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This is your life. 

Do what you want and do it often. 

If you don’t like something, change it. 

If you don’t like your job, quit. 

If you don’t have enough time, stop watching TV. 

If you are looking for the love of your life, stop; they 
will be waiting for you when you start doing things you 
love. 

Stop over analyzing, life is simple. 

All emotions are beautiful.  

When you eat, appreciate every last bite. 

Open your mind, arms and heart to new things and 
people, we are united in our differences. 

Ask the next person you see what their passion is and 
share your inspiring dream with them. 

Travel often; getting lost will help you find yourself. 

Some opportunities only come once, seize them. 

Life is about the people you meet, and the things you 
create with them so go out and start creating. 

Life is short. 

Live your dream and share your passion. 

 

The Holstee Manifest, 2009 
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Abstract 

 
 

Rheumatoid arthritis, psoriasis, psoriatic arthritis, systemic lupus 

erythematosus, Crohn’s disease and ulcerative colitis are six of the 

most prevalent immune-mediated inflammatory diseases (IMIDs) 

and are associated with a high socio-economic impact. There is 

compelling evidence that IMIDs are genetically complex diseases. 

To date, however, the genetic component of IMIDs has been only 

partially explained. Identifying new clinically relevant variation is 

therefore of major clinical interest. The objective of the present 

thesis was to identify new genetic variation underlying IMIDs. The 

research activity here presented is the result of analyzing high-

throughput genomic data from a large cohort of IMID patients 

collected by the IMID Consortium. Using genome-wide approaches 

and functional analyses, we have identified new genetic variants 

associated to IMID susceptibility, IMID clinical phenotypes and 

specific treatment outcomes. Taken together, these findings 

contribute to better understanding the genetic basis of IMIDs and 

suggest more specific and preventive therapeutic strategies. 
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Resum 

 
 

L’artritis reumatoide, la psoriasis, l’artritis psoriàsica, el lupus 

eritematós sistèmic, la malaltia de Crohn i la colitis ulcerosa són sis 

malalties inflamatòries mediades per immunitat (IMIDs) d’elevada 

prevalença i amb un fort impacte socioeconòmic. Totes elles 

comparteixen un component genètic important. No obstant, a dia 

d’avui, només s’ha caracteritzat una part dels factors genètics de les 

IMIDs. La identificació de factors genètics clínicament rellevants 

presenta doncs un gran interès clínic per tal d’incorporar la 

informació genètica a la pràctica mèdica. L’objectiu d’aquesta tesi 

és identificar noves variants genètiques associades a les IMIDs. La 

recerca que es presenta és el resultat d’analitzar dades genòmiques 

d’una gran cohort de pacients amb IMIDs, els quals es van obtenir a 

través del consorci IMID Consortium. Mitjançant estratègies 

d’anàlisi de genoma complet i estudis funcionals, en aquesta tesi 

s’han identificat noves variants genètiques associades al risc de 

desenvolupar IMIDs així com als seus fenotips clínics i tractament. 

Aquesta tesi contribueix significativament a la caracterització del 

component genètic de les IMIDs i, des d’un punt de vista clínic, 

suggereix noves estratègies terapèutiques. 
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Thesis outline 
 

The objective of the present thesis is the identification of clinically 

relevant genetic variation in immune-mediated inflammatory diseases 

(IMIDs). IMIDs are a group of highly disabling chronic disorders 

characterized by the activation of multiple immune and inflammatory 

pathways against the self. From these, six of the most prevalent IMIDs 

that are associated with a high socio-economic impact are rheumatoid 

arthritis (RA), psoriasis (PS), psoriatic arthritis (PsA), systemic lupus 

erythematosus (SLE), Crohn’s disease (CD) and ulcerative colitis (UC). 

These six IMIDs are genetically complex diseases with a strong genetic 

component. However, the genetic factors underlying IMIDs are still not 

completely understood. This lack of understanding and the high clinical 

interest to bridge genetic findings into the medical practice have 

motivated the development of the present PhD thesis. 

For this objective, a large cohort of IMID patients has been used. All these 

patients were collected by the IMID Consortium during the execution of 

the singular and strategic IMID-Kit project between June 2007 and 

December 2010. This project led to the IMID Biobank creation, which 

stores biological samples and detailed clinical information from more than 

13,000 IMID patients and 3,000 healthy controls from Spain. The analysis 

of high-throughput molecular data from these samples has set the starting 

point for the research activity described in this thesis. 

The research line of the present thesis is focused on identifying new 

genetic variants associated to: (i) IMID susceptibility, (ii) IMID clinical 

phenotypes, and (iii) specific treatment outcomes in IMIDs. Accordingly, 

this thesis is divided into three sections. The first section shows the 

research activity that has been conducted to identify new genetic variation 

associated with IMID susceptibility. In this section, we present the first 

genome-wide association study (GWAS) for PS risk at the pathway level 

(A. Aterido et al. J Invest Dermatol ‘16) as well as the identification of 

new genetic variation that contributes to the risk of PsA but not purely 

cutaneous PS (A. Aterido et al. Ann Rheum Dis ’18 -under review-). The 

second section shows the research studies that have been performed to 
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identify genetic factors associated with the development of clinically 

relevant phenotypes in IMIDs. In this section, we present the first two-

stage GWAS on clinical phenotypes in SLE (A. Aterido et al. Arthritis 

Res Ther ’17) as well as the contribution that whole-genome variation has 

on the risk of developing a cardiovascular disease in IMIDs (PP. Perrotti 

et al. PLoS One ’17). Finally, the third section shows the research work 

that has been done to identify new genetic markers for anti-TNF treatment 

in IMIDs. Here, we present a novel multi-omic analysis aimed at 

identifying genetic markers for treatment response in RA (A. Aterido et 

al. Sci Rep ’18 -under review-), and the first GWAS for treatment 

immunogenicity in CD (A. Aterido et al. Pharmacogenomics J ’18 -under 

review-). 

The research activity presented throughout the thesis has been funded by 

the Spanish Ministry of Economy and Competitiveness (grant numbers: 

PSE-010000-2006-6 and IPT-010000-2010-36) and by the “Agència de 

Gestió d’Ajuts Universitaris i de Recerca” (AGAUR, FI-DGR 2016, grant 

number: 00587), which is supported by the “Secretaria d’Universitats i 

Recerca” (Economy and Knowledge Department, Generalitat de 

Catalunya) and co-funded by the European Social Fund. 
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1   |   INTRODUCTION 

 

1.1 Immune-mediated inflammatory diseases 

 

1.1.1 Epidemiology and pathogenesis 

The overall prevalence of IMIDs is 5-7% in the general population17. Each 

particular disease has specific and unique epidemiological characteristics 

(Table 1)17-32. 

 

IMID 
Prevalence 

(%) 
Incidence 

(per 100,000 ind/year) 
Gender 

(female:male) 
Incidence peak 

(years) 
RA 1.0 20-25 3:1 - 4:1 40-50 
PsA 0.5 3-23 Balanced 15-20 and 55-60 
SLE 0.24 80-230 9:1 - 10:1 16-55 
PS 2.0 50-100 Balanced 16-22 and 57-60 
CD 0.3 13-20 Up to 1.5:1 20-40 and 55-75 
UC 0.5 6-25 Balanced 20-40 and 55-80 

Table 1. Main epidemiological characteristics of IMIDs. 

IMIDs are complex diseases characterized by a strong genetic component 

(Figure 1). In complex diseases, multiple genes and environmental factors 

contribute to disease susceptibility33. 

 

Figure 1. Genetic contribution on complex diseases compared to monogenic diseases. (a) In 
complex diseases like IMIDs, many genes and environmental factors contribute to disease risk, 
(b) whereas a single gene is responsible for monogenic diseases, which are poorly influenced by 
environmental factors. Source: adapted from Manolio TA et al. J Clin Invest, 200833. 
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In IMIDs, the mechanisms of immunological tolerance are dysregulated 

and, consequently, an immune cell reaction is raised against healthy 

tissues34. In normal conditions, T cells expressing both the CD4 and CD8 

co-receptors are exposed to a wide variety of self-antigens in the 

thymus35. To avoid self-reactivity, only T cells that bind to self-antigens in 

the Major Histocompatibility Complex (MHC) with the appropriate 

affinity are selected. Depending on the MHC class recognized by the T 

cell receptor, T cells differentiate into CD4+ (MHC class II) or CD8+ T 

cells (MHC class I)36. Following T cell development in the thymus, CD4+ 

and CD8+ T cells continuously recirculate between the blood and 

lymphoid organs to find its specific antigen37. 

When CD4+ T cells recognize the antigen in the surface of antigen 

presenting cells (APCs), CD4+ T cells are activated38. The antigen 

recognition results from a complex interaction between the T cell receptor 

and the MHC class II expressed on the surface of APCs (Figure 2)39. This 

process requires also the interaction of the CD28 costimulation receptor 

on T cells with the CD80 and CD86 receptors expressed on APCs34. 

 

Figure 2. Antigen recognition is the process responsible of immune system activation. 
Source: Gutierrez-Arcelius et al. Nat Rev Genet, 201634. 

Depending on the cytokine environment, the activated CD4+ T cells can 

differentiate into diverse helper T (Th) cells, including the Th1, Th2, Th9, 

Th17, Th22, follicular Th cells (Thf) and regulatory T (Treg) cells (Figure 

3)34.  



19 
 

 
Figure 3. CD4+ T cell differentiation. CD4+ T cells can differentiate into diverse Th cells 
depending on the cytokine environment. The main subsets of Th cells are Th1, Th2, Th9, Th17, 
Th22 and Tregs. Source: adapted from Russ BE et al. Front Genet, 201340. 

Th1 cells produce the proinflammatory cytokines TNF-α, IFN-γ and IL-2 

as well as chemokines to recruit additional Th cells41. The activity of Th1 

cells contribute to the activation of neighboring cells like macrophages. 

Of relevance, macrophages are the main producers of TNF-α42, one of the 

key proinflammatory cytokines for IMID development43,44. Th2 cells 

contribute to the activation of eosinophils, mast cells and basophils45. 

Together with Th1 cells, the cytokines produced by the Th2 cell promote 

the activation of B cells from the bone marrow46. Once activated, B cells 

differentiate into plasma cells that produce specific antibodies against the 

recognized antigen, thereby triggering a targeted inflammatory response47. 

Like Th2 cells, Th9 cells produce cytokines to support the expansion of 

Th cells and the activation of mast cells48. Th17 cells are the main drivers 

of autoimmune tissue injury and are characterized by the production of 

IL-17, a relevant cytokine with potent inflammatory effects that facilitates 

the activation and recruitment of neutrophils49. Synergistically with the 

IL-17, the IL-22 produced by Th22 promotes pathological inflammation 

and tissue repair50. Thf cells secrete multiple cytokines and costimulatory 

molecules to assist B cells on the generation of high-affinity antibodies51. 

Tregs are fundamental to downregulate the immune response52. The 
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immunosuppressive activity of Tregs is crucial to reduce the proliferation 

of other Th cells as well as to inhibit the production of proinflammatory 

cytokines. The suppressor capacity of Tregs is reached by diverse 

biological mechanisms like the production of the anti-inflammatory 

cytokines IL-10 or TGF-β53. 

In addition to the crucial role that CD4+ T cells play on the immune 

response, CD8+ T cells have also an important contribution on this 

process54. After antigen recognition, CD8+ T cells can differentiate into 

cytotoxic T (Tc) cells or memory T cells55. The former cells release 

perforin, granulysin and granzymes, cytotoxins that are introduced into 

the cytoplasm of the target cells to induce apoptotic processes56. The latter 

cells provide long-term protective immunity. 

Autoimmunity occurs 

when any of these 

immunity processes are 

dysregulated and a 

misdirected immune 

response is raised 

against human tissues 

leading to tissue 

destruction57. Although 

the exact etiological 

causes are unknown, 

there is compelling 

evidence that immune 

cells infiltrate the 

human tissues and promote a chronic inflammation that can lead to the 

tissue destruction if not properly treated58. In RA, immune cells are 

aberrantly activated leading to the chronic inflammation of the synovial 

membrane and the joint destruction59. In healthy individuals, the synovial 

membrane that lines the non-weight-bearing surface of joints contains 

macrophage-like and fibroblast-like synoviocytes (Figure 4a). In RA, 

instead, the synovial membrane is infiltrated by multiple immune cell 

Figure 4. Cell type populations in the healthy joint and 
rheumatoid arthritis joints. Source: Strand V et al. Nat 
Rev Drug Discov, 200712. 
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types including macrophages, dendritic cells, T cells, B cells, plasma cells 

and mast cells (Figure 4b)12. The interplay between these cell populations 

in the RA synovium drive the chronic phase in the pathogenesis of RA60. 

With disease progression, synoviocytes proliferate and the synovial 

membrane becomes hyperplastic destroying the articular cartilage and 

ultimately bone. 

PS is characterized by an aberrant hyperproliferation and differentiation of 

keratinocytes that cause the thickening of the epidermis61. The infiltration 

of T lymphocytes and dendritic cells into the dermis and the presence of 

hyperplastic blood vessels are also two important hallmarks of PS62. In the 

epidermis, the chemokines produced by keratinocytes stimulate the 

activation of immune cells63. Keratinocytes also release cytokines and 

growth factors that induce the expression of adhesion molecules for T 

cells on keratinocytes64. In turn, the proinflammatory cytokines produced 

by the infiltrating immune cells induce the expression of inflammatory 

genes in keratinocytes and increase the proliferation of this cell type. The 

complex interaction between epidermal keratinocytes and infiltrating 

immune cells contributes to the formation of psoriatic plaque lesions in 

the skin. 

