∈� + ( ,�/�∈� 0
�. �. ( 1�����∈2 + ,�/ = 
����												∀	$ ∈ %

( 1�����∈2 − ,�- = ���										∀	" ∈ #
1�, ,�/, ,�- ≥ 0										∀� ∈ �, $ ∈ %, " ∈ #

 

 
 
Eq. 1-4 

 
 

  

Here, o is the DMU being assessed; ε, non-Archimedean infinitesimal value to enforce 

the variables to be positive; ,�/ and ,�-, vector of slack variables representing the 

amount of input i and output r, respectively, that, if reduced/increased, shifts the 
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projection of DMUo from the weakly efficient frontier to the strongly efficient frontier 

(later explained); 1�, linear weights assigned to every single DMUj to form a linear 

combination.  

In the efficient units (
� = 1), when the values of the slacks are all zero (,�- + ,�/=0 over all r and i respectively), the DMUo is considered strongly efficient, whereas 

when any slack is different from zero (,�-+,�/≠0 for some r or i), the corresponding 

DMUo is considered weakly efficient. For any inefficient DMU (
� < 1), it is possible 

to find a composite DMU (linear combination of existing units) that can reduce its 

input level maintaining the same output level. Any inefficient DMU can become 

efficient by its projecting onto the “efficient frontier”, which is formed by the efficient 

DMUs. 

The model formulated in Eq. 1-4 is input-oriented, that is, inefficient units are 

turned efficient through a proportional reduction of inputs while keeping the output 

constant. It is possible to reformulate its equivalent output-oriented model, where an 

inefficient unit would be turned efficient by increasing its outputs while keeping its 

inputs constant. 

As explained before, the CCR model considers CRS. If the variable returns to scale 

(VRS) property is desired (i.e., if it is suspected that an increase in inputs does not 

result in a proportional change in the outputs) a different DEA model called BCC must 

be used (Banker et al., 1984). The dual version of such model, which is a variant of the 

CCR one, can be formulated by simply adding the following convexity constraint to 

Eq. 1-4: ∑ 1��∈2 = 1. 

Figure 1.17 and Figure 1.18 shows an illustrative example to further clarify the 

previous DEA concepts. Figure 1.17 shows the case of one single input and one single 

output, while Figure 1.18 illustrates the case of two inputs and one output.  
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Figure 1.17. Illustration of DEA results: case with one input and one output. 

 

Figure 1.17 illustrates DEA results when the model is formulated assuming CRS 

(i.e., CCR model, Eq. 1-4) or VRS (i.e., BBC model, that is, Eq. 1-4 plus the convexity 

constraint for 1). Under CRS assumption, the best efficiency (equal to one) is obtained 

by DMU F, which is the referent set for the remaining DMUs. The CRS efficiency 

frontier is represented by the blue ray starting at the origin, passing through F and from 

F onwards. The efficiency scores of inefficient units (scores lower than one) are 

measured by the radial projection of the inefficient units onto the blue line. The relative 

efficiency of an inefficient DMU depends on the model orientation: input-oriented or 

output-oriented. Taking A as an example of inefficient DMU, its relative efficiency 

under input-oriented assumption (i.e., horizontal projection) is the ratio between 

segments p and q, while its relative efficiency under output-oriented assumption (i.e., 

vertical projection) is the ratio between segments r and s. The projection of inefficient 

units onto the efficient frontier determine the improvement targets that, if achieved, 

would make efficient the inefficient units. For instance, DMU A should reduce its 
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input by 8% to become efficient under an input oriented CRS DEA, and increase its 

output by 21% to become efficient under an output oriented CRS DEA. 

Under VRS assumption, the strong efficient frontier is formed by the orange line 

connecting AFEC7777777. The extremes of this frontier (i.e., A and F) are extended with 

parallel lines to the axes to build the weakly efficient frontier. AF7777 is the portion of the 

frontier with increasing returns to scale, while in FE7777 and EC7777 the returns to scale 

decreases. As expected, we can observe notorious differences depending on whether a 

CRS or VRS assumption is considered. For instance, unit E is inefficient under CRS 

formulation but efficient under VRS. The efficiency values (as well as targets) are also 

different in both cases, since the projection for unit G under CRS is g while it is g’ 

under the VRS formulation. 

 

 

Figure 1.18. Illustration of DEA results: case with two inputs and one output. 
 

Figure 1.18 illustrates a case of DEA considering two inputs and one output. The 

convex line (depicted in orange) which connects the efficient units (AFGC7777777) forms the 
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efficient frontier. It means that units A, F, G and C need lower input values than B, E 

and D to obtain the same output level. Inefficient units (B, E, D) are radially projected 

onto the efficient frontier (b, e, d) to determine the targets that, if achieved, would 

make them efficient. The composite efficient unit for E is given by point e, where the 

efficient frontier is crossed by segment OE, connecting the inefficient DMU (E) with 

the origin (radial projection). Thus, the efficiency of E is given by the ratio 
9:9;. The 

efficiency score represents the extent to which all the inputs should be proportionally 

reduced to reach the efficient frontier. Furthermore, the inefficient units projection 

allows to identify benchmarks. For instance, units G and F are the reference set (peer 

group) for E because b is placed in the segment (i.e., facet) connecting them. It means 

that the efficiency of E is evaluated using a linear combination of G and F (using linear 

weighs from the DEA model: e=1<G + 1=F). Thus, E should operate in a similar way 

to these units so as to improve its performance. The inefficient unit B is not projected 

on the strongly frontier but in the weakly frontier, which is obtained by extending the 

efficient frontier (AFGC7777777) parallel to the axes. This occurs because B shows a slack 

measured by bC7777 distance, which means that B presents an excess in input 2 which 

implies an extra reduction in inputs (equals to bC) to become strongly efficient. 

For further information about DEA models and extensions the reader is referred to 

Cook and Seiford (2009), Cooper et al. (2004), Hosseinzadeh Lotfi et al. (2013) and 

section 3.2.1. of this work. Other methodological developments in DEA such as de 

distinction between discretionary variables (D) (i.e., input variables which can be 

proportionally reduced) and non-discretionary variables (ND) (i.e., those input 

variables not subject to management control), or the super-efficiency methodology in 

DEA (i.e., those models that allow to further discriminate among efficient units) are 

also discussed in section 3.2.1.2 and 3.2.1.3, respectively. 

 

1.5.3. Malmquist Productivity Index 

The previous explained DEA methodology uses snapshot information and applies to 

a certain time period (e.g., a single year, month, etc.). In order to evaluate temporal 

data and identify productivity changes over time the Malmquist Productivity Index 

(MPI) is used. MPI is defined as the ratio of the efficiency measures for the same 
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production unit in two different time periods. MPI was first suggested by Malmquist 

(1953) as a quantitative index in the analysis of consumption of inputs (Färe and 

Grosskopf, 1992), combining ideas on the measurement of efficiency from Farrell 

(1957) and the measurement of productivity from Caves et al. (1982). MPI has been 

used in a wide range of applications, such as hospitals (Färe et al., 1994), banks 

(Grifell-Tatje and Lovell, 1996), agricultural productivity (Fulginiti and Perrin, 1997), 

countries (Taskin and Zaim, 1997), etc. 

The Malmquist input-based productivity index for any unit between periods t and 

t+1 (t < t + 1) with frontier technology of period o as a reference, can be formulated as: 

 

?� = @ A�B(��B , ��B)A�B(��B-<, ��B-<) A�B-<(��B , ��B)A�B-<(��B-<, ��B-<)E</=
 Eq. 1-5 

 

Under this definition, Mo > 1 means efficiency decrease from t to t + 1; Mo = 1, 

denotes that efficiency is unchanged from t to t + 1, while Mo < 1 indicates an 

efficiency increase from t to t + 1.  

MPI can be decomposed into two components: one measuring the technical change 

(TECo) and the other measuring the frontier shift (FSo). These components allow 

identifying the strategy shifts of individual DMUs based upon isoquant changes, 

revealing sources and patterns of productivity change and making judgments on 

whether or not such strategy shifts are promising. The decomposition is as follows: 

 ?� = GHI�J,� Eq. 1-6 

with GHI� = KLM(NLM ,OLM)KLMPQ(NLMPQ,OLMPQ) , J,� = RKLMPQ(NLMPQ,OLMPQ)KLM(NLMPQ,OLMPQ) KLMPQ(NLM ,OLM)KLM(NLM ,OLM) S</=
 Eq. 1-7 

  

The term TECo measures the change in the technical efficiency relative to the rest of 

DMUs. TECo > 1 indicates a decline in technical efficiency (i.e., 
�B > 
�B-<), TECo = 1 

no improvement or decline, and TECo < 1 an improvement (i.e., 
�B < 
�B-<). On the 

other hand, the term FSo measures the frontier shift between time periods t and t + 1. In 
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this case, FSo > 1 indicates a regress of the frontier, FSo = 1 no frontier shift, and FSo < 

1 a progress of the frontier.  

The calculation of the MPI requires two single periods and two mixed (cross) 

period measures. The technical efficiency for the first mixed period model 

(A�B(��B-<, ��B-<)) is obtained as follows: 

 A�B(��B-<, ��B-<) = �$)	
 

s. t. ( 1����B ≤ 
���B-<
�W< 										∀$ ∈ % 

( 1����B ≥ ���B-<
�W< 										∀" = # 

( 1� = 1�W<  

1� ≥ 0										∀� ∈ �, $ ∈ %, " ∈ #							
	unconstrained 

Eq. 1-8 

 where	���B-<	and	���B-< are the i th input and the r th output for DMUo in time period t + 1, 

and 
 is the technical efficiency score determining the inputs reduction to produce the 

given output level. In essence, in this model, the technical efficiency of DMUo in time 

period t+1 is assessed against the efficient frontier of time period t. 

The model for the second mixed period (A�B-<(��B , ��B) = �$)	
) is calculated by 

reversing the period of the frontier and the DMUo analyzed (i.e., inputs and outputs of 

period t instead of t +1 are used for DMUo, while inputs and outputs of period t+1 

instead of t are used for the efficient frontier). 

Finally, the calculations of the two single periods are obtained by applying Eq. 1-3 (or 

any other relevant DEA model) in time periods t and t + 1, respectively.  

Note that this formulation corresponds to a VRS input-oriented MPI, consistent 

with the rest of the contribution, but MPI is general enough to accommodate other 

DEA models if required.  
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Figure 1.19 further clarifies the previous MPI concepts. The inputs of each unit in 

time period t are represented using orange dots, whereas the efficient frontier in t is 

represented by the orange line. Blue dots represent the inputs of the units in time period 

t + 1, and the efficient line in this time period is represented by the blue line. In order 

to illustrate changes in technical efficiencies, if a unit (e.g., unit D) shows technical 

efficiencies of 0.5 and 0.8 in t and t+1 respectively, then TECo will be lower than one, 

which means improvement in TECo. Despite this, changes in frontier FS0 between t and 

t +1 can also vary over time and modify the MPI scores. For example, even if the 

technical efficiency of unit D could be improved between t and t +1, the MPI can 

indicate a regression of the DMU as a result of the regression of the frontier, as 

reflected by a FS0 > 1. Therefore, the relative movement of any given unit over time 

depends on both its position relative to the corresponding frontier (technical efficiency) 

and the position of the frontier itself (technology change). If inefficiency is not noticed, 

then productivity growth over time will be unable to distinguish between 

improvements that derive from the unit ‘catching up’ to its own frontier, or those 

resulting from the frontier itself ‘shifting up’ over time. 

 

 
Figure 1.19. Malmquist productivity index illustrative example for period t and t + 1. 
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We would like to remark that problems in Eq. 1-8 can be infeasible. The reason for 

this is analogous to that causing infeasibilities in super-efficiency models (see section 

3.2.1.3): the efficient frontier of these problems is built without the DMU analyzed 

(note the difference in time periods between the left-hand side and the right-hand side 

of the constraints). Despite the possible infeasibilities from Eq. 1-8, a numerical value 

is needed as a result of these models, otherwise the MPI assessment cannot be 

determined. To overcome this limitation, we use the algorithm proposed by Seiford et 

al. (1999) and described in Figure 3.3 (see in more detail in section 3.2.3.) to obtain 

such numerical value.  

 

1.6. Outline: problems addressed 

Real industrial problems aiming at obtaining more efficient and sustainable 

processes can be addressed by using the mathematical programming tools previously 

described. A brief summary of the problems addressed in this thesis follows, while 

these problems are detailed and developed in Chapters 2 and 3.  

 

1.6.1. Multiperiod optimization (Article 1, Chapter 2) 

Cryogenic air separation to produce nitrogen, oxygen and argon with high quality 

requirements is an energy-intensive industrial process that requires large quantities of 

electricity. The complexity in operating these networks systems, namely electricity 

prices and products demands, which vary every hour, creating a clear need for 

computer-aided tools to attain economic and energy savings. In this article, we present 

a multiperiod mixed-integer linear programming (MILP) model to determine the 

optimal production schedule of an industrial cryogenic air separation process so as to 

maximize the net profit by minimizing energy consumption (which is the main 

contributor to the operating costs). The capabilities of the model are demonstrated by 

means of its application to an existing industrial process, where significant 

improvements are attained through the implementation of the MILP (Figure 1.20). 
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Figure 1.20. Graphical abstract of article 1: Multiperiod model for the optimal production planning in the 
industrial gases sector. 

 

1.6.2. Data Envelopment Analysis and Malmquist Productivity for efficiency 

assessment (Article 2, Chapter 3) 

The current trend towards improving energy efficiency in industry calls for 

advanced decision-support tools for quantifying the level of efficiency of industrial 

facilities. This work applies Data Envelopment Analysis (DEA) to assess the 

performance of a set of 34 Air Separation Units (ASUs) producing industrial gases via 

air distillation. We identify the best ASUs according to energy efficiency and 

productivity criteria and define improvement targets for the units found inefficient. 

Furthermore, we analyze the temporal evolution of the efficiency scores using the 

Malmquist Productivity Index (MPI), which is calculated from real data gas companies 

operating plants around the world for years 2013-2016. Our results provide insight on 

how to improve the efficiency of existing plants by identifying sources of inefficiency 

and reference facilities that could be used for benchmarking (Figure 1.21). 
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Figure 1.21. Graphical abstract of article 2: Productivity and energy efficiency assessment of existing 
industrial gases facilities via Data Envelopment Analysis and the Malmquist Index. 

 

1.7. Conclusions 

The works of this thesis have been focused on creating mathematical programming 

models to assist the decision making of plant managers and engineers from air 

separation units. Several models based on mathematical programming have been 

developed in order to increase the profitability of these plants while reducing their 

energy consumption and improving their energy efficiency. These contributions aims 

to promote the move towards more sustainable energy processes in the industrial gases 

sector without compromising their economic growth. The general conclusions and 

knowledge derived from this thesis are stated below. Note that further discussions and 

conclusions can be found in each corresponding chapter (sections 2.5. and 3.4). 

 

• A multiperiod model tool for the optimal scheduling of an industrial air 

separation unit has been developed. The tool relies on maximizing profit by 

minimizing energy consumption, and identifies the most profitable way to 

operate the plant. This tool assists engineers in their daily activities by 

effectively optimizing production planning, energy rules, sales and product 
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stocks, while considering external constraints and dynamic market 

conditions.  

• Data Envelopment Analysis has been applied  to assess the energy 

efficiency of existing industrial facilities. This method allows ranking a set 

of air separation units according to energetic and efficiency aspects. 

Furthermore, the tool identifies sources of inefficiency in each air 

separation unit and establishes quantitative targets for them to become 

efficient. 

• MPI has been used to study the productivity of the air separation units over 

time. 

• The capabilities of the mathematical programming tools developed in this 

thesis have been tested by applying them to real world cases studies and 

using real data from air separation units. Actually, some tools are currently 

used in an air separation plant facilitating the decision making of the plant 

manager and obtaining important economic improvements in the process 

operation. 

• The tools developed in this thesis can be extended to other plants that the 

company has in the rest of the world and apply them as good practices to 

improve the management and efficiency of their processes. 

• The two previous methods can be applied in a wide range of energy 

intensive industrial processes (i.e., chemical, automotive, metallurgy, etc.) 

to minimize energy losses in their process moving towards a more 

sustainable world. Especially, the method developed to optimize the 

scheduling in an industrial air separation unit constitutes a promising 

alternative for any other energy-intensive industrial process (e.g., iron, 

cement, steel, petroleum refinery, bulk chemical processes) where energy 

savings play an important role. 

 

1.8. Future work 

There are many possibilities to improve and expand the work started in this thesis. 

We state below some ideas for potential research that could be developed in the future: 
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• In a competitive environment, obtaining the maximum profit plays a key 

role in the company success. Logistics costs include a portion of the total 

costs of industrial gases producers but can be reduced through supply chain 

optimization. Therefore, optimization of transportation costs in both, the 

bulk industrial gases delivery and the fleet size used to serve the customers 

could be attained by means of a mathematical model devoted to this aim. 

• Investigate and evaluate the benefits of introducing cryogenic energy 

storage (CES) in an air separation unit to store energy during off-peaks 

electrical periods and releasing it during on-peak hours. With CES, instead 

of venting overproduced products, it is possible store them and recover 

energy from them to increase the plant flexibility for load shifting. Power 

generated from CES system can be sold to the electricity market. 

Furthermore, the plant can also participate in the ancillary services market 

by providing operating reserve capacities which can be dispatched upon 

request. These reserves are demanded when real-time electricity demand in 

the grid is higher than the supply.  

• Introduce life-cycle assessment (LCA) to evaluate environmental impacts 

associated with the stages of a product's life from raw material extraction 

through materials processing, manufacture, distribution, use, repair and 

maintenance, and disposal or recycling. Compiling an inventory of relevant 

energy and material inputs and environmental releases can help designers to 

develop more environmentally-friendly products. Evaluating the potential 

impacts associated with identified inputs and releases can help to prioritize 

actions.  

