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Abstract

The twentieth century was marked by two scientific revolutions. On the one
hand, quantum mechanics questioned our understanding of nature and physics.
On the other hand, came the realisation that information could be treated as a
mathematical quantity. They together brought forward the age of information.

A conceptual leap took place in the 1980’s, that consisted in treating informa-
tion in a quantum way as well. The idea that the intuitive notion of information
could be governed by the counter-intuitive laws of quantum mechanics proved
extremely fruitful, both from a fundamental point of view, where an information-
theoretic approach to quantum mechanics helps us shine a new light on quantum
theory, and from a practical point of view, where the concept of quantum inform-
ation gave birth to unforeseen ways of processing and transmitting information,
such as quantum computing and quantum communication.

The notion of randomness plays a central role in that respect. Indeed, the
laws of quantum physics are probabilistic: that contrasts with thousands of
years of physical theories that aimed to derive deterministic laws of nature. This,
in turn, provides us with sources of random numbers, a crucial resource for
information protocols.

The fact that quantum theory only describes probabilistic behaviours was for
some time regarded as a form of incompleteness: a more accurate description
of the laws of quantum theory would make its predictions deterministic. But
a specific property, Bell nonlocality, observed on some correlations predicted
by quantum theory, showed that this approach was an impasse: the laws of
quantum physics are inherently probabilistic, i.e., they cannot be completed in
such a way that their apparent randomness could be traced back to a lack of
knowledge.

This observation has practical consequences, as witnessing Bell nonlocality
then certifies the presence of intrinsic randomness: the outputs of a nonlocal
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physical process are necessarily unpredictable, and are, in that sense, truly
random. Moreover, that assertion does not depend on the physical system from
which nonlocality is observed. Certifying randomness from nonloality thus allows
us to assess true randomness, that is, randomness that cannot be explained by
ignorance, in a device-independent manner.

In this thesis, we quantify nonlocality-based randomness in various frame-
works. In the first scenario, we quantify randomness without relying on the
quantum formalism. We consider a nonlocal process and assume that it has
a specific causal structure, that is only due to how it evolves with time. We
provide trade-offs between nonlocality and randomness for the various causal
structures that we consider.

Nonlocality-based randomness is usually defined in a theoretical framework:
randomness is certified for an abstract, mathematical process. In the second
scenario, we take a practical approach and ask how much randomness can be
certified for a practical process, from which only partial knowledge can be gained
with experiment. We describe a method to optimise how much randomness can
be certified in such a situation.

Trade-offs between nonlocality and randomness are usually studied in the
bipartite case, as two agents is the minimal requirement to define nonlocality.
In the third scenario, we quantify how much randomness can be certified for a
tripartite process. We also look into possible applications of such trade-offs.

Though nonlocality-based randomness is device-independent, the process
from which randomness is certified is actually realised with a physical state. In
the fourth scenario, we ask what physical requirements should be imposed on the
physical state for maximal randomness to be certified, and more specifically, how
entangled the underlying state should be. We show that maximal randomness
can be certified from any level of entanglement.
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Chapter 1

Introduction

We first give a short historical overview of the field of quantum information
theory. We then describe what motivated us to study the questions presented in
this Thesis and how we contributed to answering them.

1.1 The quantum and information revolutions

At the beginning of the twentieth century, the pioneering works of Max Planck
and Albert Einstein were the beginning of a paradigm shift in the physics of
microscopic scales: experimental observations, such as the black-body radiation or
the photoelectric effect, were no longer compatible with classical mechanics. The
new mathematical formalisms that were then developed by Werner Heisenberg,
Erwin Schrödinger, Max Born and others founded what would become quantum
mechanics. This new theory deeply modified our perception, not only of nature,
but also of what a physical theory should be. Moreover, this novel understanding
of the behaviour of particles at the microscopic level enabled the emergence of
new technological devices such as lasers or semi-conductors.

In the 1930’s and 40’s, the groundbreaking ideas of Alan Turing and Claude
Shannon led to the birth of computer science and information theory. Their con-
ceptual works were concerned with how to process and communicate information.
Based on this theoretical research, a myriad of information-related technological
devices could then be developed. They were engineered thanks to electronic
components whose functioning rely on quantum effects, such as transistors. This
was the advent of the information age, that of cell phones, computers and the
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2 CHAPTER 1. INTRODUCTION

Internet.
However, the information that can be encoded, processed and transmitted

by such means is meant to be classical: a unit of information, the binary digit,
or ‘bit’, takes the value ‘0’ or ‘1’. It turns out that, if information is represented
by a quantum bit, or ‘qubit’, the full potential of quantum physics translates
into new possibilities for information tasks.

Indeed, a quantum bit, that is, a unit of information encoded on a quantum
state, inherits the specificities of quantum physics, such as entanglement or
state superposition. These revolutionary concepts, never contemplated until
a century ago, are the key elements that explain the fundamental difference
between classical physics and quantum physics. Moreover, the possibility to
take advantage of such concepts to process information is the basis of a new
approach to information, quantum information science, where they also imply a
difference in nature between classical and quantum information. The theoretical
and experimental ability to process information encoded on particles that obey
quantum physics gave birth in the 1980’s to new areas of research such as quantum
computing, first imagined by Richard Feynman, or quantum cryptography, first
proposed by Charles Bennett and Gilles Brassard.

The objective of quantum information theory is to understand what can and
cannot be done, from the point of view of information sciences, with quantum
particles. In this thesis, we focus on one informational concept, randomness, and
one quantum feature, Bell nonlocality, and we study their relations.

1.2 Motivation and main contributions

Understanding what is random is both a theoretical and a practical question.
From a foundational point of view, the inherently random nature of the laws
of quantum physics is perplexing, as it contrasts with a long-standing view of
what a physical theory should be: the goal of classical physics was to provide
deterministic explanations for observed phenomena. From a practical point of
view, the ability to generate random numbers is crucial, as it is a pre-requisite
for several information tasks. Defining adequate measures of randomness is thus
crucial for quantum information theory.

The notion of randomness can be related to the concept of nonlocality,
which concerns the correlations between events observed by distant agents. The
nonlocal character of said correlations does not depend on the underlying physical
system: it can thus be witnessed even when the physical systems from which
it emerges are not known or not perfectly characterised. Studying randomness
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though the prism of nonlocality thus allows to quantify randomness without
relying on a physical description of the underlying systems. This statement has
two major consequences. Conceptually, it implies that the random nature of
a physical process can be assessed without relying on a physical theory, and,
in particular, on quantum physics. Practically it means that one can certify
that a process generates random numbers in a device-independent way, that
is, without knowing the physical systems that underlie that process. We now
describe the various scenarios in which we derived trade-offs between randomness
and nonlocality.

1.2.1 Randomness based on time-ordering and
no-signalling

One can certify, in a device-independent way, that a physical process produces
random numbers, even without relying on the quantum formalism, as long as one
assumes that the ‘no-signalling’ principle holds, that is, that information cannot
be instantaneously transmitted. If that process is nonlocal, its outputs cannot
be perfectly predicted by a third party. One can thus quantify its randomness by
estimating how well the outputs can be predicted by said third party. However,
that measure is typically defined for only one instance of the process. If the
process is repeated several times and if one wants to derive, from this one-round
measure, a trade-off between non-locality and randomness that would hold for
all the repetitions, additional assumptions have to be made: one could assume,
e.g., that the repetitions are independent and identically distributed (i.i.d.), or
that they are causally independent.

Contribution We define a measure of unpredictability that directly takes into
account the repetitions of the process. We present different causal structures
to model how these repetitions are related to each other. We show that, if
one assumes that past events can influence future events, but not the converse
(‘time-ordering’), the unpredictability per repetition decreases at each repetition.
This result might help in understanding whether privacy amplification based
on no-signalling only is possible, that was proven to be impossible if no time
structure is assumed [HRW13] but remains open otherwise [AFTS12].

1.2.2 Practical randomness

When one derives randomness versus nonlocality trade-offs, one can quantify
how nonlocal a process is via the evaluation of a Bell expression. The amount of
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randomness that is certified depends on the Bell expression that is evaluated. For
a given process, there exists an optimal Bell expression, i.e., one that certifies the
maximal amount of randomness generated by the process. That expression can
be easily derived when the correlations governing the process are known and obey
the no-signalling principle. However, in a practical situation where one wants to
proceed in a device-independent way, those correlations are not accessible. One
can only estimate them by repeating the process several times and collecting the
frequencies. However, due to finite statistics, the correlations derived from the
frequencies do not obey no-signalling, even if the actual underlying correlations
do. In that case, no optimal Bell expression can be derived from it, as the notion
of nonlocality-based randomness is only relevant in a no-signalling world.

Contribution We propose to use a regularisation method [LRZ+18] that
projects the frequencies collected from a practical situation onto the space of
correlations that obey the no-signalling principle. That enables us to derive a Bell
expression that is well suited for a specific process. We can then derive a lower-
bound on the unpredictability of the data outputted by the process as a function
of the estimated value of that Bell expression, using known techniques [NSBSP18].
Numerical simulations show the efficiency of our method.

1.2.3 Randomness in a tri-partite scenario

Trade-off between randomness and nonlocality are generally derived in a scenario
involving two agents, the minimal requirement for the notion of nonlocality to
make sense. However, Bell nonlocality, as well as device-independent randomness,
can be defined for more than two parties. The questions of deriving trade-offs
for three parties or more and finding applications of such trade-offs to new
device-independent information protocols haven’t been explored.

Contribution We quantify how much randomness can be certified when three
parties evaluate the violation of the tri-partite Mermin inequality [Mer90]. We
give the analytical values of the unpredictability contained in the parties’ out-
comes, as a function of the Mermin inequality violation, by deriving sum-of-
square (SOS) decompositions [BP15]. We then discuss the possibility of using
these results to design a multi-partite protocol, namely, secret sharing, in a
device-independent manner, and argue that it seems unlikely to work.
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1.2.4 Maximal randomness from partially entangled
states

The amount of randomness that can be certified from a given process has a
theoretical maximal value, which corresponds to the case where the uncertainty
on the outcomes is maximal for a third party. For instance, a process that outputs
two bits can produce at most two bits of randomness, which is guaranteed when a
third party cannot predict these outputs better than with a uniform guess. Such
a process is actually realised with a physical system, namely, a quantum state on
which measurements are performed. In the device-independent approach, they
are treated as black boxes: the trade-off between nonlocality and randomness is
evaluated for a given process, and is then valid independently of the physical
system. However, there might exists requirements on the underlying state and
measurements for a given process to be achieved. For instance, can any entangled
state give rise to a process that certifies maximal randomness?

Contribution We show that, for a process with two dichotomic outputs, the
maximal value of two bits of randomness can be certified from any entangled
two-qubit pure state. The fact that randomness, nonlocality and entanglement
are inequivalent quantities was already observed in [AMP12], where it was shown
that almost maximal randomness could be certified from almost unentangled
pure states. Though entanglement is necessary for certifying device-independent
randomness, our result now shows that, for pure states, the amount of randomness
and the level of entanglement are completely uncorrelated quantities.





Chapter 2

Preliminaries

In this section, we introduce the various concepts that we will use in this thesis.
We first describe the notion of Bell nonlocality. We then define the device-
independent approach to quantum information. Lastly, we present some notions
related to the concept of randomness.

2.1 Bell nonlocality

We start by describing the setting of a Bell test and we introduce the corres-
ponding notations. We then give a characterisation of the local, quantum and
no-signalling sets. We conclude by defining the notion of Bell inequality. Though
we take a historical approach, all concepts are presented in modern phrasing.

2.1.1 Alice and Bob

In order to present the key concepts and the main results of this thesis, we will
refer on numerous occasions to two agents, Alice and Bob. This convention
comes from the field of classical cryptography: they were first mentioned in a
1978 article by Ron Rivest, Adi Shamir and Leonard Adleman [RSA78], to refer
to two distant agents who aim to communicate securely, and who were previously
referred to as ‘A’ and ‘B’.

In the context of quantum information theory, Alice and Bob are two fictional,
possibly distant observers, each interacting with a physical, possibly quantum
system (see Fig. 2.1). Alice interacts with her system A by choosing an input

7
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A

a ∈ {0, . . . , d}

x ∈ {0, . . . ,m}

B

b ∈ {0, . . . , d}

y ∈ {0, . . . ,m}

Figure 2.1: Black box representation of a Bell test: Alice and Bob respectively
input x and y into two uncharacterised devices A and B, and respectively obtain
outputs a and b. The curvy line connecting their devices represent possible
correlations between A and B due, for instance, to entanglement.

labeled x ∈ {0, . . . ,m} and obtaining an output labeled a ∈ {0, . . . , d}. Bob does
the same respectively with B, y ∈ {0, . . . ,m} and b ∈ {0, . . . , d}. The inputs can
be thought of as measurement choices and the outputs as measurement results.
We call this experiment ‘a Bell test’. If the Bell test is repeated several times,
we refer to a single interaction as ‘a run’ or ‘a round’. In this thesis, we restrict
ourselves to the case of dichotomic measurements, i.e., d = 1. We sometimes
label ‘−1’ and ‘+1’ the possible outcomes a and b for convenience. We always
specify it if we do so.

We always denote the random variable associated to a value by capitalising it:
A,B,X, Y correspond to the random variables associated to the possible choices
a, b, x, y, respectively, and we denote PAB|XY (ab|xy) the conditional probability
of obtaining the output pair (a, b) when the pair (x, y) was inputed. Unless there
is some ambiguity, we will omit the corresponding random variables in the rest
of this thesis and write P (ab|xy) only. From now on, we refer to P (ab|xy) as ‘the
underlying distributions’, ‘the correlations’ or ‘the behaviour’. This description
is often referred to as a ‘black box’ approach, because no mention of the actual
physical set-up from which these correlations arise is needed.

The correlations P (ab|xy) can be studied as a pure mathematical object, as
is done in part of this thesis. The question of its relation to practical situations
is however not trivial. The simplest approach is to consider that the random
variables A,B,X, Y behave in an independent and identically distributed (i.i.d.)
way every time that Alice and Bob interact with the systems A and B. In that
case, by repeating the Bell test several times, one can compute the frequencies of
all input-output pairs, and use them as an estimate of the underlying distribution
P (ab|xy).
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In some parts of this thesis, we will not make the assumption that the random
variables associated to each Bell test are i.i.d.. In that case, if the Bell test
is repeated n times, for some round i ∈ [n], we will write (ai, bi, xi, yi) the
inputs and outputs associated to this round i, (Ai, Bi, Xi, Yi) the corresponding
random variables, and PAiBi|XiYi(aibi|xiyi) (or P (aibi|xiyi)) the corresponding
underlying conditional distributions. We will then denote sequences of inputs,
outputs, and random variables in bold font: x = (x1, ..., xn) and similarly for
y,a,b,X,Y,A and B.

When we introduce a quantity defined for a given random variable and
evaluated on its associated probability distribution, we sometimes don’t make
the dependence of that quantity on the distribution explicit, if we consider only
one distribution for that given random variable.

2.1.2 The local, quantum and no-signalling sets

In a 1935 paper [EPR35], Albert Einstein, Boris Podolsky and Nathan Rosen
designed a thought experiment in which two distant agents (precursors of Alice
and Bob) perform some measurements on a quantum system that consists of
two entangled particles. They felt uneasy with the correlations that arose from
this experiment (which would be called a Bell test a few decades afterwards)
and claimed that what would later on become the EPR paradox showed that
quantum theory was incomplete.

Before we address this point, let us look into the possible sets of behaviours
P (ab|xy) that Alice and Bob can obtain when they perform a Bell test.

If we accept the validity of the quantum formalism, we would then consider
that the correlations between Alice and Bob’s inputs and outputs arise from
performing measurements on a quantum state. Formally, Alice and Bob share a
state ρAB that belongs to a joint Hilbert space HA ⊗HB , on which Alice (resp.
Bob) performs the measurements {MA

a|x} (resp. {MB
b|y}).

Note that we don’t lose any generality by assuming that the state is pure
and that the measurements are projective: since there is no restriction on the
dimension of the Hilbert space, we can always see mixed states and positive-
operator valued measures (POVM) as pure states and projective measurements
in a Hilbert space of higher dimension.

Applying the Born rule, we can now characterise the set of quantum beha-
viours.

Definition 1. We say that a behaviour P (ab|xy) is quantum, and we write P ∈
Q, if there exists a pure state |ΨAB〉 and projective measurements {MA

a|x,M
B
b|y}
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such that

P (ab|xy) = 〈ΨAB |MA
a|x ⊗MB

b|y |ΨAB〉 . (2.1)

Another model for P (ab|xy) arises if we consider that the behaviour observed
by Alice and Bob should be explainable separately for Alice on one side and for
Bob on the other side. In that case, the behaviour should be decomposable into
a probability response function for Alice, that describes the relation between her
output and her input, and a similar probability response function for Bob. This
approach doesn’t prevent us from taking into account some shared randomness
between Alice and Bob, i.e., some (possibly hidden) variables λ ∈ Λ that are
distributed by some common source to Alice and Bob according to a distribution
q(λ), and have an influence on Alice and Bob’s response functions. That
characterises the local set.

Definition 2. We say that a behaviour P (ab|xy) is local, and we write P ∈ L,
if there exists some variables λ distributed according to q(λ) and some probability
distributions {P (a|x, λ), P (b|y, λ)} such that

P (ab|xy) =

∫
Λ

q(λ)P (a|x, λ)P (b|y, λ)dλ. (2.2)

Lastly, one can consider that the only constraints on the correlations between
Alice and Bob should be that they don’t allow for instantaneous signalling.
Indeed, in a Bell test, the two parties can be arbitrarily distant. If Bob’s
marginal distributions depend on Alice’s choice of inputs, Alice could use her
choice of input to instantaneously transmit information to Bob. This faster-than-
light transmission would be in conflict with relativity. The set of behaviours
preventing this is defined in the following way.

Definition 3. We say that a behaviour P (ab|xy) is no-signalling, and we write
P ∈ NS, if the following relations are satisfied:

∀ a, x, y, y′
∑
b

P (ab|xy) =
∑
b

P (ab|xy′) , P (a|x), (2.3)

∀ b, y, x, x′
∑
a

P (ab|xy) =
∑
a

P (ab|x′y) , P (b|y). (2.4)
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Q

L

NS

Figure 2.2: Sketch of the local, quantum and no-signalling sets that represents
the strict inclusions L  Q  NS, as well as the fact that L and NS are
polytopes.

A modern (and somewhat simplified) reading of the EPR paradox could be
as follow: Einstein, Podolsky and Rosen wanted L and Q to coincide, because
they felt that only L was an admissible description of a physical theory. They
thus believed that quantum physics could and should be completed in such a way
that all quantum correlations admit a local hidden variable model. Moreover,
Einstein did not accept that the laws of physics could be probabilistic: the
hidden variables should represent our ignorance about quantum theory. Once
added to the theory, they would render it not only local but also deterministic —
these two notions being equivalent, as we explain in the next section.

This intuition proved to be wrong a few years later. Before we go into details
about that, we finish this section by giving a few properties of these three sets
(see [BCP+14] for a detailed review). They are closed, bounded and convex, and
obey the following inclusion relation:

L  Q  NS. (2.5)

The local and no-signalling sets are polytopes, and can thus be characterised
as the convex hull of a finite number of extremal points, the vertices, or as the
interior of a finite number of hyperplanes, the facets. The quantum set is not a
polytope and is much harder to characterise. A sketch of these three sets that
illustrates these properties can be found in Figure 2.2.

Some results of this thesis rely on the validity of quantum physics (i.e., holds
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for P (ab|xy) ∈ Q), others only on the no-signalling principle (i.e., holds for all
behaviours P (ab|xy) ∈ NS that can even be ‘supra-quantum’ ).

2.1.3 Bell inequalities

In 1964, John Stewart Bell published an article on the EPR paradox [Bel64].
While general physical principles like ‘local realism’ were formerly not properly
defined, Bell gave a precise mathematical characterisation of such concepts. This
enabled him to obtain the following result:

Theorem 1. No physical theory of local hidden variables can ever reproduce all
the predictions of quantum mechanics.

To prove this result, Bell derived an inequality that has to be satisfied by any
local correlations (as defined in Definition 2), but that some quantum correlations
do not satisfy. Namely, he exhibited a hyperplane that separates a quantum
behaviour from the whole set of local behaviours. The strength of this result
resides in the fact that it provides a simple mathematical quantity that, on the
one hand, forbids irremediably any local explanation for the set of quantum
correlations, and, on the other hand, can be experimentally tested.

Many such inequalities were then derived, and were termed ‘Bell inequalities’.
Deriving such inequalities can now be achieved automatically, as they correspond
to the facets of the local polytope. However, for a given number of inputs and
outputs, the corresponding local polytope is usually characterised by its vertices.
Determining the facets of a polytope, given its vertices, is called a convex hull
problem, and can be prohibitively time consuming.

The generic form of a Bell inequality is an inequality that is linear in
{P (ab|xy)}: ∑

a,b,x,y,

cabxyP (ab|xy) , I(P (ab|xy)) ≤ I (2.6)

We’ll refer to I(P (ab|xy)) as a ‘Bell expression’ and to I(·) as the corresponding
Bell functional. The maximal I that can be obtained for P (ab|xy) ∈ L is called
‘the local bound’, and for P (ab|xy) ∈ Q, ‘the quantum bound’ or ‘Tsirelson
bound’.