In PsA, the dysregulated immune response causes the inflammation of the 

entheses, distal interphalangeal and sacroiliac joints65. Similar to PS and 

RA, patients with PsA are characterized by a prominent immune cell 

infiltration into the dermis in the skin and into the synovial membrane in 

the joint66. In both tissues, the immune cells activate mechanisms of 

chronic inflammation that can lead to the tissue destruction if not properly 

treated. Importantly, PsA can have dramatic functional implications for 

the patient and, generally, it requires an alternative therapeutic approach 

than purely cutaneous PS and RA. 

In SLE patients, the aberrant immune system activation can affect diverse 

organs (e.g. skin, heart and kidney), which is translated into a high 

phenotypical diversity24. One of the key concepts in pathogenesis of SLE 

is the release of fragmented cellular material, including nuclear antigens, 
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by apoptotic cells67. The nuclear antigens can activate nucleic acid 

recognition receptors and, consequently, trigger an inflammatory response 

through the production of type I interferons68. The type I interferon 

promotes the differentiation of B cells and the formation of autoantibodies 

that lead to a loss of immune self-tolerance69. The apoptotic cells can also 

stimulate the release of other proinflammatory cytokines for the 

recruitment of immune cells. From these immune cells, neutrophils and 

T cells play a crucial role in autoreactivity processes. More specifically, T 

cells produce IL-17 that facilitate the tissue infiltration by neutrophils70, 

immune cells that are responsible for the organ damage observed in SLE 

patients. 

IBD is a chronic relapsing inflammatory disease of the intestine that is 

classified into two different disease entities: CD and UC. Patients with CD 

have segmental and transmural inflammation in any part of the 

gastrointestinal tract71, whereas the inflammatory processes are limited to 

the colonic mucosa in UC patients72. In normal conditions, the innate and 

adaptative immunity in the gastrointestinal tract are balanced through 

complex interactions with the microbiota under homeostatic conditions73. 

In IBD, however, this homeostasis is disrupted. Together with the crucial 

role that Th1 and Th2 cells play for the pathogenesis of IBDs74, the 

imbalance between Th17 cells and Tregs is also an important contributor 

to explain the chronic intestinal inflammation observed in patients with 

CD and UC75. 

Despite the increasing knowledge on the pathogenesis of IMIDs, to date, 

the biological mechanisms that contribute to the development of RA, PsA, 

PS, SLE, CD and UC are still not completely understood. The analysis of 

high-throughput genomic data from IMID patients offers a valuable 

opportunity to advance in the characterization of the pathophysiology 

underlying IMIDs. 
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1.1.2 Clinical phenotypes 

IMIDs share not only inflammatory pathways, but also the presence of 

comorbidities and clinical phenotypes that can worsen the patients’ 

quality of life17. Comorbidities are additional diseases that coexist with a 

particular disease76. Clinical phenotypes are disease manifestations or 

traits that describe differences among patients with the same disease. Both 

comorbidities and clinical phenotypes have important implications for 

disease diagnosis and treatment.  

In IMIDs, clinical studies have demonstrated that SLE is a highly 

heterogeneous disease24. Patients with SLE can present a wide range of 

disease phenotypes that affect different organs, including the kidney, skin 

or heart (Figure 5a)24. Similarly, PsA can also present multiple clinical 

phenotypes, including skin and nail disease, dactylitis, uveitis, and 

osteitis77. Given the lack of robust molecular approaches for the diagnosis 

of IMIDs, the disease clinical phenotypes are currently used as diagnostic 

criteria in IMIDs78.  

Recent research using large cohorts of IMID patients have found that 

treatment efficacy is influenced by the presence of comorbidities like 

obesity, a prevalent disease that can affect up to 50% of IMID patients79-

83. Obese patients have shown not only a more severe disease activity than 

non-obese patients81, but also a significantly higher risk of anti-TNF 

treatment failure84. So far, however, little is known on the etiology of 

comorbidities in IMIDs. Understanding the biological mechanisms that 

underlie IMID comorbidities and also clinical phenotypes could guide 

treatment stratification as well as the development of more efficient and 

phenotype-specific treatments in IMIDs. 

One of the most important comorbidities in IMIDs is the development of a 

cardiovascular disease (CVD). The common biological process underlying 

CVD is atherosclerosis, the artery narrowing resulting from complex 

cellular interactions in the intima layer. In this process, immune cells, 

cytokines (e.g. TNF-α) and antibodies accumulate in the arterial wall 

leading to the narrowing of the arterial lumen and the eventual thrombosis 
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(Figure 5b)85. The interplay between the adipose tissue and the immune 

system has been found to be crucial for the atherosclerotic plaque 

formation86. There is growing evidence that adipocytes not only increase 

the synthesis of proinflammatory cytokines but also radically diminish the 

secretion of adiponectin, an anti-inflammatory and cardioprotective 

protein87,88. Consistently, evidence from national registers suggests that 

patients treated with anti-TNF agents have a lower probability to develop 

CVD89. Taken together, these findings highlight the importance of the 

inflammatory state in patients with IMIDs for the development of a CVD.  

 
Figure 5. Clinical phenotypes in immune-mediated inflammatory diseases. (a) Clinical 
heterogeneity in SLE. The phenotypical variability is represented by the affectation of different 
organs together with the frequency of the most common manifestation. (b) Immune cells 
involved in the formation of the atherosclerotic plaque that leads to CVD. Source: adapted from 
Hansson GK et al. Nat Immunol, 201185; Kaul A et al. Nat Rev Dis Primers, 201690 

To date, multiple epidemiological and clinical factors have been 

associated with CVD risk, including dyslipidemia, arterial hypertension 

and obesity. However, these classical risk factors only partially explain 

the elevated risk observed in IMIDs91. Growing evidence suggests that 

genetic factors could also contribute to the risk of developing a CVD92. 

Given that CVD is the leading cause of mortality worldwide93, 

understanding the biological mechanisms of this relevant comorbidity is a 

priority for the public health system to reduce the socioeconomic costs of 

IMIDs.  
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1.1.3 Socioeconomic impact 

IMIDs are chronic diseases that have functional implications for the 

patient and, therefore, it has a negative impact on the patient’s quality of 

life94. These relapsing disorders are a major burden to society. For 

example, the annual economic burden of RA has been estimated on €45.3 

billions in Europe and €41.6 billions in the USA95. In PsA, the 

annual cost per patient has been shown to range from €9,475 to 14,800 in 

European countries96. The annual cost of IBDs has been estimated to be 

approximately $12,000 per patient97. The economic costs of IMIDs are 

generally classified into healthcare and non-healthcare costs98. 

Healthcare costs include medications, hospitalizations and clinic visits, 

among others99. In SLE, the disease heterogeneity has a strong impact on 

the annual healthcare costs, reaching up to $70,000 per patient and 

increasing with renal involvement100. The medical costs of PS have been 

estimated on $12 billion in the North American population101. In Canada, 

the annual medical costs of IBDs are higher than $1.2 billion97. The 

healthcare costs of IMIDs like RA have been mostly dominated by the 

inpatient care102. With the advent of anti-TNF drugs, which are effective 

but much more costly than previous disease-modifying drugs, the 

contribution of medications on the overall healthcare costs has 

substantially increased103. In US, the average annual cost of anti-TNF 

therapy per treated patient ranges from $15,000 to $24,000104. In PsA, the 

introduction of this effective therapy has triplicated the healthcare costs96.  

Non-healthcare costs represent indirect expenses primarily associated with 

decreased work productivity, disability payments and early retirements 

that are also substantial94. In PS, the loss of productivity observed in 

patients from the North American population has an estimated cost of 

$114 million per year105. In IBDs, non-healthcare costs have been 

estimated to be $1.6 billions, which mainly result from a long-term work 

loss97. Therefore, identifying clinically relevant genetic variation for the 

development of new therapeutic approaches is key to increase the 

patients’ quality of life and, in turn, to reduce the high socioeconomic 

cost of IMIDs. 
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1.1.4 IMID Consortium 

The IMID Consortium (IMIDC) is a Spanish 

network of biomedical researchers focused on 

the study of the molecular basis of IMIDs 

through the analysis of high-throughput data. 

The IMIDC was created during the execution 

of the IMID-Kit research project (Singular 

and Strategic Project funded by the Spanish Ministry of Economy and 

Competitiveness) and was launched in 2006. The creation of this network 

of clinical researchers is essential to collect large cohorts of patients with 

standardized phenotype measurements. Coordinated by Prof. Sara Marsal 

(GRR-VHIR), this national biomedical consortium is still ongoing and is 

currently composed by more than 90 rheumatology, dermatology and 

gastroenterology clinical departments from all over Spain.  

The need to store biological samples from a very large cohort of patients 

led to the creation of the IMID Biobank (Figure 6). The IMID Biobank is 

a storage infrastructure that ensures the robust processing, storage and 

delivery of the biological samples from IMID patients. To date, the IMID 

Biobank stores biological samples from more than 13,000 IMID patients 

and 3,000 healthy controls from Spain. For each biological sample, more 

than 350 clinical and 150 epidemiological variables are available for 

analysis. The integrative analysis of high-throughput genomic data from 

this large cohort of IMID patients with their corresponding clinical and 

epidemiological information has been the starting point for the present 

thesis. 

 

  

Figure 6. Trademark of the 

IMID Biobank.  
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1.2 Genomics 

 

1.2.1 The human genome 

One of the major achievements of science has been the characterization of 

the human genome sequence. In February 2001, the first reference 

sequence of the human genome was released as a result of two 

independent public and private projects106,107. 

The DNA molecule 

The human genome is a DNA sequence of 3×109 base pairs (bp) that is 

distributed in 23 chromosomes, including 22 autosomal chromosomes and 

two sexual chromosomes. Humans are diploid organisms and therefore 

each individual carry two sets of 23 chromosomes, one inherited from the 

father and the other one inherited from the mother.  

In 1953, James Watson and 

Francis Crick discovered 

that the DNA molecule is 

composed by two strands of 

nucleotides that are coiled 

forming a three-dimensional 

double helix structure 

(Figure 7)108. Nucleotides 

are organic molecules that 

contain a five-carbon sugar 

deoxyribose, a phosphate 

group and a nitrogenous 

base. The nucleotide chain 

of each strand is formed by a covalent bound between the sugar of one 

molecule and the phosphate of the next. To make the double-stranded 

DNA, the nitrogenous bases of the two separate polynucleotide strands are 

bound together by hydrogen bonds according to base pairing DNA rules. 

Figure 7. DNA molecular structure. Base pairing of 
thymine with adenine and guanine with cytosine.  

Source:  Pray  L,  Nat Educat, 20085. 
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The code of life 

The human genome encodes the information that determines the 

biological functions of human cells. After the elucidation of the DNA 

structure, the mechanism by which genetic information flows within a cell 

and is used to synthetize proteins was discovered in 1970109. As stated by 

the central dogma of the molecular biology, this biological mechanism 

consists of two steps: the transcription and translation. In transcription 

(Figure 8a), once the DNA has been replicated, DNA sequences that 

encode for human genes are converted to messenger RNA molecules 

(mRNA). Unlike the DNA, the mRNA is a single-stranded molecule that 

contains the sugar ribose instead of deoxyribose and integrates the 

nitrogenous base uracil instead of thymine. The transcription of DNA to 

mRNA determines the gene expression profile of the human cells. In 

translation (Figure 8b), the mRNA sequence is interpreted by ribosomal 

enzymes that synthetize the encoded proteins. In this process, groups of 

three consecutive nucleotides (i. e. codons) are translated into specific 

amino acids using the genetic code. 

Figure 8. Central dogma of molecular biology. Non-coding regions are removed from the 
transcribed pre-mRNA and exons are subsequently assembled to form the mature mRNA 
during the splicing process. The mature mRNA is finally converted to an amino-acid sequence. 
Source: adapted from Clancy S et al. Nat Educat, 20086. 
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DNA sequence organization 

The DNA sequence is a cryptic store of information that is commonly 

divided into coding and noncoding DNA110. Coding DNA are sequences 

that can be transcribed into mRNA and translated into proteins, whereas 

non-coding DNA includes all sequences that are not used to encode 

proteins. 

Coding DNA represents the most widely studied component of the human 

genome. The complete protein-coding capacity of the genome is contained 

within the exome. Exons and introns (i.e. DNA segments located within 

protein-coding sequences that are copied into mRNA molecules but not 

translated into amino-acids) compose the structure of the human genes. 

The ~20,000 protein-coding human genes that have been characterized so 

far represent only a small fraction of the human genome (i.e. <2%)111,112. 