• Introduction stochastic formulations considering data uncertainty in order 

to provide more robust solutions. For instance, one alternative is to develop 

mathematical algorithms that would allow accurate prediction of the 

electricity prices in the future, which would facilitate the management of 

electricity purchases. This could be linked with the current mathematical 
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model developed in this thesis and it could represent important savings to 

the company. 

 

1.9. Nomenclature 

Abbreviations 

ASU     air separation unit 

BCC  banker, charnes and cooper 

CAGR  compound annual growth rate 

CCR  charnes cooper and rhodes 

CES  cryogenic energy storage 

CRS  constant returns to scale 

DCAC     direct contact after cooler 

DEA  data envelopment analysis 

DMU  decision making unit 

GAN  gas nitrogen 

GOX  gas oxygen 

LAR  liquid argon 

LCA  life-cycle assessment 

LIN  liquid nitrogen 

LOX  liquid oxygen 

LP     linear programming  

LP column low pressure column 

MINLP    mixed integer nonlinear programming  

MILP     mixed-integer lineal programming  

MOO     multi-objective optimization 

MP column medium pressure column 

MPI  malmquist productivity index 

NLP     nonlinear programming  

PSA  pressure swing adsorption 

SOO    single-objective optimization 

VRS  variable returns to scale 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



Chapter 1. Introduction 

 
47 

Sets 

i  set of inputs indexed by i 

j  set of decision making units indexed by j 

r  set of outputs indexed by r 

t  set of time intervals indexed by t 

 

Subsets 

D  set of inputs which are discretionary 

ND   set of inputs which are non discretionary 

 

Variables 

F  objective function 

FSo  frontier technology shift in DMUo 

G  inequality constraints 

h  equality constraints  

λj  linear weight for every single DMUj to form a linear combination 

Mo  Malmquist index to measure efficiency changes in DMUo 

θ  relative efficiency score in input oriented model 

o  assessed DMU 

Si
-  amount of input i that, if reduced, shifts the DMUo projection until the 

strongly efficient frontier 

Sr
+  amount of output r that, if increased, shifts the DMUo projection until 

the strongly efficient frontier 

TECo  technical efficiency change in DMUo 

W  feasible region 

x  vector of continuous variables 

y  vector of integer variables 

 

Parameters 

ε  non-archimedean value designed to enforce strict positivity on the 

variables 
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m  number of inputs consumed by a DMU 

n  number of decision making units 

p  vapour pressure 

s  number of outputs produced by a DMU 

xij  amount of input i consumed by DMUj 

yrj  amount of output r produced by DMUj 
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2.1. Introduction 

At present, cryogenic air distillation is the most efficient technology (Smith et al., 

2001) to obtain technical gases (i.e., nitrogen, oxygen and argon) in large quantities 

with high standard requirements. Compression and liquefaction in the cryogenic 

separation require large amounts of electricity which leads to large operating costs. 

Therefore, it is not surprising that energy saving opportunities in the air separation 

technology have been object of study since long ago (Yan et al., 2010). Xenos et al. 

(2015) attempted to reduce power consumption and therefore operational costs in a 

network of compressors by introducing models to estimate the best distribution of the 

load. Similarly, Kopanos et al. (2015) developed a mathematical framework for 

compressors operations in the context of air separation plants to simultaneously 
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optimize maintenance and operational tasks. Üster and Dilaveroglu extended the scope 

of the analysis beyond compression stages to address the optimization of a natural gas 

network while satisfying customers’ demand (Üster et al., 2014). 

We note that in the present contribution we address a more complex problem, as we 

consider the volatility of the electricity market price. Electricity is purchased in an 

organized wholesale market, also called “spot market”, which works similarly in all 

European Union regions. OMIE  is the electricity market operator who manages the 

“spot market” in the Iberian Peninsula (OMI-Polo Español S.A., 2016), similarly as 

Nord Pool Spot does in the Nordic countries (Nord Pool Spot, 2016), EPEX Spot in 

France (EPEX, 2016), Germany and other Central European countries, or GME (GME, 

2016) in Italy. The electricity market allows the purchase and sale of electricity 

between agents (producers, consumers, traders, etc.) at a price subject to market 

fluctuations (Madlener et al., 2012). Furthermore, the steeping up of renewable energy 

sources in electricity generation promoted since the European directive on renewable 

energies (European Comission, 2001), has increased the difficulty of balancing supply 

and demand. In this context, dynamic electricity tariffs (i.e., dynamic pricing) 

encourage customers to shift demand away from peak times, thus facilitating demand-

side response to reduce peak load. See (Klaassen et al., 2016) and (Granell et al., 

2016). 

The electricity price in this market is daily set for the next 24 hours, and it is fixed 

based on the balance between the electricity supply and demand in the electrical 

system. Unavailability of power plants, fuel costs, demand profiles or weather 

conditions affect the “spot market” price schedules, which vary from day to day or, 

even, from hour to hour, with an eventual risk of uncontrolled prices. This fact forces 

companies to plan ahead the operation (e.g., switches in equipment loads, startups and 

shutdowns of operation units) in order to improve their profit while still fulfilling 

contractual requirements, such as product demand and energy rules.  

Furthermore, in order to reduce the risk of uncontrolled “spot market” electricity 

prices, one can resort to a “futures market”, in which power purchase operations are 

made several months or years ahead the electricity is consumed. In this market, 

companies purchase electrical power blocks that will be billed at the time of 
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consumption at a price fixed in the present (here and now). In Spain, OMIP (Iberian 

Energy Derivatives Exchange, 2016) is the main operator responsible for the 

management of trading operations in the electricity “future market”. Contracts in this 

market constitute a means of managing the risk of facing future high electricity prices, 

which would result in extremely large operating costs and therefore low profitability. 

Companies in the chemical industry, inter alia, need accurate prices forecasts to make 

optimal plans. For this reason, they hire part of their electrical consumption at a fixed 

price in this market to minimize the exposure to “spot market” prices volatility (i.e., the 

greater power blocks purchased in the “future market”, the less exposure to “spot 

market” fluctuations). 

Furthermore, all the hours in a year are grouped into six tariff periods (P1 to P6) in 

terms of energy and also power available, where higher tariff periods show lower 

electricity prices (i.e., P1 is the most expensive tariff and P6 is the cheapest). This 

causes that in one single day, several tariff periods with great pricing differences 

between them may apply. Users must then select the amount of energy to contract in 

each period according to their energy needs.  

In practice, the electricity cost is subjected to the variability of both “spot” and 

“future” markets, which can significantly increase the production cost unless proper 

actions are put in place in order to hedge against the associated risk. The effect of these 

dynamic tariffs has been widely studied in the context of both domestic (see Gaiser et 

al. (2014); Gutiérrez-Alcaraz et al. (2016); Labeeuw et al. (2015); Widén (2014) and 

Finn et al. (2013)) and non-domestic users (see Kamilaris et al. (2014)). In particular, 

the benefits that the industry sector could attain from dynamic tariffs have already been 

acknowledged (Granell et al., 2016). Note that this problem is even more complex in 

industrial scenarios, since the remarkable number of customers placing orders (i.e., 

nitrogen, oxygen and argon) and the diversity of sectors they may come from (e.g., 

industrial, medical and food industry) makes it hard to forecast the electricity needs 

precisely. This forecasting, however, is essential for boosting competitiveness and 

maintaining income stability. In order to deal with this volatility, planning and 

scheduling tools based on mathematical programming arise as a promising alternative, 

as they provide a sound basis for the rational operation of plants under dynamic tariffs 
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(Kostin et al., 2011; Mele et al., 2009; Cristóbal et al., 2012a; Cristóbal et al., 2012b). 

In a pioneering work, Daryanian et al. (1989) showed the economic benefits of 

studying the demand response in air separation plants. This methodology was later 

extended by Karwan et al. (2007) and Pulkkinen and Ritala (2008) by incorporating 

discrete operating decisions. Ierapetritou et al. (2002) developed a two-stage stochastic 

programming approach to determine the optimal schedule that minimizes the operating 

cost in an energy-intensive air separation plant depending on the power costs. Miller et 

al. (2008) undertook an operating analysis to determine the conditions under which 

intermittent operation of air separation systems is economically feasible considering 

peak and off-peak power prices. Zhu et al. (2011a) presented a model to determine 

optimal operating strategies while considering demand and contractual obligations, 

assuming instantaneous switching time between different operating conditions and 

constant electricity prices across the operating cycle. Later Zhu et al. (2011b) 

developed a daily multiperiod model where operating conditions under variable 

electricity pricing as well as nonzero transition times were taken into account. Mitra et 

al. (2012), improved previous works by incorporating accurate discrete decisions (e.g., 

equipment shutdowns and startups) and corresponding operational constrains to better 

depict the model behavior. The size of the network analyzed was increased in Puranik 

et al. (2016), who studied the best configuration to supply products from different air 

separation sources to a set of customers through pipelines, determining which 

compressors and cold boxes should be into operation in each period so as to cover the 

global demand. These works relied on two main simplifications in order to keep the 

mathematical models at a manageable size. The first concerns the modeling of the tariff 

patterns, which were typically aggregated into fewer lumped periods. This is for 

instance the case of Zhu et al. (2011b), where a single day was split into four different 

power prices periods and the same pattern was repeated for all the days of the year. 

Similarly, in Mitra et al. (2012) a seasonal electricity prices forecast for a typical week 

was considered. The second simplification concerns the modeling of the cryogenic 

separation system itself, where two approaches are typically used: relying on simplified 

linear models, or reducing the scope of the simulation by leaving some process units 

out of the analysis. This is the case in Puranik et al. (2016), where only pipeline 
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demand satisfaction is considered and liquid production, product storage, etc. are 

omitted. Furthermore, the majority of the aforementioned works were developed 

assuming ideal thermodynamic calculations and making strong assumptions about the 

demand pattern and power pricing.  

In this work we extend previous research in two different ways. On the one hand, 

we increase the granularity in the modelling of the electricity price pattern in order to 

account for hourly variations. The proposed formulation defines an accurate production 

schedule considering not only spot market prices but also power blocks bought in 

advance in “future market”. Furthermore, the boundaries of the system under study are 

expanded compared to previous research by including the entire network: production, 

treatment and conditioning (i.e., compression and liquefaction), storage and loading of 

delivery tankers. Therefore, both gas and liquid demand are taken into account when 

optimizing the production schedule. The model is further enhanced by considering the 

option of outsourcing, that is, of covering part of the demand by purchasing products 

from an external supplier (i.e., a second air separation unit). This is done by means of 

contracts that assign an energy amount to the external unit (energy needed to produce 

and supply the product), which has to be paid to the external supplier. The possibility 

to cover the pipeline demand from these two different sources (i.e., main air separation 

unit and external one) offers great flexibility, thereby leading to significant reductions 

in operational costs if properly managed. The model also considers idle times 

occurring during equipment start-ups (until the desired product loads and purities are 

reached).  

This systematic approach provides planning alternatives that can result in 

significant economic benefits and which could be hard to identify otherwise by using 

standard heuristics or rules of thumb. Furthermore, this approach provides an accurate 

prediction of the electricity hourly demand of the company. This piece of information 

plays a key role in the plant profitability, as energy-intensive companies must send 

forecasted consumption (hours or days in advance) to both the operator and distributor 

of the electrical system and will be compensated or penalized depending on the error of 

the forecasting. The capabilities of the proposed strategy are demonstrated by means of 

a series of case studies based on real data from an existing industrial air separation 
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plant. In them, we show how the process operation is affected by varying power 

pricing and limitations as well as by product demand fluctuations.  

This article is organized as follows. We first describe the industrial network under 

study and formally define the problem of interest in Section 2.2. Next, the 

mathematical formulation used to simulate the problem is presented in Section 2.3. We 

then demonstrate in Section 2.4 the usefulness of the proposed approach by means of 

its application to different case studies. In Section 2.5 the conclusions of the work are 

drawn.  

 

2.2. Problem Statement 

2.2.1. Process Description 

We address the economic optimization of the industrial network shown in Figure 

2.1. The process contains a set of units that convert air, which is the main raw material, 

into six final products: oxygen gas (GOXP), nitrogen gas (GANP), industrial liquid 

oxygen (ILOXP), medical liquid oxygen (MLOXP), liquid nitrogen (LINP) and liquid 

argon (LARP). Final products GOXP and GANP are delivered directly to customers 

without intermediate storage via pipelines (i.e., GOX and GAN pipelines, 

respectively). Conversely, final products LARP, MLOXP, ILOXP and LINP are stored 

in tanks T1, T2, T3 and T4 respectively, where a certain stock must be maintained. 

Storage tank T5 contains LINP, which allows re-directing a certain amount of this 

product in scenarios where GANP demand cannot be satisfied by normal operation. In 

such case, the LINP stored in T5 can be gasified and sent to the GANP pipeline.  

Streams are mixed and divided using mixers and splitters, denoted by diamonds and 

circles, respectively, in Figure 2.1. The topology of the process is as follows. Before 

entering the main section of the process, the atmospheric air is fed to the pretreatment 

unit (PTU), where it reaches the input requirements, namely composition, temperature 

and pressure. The operation of unit PTU includes compression, refrigeration and 

elimination of impurities, such as solids in suspension or moisture in the raw material. 

The PTU output stream is sent to the distillation column (DCU) where four 

intermediate products (i.e., GOXIP, GANIP, LOXIP, LARIP) with different 

composition, temperature and pressure are obtained. These intermediate products 
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require further treatment to achieve the customer quality specifications. LOXIP is 

produced by feeding nitrogen reflux stream from T4 to the DCU. GOXIP and GANIP 

are treated in compressors CU1-CU3a and CU3b-CU5, respectively, where pressure 

and temperature conditions are modified to achieve the final requirements in the outlet 

streams. Compressors CU3a and CU3b correspond indeed to a single compressor (i.e., 

CU3), which can operate either with GOXIP or GANIP, but not with both at the same 

time. Note that the definition of two separate units here will allow us to avoid the 

definition of a disjunction later during the modelling task (see Section 2-3).  

The compressor’s outputs include final products GOXP and GANP, which can 

either be directly sent to customers or mixed with other product streams before 

reaching the pipeline. One alternative for both products is to merge them with 

externally purchased streams OGOX and OGAN. This is used to cover the high 

demand needs and also to guarantee the supply in case of incident or accident. OGOX 

and OGAN are oxygen and nitrogen in gas phase with the same specifications and 

qualities as the products obtained in the main process, but produced by an external 

supplier using a distillation column (EDCU) and external compressors ECU1 and 

ECU2. These units are managed by an external supplier and therefore we only include 

here the contracts that determine the quantities and prices of their products. OGOX is 

the only alternative stream that can be used to increase the production of GOXP, while 

the production of GANP can be complemented not only with OGAN but also with two 

more alternatives. One is the nitrogen gas produced in the conversion unit CBU, which 

transforms liquid nitrogen from the storage tank T4 and compressed oxygen gas from 

CU1-CU3 into nitrogen gas with GANP specifications and liquid oxygen with ILOXP 

quality, respectively. The second option is to use the output of the vaporizer unit (VU), 

which transforms the liquid nitrogen stored in the backup tank T5 into GANP, as a 

result of the vaporization process. This unit operates only when the demand of GANP 

is very high or when electrical fault or unexpected plant shutdown occur and 

compromise the product supply to the pipeline in emergency circumstances. LOXIP 

from DCU can be used to produce MLOXP, ILOXP or both at the same time, 

depending on their demands. Splitters SP4 and SP9 and mixers MX7 and MX8 are 

handled to select the final LOXIP service. LQU1 and LQU2 are two liquefiers with 
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different capacities, which can be used to convert gas nitrogen into liquid nitrogen. The 

output streams from these units are directly sent to tank T4 as LINP. PU1, PU2, PU3 

and PU4 are pumps. 

Storage tanks T1-T5 may receive streams in liquid phase coming from several units. 

When the level in these tanks T1-T4 reaches the upper limit, a certain amount of 

product can be sent to external tanks ET1-ET4, which are used as an additional storage 

station to avoid interruptions in the production. The product stored in these tanks, can 

also be used as final product supply. 

The products ILOXP, MLOXP, LINP, LARP are sent to customers in road tankers 

according to a predefined planning which is known one week in advance, while the 

remaining are supplied via pipeline. 

Due to the nature of the products, in some cases process streams can be safely 

released to the atmosphere (see for instance vents in SP1, SP2). 

Process units consume three main utilities. Electricity (UE) is, by far, the main 

utility consumed in the process and is used for the operation of a large number of 

process units (PTU, CU1-CU5, LQU1, LQU2, EDCU, ECU1, ECU2, and PU1-PU9). 

Gasoil (UGO) is used only to operate VU. Cooling water (UCW) is employed in the 

refrigeration system of PTU, CU1-CU5, LQU1, LQU2, EDCU, EDCU1, EDCU2 and 

VU in order to curb the temperature increases in these equipment units and avoid 

operation failures, but it is not considered in our model since it only represents a 0.5% 

of the overall cost of utilities. All utilities are purchased from external suppliers. 
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Figure 2.1. Process network studied. Raw material is separated into six final products which are distributed 
to customers through pipelines and road tankers. Three utilities are used in the process, although cooling 
water (UCW) is not included in the mathematical model since it only accounts for a marginal share of 
utilities cost. 

 

2.2.2. Problem Definition 

Based on the process network described above, we define the problem of interest. 

We are given the demand of the final products GANP, GOXP, ILOXP, MLOXP, 

LARP and LINP, and the economic data associated with the operation of the network 

(i.e., products prices and utilities costs). Despite the variability in power price and 

product demand, we assume here that both parameters are known in advance for each 

time period. Two reasons support these assumptions. First, the variability of electricity 

prices is limited (to some extent), since only the part exposed to the “spot market” 

suffers from uncertainty. Second, electricity prices of the “spot market” as well as 

demands can, in general, be forecasted with enough accuracy in the immediate future 

(i.e., weeks) using historical data as well as current trends. Specifically, the exact liquid 

demand is known by the logistic department one week in advance, whereas unexpected 
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orders implying large gas consumptions (i.e., those that move away from the average 

consumption) must be warned by customers beforehand.     