The simplest Bell inequality was exhibited by John Clauser, Michael Horne,
Abner Shimony and Richard Holt in 1969 [CHSH69] and is abbreviated as ‘CHSH
inequality’. It is defined in the scenario where Alice and Bob both have two
measurements choices, each of them having two possible measurements results.
It reads:

S , 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2, (2.7)
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L

Q

NS

CHSH inequalityS = 2

S = 2
√

2

S = 4

Figure 2.3: Sketch of the CHSH inequality as a hyperplane dissociating the local
set from some quantum and no-signalling behaviours.

where the correlator 〈AxBy〉 is equal to:

〈AxBy〉 ,
∑
a,b

(−1)a+bP (ab|xy). (2.8)

If Alice and Bob share the Bell state:

|Φ+〉 , |00〉+ |11〉√
2

(2.9)

on which they perform the measurements described by the following observables:

A0 = σz, B0 =
σz + σx√

2
,

A1 = σx, B1 =
σz − σx√

2
,

(2.10)

where σx and σz are the X and Z Pauli matrices, they will then obtain S = 2
√

2.
This value is actually the highest achievable by a quantum behaviour [Tsi80].
Note that a supra-quantum behaviour, the Popescu-Rohrlich (PR) box [PR94],
defined as:

P (ab|xy) =
1

2
δa⊕b,x·y (2.11)

can achieve the maximal value S = 4 (see Fig. 2.3).
As previously mentioned, the quantity S can be experimentally evaluated.

This was achieved in a convincing manner for the first time by the team of Alain
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Aspect, in a series of experiments performed between 1980 and 1982 [AGR82],
where they indeed observed S > 2. Experimentally meeting all the requirements
of a Bell test is challenging, as several loopholes can be caused by the set-up.
A lot of work was thus still devoted to obtaining more and more experimental
evidences that Bell inequalities could be violated. The first loophole-free Bell
inequality violation was reported in 2015 [HBD+15].

This sequence of experimental validations of Bell’s groundbreaking result
provided a definitive answer: some correlations observed in nature cannot be
explained by a local hidden variable model. We thus term them ‘nonlocal’. Far
from being an isolated and purely theoretical discovery, this proved to be an
extremely fruitful source of results in the field of quantum information science.

2.2 Device-independent quantum information
theory

We first describe the essence of the link between nonlocality and information. We
then explain how that link can be used for designing information protocols in a
device-independent way, and we explain how uncharacterised quantum resources
can be characterised only via their associated behaviours.

2.2.1 Characterising nonlocal correlations

After the set of local behaviours was mathematically characterised, properties
inherent to local and nonlocal correlations could be demonstrated. In 1982,
Arthur Fine derived the following result [Fin82] (we use the exact phrasing of
the original article, ‘the experiment’ should be understood, in our terminology,
as ‘the Bell test’):

Theorem 2. The following statements are equivalent:

(i) There is a deterministic hidden-variables model for the expriment.

(ii) There is a factorisable, stochastic model.

(iii) There is one joint distribution for all observables of the experiment, re-
turning the experimental probabilities.

(iv) There are well-defined, compatible joint distributions for all pairs and
triples of commuting and non commuting observables.
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(v) The Bell inequalities hold.

Point (ii) corresponds to our definition of the local set L, point (v) thus
follows from the way we defined Bell inequalities. The most important point for
this thesis is (i): it states, in essence, that local is equivalent to deterministic.
More precisely, it states that a behaviour is local if and only if there exists some
variables that, when added to the model, makes it deterministic. These variables
might be unknown for now, hence the term ‘hidden’, yet they exist: the apparent
randomness in the results of the Bell test is merely due to our ignorance.

That implies in return that no such deterministic explanations exist for a
nonlocal behaviour: the probabilistic nature of the input-output correlations
is intrinsic. In other words, any correlations that violates a Bell inequality is
inherently random.

From a fundamental point of view, it represents a milestone in our understand-
ing of physics: while physicists used to be concerned with deriving deterministic
explanations of the phenomena observed in nature, it was proven that the
statistics observed in a Bell test could never be explained in a deterministic
manner.

From an applied point of view, it constitutes a fertile ground for information
processing and communication: the ability to generate random bits, and to
certify their random character, with no need to rely on a specific description of
natural processes, paved the way to a new approach to information theory.

Before we move on to presenting the possible applications of nonlocality to
information protocols, let us mention an obstacle that we have to face when
we wish to evaluate a information-theoretic figure of merit (see Section 2.3 for
details), not on the whole space of nonlocal behaviours NS, but specifically on
the space of quantum behaviours Q. While NS is easy to characterise, Q has a
complex mathematical structure. A simple characterisation of it would yet be
very valuable, both from fundamental and applied perspectives. On the one hand,
it would enable us to understand what singles out quantum physics amongst
other nonlocal theories. On the other hand, optimising various quantities over
the set of all quantum behaviours is necessary for numerous information tasks
allowed by the nonlocal nature of quantum physics, as we will see later on.
However, this can only be done with a computationally efficient characterisation
of Q.

Such a characterisation remains to be found. Nevertheless, in 2007, an
outer approximation of the quantum set based on semi-definite programming
was presented in [NPA07, NPA08]. It consists of a hierarchy of sets {Qk}∞k=1,
later on called ‘the NPA hierarchy’, that converges to the quantum set Q (cf
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L

Q1 Q2 Q3
. . . Q∞ = Q

Figure 2.4: Outer approximation of the quantum set by the NPA hierarchy.

Fig. 2.4). It is based on constructing moment matrices that are constrained by
semi-definite positiveness. It provides a practical approximation of the quantum
set, see Section 2.3.1 for examples of application.

We introduced the idea that nonlocal behaviours have some inherent prop-
erties, i.e., properties that hold independently of how these correlations were
obtained. This is the core idea of the Device-Independent (DI) approach to
quantum information, that we now elaborate.

2.2.2 Nonlocal correlations for cryptographic protocols

Most of the cryptographic protocols in use today are based on mathematical
conjectures. For instance, the communication between two distant agents, Alice
and Bob, is undecipherable provided that any potential eavesdropper, hereafter
called ‘Eve’, is unable to solve some mathematical problem that we believe
too hard to be solved in a reasonable time. In 1984, Charles Bennett and
Gilles Brassard proposed a key distribution protocol where some information
sent by Alice to Bob was encoded in the state of a quantum particle, say, the
polarisation of a photon [BB84]. By basing the security of what would then
become the BB84 protocol on the laws of quantum mechanics, and in particular
on the no-cloning theorem, they could design a scheme for key distribution that
was ‘unconditionally’ secure. This was the birth of Quantum Key Distribution
(QKD).

However, one should bear in mind that the word ‘unconditionally’ here
refers to the fact that the security is not based on the unproven hardness of
a computational problem. But ultimately, the security of any cryptographic
protocol relies on some assumptions, and is, in that sense, conditional. Indeed,



CHAPTER 2. PRELIMINARIES 17

in 2006, a team of researchers reported that they had hacked a cryptographic
system that implemented the BB84 protocol [MAS06]. To do so, they used the
mismatch between the theoretical requirements of the BB84 protocol and its
experimental realisation: only if the protocol had been perfectly implemented
would the theoretical security proof apply and would such hacking be impossible.
Even though quantum physics exhibits nonclassical features that enable us to
process information in a revolutionary way, implementing quantum information
protocols is hard because controlling accurately enough quantum systems is
extremely difficult.

One of the aims of the device-independent approach to quantum information
protocols is precisely to circumvent this challenge. The core idea, mentioned
in the previous section, is the following: a nonlocal behaviour cannot have a
deterministic explanation, and this intrinsic randomness can be put to use for
several information-theoretic tasks. Even if we are in complete ignorance of
the internal working of the devices, and even if we are facing an omniscient
and omnipotent eavesdropper Eve, the nonlocal character of a behaviour guar-
antees that it produces outputs that are (at least partially) unpredictable to
Eve, whatever possible backdoors she could use and whatever possible hidden
variables she could know. Moreover, the nonlocality of a behaviour can be easily
experimentally witnessed by, e.g., the observation of a Bell inequality violation.

We now give a brief overview of which cryptographic protocols were explored
in the device-independent framework, see [PSV16] for a recent state-of-the-art.
By cryptographic protocol, we mean a process that aims to create or keep some
information secret and safe. Examples of such tasks are:

• Randomness Generation (RNG)

• Key distribution

• Bit commitment

• Secret sharing

• Authentification

In this thesis, we focus on the first one, but our results have implications for
others, in particular for key distribution. The goal of RNG is to obtain bits that
are secret, i.e., that cannot be predicted by an adversary, in one location. This
is cryptographic primitive that is useful for many tasks, such as the ones listed
above. The goal of QKD is to obtain two identical sequences of secret bits in two
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distant locations. This then allows two distant agents to communicate securely
by using one-time pad.

One usually considers that the first task that was achieved in a device-
independent manner was QKD, with a protocol based on entanglement defined
by Artur Ekert in 1991 [Eke91]. At that time, however, the device-independent
potential of this protocol was not truly apprehended. In 1998, Dominic Mayers
and Andrew Yao proposed a QKD protocol based on the concept of ‘self-checking
source’ [MY98]: without calling it that way, they understood the possibility of
performing QKD in a device-independent manner using nonlocality. In 2005,
Jonathan Barrett, Lucien Hardy and Adrian Kent realised that key distribution
could be achieved based on the sole assumption of no-signalling, i.e., without
relying on the validity of quantum physics [BHK05]. In 2006 Roger Colbeck
showed that this was also true for RNG [Col06]. Finally, the potential of using
nonlocality to design device-independent protocols was understood by Antonio
Aćın et al. for QKD in 2007 [ABG+07], and by Stefano Pironio et al. for RNG
in 2010 [PAM+10], where the term ‘device-independent’, along with the first
security proofs based on the observation of a Bell inequality violation, were
introduced.

In what we just described, the observation of nonlocality enables us to
derive information-theoretic figures of merit related to RNG and QKD. These
derivations can be based of the validity of quantum physics, but don’t have
to be: they relate nonlocality and cryptographic tasks. We now describe how
nonlocality can be used for certifying the quantum character of a Bell test.

2.2.3 Nonlocal correlations for resource certification

In 2004, Mayers and Yao defined the concept of ‘self-testing’ [MY04]: in the
framework of quantum physics, some behaviours P (ab|xy) can only be achieved
by performing essentially unique quantum measurements on a unique quantum
state. When one is given two black boxes that perform a Bell test, if one observes
such a behaviour, one can then be sure that these black boxes consist of that
specific state and measurements: they are not black boxes anymore.

Let us make this statement precise. We call {A′x} and {B′y} the (unchar-
acterised) observables that the black boxes perform, and |Ψ′〉 ∈ H′A ⊗ H′B
the (uncharacterised) state on which they operate: {|Ψ′〉 , A′x, B′y} is called the
physical experiment. We then define a reference experiment {|Ψ〉 , Ax, By}, that
consists of well characterised state |Ψ〉 ∈ HA ⊗HB and observables {Ax, By}.

Definition 4. We say that the physical experiment is equivalent to the reference
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experiment if there exists a local isometry Φ = ΦA ⊗ ΦB, with ΦA : H′A →
H′A ⊗HA and ΦB : H′B → H′B ⊗HB, such that:

Φ(|Ψ′〉) = |junk〉 ⊗ |Ψ〉 , (2.12)

Φ(A′x ⊗B′y |Ψ′〉) = |junk〉 ⊗ (Ax ⊗By |Ψ〉). (2.13)

It means that the reference experiment is an accurate description of the
devices, up to local unitaries and irrelevant degrees of freedom that are repres-
ented by the additional ‘junk’ state. Let us however add that this definition
doesn’t encompass some transformations that are not visible from the behaviour
only and not physical, such as complex conjugation. However, certifying a state
and some measurements only up to, say, complex conjugation, is often sufficient
for applications such as information protocols.

For a physical experiment and a reference experiment to be equivalent, it
is necessary that their associated correlations are the same. Finding a self-test
for a given behaviour {P (ab|xy)} amounts to proving that it is also sufficient.
In some cases, the complete description of a behaviour is not even needed: the
value of a Bell expression can be sufficient.

For example, we mentioned in Section 2.1.3 that the state given in Eq. (2.9)
and the measurements described by Eq. (2.10) yield S = 2

√
2. The reverse is

also true: the observation of correlations between two black boxes such that
S = 2

√
2 certifies that the physical experiment is equivalent to the reference

experiment {|Ψ〉 , A0, A1, B0, B1} with:

|Ψ〉 = |Φ+〉 =
|00〉+ |11〉√

2
,

A0 = σz, B0 =
σz + σx√

2
,

A1 = σx, B1 =
σz − σx√

2
.

(2.14)

In order to construct a self-test for given state and measurements, the
corresponding behaviour must be extremal in Q: if it is not extremal, it can be
decomposed as various mixtures of other behaviours, and thus can be obtained
with various sets of state and measurements.

A Sum-Of-Squares (SOS) decomposition is a useful tool to prove an equival-
ence relation based on the observation of the maximal value of a Bell expression.
For a given Bell operator I with maximal quantum value IQ, the following holds:

∀ |Ψ〉 , 〈I〉Ψ = 〈Ψ| I |Ψ〉 ≤ IQ ⇔ IQ · 1− I � 0. (2.15)
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Since the operator IQ · 1− I is semi-definite positive, one can try to decompose
it as a finite sum of squares:

IQ · 1− I =

s∑
i=1

P †i Pi, (2.16)

where each Pi is a polynomial function in {Ax} and {By}. When evaluated on
the state |Ψ〉 that maximally violates the corresponding Bell inequality, this
expression yields, in turn:

(IQ · 1− I) |Ψ〉 = 0⇔ ∀i ∈ {1, .., s}, Pi |Ψ〉 = 0. (2.17)

This set of equations can then be used to derive the self-testing equivalence
relation. This was for instance done in [BP15], where the authors derived a
self-test for all partially entangled two qubit pure states, i.e., using the Schmidt
decomposition, all states of the form:

|Ψθ〉 , cos(θ) |00〉+ sin(θ) |11〉 (2.18)

for θ ∈ [0, π/4].
Note that the nonlocal character of a behaviour is needed neither to define

the notion of self-test nor to prove an equivalence relation. For the latter, only
the extremality in the quantum set is a pre-requisite. However, from a quantum
information-theoretic point of view, self-testing local correlations is fruitless: such
correlations cannot provide any quantum advantage for information processing.
On the contrary, self-testing a nonlocal quantum behaviour is useful: it certifies
that some a priori black boxes actually contain specific measurements and state
in a device-independent way. These black boxes can then be used to run a
cryptographic protocol that is described in terms of said measurements and state,
as was proposed in [MY04].

Being able to certify the quantum description of a behaviour from purely
classical observation has a fundamental interest. It is also useful from a practical
point of view, as it enables us to run device-independent cryptographic protocols.
However, RNG need not be based on self-testing to be achieved in a device-
independent way. We now explain how to certify and quantify the randomness
produced by a Bell test.

2.3 Randomness

We first introduce the concept of guessing probability associated to a Bell test.
We then explain how it can be seen as a quantity of fundamental interest, and
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how it can be used as a building block for device-independent cryptographic
protocols.

2.3.1 The guessing probability

The guessing probability quantifies the ability to predict the outcome of a
probabilistic process. This broad notion admits several mathematical definitions,
depending on the information that is accessible and on the physical theory that
underlies the process.

Our framework is that of device-independent cryptography: the situation is
thus modelled by an adversarial black box scenario, where Eve tries to guess some
outcomes obtained by Alice and Bob via a process described by the behaviour
P (ab|xy). If Eve knows the underlying distributions, but cannot tamper with
them, the optimal strategy for predicting the output pair associated to a given
input pair (x, y) consists in guessing the most probable one. Writing Gxy the
corresponding guessing probability, we get:

Gxy = max
ab

P (ab|xy). (2.19)

However, in an adversarial scenario, we want to take a conservative approach:
what if Eve had prepared the black boxes that Alice and Bob use? Is there
then any way that Alice and Bob obtain outputs that are unknown to Eve?
If no contraints are imposed on the underlying distributions, that is of course
impossible: Eve could prepare deterministic devices. However, if the black boxes
are constrained to violate a Bell inequality, it is possible, due to Theorem 2. In
that case, we define the guessing probability as [PAM+10]:

Gxy = max
ab

max
P

P (ab|xy),

s.t. I(P ) = I,

P ∈ Q.

(2.20)

It operationally corresponds to the case where Alice and Bob have no control
over the devices, which enables Eve to design them in the most favourable way
possible, but where Alice and Bob check that a given Bell inequality, described
by I, is violated with value I. That is enough to certify the presence of some
randomness, and constitutes the basic idea of the device-independent paradigm.

The second constraint, which imposes that the behaviour has a quantum
origin, can be relaxed: one can impose that the behaviour belongs to one of the
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NPA hierarchy sets Qk, or to the no-signalling set NS. From a practical point
of view, these changes make Gxy efficiently computable, and the solutions of
these modified versions of (2.20) are upper bounds on the quantum guessing
probability. From a fundamental point of view, imposing that the behaviour lies
in NS instead of Q corresponds to assuming that Eve is ‘supra-quantum’: she
can prepare distributions that are not accessible via quantum physics.

Before we go further into details about the guessing probability, let us
introduce some terminology related to optimisation problems such as (2.20).
The function that is optimised is called the objective function. The constraints
define a subspace of R(d+1)2(m+1)2 , called the feasible region. A point (in our
case, a behaviour) that belongs to the feasible region is called a feasible point.
When one imposes P ∈ Qk, the feasible region is the intersection of the cone of
positive semidefinite matrices with an affine space, i.e., a spectrahedron; while
the feasible region associated to P ∈ NS is the intersection of a finite number
of half spaces, i.e., a convex polytope. The optimisation of a linear function
over a spectrahedron is called Semidefinite Programming (SDP), and Linear
Programming (LP) when it is over a convex polytope. Both LP and SDP can
be efficiently numerically solved.

The problem introduced in (2.20) is a measure of the unpredictability of the
output pair (a, b). One can also define the guessing probability associated to one
output, say, a, in the following way:

Gx = max
a

max
P

P (a|x),

s.t. I(P ) = I,

P ∈ Q.

(2.21)

Eq. (2.20) defines the ‘global’ guessing probability, whereas Eq. (2.21) corresponds
to the ‘local’ guessing probability. In the case of binary outputs, the local
guessing probability can vary from 1 (complete predictability) to 1/2 (complete
unpredictability), and the global guessing probability from 1 to 1/4.

In [PAM+10, MPA11], the authors proved that, when I is the CHSH expres-
sion defined in (6.4), the local quantum guessing depends on the CHSH value
I = S as:

Gx(S) =
1

2
(1 +

√
2− S2/4) (2.22)

and the local no-signalling guessing probability as:

Gx(S) =
3

2
− S

4
(2.23)
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Figure 2.5: Local guessing probability as a function of the CHSH violation β. The
orange solid line corresponds to the quantum guessing probability, the dashed
red line to the no-signalling one. For the local bound (β = 2), the predictability
is maximal, while for the maximal CHSH values, the unpredictability is maximal.

These values are plotted in Fig. 2.5.
The definition of the guessing probability given in Eqs. (2.20) and (2.21) is

however not satisfactory if the obtained result is not concave in I. Indeed, let’s
suppose that, for some values I1 and I2 associated to a Bell expression I, and
for some µ ∈ [0, 1], the following holds:

Gxy
(
µ · I1 + (1− µ) · I2

)
≤ µ ·Gxy

(
I1
)

+ (1− µ) ·Gxy
(
I2
)
. (2.24)

Then, by mixing her preparations for I1 (with weight µ) and I2 (with weight
1− µ), Eve would improve her guess, while still satisfying the constraint on the
Bell expression value, as it is linear: these optimisation problems do not quantify
well the notion of predictability by an adversary.

One can instead, as in, e.g., [MRC+14], optimise over possible extensions
PABE|XY (abe|xy) of Alice and Bob’s behaviour, where E is the random variable
associable to Eve’s output e, and maximise the probability of the event E =
A (local guessing probability) or E = (A,B) (global guessing probability).
Note that, when the eavesdropper has to to guess the output or output pair
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associated to a specific input x or input pair (x, y), the ability to perform
different measurements does not give an advantage, which is why we define
the extension as PABE|XY (abe|xy) and not PABE|XY Z(abe|xyz). The global
guessing probability problem then becomes:

G(AB|xy) = max
PABE|XY

∑
ab

PABE|XY (ab, e = (a, b)|xy),

s.t. I(PAB|XY ) = I,

PABE|XY ∈ Q.

(2.25)

where PAB|XY =
∑
e
PABE|XY (abe|xy) is Alice-Bob marginal behaviour induced

by the extension, and where the set Q is the straightforward extension of the set
described in Def. 1 to tripartite behaviours. The no-signalling set (Def. 3), as
well as the NPA sets Qk, can also be straightforwardly extended to tripartite
behaviours. We can define similarly the local guessing probability.