Non-coding DNA includes the sequences that are located outside protein-

coding sequences and are not translated into proteins. The large 

proportion of non-coding DNA (i.e. >98% of the human genome) was 

initially described to have no biological function and, controversially, it 

has been called junk DNA since 1960113. Instead, recent evidence has 

shown that non-coding DNA has important functions on the regulation of 

genetic activity in human cells114. To date, the non-coding DNA forms 

that have been identified include: (i) non-coding RNAs; (ii) regulatory 

DNA elements; (iii) introns; (iv) telomeres and centromeres; (v) 

transposons and retrotransposons; (vi) untranslated regions; (vii) DNA 

methylated regions; and (viii) pseudogenes. The major advances in the 

comprehension of the non-coding DNA have been achieved by 

the Encyclopedia of DNA Elements project115. This worldwide research 

project has had the daunting task of identifying the functional elements 

encoded by the human genome as well as revealing the effect that genetic 

variation has on gene expression and disease development. 
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1.2.2 Human genetic variation 

A striking observation from human genome sequencing is that the human 

population exhibits approximately 99% of genetic similarity116. The 

remaining genetic variation is an important contributor to the phenotypic 

variability observed in humans, which can predispose to disease risk, 

clinical phenotypes or treatment outcomes117. 

A single nucleotide 

polymorphism (SNP) 

is the most abundant 

form of genetic 

variation that occurs 

once every 100-300 

bp116. Each SNP is a 

variation of two or 

more nucleotides at a 

single position in the 

DNA sequence. 

Given that most 

SNPs have two 

alleles, they are 

generally considered 

biallelic. According 

to the diploid nature of the human genome, each individual can therefore 

carry three possible genotype combinations. The allele composition, 

frequency, chromosome position and functional impact are the main 

properties of SNPs. The minor allele frequency (MAF) has been the 

predominant strategy for classifying the SNPs (Figure 9) into mutations 

(MAF<1%), low frequency variants (1%<MAF<5%) and common 

variation (MAF>5%).  

At the functional level, for example, exonic SNPs can be classified into 

synonymous (i.e. SNPs that do not lead to a change in the amino-acid 

sequence), non-synonymous missense (i.e. SNPs that lead to an amino-

Figure 9. Spectrum of allele effects according to their 
frequency. Mutations have high penetrance and low frequency. 
Conversely, common variants have small effects on phenotypes. 
Source: adapted from Bush WS et al. PLoS Comput Biol, 201211. 
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acid change in the resulting protein) and non-synonymous nonsense (i.e. 

SNPs that lead to a gain or a loss of a stop codon that produces a 

shortened or elongated version of the protein, respectively). 

The SNP Database (dbSNP, www.ncbi.nlm.nih.gov/snp) is the reference 

public archive of genetic variation that is hosted by the National Center 

for Biotechnology Information118. The dbSNP lists more than 324 million 

variants found in sequenced human genomes, 15 million of which are 

present at frequencies of 1% or higher across different populations. 

The vast majority of genome variation consists of SNPs. However, the 

human genome contains also an estimated 3,700 structural variants that 

affect DNA segments of ≥1 Kb119. In addition to the MAF, functional 

impact and chromosome position, structural variants are also classified 

into copy-number variants, inversions and translocations. 

 

Origin of genetic variation 

Genetic population studies have shown that genetic variation emerges as a 

consequence of two main formation mechanisms: DNA mutations and 

genetic recombination120. Importantly, only genetic variation that emerges 

in germ cells can be inherited121. 

A mutation is a permanent DNA alteration that can be originated by 

internal errors during DNA replication and repair (Figure 10a), 

transposable elements (Figure 10b) and environmental damaging agents 

like ultraviolet radiation14. Although single mutations can have large 

effects, the human evolution is mainly based on the accumulation of 

multiple small-effect mutations122. The occurrence of mutations in the 

somatic tissue of an organism is mostly harmless and can be accumulated 

in different cell types leading to local molecular changes in human 

tissues123. 
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Genetic recombination occurs during the production of germ cells in cell 

meiosis (Figure 10c)124. In this process, the chromosome pairs of each 

parent are mixed to increase the genetic diversity of the offspring cells 

leading to new chromosome sequences. Nonetheless, the probability of 

recombination is not equal along the chromosome125. The physically 

closer that two alleles are located in a chromosome, the lower the 

probability that a genetic recombination event occurs between them. 

Consequently, alleles that lie close in the chromosome sequence are more 

likely to be inherited together compared to distant alleles or alleles from 

different chromosomes11. The allele correlation or linkage disequilibrium 

(LD) is commonly defined as a correlation coefficient between two loci 

(r2, ranging from 0 to 1). The LD determines groups of highly correlated 

alleles referred as haplotypes (Figure 11)126. 

Figure 11. Principal mechanisms to generate genetic variation. (a) mobile element 
insertion by retrotransposition, (b) non-homologous end joining process during DNA repair, 
and (c) genetic recombination. Source: adapted from Weischenfeldt J et al. Nat Rev Genet, 
201314; Marston AL et al. Nat Rev Mol Cell Biol, 200416. 

Figure 10. Definition 
of haplotype blocks 
based on LD. 
Correlation patterns 
between adjacent 
SNPs allow to define 
haplotype blocks (i.e. 
red triangles). Source: 
adapted from Walton 
R et al. Nat Genet, 
20057. 

Figure  10. 

Figure  11. 
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1.2.3 High throughput genotyping: microarray technology 

Microarray genotyping platforms allow the simultaneous genotyping of 

genome-wide genetic variants (N>500,000 SNPs) with >99% accuracy127. 

The principle underlying the microarray technology is the ability of 

nucleotides to bind to their complementary bases. If genetic variants were 

independent, genotyping technologies would have to determine each 

polymorphism along the genome. Instead, the high correlation existent 

among SNPs from a certain haplotype makes it unnecessary to genotype 

the complete genome variation127. According to the existence of highly 

correlated SNPs, genome-wide genotyping microarrays determine the 

genotype of a representative SNP for each LD block. These SNPs, known 

as tag SNPs, have set the basis for the development of GWAS to study the 

genetic basis of complex human diseases (Figure 12). 

 

The desire for precise genomic mapping encouraged the development of 

two reference projects for genetic studies: the International HapMap 

project (www.hapmap.org)128 and the 1000 Genomes project (1KG, 

www.1000genomes.org)129. The HapMap project was launched soon after 

the completion of the human genome sequence to catalog common SNPs 

and determine the LD relationships across the genome for guiding genetic 

studies. The 1KG project was launched with the goal of providing a more 

extensive catalog of variation to the scientific community (i.e. common 

variants and variants with a MAF<5%). The genomic data released by 

these reference projects have allowed the characterization of the human 

Figure 12. Underlying 
principle of genome-
wide genotyping 
technologies. The 
associated SNPs are 
generally in linkage 
disequilibrium with the 
causal SNPs. Source: 
adapted from Bush WS 
et al. PLoS Comput 
Biol, 201211. 
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LD patterns and, consequently, have paved the way for designing high 

throughput microarray genotyping platforms. 

The first commercial genotyping platform targeted ~1,500 SNPs and was 

released by Affymetrix in 1996 (Santa Clara, CA, US)130. Since then, 

multiple manufacturers have commercialized high-density genotyping 

microarrays131. From these, Illumina has been the most widely-used 

platform to study the genetic component of human diseases due to its 

superior quality and coverage11. The genome-wide genotyping of the 

IMID patients analyzed in the present thesis has been performed using the 

Illumina platform. 

In the last years, genotyping microarrays have gradually increased their 

capacity (Table 2). To date, for example, the Illumina Infinium 

Omni5Exome-4 BeadChip Array allows the genotyping of >4.3 million 

variants. The increasing genome coverage that expands to rare variants 

and the capacity to analyze large sample collections at an affordable cost 

has made the genotyping microarray a commonly used technology to 

study the genetics of human traits. 
 

Table 2. Illumina genotyping microarrays. Number of genetic markers and samples that can 
be genotyped by each microarray. Source: adapted from Lamy P et al. Hum Genomics, 2011131. 

 
  

Illumina genotyping microarray Markers# Samples# 

HumanCytoSNP-12 DNA Analysis BeadChip 299,140 12 

Human660W-Quad v1 DNA Analysis BeadChip 657,366 4 

HumanOmniExpress BeadChip 731,442 12 

Human1M-Duo DNA Analysis BeadChip 1,199,187 2 

HumanOmni1-Quad BeadChip 1,140,419 4 

HumanOmni1S-8 BeadChip 1,200,000 8 

HumanOmni2.5-Quad BeadChip 2,450,000 4 
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1.2.4 Genome-wide association studies 

Genetic linkage studies scan genotype-phenotype associations by 

analyzing the allele segregation within family individuals132. This 

analytical approach has been the predominant methodology used to 

characterize the genetic component of monogenic disorders in the latter 

half of the twentieth century133. However, the results of genetic linkage 

studies proved hard to reproduce for complex traits134. Genome-wide 

genotyping has allowed to shift from genetic linkage studies in families to 

GWAS at the population level135. GWAS allow to analyze the association 

between genetic markers and the development of complex diseases. Since 

2005, this statistical approach has successfully identified a large number 

of genetic variants that predispose to complex human diseases135. 

Recently, a statistical approach that is able to analyze genetic associations 

at the pathway level has been developed136. The pathway-based GWAS is 

starting to provide previously unsuspected biological mechanisms for 

human diseases that will contribute to identify new drug targets and 

develop more effective therapeutic strategies. To date, over 3,000 GWAS 

have identified more than 60,000 single markers associated with complex 

traits137. 

 

Single-marker genome-wide association studies 

Study design 

In GWAS, the association analysis between genetic variation and the 

phenotype of interest is performed following a population-based study 

design. In population-based studies, genetic associations are assessed by 

analyzing the phenotype and allelic frequency distribution in large cohorts 

of unrelated individuals135. Given that large cohorts are easier to be 

recruited, population-based studies can be more powerful to identify 

genetic risk variation than family-based studies138,139. The golden standard 
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for discarding false positive results is replication in an independent cohort 

from a different population (Figure 13)140. 

 

Figure 13. Overview of the general study design of GWAS. In the discovery phase, patients 
are genome-wide genotyped and the genotype data is tested for association with the phenotype 
of interest. The most significant associations are subsequently analyzed in a replication cohort. 
Finally, the validated variants are studied at the functional level to investigate how they are 
linked to the studied phenotype. Source: Kingsmore SF et al. Nat Rev Drug Discov, 201015. 
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There are several factors that can lead to irreproducibility, including 

variable phenotype definition, disease heterogeneity, population-specific 

LD, population stratification, model misspecification, insufficient sample 

size or heterogeneous bias in the estimated effects detected among the 

discovery and replication cohorts15. Therefore, considering these factors 

can substantially increase the statistical power of the genetic association 

analysis. 

Statistical methodology 

A major component of the success of GWAS is the use of rigorous criteria 

for clinical classification141. In addition, the statistical model should be 

adjusted for those factors that are known to influence the phenotype tested 

for association. This adjustment reduces spurious associations due to 

sampling artifacts or biases in study design at the cost of using additional 

degrees of freedom that can impact the statistical power of the analysis142. 

One of the most important confounding factors to be considered in GWAS 

is population stratification. This stratification results from the presence of 

systematic differences in allele frequencies that are due to ancestry143. 

GWAS using patients and control subjects from diverse geographic areas 

or ethnicities can therefore lead to false positive and negative 

associations144. To avoid these spurious associations, population 

stratification must be addressed. To date, different statistical approaches 

have been devised to prevent population stratification. Principal 

component analysis is the most commonly used approach to adjust for 

population stratification. With this strategy, genetic variation is used to 

compute the main axes of variation (i.e. principal components)145. In 

multiple studies and populations, the first principal components derived 

from this analysis have been found to mirror the geographical distribution 

of the samples (Figure 14). Accordingly, these variables can be used as 

covariates in the statistical model or to exclude samples showing an 

outlier genetic background. 
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In GWAS, thousands of SNPs are simultaneously tested for association 

and, consequently, the association results must be adjusted by multiple 

testing. The probability of rejecting the null hypothesis when it is true (i.e. 

type-1 error rate, false positive detection) is generally controlled by 

setting a significance level α equal to 0.05 for a single test. In multiple 

testing, the probability of the type-1 error can be estimated as follows146: 

 P=1 – (1 – α) n 

As shown, the probability of the type-1 error is a function of the number 

of statistical comparisons that are performed (n) as well as the 

significance threshold (α). Therefore, the probability of identifying a false 

positive is extremely high in GWAS. Based on a Bonferroni correction 

that assumes ~1 million independent SNPs along the human genome, the 

standard significance threshold to identify a genuine genotype-phenotype 

association has been established as α=5×10-8. 

Figure 14. Genetic substructure of the European population. The geographical map 
of Europe arises as an efficient two-dimensional summary of genetic variation in the European 
population. This population stratification needs to be considered in GWAS. Source: adapted 
from Novembre J et al. Nature, 20081. 
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Statistical power 

The statistical power of GWAS depends on the sample size of the study 

cohort, effect size, allele frequency and statistical model147. GWAS can be 

underpowered to detect associations of modest effect sizes (i.e. odds ratio 

~1.1-1.5) and large cohorts are required to detect variants of moderate 

effect (i.e. odds ratio ~1.5-2)148. In order to increase the statistical power 

of the analysis, GWAS meta-analysis and genotype imputation have 

emerged as efficient strategies. 

GWAS meta-analyses can increase the power to detect new risk variants 

by increasing the sample size of the study cohort149. In meta-analysis, the 

statistical significance and effect size of a particular marker is combined 

across distinct studies150. Genotype imputation can increase the power of 

the statistical analysis to identify the causal variant by examining 

additional non-directly genotyped markers at the genome-wide scale. 