In this context, the aim of our study is to determine the optimal operation of the 

network (i.e., equipment startup and shutdown times, stream flow rates, product 

purchases to external process, etc.) that optimizes its economic performance.  

 

2.3. Mathematical Formulation: Deterministic Model 

We have developed a deterministic multi-period optimization model to tackle the 

problem stated above. The mixed-integer linear programming (MILP) model (Floudas, 

1995) contains continuous variables used to model stream flow rates, inventories, 

utility consumption and economic indicators, whereas binary variables represent 

logical decisions. In the ensuing subsections we describe the deterministic model, 

which comprises four main sets of equations: mass balance constraints; capacity 

constrains; equations describing utility consumption; and the objective function.  

 

2.3.1. Mass-balance constraints 

Mass balances are defined for all process units and time periods. A sketch of a 

generic unit and the sets defined around it is provided in Figure 2.2. 

 

 
Figure 2.2. Generic process unit. 

 

Let, SIi and SOi be the sets of input and output streams of unit i, respectively. In 

some process units with several input (output) streams, we also define set MSi (MOi) as 

the main stream into (from) that unit. Bearing this in mind, for most units that do not 

allow material accumulation, Eq. 2-1 applies, 
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( Jc,Bc∈d9e
= ( Jcf,Bcf∈d�e

∀�
$ ∈ 	Igh, Ih1 − Ih5, HIh1, HIh2, ?k1 − ?k8, mGh, mh1 − mh9, ,m1 − ,m14, ph Eq. 2-1 

where Fs,t is a continuous variable denoting the volumetric flow rate of stream s in 

time period t. Note that equations for mass balances still hold even when using the 

volumetric flow rate of the stream, as these are expressed in [Nm3]. 

In the case of DCU, Eq. 2-2 is used to determine the different output flows. 

 

Jc,B = ( Jcq,Br%HsApts�,ccq∈ude
+ ( Jcqq,BrpI�,ccqq∈d�e\ude

∀�, � ∈ ,t� , $ = AIh Eq. 2-2 

 

Here, YIELDVOLi,s is a parameter accounting for the volumetric yield of stream s in 

unit i and YVCi,s is a parameter for the correction of the volumetric yield when there is 

a recycle (i.e., stream from T4) into the DCU.  

In the case of process unit CBU, mass balances are computed for nitrogen and 

oxygen streams separately, as these streams are not mixed inside the unit. To model 

this, we make use of sets MSi and MOi, which will both be defined for the same 

substance (i.e., oxygen) regardless of the phase (i.e., liquid or gas, see Eq. 2-3 and Eq. 

2-4. The ratio between nitrogen and oxygen required for the appropriate operation of 

the CBU is given by the CF parameter, as illustrated in Eq. 2-5. 

 

( Jc,Bc∈u9e
= ( Jcf,Bcf∈ude

∀�, $ = Igh Eq. 2-3 

( Jc,Bc∈d9e∖u9e
= ( Jcf,Bcf∈d�e∖ude

∀�, $ = Igh Eq. 2-4 

IJ ( Jc,Bc∈ude
= ( Jcf,Bcf∈d�e∖ude

∀�, $ = Igh Eq. 2-5 

 

For the storage tanks T1-T5, accumulation must be taken into account, as reflected 

in Eq. 2-6 and Eq. 2-7. 
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%xp$)$� + G%?H y ( Jc,Bc∈d�e
− ( Jcf,Bcf∈d9e

z = %xp�,B ∀$ ∈ G%, � = 1 Eq. 2-6 

%xp�,B/< + G%?H y ( Jc,Bc∈d�e
− ( Jcf,Bcf∈d9e

z = %xp�,B ∀$ ∈ G%, � > 1 Eq. 2-7 

 

Here, INVi,t is a continuous variable representing the inventory of tank i in time 

period t, TIME is a parameter denoting the duration of a time period, and TI is the set 

of units i which are tanks (i.e., TI = {T1, T2, T3, T4, T5}). Note that for the first time 

interval, we require the definition of parameter INVinii, which provides the initial 

inventory of tank i (see Eq. 2-6).  

In order to mimic real operation, the model includes the possibility of purchasing 

two outsourcing streams OGOX and OGAN to satisfy the demand of such products in 

the global network. The price of these products is given by the amount of electricity 

consumed in EDCU, ECU1 and ECU2 to produce them, and it is finally linked to the 

demanded flow via contractual arrangements. Note however that the model has no 

control over the operating conditions or the flows distribution in these units, which are 

decided by the external supplier. Nevertheless, EDCU has a limitation on the amount 

of OGAN which can be produced (and hence obtained) in comparison to the amount of 

OGOX, due to the air composition and the process design. We model this using 

parameter CF2, as shown in Eq. 2-8. 

 

( Jcq,Bcq∈d9e\u9e
≤ IJ2 ( Jc,Bc∈u9e

∀�, $ = HAIh Eq. 2-8 

 

2.3.2. Capacity constrains 

Some of the units have capacity limitations, which are determined mainly by their 

design features. This is for instance the case of tanks, whose level must lie between a 

lower and an upper bound, as described in Eq. 2-9: 

 ?%x%xp�%xpI{m� ≤ %xp�,B ≤ ?{k%xp�%xpI{m� ∀�, $ ∈ ,G� Eq. 2-9 
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Here, MININVi and MAXINVi are parameters indicating the minimum and 

maximum inventories allowed for unit i and expressed as a percentage of the total 

capacity of the tank, which is given by parameter INVCAPi, whereas TI is the set of 

units which are tanks. 

Similarly, lower and upper bounds are imposed on flowrates, as can be seen in Eq. 

2-10 and Eq. 2-11.  

 

�$�,B?%xI{mpts� ≤ ( Jc,Bc∈ude
∀�, $ ∈ ?%xI{m Eq. 2-10 

( Jc,Bc∈ude
≤ �$�,BI{mpts� ∀�, $ Eq. 2-11 

 

These equations make use of binary variable yii,t that equals 1 if the corresponding 

process unit is being operated in time period t and 0 otherwise. When the binary 

variable takes a value of 0, it enforces the input flow to that unit to be 0, whereas 

otherwise it allows it to take any value between the minimum and maximum flowrates 

that can be treated by unit i, denoted by parameters MINCAPVOLi and CAPVOLi, 

respectively. MINCAP is the set containing all units for which a minimum input 

flowrate must be defined. Note that while all the units have an upper limit imposed on 

their input flow, only those in set MINCAP (i.e., PTU, LQU1, LQU2, PU1, PU3, 

CBU, ECU1 and ECU2) have also a lower limit. Limits on output streams from EDCU 

are imposed via constraints on the input streams of compressors ECU1 and ECU2. 

Process units LQU1 and LQU2, show a characteristic delay between the moment 

they are switched on and the moment in which they start producing. In practice, this 

means that the performance of these units in the period they are started on and in the 

remaining ones differ, as in the former they have an initial idle time that causes them to 

consume energy even when they still do not produce the desired product. This is 

modeled via the following disjunction: 
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| rtx�,B( Jc,Bc∈ude
≤ AG ∙ IAmpts�~ ⋁ | ¬rtx�,B( Jc,Bc∈ude

≤ I{mpts�~ ∀�, $ =	s�h1, s�h2 

rtx�,B ∈ �G"��, J����� 
Eq. 2-12 

 

As shown, the effect of the idle time is computed via parameter DT, which limits 

the amount of product that the unit can process during the first time period it is on (i.e., 

DT ≤ 1). The associated disjunction makes use of Boolean variable YONi,t which is true 

if unit i is switched on in time period t and false otherwise. We reformulate the 

disjunction into mathematical equations by means of the convex hull reformulation 

(Vecchietti, 2003) using Eq. 2-13, Eq. 2-14 and Eq. 2-15. These equations have been 

appropriately simplified and combined with those imposing lower limits on the 

capacity of the input flows: 

 

AG ∙ ?%xI{mpts���)�,B ≤ JAc,B< ≤ AG ∙ I{mpts���)�,B ∀�, $ = s�h1, s�h2, � ∈ ?,� Eq. 2-13 

?%xI{mpts���$�,B − ��)�,B� ≤ JAc,B= ≤ I{mpts���$�,B − ��)�,B� ∀�, $ = s�h1, s�h2, � ∈ ?,� Eq. 2-14 

JAc,B< + JAc,B= = Jc,B ∀�, $ ∈ s�h1, s�h2, � ∈ ?,� Eq. 2-15 

 

Here, FD1
s,t  and FD1

s,t are disaggregated variables and yoni,t is a binary variable that 

is 1 if unit i is started up in period t and 0 otherwise. These equations work as follows. 

If unit i is inactive in time period t (yii,t = yoni,t = 0), Eq. 2-13 and Eq. 2-14 will force 

both FD1
s,t and FD2

s,t to be 0 and Eq. 2-15 will make Fs,t equal to 0 as well. On the 

other hand, if the unit is switched on in time period t, Eq. 2-14 will force FD2
s,t to be 0, 

as both yii,t and yoni,t will equal 1. Then, Eq. 2-13 will allow FD1
s,t to take any value 

between DT · MINCAPVOLi and DT · CAPVOLi and Eq. 2-15 will make Fs,t equal to 

FD1
s,t. Finally, if the unit is on but was not switched on in time period t, then Eq. 2-13 

will force FD1
s,t to be 0 (as yoni,t = 0), whereas Eq. 2-14 will allow FD2

s,t to take any 

value between MINCAPVOLi and CAPVOLi, and Eq. 2-15 will make Fs,t equal to that 

amount.  

The value of yoni,t is set according to the value of yii,t by means of Eq. 2-16, Eq. 2-

17 and Eq. 2-18. 
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��)�,B ≥ �$�,B − �$�,B/< ∀$, � > 1 Eq. 2-16 

��)�,B ≤ �$�,B ∀$, � > 1 Eq. 2-17 

��)�,B ≤ 1 − �$�,B/< ∀$, � > 1 Eq. 2-18 

 

In order to illustrate how these equations work, we will consider the four different 

possibilities we may face. When unit i is switched on in time period t, yii,t = 1 and yii,t-1 

= 0, so that Eq. 2-16 forces yoni,t to be 1 and Eq. 2-17 and Eq. 2-18 do not impose any 

additional constraints. When unit i is working in time period t but was switched on 

previously, yii,t = yii,t-1 = 1, and then Eq. 2-16 forces yoni,t to be 0 and Eq. 2-17 and Eq. 

2-18 do not impose any additional constraints. When unit i stops working in time 

period t, yii,t = 0 and yii,t-1 = 1, and thus Eq. 2-17 and Eq. 2-18 force yoni,t to be 0, 

whereas Eq. 2-18 does not impose any additional constraint. Finally, when unit i is not 

working either in time period t or in t-1, then yiit = yii,t-1 = 0 and Eq. 2-17 forces yoni,t to 

be 0, whereas Eq. 2-16 and Eq. 2-18 do not impose any additional constraints. 

As explained before, compressor CU3, which is modeled as two separated units 

CU3a and CU3b, can work with two different products. However, once the compressor 

stops working with a given product, several hours of maintenance work are required 

before it can be used again with the other product. This is modeled via Eq. 2-19, Eq. 2-

20 and Eq. 2-21. 

 

��,�,B + ��q,�,B ≥ 1 ∀�, $ = Ih3�, $f = Ih3�, � = 1 Eq. 2-19 

�$�,B ≤ 1 − �$�f,Bf $ = Ih3�, $f = Ih3�, ∀�, �f|� > �f > (� − mI�G) Eq. 2-20 

�$�,B ≤ 1 − �$�f,Bf $ = Ih3�, $f = Ih3�, ∀�, �f|� > �f > (� − mI�G) Eq. 2-21 

 

Here, PCHT is a parameter indicating the time (computed as the number of time 

periods) required to change the product in the compressor. Eq. 2-19 forces at least one 

of the two units CU3a or CU3b to be switched off, that is, prevents unit CU3 to be 

used with both products simultaneously. 
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In normal plant operation, changes in flow rates in a brief period of time must be 

smooth, as otherwise the overall process may become unstable thus increasing the risk 

of potential failures. In order to model this, it is necessary to impose a limit MFCs on 

the increase or decrease of flows in two consecutive time periods (see Eq. 2-20, Eq. 2-

21 and Eq. 2-22). 

 

Jc,B − 	 Jc,B/< ≤ {pc,B ∀� > 1, � ∈	JIs Eq. 2-20 

Jc,B/< − 	Jc,B 	 ≤ {pc,B ∀� > 1, � ∈	JIs Eq. 2-21 

{pc,B 	 ≤ ���c,B · ?JIc ∀� > 1, � ∈	JIs Eq. 2-22 

 

Here, AVs,t is the absolute value of the change (i.e., increase or decrease) in the flow 

of a stream in two consecutive time periods (i.e., AVs,t = |Fs,t - Fs,t-1|), while FCL is a set 

comprising the streams on which this limitation is imposed and yfcs,t is a binary 

variable that equals 1 if the flow of stream s changes in time period t and 0 otherwise.  

When a tank is reaching a high level, there is the possibility of depleting it by filling 

and sending road tankers to a nearby storage plant. This is illustrated in Figure 2.1 via 

splitters SP10-SP13, which are allocated downstream of those tanks (except in tank T5, 

where this is not an option). Those splitters must also act as switches, as it is not 

possible to fill a tanker for selling the product and a tanker to the associated storage 

plant simultaneously. To model this, we make use of the set MOi, which contains the 

stream representing the product to be sold. Hence, equations modeling the switch 

behavior (Eq. 2-23 and Eq. 2-24) impose lower bounds on the streams not contained in 

MOi (the other flows are constrained by the demand, see Eq. 2-32): 

 

���,B,?%xI{mc ≤ Jc,B ≤ ���,B,?{kI{mc ∀�, $ ∈ ,m�, � ∈ ,t� ∖ ?t� Eq. 2-23 

Jc,B ≤ �1 − ���,B��,I{m ∀�, $ ∈ ,m�, � ∈ ?t� Eq. 2-24 

 

Here, ywi,t is a binary variable that takes the value of 1 if splitter i is sending product 

to the storage plant and 0 otherwise, SMINCAPs and SMAXCAPs are lower and upper 

limits on the flow requirements for stream s (in this case, they are given by the capacity 
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of the tankers and the time required to fill them), GSCAP is a generic limit on the 

streams flow rate and SPW is a set containing the splitters which hold the possibility of 

sending tankers to the storage plant. 

Tanks can only be used in time period t for this purpose provided the level of the 

previous time period, controlled via the continuous variable INVi,t-1, is higher than a 

given threshold VSINVi. We use the following disjunction (Van den Heever et al., 

1999) to model this. 

 

� r%xp�,Bp,%xp�%xpI{m� ≤ %xp�,B ≤ ?{k%xp�%xpI{m�� ⋁
� ¬r%xp�,B?%x%xp�%xpI{m� ≤ %xp�,B ≤ p,%xp�%xpI{m�� ∀�, $ ∈ Gp, 

r%xp�,B ∈ �G"��, J�����	 
Eq. 2-25 

 

Here, YINVi,t is a Boolean variable that is true if the level of tank i in time period t is 

over the limit VSINVi and false otherwise, MININVi and MAXINVi are respectively the 

minimum and maximum inventories allowed for tank i, and TVS is the set of units i 

which are tanks sending products to the storage plant. We transform this disjunction 

into ordinary equations by means of the convex hull reformulation (Vecchietti, 2003), 

which after appropriate simplifications leads to Eq. 2-26, Eq. 2-27 and Eq. 2-28: 

 

p,%xp�%xpI{m��$)��,B ≤ %xpA�,B< ≤ ?{k%xp�%xpI{m��$)��,B ∀�, $ ∈ Gp, Eq. 2-26 

?%x%xp�%xpI{m��1 − �$)��,B� ≤ %xpA�,B= ≤ p,%xp�%xpI{m��1 − �$)��,B�∀�, $ ∈ Gp,  Eq. 2-27 

%xp�,B = %xpA�,B< + %xpA�,B= ∀�, $ ∈ Tp, Eq. 2-28 

 

Here, INVD1
i,t and INVD2

i,t are the disaggregated variables for the convex hull and 

yinvi,t is a binary variable that takes a value of 1 if the level of tank i is between the 

threshold value and its maximum allowable capacity, and 0 otherwise. Finally, Eq. 2-

29 prevents tanks from being discharged when their level in the previous period 

remains below the threshold value. 
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���f,B ≤ �$)��,B/< ∀� > 1, $ ∈ Gp,, $′ ∈ ,PG%� Eq. 2-29 

 

Here, SPTIi is a set containing the splitters associated to tank i. In the case of period 

1, the value of ywi’,t  is fixed to 0 in case the level in the corresponding tank (which is 

controlled via SPTIi) is below VSINVi (that is, if INVinii < INVCAPi VSINSi).  

Splitter SP8 can only pump one output stream at a time, as it has only one single 

pump. Therefore, we distinguish between the output streams going to unit CBU and to 

tank T5 using binary variable yii,t (see Eq. 2-30 and Eq. 2-31, respectively).  

 

( Jc,Bc∈d�e∖ude
≤ �$�,B�,I{m ∀�, $ = Igh Eq. 2-30 

( Jc,Bc∈d9eq∖d�e
≤ �1 − �$�,B��,I{m ∀�, $ = Igh, $f = ,m8 Eq. 2-31 

 

Here, GSCAP is a parameter denoting a generic limit on the streams flow rates. 

The production network works to satisfy the demand which varies greatly from one 

time period to another and which is denoted by parameter DEMs,t. Demand must be 

fully satisfied for all products and time periods: 

 

Jc,B = AH?c,B ∀�, � ∈ Jm Eq. 2-32 

 

FP is the set of streams which contain a final product.  

A product inventory level can be enforced for the last period by means of parameter 

INVfin: 

   

%xp�,B + ��,B- + ��,B/ = %xp�$)�	 ∀� = ��$), $ ∈ ,G� Eq. 2-33 

0 ≤ ��,B- ≤ hg� ∀� = ��$), $ ∈ ,G� Eq. 2-34 

−hg� ≤ ��,B/ ≤ 0 ∀� = ��$), $ ∈ ,G� Eq. 2-35 
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Here, ∂+
i,t and ∂-

i,t are variables used to account for the deficit or excess of product 

compared to INVfin, and UBi is an upper bound on both variables ∂+
i,t and ∂-i,t. 