Note that, using Baye’s rule and the no-signalling condition between Eve and
Alice-Bob, the following holds:

P (abe|xy) = P (e)P (ab|xye). (2.26)

Setting αβ = e, and rewriting P (ab|xyαβ) as Pαβ(ab|xy), one obtains the
following alternative definition for the guessing probability [BSS14]:

G(AB|xy) = max
{Pαβ}

∑
αβ

Pαβ(αβ|xy),

s.t. I(
∑
αβ

Pαβ) = I,

∑
αβab

Pαβ(ab|xy) = 1,

∀ α, β, Pαβ ∈ Q̃.

(2.27)

where the weights P (αβ) are absorbed into the behaviours Pαβ , which is why
we impose that these behaviours now belong to the set of unnormalised quantum
behaviours Q̃ (or unnormalised NPA set Q̃k, or unnormalised no-signalling set
ÑS), and we add separately the normalisation constraint (third line). This
makes the objective function of (2.27) linear.

The optimisation problems defined by Eqs. (2.25) and (2.27) are equivalent.
The first one correspond to looking for the best extension of a behaviour, the
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second one to the best decomposition. We will indifferently use both formulations
in this thesis. As a function of I, they correspond to taking the concave hull
of (2.20), and, as such, encompass well the notion of guessing probability. Note
that, if (2.20) is already concave in I, the formulations (2.25) and (2.27) are
superfluous.

In [NSPS14, BSS14], the authors noted that the constraint on the violation
of a Bell inequality could be modified: one can impose that Eve’s decomposition
(or extension) yields a given marginal P ∗ for Alice and Bob, instead of imposing
that this marginal yields a given Bell violation I(P ∗) = I. This operationally
means that Alice and Bob check the full statistics of their black boxes, not
only a linear functional of it. As the eavesdropper is more constrained, the
guessing probability obtained in this manner is smaller: more randomness can
be extracted. The optimisation problem then takes the form:

G(AB|xy) = max
{Pαβ}

∑
αβ

Pαβ(αβ|xy),

s.t.
∑
αβ

Pαβ = P ∗,

∀ α, β, Pαβ ∈ Q̃.

(2.28)

Note that adding the normalisation constraint is not necessary here, as it follows
from the first constraint.

In order to give more information about (2.28), we now introduce a few basic
notions of dual optimisation. Any SDP can be written in the following standard
form:

max
X

Tr(CX),

s.t. ∀i ∈ {1, ...,m}, Tr(AiX) = bi,

X � 0,

(2.29)

where the optimisation variable is the symmetric matrix X, the objective function
is characterised by the symmetric matrix C, and the constraints are defined
by the symmetric matrices A1, ..., Am and the real vector b = (b1, ..., bm). Let’s
call (2.29) the primal problem. Then we define its associated dual problem as:

min
y

b>y,

s.t.

m∑
i=1

yiAi − C � 0.
(2.30)
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These two problems are related by the weak duality theorem:

Theorem 3. Let p be the optimal value of (2.29) and d be the optimal value
of (2.30). Then

p ≤ d. (2.31)

Weak duality implies that solving an SDP can be achieved by finding a
feasible point for the primal and a feasible point for the dual that achieve the
same objective function value. A stronger theorem, called strong duality, states
that, in some cases, the primal and the dual have the same solution. In particular:

Theorem 4. If (2.29) is an linear program that admits a feasible point, then

p = d. (2.32)

Solving the dual problem of (2.28) provides the optimal Bell expression for
certifying randomness [NSPS14, BSS14], i.e., the Bell expression such that (2.27)
and (2.28) have the same value.

The guessing probability problem can be solved for several varying parameters,
such as the underlying theory, the Bell expression and its associated value, or
the observed behaviour. It can also be extended to a scenario with more than
two observers (see Chapter 5). We now explain why this quantity is relevant,
from both fundamental and applied perspectives.

2.3.2 Fundamental aspects of the guessing probability

Nonlocal theories are intrinsically random. This assertion can be certified, but
also quantified, by the observation of a guessing probability strictly smaller
than 1, even in the presence of an adversary with unlimited power. However,
the relations between nonlocality and randomness are not trivial. Evaluating
the guessing probability in various contexts enables us to shine a new light on
a physical theory, now examined in terms of randomness. More precisely, it
allows studying the relations of various nonlocal theories to one another, and of
quantum physics amongst them. Moreover, within quantum physics, one can
then classify various resources according to how good they are for certifying
randomness.

Several theories imply the existence of nonlocal behaviours, as was illustrated
by the examples of the quantum set Q, the no-signalling set NS, and the NPA
relaxations of the quantum set Qk. Other theories can be constructed, and one
way to relate them is to quantify their ‘unpredictiveness’ power. In [dlTHD+15],
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for instance, the authors show that maximally nonlocal theories do not permit
maximal randomness, while quantum theory does. They then ask whether that
singles out quantum theory amongst all other nonlocal theories, and answer in
the negative.

Alternative models to the no-signalling and quantum bipartite dichotomic
scenario can occur when one departs from the ideal situation where the two black
boxes are characterised by a single bipartite dichotomic behaviour, and assume
that each interaction with the devices is governed by a different distribution,
that can depend on the previous interactions. This sequential approach leads
to alternative sets of nonlocal behaviours. One can then compute guessing
probabilities in such frameworks (see Chapter 3). Note that such sets are not
only of fundamental interest, see Section 2.3.3 for details.

Within the framework of quantum theory, one can study how much random-
ness can be obtained from a given resource. The authors of [AMP12] proved that
almost maximal global randomness can be certified from almost unentangled
states. We address in Chapter 6 the question of whether maximal global ran-
domness can be certified from any bipartite partially entangled qubit, i.e., any
|Φθ〉.

One can connect various nonlocal theories and various quantum resources
to the broad notion of randomness via the guessing probability. However,
randomness is also valuable from a practical point of view, and how can certify
randomness in a device-independent way via the guessing probability.

2.3.3 Link to randomness generation

Beyond its fundamental interest, randomness has a wide range of practical
applications. Random numbers are useful for statistical sampling, video games
or numerical simulations, but also for cryptography. In that case, it is paramount
that these random numbers are private, i.e., that no information about them is
known to a third party. We now explain how such a property can be certified in
a device-independent way by quantum physics.

The ultimate goal of a randomness generation protocol is to produce a
sequence of bits that is close to being uniformly distributed and uncorrelated to
any information held by an external agent Eve. That typically involves several
steps, and the terminology to describe them sometimes fluctuates. Let us now
fix the terminology that we use in this thesis.

• Randomness expansion refers to the task of using an initial random bit
string to generate a longer partially private random bit string. The quality
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of the generated bit string is then quantified by its min-entropy.

• Randomness extraction or privacy amplifcation consists in taking
a partially private and random bit string whose min-entropy is lower
bounded, along with a random seed, and obtaining a shorter string that is
(very close to) uniformly distributed and (almost) completely private, i.e.,
uncorrelated to any information held by an adversary.

• Randomness amplification aims to generate an (almost) uniform ran-
dom bit from a partially random one (i.e., without an additional seed).
This was proven to be impossible in the classical case [SV84], but can be
achieved with quantum devices [CR12, GMdlT+13].

The last task is somewhat distinct from the first two, and is not the subject
of this thesis. Randomness expansion can be achieved in a device-independent
way by using a Bell test [Col06, PAM+10] and randomness extraction can be
carried out with a randomness extractor [DPVR12]. These two tasks can then
be articulated to obtain a bit string with the desired properties.

They both require some initial randomness. This observation might give the
impression that device-independent randomness generation and certification is
circular, and, as such, meaningless. That would be incorrect in two ways.

Firstly, the amount of randomness that is needed for generating the inputs of
the Bell test and as the seed for the extractor is typically smaller than the one
obtained as the final bit string. For that reason, one might study a randomness
expansion protocol in terms of efficiency, i.e., comparing the randomness that
we obtained to the randomness that we supplied.

Secondly, the nature of the initial randomness is different from the nature
of the final randomness. Indeed, the randomness that is inputed can be public:
it should not be correlated with the internal working of the quantum devices
and of the extractor, but it can be known to an external agent. On the other
hand, the value of the final random string is its privacy: an external agent has
no information on this bit string, which can thus be used for cryptographic
protocols. We take this approach in this thesis, which is why we talk about
‘randomness generation’, implying ‘private randomness generation’.

The theory of extractors has been extensively studied. An extractor is defined
with regards to a lower bound on the inputs’ min-entropy m. In an adversarial
scenario, the min-entropy of a random variable is the negative logarithm of
the probability that the adversary correctly guesses the values of that random
variable. This quantity thus depends on the nature of the correlations between
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Alice-Bob and the adversary. An explicit extractor then gives a relation between
m, the quality of the seed, and the length of the extracted string l.

In the case where Eve is classically correlated to Alice-Bob, the extractors
that were designed without taking into account the (classical) side information E
[BBC95, Tre01] are well suited [KR11]. If Eve shares quantum correlations with
Alice-Bob, that is, if the side information E represents a quantum state, a novel
theory of so-called quantum-proof extractors was developed [TSSR11, DPVR12].
Finally, if Eve, Alice and Bob are correlated in a supra-quantum way, privacy
amplification by hashing was proven to be impossible if no additional constraints
are imposed on the correlations [HRW13], but little is known if one makes the
natural assumption that the correlations are time-ordered, i.e., that only past
events can influence future events [AFTS12].

Randomness extractors are not within the scope of this thesis. Let us simply
mention that one can achieve at least:

l = m+O(log2(1/ε)), (2.33)

for both classical side [ILL89] and quantum side [Ren05] information via two-
universal hashing, and that one can obtain a longer extracted string if one
quantifies the quality of the inputs via the ε-smooth version of the min-entropy
[RW04], that consists in taking the maximal min-entropy in ball of size ε around
the ABE correlations (in the case of classical side information) or around the
ABE state (for quantum side information).

We now explain how one can relate the guessing probability problem and the
min-entropy, in the case of classical side information. We then briefly mention
the cases of quantum and supra-quantum side information.

A randomness generation protocol against an adversary with classical side
information is depicted in Fig. 2.6. In that case, the conditional min-entropy is
defined as:

Hmin(AB|XY, E) = − log2

∑
x,y,e

PXYE(x,y, e) max
a,b

PAB|XYE(ab|xye). (2.34)

Note that this quantity is also conditioned on the inputs on the Bell test. It
corresponds to assuming that this information is accessible to the eavesdropper.
It is thus the most conservative approach, as cryptographic protocols often
requires that Alice and Bob reveal some (or all) of their inputs on a public
channel.

A method to derive a lower bound on this n-round min-entropy based on
the one-round guessing probabilities G(AB|xy) was first presented in [PAM+10].
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Bell test Extractor

x1y1...xnyn

a1b1...anbn

Hmin(AB|XY, E) ≥ m

s

k1...kl
‖PKSE − Ul × PS × PE‖1 ≤ ε

Figure 2.6: Schematic representation of a (private) randomness generation
protocol with classical side information. Ul is the uniform distribution on {0, 1}l.
The distance between the ideal distribution Ul×PS ×PE and the real one PKSE

is the variational distance. We take into account the seed s in the security
requirement, which can be achieved with a so-called strong extractor.

It involves a statistical analysis on the n-round distribution via the Azuma-
Hoeffding inequality, and allows to bound the min-entropy conditioned on the
observation of a certain average value of the Bell inequality used in the guessing
probability problem (2.25). Some mistakes in the derivation were then fixed
in [PM13, FGS13].

The result essentially states that the n-round min-entropy is lower-bounded by
n times − log2[G(AB|XY )], where G(AB|XY ) is evaluated for a Bell violation
slightly less nonlocal than the observed average, with some correction terms.
Here, G(AB|XY ) denotes the worst case guessing probability for all inputs, i.e.:

G(AB|XY ) = max
xy

G(AB|xy). (2.35)

A generalisation of this bound was then derived in [NSBSP18]. In the
same spirit as the generalisation from (2.27) to (2.28), it takes into account the
possibility of bounding the min-entropy from a one-round randomness bound
valid for the full Alice-Bob statistics, but also from a randomness bound valid
for any number of Bell inequalities. Moreover, this randomness bound doesn’t
have to correspond to the worst case for all inputs, as in Eq. (2.35), but can be
computed for any (more favorable) subset of inputs. The exact statement of this
bound can be found in Chapter 4.

Assuming that the side information is classical is relevant in the case of
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DIRNG, as DIRNG typically involves one user in one location: no quantum
information needs to be sent over an insecure channel. In that case, the device-
independent approach allows to certify randomness even if the devices are
imperfect or not fully characterised, and even if an adversary takes advantage
of these possible flaws or lack of knowledge to try and predict the outcomes of
the Bell test [PM13]. However, in the case of DIQKD, where Alice and Bob
exchange quantum information over a public channel, one has to assume that
the eavesdropper can hold quantum side information.

In that case, that we do not consider in this thesis, a quantum version of
the min-entropy was defined [Ren05]. It was proven to accurately quantify
the number of bits that can be extracted against an adversary with quantum
side information [KR11]. Moreover, it can also be interpreted as the negative
logarithm of a quantum guessing probability [KRS09]. A way to lower bound
this quantity was introduced in [AFDF+18].

Finally, one can define a guessing probability problem similar to that of
Eq. (2.28) for the whole sequence of Bell tests G(AB|xy). By definition of the
min-entropy, one would thus have:

Hmin(AB|xy, E) = − log2[G(AB|xy)] (2.36)

Moreover, if Eve is equipped with a measurement choice Z, and can be
correlated in a supra-quantum way with Alice-Bob:

Hmin(AB|XY, ZE) = − log2[
∑
xy

PXY(xy)G(AB|xy)], (2.37)

see Chapter 3 for details.





Chapter 3

Quantifying the randomness
of copies of noisy
Popescu-Rohrlich
correlations

In a no-signalling world, the outputs of a nonlocal box cannot be completely
predetermined, a feature that is exploited in nonlocality based quantum inform-
ation protocols, such as DIRG or DIQKD. The relation between nonlocality and
randomness can be formally quantified through the min-entropy, a measure of
the unpredictability of the outputs that holds conditioned on the knowledge of
any adversary that is limited only by the no-signalling principle. This quantity
can easily be computed for the noisy PR-box, the paradigmatic example of non-
locality. In this Chapter, we consider the min-entropy associated to several copies
of noisy PR-boxes. In the case where n noisy PR-boxes are implemented using
n non-communicating pairs of devices, it is known that each PR-box behaves
as an independent biased coin: the min-entropy per PR-box is constant with
the number of copies. We show that this doesn’t hold in more general scenarios
where several noisy PR-boxes are implemented from a single pair of devices.
In this case, the min-entropy per PR-box is smaller than the min-entropy of a
single PR-box, and it decreases as the number of copies increases. The results of
this Chapter are based on [BPA18b].

33
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3.1 Introduction

Devices that are nonlocally correlated, i.e., which violate Bell inequalities, ne-
cessarily produce outcomes that cannot be perfectly determined [Val02]. This
statement is true even according to theories that can deviate from the standard
quantum formalism, provided that they satisfy the no-signalling principle accord-
ing to which local measurements made on a subsystem cannot reveal information
about measurements performed on distant subsystems.

This relation between nonlocality, randomness, and no-signalling can be
illustrated through the paradigmatic example of the noisy PR-box. Suppose that
Alice and Bob perform a Bell test with dichotomic inputs and outputs, governed
by the behaviour:

PRv(ab|xy) =

{
3/8 + v/8 if a+ b = xy mod 2

1/8− v/8 otherwise,
(3.1)

parameterized by the number v ∈ [−1, 1]. The case v = 1 corresponds to the
ideal PR-box, v = −1 to uniform white noise, and the intermediate cases to
noisy-PR boxes given by a mixture of these two possibilities. The devices violate
the CHSH inequality, hence are nonlocal, when v ∈ ]0, 1]. They can be realized
through measurement on a quantum state when v ≤

√
2− 1, with v =

√
2− 1

corresponding to Tsirelson-correlations, i.e., correlations reaching the maximal
quantum violation of the CHSH inequality.

We can quantify how random Alice’s outcome a is by considering how
predictable it is to a third party Eve. Eve could hold information allowing her to
guess Alice’s outcome a with greater probability that what directly follows from
the distribution (3.1). For instance, it could be that this distribution is realized as
a mixture of underlying distributions which are individually less random than (3.1)
and that Eve is aware of which one of these underlying distributions is currently
realized. More generally, Eve could hold some physical system correlated to
Alice’s and Bob’s devices and performing a measurement on her system could
reveal useful information about Alice’s outcome. Denoting z Eve’s measurement
choice and e the corresponding outcome, we can describe this situation through
a tripartite distribution P (abe|xyz), whose marginal distribution for Alice and
Bob corresponds to the noisy PR-correlations:

∑
e P (abe|xyz) = PRv(ab|xy).

It can easily be shown that, no matter what Eve’s strategy is, the maximum
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probability G1(A|x)[v] with which she can guess Alice’s outcome a is1

G1(A|x)[v] = 1− v

2
. (3.2)

This value holds under the only assumption that Alice, Bob, and Eve’s systems
satisfy the no-signalling constraints

P (ab|xyz) = P (ab|xy),

P (ae|xyz) = P (ae|xz), (3.3)

P (be|xyz) = P (be|yz),

stating that the input of one’s party cannot affect the marginal distribution of
the two other remote parties. Eq. (3.2) is proven in Appendix A.1 and Eve’s
optimal strategy is sketched in Fig. 3.1.

The optimal guessing probability (3.2) represents a measure of the randomness
of noisy PR-correlations. It is strictly smaller than 1, and thus Alice’s outcome
cannot be perfectly predicted by Eve, when v > 0, i.e., when Alice’s and Bob’s

devices are nonlocal. It is also common to use the min-entropy H
(1)
min(A|x,E)[v] =

− log2G1(A|x)[v] to express the randomness of (3.2) in bits [KRS09]. For

instance, the ideal PR-correlations have H
(1)
min(A|x,E)[1] = 1 bit of randomness,

while the Tsirelson-correlations have H
(1)
min(A|x,E)[

√
2− 1] = 1− log2(3−

√
2) '

0.335 bits of randomness.
In this Chapter, we investigate the randomness of noisy-PR correlations in a

scenario where Alice and Bob make n observations each, instead of a single one.
This operationally corresponds to Alice and Bob using n times a single pair of
devices, instead of a single one, either because they use n devices or a single
device repeatedly n times. They thus end up with, respectively, input strings
x = (x1, . . . , xn) and y = (y1, . . . , yn) and output strings a = (a1, . . . , an) and
b = (b1, . . . , bn). We assume that Alice and Bob’s observations are distributed
according to

P (a,b|x,y) =

n∏
i=1

PRv(aibi|xiyi) . (3.4)

This means that, from Alice and Bob’s perspective, their outputs are the same as
if they had used n identical and independent copies of the noisy PR-correlations
(3.1). This example was also studied in [FHSW10], where the authors investigate

1Anticipating a notation that we will use later on, the subscript “1” in G1(A|x)[v] refers to
a single copy of the noisy PR-box (3.1).
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×

Figure 3.1: Schematic representation of the adversarial strategy that achieves
the value given in Eq. (3.2). The base of the pyramid represents the CHSH facet
of the local set. The eight extreme points on this facet are the eight deterministic
strategies attaining CHSH=2. The blue point on top represents the PR-box.
For some fixed inputs x, y, the local points on the left side (in red) yield the
same value for a, say 0, and the ones on the right side (in orange) yield the other
possible value, say 1. In order to guess the value of a, Eve can prepare either a
mixture of the red and blue points (in purple), and guess a = 0, or a mixture of
the orange and blue points (in green), and guess a = 1. On average, these two
points reproduce Alice and Bob’s expected distributions, PRv, here depicted by
a square.

its so-called local part. Note that, even though their results have some similarities
with ours, there is no direct connection between the local part of some nonlocal
correlation and its unpredictability.

We here ask how predictable Alice’s string a is to some third party, Eve,
under the sole assumption of no-signalling. In full generality, we can again
characterise correlations among Alice, Bob, and Eve through a 2n+ 1-partite
distribution P (a,b, e|x,y, z), consisting of n input and output bits for Alice, n
input and output bits for Bob, and a single input and output symbol for Eve.

There are, however, different ways to generalize the no-signalling conditions
(3.3) to our 2n+1-partite situation, depending on how Alice and Bob’s experiment
is performed (see Fig. 3.2). For instance, Alice and Bob could use n separated
pairs of devices, where each pair i = 1, . . . , n receives inputs xi, yi and produces
outputs ai, bi. They could use a single pair of devices n times in succession, where
now xi, yi and ai, bi refers to the inputs and outputs at the ith round. A further
possibility is that Alice holds some big device where she directly inputs n-bit
strings x and get n-bits output strings a, and similarly Bob holds a big device
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accepting n-bit inputs y and producing n-bit outputs b. To each such physical
scenario is associated a different set of no-signalling constraints corresponding to
limitations on how the input xi (or yi) can causally influence the output strings
a and b. In what follows, we will define in more details four natural scenarios
and their associated no-signalling constraints.