Genotype imputation exploits the human LD patterns from densely 

genotyped reference panels (e.g. 1KG project) to estimate the genotype of 

non-directly genotyped SNPs (Figure 15)9. Generally, most imputation 

methodologies start by computing the haplotypes within the study 

samples. Using these estimated haplotypes, the genotypes of the non-

directly genotyped markers are then estimated by extrapolating LD 

patterns from the reference panel of the sample ancestry. Optionally, the 

estimated genotypes can be weighted according to a probability score that 

is based on the haplotype overlap151,152. 

Figure 15. Genotype imputation algorithm. (a) Genotyped data with eight non-directly 
genotyped SNPs represented as question marks (b, one individual shown) are phased and (c) 
compared to the dense haplotypes in the reference panel (d) to estimate the non-directly 
genotyped SNPs. Source: adapted from Marchini J et al. Nat Rev Genet, 20109. 
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Genetic insights from genome-wide association studies 

After a decade of GWAS in humans, these studies have led to the 

identification of many thousands of variants reproducibly associated with 

complex human diseases (Figure 16). 

 

Figure 16. Timeline of disease risk genes discovery using GWAS. For each year of 
discovery, only the three traits with the largest number of SNPs are shown in the circle 
(P<5×10-8 and r2<0.5). Source: Visscher PM et al. Am J Hum Genet, 2017153. 

While still ongoing, GWAS have already led to remarkable findings153:  

 Complex diseases are frequently associated with non-coding regions. 

Only ~10% of disease associations lie in protein-coding regions154. 

 Pleiotropy is pervasive. Hundreds of loci are significantly associated 

with multiple traits155. 

 Disease risk loci explain less than 30% of the phenotypic variance in 

complex diseases. These findings indicate the existence of disease 

missing heritability156. 
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 Complex diseases are highly polygenic. Multiple loci contribute to the 

susceptibility to human diseases157. Generally, each SNP explains a 

small proportion of the phenotypic variance158.  

 Susceptibility genes can guide drug discovery. Genetically supported 
candidate targets can lead to double the success rate in drug 
development (Figure 17)159. 

Figure 17. Genetic evidence supporting drug indications in IMIDs. Source: adapted 
from Visscher PM et al. Am J Hum Genet, 2017153. 

 Sharing of genetic data enables new research discoveries. The public 
availability of genetic data is fundamental for the scientific community 
to replicate and meta-analyze GWAS results. The main public 
resources of GWAS data are: (i) GWAS catalog, a manually curated 
collection of all known SNP-trait associations158; (ii) dbGAP, a 
resource of genotyping and phenotypic data from several published 
GWAS160; and (iii) UK Biobank, a repository of GWAS and 
phenotypic data from 500,000 individuals (www.ebi.ac.uk/ega/studies). 

  
The missing heritability of complex diseases 

One of the major challenges in the genetics of complex diseases like 

IMIDs is to characterize the remaining missing heritability. There is 

evidence that single-marker GWAS are underpowered to detect genetic 

variants with small effect sizes unless extremely large cohorts are used148. 

In order to characterize these small-effect genetic factors, alternative 

analytical approaches need to be devised. 
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In addition to common genetic variants with small effect sizes, other 

factors could also contribute to explain part of the estimated missing 

heritability161. Genetic factors like rare variants (MAF<0.01) and copy 

number variants represent potential factors to contribute on the heritable 

basis of complex traits162. Epigenetic factors, epistasis and genotype-

environment interactions represent additional contributors on the missing 

heritability of complex traits163-165. 

 

Pathway-based genome-wide association studies 

Genes do not work isolatedly in human cells. Instead, they act within 

complex molecular networks and cellular pathways166. Functionally 

related genes have been shown to predispose to disease susceptibility, 

including loci that do not reach individually the genome-wide significant 

threshold167. Statistical approaches that are able to analyze genetic 

associations at the pathway level have been developed168. These pathway-

based approaches are analytical strategies that integrate genetic and 

biological information to test if sets of genes are jointly associated with 

complex traits169. 

Unit of analysis 

In pathway-based GWAS, genetic variation is integrated with biological 

information. For this objective, SNPs are mapped to genes and these are 

subsequently aggregated into biological pathways. In order to perform this 

preprocessing step, three methodological aspects must be considered: 

 Pathway annotation data. Multiple biological annotation databases 

currently offer the possibility to select curated pathways to be tested 

for association (www.pathguide.org). The Molecular Signature 

Database is a public repository that provides genetic pathways 

representing the universe of common biological processes for 

meaningful interpretation of large-scale genomic data170. To date, a 

total of 217, 674 and 186 pathways that have been manually curated by 
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expert biologists are collected in the BioCarta, Reactome and Kyoto 

Encyclopedia of Genes and Genomes, respectively. These genetic 

pathways can be used in pathway-based GWAS to identify new 

biological processes associated with human diseases.  
 

 SNP-Gene mapping. The annotation of genetic variants to genes and 

pathways is a complex issue. To date, proximity-based criteria are 

clearly the dominant approach171. The definition of gene boundaries 

includes the coding region as well as the upstream and downstream 

boundary regions (i.e. SNP-gene distance windows range from 10 to 

500Kb)172,173. 
 

 Pathway size. Genetic pathways including an extremely large or small 

number of SNPs can give false positive results.174,175 To avoid these 

spurious associations, the predominant strategy is to focus the analysis 

on pathways with a gene content typically ranging from 10 to 300 

genes. 

Statistical methodology 

The statistical methodology used for pathway-based GWAS is designed to 

aggregate the association evidence from multiple genetic variants into a 

single association statistic. This methodology can be classified according 

to the input genomic data analyzed and the null hypothesis tested for 

association: 

 Input genomic data. The required input data set for pathway-based 

strategies can be a collection of SNP p-values or SNP genotype data 

(Figure 18a)176. 

 Null hypothesis. The null hypothesis tested for association in pathway-

based GWAS can be: (i) self-contained, indicating that pathway genes 

are not expected to be associated with the phenotype of interest, or (ii) 

competitive, indicating that genes from the analyzed pathway and the 

rest of the genome are expected to show the same magnitude of 

association with the phenotype of interest (Figure 18b)176. 
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Figure 18. Pathway-based GWAS methodology. (a) Pathway-based approaches analyze SNP 
p-values or raw genotype data and are classified as (b) self-contained or competitive according 
to the null hypothesis. Source: adapted from Wang K et al. Nat Rev Genet, 2010136. 

To date, multiple analytical methods have been developed (Table 3)177-187. 

Although there is no consensus about the most appropriate approach, the 

set-based test implemented in PLINK software is currently one of the 

predominant strategies for pathway-based GWAS184. 

Name Input data Hypothesis tested 

ALIGATOR P-values Competitive 

i-GSEA4GWAS P-values Competitive 

GenGen Genotype data Competitive 

GESBAP P-values Competitive 

GRASS Genotype data Self-contained 

GSA-SNP P-values Competitive 

GSEA-SNP Genotype data Competitive 

PLINK set-test Genotype data Self-contained 

SNP ratio test Genotype data Competitive 

MAGENTA P-values Competitive 

PARIS P-values Self-contained 

Table 3. Pathway-based GWAS methods. List of the main publicaly available methodologies 
for pathway-based analysis on GWAS datasets. Source: Wang K et al. Nat Rev Genet, 2010136; 
Ramanan VK et al. Trends Genet. 2012173. 

The statistical test implemented in PLINK software tests a self-contained 

null hypothesis using SNP genotype data. In this method, independent 

SNPs are first identified using the LD structure. Unlike other methods, the 

PLINK method calculates the LD structure using the genotype data from 

the cohort of study. Accounting for LD is crucial to avoid an increase in 
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false positive results due to the presence of highly correlated SNPs. The 

observed pathway statistic is then computed as the average of the statistics 

of the associated pathway SNPs and it is contrasted to the null distribution 

generated using a permutation-based approach. The resulting statistical 

association must be interpreted according to: 

 Multiple testing correction. Genetic pathways from publicly available 

databases can share genes188. According to this gene overlap among 

pathways, the multiple testing correction should not be over-

conservative (i.e. stringent Bonferroni correction). The False 

Discovery Rate is the most commonly used method to control the 

expected proportion false positives136. 

 Genetic architecture of the disease. Pathway-based GWAS can be 

powerful to identify new clinically relevant variation when a particular 

disease results from the interplay of multiple small-effect genes136. 

Instead, the presence of large-effect loci within common biological 

pathways might lead to false positive pathway associations189. In such 

a case, this approach might not be informative. 

 Replication of significant genetic pathways. Like single-marker 

GWAS, the associated pathways need to be replicated in an 

independent cohort. In pathway-based GWAS, multiple genes from 

genuinely associated pathways are expected to be consistently 

replicated190. 

To date, pathway-based GWAS has been successfully used to characterize 

the genetic component of complex human traits like psychiatric disorders, 

including bipolar disorder and schizophrenia191,192, obesity193, height194, 

and diverse cancer subtypes195-197. This has led to novel hypotheses for 

therapeutic intervention on the basis of the involvement of new biological 

pathways198. However, the pathway-based GWAS has not been exploited 

to study the genetic basis of IMIDs. 
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From pathway-based analysis to network medicine 

As a polygenic analytical approach, the pathway-based GWAS requires a 

systems biology interpretation of the resulting associated pathways. To 

investigate the downstream mechanisms by which genetic variation at the 

pathway level cause phenotypic changes, pathway genes can be connected 

according to their functional association and create a biological 

network199,200. A biological network is a graph model that represents 

biological pathways as nodes and edges, corresponding to molecular 

entities and their pairwise relationships, respectively8. Given that complex 

biological networks are likely to underlie most genotype-phenotype 

associations10, the analysis of the functional connectivity among genes 

from disease-associated pathways in the form of complex biological 

networks can have relevant implications for the medical practice (Figure 

19)201. In translational research, this analytical approach can also provide 

valuable insights for drug discovery202. 

The nature of the nodes (genes, proteins or metabolites) and edges 

(protein-protein interactions, gene-gene interactions, drug-target 

interactions or gene-gene functional associations) depends on the type of 

Figure 19. Genetic perturbations in biological networks underlie phenotypic alterations.
GWAS loci can perturb the normal pathway topology and functionality thus determining the 
phenotype developed. Source: adapted from Vidal M et al. Cell, 201110. 
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data used for the network building203. The release of experimental data 

from high-throughput technologies and computational strategies has led to 

the creation of multiple network-based datasets. Most of these datasets are 

accessible through diverse public databases (Table 4). 
 

Database Data type #Species URL 

HPRD PPI, PHI 1 http://hprd.org 

BioGRID PPI, GI, CA 64 http://thebiogrid.org 

DIP PHI 10 http://dip.doe-mbi.ucla.edu/dip/ 

STRING PPI, PHI, CP 2,031 https://string-db.org/ 

MINT PPI 90 https://mint.bio.uniroma2.it/ 

IntAct PPI >10 https://www.ebi.ac.uk/intact/ 

TRED TFG 3 http://rulai.cshl.edu/TRED 

The non-random organization and structure of biological networks has 

shown that network topology encodes information about how molecular 

connections contribute to complex phenotypes204. The main topological 

measures that are used to characterize the structure of biological networks 

are shown in Figure 20203. In network analysis, nodes with the highest 

Table 4. Public biological network databases. Main publicly available databases of human 
networks. Networks can be built using protein-protein interactions (PPI), genetic interactions 
(GI), chemical associations (CA), physical interactions (PHI), transcriptional factor-gene 
interaction (TFG) or computational predictions (CP). Source: adapted from Yu D et al. 
Genomics Inform, 20138. 

Figure 20. Main topological measures from biological networks. Graph and formulae 
illustration of five topological parameters. Source: adapted from Vidal M et al. Cell, 201110. 
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centrality properties have also the highest probability to be essential for 

the network functionality205-207. There is compelling evidence that degree 

centrality (DC) and betweenness centrality (BC) are two of the most 

important centrality properties of biological networks. The DC measures 

the number of edges that connect a node208, while the BC measures the 

extent to which a node connect subnetworks209. Based on the DC 

distribution, most of the human biological networks has been found to be 

scale-free210. This statistical property refers to networks whose DC 

distribution follows a power law instead of a Poisson distribution211. In 

scale-free networks, the majority of nodes have only a few interactions 

(i.e. non-hubs) and coexists with a few highly connected nodes (i.e. hubs). 

In silico network analysis has demonstrated that the random removal of 

non-hubs does not lead to observable changes in the biological network 

structure, while the removal of hubs significantly changes the structure 

and function of the network212. Therefore, the study of the network 

centrality properties is of a major interest to convert genetic findings into 

translational opportunities. 

The emerging network-based medicine is starting to provide new insights 

into the pathogenesis of complex diseases213. For example, the enrichment 

analysis of subnetworks overlapping GWAS risk loci in differentially 

expressed genes has provided new insights into biological mechanisms 

underlying Type 1 Diabetes pathogenesis214. Also, the characterization of 

the network distribution of de novo mutations in autism spectrum 

disorders has led to the identification of a protein subnetwork that 

participates in β-catenin/chromatin remodeling215. At the pharmacological 

level, deliberate network perturbation has been suggested as a potential 

therapeutic strategy in cancer216. Taken together, these findings support 

the analysis of the biological networks identified by the pathway-based 

GWAS as a powerful strategy to discover new genes and biological 

mechanisms underlying complex diseases. 