 

2.3.3. Utility consumption 

As mentioned, only electricity and gasoil are considered here. 

 

2.3.3.1. Electricity  

Two main groups of units consuming electricity exist: those where the amount of 

electricity consumed does not depend on the flow rate processed, which are contained 

in set EC (i.e., EC = {LQU1, LQU2, P1-P9}), and those where the opposite occurs, 

contained in set EV (i.e., EV = {  CU1-CU5, ECU1, ECU2, PTU}). For the former, Eq. 

2-36 applies: 

 

hGItx,�,�,B = �$�,BhG#{GH�,� ∀�, $ ∈ HI, � = hH Eq. 2-36 

 

Here, UTCONSi,u,t is a continuous variable accounting for the consumption of utility 

u in unit i in time period t, yii,t is a binary variable that is 1 when unit i is operating in 

time period t and UTRATEi,u is a parameter denoting the consumption of utility u by 

unit i when it is operating. 

Conversely, to model electricity consumption when it is a function of the flow rate 

processed, we use a piecewise linear function (see Lin et al., 2013 and Correa-Posadaa, 

2014) as depicted in Figure 2-3. In this representation, the first sector (d1) indicates the 

case in which the unit is not operating (i.e., production is equal to 0), the second 

interval (d2) accounts for a region in which electricity consumption is constant and 

finally, in the third region (d3), electricity consumption is proportional to the flow rate. 

Note that region d1 has been oversized to facilitate visualization, yet the upper limit of 

this interval (i.e., upi,d1) is indeed very small (i.e., close to 0). 
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Figure 2-3. Piecewise linear approximation of utility consumption in units where the electricity 
consumption is a function of the flow rate processed. The first interval (d1) is oversized to facilitate 
visualization 

 

This piecewise function can be modeled via the following disjunction: 

 

�
���
�� r�,�,B( ��,�Jc,B + ��,�� = hGItx,�,�,B

���,� ≤ Jc,B ≤ ���,� �  
 ¡

� ∀�, $ ∈ Hp, � = hH 

r�,�,B ∈ �G"��, J�����	 
Eq. 2-37 

 

Here, Yi,d,t is a Boolean variable that is true if the corresponding interval of the 

disjunction applies and false otherwise, ai,d and bi,d are parameters of the linear function 

describing the consumption of electricity of unit i in interval d and loi,d and upi,d are 

respectively the lower and upper limits on that interval. The convex hull of this 

disjunction gives rise to the following equations: 

 

( ��,�¢�,�,B + ��,���,�,B� = hGItx,�,�,B ∀�, $ ∈ Hp, � = hH Eq. 2-38 

( ¢�,�,B� = ( Jc,Bc∈d�e
∀�, $ ∈ Hp Eq. 2-39 

���,���,�,B ≤ ¢�,�,B ≤ ���,���,�,B ∀�, $ ∈ Hp Eq. 2-40 

( ��,�,B� = 1 ∀�, $ ∈ Hp Eq. 2-41 
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Here, Zi,d,t is the disaggregated variable for the convex hull reformulation 

(Vecchietti, 2003) and yi,d,t is a binary variable that takes a value of 1 if the electricity 

consumption of unit i in period t falls in interval d and 0 otherwise. The value of this 

variable for internal units with variable electricity consumption and for external units is 

enforced via Eq. 2-42.  

 

1 − ��,�,B ≤ �$�,B ≤ 1 − ��,�,B ∀�, $ ∈ Hp, � = �1 Eq. 2-42 

 

Contract equations for the UTCONSi,u,t of ECU1, ECU2 and EDCU have been 

simplified to keep the model linear. The errors of these approximations are well below 

2% (calculations not shown due to confidentiality issues). Note however, that external 

compressors ECU1 and ECU2 are embedded in the set EV, while the external 

distillation column EDCU is not as it requires a slightly different treatment, as 

illustrated in the following equations: 

 

( ��,�¢�,�,B + ��,���,�,B� = hGItx,�,�,B ∀�, $ = HAIh, � = hH Eq. 2-43 

( ¢�,�,B� = ( Jc,Bc∈u9e
∀�, $ = HAIh Eq. 2-44 

���,���,�,B ≤ Z�,�,B ≤ ���,���,�,B ∀�, $ = HAIh Eq. 2-45 

?%xI{mpts�f�1 − ��,�,B� ≤ ( Jc,Bc∈d9e∖u9e
≤ I{mpts�q�1 − ��,�,B� ∀�, $ = HAIh, $f = HIh1 Eq. 2-46 

( ��,�,B� = 1 ∀�, $ = HAIh Eq. 2-47 

1 − ��,�,B ≤ �$�,B ≤ 1 − ��,�,B ∀�, $ ∈ Ht, � = �1 Eq. 2-48 

 

Here, EO is the set containing the external unit (i.e., EO = {EDCU}). 

The overall power consumed by the process is limited in a given time period by 

contract requirements with energy suppliers, as illustrated in Eq. 2-49. The breach of 

these limitations gives rise to severe fines. 
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( hGItx,�,�,B�∈¤¥�< + 	 m�G#B + ms�3B ≤ ?{km#1B + ?{km#2B ∀�, � = hH Eq. 2-49 

 

Here, MAXPR1t and MAXPR2t are the limits on the power consumed in time period 

t by the process networks, which include units from the main process (UPR1) and units 

from the external supplier process (UPR2). PHTRt and PLQ3 are parameters which 

take into account the power consumed by machines which work in a discontinuous 

mode (i.e., only in some time periods) and over which the model has no control. 

Finally, we calculate the total electricity consumed during the simulated time 

(continuous variable ECONS) from the consumption of every unit and time period and 

the time length of each of the time periods, represented by the parameter TIME: 

 

HItx, = G%?H ( ( hGItx,�,�,B�B � = hH Eq. 2-50 

 

3.3.3.2. Gasoil  

VU is the only unit that consumes gasoil. The gasoil consumed during time period t, 

accounted for in the continuous variable UTCONSi,u,t is proportional, via the parameter 

UTRATEi,u, to the flow rate Fs,t processed in the unit in that period, as described in Eq. 

2-51. 

 

hGItx,�,�,B = ( Jc,BhG#{GH�,�c∈ude
∀�, $ = ph, � = h�t Eq. 2-51 

 

The value of the parameter UTRATEVU,UGO is computed from the lower heating 

value of the gasoil assuming a thermal efficiency ¦ of 0.75.   

Finally, the total amount of utility UGO consumed during the whole simulated time 

(continuous variable GOCONS) can be computed from UTCONSi,u,t and the time length 

of a given time period (parameter TIME) as follows: 

 

�tItx, = G%?H ( ( hGItx,�,�,B�B � = h�t Eq. 2-52 
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Note, however, that unit VU and its associated storage tank T5 are auxiliary units 

used only when EDCU is not used. This is modeled via Eq. 2-53, which provides the 

value of the binary variable yii,t, and Eq. 2-10 and Eq. 2-11, which enforce the inner 

flow to the unit to be 0 in case yii,t is 0 as well.  

 

�$�,B ≤ ��q,<,B ∀�, $ = ph, $f = HAIh Eq. 2-53 

 

2.3.4. Objective function 

The model seeks to maximize the economic performance of the process. For this, 

we compute the profit of the network, denoted by the continuous variable PROFIT, as 

illustrated by Eq. 2-54: 

 

m#tJ%G = ,{sH, + A%,I − HHI − �tI − 	?{%xGI ( rtx�,B�∈u§�  Eq. 2-54 

 

Here, SALES is a continuous variable denoting the revenues obtained from 

products, DISC is a continuous variable accounting for a discount obtained from the 

external supplier when products from the EDCU are purchased and which is specified 

in the associated contract, and EEC and GOC are continuous variables assessing the 

cost of electricity and gasoil, respectively. MAINTC is a parameter that quantifies the 

maintenance cost per time period when compressors from main process (embedded in 

set MCI) are operating. Longer operating times for compressors lead to higher 

maintenance costs. Because of this, it may be economically appealing to use 

compressors owned by external suppliers to cut down maintenance cost and reduce idle 

times during preventive maintenance tasks. 

SALES are computed by means of Eq. 2-55, 

 

,{sH, = G%?H ( ( Jc,Bm#%IHcc∈¨¥B  Eq. 2-55 

 

where, PRICEs is the unitary price of product in stream s.  
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DISC is calculated according to the contract established with the provider as 

follows: 

 

A%,I = G%?H ∙ A#{GH ( ( Jc,Bc∈u9eB $ = HAIh Eq. 2-56 

 

where, DRATE is a parameter relating the discount with the amount of product 

obtained in the EDCU. 

The electricity cost EEC calculation is based on the Spanish electricity market. The 

user of the network can buy power packages in advanced (PCONt), which will be 

blocked for the remaining users at the appropriate time (i.e., tariff period) at a fixed 

cost. Besides, the user can buy additional power in real time. Electricity bought in 

advanced (ECONCOSTt) and that bought in real time (ECOSTt) have different prices. 

Also, if a power package bought in advance for a given rate period is not fully used, 

the user has the option of selling it at the current electricity price. Eq. 2-57 models 

these contract options in the calculation of EEC: 

 

HHI = G%?H ( +mItxBHItxIt,GB + +( hGItx,�,�,B� − mItxB0 HIt,GB0B � = hH Eq. 2-57 

 

An illustrative example of how Eq. 2-57 works is shown in Figure 2.4. The three 

power packages (PCONt) in grey color correspond to the power bought in advance at 

fixed price (ECONCOSTt) in three different tariff periods (e.g., P1, P2 and P6). The 

area shaded in red color represents a shortage of power (more power consumed than 

the one originally agreed), whereas the area shaded in green color shows the excess in 

electricity (more electricity bought beforehand than the amount consumed). In the first 

scenario, the power exceeding PCONt is paid at the daily electricity market price 

(ECOSTt) whereas in the second scenario the power difference is returned to the 

company at ECOSTt price. 
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Figure 2.4. Electricity consumed (blue line) and the payments (red color) or incomes (green color) 
depending on the power contracted in advance (grey color). 

 

In particular, the term G%?H ∑ mItxBHItxIt,GBB  considers the price of the power 

packages bought in advance, whereas the term 

G%?H ∑ �∑ hGItx,�,�,B − mItxB� �HIt,GBB  accounts for the difference between power 

packages and real consumption, regardless of whether this consumption is lower or 

higher than the power packages.  

The cost associated to the utility UGO (GOC) is determined from the unitary cost of 

the gasoil (parameter GOCOST) and the gasoil consumption (variable GOCONS): 

 

�tI = �tItx, ∙ �tIt,G Eq. 2-58 

 

Finally, the objective function (variable OF) is calculated from the PROFIT and 

different terms penalizing the deviations from the ideal plant behavior, as shown in Eq. 

2-59: 

 

tJ = m#tJ%G − (mHxrtx ( ( rtx�,B +�B mHxr� ( ( r��,B�∈d¥©�eB
+ mHxrJI ( ( rJIc,BBc
+ mHx%xp(( ( ��,B- − ( ( ��,B/ )B�B� 	) 

 

Eq. 2-59 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



Chapter 2. Optimal operation planning in industrial gases production 
 

82 

There are five terms which are penalized. The number of times units are started is 

penalized via parameter PENYON. This prevents unnecessary switches between units 

(e.g., some process units have the same design and technical characteristics, and the 

model prevents switches between these units in two consecutive time periods) as well 

as abnormal operating situations (e.g., start and stop one machine instead of keeping it 

running in continuous). Parameter PENYW is used to control the product sent to 

external tanks ET1-ET4, which avoids interruptions in the production. In normal 

operation, the amount of product sent to these tanks must be as small as possible. 

Parameter PENYFC is used to control the maximum flow change allowed in some 

streams in a time period. Finally, parameter PENINV penalizes the deficit or excess of 

product stored in the last period compared to the target inventory INVfin. The value of 

these penalties is tuned beforehand and reflects a proper balance between economic 

performance and realistic behaviors. Note that higher penalties will result in more 

realistic plans, but at the expense of lower profits. A trained engineer can assess this 

trade-off, and play with the penalties until finding an acceptable solution. Larger 

penalties are applied to parameters PENYON and PENYFC, as the smoothness in the 

operation is of utmost importance.  

The overall multiperiod model can be finally posed as follows: 

 ({,htmG) �$) tJ�. �. Hª�.		(1 − 11), (13 − 26), (28 − 38), (40 − 61) 

 

Model ASUOPT is a mixed-integer linear programming (MILP) model whose size 

(i.e., number of equations and variables) depends on the number of time periods 

simulated.  

 

2.4. Case studies 

To illustrate the capabilities of the model, different scenarios were solved using real 

data retrieved from the existing industrial facility. The first case study illustrates the 

optimal response of the network operation when we compare months with different 

electrical tariff periods. This case demonstrates as well how the process can be adjusted 
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when restrictive power consumption limitations are considered. In the second case 

study, the variability in customers’ demand is studied.  

To this end, model ASUOPT is implemented in GAMS and solved using CPLEX 

12.6.2.0 in a WEI x86 64bit/MS Windows computer with Intel® Core™ i5-3210M 

CPU @ 2.50GHz processor and 4.00 GB RAM. Note that the size of the model varies 

from one case study to another. 

 

2.4.1. Case study 1: Electrical periods 

There are six tariff periods in terms of energy and power for intensive consumers in 

Spain (>450 kW) (BOE, 2001). As can be seen in Figure 2.5, these tariff periods vary 

from one month to another and, even, from one fortnight to another (in June). Prices of 

the greatest periods (i.e., P3, P4, P5 and P6) are lower than those for the lower periods 

(i.e., P1 and P2), being P1 the most expensive period and P6 the cheapest. The 

distribution of periods throughout the year attempts to encourage the hiring of power in 

periods with low saturation in the electrical networks and discourage it during periods 

of demand peaks with higher saturation. 

 

 
Figure 2.5. Distribution of electrical tariff periods throughout the year and their application in a day time. 
June1 and June2 are referred to the first and second half of June, respectively. Tariffs below months apply 
to weekdays (i.e., Monday to Friday), while weekends (i.e., Saturday and Sunday) and national holidays 
are always affected by P6. 
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The power contracted by the company in the “future market” in each period usually 

covers around 30-40% of the average consumption, while the extra amount is billed at 

the “spot market” price. The volatility of the “spot market” prices (OMI-Polo Español, 

2016)  is shown in Figure 2.6. 

 

 
Figure 2.6. Heat map representing the evolution of electricity daily market prices for a complete month. 
Bright red corresponds to expensive prices while bright green corresponds to cheapest prices. 

 

In Table 2.1 we compare the amount and price of power purchased in each tariff 

period beforehand (“future market”). Data is expressed as a percentage taking P6 tariff 

period as reference, which is characterized by higher demands and lower electricity 

prices. Table 2.2 displays the energy prices of the “spot market” which are applied in 

this case study taking into account real data compiled from historical records. 

 

Table 2.1. Amount of purchased power and electricity price in “future market”. 
 Power bought in “future market” Electricity price in “future market” 

P6 Base case Base case 

P5 -31% +21% 

P4 -38% +23% 

P3 -46% +32% 

P2 -46% +36% 

P1 -46% +46% 
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Table 2.2. Electricity prices (€/MWh) for “spot market” considered in Case Study 1. 
 Month  

 Jan. Feb. Mar. Apr. May June1 June2 July Aug. Sep. Oct. Nov. Dec. Avg. 

P1 97.25 86.87     76.25 87.13     106.98 90.90 

P2 80.37 71.74     65.31 75.86     90.45 76.75 

P3   55.51   68.37    77.16  68.51  67.39 

P4   41.45   62.00    69.75  58.39  57.90 

P5    35.59 58.11      69.09   54.26 

P6 46.41 44.00 26.58 17.24 47.12 42.06 42.06 53.10 55.66 50.78 52.52 44.02 64.55 45.08 

Avg. 74.67 67.53 41.18 26.41 52.61 57.47 61.21 72.03 55.66 65.89 60.80 56.97 87.32  

 

In this case study, we simulate one standard week in every month in order to 

illustrate to which extent process operation is affected by electricity prices. That is, 

model ASUOPT is solved for one week considering four scenarios (a-d): case (a) 

represents a month with expensive energy periods (i.e., P1 and P2 tariff rates) such as 

February; case (b) represents a month in which P3 and P4 apply, such as March; case 

(c) represents a month with cheaper rates such as April (where P5 dominates); and 

finally, in case (d), August is simulated as proxy for P6 periods. In all these cases, the 

model contains 100123 equations, 37628 binary variables and 97936 continuous 

variables and takes on average 273 CPU seconds to be solved to global optimality. 

The electricity consumed by the liquefaction units (i.e., LQU1 and LQU2) 

represents approximately 45% of the overall process energy consumption. For this 

reason, forecasting with accuracy how both liquefiers will operate is key for avoiding 

mismatches with the electricity contracted and increasing the total profit. Figure 2.7 

shows the time periods in which liquefiers are operated in each of the four cases 

described before.  
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Figure 2.7. Liquefiers operation times in different scenarios. LQU1 is represented using light green bars 
and LQU2 is represented with dark green bars. The different tariff periods are represented using different 
colors so that the darker the color the higher the electricity price. 

 

In the four cases (a-d), LQU2 is used more than LQU1, since its specific 

consumption is lower (14% better). Both liquefiers are operated preferably during P6 

hours due to lower electricity prices (yet, different trends are followed for the same 

product demand). In scenario (a), liquefiers cannot be operated in P1 because the 

power contracted in this tariff period (very low, due to its high price) is not enough to 

operate these machines. In the same case (a), we note that only one liquefier can be 

operated in P2 tariff period (also due to power constraints). In this case, LQU2 is used 

in all P2 times to cover demand requirements. The optimal solution for scenarios (b) 

and (c) involve the same operation for liquefiers, despite the differences in the tariff 

periods applying in each simulation. This is because LQU1 is operated during the 
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weekend, when P6 applies, in order to avoid recurrent start-ups and associated idle 

times. LQU2 is operated in a continuous mode except in some time periods during 

Friday, where production is adjusted to the demand pattern and storage availability. In 

case (d), LQU2 is operated continuously because P6 applies during all tariff periods. 