In all cases, one possible strategy for Eve is to guess each of Alice’s output
ai independently using the optimal single-copy strategy yielding (3.2). However,
there may exist clever strategies that perform better than this independent
guessing strategy. This is so even though the correlations (3.4) look identical
and independent from Alice’s and Bob’s perspective, because they need not look
that way from Eve’s point of view. Indeed, the probabilities P (a,b|x,y, e, z)
conditioned on Eve’s knowledge do not need to take a product form, only their
average

∑
e P (e|z)P (a,b|x,y, e, z) = P (a,b|x,y), corresponding to tracing out

Eve, should. In particular, Eve can design the correlations P (a,b|x,y, e, z) in
such a way that the distribution of an output pair (ai, bi) is correlated with other
values of inputs and outputs. This enables Eve to increase the predictability of
some particular sequences, conditioned on the value of e, while keeping Alice
and Bob’s marginal distributions unchanged.

We show that this is indeed what happens for several no-signalling scenarios
of interest. The single-copy guessing probability (3.2) thus does not correctly
reflect the randomness of noisy PR-boxes in a situation involving n copies of
such correlations.

Beside its fundamental interest, this investigation is also motivated by the
problem of understanding better the security of quantum key distribution and
quantum random number generation against no-signalling adversaries, whose
status is not clear at the moment [AFTS12, SW16]. Previous works have
looked at how much information a no-signalling adversary can obtain about the
outcomes of n PR-boxes after privacy amplification [AFHTS12]. We look here
at her information before privacy amplification, i.e., on the raw output string.
Though the results that we present do not have yet direct implications for the
security of quantum key distribution and quantum random number generation
schemes, they contribute to a better characterisation of adversarial strategies.

3.2 Definitions

Before we present and discuss our results, we introduce here the problem that
we consider in more details.
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3.2.1 General scenario

We use subscripts to denote certain sub-strings of n-bit strings, e.g. x≤i =
(x1, . . . , xi), x>i = (xi+1, . . . , xn) or x\i = (x1, . . . , xi−1, xi+1, . . . , xn). The
subscript 0 corresponds to the empty string: x0 = ∅.

Alice, after interacting n times with one or several devices, ends up with input
and output strings x and a. Similarly, Bob ends up with input and output strings
y and b. We assume, as in Eq. (3.4), that the joint probabilities P (a,b|x,y)
correspond to n-copies of noisy PR-correlations.

We assume that Eve holds a system that may be correlated to Alice’s
and Bob’s devices, a situation that can be described, as in the introduction,
through a distribution P (a,b, e|x,y, z) that is compatible with Alice and Bob
marginals. Under the assumption that these correlations cannot be used for
signalling between Eve and Alice-Bob, we can describe things in an alternative,
convenient way that does not directly involves Eve’s input z. Indeed, as explained
in [ACP+16], any measurement that Eve can perform on her system can be
interpreted as a choice of a convex decomposition

∑
e

P (e)P e(a,b|x,y) =

n∏
i=1

PRv(aibi|xiyi) (3.5)

of Alice’s and Bob’s devices and her measurement outcome e can be interpreted as
indicating one part of this decomposition. Conversely, any convex decomposition
(3.5) of Alice and Bob’s system can be realized by Eve by choosing an appropriate
measurement on her system. From now on, we adopt this view.

The components P e(a,b|x,y) in the above decomposition are not arbitrary
but should satisfy certain no-signalling constraints reflecting the causal relations
that follow from the way Alice and Bob use their devices. We consider four
types of such no-signalling constraints.

Definition 5 (Full-NS). The probabilities P e(a,b|x,y) are fully no-signalling
(Full-NS) if, for every 1 ≤ i ≤ n,

P e(a\i,b|x,y) = P e(a\i,b|x\i,y), (3.6)

P e(a,b\i|x,y) = P e(a,b\i|x,y\i) . (3.7)

In the above definition, it is to be understood that Eq.(3.6) holds for all pos-
sible values of a\i,b,x,y, e and Eq.(3.7) for all possible values of a,b\i,x,y, e.
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The marginal distribution P e(a\i,b|x,y) is obtained by summing the whole
probability table of Alice and Bob over the missing variables: P e(a\i,b|x,y) =∑

ai
P e(a,b|x,y) and analogously for P e(a,b\i|x,y). The other definitions that

we introduce below should be understood similarly.
This condition corresponds to having 2n parties which satisfy all possible

pairwise no-signalling conditions. It is operationally equivalent to using 2n boxes
that are all causally independent, i.e., no communication is allowed between any
of them, even though they can be correlated [MPA11, HRW10]. See Fig. 3.2 (a)
for a schematic representation of this scenario.

Definition 6 (ABNS). The probabilities P e(a,b|x,y) are Alice-Bob no-signalling
(ABNS) if

P e(b|x,y) = P e(b|y), (3.8)

P e(a|x,y) = P e(a|x) . (3.9)

In this case, no-signalling holds only between Alice and Bob, i.e., there is no
communication between them. It means that the inputs used by Bob cannot be
inferred from Alice’s marginal distribution, even if the information from all the
rounds is grouped together, and vice-versa. However, there is no constraint on
the internal structure of Alice’s or Bob’s own marginal. For instance, output a1

could depend on the values of all the inputs x = (x1 . . . xn).
It is equivalent to considering one big device on Alice’s side (respectively

Bob’s side), that receives as input the string x = (x1 . . . xn) (resp. y) and
produces at once the output string a = (a1 . . . an) (resp. b), or n devices on each
side that are used in parallel and can communicate freely amongst themselves
[HRW13]. This condition is schematically depicted in Fig. 3.2 (b).

Definition 7 (TONS). The probabilities P e(a,b|x,y) are time-ordered no-
signalling (TONS) if, for every 0 ≤ i < n

P e(a≤i,b|x,y) = P e(a≤i,b|x≤i,y), (3.10)

P e(a,b≤i|x,y) = P e(a,b≤i|x,y≤i) . (3.11)

In this case, no-signalling holds between Alice and Bob as for ABNS (take i = 0).
In addition, future rounds (which corresponds to values greater than i) have no
influence on past rounds (which corresponds to values smaller than i) on each
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side. It describes the situation where two devices are separated from each other
during the entire run of the experiment and are used sequentially, while keeping
a memory of the past events [AFTS12, SW16]. The schematic representation of
this condition can be found in Fig. 3.2 (c).

Note that Full-NS ⊂ TONS ⊂ ABNS.

Definition 8 (WTONS). The probabilities P e(a,b|x,y) are weakly time-ordered
no-signalling (WTONS) if for all 0 ≤ i < n,

P e(a≤i,b≤i+1|x,y) = P e(a≤i,b≤i+1|x≤i,y≤i+1), (3.12)

P e(a≤i+1,b≤i|x,y) = P e(a≤i+1,b≤i|x≤i+1,y≤i) . (3.13)

This condition is a weakened version of the time-ordered-no-signalling condition,
i.e. TONS ⊂ WTONS. Future rounds cannot influence past round, and no-
signalling holds at each individual round, but, contrarily to ABNS and TONS,
no-signalling between Alice and Bob does not hold throughout the entire run
of the experiment. It means that Alice’s marginal at round i is independent of
x>i and y≥i, but can depend on x≤i and y<i, and likewise for Bob. It describes
the situation where two devices are used sequentially and have memory, and
where these two devices can moreover communicate between successive rounds
[AFHTS12]. See Fig. 3.2 (d) for a schematic representation.

The TONS condition naturally emerges if the two devices can be shielded from
each other during the entire experiment, e.g., if n pairs of entangled particles are
stored in memory. Yet in many practical situations, pairs of entangled particles
are produced one round after the other and distributed to each device. This
requires that the devices be opened between each round, at which point some
communication between the two devices could happen. WTONS characterises
this situation.

Note that if we consider, as in the WTONS scenario, that communication
between the boxes cannot be prevented between the successive rounds, one could
also argue that one could not prevent the outcome bits from directly leaking
to Eve, thus rendering the notion of guessing probability irrelevant. This point
is pertinent in the case of protocols such as DIQKD, where Alice and Bob are
indeed two distant agents aiming to share some private bits at distant locations.
In this case, there is indeed no reason to believe that the information flowing
from Alice to Bob could not also flow from Alice to Eve. However, for protocols
such as DIRNG, Alice and Bob can be thought of as two fictional agents in a
single laboratory, as the goal is here to obtain private bits in a unique location.
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Figure 3.2: Representations of the Full-NS (a), ABNS (b), TONS (c) and
WTONS (d) conditions. The double lines indicate that there is no information
flow between the corresponding boxes, while the double arrows indicate the
direction of the information flow.

In this situation, we believe that the TONS and WTONS scenarios are two
relevant models.

3.2.2 Quantifying randomness

We quantify the randomness of Alice’s output string a via the local form of the
guessing probability problem defined by Eq.(2.28), that is, when the complete
Alice-Bob behaviour is fixed. Eve’s optimal guessing probability is thus the
solution of the following optimisation problem:
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Gn(A|x∗,y∗)[v] = max
{P (α),Pα}

∑
α

P (α)Pα(a = α|x∗,y∗) (3.14)

s.t.
∑
α

P (α)Pα(a,b|x,y) =

n∏
i=1

PRv(ai, bi|xi, yi)

∀α, Pα(a,b|x,y) is NS

where NS denotes one of the no-signalling constraints NS={Full-NS, ABNS,
TONS, WTONS}, depending on which scenario is considered. Note that here,
we don’t absorb the weights P (α) into the behaviours Pα, because they can be
dealt with in a simple way, see Appendix A.4 for details.

It is implicit in the above formulation that Eve’s choice of convex decomposi-
tion – and thus that the optimal guessing probability – depends on the inputs x∗

and y∗ that are chosen by Alice and Bob. We therefore assume that the specific
inputs x∗ and y∗ used by Alice and Bob are communicated to Eve. Indeed, our
aim is to quantify the fundamental, intrinsic randomness generated at Alice’s
side, even in a situation where all details of the experimental set-up are known to
Eve. From an applied point of view, it also means that this quantity is relevant
for a protocol where some actions are taken based on some specific values of
inputs (x∗,y∗), fixed in advance: the bound on the predictability is valid even if
the protocol is known to Eve.

The optimal guessing probability Gn(A|x∗,y∗)[v] may therefore depend on
the input choices x∗ and y∗ and there could thus be different possible ways to
quantify the randomness of Alice’s output: e.g., by considering the worst-case
over all inputs choices or the expected guessing probability with respect to
some probability distribution for Alice and Bob’s inputs. In our case, however,
thanks to the symmetries of the noisy PR-correlations (3.1), the same optimal
value Gn(A|x∗,y∗)[v] is obtained for any possible choice of inputs x∗ and y∗.
Indeed, as we show in Appendix A.2, given any solution to (3.14) for a given
pair of inputs x∗,y∗, one can construct a corresponding solution for any other
pairs of inputs that yields the same guessing probability. Thus we can simply
quantify the randomness of Alice’s output through the guessing probability
associated to any given input choices. For specificity, we will use the choice
x∗ = y∗ = 0 = (01, . . . , 0n) in the following, and for simplicity, we will write
Gn(A|0,0)[v] = Gn(v).

Note that, even if in our problem the optimal guessing probability for any
input choices of Alice and Bob Gn(v) is the same, the particular convex decom-
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position achieving this optimal value will vary with the choice of inputs. If Eve
is equipped with a measurement choice Z, she can remotely choose the optimal
decomposition by selecting a measurement on her system when she is informed
about Alice and Bob’s input choices. This gives rise to a tripartite behaviour
PABE|XYZ . Writing {Pα,x∗,y∗}α the argument of the maximum G(A|x∗,y∗),
PABE|XYZ is such that:

PAB|XY,Z=(x∗,y∗),E=α = Pα,x
∗,y∗ . (3.15)

Moreover, PABE|XYZ obeys no-signalling between Alice and Bob because

Pα,x
∗,y∗ does, and between Alice-Bob and Eve because of the first constraint

of (3.14). The conditional min-entropy:

H
(n)
min(A|X,Y, Z,E) = − log2[

∑
x∗y∗ze

PXYZE(x∗y∗ze) max
a

PA|XYZE(a|x∗y∗ze)]

(3.16)
for that distribution is thus:

H
(n)
min(A|X,Y, Z,E) = − log2[

∑
x∗y∗

PXY(xy)
∑
ze

PZE(ze)G(A|x∗y∗)] (3.17)

= − log2[
∑
x∗y∗

PXY(xy)G(A|x∗y∗)], (3.18)

by normalisation, which is equal to

H
(n)
min(A|X,Y, Z,E) = − log2[Gn(v)] (3.19)

in our case, because the guessing probabilities are the same for all (x∗,y∗).
Thus, Gn(v) correctly reflects the probability with which Eve can guess

Alice’s output in the most general scenario, and we now write

H
(n)
min(v) = − log2[Gn(v)]. (3.20)

However, this requires Eve to hold some “coherent memory”, and to delay
her measurement until when she is informed about Alice’s and Bob’s inputs.
One could also consider, as in [PMLA13], a situation where Eve has no such
“coherent memory” and is forced to commit to a decomposition before Alice’s
and Bob’s inputs are known. Here we choose to quantify randomness in the
former scenario because it corresponds to the worst possible setting where Eve’s
knowledge is maximal. Furthermore, it also corresponds to the scenario where
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the security of RNG and QKD against no-signalling adversaries is not clearly
established.

Finally, note that in the case of the Full-NS, ABNS, and TONS constraints,
Pα(a|x∗,y∗) = Pα(a|x∗) and thus Eve’s strategy does not actually need to
depend on the knowledge of Bob’s input y∗. This, however, is not necessarily the
case for the WTONS constraints for which no-signalling does not hold between
Alice and Bob. This is why we include explicitly y∗ in (3.14).

3.3 Basic observations and known results

Before presenting our actual results – the optimal solutions to (3.14) for different
values of n, noise levels v, and different no-signalling conditions – let us make
some basic observations.

3.3.1 Bounds on Gn(v) from G1(v)

For n = 1, all the no-signalling conditions NS={Full-NS, ABNS, TONS, WTONS}
that we have introduced reduce to the usual no-signalling conditions between
Alice and Bob:

P e(a1|x1, y1) = P e(a1|x1) (3.21)

P e(b1|x1, y1) = P e(b1|y1) . (3.22)

As we have claimed in the introduction, the optimal guessing probability G1(v)
is known in this case and is given by Eq. (3.2).

Before attempting to find the guessing probabilities Gn(v) for values of n > 1,
we can already observe that they necessarily satisfy the trivial bounds

Gn1 (v) ≤ Gn(v) ≤ G1(v) (3.23)

or explicitly (
1− v

2

)n
≤ Gn(v) ≤ 1− v

2
. (3.24)

The lower-bound Gn(v) ≥ Gn1 (v) follows from the fact that a possible strategy
is for Eve to guess each output bit of Alice ai independently using the optimal
strategy for a single copy of PR-correlations. The probability to guess correctly
the entire string a = (a1, . . . , an) is then simply the product of the probability
to guess correctly each bit independently. There could be, however, more clever
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strategies, hence this only represents a lower-bound on the n-copy guessing
probability Gn(v).

The upper-bound Gn(v) ≤ G1(v) follows from the fact that the probability to
guess correctly the entire n-bit string a should not be higher than the probability
to guess only one of the ai.

For v = 0, corresponding to the point at which the noisy PR-correlations
become local, the lower-bound and upper-bound coincide and give the trivial value
Gn(0) = 1, as expected since any local correlations admit a purely deterministic
explanation.

For v = 1, corresponding to perfect PR-correlations, it is possible to show
that the lower-bound is saturated, i.e., Gn(1) = (1/2)n. This follows from the
fact that the product of n perfect PR-correlations is a vertex of the polytopes
associated with any of the no-signalling constraints NS={Full-NS, ABNS, TONS,
WTONS}, see Appendix A.3.

The values Gn(v) for the different no-signalling constraints that we consider
here thus all coincide at the extremities of the interval v ∈ [0, 1] and our problem
is to understand how the guessing probability varies as a function of n for
0 < v < 1.

3.3.2 Gn(v) in the Full-NS scenario

For the Full-NS scenario, it happens that the independent strategy discussed
above is actually the optimal strategy. This directly follows from the results of
Appendix A of [MRC+14], where it is shown that for every P (a,b|x,y) that is
Full-NS, the following bound holds

Gn(v) ≤
∑

a,b,x,y

n∏
i=1

β(ai, bi, xi, yi)P (a,b|x,y) , (3.25)

where the coefficients β are defined as

β(a, b, x, y) =

{
1/8 if a+ b = xy mod 2

5/8 otherwise.
(3.26)

In the case where P (a,b|x,y) =
∏n
i=1 PR(ai, bi|xi, yi), it is easily seen that this

yields Gn(v) ≤
(
1− v

2

)n
. Since this value can be trivially attained with the

independent strategy discussed above, we have that

Gn(v) =
(

1− v

2

)n
. (3.27)
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Figure 3.3: Guessing probabilities for n = 2, for the ABNS, TONS and Full-NS
scenarios. The guessing probability for the WTONS conditions is the same as
for the TONS conditions.

The min-entropy

H
(n)
min(v) = − log2Gn(v) = −n log2

(
1− v

2

)
= nH

(1)
min

thus scales linearly with n: each new use of the noisy-PR correlations brings

H
(1)
min new bits of randomness. Interestingly, we show below that this is no longer

the case in the other no-signalling scenarios that we consider.

3.4 Results

The optimisation problem (3.14) is a linear program. This is easily seen, as ex-
plained in Section 2.3.1, by rewriting it in term of the unnormalized probabilities
P̃α(a,b|x,y) = P (α)Pα(a,b|x,y). For n = {2, 3, 4, 5}, we numerically solved
this linear program for the three sets ABNS, TONS, WTONS.

We find in each case that the optimal guessing probability is higher than the
one obtained with the independent strategy corresponding to the lower-bound in
(3.24). Furthermore, for the cases n = {2, 3}, we solve (3.14) by finding explicit
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Figure 3.4: Guessing probabilities for n = 3. The change of behaviour at
v = −2 +

√
5 indicated in Table 3.1 for the TONS and WTONS scenarios is not

apparent because the polynomial is very close to the line in this region.

solutions to its primal and dual forms, and thus obtain the analytical expressions
of Gn(v).

3.4.1 Solutions for n = {2, 3}
The analytical solutions to the optimisation problem (3.14) are given in Table 3.1,
and are plotted as a function of v in Figures 3.3 and 3.4. For the Full-NS scenario,
we recover, as expected, the value (3.27) corresponding to the independent
strategy. In the three other cases ABNS, TONS, WTONS, we find that the
guessing probability is strictly higher than this value for all 0 < v < 1.

The solutions are detailed in [BPA18a]. We now make a few observations.
First of all, for n = 2 and v ≤

√
2 − 1, the guessing probability G2(v) in the

ABNS scenario saturates the trivial upper-bound in (3.24) given by the single-
round guessing probability, i.e., G2(v) = G1(v) = 1 − v/2. This establishes,
independently of our dual solutions, that our explicit strategy is optimal in this
case.

Conceptually, it is surprising that the guessing probability does not decrease
from n = 1 to n = 2 as it means that it is not more difficult for Eve to guess
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n = 2, ABNS:

G2(v) =

{
1− 1

2v if v ≤
√

2− 1
9
8 − 3

4v − 1
8v

2 if v ≥
√

2− 1

n = 2, TONS and WTONS:
G2(v) = 1− 3

4v

n = 3, ABNS:

G3(v) =


1− 1

2v if v ≤ v1

67
64 − 45

64v − 3
64v

2 + 1
64v

3 if v1 ≤ v ≤ v2

41
32 − 27

32v − 9
32v

2 − 1
32v

3 if v ≥ v2

where v1 is the unique root of x3 − 3x2 − 13x+ 3 in [0, 1] (v1 ≈ 0.22038)
and v2 the unique root of x3 + 5x2 + 3x− 5 in [0, 1] (v2 ≈ 0.70928).

n = 3, TONS and WTONS:

G3(v) =

{
1− 29

32v + 1
8v

2 + 1
32v

3 if v ≤
√

5− 2

1− 7
8v if v ≥

√
5− 2

Table 3.1: Analytical values of the guessing probabilities for n = 2, 3.

two outcome bits of Alice than it is to guess a single one. More surprisingly, the
region where this happens corresponds to v ≤

√
2− 1, i.e., to the region where

the noisy PR-correlations admit a quantum representation. We do not know
whether this is merely a coincidence or whether it has some deeper meaning
about the structure of the quantum set.

For n = 3, there is again a region, corresponding to v ≤ 0.22038, where
G3(v) = G1(v). This region is smaller than the previous one, but on the other
hand, Eve can now guess three successive bits of Alice with the same error
probability as when guessing a single one.

For the TONS and WTONS scenarios, we find that the two solutions coincide.
Interestingly, we find that the optimal solution in the case n = 2 is linear in v,
as for n = 1. For n = 3, this is only true if v is above the threshold v ≥

√
5− 2.
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We now intuitively explain how the strategies we have found work and the origin
of this linear behaviour.

In our model, Eve distributes the correlations for Alice and Bob and can
adapt the decomposition for each round depending on what happened in the
previous rounds. For the first round, there is no past, so she prepares the
mixture of extremal local and nonlocal points compatible with Alice and Bob’s
probabilities depicted in Figure 3.1.