Network-based approaches are also a promising strategy to advance in 

three of the main research lines of drug discovery, including multi-

targeting therapy, drug repositioning and side effect prediction. For 
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example, the analysis of the drug action at the network level has enabled 

to identify new synergistic drug combinations for the treatment of breast 

cancer (Figure 21)3.  

Also, the analysis of drug-target networks has shown that most of the 
GWAS risk genes are not directly targeted by common drugs, but the 
distance from these genes to drug targets is shorter than expected by 
chance217,218. Therefore, mapping GWAS risk genes on drug-target 
networks can help to identify new indications for conventional drugs. 
Finally, network modeling has proven successful for side effect 
prediction, which exemplifies the potential of network-based approaches 
to shorten the overall time of drug development219. 

Figure 21. Novel network-based approach to discover anti-cancer drug combinations. The 
use of multiple drugs that inhibit shared or downstream protein interactions within two 
pathways (i.e. crosstalk inhibition) aimed at reducing the flow information within the pathways (i.e. 
network efficiency) has proven successful. Source: adapted from Jaeger S et al. Cancer Res, 20173. 
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Integration of genotype and multi-omic information  

There is an increasing effort to integrate GWAS datasets with additional 

layers of molecular information220. High-throughput technologies have 

expanded the breadth of available omic information from whole-genome 

genotype data to epigenomic, transcriptomic, metabolomic and proteomic 

data221-225. Although the analysis of GWAS data provides a 

comprehensive view of disease associations at the genetic level, the cross-

talk between multiple layers of molecular data can provide deeper insights 

into the relationship between genetic variation and the biological 

mechanisms underlying complex traits (Figure 22)2,226. 

In 2005, transcriptomic and GWAS data were integrated for the first time 

using the expression quantitative trait loci (eQTL) approach. This 

analytical approach led to the identification of relevant genes for complex 

traits like obesity227. Since then, eQTL mapping studies have provided 

functional hypotheses to explain the linkage between GWAS loci and the 

Figure 22. Multi-omic integrative analysis to identify regulatory mechanisms in obesity.
The combination of genomic, epigenomic and transcriptomic data has enabled to identify 
functional mechanisms mediating the genetic effect at the FTO locus in obesity. Source: 
Claussnitzer M et al. N Engl J Med, 20152; Hasin Y et al. Genome Biol, 20174. 
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disease phenotypes via gene expression regulation228,229. In addition, 

GWAS loci mapping to non-coding DNA regions have been shown to co-

localize with eQTL regulatory elements227, thereby showing the 

importance of non-coding variation for disease susceptibility. 

To date, multiple studies have combined genetic and epigenetic data to 

investigate the genetic regulatory basis of the human epigenome230-235. 

Certain epigenetic marks have shown a significant phenotypic cell-type 

specificity (e.g. H3K4me3 and H3K27Ac)236,237. Analyzing the overlap of 

GWAS associated variants in these cell-type specific epigenetic marks has 

emerged as a powerful approach to discover relevant cell types for the 

development of complex traits238. With the increasing epigenomic data for 

primary cells and tissues derived from the reference human epigenome 

collection223, the combination of these information with genetic variation 

is starting to provide functional and causal insights into autoimmunity237. 

Similarly, other omic data types like metabolite and protein abundance 

have been integrated with GWAS datasets. At the metabolomic level, 

genetic variation has been strongly associated with the metabolite 

abundance. The associated regions have shown a significant overlap with 

disease risk loci239,240. At the protein level, recent genome-wide 

quantitative trait loci mapping studies have shown that alterations in the 

proteome driven by genetic polymorphisms can influence the 

development of particular human traits241. 

 

 
 

  



52 
 

1.2.5 Genetic component of IMIDs 

Before the advent of GWAS, only a few large-effect genes had been 

associated to IMID susceptibility. The use of GWAS has enabled to 

identify IMID risk loci with modest effect sizes34. More recently, GWAS 

are starting to be used to identify genetic factors in IMIDs that underlie 

the risk to develop phenotypes of clinical relevance242-244. 

Genetic susceptibility to disease risk 

Familial aggregation and twin studies have demonstrated a marked sibling 

recurrence rate (λs) in IMIDs (e.g. PsA λs~37, SLE λs 8-29 and PS 

λs~7)245-249. These findings indicate the existence of a strong genetic basis 

for IMID risk. In addition, there is compelling evidence that more than 

50% of the IMID risk can be attributed to genetic factors34. 

The MHC locus was the first genetic risk factor identified for most 

IMIDs. This locus harbors human leukocyte antigen (HLA) genes 

encoding for proteins that are crucial to trigger the adaptive immune 

response250. In most of the IMIDs, the MHC locus contributes to disease 

risk more significantly than any other known locus, with relative risks 

generally greater than 3251. Considerable work prior to the GWAS era was 

focused on identifying genetic associations outside the MHC, particularly 

in immune-related pathways. Through linkage studies and candidate-gene 

analyses, several risk loci outside the MHC region were identified. From 

these, PTPN22, CARD14, IRF5 and NOD2 genes represent some of the 

most strongly associated loci with the risk of developing RA, PS, SLE and 

IBD, respectively252-255. 

GWAS have radically improved our knowledge of the genetic variability 

associated with the risk of developing IMIDs. To date, GWAS have 

identified at the genome-wide level of statistical significance more than 

100 risk loci for IBDs and RA, more than 50 genes for PS and SLE risk as 

well as 15 PsA risk loci (Figure 23)256-260. For each IMID, these disease 

risk loci (i.e. genome-wide significant SNPs with P<5×10-8 and 

MAF≥0.01) explain less than 30% of the disease heritability156. Similar to 
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other complex diseases, most of the IMID risk loci have shown also 

modest effect sizes, with relative risks ranging from 1.1 to 1.5250. Taken 

together, these findings highlight that small-effect genes could be 

important contributors to explain the remaining missing heritability of 

IMIDs. 

One of the major challenges in the study of the genetics of IMIDs is to 

identify genetic variation that contributes to the risk of PsA but not purely 

cutaneous PS. GWAS have shown that most of the established PsA risk 

loci are also shared with PS261-268, indicating that the biological processes 

that cause autoimmunity to the skin are also central for PsA. To date, only 

PTPN22, CSF2-P4HA2 and ADAMTS9-MAGI1 loci have been found to 

be PsA-specific. Considering the effects of all known PsA and PS risk 

loci269-271, less than 25% of the PsA heritability is currently explained. The 

identification of additional PsA-specific genes could raise new pathogenic 

mechanisms underlying PsA and, in turn, it could lead to the development 

of more effective therapies. 

 

 
GWAS not only have contributed to discover hundreds of common 

variants associated with IMID risk, but also to refine disease risk 

associations with the HLA region272. The HLA is one of the most complex 

loci in the human genome that is characterized by the presence of highly 

Figure 23. GWAS loci associated IMIDs risk. This illustration shows some examples of 
GWAS loci associated with IMID risk as well as the overlap between many of them. Source: 
adapted from Knight JC, Cell, 201313. 
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correlated SNPs (i.e. high LD), high gene density and large sequence 

diversity273,274. Stemming from the high LD existent in this locus, multiple 

SNPs could yield equivalent statistical evidence of association thereby 

preventing the identification of the causal variant275. The application of 

imputation methodologies and conditional association analyses on GWAS 

data offers a valuable opportunity for in-depth investigation of the HLA 

locus to identify genetic variants with independent effects on disease 

risk276. 

GWAS results have also revealed that a substantial part of disease risk 

factors is shared across IMIDs277. These complex cross-phenotype 

associations are not necessarily in the same direction (i.e. a risk allele for 

a particular IMID can act as a protective allele for other IMID) and 

underscore the importance of pleiotropy in IMIDs. Pleiotropy occurs 

when a genetic variant affects more than one phenotypic trait278. 

Accordingly, the use of genome-wide approaches embracing this 

prevalent property should increase the power to discover clinically 

relevant variation in IMIDs. Furthermore, detecting pleiotropic variants 

could have important implications for drug discovery based on 

repurposing strategies. 

The simultaneous analysis of genetic and transcriptomic data has provided 

additional insights into the genetics of IMIDs279. Recent studies have 

found that some eQTLs are only present under active inflammatory states 

and disappear after disease treatment280. These findings demonstrate the 

existence of genetic variation with functional effects that are context 

dependent281. Accordingly, we have previously identified genetic 

regulatory variants that are key for the activity of CD4+ T cells in RA 

(Annex section)282. To date, the genetic regulatory mechanisms by which 

causal variants alter the cell functionality to induce IMID risk are still 

under intense study283. 
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Genetic susceptibility to clinical phenotypes 

IMIDs are characterized by a high phenotypical diversity and the 

development of important comorbidities. GWAS have been mostly 

performed using cohorts of patients without considering the disease 

phenotypical heterogeneity. However, the clinical phenotypes in IMIDs 

have also been shown to aggregate in families, thereby suggesting the 

existence of a genetic component for disease heterogeneity284,285. In order 

to characterize the genetic factors underlying IMID clinical phenotypes, 

the study design shifts from a case-control design towards a case-case 

design (Figure 24). To date, only candidate-gene studies and a few GWAS 

have been conducted to uncover the genetic basis of the IMID clinical 

heterogeneity. 

Figure 24. Case-control and case-case study designs used in GWAS. Different analytical 
strategies employed to identify genetic variation associated with either disease risk or clinical 
phenotypes. Source: adapted from Verstockt B, Clin Transl Immunology, 2018286. 

At the single gene level, different clinical phenotypes in CD have been 

consistently associated with variation in NOD2 gene287,288. In SLE, the 

most strong genetic associations with clinical phenotypes have been 

detected between renal disorder and ITGAM, STAT4 and TNFSF4, malar 

rash and FCGR2A, and between hematological disorder and IL21289,290. In 

PS, genetic variation at LCE3D, IL1RN and GJB2 genes has been 
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associated with severity, nail disease and plaque development, 

respectively291,292. Very recently, a cross-sectional analysis conducted in 

PsA has found that the HLA-B*27 allele is associated with enthesitis, 

especially in patients with longer disease duration293. Similarly, the HLA-

B*0801 allele has been found to be associated with radiographic 

sacroiliitis in patients with PsA294. In RA, a functional variant of TLR10 

gene has been associated with erosive disease in patients seropositive for 

anti-citrullinated protein antibodies (ACPA)295. Of relevance, this genetic 

variant is not associated with susceptibility to RA, thereby supporting 

family aggregation studies on the existence of a genetic basis for clinical 

heterogeneity that is independent from the overall disease risk. 

At the genome-wide scale, seven loci have been associated with CD 

phenotypes including MAGI1, CLCA2, 2q24.1, LY75, NOD2, MST1 and 

the HLA region242,296. The unique GWAS that was conducted for PS 

phenotypic variability identified variants at HLA-C, IL23R, LCE3A, 

TNFRSF9 and TNFAIP3 showing a significantly different effect in PsA 

than in PS244. In RA, the SLC8A3 gene has been identified as a new risk 

locus for ACPA-positivity using a GWAS strategy243. Before the 

development of the present thesis, no GWAS for SLE phenotypes had 

been performed. 

CVD has an increased prevalence in patients with IMIDs. Despite this 

evidence, the genetic basis of this comorbidity has been poorly 

investigated. Using case-control cohorts of healthy individuals and CVD 

patients, the large number of GWAS performed so far have been focused 

on characterizing the genetic risk basis of CVD in the general 

population92. These studies have led to the identification of more than 300 

genetic variants for CVD297. To date, however, little is known on the 

impact that these variants have on the risk of developing a cardiovascular 

event in IMID patients. Likewise, no comprehensive study has 

investigated the impact that IMID susceptibility variants have on CVD 

risk. 
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1.3 Pharmacogenomics 

Pharmacogenomics studies the association between genetic variation and 

the clinical response or adverse reactions to a particular therapy. Anti-

TNF therapies have revolutionized the treatment of IMIDs. However, 

there is a large fraction of patients that do not respond to anti-TNF 

therapy. Also, anti-TNF treated patients can produce antidrug antibodies. 

Given the high costs of the anti-TNF therapy and the availability of 

alternative drugs, it is of a major clinical interest to understand the genetic 

and biological mechanisms underlying treatment failure. 

1.3.1 Anti-TNF therapy in IMIDs 

Until the end of the 20th century, patients with IMIDs were treated with 
non-steroidal anti-inflammatory drugs, disease-modifying antirheumatic 
drugs and glucocorticoids298. In the last two decades, active research in the 
biotechnology sector has led to the development of anti-TNF agents. The 
TNF-α is a proinflammatory cytokine that is mainly produced by 
macrophages in acute and chronic inflammation. Multiple studies have 
demonstrated the crucial role that TNF plays to hyperactivate 
proinflammatory signaling pathways in IMIDs.  

The three main anti-TNF drugs that have been predominantly used for the 
treatment of IMID patients include (Figure 25): infliximab, adalimumab 
and etanercept. Infliximab is a chimeric monoclonal antibody with a 
murine variable region (25%) bound to the Fc region of a human IgG1 
(75%) that effectively blocks the TNF binding to its soluble and 
membrane receptors299. The Food and Drug Administration (FDA) has 
approved the clinical use of infliximab for the treatment of PS, PsA, RA, 
CD and UC. Adalimumab is a fully humanized IgG1 monoclonal antibody 
that blocks the TNF binding to both its soluble and membrane 
receptors300. Adalimumab has been approved by the FDA for the 
treatment of CD, PS, PsA and RA. Etanercept is a recombinant fusion 
protein containing the TNF receptor 2 that inhibits the TNF binding to its 
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cell surface receptors rendering TNF biologically inactive301. Etanercept is 
currently approved and indicated for the treatment of RA, PsA and PS. 