LQU1 is used here to cover the demand needs.  

Figure 2.8 depicts the profit and the electricity cost in each case. The worst 

performance for both energy cost and profit correspond to case (a), where the most 

expensive tariffs periods and stringent power limitation rules apply. This worst 

performance is taken as reference (i.e., 100%) to compare with the remaining cases.  

 

 
Figure 2.8. Comparison between the cost of electricity and the profit in each scenario. 

 

The link between electricity cost and profit (scenarios with cheaper energy prices 

lead to higher profits, i.e., simulation (c) with the lowest electricity prices has the 

maximum profit) is illustrated in Figure 2.8. The difference of 4.5% in profit between 

scenarios (b) and (c) can be explained by the 14% difference in energy costs between 

both months. Interestingly, the profit in case (d) is the second lowest, even if in the 

whole month P6 applies. This is because, as shown in Table 2.2, the cost of electricity 

in P6 in August (55.66€/MWh) is higher than in any tariff period in scenarios (b) and 

(c) (55.51€/MWh in P3 in March and 36.59€/MWh in P5 in April, respectively). 

In Figure 2-9 we show the evolution of the electricity consumed by the overall 

process for the four cases (a-d). We also plot the maximum power that can be 

consumed by the process (MAXPR1 + MAXPR2 line in Figure 2.9, which differs in 
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each tariff period and depends on the power contracted and billed in advanced for that 

period. Note that the maximum power available shows the same pattern in cases (b) 

and (c) because the power contracted in P3 and P4 in (b) are the same as that 

contracted in P5 in (c). 

 

  
Figure 2-9. Electricity consumption of the network during a week (grey area) and maximum allowed 
power  in each time period (black line). The amount of electricity (used and allowed) in each time period 
is expressed as a percentage. 

 

The model has to adjust process operation (e.g., stopping machines, reducing flows, 

etc.) to avoid exceeding the contracted power, since this has an associated fine. 

Overall, electricity consumption is optimized to take advantage of time periods in 

which electrical rules allow to operate the units with higher electrical consumption. 

This can be seen in (a), where the optimal solution relies on increasing the load on P6 

periods, where the electricity is cheaper and the bound on the maximum power allowed 

is looser. Interestingly, cases (b) and (c) show the same trend in electricity 

consumption despite the differences in electricity tariffs. This suggests that the bound 

on the maximum power that can be consumed is a key driver of the optimal process 

configuration. Finally, the loose bound on the power available in (d) provides more 

flexibility to operate the process, thus giving rise to an almost flat electricity 

consumption profile. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



Chapter 2. Optimal operation planning in industrial gases production 

 
89 

2.4.2. Case study 2: Demand variability 

Typically, the commodities involved in a highly industrialized territory can change 

over time as a result of variations of customers’ needs. These fluctuations have a major 

influence on the optimal operation of the equipment and network configuration. In 

order to illustrate this, we perform a sensitivity analysis by simulating replications of a 

week of May (i.e., P5 and P6 tariff periods) with different demand needs. Specifically, 

the average demand retrieved from historical data is defined as the base case. Then, 

other replications of this week are produced by keeping the demand of all products as 

in the base case except for that of one product, for which we consider two scenarios: 

one with a low demand and one with high demand. In this case, we aggregate the 

demands of ILOX and MLOX and rename them as LOXP, since these demands are 

usually highly correlated (i.e., when one increases so does the other and vice versa). 

Finally, we carry out two additional simulations: one in which all products are in the 

low demand scenario, and another one in which all products are in the high demand 

one. The low and high demand levels for each product are estimated from historical 

data (see Table 2.3). The model contains 100,123 equations, 37,628 binary variables 

and 97,936 continuous variables, and takes on average 670 CPU seconds to be solved. 

The size of the models in all simulations remains constant since they all consider one 

week. 

 

Table 2.3. Demands for each product in each case study. Changes in the demand of each product are 
expressed as a percentage with respect to the base case. Acronyms LD and HD are used to define the low 
demand and high demand scenarios, respectively. ALL corresponds to the scenario in which the demand 
of the five products are modified simultaneously. 

 Base 

Case 

GOXPS GANPS LOXPS LINPS LARPS ALLS 

 LD HD LD HD LD HD LD HD LD HD LD HD 

GOXP  -37% +26%         -37% +26% 

GANP    -27% +32%       -27% +32% 

LOXP      -29% +22%     -29% +22% 

LINP        -40% +27   -40% +27% 

LARP          -57% +28% -57% +28% 

 

Figure 2.10 shows how the electricity consumption of the process units is affected 

when the demand of one or all products is modified with respect to the base case.  
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Figure 2.10. Energy consumed by process units in the different demand scenarios (i.e., LD is low demand 
and HD is high demand). Process units with low energy consumption (e.g., filling pumps) are aggregated 
in “Others” category. At the top of the Figure we provide the % difference in overall energy consumption 
with respect to the base case. 

 

As we can see in Figure 2.10, deviations in the overall energy consumption from 

the base case are much higher in HD scenarios (between 3% and 9%) than in LD 

(between 0.4% and 4%). This is because the air composition establishes a bound on the 

ratio that can be obtained between the different products. Hence, in the LD scenario, 

products demands not modified act as bottleneck from the viewpoint of electricity 

consumption, thus leading to modest savings. Conversely, in HD scenarios, the product 

with increased demand acts as bottleneck, and thus drives the overall energy 

consumption. Regarding the operation of process units, notorious differences are 

obtained when demand requirements are modified. In all the scenarios, the DCU 

consumption is the same, except in the cases in which the LARP demand is modified 

(i.e., LARPSLD, LARPSHD, ALL LD and ALLHD). This demonstrates that differences in 

LARP demand can entail an increase or decrease of the plant air load and, 

consequently, cause variations in DCU consumption (around 17% between the LARHD 

and LARLD cases). Differences in LD and HD scenarios for LINP and ALL are mainly 
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given by the use of LQU1 in the high demand scenario. This can also explain 

differences between LOXPSHD and LOXPSLD, since LOXP is obtained by thermal 

exchange between LINP and GOXP in CBU. Hence, in some P5 tariff periods, it is not 

possible to operate LQU2 without exceeding the power contracted, and therefore it is 

replaced by LQU1. In GOXPS, differences between LD and HD scenarios are given by 

an increased use of external units EDCU and ECU1 (in HD scenario), thus allowing for 

a reduced use of the LQU1 (see Figure 2.11). This suggests that contractual conditions 

for GOXP are advantageous from a given GOXP amount onwards. Note that in 

GOXPSHD, the compressors for GANP are not used because this product is obtained 

from ECU2 and CBU, which in turn uses the GOXP from MX1. In GANPSLD, 

compressors associated to GANP (i.e., CU3b, CU4 and CU5) are not used neither, and 

the demand is satisfied by means of the GANP purchased externally from ECU2 and 

that obtained in CBU. Conversely, in GANPSHD the need to use product from MX2 

(and thus CU5) arises.  

   

 
Figure 2.11. Percentage of GANP and GOXP sent to pipeline from the different production sources in the 
Base Case, GOXPS and GANPS. Note that VU is not an option for GANP as this unit is only used in case 
of emergency.  
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Figure 2.11 depicts the source of the gas products (i.e., GOXP and GANP) 

distributed to the pipeline in the GOXPS and GANPS scenarios. Results reveal that 

most of the GANP (between 51.3% and 74.7%) is purchased from the external unit in 

all the scenarios, and the same holds for GOXP (between 59.0% and 79.6%) except for 

the base case, where outsourcing covers 43.5% of the product demand. The result is in 

agreement with those shown in Figure 2.10, where electricity consumption from 

external units (i.e., EDCU, ECU1 and ECU2) represented between 28.5% and 40.6% 

of the total electricity consumption of the plant. This evidences the outstanding 

importance of properly adjusting the pipeline supply operation (i.e., the balance 

between the amount of product purchased from the external unit versus that sent 

onsite).  

In order to further illustrate the effect of including the external supply in the model, 

we depict in Figure 2.12 and Figure 2.13 how the cost of supply and the final profit of 

the network change (compared to the base case) with the external purchases (i.e., 

OGOX and OGAN) . The cost of supply accounts not only for the power consumed by 

the main process and the external unit, but also for maintenance costs (MAINTC) and 

for the discount (DISC) obtained when the product of EDCU is purchased. 

Specifically, in Figure 2.12, we increase the OGOX flow rate of the base case 

simulation (which equals the minimum that can be purchased according to contract 

stipulations), thus keeping constant OGAN. As can be observed, increases in OGOX 

can decrease the profit as much as 2.7% and increase the supply costs up to 14.5%. On 

the other hand, in Figure 2.13, the OGAN flow rate is varied (i.e., increased or 

decreased) while maintaining constant the OGOX. In this case, the most negative effect 

is observed when OGAN is reduced by 40%, which produces a decrease in profit of 

2.3% and an increase of supply costs of 12.7%. It is also noteworthy that variations in 

OGOX have a greater impact than those in external GAN. For instance, an increase of 

30% in the external GOX flow rate increases by 8.4% the supply costs and reduces by 

1.5% the overall profit, while the same increase of external GAN flow rate leads to an 

increase in costs of 3.6% and a decrease in profit of 0.63%. The reason behind this 

behavior is twofold. First, OGOX dictates the raw material load (i.e., amount of air) of 

the external air separation unit and thus the power consumption of the external unit 
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(EDCU). Secondly, the discount applied when using the external units is governed by 

the amount of OGOX purchased, which is independent of the OGAN value. 

 

 
Figure 2.12. Supply costs (bars) and profit (line) allocation under different scenarios of OGOX. 

 

 
Figure 2.13. Supply costs (bars) and profit (line) allocation under different scenarios of OGAN. 

 

In order to further illustrate the capabilities of the model for real life cases, we 

display in Figure 2.14 the error in the hourly electricity consumption forecasts of a real 

existing facility during a three-month period (October, November and December). 

Specifically, we compare the results obtained with the model predictions versus those 

obtained by applying the standard forecasting techniques previously used in the plant. 
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Results demonstrate that the proposed model improves the accuracy of the electricity 

forecasts, showing an average error of 1.5%  compared to a 2.8% error with the 

previous methodology. Furthermore, the number of cases with “high” errors (say above 

5%) has been significantly reduced (42 compared to 297, see histogram in Figure 

2.14). This improvement can bring significant benefits to the company, which will be 

rewarded when the forecasting communicated to the electricity company is accurate 

enough (or otherwise penalized when the deviation is severe). 

 

 
Figure 2.14. Comparison of the error in the electricity consumption forecasts between the proposed model 
(red circles) and the standard methodology used in a real existing facility (green circles). A histogram is 
depicted at the right-hand side of the figure following the same color pattern. 

 

2.5. Conclusions 

A mathematical model was developed to operate in an optimal manner cryogenic 

air separation networks producing oxygen, nitrogen and argon. The MILP proposed, 

which is based on a real industrial facility, can effectively cope with changing 

electricity prices, customers demand and energy rates while maximizing the plant 

performance. To this end, decisions on flow rates, machines starts-up and shutdowns, 

and purchase orders are optimized in an automatic manner according to the market 

needs.  

Several case studies, considering realistic process scenarios (i.e., demand rates, 

electrical tariff periods, power limitations, etc.) were presented in order to demonstrate 

and validate the efficacy of this MILP. The optimization was carried out for four 
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scenarios entailing different electricity prices, showing how these prices strongly affect 

the network’s profit. In the face of power limitations, the model adjusts the operation to 

fulfill contractual and demand liabilities and hence avoid economic penalties. 

Furthermore, the effect of different demand patterns was also investigated.   

Overall, the MILP identifies the most profitable way to operate the plant, assisting 

engineers in their daily activities by effectively optimizing production planning, energy 

rules, sales and product stocks while considering external constraints and dynamic 

market conditions. It is worth highlighting that all the results presented in this 

contribution are based on real data from an existing facility, where the proposed tool 

has proved extremely useful in the daily operation. Besides leading to optimized 

decisions, the MILP improves the electricity consumption forecasting, which helps 

reduce the energy costs. Therefore, our method constitutes a promising alternative for 

any other energy-intensive industrial process where energy savings play an important 

role. 
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2.6. Nomenclature 

Process abbreviations 

CBU      conversion unit 

CU      compression unit 

DCU      distillation column unit 

ECU      external compression unit 

EDCU      external distillation unit 

FP      final products 

GANIP     gas nitrogen intermediate product 
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GANP      gas nitrogen product 

GOXIP     gas oxygen intermediate product 

GOXP     gas oxygen product 

ILOXP     industrial liquid oxygen product 

LOXIP      liquid oxygen intermediate product 

LARIP      liquid argon intermediate product 

LARP      liquid argon product 

LINP    liquid nitrogen product 

LQU    liquefaction unit 

MILP     mixed-integer linear programming 

MLOXP   medical liquid oxygen product 

MX      mixers 

OGAN      purchased gas nitrogen  

OGOX     purchased gas oxygen 

PU      pump unit 

PTU      pretreatment unit 

P1-P6      electrical tariff period 

SP         splitters 

T      storage tank 

U      utility  

VU      vaporizer unit 

 

Sets/Indexes 

I      set of process units indexed by i 

P      set of properties indexed by p 

S      set of streams indexed by s 

T      set of time intervals indexed by t 

U      set of utilities indexed by u 

 

Subsets 

EC      set of units whose electricity consumption is constant 
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EE      set of units with electrical consumption 

EO      set of outside units whose electricity consumption is accounted for  

EV      set of units whose electricity consumption is variable 

FCL      set of streams with maximum switch flow limitations in a time period 

FP      set of streams s which are final products 

GP      set of units whose gasoil consumption is proportional to inlet flow 

MINCAP set of units with a minimum flow requirement 

MOi      main output stream of unit i 

MSi      main input stream of unit i 

SIi     set of input streams of unit i  

SOi      set of output streams of unit i  

SPTIi   set of units which are splitters in which one output stream can only be 

used if the inventory level of tank i is over VSINV  

SPW      set of units which are SP which cannot use simultaneously both output 

streams  

ST      set of units which are tanks 

TVS      set of tanks which can send tankers to associated storage plant  

UPR2      set of units which belong to supply process   

UPR1      set of units which belong to main process  

VS      set of streams which are tankers to storage plant  

 

Continuous variables 

AV s,t      absolut value for flow changes in stream s in period t, Nm3/h 

∂
+

i,t      positive slack for inventory in unit i period t, Nm3/h 

∂
-
i,t      positive slack for inventory in unit i period t, Nm3/h 

ECONS total electricity consumption, kWh  

Fs,t   volumetric flow rate of stream s in time period t, Nm3/h 

FEP      fine when MAXPR2t + MAXPR1t is exceeded, €  

FDs,t   disaggregated variable for death time (volumetric flow rate of stream s 

in time period t), Nm3/h 

GOCONS  total gasoil consumption, L 
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INV i,t      inventory of unit i in time period t, Nm3 

INVD i,t     disaggregated variable for inventory at level at which it can be 

depleted by means of tankers (inventory of unit i in time period t), Nm3 

PROFIT   profit, €  

SALES     sales, € 

UTCONSi,u,t  consumption of utility u in unit i in time period t, kWh 

Zi,d,t   auxiliary variable for Fs in interval d of piecewise equation for 

electricity consumption of unit i in time period t 

  

Binary variables 

yi,d,t  binary variable (1 if interval d in piecewise equation for electricity 

consumption of unit i is active in time period t, 0 otherwise) 

yfcs,t  binary variable (1 if the flow of stream s is switched in time period t, 0 

otherwise) 

yi i,t      binary variable (1 if unit i is working in time period t, 0 otherwise) 

yinvi,t  binary variable (1 if inventory of tank i in time period t surpasses the 

minimum required for it to be depleted by means of tankers, 0 

otherwise) 

yoni,t      binary variable (1 if unit i is switched on in time period t, 0 otherwise) 

ywi,t  binary variable that equals 1 or 0 depending on which output stream s 

is used in SP i 

 

Parameters 

η      vaporizer efficiency 

ai,d  slope of straight line in interval d of piecewise equation for electricity 

consumption of unit i 

bi,d    independent term of straight line in interval d of piecewise equation for 

electricity consumption of unit i 

CAPVOLi  maximum capacity allowed for input stream of unit i, Nm3/h 

CF      corrective factor between input and output streams in unit CBU 

CF2      corrective factor between OGOX and OGAN in EDCU  
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DEMs,t      demand for product in stream s in time period t, Nm3/h 

DISC      supplier discount on outsourcing cost, € 

DT      death time in liquefiers, h 

ECONCOSTt  cost of electricity bought in advance for time period t, €/kWh  

ECOSTt  electricity cost in time period t, €/kWh  

GOCOST  gasoil cost, €/L 

GSCAP  maximum capacity for a given stream, Nm3/h 

HVAPN2  heat of vaporization of N2, kJ/Nm3 

INVCAPi  capacity of unit i, Nm3 

INVini i  initial inventory of tank i, Nm3  

INVfin i  final inventory of tank i, Nm3  

LHVGO  lower heating value of gasoil, MJ/L  

loi,d   lower bound of interval d of piecewise equation for electricity 

consumption of unit i 

MAINTCOST  maintenance cost applied in unit i when it is working in time period t, 

€/h  

MAXINV i  maximum inventory allowed for unit i, % 

MAXPR2t  maximum electricity that supply process can consume in time period t, 

kW  

MAXPR1t  maximum electricity that can be consume in time period t by main 

process, kW 

MFCs    maximum flow change allowed in stream s in a time period t, Nm3/h 

MINCAPVOL i  minimum capacity required for input stream of unit i, Nm3/h 

MININV i  minimum inventory allowed for unit i, % 

PCHT   product change time, h  

PCONt   power bought in advance for time period t, kW 

PENINV  term to penalize the deficit or excess of stored product in the last 

period time 

PENYFC  term to penalize flow changes in some streams 

PENYON  term to penalize the numbers of times that an unit are started 
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PENYW  term to penalize the number of times that a tanker is sent to external 

storage plant 

PENMB  term to penalize the breach of mass balances 

PHTRt   electricity consumption in PTU heater in time period t, kWh 

PLQ3t   electricity consumption limitation in time period t, kWh  

PRICEs  price of product in stream s, €/Nm3  

PRODISC  unitary price discounted related with EDCU production, €/Nm3 

RELATION  amount of product obtained by EDCU to apply the price discount 

SMINCAPs  minimum flow requirement for stream s, Nm3/h 

SMAXCAPs  maximum flow allowed for stream s, Nm3/h  

TIME   length of a time period, h  

upi,d   lower bound of interval d of piecewise equation for electricity 

consumption of unit i 

UTRATEi,u  consumption of utility u in unit i 

VSINV i  minimum capacity of tank i before it can be depleted by means of 

tankers, Nm3 

YIELDVOL i,s  volumetric yield of output stream s of unit i 

YVC i,s   coefficient for corrective term for volumetric yield of output stream s 

of unit i 
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efficiency; Malmquist productivity index; Cryogenic air separation 

 

3.1. Introduction 

The efficient use of energy is a major challenge faced by industrial companies and 

the whole society in the transition towards a greener economy. Today, the industrial 

sector uses more energy than any other end-use sector, about one-third of the world’s 

final energy demand (Enerdata, 2011), while predictions show that it will likely 

consume more than 50% of the total energy delivered in 2040. Industries are also 

responsible for almost 40% of the worldwide carbon dioxide emissions, a share that is 

expected to increase to 46% in 2040 (EIA, 2014). The use of energy in industries is 
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often inefficient, which creates great opportunities to reduce their energy consumption 

and boost their competitiveness while reducing their environmental impact.  