The distribution for the second round depends on what happened in the
first one 2. If Alice’s first output is such that Eve’s guess is correct, the devices
on the second round behave in a more predictable way, i.e., their correlations
correspond to a more local point. This allows Eve to improve her guess on the
two generated outputs. On the other hand, if Alice’s first output is such that
Eve’s guess is wrong, the subsequent events are of no importance to the value of
the guessing probability: the devices can be maximally nonlocal, i.e., a PR-box.

These different possibilities can then combine in such a way that Alice and
Bob’s marginal distributions are as expected, if Eve accurately adjusts the
amount of nonlocality in the second round based on the value of v. For n = 2,
the balance is such that the guessing probability is linear in v.

One could hope to straightforwardly extend this strategy to any number
of rounds and that it would imply that the guessing probability be equal to
1 − (2n − 1)/(2n) · v for all n. This is however not the case. To understand
why, note that, in order to constantly improve her guess, Eve needs to prepare
distributions that have more and more predictable outcomes, i.e., points that
are closer and closer to the local set. But when a point is local, its outcomes are
perfectly known to Eve: its predictability cannot increase anymore. We observe
that, when this happens at some round, Gn(v) is less than 1−(2n−1)/(2n) ·v for
subsequent rounds. This phenomenon happens after a certain number of rounds,
which depends on the value of v. For n = 3, we observe it for v ≤ −2 +

√
5.

3.4.2 Solutions for n = {4, 5}
We then numerically solved (3.14) for n = {4, 5}. The results are plotted in
Figures 3.5 and 3.6. In this case, we did not attempt to find the analytical
expressions of G4(v) and G5(v): keeping track of the dual’s variables, which grow
exponentially with n, becomes demanding, while a numerical result is sufficient
for our purpose.

2Let us stress that Eve doesn’t need to acquire this knowledge for the strategy to be valid.
This is merely a way to give an intuition about the strategy by decomposing it sequentially,
while the attack is entirely designed prior to the experiment.
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Figure 3.5: Guessing probabilities for n = 4. We add the line interpolating (0, 1)
and (1, 1

16 ) (black dotted line) to emphasize the breakdown of linear dependence
of the TONS guessing probability for some v.

As before, we observe that for v small enough, there is a region, that gets
smaller as n increases, where G5(v) = G4(v) = G1(v) in the ABNS scenario.

For the TONS and WTONS scenarios, the guessing probability depends
linearly on v (as 1− 15/16 · v for n = 4 and as 1− 31/32 · v for n = 5 ) when v
is large enough. The minimal v for which this happens increases and gets closer
to 1 as n increases.

However, while for n ≤ 3, the guessing probability is the same for the TONS
and WTONS scenarios, this is no longer the case when n ≥ 4, except in the
linear regime for v close to 1. The difference between the TONS and WTONS
values is not visible on the graphs, which is why we highlight it in the following
tables:

v 0.05 0.1 0.15 0.2

G4(v)
WTONS 0.9487 0.8981 0.8482 0.7990
TONS 0.9481 0.8972 0.8473 0.7985
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Figure 3.6: Guessing probabilities for n = 5. We add the line interpolating (0, 1)
and (1, 1

32 ) (black dotted line) to emphasize the breakdown of linear dependence
of the TONS guessing probability for some v.

v 0.05 0.1 0.15 0.2

G5(v)
WTONS 0.9451 0.8913 0.8387 0.7865
TONS 0.9431 0.8874 0.8328 0.7795

Carrying out the numerical optimisation for larger n becomes computationally
too demanding, as the number of variables and constraints grows exponentially
with n. However, the results obtained for small n already have implications for
all n, as explained below.

3.4.3 Implications for all n

For the ABNS, TONS, and WTONS scenarios, we have found in the previous sub-
sections that, contrarily to what happens in the Full-NS scenario, the independent
strategy is not the optimal strategy for n = {2, 3, 4, 5}, i.e., Gn(v) > Gn1 (v).

This implies in particular that one can improve the lower-bound Gn(v) ≥
Gn1 (v) for all n, as, instead of considering strategies where Eve guesses independ-



52 CHAPTER 3. RANDOMNESS OF PR-BOXES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

H
(n

)
m
in

(v
)/
n

(b
it

s/
ru

n
)

n = 1
n = 2
n = 3
n = 4
n = 5

Figure 3.7: Min-entropy rates obtained when Eve is able to guess individual
outcomes bits, and pairs, triples, quadruples and quintuples of outcome bits, in
the TONS scenario. The curves for the WTONS scenario are virtually the same,
as the guessing probabilities for WTONS are either the same or very close to
the ones for TONS.

ently each individual outcome bit of Alice, one can now consider strategies where
Eve guesses independently pairs, triples, quadruples or quintuples of outcome
bits of Alice. For instance if n = 5k, Eve can guess every successive quintuple of
outcomes independently, and we have thus the lower-bound

Gn(v) = G5k(v) ≥ Gk5(v) . (3.28)

In terms of the min-entropy per run this corresponds to the lower-bound

H
(n)
min(v)

n
=
H

(5k)
min (v)

5k
≤ H

(5)
min(v)

5
, (3.29)

which is strictly smaller than the single-run min-entropy: H
(n)
min(v)/n < H

(1)
min(v),

as illustrated in Figures 3.7 and 3.8.
In other words, for multiple uses of the noisy PR-correlations, each instance

of the PR-correlations carry less entropy than what one would have naively
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Figure 3.8: Min-entropy rates obtained when Eve is able to guess individual
outcomes bits, and pairs, triples, quadruples and quintuples of outcome bits, in
the ABNS scenario.

guessed from (3.2). This suggest, in analogy with other measures in quantum

information, an asymptotic definition limn→∞
H

(n)
min(v)

n of the randomness of noisy
PR-correlations in the ABNS, TONS, and WTONS scenarios.

3.5 Conclusion

In this Chapter, we have investigated the randomness of n noisy PR-boxes, which
represent the paradigmatic example of nonlocal correlations and which are at
the basis of many device-independent random number generation and quantum
key distribution protocols.

In the Full-NS scenario, where the n noisy PR-correlations are obtained from
n pairs of – possibly correlated – but non-communicating devices, the probability
to guess correctly the n output bits of one party decreases exponentially with n,
exactly as if the n noisy PR-boxes were n independent coins with a bias given
by Eq. (3.2).

However, in the ABNS, TONS, and WTONS scenarios, where the n noisy
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PR-correlations originate from a single pair of devices, either used sequentially
n times, or which produce n outcome bits in one run, we have found that the
randomness per PR-box can be significantly less than the individual randomness
(3.2). In particular, we have found that, in the ABNS case, for noise values v
below some threshold, the total randomness associated to n ≤ 5 noisy PR-boxes
is equal to the randomness of a single noisy PR-box. We conjecture that this
holds for any n for some suitable noise threshold. In the TONS and WTONS
case, for the same values of n, we have found that the guessing probability is
linear in v for some region [vnc ; 1]. We conjecture that this holds for any n, but
that vnc tends to 1.

Besides their fundamental interest, it is worth considering our results from the
perspective of the current status of the security of device-independent random
number generation and quantum key distribution protocols. In the Full-NS
scenario, their security has been proven [MRC+14]. In the case of the ABNS
scenario, there exists a no-go result: starting from n noisy PR-boxes, it is not
possible to extract, after privacy amplification, even a single bit that is arbitrarily
close to uniform no matter how large n is [HRW13] (except if no noise is present,
corresponding to v = 1). In the case of the TONS and WTONS scenarios, the
situation is less clear. Though there exist severe limitations on the randomness
one can extract from n noisy PR-boxes after privacy amplification [AFTS12],
those results do not imply that DI RNG or QKD are necessarily impossible in
these scenarios.

Interestingly, the Full-NS scenario, where security has been established, cor-
responds to the situation where the randomness of n noisy PR-boxes accumulates
with n in an i.i.d. way, while in the ABNS, TONS, and WTONS scenarios, were
security was proven to be impossible or is still an open question, the randomness
per use of the PR-boxes decreases with n. Though the negative results that
are presently known for the ABNS, TONS, and WTONS scenarios [AFTS12]
are obtained by taking into account limitations on privacy amplification in a
no-signalling context, it is possible that these impossibility results can be traced
back to a lack of randomness even before privacy amplification.

To answer this question definitely, one would have to show that the smooth
min-entropy is bounded by a sublinear (i.e. logarithmic or constant) function of
n. The upper-bounds that we have obtained here are only concerned with the
min-entropy, and thus do not imply any such impossibility result. Nevertheless,
we believe that they pave the way to a new approach for studying the possibility
of no-signalling privacy amplification, as no results were known concerning the
min-entropy (smooth or non-smooth) in that context. Though our results do
not exclude, in the ABNS, TONS and WTONS scenarios, a linear increase of
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the min-entropy in the asymptotic limit n → ∞, they imply an increase at a
rate that is significantly lower than what one would naively deduce from the
single-copy value (3.2).





Chapter 4

Regularising data for
practical randomness
generation

Non-local correlations that obey the no-signalling principle contain intrinsic
randomness. In particular, for a specific Bell experiment, one can derive relations
between the amount of randomness produced, as quantified by the min-entropy of
the output data, and its associated violation of a Bell inequality. In practice, due
to finite sampling, certifying randomness requires the development of statistical
tools to lower-bound the min-entropy of the data as a function of the estimated
Bell violation. The quality of such bounds relies on the choice of certificate, i.e.,
the Bell inequality whose violation is estimated. In this Chapter, we propose a
method for choosing efficiently such a certificate. It requires sacrificing a part of
the output data in order to estimate the underlying correlations. Regularising
this estimate then allows one to find a Bell inequality that is well suited for
certifying practical randomness from these specific correlations. We then study
the effects of various parameters on the obtained min-entropy bound and explain
how to tune them in a favourable way. Lastly, we carry out several numerical
simulations of a Bell experiment to show the efficiency of our method: we nearly
always obtain higher min-entropy rates than when we use a pre-established Bell
inequality, namely the Clauser-Horne-Shimony-Holt inequality.

57



58 CHAPTER 4. RANDOMNESS VIA REGULARISATION

4.1 Introduction

In order to characterise the unpredictability of the outcomes of a given experiment,
one usually models an adversary who has access to some information on the
devices used in the experiment. If the devices in use behave classically, and if
the adversary is given total information about them, no unpredictable bits can
be obtained, as classical physics is deterministic. By contrast, if the devices are
quantum, their outputs can be impossible to predict, even when the adversary
has access to a perfect characterisation of the devices. In practice, a perfect
control of quantum devices is rarely possible. This means that, in most cases,
even the users do not have access to a perfect characterisation of the devices.
Fortunately, the unpredictability of a sequence of bits can be certified even when
the devices producing them cannot be completely characterised, thanks to the
device-independent approach to quantum information protocols.

Quantifying the unpredictability of the bits obtained in a Bell experiment is
not a trivial task, as it depends on a number of factors, including how powerful the
adversary is assumed to be [VV12], how the devices are assumed to behave with
time [AFTS12, RBaH+16] or how the users process the accessible information
[BSS14, NSBSP18]. In this Chapter, we adopt the most common approach to
estimating the unpredictability of a Bell experiment: a user enters a bit in each
of two shielded devices, which in return give output bits, according to some
conditional probability distribution. These bits can be used to compute the
observed violation of a Bell inequality. We compute the guessing probability
given this violation, and we restrict our attention to the case where the adversary
only has access to classical side information [FGS13, KZB17, NSBSP18] (for
the case of an adversary with quantum side information, we refer the readers
to [DFR16, KZF18, AFDF+18]). That is a reasonable level of security since
device-independent randomness generation involves only one user in one location.
The only thing the adversary may exploit in this case is the imperfection of the
device such as noise or deterioration with time. We refer the readers to [PM13]
for a detailed explanation. We then quantify the randomness of the sequence of
output bits by its min-entropy.

The upside of this approach is its simplicity, as it depends on only one
parameter: the violation of a Bell inequality. However, in a real Bell experiment,
this number cannot be exactly known, as the number of runs is finite. One can
only compute an estimate of the average Bell violation. To overcome this obstacle,
statistical tools were developed that allow one to upper-bound the predictability
of the outputs with arbitrary confidence, based only on an estimate of the Bell
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violation, rather than its theoretical value [PAM+10, FGS13, PM13, NSBSP18].
Another question naturally arises in this approach: which Bell inequality

should one use to obtain good bounds? A Bell inequality violation contains only
partial information about the input-output correlation. Choosing the inequality
poorly can result in a serious underestimation of the unpredictability of a Bell
experiment, and may not even certify any unpredictability, as every non-local
correlations satisfy some Bell inequalities. Yet, if the input-output distribution is
known, finding the Bell inequality that certifies as much randomness as possible
turns out to be an SDP [NSPS14, BSS14]. Unfortunately, as mentioned above,
the input-output distribution is not accessible in practice, due to finite statistics.

We thus propose a method to circumvent this problem. It consists in using
part of the input-output statistics to estimate the corresponding underlying
distribution. It is however very likely that a naive estimate based on the relative
frequencies will not correspond to a distribution achievable with quantum physics.
Consequently, the above-mentioned SDP is not directly applicable as it can only
be solved for distribution that belongs to the quantum set, or to some specific
relaxation of this set, such as the ones defined by the NPA hierarchy. We thus
employ the methods developed in [LRZ+18] in order to obtain a distribution
approximating the underlying distribution that lies inside one the NPA sets.
This then enables us to solve the corresponding SDP and hence obtain a Bell
inequality specifically suited for the estimated distribution, and hence better
tailored for the underlying distribution.

4.2 Lower bound on the min-entropy

Alice and Bob perform n successive Bell tests. They respectively input x ∈
{0, 1}n and y ∈ {0, 1}n and obtain outputs a ∈ {0, 1}n and b ∈ {0, 1}n,
distributed according to the conditional distributions PAB|XY. We assume
that this behaviour obeys quantum mechanics. We quantify the randomness of
the outputs produced in these Bells test via the min-entropy. We extend the
definition given in Eq. (2.34), taking into account the possibility of conditioning
on the observation of some event λ. The min-entropy of (A,B) given (X,Y)
conditioned on some event λ, according to a distribution P = PABXY, is:

Hmin(A,B|X,Y, λ)P = − log2

∑
x,y

P (x,y|λ) max
a,b

P (a,b|x,y, λ). (4.1)

The event λ is typically a function of the specific inputs that were chosen and
the specific outputs that were obtained during the Bell experiment, such as a
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statistical estimate. Note that, here, we don’t take into account the adversary’s
side information E, because we assume that this side information is classical
(see [FGS13, NSBSP18]). Moreover, we make the dependence of Hmin on P
explicit, as we will evaluate Hmin on another distribution. We now introduce all
the elements that allow us to lower-bound this quantity.

4.2.1 Statistical estimates

We first explain how Alice and Bob estimate the behaviour that underlies the
Bell tests and the associated Bell violation. For a given Bell expression:

I(PAB|XY ) =
∑
a,b,x,y

cabxyPAB|XY (ab|xy), (4.2)

IL denotes its local bound, I(Q) denotes the interval of values achievable with
quantum behaviours, I+

Q denotes its maximal quantum value, and I−Q , its minimal
value:

I(Q) = {I(P )|P ∈ Q}, I+
Q = max I(Q), I−Q = min I(Q). (4.3)

For simplicity, we assume that the inputs (x,y) are chosen independently and
identically at each round with probability P (Xi = x, Yi = y) = πxy.

Definition 9. For a given realisation of (A,B,X,Y), the observed frequencies
P̂AB|XY are defined as:

P̂AB|XY (ab|xy) =
Nabxy
Nxy

, (4.4)

where Nabxy (resp. Nxy) is the number of occurrences of the quadruplet (a, b, x, y)
(resp. the pair (x, y)) in the n length sequence (a,b,x,y).

Definition 10. For a given Bell expression (4.2) and a given realisation of
(A,B,X,Y), the observed average Bell violation Î is:

Î =
∑
a,b,x,y

cabxy
Nabxy
n · πxy

. (4.5)

We point out that, even though P̂ and Î are both estimators, they do not
involve the inputs in the same manner. To compute P̂ , one counts the occurrences
of both the quadruplets (a, b, x, y) and the input pairs (x, y), whereas for Î, one
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only counts the quadruplets (a, b, x, y) and uses directly the input distributions
πxy, instead of the frequencies of each input pair for a given realisation. Both can
be computed from a realisation of Bell experiments, as πxy is chosen by the user
(see details hereafter). However, we decide to compute the observed frequencies
in this way to ensure that P̂AB|X=x,Y=y is normalised for each (x, y), and can
thus be identified as a probability distribution. On the other hand, we decide
to compute the observed Bell violation Î directly using the input distribution,
as this is crucial for the derivation of Theorem 5 (see [PM13, NSBSP18] for
details). Note that, if the behaviours of the devices at each round are independent
and identically distributed (i.i.d.) according to some distribution PAB|XY , Î
converges towards I(PAB|XY ) when n tends to infinity. However, we do not
need to make such an assumption to define this quantity.

4.2.2 Randomness-bounding function

The key element that we use to lower bound the min-entropy (4.1) is a randomness-
bounding function.

Definition 11. Let χ be a subset of {0, 1}2. We say that Hχ
I : I(Q) → [0, 2]

is a randomness-bounding function (RB function) for χ if it satisfies the two
following requirements:

R.1 ∀P ∈ Q, min
(a,b)∈{0,1}2

(x,y)∈χ

(− log2 P (ab|xy)) ≥ Hχ
I (I(P )),

R.2 Hχ
I is convex.

These requirements are needed in order to bound the min-entropy produced
by a sequence of Bell tests (see [NSBSP18] for a detailed explanation). Here, χ
specifies a subset of all possible inputs for which the RB function is valid. It
should contain the inputs for which the associated conditional distributions are
the most random, i.e., the inputs that yield the largest Hχ

I . For instance, if one
obtains a high Hχ

I from one pair of input (x∗, y∗), and a small Hχ
I for the others,

one would have an interest in setting χ to (x∗, y∗) only. Indeed, the space over
which the minimisation is carried out gets bigger when one includes more input
pairs in χ, which results in a smaller RB function, which, in turn, will give a
smaller lower bound on the min-entropy. However, this trade-off depends on
the total number of Bell tests that are used for generating randomness, as is
illustrated by the numerical simulations presented hereafter.

We now explain how to compute an RB function via the guessing probab-
ility problem. This general form was introduced and extensively explained in
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[NSBSP18]. For a given Bell expression I and a specific value I∗ of I, finding
the lower bound Hχ

I (I∗) defined by requirements R.1 and R.2 amounts to solving
a minimisation problem over all quantum behaviours P such that I(P ) = I∗.
However, the optimisation problem obtained in this way is not easily solvable,
due to the presence of the logarithm and to the complicated nature of the
quantum set Q [NPA07, NPA08, GKW+18].

This led the authors of [NSBSP18] to consider instead the following problem.
For (α, β) ∈ {0, 1}2 and (γ, δ) ∈ χ, let {P̃αβγδ} be 4|χ| variables, that represent
unnormalised behaviours. The problem then reads:

GχI(I∗) = max
{P̃αβγδ}

∑
α,β∈{0,1}2
γ,δ∈χ

P̃αβγδ(αβ|γδ)

s.t.
∑

α,β∈{0,1}2
γ,δ∈χ

I(P̃αβγδ) = I∗,

∑
α,β∈{0,1}2
γ,δ∈χ

Tr[P̃αβγδ] = 1,

∀ α, β, γ, δ, P̃αβγδ ∈ Q̃k,

(4.6)

where Tr[P̃ ] =
∑
ab P̃ (ab|xy) is the norm of P̃ (which is independent of (x, y)

by no-signalling) and Q̃k is the set of unnormalised behaviours that belong to
the kth level of the NPA hierarchy. This problem is then a an SDP. Moreover, if
we let Hχ

I = − log2G
χ
I , Hχ

I satisfies both requirements R.1 and R.2, and is thus
a RB function for χ (see [NSBSP18] for details). It is, however, not necessarily
tight.

In the case where χ contains only one input pair (x∗, y∗), the guessing prob-
ability problem reduces to the conventional guessing probability G(AB|x∗, y∗)
presented in Eq. (2.27). In the same way as (2.27) could be extended to (2.28)
to take into account the full underlying behaviour instead of only its value for a
given Bell expression, one can define Gχfull as:

Gχfull(P ) = max
{P̃αβγδ}

∑
α,β∈{0,1}2
γ,δ∈χ

P̃αβγδ(αβ|γδ)

s.t.
∑

α,β∈{0,1}2
γ,δ∈χ

P̃αβγδ = P,

∀ α, β, γ, δ, P̃αβγδ ∈ Q̃k.

(4.7)
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As Problem (4.7) is more constrained than Problem (4.6), Gχfull(P ) ≤ GχI(I(P )).
Moreover, as for (2.28), the dual problem of (4.7) returns a Bell expression I∗
such that GχI∗(I∗(P )) = Gχfull(P ). When the Bell expression is well chosen,
(4.6) and (4.7) are thus equivalent.

Let us stress however that these quantities can only be considered as the-
oretical measures of randomness for theoretical objects such as probability
distributions and Bell expressions. In order to obtain practical bounds, one has
to develop statistical tools.