 

Figure 25. Structure of the main anti-TNF drugs. (a) Structure of an antibody molecule. The 
variable region forms the antigen-binding site, the constant region is responsible for the effector 
functions and the hypervariable regions determine the antigen specificity. (b) Main anti-TNF 
drugs used in IMIDs. Source: adapted from Kalden JR et al. Nat Rev Rheumatol, 2017302. 

The introduction of anti-TNF drugs has revolutionized the treatment of 
IMIDs (Table 5)44, demonstrating a marked improvement in the patients’ 
quality of life as well as a significant reduction in the number of surgeries 
and hospitalizations303,304. There is, however, a substantial fraction of anti-
TNF treated patients that do not show a significant clinical improvement. 
In RA, ~30% of anti-TNF treated patients do not respond to the therapy305. 
In PsA, a non-significant clinical response to anti-TNF treatment has been 
observed in up to 40% of the treated patients306,307. In PS, approximately 
one-third of the anti-TNF treated patients do not respond to the 
treatment308. In IBDs, up to 50% of CD patients experience a loss of 
clinical response over time that will require either dose escalation or 
treatment discontinuation309, and 30-40% of UC patients fail to achieve a 
significant clinical improvement after anti-TNF therapy310. Identifying the 
genetic and biological mechanisms that influence the treatment efficacy is 
therefore of high interest to guide the search for response biomarkers. 
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Clinical Feature Infliximab Adalimumab Etanercept 

Efficacy in RA +++ +++ +++ 

Efficacy in PsA +++ +++ +++ 

Efficacy in CD +++ +++ + 

Efficacy in UC +++ +++ na 

Efficacy in PS +++ +++ ++ 

Administration iv sc sc 

Dosage 3-10 mg/kg; q4-8w 40 mg eow; 40 mg qw 25 mg biw; 50 mg qw 

Half-life (t ½) 8-10 days 10-20 days 4 days 

Vd (L) 4.3 ± 2.5 4.7 - 6.0 8.0 

Clearance (mL/h) 11.0 12.0 72.0 ± 5.0 

Cmax (µg/mL) 118.0 4.7 ± 1.6 1.1 ± 0.6 

Table 5. Clinical profile of the anti-TNF drugs used in IMDs. Abbreviations: biw, twice a 
week; Cmax, maximum serum concentration; eow, every other week; iv, intravenous; na, not 
applicable; qw, every week; sc, subcutaneous; vd, volume of distribution; w, week; +++, strong; 
++, moderate; +, weak. Source: adapted from Tracey D et al. Pharmacol Ther, 200844. 

One of the main causes of anti-TNF treatment failure is the production of 
antidrug antibodies (ADAs). Anti-TNF agents are extraneous proteins 
and, therefore, this therapeutic strategy is inherently immunogenic. The 
treatment of IMIDs with anti-TNFs often requires lifelong administrations 
and, consequently, it can raise an immune system response against these 
drugs. This results in the formation of ADAs, which can make anti-TNF 
therapy ineffective. 

Immunogenicity studies in anti-TNF treated IMID patients have shown 
that ADAs can reduce the drug efficacy by competing with the 
endogenous ligand and/or by forming immune complexes, which 
accelerates the drug clearance and the subsequent reduction of the drug 
bioavailability311,312. In IMIDs, the presence of ADAs has been associated 
with a reduced clinical response313-315.  

To date, several studies have detected ADAs in patients with IMIDs, 
including IBD and RA315,316. Although the quantification of ADAs 
partially depends on the type of assay, infliximab has been established as 
the most immunogenic anti-TNF therapy (~25% of infliximab-treated 
patients). Anti-adalimumab antibodies have been detected in 
approximately 14% of patients. The lowest immunogenicity rate has been 
detected in etanercept-treated patients (1.2%)315. This low 
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immunogenicity is likely to be explained by the molecular structure of 
etanercept, which is characterized by the lack of an Fc region44. 

The formation of ADAs might also lead to adverse effects like acute 

infusion reactions, delayed infusion reactions and disseminated skin 

reactions317,318. Although these adverse events and the reduction of the 

anti-TNF efficacy associated with the development of ADAs are of major 

clinical relevance, the biological processes that are responsible for the 

formation of ADAs are still unclear. In IMIDs, the study of patient-related 

factors like genetic variation that influences the development of ADAs 

could provide novel insights into this specific pharmacogenomics field319. 
 

1.3.2 Genetic basis of clinical response to anti-TNF therapy 

There is increasing evidence that genetic variation is an important factor 
to explain the heterogeneity on the clinical response to anti-TNF therapy 
in IMIDs320,321. To date, most of the pharmacogenomic studies of anti-
TNF response in IMIDs have been focused on candidate genes from 
inflammatory pathways320. In RA, genes participating in TNF and NFKB 
signaling pathways and genes associated with T cell function like IRAK3, 
PTPRC or NFKBIB have been investigated in relation to anti-TNF 
response by more than 40 candidate-gene studies322. Although these 
studies are limited to the current biological knowledge, they have 
identified new loci associated to anti-TNF response.  

One of these candidate genes is FCGR2A, which encodes for a Fc receptor 
that is mainly expressed in dendritic cells and macrophages323. Given that 
alterations in the Fc binding affinity to anti-TNF drugs could directly 
influence the response323-325, the study of genetic variants in Fc receptors 
is of major clinical interest323-325. Accordingly, we have previously 
analyzed the association between variation at this gene and anti-TNF 
response (Annex section)326. 

In IBDs and PS, multiple studies have identified genes associated with 

anti-TNF response. However, most of these loci have shown modest 

associations with the clinical response and lack of reproducibility327-331. 
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The genetic component underlying anti-TNF response in PsA has been 

explored by only a few studies focusing on variation in TNF, TNFR1A, 

TRAIL-R1, FCGR2A and PDE3A-SLCO1C1 loci332,333. Altogether, these 

studies highlight the need for replicating the genetic findings in larger 

cohorts of patients. 

In the last decade, genome-wide genotyping has allowed to investigate the 

contribution of whole genome variation on the heterogeneity of anti-TNF 

response in RA and PS. To date, a total of six GWAS on anti-TNF 

response have been performed in RA334-339. These have led to the 

identification of four susceptibility loci that are significant at the genome-

wide scale (i.e. MED15, GFRA1, PDE3A-SLCO1C1 and CD84 genes)340, 

and that have also been replicated in at least an independent cohort of 

patients. The unique GWAS performed in PS has identified genetic 

variants at ADRA2A, CDH23, GUCY1B3, JAG2, KCNIP1, LOC728724, 

MACC1, PDE6A, SHOC2 and SPEN genes showing non genome-wide 

significant associations with anti-TNF response341. The association 

between genetic variation and the heterogeneity of anti-TNF response has 

been yet investigated in PsA and IBDs. 

Taken together, the pharmacogenomic studies on anti-TNF response in 

IMIDs have led to two general findings. First, the genetic variation of 

anti-TNF response can be drug-specific. In RA, for example, the 

association of MED15 and CD84 genes was detected in etanercept-treated 

patients and was not observed in adalimumab- or infliximab-treated 

patients. Likewise, we found that variation at FCGR2A gene is associated 

with the clinical response to adalimumab and infliximab, but not to 

etanercept therapy326. Second, genetic variation associated to anti-TNF 

response might be shared across IMIDs342. The PDE3A-SLCO1C1 locus 

was initially associated with the response to anti-TNF therapy in RA340. 

Soon after this discovery, the same genetic variant was found to be also 

associated with anti-TNF response in PS and PsA333,343. Therefore, the 

biological variability among patients and the molecular diversity of anti-

TNF agents should be considered in the search for response biomarkers in 

IMIDs. 
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1.3.3 Genetic basis of immunogenicity to anti-TNF therapy 

Clinical and experimental studies have shown that not only treatment-

related factors (e.g. drug dosage and structure) promote ADA 

formation344,345, but also patient-related factors like genetic variation319. In 

IMIDs, however, the contribution of genetic variation on ADA formation 

has been only analyzed by a few candidate studies. 

In RA, the production of anti-adalimumab antibodies has been associated 

with genetic variation in IL10, a key participant in B cell differentiation346. 

More recently, five alleles in the HLA region (i.e. HLA-DRB1*01, HLA-

DRB1*03, HLA-DQB1*05, HLA-DRB1*07 and HLA-DRB1*011) have 

been associated to adalimumab immunogenicity347.  

In IBDs, carrying the HLA-DRB1*03 or HLA-DRB1*13 alleles has been 

found to predispose to anti-infliximab antibodies348. Also, variation in 

FCGR3A has been recently associated with the production of ADAs in 

adalimumab or infliximab treated patients349. The IGHG1 gene has been 

tested for association with antibodies to infliximab, but no significant 

association has been detected350. In other autoimmune diseases, variation 

in the HLA class II region (HLA-DRB1*0401 and HLA-DRB1*0408 

alleles) has been strongly associated with the development of ADAs351.  

The influence of genetic variation on anti-TNF immunogenicity has not 

been yet investigated in PS and PsA. In these and other IMIDs, analyses at 

a genome-wide scale could enable the identification of genetic markers 

that help physicians to detect those patients at high risk of anti-TNF 

intolerance. 

 

  



63 
 

1.3.4 Translating pharmacogenomics to therapeutics 

The past few years have witnessed exciting pharmacogenomic 

discoveries. Some of the most promising genetic associations in terms of 

clinical applicability have been found in pharmacogenomic studies137. The 

FDA has labeled more than 150 drugs with pharmacogenomic information 

and pharmacogenomic testing is starting to be integrated in the clinical 

practice352. One of the most successful examples is the screening for the 

HLA-B*5701 allele to identify Abacavir treated patients at high risk of 

developing hypersensitivity reactions353. Clinical trials have also 

investigated the power of variation in ADRB2 to predict which patients 

will develop venodilatation or desensitization after isoproterenol 

administration as well as acute airway response to albuterol (Figure 

26)354,355. Variation in these two genes exemplifies how pharmacogenomic 

information can guide drug administration. 

Figure 26. Impact of ARDB2 variation on treatment outcomes. Homozygous Glu genotype 
at codon 27 is associated to greater venodilatation after isoproterenol administration. 
Homozygous Arg genotype codon 16 is associated to greater desensitization to isoproterenol 
and greater airway response to albuterol. Abbreviations: FEV, forced expiratory volume. 
Source: adapted from Evans ME et al. N Engl J Med, 2003355. 

In IMIDs, rigorous and systematic measurement of drug response can be 

as difficult as the genome-wide genotyping356. Therefore, the creation of 

biomedical consortia like the IMIDC will be essential to advance in 

pharmacogenomics research342. 
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2   |   OBJECTIVES 

The three main objectives of the present thesis were: 

1) To identify new genetic variation associated with IMID 

susceptibility. We sought to identify: (i) new genetic factors 

associated with the risk of developing PS, and (ii) new genetic factors 

that contribute to the risk of PsA but not purely cutaneous PS. 

2) To identify new genetic variation associated with clinical 

phenotypes in IMIDs. We aimed to discover new genetic variation 

associated with: (i) the most clinically relevant phenotypes in SLE, and 

(ii) the risk of developing CVD in IMIDs. 

3) To identify new genetic markers for anti-TNF therapy in IMDs. 

We sought to find new genetic markers associated with: (i) the clinical 

response to anti-TNF therapy in RA, and (ii) the production of anti-

drug antibodies in CD. 

 



 

 

  



67 
 

3  |   Identification   of   new   genetic   
variation associated with IMID 
susceptibility 

 

 

 

3.1 Genome-wide pathway analysis identifies genetic 
pathways associated with PS 
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4   |      Identification     of     new     genetic
variation associated with IMID 
clinical phenotypes 
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5  |  Identification       of       new      genetic 
markers for anti-TNF therapy 
in IMIDs 

5.1 A combined transcriptomic and genomic analysis 
identifies a gene signature associated with the response to 
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6   |   DISCUSSION 

6.1 Identification of new genetic variation associated with 
IMID susceptibility 

Identification of genetic variation associated with psoriasis 
risk 

PS is a chronic inflammatory disease of the skin that has a complex 

genetic architecture. GWAS have only partially explained the disease 

heritability357,358. There is increasing evidence that part of the missing 

heritability could be explained by multiple small-effect genes from 

common pathways167. Most of the GWAS are performed at the single-

marker level and, consequently, the statistical power to detect new risk 

genes soon becomes insufficient359. One of the most successful strategies 

to overcome this problem is the genome-wide pathway analysis 

(GWPA)136. Before this work, however, the GWPA had not been applied 

to study the genetics of PS. 

In this work, we have performed a two-stage GWPA in order to identify 

new genetic pathways associated with PS risk. Using this approach and 

two large case-control cohorts, we have identified three new genetic 

pathways that had not been previously associated with PS risk. These new 

pathways include retinol metabolism, transport of inorganic ions and 

amino acids and post-translational modification. From these pathways, we 

have found that the latter includes the gene with the strongest network 

centrality properties. This gene that is key for the pathway functionality is 

the MGAT5 gene. Additionally, we have further confirmed the association 

of MGAT5 with PS both at the functional and genetic levels. 