There is a substantial literature on efficiency indicators and approaches for 

improving energy efficiency. As an example, various energy efficiency performance 

metrics were defined by Neelis et al. (2007); Siitonen et al. (2010); Saygin et al. 

(2011) and Oda et al. (2012), among others, with the aim to assist on how to improve 

the reliability and flexibility of industrial facilities and also to facilitate energy 

benchmarking (Chung, 2011). Along these lines, Boyd et al. (2008) presented a tool 

that can be used by plant energy managers to estimate energy efficiency, while 

Hasanbeigi et al. (2010) discussed energy-efficiency opportunities for the cement 

industry in the Shandong Province (China). 

These energy efficiency indicators are seldom analyzed together with productivity 

criteria. Furthermore, they fail in identifying the sources of inefficiencies and in 

providing insight on how to eliminate them. Here we overcome these limitations by 

using a rigorous method based on DEA to diagnose whether industrial sites are 

operating in an efficient manner. DEA is an approach originally introduced by Charnes 

et al. (1978) in the area of economics and operations research that has recently found 

many applications in science and engineering. It is a non-parametric tool that 

objectively assesses the relative efficiency of a set of units in terms of multiple criteria 

by using linear programming models (Boussofiane et al., 1991 and Cook et al., 2009). 

DEA provides efficiency scores (i.e., values between zero, the worst, and one, the best) 

for each entity being assessed and identifies in a qualitative and quantitative manner 

sources of inefficiency. To this end, DEA calculates an "efficiency frontier" formed by 

the efficient entities (i.e., those with efficiency scores equal to one), which is used to 

establish efficiency targets and identify benchmark units that perform better than the 

rest. 

Since its origins, DEA was used in many different contexts, from production and 

business firms, to non-profit agencies such as hospitals, universities, armies and 

countries. It was also applied to energy-intensive sectors and processes so as to 

enhance their level of sustainability. For instance, Azadeh et al. (2007) applied a DEA 

model to assess energy efficiency and optimize energy intensive manufacturing 
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sectors. Liu et al. (2010) used DEA to evaluate the efficiency of power-generation in 

thermal power plants. Han et al. (2014) applied DEA in the field of chemicals to assess 

energy efficiency in ethylene production. Blomberg et al. (2012) analyzed energy 

efficiency and energy policies in a set of pulp and paper mills using DEA. Mandal et 

al. (2011) analyzed energy use in cement companies using DEA. Ramanathan et al. 

(2000) compared energy efficiencies of different transport modes, while Zhanga et al. 

(2015) assessed the transportation sector in China. Other studies covered also minor 

energy users (Nassiria et al., 2009 and Mousavi-Avval et al., 2011). Sueyoshi et al. 

(2017) summarized previous research efforts on DEA applied to energy and the 

environment, concluding that DEA has been very useful in guiding large policies 

(Wang et al., 2012 and Sueyoshi et al., 2014) (e.g., sustainability assessments (Galán-

Martín et al., 2016) related with global warming and climate change mitigation, life 

cycle assessments (Limleamthong et al., 2016), potential CO2 emission reductions 

(Choi et al., 2012 and Wang et al., 2014) as well as long-term business strategies. 

Mardani et al. (2017) reviewed the use of DEA models applied to energy efficiency 

problems, reaching similar conclusions.  

In this paper we deal with the cryogenic air separation process, a mature technology 

that produces large amounts of technical gases with high purity standards (Smith et al., 

2001 and Latimer et al., 1967). These pure gases are obtained by liquefying and 

distilling air, an energy intensive process that requires a very tight integration of heat 

exchangers and separation columns and which consumes large amounts of electricity 

(i.e., tens of megawatts) to cover the high compression and liquefaction needs. In 

today’s market place, it is crucial to adapt processes to dynamic environments (e.g., 

location, demand, operating conditions, electricity pricing policies, etc.). In this 

context, assessing facilities according to predefined key performance indicators can 

help to identify inefficiencies and opportunities for improvement. Therefore, the most 

successful "best practices" can then be introduced in the plants (or, at least, in those 

with similar features) to finally enhance the global performance and competitiveness of 

the business. As will be later discussed in more detail, DEA provides an excellent 

framework to carry out such analysis. 
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While DEA has been applied to energy-intensive industries, to our best knowledge, 

there is a lack of research in the field of air separation technology. Energy savings 

opportunities in single air separation processes were discussed in (Yan et al., 2010). 

The focus was originally on design and operational aspects, omitting comparisons with 

similar processes that could exploit valuable know-how on the process. In contrast to 

these works, ours provides an in-depth assessment of efficiency based on real data and 

using a rigurous method. More precisely, the methodology presented in this paper is 

demonstrated by studying 34 existing Air Separation Units (ASUs) from Messer, a gas 

company operating several plants around the world. Furthermore, an additional novelty 

of this work is that we study the dynamic evolution of efficiency scores, which is often 

neglected in the energy efficiency assessment of industrial facilities. To this end, we 

measure the change in efficiency over time using the Malmquist Productivity Index 

(MPI), first defined by Malmquist in 1953 (Malmquist, 1953) and further developed by 

Fare et al. (1992) and Fare et al. (1994). See also Chen et al. (2004) and Perez-Reyes 

et al. (2009). In the context of energy intensive processes, this approach was applied by 

Makridou et al. (2016) and Morfeldt et al. (2014), who assessed energy efficiency 

trends of energy-intensive industries in European countries, as well as in other works 

focused on Chinese industries. See for instance Wu et al. (2014), Li et al. (2013), Li et 

al. (2016) and Chang et al. (2010).  

Hence, the main contribution of this work is two-fold. First, the application of DEA 

to real data gathered from different Air Separation Units around the world. Second, the 

use of the Malmquist Productivity Index to enlarge the scope of the static (“snapshot”) 

analysis of the ASU’s efficiencies in order to cover their evolution over time. With the 

proposed methodology, ASUs managers will be able to operate their facilities more 

efficiently. 

The paper is organized as follows. In section 3.2 we describe the methodology 

based on DEA and MPI. In section 3.3, we present the case study dealing with a set of 

existing ASUs, while in section 3.4 we draw the conclusions of the study.  
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3.2. Methodology 

Our methodology is based on DEA, which aims to identify the most efficient units 

among a set of comparable entities, usually referred to as decision making units 

(DMUs) in DEA notation (William et al., 1989). This approach shows the following 

main advantages compared to the use of simple energy efficient indicators: (i) it allows 

the simultaneous analysis of multiple outputs and inputs (Charnes et al., 1978); (ii) it 

does not require previous definition of production functions (the frontier function is 

estimated from empirical data on inputs and outputs rather than established beforehand 

according to a specific functional form describing the relationship for producing the 

maximal amount of outputs from a given amount of inputs); and (iii) the efficiency 

scores are calculate relative to the highest performance rather than to averages (Zhou et 

al., 2008). In this section, we describe the fundamentals of DEA as applied to our case.  

 

3.2.1. Fundamentals of DEA  

DEA uses linear programming (LP) to quantitatively evaluate the relative 

performance of a set of units under multiple criteria. The linear optimization is applied 

to each single DMU. In our study, each DMU corresponds to an ASU, so DEA is used 

to identify the set of efficient ASUs (i.e., those forming the “efficient frontier”) and 

ultimately establish improvement targets for the inefficient one (which if attained 

would make them efficient). The relative efficiency of a DMU is defined as the 

maximum ratio of weighted sum of outputs to the weighted sum of inputs, being the 

efficiency index less or equal than 1. If the efficiency index is lower than 1, then the 

ASU is inefficient, while otherwise it is efficient. Furthermore, the lower the value of 

the efficiency index, the worst the efficiency performance, which would imply that the 

ASU would lie far from the “efficient frontier”. 

The relative efficiency score 
 of a specific DMU can be evaluated by the BCC 

dual (i.e., multiplier form) model (Banker et al., 1984), which assumes variable returns 

to scale (VRS) (i.e., increases in inputs do not imply proportional changes in outputs). 

The mathematical model is formulated as follows: 
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Where the notation is as follows: o, DMU being assessed; ε, non-Archimedean 

infinitesimal value to enforce the variables to be positive; n, number of DMUs; j, other 

DMUs; m, number of inputs consumed by DMUj, xij, amount of input i consumed by 

DMU j; s, number of outputs produced by DMUj; yrj, amount of output r produced by 

DMU j; ,�/, vector of slack variables representing the amount of input i that, if reduced, 

shifts the projection of DMUo from the weakly efficient frontier to the strongly 

efficient frontier; ,�-, vector of slack variable representing the amount of output r that, 

if increased, shifts the projection of DMUo from the weakly efficient frontier to the 

strongly efficient frontier; 1�, linear weights assigned to every single DMUj to form a 

linear combination. 

Note that when the efficiency of a DMUo equals one (
o = 1) and the slacks 

summation is zero (,�- + 	 ,�/ = 0), this DMUo is considered strongly efficient. In the 

case that (
o = 1) but (,�- + 	 ,�/ ≠ 0) the corresponding DMUo is considered weakly 

efficient. For any inefficient DMU, it is possible to find a composite DMU (linear 

combination of units) that can reduce its input level maintaining the same output level.  

Any inefficient DMU can become efficient by projecting it onto the “efficient 

frontier”, which is formed by the efficient DMUs. Note that the model stated in Eq. 3-1 

follows an input-oriented approach (i.e., efficiency is achieved by decreasing the input 

levels while outputs remain constant). In this case, the target for input i in any 

inefficient DMUo (G���) is calculated with the following expression: 
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G��� = ( 1���� = 
���� − ,�/
®

�W< 							$ = 1, … , � Eq. 3-2 

 

Then, the input reduction required by a DMU to become efficient is given by the 

distance between the original input value and this target. Hence, the efficiency of the 

inefficient DMUs is improved through the reduction in inputs by moving radially 

toward the efficient frontier. Note that output-oriented models also exist, in which 

input levels are maintained and inefficient units become efficient by increasing their 

output levels. Note that in our case, we can manipulate inputs more easily than outputs, 

since the latter (i.e., amount of products) are connected to the customer’s demand over 

which we have little influence (see section 3).  

 

3.2.1.1. DEA illustrative example 

Figure 3.1 shows an illustrative example to further clarify the DEA concepts 

introduced above. Let us consider eight hypothetical ASUs (i.e., A, B, C, D, E, F and 

H) consuming two inputs (e.g., electricity and water) to produce the same amount of 

one output (e.g., 1 m3 of oxygen). The axes of Figure 3.1 display the values for input 1 

(x axis) and input 2 (y axis) for each DMU. Green circles (i.e., A, C, E and F) show the 

efficient ASUs, while red circles (i.e., B, D, G and H) represent the inefficient ones. 

The continuous line connecting the efficient ASUs denotes the “strong efficient 

frontier”. The extremes of this frontier (i.e., A and F) are extended with lines parallel to 

the axes (grey lines) to build the “weak efficient frontier”. Inefficient technologies (i.e., 
o < 1) are projected radially (dashed lines) in order to identify the efficiency targets 

(yellow circles) and the ASUs used as benchmarks (i.e., DMUs corresponding to the 

vertexes of the facet of the frontier where the projection lies). In the case of the 

inefficient DMU G, its efficiency is determined by point g, where the efficient frontier 

is crossed by segment Og, connecting the inefficient ASU with the origin (radial 

projection). Thus, the efficiency of G is given by 
9°9±, that is, the efficiency of this ASU 

is evaluated using a linear combination of ASUs A and C, as g is placed in the segment 

connecting them. Hence, ASUs A and C are the reference set for G, that is, G should 
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operate similar to the way A and C are run so as to improve its performance. Similarly, 

C and E are the reference set for ASU H. At the same time, given that many ASUs are 

close to ASU C, we should take C as reference ASU to improve the performance of the 

former units. 

 

 
Figure 3.1. DEA illustrative example for an input-oriented case with two-input and one-output (the latter 
assumed constant). 

 

3.2.1.2. Non-discretionary variables  

In many DEA real applications, certain input variables are not manageable (Cooper 

et al., 2011), that is, they cannot be controlled or modified due to production factors, 

design features, external constraints, etc. Hence, some input variables can be 

proportionally reduced (discretionary variables), whilst others are not subject to 

management control (non-discretionary variables), as discussed in Camanho et al. 

(2009) and Zadmirzaei et al. (2017). The interested reader is directed to Saber et al. 

(2011) for further information about the non-discretionary external factors that may 

affect a production process.  
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The standard DEA model presented in Eq. 3-1 is reformulated following the work 

by Banker et al. (1986) in order to accommodate non-discretionary inputs: 

 

�$)	
� − * y( ,�/ +�∈K ( ,�-
c

�W< z 

s. t. ( 1���� + ,�/ = 
���� 									$ ∈ A®
�W<  

( 1���� + ,�/ = ��� 									$ ∈ xA®
�W<  

( 1���� − ,�- = ���									" = 1, … , �®
�W<  

( 1� = 1®
�W<  

1� , ,�/, ,�- ≥ 0								∀$, �, "							
�	unconstrained			 
 

Eq. 3-3 

where D and ND refer to the sets of discretionary and non-discretionary inputs, 

respectively. Note that inefficient DMUs are not projected in the direction of ND 

inputs, as these remain fixed. We also note that in the objective function of Eq. 3-3, 

only the input slacks related to discretionary factors appear, as discussed in Cooper et 

al., (2006). Furthermore, in Eq. 3-2 we show the targets (G���) for discretionary inputs 

($ ∈ A), but it should be mentioned that these targets are computed differently for non 

discretionary inputs (G�xA��) and also for outputs (G�t��), as shown in Eq. 3-4 and 

Eq. 3-5, respectively. 

 

G�xA�� = ( 1���� = ��� − ,�/
®

�W< 							$ ∈ xA = 1, … , � Eq. 3-4 

G�t�� = ( 1���� = ��� + ,�-
®

�W< 							" = 1, … , � Eq. 3-5 
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We note that while changes in discretionary inputs to achieve (G���) are enough for 

weak efficiency, changes in non discretionary inputs and outputs to achieve (G�xA��) 

and (G�t��) respectively are required to attain strong efficiency. 

 

3.2.1.3. DEA Super-efficiency 

The standard DEA classifies the DMUs as either efficient (
o = 1) or inefficient 

(
o< 1). This classification has the limitation that it provides no ranking of efficient 

DMUs. Conversely, super-efficiency models allow to further discriminate among 

efficient ASUs. See Banker et al. (1988), Banker et al. (1989), Andersen et al. (1993), 

Wilson (1995), Ray (2004) and Seiford et al. (1999). In this contribution we use a VRS 

input-oriented super-efficiency model, as proposed by Seiford et al. (1998a). 

 

�$)	
�d; − * y( ,�/ +�∈K ( ,�-
c

�W< z 

s. t. ( 1���� + ,�/ = 
�d;��� 									$ ∈ A®
�W<,�²�  

( 1���� + ,�/ = ��� 									$ ∈ xA®
�W<,�²�  

( 1���� − ,�- = ���								" = 1, … , �®
�W<,�²�  

( 1� = 1®
�W<  

1� , ,�/, ,�- ≥ 0								∀$, �, "							
�d; 	unconstrained 

Eq. 3-6 

 

Here, 
�d; is the supper-efficiency score  (
�d; ≥ 1, where the higher the better), 

and o is the efficient DMU for which the super-efficiency model is applied.  

Super-efficiency can be interpreted in two different ways. On the one hand, it 

represents the degree of efficiency stability, that is, how much can discretionary inputs 

worsen while the DMU is still deemed efficient. On the other hand, super-efficiency 

denotes the surplus of savings achieved by an efficient DMU in its discretionary inputs 
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(i.e., the DMU would still be efficient even if some of its discretionary inputs showed 

worse values, thereby implying extra savings). In this contribution, we focus on this 

second interpretation of super-efficiency. This is because our aim is to identify best-

practices regarding discretionary inputs, which can be modified at will to improve the 

efficiency of the ASUs (rather than outstanding performance in outputs or non-

discretionary inputs).  