4.2.3 Bounding the n round min-entropy

With the concepts defined above, we are now able to formulate a probabilistic
statement on the min-entropy of the outputs obtained after a sequence of n
Bell tests. Most of this section is a reformulation, adapted to our case, of the
results first presented in [PAM+10], corrected in [PM13, FGS13], and extended
in [NSBSP18]. Let us fix a behaviour PAB|XY, an i.i.d. input distribution πxy,
and a Bell expression I. The formal statement then reads:

Theorem 5. Let {Jm|m ∈ [0,M ]} be a sequence of M + 1 Bell violation
thresholds, with IL = J0 < J1 < ... < JM = I+

Q. Let λm be the event that the

estimated Bell violation Î falls between the thresholds Jm and Jm+1, and let
PP̃ (λm) be the probability that this event occurs according to some distribution

P̃ABXY. Let ε and ε′ be two positive parameters. Then the true distribution
PABXY is ε-close (with respect to the variational distance) to a distribution
P̃ABXY such that exactly one of these two statements holds:

1. PP̃ (λm) ≤ ε′ ,

2. Hmin(A,B|X,Y, λm)P̃ABXY
≥ nHχ

I (Jm − µ)− γ(x)η − log2
1
ε′ ,

where

µ = ν

√
2

n
ln

1

ε
, (4.8)

ν = max{ max
a,b,x,y

cabxy
πxy

− I−Q , I+
Q − min

a,b,x,y

cabxy
πxy
}, (4.9)

γ(x) = n−
n∑
i=1

1χ(xj), (4.10)

η = max{Hχ
I (I+
Q), Hχ

I (I−Q)}, (4.11)
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and 1χ(xj) is the indicator function, which returns 1 if xj ∈ χ and vanishes
otherwise.

The proof can be found in [PM13, NSBSP18]. Note that, unlike [NSBSP18],
we take into account only one Bell expression in the statement of the theorem.
This leads to numerous simplifications in its formulation, due in particular to
the monotonicity of Hχ

I over [IL, I
+
Q ]. In this sense, it is closer to the way it

is stated in [PM13]. However, from [NSBSP18], we keep a few improvements
on the parameters, and the possibility to select only a subset of inputs via χ.
This enables improvement on the bound in some cases where the inputs have
very different output probabilities: if the RB function is significantly better for
a subset of inputs χ, this formulation allows to use the RB function for χ only,
and corrects the bound via the penalty term γ(x)η. In that case, we have an
interest in biasing the input distribution towards χ, in order to reduce the effect
of the term γ(x)η and thus produce as much randomness as possible. However,
the trade-off between the quality of the RB function and the number of inputs
from which randomness is generated depends on the total number of runs of a
given protocol.

The bound given in the second statement of the theorem is the figure of merit
that we aim at optimising in this work. Indeed, this expression depends on the
choice of the Bell expression I, and we now present a systematic approach to
finding a well suited I.

4.3 Results

We first present our new method for lower-bounding the min-entropy of the
outputs of an uncharacterised Bell experiment. We then study, on a few be-
haviours, how the regularisation method, the size of sacrificed data, and the
input distributions impact the quality of the min-entropy bound. We conclude
by giving numerical results that illustrate the efficiency of our method.

4.3.1 Optimising the Bell expression via regularisation

As previously mentioned, solving the dual problem of (4.7) provides the Bell
expression that is optimal for certifying the randomness of the given behaviour.
When given an uncharacterised pair of devices, one could thus first generate
some input-output data in order to estimate the corresponding underlying
behaviour. This estimate P̂ can then be used to obtain a Bell inequality that is
presumably better for witnessing the randomness generated from these devices, by
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computing the dual solution to the guessing probability problem. Unfortunately,
as mentioned above, the guessing probability problem is only properly defined
over the set of quantum behaviour Q, or one of its NPA relaxation sets Qk, or
over the set of no-signalling behaviours. On the other hand, there is no guarantee
that the observed frequencies P̂ belongs to any of these sets: P̂ is on the contrary
almost always signalling, even if the underlying behaviour is not, due to finite
statistics. In this case, Problem (4.7) will be infeasible.

We now introduce our method to circumvent this problem, using the tools
developed in [LRZ+18]. The authors provided a set of tools to regularise the
estimated behaviour P̂ to one of the NPA sets Qk. It consists in minimising
a norm-based metric or a statistical distance between P̂ and Qk, the desired
relaxation set, and taking the unique minimiser as the regularised behaviour
P reg
AB|XY . In this work, we employ two methods considered therein. The first

one corresponds to minimising a statistical distance, namely the conditional
Kullback-Leibler (KL) divergence [KL51, CJ06], and is defined in the following
way:

PML(P̂ ) = argmin
P∈Qk

DKL(P̂ ||P ), (4.12)

where

DKL(P̂ ||P ) =
∑
a,b,x,y

Nxy
n
P̂ (a, b|x, y) log2

( P̂ (a, b|x, y)

P (a, b|x, y)

)
.

and where ML stands for ‘maximal likelihood’.

The second one corresponds to minimising the two-norm distance:

PLS(P̂ ) = argmin
P∈Qk

√ ∑
a,b,x,y

(
P̂ (a, b|x, y)− P (a, b|x, y)

)2

, (4.13)

where ‘LS’ stands for ‘least-squares’. It is important to note that both these
minimisations can be efficiently solved (see [LRZ+18] for details), thus making
this approach operationally relevant.

We can now define the following regularisation-based protocol for generating
randomness from uncharacterised devices:

(i) Input a number Nest of (x, y) drawn from an i.i.d. uniform distribution
(they can be public) and obtain the corresponding (a, b) in order to estimate
the behaviour.
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(ii) From this set of data, construct the observed frequencies P̂ and compute
P reg
AB|XY , the regularisation of P̂ (where P reg

AB|XY can be either PML(P̂ ) or

PLS(P̂ )).

(iii) Solve the corresponding optimisation problem Gχfull(P
reg
AB|XY ) for different

χ and select χ accordingly (see below for further details).

(iv) Extract the optimal Bell expression I from the dual.

(v) Input a number Nraw of (x, y), drawn according to a distribution PχXY
(they can be public), obtain the corresponding (a, b), and compute the
observed Bell violation Î.

(vi) Apply Theorem 5 to lower-bound the min-entropy of the raw set of data
(ai, bi, xi, yi)i∈{1,Nraw}.

We now make a few observations on this protocol, which is summarised in
Figure 4.1. The subset χ is chosen at step (iii), thanks to P reg

AB|XY . Indeed,

P reg
AB|XY reveals some information about the underlying behaviour. One might

thus intuitively do the following: compute the values of G
(x,y)
full (P reg

AB|XY ) for all

the inputs, and decide accordingly; if the value is roughly the same for all (x, y),
one would choose χ = {0, 1}2; if one input pair (x∗, y∗) yields a lower guessing
probability, one would choose χ = (x∗, y∗). However, if Nraw is not big enough,
χ = {0, 1}2 is likely to result in a better min-entropy bound in any case, as our
results show.

The optimised Bell expression I obtained in step (iv) may not be unique
and the different possible representations of I are only artefacts of numerical
computations. However, the choice of a representative for I matters, since
two physically equivalent representations can lead to different statistical estim-
ates [RRMG17], and thus to distinct lower bounds on the min-entropy. In order
to avoid such effects, we use the unique representation introduced in [RRMG17],
by setting the signalling part to zero (see [RRMG17] for details).

In step (v), we assume that the specific distributions PχXY can be generated
using some freely available resource. If this is the case, one might consider that
the task of randomness generation is already achievable, and we might then
call our primitive ‘randomness expansion’, rather than ‘randomness generation’.
However, the input randomness can be public: it needs to be random to anyone
beforehand, but it can be accessed by anyone after it is produced. Conversely,
the output randomness is private: its value resides in the fact that it is only
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PAB|XY (real, unknown)

P̂AB|XY (observed frequencies)

P reg
AB|XY (regularisation in Qk)

I (Bell expression)

Dr
aw

Nes
t

Regularise

Solve Gχfull(P
reg
AB|XY )

(ai, bi, xi, yi)i∈{1,Nraw}

Î , Hχ
I (Jm − µ)

Bound on Hmin

Draw
N
raw

Figure 4.1: Schematic representation of our protocol: the user draws Nest bits
from the unknown underlying behaviour, collects the frequencies and regularises
them to obtain an estimate that lies in one of the NPA sets. The dual of the
corresponding guessing probability problem provides a Bell inequality that is
then used to quantify the min-entropy of the sequence of Nraw bits.

accessible to the user. We can thus refer to this process as ‘private random bits
generation’.

In step (vi), we only bound the min-entropy of the data generated in step (v).
Indeed, it is essential that the set of data used for the estimation be different from
the one for which the bound on the min-entropy is derived: the statistical analysis
of the data cannot depend on the data itself. This implies that, contrarily to
[NSBSP18], our method requires that part of the data is used only for parameter
estimation, and then thrown away.

Finally, note that even though the regularisation method described in
[LRZ+18] is meaningful only when the underlying distribution PAB|XY is i.i.d.,
the derivation of the bound on the min-entropy does not rely on this assumption.
For this reason, the probabilistic statement that we obtain via our method will
still be valid, even if PAB|XY is not i.i.d.. In this case, the Bell expression that
we obtain might be inadequate, which might result in a trivial lower bound on
the min-entropy (that equals to zero), but it will not result in an overestimation
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of the min-entropy of the raw data. In this sense, the optimisation method might
become irrelevant, but the security analysis will not be compromised.

4.3.2 Tuning the parameters

In order to adjust the parameters of our protocol, we simulate some pairs
of devices, by generating for each one a random state ρ and some random
measurements {MA

a|x}a and {MB
b|y}b. The random states are picked at random

in the space of two qubit pure states via their Schmidt decomposition, and the
random measurements are generated via their associated projectors, picked at
random on the Bloch sphere.

We then compute the associated behaviour:

PAB|XY (ab|xy) = Tr[ρMA
a|x ⊗MB

b|y]. (4.14)

To ensure that the obtained behaviours are nonlocal, we compute their
associated CHSH values ICHSH(PAB|XY ):

ICHSH(PAB|XY ) =
∑
x,y,a,b

(−1)xy+a+bPAB|XY (ab|xy), (4.15)

and discard those for which ICHSH(PAB|XY ) ≤ 2. We then construct the
corresponding Ntot-round behaviour using PAB|XY in an i.i.d. way, i.e.,

PAB|XY(ab|xy) =

Ntot∏
i=1

PAB|XY (aibi|xiyi). (4.16)

We set Ntot = Nest +Nraw = 108, in accordance with the state-of-the-art experi-
mental demonstration of device-independent randomness generation [BKG+18].
We then conduct a detailed study of four of these random behaviours, to heur-
istically fix three crucial parameters of our protocol:

• the regularisation method,

• the number of rounds used for the estimation Nest,

• the inputs subset used to generate randomness χ.

Based on the data we obtained, presented in Appendix B.1, we decided to
set:
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• P reg
AB|XY = PML,

• Nest = 106,

• χ = {0, 1}2

The graphs that corroborate these decisions can be found in Appendix B.1.
Before we give the results of several simulations that illustrate the efficiency
of our protocol, note that, when one sets Ntot = 108, generating randomness
from only one input pair (i.e., setting χ = (x∗, y∗)) does not usually result in
higher min-entropy bounds than when one sets χ = {0, 1}2. The same effect
can be observed in the simulations carried out by the authors in [NSBSP18]. It
is not surprising: in order to obtain a good min-entropy rate when certifying
randomness from only one input pair, one should bias the input distribution
towards that pair as much as possible. However, in order to obtain a reliable
estimate of the Bell violation, one should evaluate it with many occurrences
of each possible input. These two assertions are in an apparent contradiction,
and they can both hold simultaneously only if Ntot is high enough. It seems
that, for most behaviours, Ntot = 108 is not sufficient. We however checked that,
when Ntot is sufficiently big, our method provides better min-entropy bounds
for χ = (x∗, y∗) than for χ = {0, 1}2. The corresponding graph can be found in
Appendix B.2.

4.3.3 Numerical results

Our figure of merit is the comparison between the min-entropy bound obtained
from our protocol, denoted Hmin in the following, and the one obtained from a
direct evaluation of the CHSH inequality, HCHSH

min . We generate 50 behaviours
at random (in the same way as described above) and run 500 simulations for
each of them. To compute the lower bound on Hmin, one should set n = Nraw in
Theorem 5, whereas for HCHSH

min , n = Ntot > Nraw, as no estimation is required.1

The parameters of the bound of Theorem 5 are set as follow: we fix ε =
ε′ = 10−6, we divide the interval [IL, I

+
Q ] in M + 1 = 1000 segments of the

same length, and we use the NPA local level 2 [MBL+13] for the regularisation
and the guessing probability problems. We then compute the corresponding

1It might seem necessary to also first sacrifice a part of the data to determine which among
the 8 representatives of the CHSH inequality is violated. This is however unnecessary as any
given behaviour can violate at most one representative of the CHSH inequality (see page 2 of
the Supplementary Material to Ref [LHBR10]), which can be determined by evaluating the
min-entropy bound of all different representatives of the CHSH inequality.
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Figure 4.2: Black asterisk: ratio between the rate obtained via our protocol
and via the direct use of the CHSH inequality. Red circle: ratio between the
maximal achievable min-entropy and the rate obtained via the direct use of the
CHSH inequality. The inset contains all 50 simulations, including the single
instance from which no randomness is certified (see explanation in the main text).
This exceptional point is removed from the main plot so that the remaining
(successful) cases can be examined more closely.

min-entropy rate by dividing these values by Ntot in both cases. We also
computed − log2(Gχfull(PAB|XY )), which corresponds to the maximal achievable
min-entropy rate. To show that it is worth sacrificing part of the data for
estimation, we then compared these three quantities. The results are presented
in Fig. 4.2.

In this figure, we plot the ratios between the min-entropy rates for Hmin

and HCHSH
min for every simulated pairs of devices, as well as the ratios between

the maximal achievable rate − log2(Gχfull(PAB|XY )) and HCHSH
min . For clarity, we

sorted them in ascending order of the latter. We highlighted in grey the areas
between the line y = 1, where the amount of randomness given by our protocol
is the same as using CHSH inequality, and the curves connecting the optimal
rates. Our protocol is good whenever a point falls in this area. Indeed, it means
that, despite the Nest bits that were thrown away, we obtain a higher bound on
the min-entropy than if we had directly used the CHSH inequality on all the
bits.
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We observe that our method performs well in 98% of the simulations, in
the following sense: when the optimal rate is nearly achieved with the CHSH
inequality (i.e., the CHSH inequality gives a bound that is above 95% of the
optimal rate), so does our method; when the CHSH inequality does not achieve
the optimal rate, our method performs significantly better (with rates up to 1.6
times more) in all but one case.

We now explain what happened with that last point of our simulations,
from which no randomness can be certified via our protocol. The corresponding
underlying behaviour has a low CHSH value, and the optimal Bell inequality is
such that the gap between the local bound and the quantum bound is very small.
This seems to indicate that this behaviour is of the kind presented in [AMP12],
i.e., it is almost local, but also close to the border of the quantum set. The
authors of [AMP12] proved that, in theory, a lot of randomness could be certified
from such behaviours, as can be observed by the corresponding red circle in
Fig. 4.2. However, those behaviours are not good from a practical point of view:
the small gap between the local and the quantum bounds of their associated
optimal Bell inequality requires that the confidence interval on the estimated
Bell violation Jm − µ be very small. If not, no Bell violation can be observed,
and thus no randomness can be certified. This is the case for that point of our
simulations.

4.4 Conclusion

We presented a simple method to optimise the lower bound derived in [NSBSP18]
on the min-entropy produced by a sequence of Bell tests. It consists in estimating
the underlying behaviour of the black boxes, via the regularisation method given
in [LRZ+18]. We then tuned the parameters of this protocol via a heuristic
method. We concluded that, when one regularises some data for randomness
generation, one should always use the maximal likelihood method (the authors
observed the same effect for another figure of merit, the negativity, in [LRZ+18]),
one can sacrifice up to 1% of the data for estimation, and that, for the device-
independent randomness generation experiments that can be performed at the
moment (i.e., with Ntot = 108), one should generally use the worst case RB
function (i.e., the one that bounds the randomness for all inputs). We then
carried out numerical simulations that illustrate the efficiency of this method.

We now describe two possible future lines of investigation. The first one
would be to take into account more factors in the optimisation of the lower
bounds on the min-entropy. For instance, one could generate randomness from
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two or three subsets of inputs pairs, instead of considering only one or all of
them as we did here. One could also tune PχXY in a more precise way, as a
function of the total number of rounds Ntot and of the differences between the
guessing probabilities for each input pair. Finally, the RB function is a key
element in the derivation of the bound. We used here the one introduced in
[NSBSP18]. However, there are other ways to compute a function that satisfies
both requirements R.1 and R.2 needed for an RB function, such as the one
introduced in [BSS14]. Being able to compute the RB function that is tight
would entail an improvement on the min-entropy bound.

The second one is related to the power given to the adversary. Our results
hold in a trusted provider scenario, where our protocol allows for correcting
noise and deterioration in the apparatuses, and in an adversarial scenario where
the adversary holds only classical-side information. Adapting it to the case
of an adversary with quantum side information would provide a min-entropy
bound valid in the most general scenario. This could be achieved via the entropy
accumulation theorem [DFR16]. Based on that result, a bound was derived
on the n-round smooth min-entropy against an adversary with quantum side
information [AFDF+18]. However, this bound is based on the CHSH inequality
(or, more accurately, on the CHSH game). Deriving such a bound for other
inequalities might be a hard task. We took a different approach here, that
consists in optimising the amount of randomness that is generated by tailoring
the Bell inequality to a specific case. This, in turn, led us to consider only
classical side information. If one could adapt the results of [DFR16, AFDF+18]
to any Bell inequality, one would be able to guarantee the security of our protocol
in the most general scenario.



Chapter 5

Randomness versus non
locality in the Mermin-Bell
experiment with three
parties

The detection of nonlocal correlations in a Bell experiment implies almost by
definition some intrinsic randomness in the measurement outcomes. For given
correlations, or for a given Bell violation, the amount of randomness predicted
by quantum physics, quantified by the guessing probability, can generally be
bounded numerically. However, currently only a few exact analytic solutions are
known for violations of the bipartite Clauser-Horne-Shimony-Holt Bell inequality.
In this Chapter, we study the randomness in a Bell experiment where three parties
test the tripartite Mermin-Bell inequality. We give tight upper bounds on the
guessing probabilities associated with one and two of the parties’ measurement
outcomes as a function of the Mermin inequality violation. Finally, we discuss the
possibility of device-independent secret sharing based on the Mermin inequality
and argue that the idea seems unlikely to work. The results of this Chapter are
based on [WBA18a].

73
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5.1 Introduction

The detection of nonlocal correlations in a Bell experiment implies some random-
ness in the measurement outcomes, regardless of the exact physical mechanism by
which the correlations are produced, provided that communication between the
sites is prohibited. The simplest measure of randomness and typically the easiest
to bound is the guessing probability. Aside from its direct operational meaning,
the guessing probability is a useful quantity in the analysis of device-independent
cryptography protocols: security proofs of device-independent protocols fre-
quently depend on a lower bound on the min-entropy (a function of the guessing
probability) or the conditional von Neumann entropy (which the min-entropy is a
lower bound for) [RGK05, Ren05, MPA11, PM13, AFDF+18]. In the practically
most relevant case where the measurements are made on a quantum system, a
numeric method for deriving an upper bound on the guessing probability exists,
based on the NPA hierarchy of relaxations of the optimisation problem to SDP
[NPA07, NSPS14, BSS14], for which reliable optimisation algorithms exist.

Since the determination of guessing-probability bounds by numerical means
is essentially a solved problem, our interest here is in cases where it is possible
to establish a tight analytic bound. Currently, only a few tight bounds on the
guessing probability are known for the Clauser-Horne-Shimony-Holt (CHSH)
[CHSH69] inequality. As explained in Chapter 2.3.1, the adversary Eve’s prob-
ability of guessing one of one party’s (say, Alice’s) measurement outcomes is
equal to [PAM+10]:

G(A|x = 0) ≤ 1

2
(1 +

√
2− S2/4) (5.1)

for a given CHSH expectation value S. More recently, Kaniewski and Wehner
[KW16] have derived the tight upper bound

G(A|B) ≤ 1

2
+

1

4

(
S/2 +

√
2− S2/4

)
(5.2)

on an average probability G(A|B) =
(
P (A = B|X = 0, Y = 2) + P (A = B|X =

1, Y = 2)
)
/2 that the second party Bob is able to guess Alice’s measurement

outcome without knowing which measurement Alice performed, assuming they
are chosen equiprobably.

Beyond the CHSH scenario, guessing-probability bounds have been de-
termined for violations of bipartite and multipartite chained Bell inequalities
[BKP06, AGCA12]; however these are derived assuming only the no-signalling
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constraints and they are not generally tight assuming the scenario is restricted
to correlations and attacks allowed by quantum physics.

Here, we study the amount of randomness that can be certified in a Bell
experiment with three parties showing a violation of Mermin’s tripartite Bell
inequality [Mer90]. We report tight bounds for the following two cases:

• The guessing probability G(A|x = 0) associated with the measurement
outcome at one site, in terms of two independent Mermin expectation
values.

• The guessing probability G(AB|x = 0, y = 0) associated with measurement
outcomes at two sites, for a given violation of one Mermin inequality.