In dermatological diseases, retinol has been shown to inhibit inflammatory 

processes by regulating the NFKB activity360,361. As a transcriptional 

factor, NFKB regulates proinflammatory genes that are key for the 

pathogenesis of PS, such as the TNF and IL-17 genes362. The NFKB 
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signaling pathway has been also associated with the regulation of 

keratinocyte proliferation363. These evidences are consistent with the 

elevated levels of NFKB that have been found in psoriatic skin compared 

to non-psoriatic skin364. From a pharmacological perspective, the use of 

retinoids (i.e. retinol and its metabolites) for the treatment of PS is also in 

line with our findings365. Therefore, genetic variation in the retinol 

metabolism pathway could reduce the retinol production, weaken the 

NFKB signaling and promote both inflammatory and proliferative 

hallmarks of PS. 

The transport of inorganic ions in CD4+ T cells has been shown to be 

implicated in the development of IMIDs366. In particular, the intracellular 

transport of calcium is crucial to control the expression of 

proinflammatory genes in T cells367,368. Importantly, the expression of 

amino acid transporters has been found to be differentially regulated in 

PS369. These evidences suggest that genetic variation in the transport of 

amino acids and inorganic ions pathway could increase the PS risk by 

modulating the activity of T cells. 

A relevant function of the post-translational modification (PTM) pathway 

is the regulation of the immune tolerance to self-antigens through the N-

linked glycosylation of key HLA molecules for antigen recognition370,371. 

Furthermore, specific post-translationally modified autoantigens have 

been associated with the development of PS372. Also, the glycosylation 

activity has been found to be markedly increased in PS compared to 

controls373. PTMs on glycoproteins from the T cell surface have been 

shown to target these cells towards the inflamed skin in PS374. Therefore, 

genetic variation in the PTM pathway could perturb glycosylation 

processes that are essential to maintain the immune system tolerance.  

Using network analyses, we have found that MGAT5 gene plays a central 

role for the functionality of the PTM pathway. MGAT5 is a 

glucosaminyltransferase whose activity has been associated with 

autoimmunity375,376. In our study, we have found that genetic variation at 

MGAT5 is associated with the glycosylation levels of in vitro activated T 

cells. Consistent with previous findings377, our results indicate that genetic 
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variation could play a functional role in the development of PS by 

modulating the glycosylation-dependent activation of T cells. Importantly, 

after the publication of our work, the glycosylation levels of T cells were 

found to be increased in the target tissues of other IMIDs like IBDs and, 

consequently, the blockade of this biological process has been proposed as 

new therapeutic strategy378. 

Identification of genetic variation associated with psoriatic 
arthritis risk 

PsA is a chronic inflammatory arthritis affecting up to 30% of PS 

patients23. PsA can have dramatic functional implications for the patient 

and, generally, it requires an alternative therapeutic approach than purely 

cutaneous PS. Familiar aggregation studies have shown that PsA has a 

higher heritability than PS246-249, indicating the existence of PsA-specific 

genetic risk. However, identifying disease-specific loci has proven very 

challenging and, to date, only PTPN22, CSF2-P4HA2 and ADAMTS9-

MAGI1 have been shown specific for PsA risk379,380. The effect of these 

loci explains <50% of the PsA heritability and, therefore, new genetic 

factors remain to be identified269-271. 

In this study, we have performed a GWAS at the single-marker and 

pathway levels on two independent PsA case-control cohorts. In these 

analyses, we have identified a new PsA risk SNP at B3GNT2 gene and 14 

genetic pathways associated with PsA. From these, the 

glycosaminoglycan (GAG) metabolism pathway was confirmed to be 

disease-specific when comparing the PsA cohort of patients with a cohort 

of purely cutaneous psoriasis patients and a cohort of RA patients. These 

findings are of a major interest for both the rheumatology and 

dermatology communities since the identification genetic variation that 

differentiates PsA from PS can guide the development of disease specific 

drugs. Using network and drug repurposing analyses, we have further 

identified candidate drug targets in the GAG metabolism pathway as well 

as new PsA indications for approved drugs. 
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B3GNT2 encodes for an acetylglucosaminyltransferase that synthesizes 

the carbohydrate structure of polylactosamine onto glycoproteins381. 

The B3GNT2 locus has been previously associated with other arthritic 

diseases382,383. B3gnt2 knockout mice show hyperactivation of T and B 

lymphocytes as well as enhanced macrophage activation381,384, thereby 

providing a functional link between the B3GNT2 locus and autoimmunity. 

Our study shows, for the first time, that B3GNT2 is associated with PsA at 

the genome-wide scale and that the frequency of the risk allele is 

significantly higher in PsA than in purely cutaneous psoriasis. With these 

findings, we demonstrate that while B3GNT2 is a common risk locus for 

PsC and PsA, it has a bigger contribution to PsA etiology. 

GAG metabolism has been shown to be altered in autoimmune 

diseases385,386. GAGs are crucial components of proteoglycans and the 

major component of cartilage, which the target tissue of PsA387,388. In in 

vitro models, the proteolysis of a cartilage-specific proteoglycan (i.e. 

aggrecan) in response to proinflammatory cytokines promotes articular 

damage389. After aggrecan destruction, GAGs are released from the ECM 

to the synovial fluid390. Accordingly, the synovial levels of GAGs have 

been found increased in PsA compared to controls391. Consistent with 

these evidences, genetic variation at GAG metabolism pathway could 

diminish the biosynthesis of GAGs and, consequently, reduce their 

availability for aggrecan and cartilage formation in patients with PsA.  

Current drug discovery research is shifting from targeting single genes 

towards the modulation of specific biological pathways392. Here, we have 

investigated the potential of the PsA-specific associations for drug 

discovery using network and drug repurposing analyses. The results of 

these analyses show that the GAG metabolism could be a druggable 

pathway for PsA treatment. Our findings also suggest that the FDA-

approved drugs hyaluronic acid and tromethamine are good candidates for 

repurposing in PsA, since they target key genes for the GAG metabolism. 

With this study, we have demonstrated the power of genetics to identify 

new drug targets and opportunities for drug repurposing in PsA393. 
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6.2 Identification of new genetic variation associated with 
IMID clinical phenotypes 
 

Identification of genetic variation associated with clinical 
phenotypes of systemic lupus erythematosus 

SLE is a rheumatic disease characterized by heterogeneous clinical 

manifestations of unknown etiology. One of the major challenges in the 

pathogenesis of SLE is understanding the biological basis of the disease 

clinical heterogeneity. In the last years, GWAS have enabled the 

identification of >40 loci associated with SLE risk394. There is also 

evidence that the main SLE clinical phenotypes aggregate in families, 

which suggests the existence of a genetic basis for disease 

heterogeneity395. Before this thesis, however, only a few candidate 

analyses were performed to study the genetics of clinical heterogeneity in 

SLE396. 

In order to identify new genetic variants associated with SLE phenotypes, 

we have performed the first GWPA on SLE clinical phenotypes using two 

independent cohorts of patients. The main clinical phenotypes represented 

by the 11 American College of Rheumatology criteria for SLE diagnosis 

were tested for association with 798 biological pathways. In this study, we 

have identified and validated the association between VEGF genetic 

pathway and the presence of oral ulceration in SLE. Therapies commonly 

used to treat mucocutaneous SLE phenotypes were found to strongly 

influence the expression of the VEGF pathway in phenotype-relevant cell 

types. 

The VEGF pathway is a network of genes that act coordinately to 

modulate inflammatory and angiogenic processes397,398. There is growing 

evidence that angiogenesis is involved in the development of skin 

manifestations in SLE399,400. Here, we have shown for the first time that 

genetic variation in the VEGF pathway is associated with oral ulceration 

in SLE. Oral ulcers are lesions characterized by a high angiogenic activity 

in the oral mucosa401,402. In SLE, these mucocutaneous lesions are highly 

prevalent and frequently chronic403,404. Oral ulcers have been associated 
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with an increased disease activity and worse prognosis in SLE405,406. Our 

findings are consistent with previous evidences from other ulcer-related 

diseases like Behçet’s disease (BD) or gastroduodenal ulcers (GDU). In 

BD, clinical evidence supports that VEGF could be implicated in the 

formation of oral ulcers407. In GDU, genetic variation at VEGF has been 

associated with the disease risk408. Taken together, these evidences 

support the implication of VEGF pathway in oral ulceration both at the 

genetic and functional level. 

Finally, we have evaluated the utility of targeting the VEGF to treat oral 

ulcers. We have demonstrated that topical immunotherapies perturb the 

expression of the VEGF pathway using an in silico analysis. Our results 

indicate that the VEGF pathway could mediate the benefits of topical 

immunotherapies to reduce oral ulceration. Importantly, a drug 

repurposing analysis for SLE treatment based on GWAS findings was 

published one year after the release of our study409. This work 

demonstrates the power of genetic information to guide drug repurposing 

in SLE. Accordingly, we suggest that FDA-approved drugs targeting the 

VEGF pathway could be repurposed for the treatment of oral ulceration in 

SLE. 

Identification of genetic variation associated with 
cardiovascular disease risk in IMIDs 

The development of CVD has life-threatening consequences and therefore 

it is one of the most important comorbidities in IMIDs410. CVD has been 

associated with the reduction of the life expectancy observed in IMID 

patients410. There is growing evidence that the development of a CVD in 

IMIDs is only partially explained by the classical CVD risk factors91. In 

the general population, the identification of >100 disease risk loci by 

GWAS has demonstrated the existence of a genetic risk background for 

CVD297,411,412. Before our study, however, little was known on the impact 

of genetics on CVD risk in IMIDs. The identification of these genetic 
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factors could be fundamental to characterize the specific biological 

mechanisms that most contribute to CVD development. 

In this work, we have investigated the genetic basis of CVD in IMIDs 

using GWAS data from 6,485 patients with RA, PsA, PS, SLE, CD or 

UC. We have found that 17 established CVD risk loci are associated with 

CVD in IMIDs. From these, four loci showed different genetic effects 

across the six IMIDs. In addition, we have detected that six IMID risk loci 

are associated with CVD. With a GWAS cross-phenotype meta-analysis, 

we have identified 10 genetic clusters associated with CVD risk in IMIDs. 

The established CVD risk loci replicated in IMIDs include genes with 

functional roles that could link both diseases. For example, ADAMTS7 

encodes for a metalloproteinase that is implicated on arthritis and also on 

the thickening of the neointima413,414. SMARCA4 has been involved in 

CD4+ T cell differentiation and it has been associated to lipoprotein 

levels, which directly contribute to CVD415,416. Also, the differential 

effects detected in four CVD risk genes suggest that the disease-specific 

proinflammatory state influences the risk conferred by the known genetic 

factors. This is the first time that CVD risk loci have shown to be 

modulated by the presence of an IMID. Supporting this, after the 

publication of our study, a genome-wide study found that the RARB gene 

is associated with carotid intima-media thickness in RA patients417. Taken 

together, these findings indicate the existence of a genetic basis for 

autoimmunity that is also associated with CVD risk. 

Using a genome-wide cross phenotype meta-analysis on GWAS data from 

IMID patients, we have identified 10 genetic clusters associated with 

CVD risk. Importantly, two of these genetic clusters showed a significant 

enrichment in genes from immune response pathways, including TNF 

signaling. TNF is a key proinflammatory cytokine for IMIDs418, but also 

an important regulator of the cardiac function419. The systematic inhibition 

of this cytokine has proven effective to treat IMID patients as well as to 

reduce the prevalence of CVD89. The marked statistical significance of the 

genetic clusters identified in this study strongly supports that CVD is 

associated with different genes across IMIDs.  
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6.3 Identification of new genetic markers for anti-TNF 
therapy in IMIDs 
 

Identification of genetic variation associated with the clinical 
response to anti-TNF therapy in rheumatoid arthritis 

The introduction of anti-TNF agents has significantly improved the 

management of many RA patients. However, approximately 30% of the 

anti-TNF treated patients do not show a significant clinical improvement. 

There is growing evidence that clinical response to anti-TNF therapy in 

RA has a genetic component334. However, only variation at four genes has 

been previously replicated340, including two drug-specific associations337. 

Consistent with clinical observations420, these findings support the 

existence of drug specific variation underlying anti-TNF response. At the 

transcriptomic level, the few gene expression signatures identified so far 

have shown a modest association with anti-TNF response as well as a low 

overlap of genes between studies421. Therefore, it is noteworthy that 

before this thesis genetic and transcriptomic data had been only separately 

analyzed to characterize the biological causes of anti-TNF failure in RA. 

In this work, we have conducted an integrative genomic analysis. Using 

synovial biopsies from RA patients, we have identified 149 gene 

coexpression modules (GCMs) that characterize the inflamed RA 

synovium. From these, 13 GCMs were found to be associated with anti-

TNF response. At the genetic level, one of the 13 GCMs showed a 

significant association with adalimumab response in two independent 

cohorts. Using pathway and cell type epigenetic enrichment analysis, we 

have further detected that the adalimumab-associated GCM is enriched in 

genes that participate in the nucleotide metabolism as well as in epigenetic 

marks from critical immune cells like Tregs. Our analysis demonstrates 

that integrating different layers of molecular data is a powerful strategy to 

discover new genetic and biological mechanisms of anti-TNF response in 

RA. 