Note that the super-efficiency model in Eq. 3-6, which is based on projecting the 

DMU under analysis to the efficient frontier resulting when this DMU is removed from 

the pool, can sometimes render infeasible (see Seiford et al. (1998a) and Zhu (2001)). 

This infeasibility has a different meaning in each of the two possible super-efficiency 

interpretations. In the case of efficiency stability, the infeasibility of the dual (i.e., 

multiplier) problem means that the DMU will remain efficient regardless of the 

changes in discretionary inputs. Hence, it implies that such DMU shows the highest 

super-efficiency (i.e., +∞). Conversely, in the context of inputs savings, the 

infeasibility of the dual model implies that the DMU analyzed does not show any extra 

savings in its discretionary inputs (i.e., its super-efficiency is given by its outputs or by 

non-discretionary inputs). In such case, we follow the algorithm proposed by Chen 

(2005) (see section 3.3 and Figure 3.3) in order to assign super efficiency value to 

DMUs for which problem in Eq. 3-6 is infeasible. 

 

3.2.2. Fundamentals of Malmquist Productivity Index 

To study how the efficiency of a DMU changes over time we make use of the MPI 

(denoted by ?�), which is defined as the ratio between the efficiency scores of the 

same production unit in two different time periods t and t+1 (t < t + 1) , as follows: 

 

?� = @ A�B (��B , ��B)A�B (��B-<, ��B-<) A�B-<(��B , ��B)A�B-<(��B-<, ��B-<)E</=
 Eq. 3-7 

 

The interpretation of the MPI is as follows: Mo > 1 means efficiency loss from t to   

t + 1; Mo = 1, means no efficiency changes from t to t + 1 and Mo < 1, means an 

efficiency gain from t to t + 1. The calculation of the MPI requires two single period 
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and two mixed period measurements. The two single period measurements are 

obtained as follows. In time period t: 

 A�B (��B , ��B) = �$)	
 

s. t. ( 1����B ≤ 
���B
®

�W< 							$ ∈ A 

( 1����B ≤ ���B
®

�W< 						$ ∈ xA 

( 1����B ≥ ���B®
�W< 										" = 1,2, … , � 

( 1� = 1®
�W<  

1� ≥ 0										� = 1,2, … , )							
	unconstrained 

Eq. 3-8 

 

where ���B  and ���B  are the i th input and the r th output for DMUo in time period t, and 
 is the technical efficiency score determining the inputs reduction to produce the 

given output level. In the same way, we can obtain the technical efficiency score for 

DMUo in time period t + 1 (A�B-<(��B-<, ��B-<)) by using the inputs and outputs in 

period t + 1 instead of t. 

 A�B-<(��B-<, ��B-<) = �$)	
 

s. t. ( 1����B-< ≤ 
���B-<®
�W< 										$ ∈ A 

( 1����B-< ≤ ���B-<®
³W< 										$ ∈ xA 

( 1����B-< ≥ ���B-<®
�W< 										" = 1,2, … , � 

( 1� = 1®
�W<  

1� ≥ 0										� = 1,2, … , )							
	unconstrained 

Eq. 3-9 
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The technical efficiency for the first mixed period (A�B(��B-<, ��B-<)) is obtained by 

solving:  

 A�B (��B-<, ��B-<) = �$)	
 

s. t. ( 1����B ≤ 
���B-<®
�W< 										$ ∈ A 

( 1����B ≤ ���B-<®
�W< 										$ ∈ xA 

( 1����B ≥ ���B-<®
�W< 										" = 1,2, … , � 

( 1� = 1®
�W<  

1� ≥ 0										� = 1,2, … , )							
	unconstrained 

 

Eq. 3-10 

whereas the model for the second mixed period (A�B-<(��B , ��B) = �$)	
) is as 

follows: 

 A�B-<(��B , ��B) = �$)	
 

s. t. ( 1����B-< ≤ 
���B
®

�W< 										$ ∈ A 

( 1����B-< ≤ ���B
®

�W< 										$ ∈ xA 

( 1����B-< ≥ ���B®
�W< 										" = 1,2, … , � 

( 1� = 1®
�W<  

1� ≥ 0										� = 1,2, … , )							
	unconstrained 

 

Eq. 3-11 

Note that this formulation corresponds to a VRS input-oriented MPI, which is 

consistent with what we have discussed so far.  
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One of the advantages of using the MPI instead of the mere inspection of the 

efficiency values over time is that the former can be decomposed into two components, 

one measuring the change in technical efficiency (TECo) and the other one measuring 

the change in the frontier technology (FSo) between time periods t and t + 1. 

Specifically, 

 ?� = GHI�J,� Eq. 3-12 

with   GHI� = KLM(NLM ,OLM)KLMPQ(NLMPQ,OLMPQ) , J,� = RKLMPQ(NLMPQ,OLMPQ)KLM (NLMPQ,OLMPQ) KLMPQ(NLM ,OĹ)KLM(NLM ,OLM) S</=
 Eq. 3-13 

  

The meaning of this decomposition is as follows. The term TECo measures the 

change in the technical efficiency relative to the other DMUs. TECo > 1 indicates a 

decline in technical efficiency (i.e., 
�B > 
�B-<), TECo = 1 no improvement or decline, 

and TECo < 1 an improvement (i.e., 
�B < 
�B-<). On the other hand, the term FSo 

measures the frontier shift between time period t and t + 1. In this case, FSo > 1 

indicates a regress of the frontier, FSo = 1 no shift, and FSo < 1 a progress of the 

frontier.  

Note that problems in Eqs. 3-10 and 3-11 can be infeasible. The reason for this is 

analogous to that causing infeasibilities in super-efficiency models (see section 

3.2.1.3.): the efficient frontier of these problems is built without the DMU analyzed 

(note the difference in time periods between the left-hand side and the right-hand side 

of the constraints). In the case of super-efficiency, infeasible problems have clear 

implications on the DMU being analyzed. However, in the context of the MPI, 

obtaining a numerical solution for problems in Eqs. 3-8, 3-9, 3-10 and 3-11 (i.e., 

obtaining a numerical value for terms A�B(��B , ��B), A�B-<(��B-<, ��B-<), A�B(��B-<, ��B-<) 

and A�B-<(��B , ��B))  is mandatory as otherwise the MPI cannot be determined (see Eqs. 

3-12 and 3-13)). To overcome this limitation, we make use of the algorithm described 

in section 2.3 which assigns a numerical value to A�B(��B-<, ��B-<) and A�B-<(��B , ��B) 

even when the original problems (Eqs. 3-10 and 3-11) render infeasible. 
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3.2.2.1. Malmquist Productivity Index illustrative example 

An illustrative example of how to calculate the MPI is shown in Figure 3.2, which 

is based on Figure 3.1. The inputs of the eight ASUs (i.e., At, Bt,…, Ht) in time period t 

are represented using black dots (i.e., same data as in Figure 3.1), whereas white dots 

represent the inputs of the ASUs in time period t + 1 (i.e., At+1, Bt+1,…, Ht+1). Figure 

3.2, illustrates the changes in both TECo and FSo MPI components. For example, if an 

ASU shows technical efficiencies of 0.4 and 0.6 in t and t+1 respectively, then TECo < 

1 which indicates an improvement in TECo. The frontier between time periods t and t + 

1 can also vary over time, thereby modifying the MPI scores. For example, ASUD 

could worsen its technical efficiency scores but, as a result of the frontier change of 

similar ASUs (FSo < 1) between t and t + 1, the MPI index of ASUD becomes efficient 

(Mo ≤ 1).  

On the other hand, (e.g., ASUF) which is efficient in t, becomes inefficient in t + 1 

(Mo > 1). The relative movement of any given DMU over time will therefore depend 

on both its position relative to the corresponding frontier (technical efficiency) and the 

position of the frontier itself (technology change). If inefficiency is not noticed, then 

productivity growth over time will be unable to distinguish between improvements that 

derive from DMU ‘catching up’ to its own frontier, or those that result from the 

frontier itself ‘shifting up’ over time. 
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Figure 3.2. Malmquist productivity index illustrative example for period t and t + 1. 

 

3.2.3. Infeasibilities in DEA models 

Infeasibilities can arise in super-efficiency models (see section 3.2.1.3) as well as in 

the sub-problems required to compute the MPI (section 3.2.2.). In order to obtain 

numerical values for the (super) efficiency in both cases, we follow the approach by 

Seiford et al. (1999). In essence, we first solve an output-oriented model and then use 

the resulting projected output values (�µ�� = ∅�∗ ���, with ∅�∗  being the output-oriented 

super-efficiency) to define a new input-oriented (super) efficiency model. If the latter 

still remains infeasible, we assign a value of one to the (super) efficiency. Figure 3.3 

summarizes the approach in the case of super-efficiency models. Note we use the same 

overall approach to deal with infeasibilities in models in Eqs. 3-10 and 3-11.  
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Figure 3.3. Flow diagram to fully characterize the super-efficiency by dealing with infeasibilities. SE-IO 
and SE-OO correspond to Input-Oriented and Output-Oriented Super-Efficiency, respectively.  
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From Figure 3.3, ̧o represents the score for characterizing the super-efficiency in 

terms of input savings. Therefore, ¸ = 
�d; if model (2) is feasible, ̧o = 
¹�d; if model 

(2) is infeasible and model (4) is feasible, and ¸o = 1 if model (4) is infeasible. Note 

that ̧ o is always greater or equal than one (¸o ≥ 1). If ¸o > 1, DMUo has input super-

efficiency, and if ̧ o = 1, DMUo does not have input super-efficiency.   

 

3.3. Case study: industrial air separation units 

We apply DEA to assess the efficiency of a set of 34 existing Air Separation Units 

located in Europe (19 of them) and Asia (15 of them). The ASUs operate as follows. 

First, the raw material (i.e., ambient air) is drawn in, filtered and compressed to 

approximately 6 bars by a compressor. To separate air into its components, it must be 

liquefied at an extremely low temperature (i.e., cryogenic temperatures) and, thus, as 

first step the compressed air is precooled with chilled water. Then, impurities such as 

moisture, carbon dioxide or hydrocarbons are removed from the air in molecular 

adsorbers. Since the gases contained air only liquefy at very low temperatures, the 

purified air in the main heat exchanger is cooled down to approximately -175oC by 

means of an internal heat exchange, in which the gas flows generated during the 

process (i.e., cold flows) cool the compressed air (i.e., warm flow). Then, a rapid 

pressure drop causes the compressed air to cool further, and partial liquefaction takes 

place. Afterwards, the air is sent to the column where the separation in its components 

occurs. Separation of air into pure oxygen and pure nitrogen is performed in two 

columns, the medium and the low pressure columns, where the difference in boiling 

points of the air components (oxygen and nitrogen, -183°C and -196°C, respectively) is 

exploited for the separation process. The continuous evaporation and condensation 

brought about by the intense exchange of mass and heat between the rising vapor and 

the descending liquid produces pure nitrogen at the top of the low-pressure column and 

pure oxygen at the bottom. Argon is separated in additional columns and involves 

some extra steps in the process. Once the air components are separated and obtained at 

high purity, gaseous oxygen and nitrogen (GOX and GAN, respectively) are 

compressed until the pipeline pressure is reached in order to transport them to 

customers. The GOX and GAN liquefaction process is often carried out by additional 
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equipment that requires large amounts of energy. Note that some plants do not produce 

gases but only liquid products, and therefore show a slightly different design. Argon-

rich stream is obtained in the medium part of the low pressure column but it needs an 

additional distillation process in which the impurities of nitrogen and oxygen are 

removed from the argon flow and, as a result, a stream of liquid argon (LAR) with high 

purity is obtained. Products in liquid form (LOX, LIN and LAR) are stored in tanks 

that are transported to customers by means of road tankers or used as a gas (i.e., 

pipeline) backup system.  

As commented in the previous description, the technologies to produce gases or 

liquids in ASUs are slightly different and, for this reason, it has been decided to create 

two DEA models, one (labelled as G) to assess the gas production technology in ASUs 

and another one (labelled as L) to assess the liquid production technology. By applying 

both models, we perform a more accurate and fair efficiency assessment. Furthermore, 

this allows us to analyze in greater detail those ASUs which only use one of the two 

technologies (i.e., the ones which only produce gas or liquid). From the 34 plants under 

study, model G applies to 24 of them, while model L to 27 of them. We also note that 

17 plants are present in both models, since they produce both gas and liquid products 

simultaneously. Table 3.1 summarizes the information about the ASUs to illustrate the 

main features of each plant. 
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Table 3.1. General information of the air separation units assessed. (EU: Europe; AS: Asia).

 
 

An important aspect in DEA analysis is how to properly identify the parameters 

considered as inputs and the ones considered as outputs. Here, air separation units are 

viewed as production systems consuming specific amounts of inputs to produce the 

desired outputs. Inputs and outputs are therefore defined as in Table 3.2 and Table 3.3 

and Figure 3.4 and Figure 3.5 (for G and L models, respectively). We note that since 

our DEA analysis focuses on energy efficiency, we considered as inputs those related 

with electricity consumption. Other utilities (water, gasoil, etc.) represent less than 5% 

of the total utilities cost and therefore were omitted in the current analysis. 

  

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
MULTIPERIOD MODELLING PLANNING AND PRODUCTIVITY AND ENERGY EFFICIENT ASSESSMENT OF AN INDUSTRIAL GASES 
FACILITY 
David Fernández Linares 
 



Chapter 3. DEA and MPI for efficiency assessment 

129 

 
Table 3.2. Input/output definition of the air separation units which produce gaseous products (G). 
(ND: non-discretionary input). 

Item Description Units 

Inputs   

1. Electricity for air separation Electricity used in the steps to separate the 

air in its components  

kWh 

2. Electricity for GOX compression  Electricity used in compressors to send GOX 

to customers 

kWh 

3. Electricity for GAN compression  Electricity used in compressors to send GAN 

to customers 

kWh 

4. Air capacity (ND) Maximum feed air capacity of the ASU m3/h 

5. GOX pressure (ND) Oxygen supply pressure bar 

6. GAN pressure (ND) Nitrogen supply pressure bar 

Outputs   

1. GOX Amount of oxygen produced in gas phase m3/h 

2. GAN Amount of nitrogen produced in gas phase m3/h 

 

 

 
Figure 3.4. Flow diagram representing inputs and outputs in G model. 
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Table 3.3. Input/output definition of the air separation units which produce liquid products (L). (ND: non-
discretionary input). 

Item Description Units 

Inputs   

1. Electricity for 

liquefaction 

Electricity used in liquefiers to produce LOX and 

LIN 

kWh 

2. Liquid capacity (ND) Maximum amount of liquid that can be produced 

in the ASU  

m3/h 

3. LAR capacity (ND) Maximum amount of LAR that can be produced 

in the ASU 

m3/h 

Outputs   

1. LOX Amount of oxygen produced in liquid phase  m3/h 

2. LIN Amount of nitrogen produced in liquid phase  m3/h 

3. LAR Amount of argon produced in liquid phase m3/h 

 

 

 
Figure 3.5. Flow diagram representing inputs and outputs in L model. 

 

In case of model G, the non-discretionary input “Air capacity” depends on the 

design of the main air compressor, which was selected during the plant design taking 

into account the level of production (i.e., demand) forecasted. In the same way, non-

discretionary inputs “GOX pressure” and “GAN pressure” in model G, depend on the 

customers’ requirements and pipeline framework design. In the case of model L, 

“Liquid capacity” and “LAR capacity” are non-discretionary inputs linked to the 
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process design and, therefore, to structural changes or the addition of further 

machinery. 

In Figure 3.6 and Figure 3.7, we show the relationships between inputs and outputs 

levels for the different air separation units in models G and L, respectively, where the 

percentages refer to the highest input/output value for each parameter among the whole 

set of air separation units assessed (i.e., 100% corresponds to the largest value for each 

parameter). We note that the specific values for inputs and outputs of air separation 

units cannot be disclosed due to confidentiality issues.  

 
Figure 3.6. Relationship between input and output levels among the air separation plants of model G. 

 

 
Figure 3.7. Relationship between input and output levels among the air separation plants of model L. 
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In order to obtain reliable results and avoid a weak discriminatory power in the 

DEA application, it is important to satisfy a given relationship between the number of 

DMUs (i.e., ASUs) and the number of inputs and inputs (Cooper et al., 2007): 

 )����"	��	A?h�	 ≥ ����� · �, 3(� + �)� Eq. 3-14 

 

where m and s are the number of inputs and outputs, respectively. We note that our 

models G and L satisfy this rule of thumb widely use in DEA. 

 

3.3.1. Results and discussion 

Models G and L were implemented in GAMS 24.8.3 and solved with CPLEX 

12.7.0.0 on an Intel® Core™ i5-3210 processor operating at 2.50 GHz (GAMS, 2015). 

It took around 1.6–1.8 CPU seconds to solve every instance. In the following 

subsections we present the main outcomes resulted from the application of both models 

and their subsequent assessment. 

 

3.3.1.1. Efficiency results 

When solving model G, 18 ASUs are found efficient from a total of 24 units (75% 

of them), as shown in Figure 3.8. Hence, six ASUs are found inefficient, with four of 

them showing efficiency values higher than 75% (i.e., EU_19, EU_13, EU_5 and 

AS_10), which indicates that their distance to the efficient frontier is small. 

Conversely, two of these inefficient ASUs (i.e., EU_15 and EU_4) show low efficiency 

values (58% and 53%, respectively), implying that they need larger improvements to 

become efficient. In model L, the results show that there are 19 efficient ASUs (70% of 

them), as illustrated in Figure 3.9. Among the eight inefficient ASUs, four of them 

show efficiency values higher than 80% (i.e., EU_19, EU_10, EU_8 and EU_17). On 

the other hand, AS_7 shows a low efficiency value (57%). 
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Figure 3.8. Efficiency and super-efficiency scores of the 24 ASUs in model G. 

 

 
Figure 3.9. Efficiency and super-efficiency scores of the 27 ASUs in model L. 