5.2 Scenario and results

Our results apply to the following adversarial Bell scenario: three cooperating
parties, Alice, Bob, and Charlie, and an eavesdropper, Eve, share a quantum
state ρABCE on some Hilbert space HA⊗HB⊗HC⊗HE. Alice, Bob, and Charlie
may each perform one of two measurements indexed x, y, z ∈ {0, 1} on their part
of the state, which yield respective outcomes a, b, c ∈ {+,−}. Eve performs a
measurement yielding an outcome e, intended to be correlated with one or more
of Alice’s, Bob’s, and Charlie’s outcomes. Generally, we will assume, without
loss of generality, that Eve’s measurement has the same number of outcomes as
the number of possible different results that the cooperating parties may obtain
that she wishes to distinguish between. The joint correlations are summarised
by a table of conditional probabilities

P (abce|xyz) = Tr
[(

ΠA
a|x ⊗ΠB

b|y ⊗ΠC
c|z ⊗ΠE

e

)
ρABCE

]
, (5.3)

where ΠA
a|x is the measurement operator associated with the outcome a when

Alice performs the measurement x, and similarly for Bob’s, Charlie’s, and
Eve’s measurement operators ΠB

b|y, ΠC
c|z, and ΠE

e . The measurements can be
assumed to be projective, since we do not assume any limit on the dimension of
the underlying Hilbert space. The state and measurements are all treated as
unknown except possibly to Eve.

Eve’s goal in this setting is to be able to guess one or more of Alice’s, Bob’s
and/or Charlie’s measurement outcomes. The simplest measure of her ability
to do so, the guessing probability, is simply the probability that Eve’s guess
is correct. In the simplest case where Eve aims to guess (say) Alice’s x = 0
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measurement outcome, the (“local”) guessing probability is the probability that
Eve’s measurement outcome is the same as Alice’s:

G(A|x = 0) =
∑
a

PAE|X(A = a,E = a|X = 0) , (5.4)

where PAE|X(A = a,E = e|x) =
∑
bc P (abce|xyz) (see Eq. (2.25)). Other guess-

ing probabilities are straightforward variations of this. For instance, the guessing
probability associated with Alice’s and Bob’s joint outcomes for measurements
x = y = 0 is:

G(AB|x = 0, y = 0) =
∑
a,b

PABE|XY
(
ab(a, b)|X = 0, Y = 0

)
, (5.5)

where we label Eve’s (four) possible measurement outcomes (++), (+−), (−+),
and (−−). Alice, Bob, and Charlie wish to certify that Eve’s ability to guess
outcomes is limited (in mathematical terms, that guessing probabilities like
(5.4) and (5.5) must be less than one) using only the information available
to them, encapsulated by the marginal distribution PABC|XY Z(abc|xyz) =∑
e P (abce|xyz). A necessary but not necessarily sufficient condition for this is

that this marginal distributions does not admit a local hidden variable model,
i.e., it does not admit a factorisation of the form

PABC|XY Z(abc|xyz) =
∑
λ

pλPA|XΛ(a|x, λ)PB|Y Λ(b|y, λ)PC|ZΛ(c|z, λ) , (5.6)

which is detected if the marginal distributions PABC|XY Z violate a Bell inequality.

Here, we study the amount of randomness that can be certified in this
tripartite scenario if a violation of the Mermin-Bell inequality is observed. The
Mermin inequality [Mer90] M ≤ 2 holds for local-hidden-variable models, where
the Mermin correlator is

M = 〈A0B0C0〉 − 〈A0B1C1〉 − 〈A1B0C1〉 − 〈A1B1C0〉 , (5.7)

and in turn 〈O〉 denotes the expectation value of the observable quantity O. In
the quantum case, 〈O〉 = Tr[OρABC] is given by the expectation value in the
underlying marginal state ρABC and the dichotomic operators −1 ≤ Ax, By, Cz ≤
1 are related to the measurement operators by

Ax = ΠA
+|x −ΠA

−|x, By = ΠB
+|y −ΠB

−|y, Cz = ΠC
+|z −ΠC

−|z. (5.8)
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The Mermin inequality is best known for its association with the Greenberger-
Horne-Zeilinger (GHZ) paradox [GHSZ90]. The maximal quantum (and al-
gebraic) violation M = 4 is attained by measuring A0 = B0 = C0 = σx and
A1 = B1 = C1 = σy on the GHZ state |Ψ〉 = (|111〉 + |222〉)/

√
2. Violations

greater than 2
√

2 require entanglement between all three sites [BGLP11].
The Mermin expression M can be obtained as the real part of the quantity〈

(A0 + iA1)(B0 + iB1)(C0 + iC1)
〉
. (5.9)

The imaginary part is also a Mermin expression,

M ′ = 〈A0B0C1〉+ 〈A0B1C0〉+ 〈A1B1C0〉 − 〈A1B1C1〉 , (5.10)

equivalent to (5.7) up to relabelling some of the inputs and outputs. The sum
M+ = M + M ′ is the correlator appearing in Svetlichny’s inequality [Sve87],
which was constructed to always require nonlocality (and thus entanglement)
between all three parties in order to violate.

Some randomness bounds, quantified by guessing probabilities involving one,
two, and three parties, are illustrated in figures 5.1 and 5.2 in terms of the
Mermin and Svetlichny expectation values. Of these, we were able to find the
analytic form of the curve for the local guessing probability G(A|0) in both cases
and the curve for G(AB|00) in terms of the Mermin expectation value.

For given values of the Mermin or Svetlichny correlators, the corresponding
upper bounds on the local guessing probability have the same functional form,

G(A|0) ≤ f(M) and G(A|0) ≤ f
(
M+/

√
2
)
, (5.11)

for the function

f(x) =

{
1
2 + 1

2

√
x(1− x/4) if x ≥ 2 +

√
2

1 + 1√
2
− x/4 if x ≤ 2 +

√
2

(5.12)

in the range 2
√

2 ≤ x ≤ 4. Both are implied by the tight bound

G(A|0) ≤ f
(√

M2 +M ′2
)
, (5.13)

in which the two Mermin expectation values M and M ′ appear as independent
parameters. Note that since f is a decreasing function in its argument, (5.13) is
equivalent to stating that

G(A|0) ≤ f
(
cos(ϕ)M + sin(ϕ)M ′

)
(5.14)
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Figure 5.1: Upper bounds on the guessing probabilities G(A|0), G(AB|00),
and G(ABC|111) for expectation values 2 ≤M ≤ 4 of the Mermin expression.
The upper bound for G(ABC|111) was determined numerically at the level
1 + A2 + AB + AC + BC of the NPA hierarchy.

holds for all ϕ. The result (5.13) certifies some intrinsic randomness for values
of M and M ′ satisfying

2
√

2 <
√
M2 +M ′2 ≤ 4 . (5.15)

For M alone and the Svetlichny combination M+ = M +M ′, randomness for
one measurement outcome is certified for M > 2

√
2 and M+ > 4. This is what

one would expect, since these are precisely the ranges that require entanglement
between all three parties to attain. At the boundary

√
M2 +M ′2 = 4, (5.13)

reduces to G(A|0) ≤ 1/2, certifying that the measurement outcome must be
uniformly random.

In the case that the eavesdropper aims to jointly guess two parties’ measure-
ment outcomes, the guessing probability respects the tight bound

G(AB|00) ≤
{

3
4 − M

8 +
√

3
√

M
8

(
1
2 − M

8

)
if M ≥ 3

3
2 − M

4 if M ≤ 3
(5.16)
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Figure 5.2: Guessing probabilities for expectation values 4 ≤ M+ ≤ 4
√

2 of
the Svetlichny expression M+ = M + M ′. The upper bounds for G(AB|00)
and G(ABC|000) were obtained numerically at levels 1 + AB + AC + BC and
1 + A2 + AB + AC + BC of the NPA hierarchy.

in the range 2 ≤M ≤ 4. In this case, we detect some randomness as soon as the
local bound M ≤ 2 is violated. The maximum possible violation M = 4 implies
G(AB|00) ≤ 1/4, corresponding to the maximum possible randomness.

Beyond this we did not find any new tight bounds for violations of the Mermin
inequality. The upper bound for the global guessing probability G(ABC|000) in
terms of M is exactly the same as (5.16), while the upper bound for G(ABC|111)
(which should attain 1/8 if the Mermin inequality is maximally violated [SG01,
WW01]) appears to be the solution to the maximisation problem

max
1

8

(
1 + 24 cos

(
3
2θ2

)
αβ + 2 cos(3θ2)α2 + 30β2

)
s.t. M =

(
2 cos(3θ1)− 6 cos(θ1 + 2θ2)

)
α2 − 12 cos(θ1 − θ2)β2

2α2 + 6β2 = 1 (5.17)
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over α, β, θ1, θ2 ∈ R, which we were unable to significantly simplify further (let
alone prove). Eq. (5.16) also does not generalise in terms of M and M ′ in the way
that the local-guessing-probability bound does. The upper bound for G(AB|00)
in terms of the Svetlichny combination (illustrated in figure 5.2) for instance has
a different form than (5.16). This is expected since the local-guessing-probability
bound is already less than 1 for any violation of the local bound, and we were
not much more successful in attempting to identify it analytically than we were
for G(ABC|111) in terms of M .

For simplicity we have stated the results (5.13) and (5.16) for the guessing
probabilities G(A|0) and G(AB|00); however symmetries of the Mermin correl-
ator(s) imply that the bounds are the same regardless of what measurements
are considered. For the global guessing probabilities there are two inequivalent
cases, G(ABC|000) and G(ABC|111), in terms of M .

In figures 5.1 and 5.2 we have also included upper bounds on guessing
probabilities for which we do not have an exact analytic expression. We derived
these numerically by solving the semidefinite programming relaxations at the
levels of the NPA hierarchy indicated in the figure captions. We used the
arbitrary-precision solver SDPA-GMP [SDP11, Nak10] for this purpose. We
have made the code we used to generate the relaxations available online [Woo18].

5.3 Tangent Bell expressions

We have asserted that the local and two-party guessing probabilities respect the
upper bounds (5.13) and (5.16) and that the bounds are tight. We prove these
assertions in this section.

5.3.1 General idea illustrated with CHSH

Proving the main results (5.13) and (5.16) is equivalent to proving families of
linear inequalities corresponding to tangents of the curves. We illustrate the
approach using CHSH as an example, for which this has already been done
[MPA11, AMP12]. It was shown in [AMP12] that the quantum expectation
value of a modified CHSH expression respects the tight upper bound

β〈A0〉+ S ≤ 2
√

2
√

1 + β2/4 (5.18)

in the parameter range 0 ≤ β ≤ 2. Eq. (5.18) can be rewritten as an upper
bound

〈A0〉 ≤
1

β

(
2
√

2
√

1 + β2/4− S
)

(5.19)
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for 〈A0〉. Assuming that S ≥ 2, minimising the right-hand side over β produces
the tightest possible bound

〈A0〉 ≤
√

2− S2/4 . (5.20)

This bound has two key characteristics. First, since the CHSH expression
remains unchanged under (for example) the replacements Ax 7→ −Ax and
By 7→ −By, the same upper bound holds for −〈A1〉 as well as 〈A1〉. Second, the
right-hand side is by construction concave in S. Using these properties and that
PA|X(+|x) = (1 + 〈Ax〉)/2 and PA|X(−|x) = (1− 〈Ax〉)/2, the result is quickly
obtained:

G(A|0) =
∑
a

PAE|X(aa|0)

=
∑
a

PE(a)PA|XE(a|0, a)

≤
∑
a

PE(a)
1

2

(
1 +

√
2− S 2

|a /4
)

≤ 1

2
+

1

2

√
2− S2/4 , (5.21)

where S|a in the third line is the CHSH expectation value conditioned on Eve
obtaining the outcome e = a.

In passing, we mention that the bound (5.2) for G(A|B) = 1
2 + 1

4 〈(A0+A1)B2〉
can similarly be derived from the inequality

α〈(A0 +A1)B2〉+ S ≤ 2
√

1 + (1 + α)2 (5.22)

for α ≥ 0. The inequality (5.22) itself is implied by the tight quantum bound
derived for the Iβα expression in [AMP12], since there is clearly no advantage for
the operator B2 to be different from B0 in order to maximise the left-hand side.

The same general approach works for the main results of section 5.2. The
Mermin expectation values M and M ′ are both symmetric under the transforma-
tions Ax, Cz 7→ −Ax,−Cz and By, Cz 7→ −By,−Cz. These can be used to map
the probability PA|X(+|0) to PA|X(−|0) and the probability PAB|XY (++|00) to
any of the probabilities PAB|XY (+−|00), PAB|XY (−+|00), and PAB|XY (−−|00),
and vice versa. Consequently, in order to derive upper bounds on G(A|0) and
G(AB|00), we need only derive concave upper bounds for

PA|X(+|0) =
1

2

(
1 + 〈A1〉

)
(5.23)
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and

PAB|XY (++|00) =
1

4

(
1 + 〈A1〉+ 〈B1〉+ 〈A1B1〉

)
. (5.24)

5.3.2 Local guessing probability linearisation

Similarly to the derivation for CHSH summarised above, the local-guessing-
probability bound (5.13) for

√
M2 +M ′2 ≥ 2

√
2 is implied by the linearisation

cos(θ)〈A1〉+
1

2
sin(θ)

(
cos(ϕ)M + sin(ϕ)M ′

)
≤ 1 + sin(θ) , (5.25)

which holds for θ in the range π/4 ≤ θ ≤ π/2 and for all ϕ. We can see that
(5.25) is tight by observing that is attained if (for example) the measurements

A0 = B0 = σx , A1 = B1 = σy (5.26)

and

C0 = cos(ϕ)σx − sin(ϕ)σy, C1 = sin(ϕ)σx + cos(ϕ)σy (5.27)

are performed on the state

|Ψ〉 = cos( θ2 )
1√
2

(
|+++〉+ |+−−〉

)
+ sin( θ2 )

1√
2

(
|−+−〉+ |−−+〉

)
, (5.28)

where |±〉 = (|1〉 ± |2〉)/
√

2 are the eigenstates of the σx operator and θ is the
same angle as in (5.25). With this state and measurements, one can readily
verify that 〈A0〉 = cos(θ) and 1

2

(
cos(ϕ)M + sin(ϕ)M ′

)
= 1 + sin(θ), which attain

(5.25).
The linearisation (5.25) ceases to apply for θ < π/4. It is violated, for

instance, by measuring

A0 = 1, A1 = −1, B0 = σx, B1 = σy , (5.29)

and

C0 = cos(ϕ)σx − sin(ϕ)σy, C1 = sin(ϕ)σx + cos(ϕ)σy (5.30)

on a state |Ψ′〉 = |χ〉A |ψ〉BC, where |χ〉 is any state on Alice’s subsystem and
Bob and Charlie share the state

|ψ〉 =
1√
2

(
e−i

π
8 |11〉+ ei

π
8 |22〉

)
. (5.31)
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This strategy yields 〈A0〉 = 1 and

cos(ϕ)M + sin(ϕ)M ′ = 2
√

2 , (5.32)

and the right-hand side of (5.25) attains cos(θ) +
√

2 sin(θ). Importantly, for
θ = π/4, we see that (5.25) can be attained with a strategy for which Alice’s A0

measurement produces a deterministic outcome.
We prove the linearisation (5.25) by showing that the operator

T =
(
1 + sin(θ)

)
1− cos(θ)A0 −

1

2
sin(θ)

(
cos(ϕ)M̂ + sin(ϕ)M̂ ′

)
(5.33)

is positive semidefinite, where

M̂ = A0B0C0 −A0B1C1 −A1B0C1 −A1B1C0 , (5.34)

M̂ ′ = A0B0C1 +A0B1C0 +A1B0C0 −A1B1C1 . (5.35)

A sum-of-squares decomposition that shows this is

T = |P+
1 |2 + |P+

2 |2 + |P−1 |2 + |P−2 |2 (5.36)

where |O|2 = O†O,

P+
1 = αR+

1 + βR+
2 − βR+

3 − αR+
4 , (5.37)

P+
2 = γR+

1 − δR+
3 , (5.38)

P−1 = βR−1 + αR−2 + αR−3 + βR−4 , (5.39)

P−2 = δR−1 + γR−3 , (5.40)

R±i are the operators

R+
1 = cos(ϕ)(B0 + C0) + sin(ϕ)(B1 + C1)− A0(B0 + C0), (5.41)

R+
2 = cos(θ)(B1 + C1)−A0(B1 + C1) + sin(θ)A1(B0 + C0), (5.42)

R+
3 = sin(ϕ)(B0 + C0)− cos(ϕ)(B1 + C1)− A0(B1 + C1), (5.43)

R+
4 = cos(θ)(B0 + C0)−A0(B0 + C0)− sin(θ)A1(B1 + C1), (5.44)

R−1 = cos(ϕ)(B0 − C0) + sin(ϕ)(B1 − C1) + A0(B0 − C0), (5.45)

R−2 = cos(θ)(B1 − C1)−A0(B1 − C1) + sin(θ)A1(B0 − C0), (5.46)

R−3 = sin(ϕ)(B0 − C0)− cos(ϕ)(B1 − C1) + A0(B1 − C1), (5.47)

R−4 = cos(θ)(B0 − C0)−A0(B0 − C0)− sin(θ)A1(B1 − C1), (5.48)



84 CHAPTER 5. RANDOMNESS IN THE MERMIN-BELL SCENARIO

and the coefficients α, β, γ, δ are related to θ and ϕ by

α =
sin
(
ϕ
2

)
4 cos

(
θ
2

) , (5.49)

β =
cos
(
ϕ
2

)
4 cos

(
θ
2

) , (5.50)

γ =
1

4

√
sin(θ) + cos(θ) cos(ϕ)− sin(ϕ)

√
− cos(2θ) , (5.51)

δ =
s

4

√
sin(θ)− cos(θ) cos(ϕ) + sin(ϕ)

√
− cos(2θ) , (5.52)

where s = ±1 in the last line is the sign

s = − sign
(

cos(θ) sin(ϕ) + cos(ϕ)
√
− cos(2θ)

)
. (5.53)

The R±i s have been grouped by whether or not they change sign under the
replacements

τ :


B0 7→ C0

B1 7→ C1

C0 7→ B0

C1 7→ B1

, (5.54)

which is a symmetry of (5.33).
The parameters γ and δ are chosen to solve the simultaneous equations

8γ2 + 8δ2 − sin(θ) = 0 , (5.55)

8 cos(ϕ)γ2 − 16 sin(ϕ)γδ − 8 cos(ϕ)δ2 − cos(θ) = 0 , (5.56)

which we encountered when searching for a decomposition. They are solvable for
real-valued γ and δ (and (5.51) and (5.52) are solutions) if sin(θ) is positive and
greater than |cos(θ)|, which is the case for the range π/4 ≤ θ ≤ π/2 of values of
θ for which we need to show that the linearisation (5.25) holds. It is not difficult
to check in this case that

sin(θ)− |cos(θ) cos(ϕ)| ≥ |sin(ϕ)|
√
− cos(2θ) (5.57)

holds for arbitrary ϕ, verifying that the expressions under the outer square roots
in (5.51) and (5.52) are nonnegative. The operators P±i are then all Hermitian
and |P±i |2 can be simplified to P± 2

i .
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The Python script pa1 mermin sos.py supplied in [WBA18b] uses the SymPy
library [MSP+17] to verify symbolically that the sum-of-squares decomposition
(5.36) expands to (5.33), under the assumption that the operators P±i are
Hermitian and that the conditions (5.55) and (5.56) for γ and δ can be satisfied.

5.3.3 Two-party guessing probability linearisation

For M ≥ 2, the guessing-probability bound (5.16) follows from the linearisation

β〈A0 +B0 +A0B0〉+ αM ≤ γ , (5.58)

where

β = (λ− µ)(λ+ 3µ) , (5.59)

α = 4λµ , (5.60)

γ = (3λ+ µ)(λ+ 3µ) , (5.61)

which holds for parameters λ and µ satisfying

3µ ≥ λ ≥ µ . (5.62)

In the extreme cases λ = 3µ and λ = µ, (5.58) reduces respectively to

4PAB|XY (++|00) +M ≤ 6 , (5.63)

which corresponds to the linear part of (5.16), and to the bound M ≤ 4 for the
Mermin correlator itself, where the gradient of (5.16) is infinite. (Eq. (5.58) also
appears to hold for 0 ≤ λ < µ; however (5.58) then translates to a lower bound on
PAB|XY (++|00), which we did not interest ourselves in.) Eq. (5.58) is attained
with equality by measuring A0 = B0 = C0 = σx and A1 = B1 = C1 = σy on the
state

|Ψ〉 = λ |+++〉+ µ
(
|+−−〉+ |−+−〉+ |−−+〉

)
, (5.64)

with λ and µ scaled to satisfy λ2+3µ2 = 1 so that the state is properly normalised.
In this case PAB|XY (++|00) and M work out to

PAB|XY (++|00) = λ2 , (5.65)

and

M = (λ+ 3µ)2 ; (5.66)
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these are related by

PAB|XY (++|00) =
3

4
− M

8
+
√

3

√
M

8

(1

2
− M

8

)
, (5.67)

corresponding to the nonlinear part of (5.16). The condition 3µ ≥ λ ≥ µ
and normalisation λ2 + 3µ2 = 1 also translate to precisely the ranges 1/4 ≤
P (++|00) ≤ 3/4 and 3 ≤M ≤ 4 to which the nonlinear part of (5.16) applies.