Previous expression analyses in the RA synovium have shown that 

adalimumab reduces the expression of genes implicated on cell 
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proliferation422. In addition to the essential role that the nucleotide 

metabolism plays in DNA replication, this biological process is 

responsible for the synthesis of adenosine, a purine nucleoside that 

exhibits a potent anti-inflammatory activity when bound to its cognate 

receptors423. Adenosine receptors, however, display a weaker affinity for 

adenosine in RA compared to controls, thereby dampening their anti-

inflammatory effect. Importantly, adalimumab has been found to 

normalize the binding affinity of adenosine receptors in RA patients 424,425. 

Our results are in line with these evidences and provide a functional link 

between the effectivity of adalimumab and the local production of 

adenosine in the synovial joint.  

Tregs produce high levels of anti-inflammatory cytokines to modulate the 

action of cytotoxic CD8+ T cells and, therefore, are essential for self-

tolerance52,426,427. In RA, however, Tregs are functionally defective 

resulting in a sustained immune response to self-antigens428. Anti-TNF 

therapy has been shown to restore the suppressor function of Tregs in 

RA429. There is evidence that this modulation of Tregs could be drug-

specific430. In particular, adalimumab has been shown to induce a Treg-

specific phenotype that restrains the progression of IL-17-related 

inflammation by regulating the expression of IL-6 by monocytes431. 

 

Identification of genetic variation associated with anti-TNF 
immunogenicity in Crohn’s disease 

Understanding the biological mechanisms of anti-TNF response in CD is 

of major interest to prevent the treatment failure. The production of 

antidrug antibodies is one of the main causes of the treatment failure432. 

However, only a few candidate studies in RA have previously investigated 

the genetics basis of anti-TNF immunogenicity346,350. In CD, this analysis 

has proven challenging due to the lack of well-characterized cohorts of 

patients and, therefore, the contribution of genetics to anti-TNF 

immunogenicity remains unknown before this study. 
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As a part of the present thesis, the first GWAS for immunogenicity to 

anti-TNF therapy in CD has been performed. Following a two-stage 

design, we have identified and validated a significant association between 

the CD96 locus and the production of antibodies to anti-TNF therapy in 

CD. As expected, we have found that the risk allele for anti-TNF 

immunogenicity is also associated with a lack of clinical response to this 

therapy. 

CD96 is a member of the immunoglobulin superfamily that is mainly 

expressed in the cell membrane of NK, CD8+ T and CD4+ T cells and 

some subsets of B cells433. The expression of CD96 gene has been also 

found to be higher in the terminal ileum than any other human tissue434. 

Consistent with our results, these evidences suggest a functional role for 

the CD96 gene in the target tissue of CD. CD96 bind to the  CD155 

ligand, which also binds to the membrane receptors CD226 and TIGIT435. 

Cd96 knockout mice have demonstrated that CD96 regulates the cytokine 

response of NK cells competing with CD226 to bind to the ligand CD155 

expressed in APCs436. Importantly, variation at CD155 has been also 

associated to immunogenicity, in this case, against vaccination437,438. 

In Cd155 knockout mice, this CD96 ligand has been implicated in 

humoral response development. Cd155-/- mice show a less efficient 

response to orally administered antigens due to a decreased production of 

IgG and IgA compared to wild-type mice14. Also, significantly higher 

titers of Th1-associated IgG isotypes are detected after immunization in 

Cd155-/- mice compared to wild-type littermates15. These findings suggest 

that CD155 participates in the polarization of naïve CD4+ T cells to the 

Th2 phenotype. Together, these experimental studies are consistent with 

our results. Genetic variation at CD96-CD155 signaling pathway might 

predispose to produce antidrug antibodies by promoting CD155 

upregulation and the subsequent polarization to the Th2 phenotype that 

leads to B cell activation. 
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7   |   CONCLUSIONS 

The main conclusions of the present thesis are: 

1) We have identified new genetic variation associated with IMID

susceptibility:

Retinol metabolism, transport of inorganic ions and amino acids and 

post-translational protein modification are biological pathways 

associated with PS risk at the genetic level. 

MGAT5 gene is a key factor for the post-translation protein 

modification pathway and variation at this gene is not only associated 

with PS risk, but also to the levels of glycosylation in T cells from 

patients with PS. 

Genetic variation in the glycosaminoglycan metabolism pathway 

contributes to the risk of PsA but not purely cutaneous PS. 

The FDA-approved drugs hyaluronic acid and tromethamine that 

target key genes for the glycosaminoglycan metabolism pathway 

could be repurposed for the treatment of PsA. 

2) We have identified new genetic variation associated with clinically
relevant phenotypes in IMIDs:

The genetic basis underlying SLE clinical heterogeneity can be 
independent from the genetic component associated to disease risk. 

Genetic variation at the VEGF pathway is associated with the risk of 
developing oral ulceration in SLE. 

The VEGF pathway represents a potentially new target to develop 
phenotype-specific drugs in SLE.  
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IMID susceptibility loci can also predispose to CVD risk and the 
presence of an IMID can change the penetrance of established CVD 
risk loci. 

Immune-related pathways are associated with CVD risk across 
IMIDs. 

3) We have identified new genetic markers for anti-TNF treatment in

IMIDs:

A gene coexpression module is associated with the clinical response 

to adalimumab at the genetic level, supporting the existence of drug-

specific genetic factors for anti-TNF response in RA. 

The nucleotide metabolism and immune cells like Tregs could 

mediate the response to adalimumab in RA. 

CD96 locus is associated with immunogenicity to anti-TNF therapy 

and also to anti-TNF efficacy in CD. 
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10   |   ANNEX 
 

10.1 Abbreviations 
 

The abbreviations included in the following list have been used two or 

more times throughout the body of the thesis. 

 

ACPA 

ADAs 

APCs 

BC 

BD 

BP 

CD 

CVD 

dbSNP 

DC 

DNA 

eQTL 

FDA 

GAG 

GCM 

GDU 

GWAS 

GWPA 

HLA 

Anti-citrullinated protein antibodies. 56 

Antidrug antibodies. 59-60, 62 

Antigen presenting cells. 18, 170 

Betweenness centrality. 48 

Behçet’s disease. 166 

Base pairs. 27, 30 

Crohn’s disease. 17, 22, 55-59, 65, 149, 167, 169-170, 172 

Cardiovascular disease. 23-24, 56, 65, 166-167, 171-172 

The SNP database. 31 

Degree centrality. 48 

Deoxyribonucleic acid. 27-32, 34, 51, 169 

Expression quantitative trait loci. 50, 54 

Food and Drug Administration. 57, 171 

Glycosaminoglycan. 163-164 

Gene coexpression module. 168 

Gastroduodenal ulcers. 166 

Genome-wide association study. 33-56, 61, 161-170 

Genome-wide pathway analysis. 161, 165 

Human leukocyte antigen. 52-56, 62-63, 162 
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IBD 

IMIDC 

IMID 
 

LD 

MAF 

MHC 

mRNA 

PsA 

 

PTM 

RA 
 

SLE 
 

SNP 
 

Tregs 

Th 

Thf 

UC 

1KG  

Inflammatory bowel disease. 22, 25, 52, 58-62, 163 

IMID Consortium. 26, 63 

Immune-mediated inflammatory disease. 17-26, 34, 41, 
45, 52-63, 65, 67, 97, 111, 131, 161-168, 171-172 

Linkage disequilibrium. 32-34, 44, 53-54 

Minor allele frequency. 30-31, 33, 42, 52 

Major histocompatibility complex. 18, 52 

Messenger ribonucleic acid. 28-29 

Psoriatic arthritis. 17, 21-23, 52-53, 56-59, 61-62, 65, 79, 
163-164, 167, 171 

Post-translational modification. 162 

Rheumatoid arthritis. 17, 20-22, 25, 44, 52, 54, 56-62, 65, 
131, 163, 167-169, 172 

Systemic lupus erythematosus. 17, 21-25, 52, 55-56, 65, 
97, 165, 167, 171 

Single nucleotide polymorphism. 30-34, 38-45, 52-54, 
163 

Regulatory T cells. 18-20, 22, 168-169, 172 

Helper T cells. 18-20, 22, 170 

Follicular helper T cells. 18, 19 

Ulcerative colitis. 17, 22, 57-59, 167 

1000 Genomes project. 33, 39 
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10.2 Summary of the additional publications authored by 
Adrià Aterido 

The development of this thesis has led also to the elaboration of three 

additional research articles. 

In order to investigate the genetic regulatory mechanisms of CD4+ T cells 

associated with RA etiology, we have performed a genome-wide analysis 

of eQTLs in CD4+ T cells from RA patients. Whole genome expression 

profiling of CD4+ T cells and genome-wide genotyping (598,258 SNPs) 

of 29 RA patients with an active disease were performed. We also 

developed a novel systems genetics approach to avoid the excessive 

burden of multiple testing associated with genome-wide trans-eQTL 

analysis. The genomic regulation pattern of CD4+ T cells in RA was 

compared to the genomic regulation observed in reference lymphoblastoid 

cell lines (LCLs). In the genome-wide eQTL analysis, we detected a 

significant cis-eQTL associated with the expression of the FAM66C gene 

(P=6.51×10-9). Using the new systems genetics approach, we identified 

significant trans-eQTLs associated with the expression of key genes for 

RA pathogenesis like BIRC5 (P=5.35×10-8). Comparing the genomic 

regulation profiles between RA CD4+ T cells and control LCLs, we found 

20 genes showing differential regulatory patterns between both cell types. 

The new genetic regulatory elements that are key for the activity of CD4+ 

T cells in RA were published in the PLoS One journal: 
 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100690 

  

Aterido A, Palacio C, Marsal S, Avila G, Julià A. Novel insights 
into the regulatory architecture of CD4+ T cells in rheumatoid 
arthritis. PLoS One (2014) 
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A pharmacogenetics study aimed at validating the genetic association 

between the FCGR2A locus and the clinical response to anti-TNF therapy 

in RA has been also performed. For this objective, a total of 348 RA 

patients treated with an anti-TNF therapy from the Spanish population 

were included in the study. All these patients were genotyped for the 

FCGR2A polymorphism rs1081274. The clinical response to each anti-

TNF drug (i.e. infliximab, etanercept and adalimumab) was determined at 

week 12 and was globally and independently tested for association with 

genetic variation at FCGR2A locus. In this analysis, we detected a 

significant association between the FCGR2A locus and ADL response 

(P=0.022). Analyzing the subset of anti-CCP positive RA patients (78%) 

a significant association between the FCGR2A and the response to 

infliximab was also identified (P=0.035). This work was published in the 

PLoS One journal: 

 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122088 

 

 

  

Avila-Pedretti G, Tornero J, Fernández-Nebro A, Blanco F, 
González-Alvaro I, Cañete JD, Maymó J, Alperiz M, 
Fernández-Gutiérrez B, Olivé A, Corominas H, Erra A, 
Aterido A, López Lasanta M, Tortosa R, Julià A, Marsal S. 
Variation at FCGR2A and functionally related genes is 
associated with the response to anti-TNF therapy in 
rheumatoid arthritis. PLoS One (2015) 
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Finally, a pharmacogenomics study aimed at characterizing the impact 

that functional rare variants have on anti-TNF response in CD has been 

conducted. For this objective, a total of 41 CD patients starting anti-TNF 

therapy were analyzed. Whole genome sequencing was performed using 

the Illumina Hiseq4000 platform. Low-frequency variants were annotated 

and classified according to their damaging potential. The clinical response 

was determined at week 14 of treatment. Screening the whole genome to 

identify homozygous loss-of-function (LoF) variants, we identified a total 

of 3,250 functional rare variants, including 2,682 damaging and 568 LoF 

variants. Two homozygous LoF mutations at HLA-B and HLA-DRB1 

genes were found to be associated with anti-TNF response. Genome-wide 

LoF variants were found to be enriched in specific epigenetic marks for 

the gastrointestinal tissue (P<0.05). We also tested the TNF signaling 

pathway for overabundance of damaging variants using the SKAT-O test. 

We found that the burden of damaging variation in this pathway is 

associated with anti-TNF response (P=0.018). Moreover, we found that 

damaging variation in the TNF signaling pathway is enriched in 

epigenetic marks from CD8+ (P=6.01×10-4) and CD4+ (P=0.032) T cells. 

At the time of thesis deposit, these findings were under review for 

publication in the Alimentary Pharmacology & Therapeutics journal: 

 

Under review 

Chaparro M*, Aterido A*, Guerra I, Iborra M, Cabriada JL, 

Bujanda L, Taxonera C, García-Sánchez V, Marín-Jiménez I, 

Barreiro-de Acosta M, Vera I, Martín-Arranz MD, Hernández-

Breijo B, Mesonero F, Sempere L, Gomollón F, Hinojosa J, 

Bermejo F, Beltrán B, Rodríguez Pescador A, Banales JM, 

Olivares D, Aguilar-Melero P, Menchén L, Ferreiro-Iglesias R, 

Blázquez Gómez I, Benítez García B, Guijarro LG, Marín AC, 

Bernardo D, Marsal S, Julià A, Gisbert JP. Functional rare 

variants influence the clinical response to anti-TNF therapy in 

Crohn’s disease. Alimentary Pharmacology & Therapeutics (2018) 
 
 

 

* Equally contributed as first authors. 



 