 

From Figure 3.8 we observe (from a location point of view) that plants located in 

Asia are more efficient (on average) than those in Europe. From the total of plants 

located in Asia, 90.9% of them are efficient, while in Europe only 61.3% of the total 

plants are efficient. We clarify that plants in Asia are newer than those in Europe 

(nearly four years newer on average), so they implement better technology. 

Furthermore, Asian plants have higher capacities (63.1% higher on average), so they 

exploit better the concept of economies of scale which results in a better use of 

resources. Conversely, the efficiency differences between European and Asian plants 

in the case of the liquid production technology (Figure 3.9) are not as significant as 

with the gas technology. Here, 84.6% of the Asian and 57.1% of the European plants 

are efficient.  

From Figure 3.8 and Figure 3.9, we also note that some plants that are present in 

both models (i.e., G and L) show different behaviors depending on the technology 

assessed. This can be observed in AS_7, which shows the best super-efficiency score 
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in model G, but is inefficient (with the worst score) in model L. The reason might be 

that this plant was installed to cover a high gas demand (which is its main business), 

whereas the liquid production is a residual business (probably oversized with respect to 

the current liquid demand, despite the already low liquid capacity). On the contrary, 

AS_10 shows high efficiency scores in model L, but low scores in model G, very likely 

because it recently experienced an important decrease in gas demand. We also note that 

some plants perform poorly in both models (EU_19 and EU_13), while others emerge 

as efficient in both cases (as in the case of EU_14). 

 

3.3.1.2. Super-efficiency results 

 While in model G the plants located in Asia show higher super-efficiency scores 

(e.g., AS_7, AS_13, AS_14), we find that 63.6% of the super-efficient plants in model 

L are located in Europe, with some of them showing particularly high super-efficiency 

scores (e.g., EU_12). This denotes that in Europe the liquid technology is better 

exploited than the gas technology. This could be due to the fact that during the last 

years, many European ASUs have reduced their gas demand (mainly from big 

customers) so the production has been adapted to supply liquid customers (normally 

the small customers).  

We note that only those ASUs with super-efficiencies strictly above one show extra 

savings in discretionary inputs. According to this criterion, we can rank the ASUs in 

model G as follow: AS_7 > AS_13 > AS_14 > EU_14, where AS_7 is the ASU which 

could achieve the largest extra savings in inputs, and EU_14 the one with the lowest 

ones. In model L, the ranking of ASUs showing extra savings in discretionary inputs is 

as follows: EU_12 > AS_3 > EU_18 > EU_6 > EU_16 > EU_14 > EU_7 = AS_10 > 

AS_14 > AS_5 > EU_11. For the rest of efficient ASUs (those with super-efficiency 

equal than one), super-efficiency is due to either non-discretionary inputs, outputs or a 

combination of the two. Hence, this is not reflected in the super-efficiency measure 

that we use. 
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3.3.1.3. Inefficiency assessment 

The percentage of improvement (with respect to the current situation) required in 

each discretionary input to make the inefficient ASUs efficient (denoted by IMPij) is 

calculated as follows: 

 

%?m�� = ��� − G������ · 100						$ ∈ A; �	$)���$�$�)� 
Eq. 3-15 

 

In Figure 3.10 and Figure 3.12 we show a heat map (for G and L models) 

representing these improvement targets. We note that even though our main goal here 

is the definition of the percentage of improvement in discretionary inputs, in Figure 

3.10 and Figure 3.12 we also show the percentage of improvement for non-

discretionary inputs and outputs. The targets in both non-discretionary inputs and 

outputs correspond to slack variables ,�/	and ,�-,	respectively, and therefore they are 

only required to achieve strong efficiency. We note that the percentages of 

improvement in Figure 3.10 and Figure 3.12 are expressed in absolute value without 

considering the corresponding sign. Therefore, in Figure 3.10 the percentage of 

improvement in inputs (i.e., ‘Electricity for air separation’, ‘Electricity for oxygen 

compression’, ‘Electricity for nitrogen compression’ and ‘Air capacity’) corresponds 

indeed reductions (-), while the percentage of improvement in outputs (i.e., ‘GOX’ and 

‘GAN’) denotes increments (+). Darker colors in Figure 3.10 and Figure 3.12 imply a 

stronger target, and hence, the need to further reduce/increase the corresponding 

parameter so as to become efficient. In Figure 3.11 and Figure 3.13, we show the 

average percentage of improvement in each parameter. In these figures, inputs 

improvements are negative (since they imply reductions) and output positive (since 

they imply increments). 
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Figure 3.10. Percentage of improvement required in each inefficient ASU in model G. 

 

 
Figure 3.11. Average improvement percentage in each parameter in model G. 

 

From Figure 3.10 and Figure 3.11, we can identify “Electricity for air separation”, 

“Electricity for GAN compression” and “Air capacity” as the most critical parameters 

of model G, which require an average reduction of 31%, 30% and 29% to become 

efficient, respectively. EU_13 and EU_15 are the ASUs with the largest targets in the 

overall set of parameters (22% and 15% on average, respectively). This is mainly due 

to the fact that these plants are quite old (more than 20 years), and their demand has 

steadily decreased over time. Therefore, their capacities are oversized. Furthermore, 

the processes and the machinery used in these plants are not as efficient as those more 

recently installed in other locations. Since “Air capacity” is a non-discretionary input, 

efforts should focus on reducing first both the electricity used for air separation and 

that used for GAN compression (note that attaining targets in discretionary inputs 

allows the ASU to become weakly efficient). In any case, energy consumption will 

always be constrained by thermodynamic limits given by the separation processes. 
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Finally, we note that if the inefficient ASUs from model G would operate according 

with the targets shown in Figure 3.10, they would reduce their overall yearly energy 

consumption in 300GWh.     

The same approach discussed above applies to Figure 3.12 generated with model L. 

Here, in input categories (i.e., ‘Electricity for liquefaction’, ‘Liquid capacity’ and 

‘LAR capacity’) the improvement percentage represents reductions (-), whilst in the 

outputs (i.e., LOX, LIN and LAR) it denotes increments (+). 

 

 
Figure 3.12. Percentage of improvement required in each inefficient ASU in model L. 

 

 
Figure 3.13. Average improvement percentage in each parameter in model L. 

 

From Figure 3.12 and Figure 3.13, “LAR product” and “Electricity for liquefaction” 

emerge as the most critical parameters (on average) in model L, requiring an 

improvement of 20% (increasing “LAR product”) and 19% (decreasing “Electricity for 

liquefaction”). AS_7 and AS_4 are the ASUs with the largest targets in improving the 
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overall set of parameters (42% and 16% on average, respectively). This implies that 

higher efforts should be devoted to these processes to make them efficient. In the case 

of AS_7, it has experienced a strong downfall in liquid production (i.e., demand ) in 

the last years. Nowadays, only less than 5% of the liquid capacity of the plant is used, 

while few years ago it lied above 90%. The same occurs in LAR production, which 

nowadays only uses around 10% of the total LAR capacity allowed in the plant. In the 

case of AS_4, its liquid production takes an intermediate value (around 60% of 

liquefaction capacity is currently used), yet LAR production is rather low (less than 

20% of LAR capacity used). Those aspects are far beyond our reach, as in some cases 

large industrial consumers decide to close their facilities, which results in high demand 

variations. As before, the main efforts should focus on reducing the electricity used for 

liquefaction, since “LAR product” is an output and it depends on demand 

requirements. Finally, if the inefficient ASUs from model L would operate according 

with the targets shown in Figure 3.12, they would reduce their overall yearly energy 

consumption in 55GWh. 

Analyzing the non-discretionary inputs (as defined in Table 3.2 and Table 3.3) in 

both models (G and L), none of the inefficient ASUs could become strongly efficient. 

This is because they all have slacks in ND inputs. Nevertheless, they could improve 

their current efficiency level if the discretionary inputs and outputs were properly 

manipulated. 

Figure 3.14 and Figure 3.16 show a heat map representing the linear coefficients of 

peers in the G and L models, respectively. Figure 3.15 and Figure 3.17 show the 

number of times each efficient ASU is defined as peer (i.e., acts as benchmark) by the 

inefficient ones as well as the summation of all linear coefficients (obtained from the 

rows in Figure 3.14 and Figure 3.16, respectively). 
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Figure 3.14. Linear weights for the benchmarks selected by each inefficient ASUs in model G. 

 

 
Figure 3.15. Linear weights summation in efficient ASUs and frequency to be benchmark in model G. 
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Figure 3.16. Linear weights for the benchmarks selected by each inefficient ASUs in model L. 

 

 
Figure 3.17. Linear weights summation in efficient ASUs and frequency to be benchmark in model L. 

 

As an example, to facilitate the understanding of previous figures, we select EU_19 

as the reference inefficient ASU in Figure 3.16. This ASU would become efficient by 

approaching the linear combination of its reference set formed by EU_11, EU_18, 

AS_5 and AS_8, with linear multipliers 0.04, 0.59, 0.20 and 0.16, respectively. This 

means that EU_19 should use these four ASUs as models when attempting to improve, 

focusing on those with higher coefficients in the linear combination.  
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From previous figures we observe that (in model G) AS_8 shows the highest linear 

coefficient summation (1.97) and the highest frequency of benchmarking (four ASUs 

use it as a peer). In model L, EU_14 is the preferred ASU (seven ASUs uses it as peer), 

showing in turn the highest linear weight summation (3.0). This means that AS_8 (in 

model G) and EU_14 (in model L) should be taken as reference facilities. 

 

3.3.1.4. Malmquist Productivity Index results 

The previous analysis corresponds to a snapshot for year 2016. In order to study the 

efficiency trends of the plants over time, we calculate the Malmquist Productivity 

Index (MPI) for 2013 to 2016. We have focused on this time period because some 

plants were recently built and their demand changed over time (e.g., emergence of new 

customers, loss of customers, increases or decreases in demand’s flowrate, etc.). We 

show in Figure 3.18 and Figure 3.19, respectively, the Technical Efficiency Changes 

(TECo), the Frontier Shifts (FSo) and the Malmquist Productivity Index (Mo) in each 

ASU. Colors are used to represent the intensity of improvement (green) or worsening 

(red) from year to year. We note that blank cells mean that the ASU did not exist in 

one of the corresponding years.  

 

 
Figure 3.18. Technical efficiency changes, Frontier shift and Malmquist index in model G. 
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We start by analyzing the MPI in model G. The worst MPI scores are shown by 

EU_19 and AS_10 in the 2015/2016 time interval, with decreases of 22.2% (i.e., MPI 

= 1.222) and 14.8% respectively. In both cases, the change is due to the combined 

worsening of their relative technical efficiency (TECo of -12.2% for  EU_19 and -13.2 

for AS_10) and the regression of the frontier (FSo of -9.0% for EU_19 and -1.5% for 

AS_10). This means that, despite the decrease in the performance of similar ASUs 

from 2015 to 2016 (causing a regression in the frontier leading to FSs > 1), the 

technical efficiency of ASUs EU_19 and AS_10 attained even lower values in 2016 

compared to 2015 (therefore, TECs > 1). In EU_19, the main factors explaining the 

regression in the technical efficiency between 2015 and 2016 are the worsening of 

10.8% in the specific consumption (kWh/m3) of GOX compression and the decrease in 

the air separation efficiency (-21.7%). In AS_10, from year 2015 to year 2016, the 

specific consumption (kWh/m3) of GOX and GAN compression was worsened by 

16.3% and 17.2%, respectively (data not shown), which were mainly caused by the 

reduction of both GOX and GAN demand (m3) by 14.8% and 29.4%, respectively (data 

not shown) occurred between both years. 

Conversely, the best MPI score was attained by EU_15 with an improvement of 

10.3% from 2015 to 2016. Despite the regression of the frontier (FSo of -2.8% for 

EU_15) from 2015 to 2016, the high improvement in its relative technical efficiency 

(TECo of 12.3%) allowed ASUs to obtain the greatest MPI improvement. This is 

mainly due to the improvements of 9.1% and 8.8% (data not shown) in GAN 

compression and air separation, respectively. 

Overall, we note that in model G MPI suffers very few changes from year to year (-

0.100% in 2013/2014, -0.055% in 2014/2015 and -1.409% in 2015/2016), since the 

plants worsening were compensated by others improving their performance.  
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Figure 3.19. Technical efficiency changes, Frontier shift and Malmquist productivity index in model L. 

 

The MPI in model L, shows that the worst score is obtained in AS_7 from 2014 to 

2015, with a decrease of 11.9%. The result is due to the combined worsening of their 

relative technical efficiency and the regression of the frontier (-5.8% in both TECo and 

FSo components). This is due to the significant losses in product demand from 2014 to 

2015. In this period LOX, LIN and LAR demand (production) were reduced by 67%, 

70% and 82% respectively (data not shown). In Figure 3.19, we can also observe how 

AS_7 behaved from 2015 to 2016. The technical efficiency of ASU_7 decreased from 

2015 to 2016 (TECo = 1.481) due to decreases of 89.5% and 99.2% in LOX (kWh/m3 

LOX) and LIN (kWh/m3 LIN) production, respectively, yet the frontier improved   

(FSo = 0.675) due to the increase in the performance of similar ASUs, resulting in a 

MPI = 1.  

On the other hand, AS_15 and EU_19 (both from 2015 to 2016) showed the best 

Malmquist Productivity Index with improvements of 15.0% and 13.5%. AS_15 

reduced its liquefaction specific consumption by 3.2%, which was due to an increase of 

42.4% in LIN production (despite a 20.1% reduction in LOX). Also, LAR production 

was significantly improved (37.9%) between 2015 and 2016. The good results of 

EU_19 in 2014/2015 resulted from the improvement (3.7%) in its liquid production. 
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We note that, as in model G, MPI showed very few changes from year to year 

(0.565% in 2013/2014, 0.308% in 2014/2015 and 1.691% in 2015/2016).  

 

3.4. Conclusions 

With the growing trend of improving industrial processes to optimize energy 

management, there is a clear need to develop decision-making tools to assess the 

energy efficiency of industrial facilities. In this paper, we applied the non-parametric 

method of DEA to assess the efficiencies of a set of air separation units producing 

nitrogen, oxygen and argon together with their evolution over time.  

This approach, implemented in GAMS, allowed us to identify efficient and 

inefficient ASUs considering separately gas production (model G) and liquid 

production (model L) facilities. From the ASUs assessed in model G, 75% of them 

were classified as efficient, while in model L, 70% of the assessed ASUs were 

efficient. Super-efficiency analysis allowed us to further discriminate among the 

efficient ASUs. We found that 16.7% and 40.1% of ASUs in G and L models 

respectively showed extra-savings in their discretionary inputs. 

In terms of improvement targets, “Electricity for air separation”, “Electricity for 

GAN compression” and “Air capacity” were identified as the most critical parameters 

in model G, with an average reduction needed of 31%, 30% and 29%, respectively. In 

the same model, EU_13 and EU_15 were identified as the ASUs requiring the largest 

improvements (22% and 15%, respectively). In model L, “LAR product” and 

“Electricity for liquefaction” were identified as the most critical parameters (on 

average), requiring an improvement of 20% and 19%, respectively. AS_7 and AS_4 

were found as the ASUs requiring the largest improvements (42% and 16% on average, 

respectively).  

Our analysis was further complemented with the results of the DEA Malmquist 

productivity approach, finding that the worst MPI scores in model G were shown by 

EU_19 and AS_10 in the 2015/2016 time interval, with decreases of 22.2% and 14.8%, 

respectively. On the other side the best MPI score was attained by EU_15 with an 

improvement of 10.3% from 2015 to 2016. In model L, the worst score was obtained 

by AS_7 from 2014 to 2015, with a decrease of 11.9%., whereas AS_15 and EU_19 
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(both from 2015 to 2016) showed the best MPI scores with improvements of 15.0% 

and 13.5%. 

Overall, the combination of DEA and the Malmquist productivity index allowed us 

to effectively identify inefficiency sources, assess the efficiency trend in each unit and 

establish quantitative targets for improvement. This method can be applied in a wide 

range of energy intensive industrial processes (i.e., chemical, automotive, metallurgy, 

etc.) to minimize energy losses in the transition to a more sustainable world. 
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3.5. Nomenclature 

Abbreviations 

ASU  air separation unit 

BCC  Banker Charnes and Cooper model 

DEA   data envelopment analysis 

DMU  decision making unit 

GOX  gas oxygen   

GAN  gas nitrogen  

LAR  liquid argon 

LIN  liquid nitrogen 

LOX  liquid oxygen 

LP  linear programming 

MPI  Malmquist productivity index 

VRS  variable returns to scale 
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Sets 

i  set of inputs indexed by i 

j  set of decision making units indexed by j 

r  set of outputs indexed by r 

t  set of time intervals indexed by t 

 

Subsets 

D  set of inputs which are discretionary 

ND   set of inputs which are non discretionary 

 

Variables »o  efficiency score in output oriented model 

FSo  frontier technology shift in DMUo ¸o   represent the score for characterizing the super-efficiency in terms of 

input savings 

IMPij  percentage of improvement required in each discretionary input to 

make the inefficient ASUs efficient  

λj  linear weight for every single DMUj to form a linear combination 

Mo  Malmquist index to measure efficiency changes in DMUo 

θ  relative efficiency score in input oriented model θ�d;  super-efficiency score θ¹�d;  super-efficiency score when super-efficiency is determined by 

infeasibility in model (2) and feasibility in model (6) 

o  assessed DMU 

Si
-  amount of input i that, if reduced, shifts the DMUo projection until the 

strongly efficient frontier 

Sr
+  amount of output r that, if increased, shifts the DMUo projection until 

the strongly efficient frontier 

TECo  technical efficiency change in DMUo 

TGio  target for discretionary input i in any inefficient DMUo 

TGNDio target for non-discretionary input i in any inefficient DMUo 
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TGOro  target for output r in any inefficient DMUo 

 

Parameters 

ε  non-archimedean value designed to enforce strict positivity on the 

variables 

m  number of inputs consumed by a DMU 

n  number of decision making units 

s  number of outputs produced by a DMU 

xij  amount of input i consumed by DMUj 

yrj  amount of output r produced by DMUj 
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