With the same state (5.64) and optimal measurements, we also have

PABC|XY Z(+++|000) = λ2 = PAB|XY (++|00). (5.68)

This implies that the upper bound (5.16) for G(AB|00) is also the tight upper
bound for G(ABC|000).

The linearisation (5.58) is equivalent to the operator inequality

T = γ1− β(A0 +B0 +A0B0)− αM̂ ≥ 0 . (5.69)

This is shown by the sum-of-squares decomposition

T =
∣∣P++

1

∣∣2 +
∣∣P++

2

∣∣2 +
∣∣P++

3

∣∣2 +
∣∣P++

4

∣∣2 +
∣∣P+−

2

∣∣2
+
∣∣P−+

1

∣∣2 +
∣∣P−+

2

∣∣2 +
∣∣P−−1

∣∣2 +
∣∣P−−3

∣∣2 , (5.70)

where

P++
1 =

√
λ+ µ

4
√
µ

(3µ− λ)R++
1 , (5.71)

P++
2 =

1

4
√
µ

√
(λ2 − µ2)(3µ− λ)

(
R++

1 + 2R++
2

)
, (5.72)

P++
3 =

√
3µ− λ

2
√
µ(λ+ µ)

R++
3 , (5.73)

P++
4 =

1

2
√
λµ

(λ− µ
λ+ µ

R++
3 +R++

4

)
, (5.74)

P+−
2 =

1

2

√
λ(λ− µ)R+−

2 , (5.75)

P−+
1 =

1

2

√
λ√
2µ

√
(λ− µ)2 + 4µ2R−+

1 , (5.76)

P−+
2 =

1

2

√
λ(3µ− λ)

µ(λ+ µ)
R−+

2 , (5.77)
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P−−1 =

√
λ(λ− µ)

2
R−−1 , (5.78)

P−−3 =

√
λ(λ− µ)

2(λ+ µ)

(
R−−2 +R−−3

)
, (5.79)

and

R++
1 = (A0 +B0)(1− C0), (5.80)

R++
2 = C0 −A0B0, (5.81)

R++
3 = (λ− µ)21+ (λ+ µ)2C0 − (λ2 − µ2)(A0 +B0) + 4λµA1B1,(5.82)

R++
4 = (λ− µ)21+ µ(λ+ µ)(A0 +B0)

− (λ2 − µ2)C0 + 2λµ (A1 +B1)C1, (5.83)

R+−
1 = (λ− µ)2(A1 +B1)− 2(λ− µ)2C1

− (λ2 − µ2)(A1 +B1)C0 + (λ2 − µ2)(A0 +B0)C1, (5.84)

R+−
2 = (A1 +B1)− 2C1 − (A0B1 +A1B0) + (A0 +B0)C1, (5.85)

R−+
1 = (A0 −B0)(1+ C0), (5.86)

R−+
2 = (λ+ µ)(A0 −B0)− 2µ(A1 −B1)C1, (5.87)

R−−1 = (A1 −B1)(1− C0), (5.88)

R−−2 = 2µ(A1 −B1)− (λ+ µ)(A0 −B0)C1, (5.89)

R−−3 = (λ− µ)(A1 −B1) + (λ+ µ)(A0B1 −A1B0). (5.90)

The R±±
′

i s are grouped according to whether they change sign under the re-
placements

τ1 :


A0 7→ B0

A1 7→ B1

B0 7→ A0

B1 7→ A1

, τ2 :


A1 7→ −A1

B1 7→ −B1

C1 7→ −C1

. (5.91)

Note that we have included an operator, R+−
1 , among the list of R±±

′

i s that
we attempted to construct a sum-of-squares decomposition out of, although
ultimately we did not use it.
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The Python script pa1b1 mermin sos.py, supplied in [WBA18b], checks that
the sum-of-squares decomposition (5.70) expands to (5.69).

5.3.4 Method

We initially determined the upper bounds on the guessing probabilities G(A|0)
and G(AB|00) numerically in terms of the Mermin expectation value M . It
was quickly apparent that the nonlinear parts of the bounds were consistently
being attained with anticommuting measurements. From there it was not
difficult to guess the optimal states and see that the numeric bounds seemed to
coincide with the (at this point, conjectured) analytic forms (5.13) and (5.16)
given in section 5.2. Experimenting a little, we found that the bounds seemed
to be attained respectively at the NPA hierarchy levels 1 + AB + AC and
1 + AB + AC + BC; this told us that we should be able to find sum-of-squares
decompositions out of the operators at these levels for the tangents of the bounds.

We searched for sum-of-squares decompositions following a method similar
to [BP15]. The idea is essentially to write the general form of a candidate
sum-of-squares decomposition in terms of unknown parameters, assert that it
should expand to the operator we want to show is positive semidefinite, and
then find parameters for which the assertion becomes true.

Using the tangents of the local-guessing-probability bound as an example,
we were searching for a solution to the problem

T −
∑
i

P s 2
i = 0 , (5.92)

where T is the target expansion (5.33), for operators P±i of the form

P si =
∑
j

csijR
s
j , (5.93)

where the csijs are unknown real-valued coefficients and the Rsjs form a basis of
the space of linear combinations of the operators at level 1 + AB + AC with the
property

Rsj |Ψ〉 = 0 (5.94)

for the (conjectured) optimal measurements Ax, By, Cz and state |Ψ〉 described
in subsection 5.3.2. Such a basis of Rsjs is given by Eqs. (5.41)–(5.48).

We have applied some simplifications to the problem above, following [BP15].
In particular, writing∑

i

P †i Pi =
∑
jkrs

Mrs
jk R

r †
j Rsk , Mrs

jk =
∑
i

cr ∗j csk (5.95)
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for the potentially more general problem with

Pi =
∑
js

csijR
s
j , (5.96)

we have used that it is not restrictive to assume that the coefficients csij are
real-valued and that the symmetry of the target operator (5.33) under the
transformation τ (5.54) can be used to block diagonalise the matrix of elements
Mrs
jk .
We also applied another simplification: one can choose to set csij = 0 for (for

instance) i < j or i > j. This corresponds to choosing a Cholesky factorisation
of the matrix of elements Ms

jk =
∑
i c
s
ijc

s
ik.

Expanding the candidate sum-of-squares decomposition on the left-hand
side of (5.92) and requiring operator-by-operator that the left-hand side is
zero translates to imposing a number of quadratic equality constraints on the
coefficients csij . We used a Python module divars.py, supplied in [WBA18b],
together with SymPy, to automate this procedure and help simplify the resulting
constraints. We then repeatedly searched numerically for solutions to the
constraints, guessing and gradually introducing constraints on the coefficients
(e.g., trying csij = 0 for some coefficient or imposing that two coefficients are equal
to each other) until the numeric search seemed to consistently return the same
solution. Solving the remaining constraints by hand got us the sum-of-squares
decomposition given in subsection 5.3.2.

5.4 Attacks against device-independent secret
sharing

Aside from fundamental interest, a second more practical motivation to conduct
the previous analysis was to construct a device-independent secret-sharing pro-
tocol based on the Mermin inequality. However, we found obstacles to this idea
which we describe in the following section.

5.4.1 Overview

Secret sharing is a cryptographic task in which a secret (e.g., a cryptographic
key) is distributed among two or more parties in such a way that a specified
minimum number of parties must work together in order to reconstruct it.
Hillery, Bužek, and Berthiaume (HBB) [HBcvB99] proposed a quantum version



90 CHAPTER 5. RANDOMNESS IN THE MERMIN-BELL SCENARIO

of secret sharing, analogous to the concept of quantum key distribution, in
which the security of the protocol is guaranteed by quantum physics. In the
three-party scheme of [HBcvB99], Alice, Bob, and Charlie share a GHZ state
|Ψ〉 = 1√

2

(
|111〉+ |222〉

)
and choose inputs x, y, z ∈ {0, 1} and measure Ax, By,

and Cz, where A0 = B0 = C0 = σx and A1 = B1 = C1 = σy. In all cases, Bob’s
and Charlie’s measurement outcomes individually are uncorrelated with Alice’s.
However, if Alice, Bob, and Charlie all measure σx, or any one of them measures
σx and the other two measure σy, then Bob and Charlie can together determine
Alice’s result from the product of their own measurement results. Quantum
secret-sharing protocols can also be devised for more than three parties, but we
will discuss explicitly only the three-party version here.

The state and measurements, and resulting correlations, of this protocol are
precisely those that maximally violate the Mermin-Bell inequality. For readers
familiar with both, it may seem natural to ask whether the security of the HBB
scheme can be proved device independently, i.e., without assuming that the
participants’ devices are necessarily measuring σx and σy. There have indeed
been proposals to design a device-independent secret-sharing protocol based
on the GHZ-paradox or other correlations arising from GHZ states [AGCA12,
GZ17, RM17]. However, we found that the HBB scheme is completely insecure
from a device-independent point of view. The reason is that the secret-sharing
protocol is intended to still work, securely, if either Bob or Charlie (but not
both) are dishonest, and this differs from the usual Bell scenario where all the
parties participating in the Bell test are trusted.

If (say) Charlie is dishonest, he could attack the protocol in the usual ways
considered in the security analyses of device-independent protocols (particularly,
he could prepare a different state than the GHZ state and/or arrange for Alice’s
and Bob’s devices to perform different measurements than σx and σy). Moreover,
since Charlie is also involved in the parameter estimation (e.g., the estimation
of the Mermin expectation value), he could also act in ways that don’t respect
the normal conditions of a Bell test:

1. Charlie could wait until Bob declares which basis y he measured in before
declaring his own input z and output c, and could perform different
measurements on his system depending on which input y Bob declared.

2. Charlie could introduce correlations between his choice of input z and
the system prepared for the protocol, instead of choosing z randomly and
independently, for instance by performing a four-outcome measurement to
determine both his input z and output c, or by implementing a hidden-
variable model in which the hidden variable λ is correlated with z.
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3. Charlie could perform a different measurement to attempt to guess Alice’s
outcome than he does in the parameter estimation rounds.

The possibility of an attack combining 1 and 3 is already known to be fatal for
even the device-dependent HBB scheme (i.e., Charlie can learn Alice’s outcome,
without being detected, even assuming that Alice and Bob are measuring σx

and σy). It and a possible remedy, in which Bob and Charlie are required to
declare their outputs before either are allowed to declare their inputs, is discussed
in [KKI99].

In the following we describe how a dishonest party could go about attacking
an HBB-type protocol, in either the quantum or no-signalling scenarios, without
needing to learn Bob’s input. We have not attempted to be exhaustive or general;
we merely describe the simplest pathological cases that would need to be ruled
out, which already show that the situation is much worse for secret sharing in
the device-independent scenario.

5.4.2 Hidden variable models

Similarly to other device-independent cryptographic protocols, the simplest way
a dishonest Charlie could try to attack a secret-sharing protocol would be to
attempt to implement a deterministic hidden-variable model replicating the
observed correlations. This is possible if the probabilities P (abc|xyz) of the
protocol can be expressed in the form

P (abc|xyz) =
∑
λ

pλ|zP (a|x, λ)P (b|y, λ)P (c|z, λ). (5.97)

Note that, in this case, there is no reason for Charlie to arrange for the hidden
variable λ and his own input z to be uncorrelated. (In the language of Bell
locality, the so-called “free will” assumption is not justified.) We reflect this
in (5.97) by allowing the probability distribution pλ|z to depend arbitrarily on
z. Eq. (5.97) thus does not have the form of a local hidden-variable model of
the kind normally considered in Bell-type theorems, and it is not sufficient for
the probabilities P (abc|xyz) to violate a Bell inequality, such as the Mermin
inequality, in order to rule out a local hidden-variable model of the form above.

It is easy to show that the existence of a decomposition of the form (5.97) is
equivalent to the existence of a local hidden-variable model of the form

P (ab|xy, cz) =
∑
λ

p′λ|czP
(cz)(a|x, λ)P (cz)(b|y, λ) (5.98)
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for each of the probability distributions P (ab|xy, cz) conditioned on Charlie’s
different possible outputs and inputs c and z. This gives a bare minimum
condition in order for there to be any hope that a device-independent secret-
sharing scheme might be secure: at least one of the conditional distributions
P (ab|xy, cz) (for some c and z) must be nonlocal. This condition is not met
for the GHZ correlations that the HBB protocol is based on: in that case all
of the conditional distributions P (ab|xy; cz) exhibit perfect correlation or no
correlation at all depending on the inputs, and admit trivial local hidden-variable
models. This makes it clear that secret sharing cannot be done securely and
device independently using only the correlations of the GHZ paradox.

5.4.3 No-signalling attacks

Security analyses of device-independent protocols are sometimes undertaken
using only the no-signalling constraints, since this is typically much simpler,
though typically at the cost of significantly worse tolerance to noise. We are
aware of at least two proposals [AGCA12, GZ17] to design device-independent
secret-sharing protocols using GHZ states (but not necessarily the GHZ-paradox
correlations) using only no-signalling constraints. In this case, the situation is
significantly worse, since in the no-signalling scenario, a dishonest Charlie could
implement arbitrary steering. More precisely, suppose Charlie wishes to produce
the no-signalling distribution P (abc|xyz) in the parameter estimation rounds.
If the marginal distribution P (ab|xy) =

∑
c P (abc|xyz) can be expressed as a

convex sum
P (ab|xy) =

∑
λ

pλP
(λ)(ab|xy) (5.99)

of no-signalling distributions P (λ)(ab|xy) then Charlie could prepare the extended
distribution

P ′(abc|xyz) =

{
P (abc|xyz) if z 6= ⊥
pcP

(c)(ab|xy) if z = ⊥ (5.100)

where ⊥ is an additional input that Charlie can use in the secret bit generation
rounds, when he is not asked to publicly disclose his input and outcome. It is easy
to verify that the extended distribution (5.100) still satisfies the no-signalling
constraints.

The above observation means that, in the no-signalling scenario, the security
or insecurity of a device-independent secret-sharing protocol against a dishonest
Charlie is determined entirely by the marginal distribution P (ab|xy) between
Alice and Bob. If this marginal distribution is in the local polytope then the
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protocol is completely insecure against no-signalling attacks. A special case
worth remarking is that no device-independent secret-sharing protocol based
on the GHZ state can be proved secure using only the no-signalling conditions:
the marginals of the GHZ state are all separable and the marginal probability
distributions will always be in the local polytope, regardless of what or how
many measurements are performed by the parties.

5.4.4 Outlook

We have pointed out that a device-independent version of the HBB protocol
would be completely insecure against a dishonest party, and that any protocol
for which the marginal probability distributions are in the local polytope (for
example, any protocol using a GHZ state) cannot be proved secure using only the
no-signalling constraints. This does not rule out that a device-independent secret-
sharing protocol could be designed, for instance based on different correlations
and/or using stronger constraints than only the no-signalling conditions in the
security proof. However, one should consider the following points:

• It is already known that if one can do quantum key distribution then one
can do secret sharing. For instance, Alice could do device-independent key
distribution separately with Bob and Charlie and xor the two keys. More
generally, secret sharing can be done securely using classical protocols if
the parties can do one-time-pad encryption, which happens to be precisely
what key distribution schemes are intended to generate cryptographic keys
for.

• As with key distribution, or any secure protocol involving parties commu-
nicating remotely, the parties would need to authenticate themselves. This
is normally done in key distribution using classical authentication schemes
which require preshared keys; part of the generated key can then be used
to do the authentication the next time. Consequently, it seems to us that
one would need to be able to do key distribution anyway in order to do
secret sharing, if only to generate the authentication keys needed after the
first use of the protocol.

Given these issues, the usefulness of a device-independent secret-sharing protocol
that does not reduce to a direct application of device-independent quantum key
distribution is unclear to us.
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5.5 Conclusion

We considered the Mermin-Bell experiment with three parties and we identified
and proved tight upper bounds on the guessing probabilities associated with the
measurement outcomes of one and two of the parties. The results are funda-
mental tradeoffs between the amount of intrinsic randomness and nonlocality, as
measured by the violation of the Mermin inequality, imposed by the structure of
quantum physics. The linearisations in section 5.3 can also be read as inequalities
identifying parts of the boundary of the set of quantum correlations. The results
reveal that part of the boundary of the quantum set is flat, a characteristic that
has previously been remarked upon in [RM17, GKW+18].

It may be interesting to study how our results generalise to Bell experiments
involving more parties. We guessed one possible generalisation of the upper
bound (5.16) for G(AB|00) to n parties, which can be found in appendix C.2.
We did not attempt to prove it, though we tested the cases for n = 4 and n = 5
parties numerically.

While we are not aware of an obvious practical application of our results,
we believe there is some merit to finding the analytic form of randomness
vs. nonlocality tradeoffs more generally where it could be feasible to do so,
particularly where the result might be used in the security proof of a device-
independent protocol. From this point of view, our results explore the feasibility
of searching for sum-of-squares decompositions for problems somewhat larger
than was considered in [BP15]. The cases where the method is likely to work
are probably those where the problem is “simple” in some same key respects as
the problems we studied. In particular: it was reasonably easy for us to guess
the upper bounds and the states and measurements that attained them, we
found that the optimal solution was attained at a level of the hierarchy that was
not prohibitively high, and symmetries of the problem allowed us to reduce the
number of variables in the searches for sum-of-squares decompositions.



Chapter 6

Two bits of global
randomness from any
partially entangled state

When two parties perform a Bell test with dichotomic measurements, up to
two bits of global randomness can be generated. The amount of randomness
that is produced can be certified in a device-independent way, that is, without
relying on the physical system in use, but only on the correlations that underlie
the Bell test. Though, in that case, the state on which the measurements are
performed does not play a role in the randomness certification process, one might
take a resource approach to entanglement and ask: how much randomness can
be certified when the underlying correlations arise from a state with a given
level of entanglement? Indeed, at first glance, the notions of entanglement
and randomness are closely related: randomness can be certified only from
nonlocal correlations, which, in turn, can be achieved only with entangled states.
However, we show in this Chapter that this relation is only qualitative: maximal
randomness can be certified from any level of entanglement. The results of this
Chapter are based on [WKB+19].

95
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6.1 Introduction

Randomness as we understand it in this Thesis, that is, the unpredictability of
the outcomes of a Bell test, exists only if the behaviour associated to the Bell test
is nonlocal. In turn, nonlocal correlations can be observed only if measurements
are performed on an entangled sate. This might suggest that there exists a
quantitative equivalence between the notions of randomness and entanglement.

Aside from it fundamental interest, that would imply some experimental
requirements on the states that should be prepared in order to certify a certain
amount of randomness in a device-independent way. Finding out if it such
requirements exist is crucial, as practical and efficient DIRG is now within our
reach [LYL+18, BKG+18].

However, the authors of [AMP12] already observed that correlations that arise
from almost unentangled states can be used to certify an amount of randomness
that is arbitrarily close to its maximal value. In this Chapter, we go a step
forward and ask: can maximal global randomness be certified with correlations
that arise from any partially entangled qubit pure state?

We show that the answer is yes. To do so, we fix the values of four Bell
expressions. We prove that these values self-test the desired partially entangled
qubit pure state, and the measurements that are needed to obtain two bits of
global randomness.

6.2 Results

We first describe the setting that we consider. We then prove our self-testing
claim. We conclude by explaining why it implies that maximal global randomness
is certified.

6.2.1 Setting

An arbitrary two-qubit pure state can be expressed as

|ψθ〉 = cos
(
θ
2

)
|00〉+ sin

(
θ
2

)
|11〉 (6.1)

in its Schmidt decomposition. In a device-dependent approach, if Alice and
Bob share such a state, they can extract two bits of randomness from it by
measuring, for instance, A = σx on Alice’s side and B = σy on Bob’s side. This
is the maximum amount of randomness that can be extracted from |ψθ〉 using
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measurements that are projective on the support of Alice’s and Bob’s marginals
of |ψθ〉.

We now describe the scheme we use to achieve the same thing in a device-
independent way. Alice performs three projective measurements A0, A1, A2 and
Bob performs seven projective measurements B0, . . . , B6 on a state ρ that is a
priori unknown but intended to be |ψθ〉 in some basis for some θ ∈ ]0, π2 ]. These
measurements are dichotomic and we denote their possible outputs {+1,−1}.
They check that the correlations they obtain satisfy the conditions

Iβ = 2
√

2
√

1 + β2/4, (6.2)

Jβ = 2
√

2
√

1 + β2/4, (6.3)

S = 2
√

2 sin(θ), (6.4)

〈A2B6〉 = − sin(θ), (6.5)

where

Iβ = β〈A0〉+ 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 , (6.6)

Jβ = β〈A0〉+ 〈A0B2〉+ 〈A0B3〉+ 〈A2B2〉 − 〈A2B3〉 (6.7)

are tilted CHSH expressions of the kind introduced in [AMP12], we choose

β =
2 cos(θ)√
1 + sin(θ)2

, (6.8)

and

S = 〈A1B4〉+ 〈A1B5〉+ 〈A2B4〉 − 〈A2B5〉 (6.9)

is the ordinary CHSH expression.
Before we state our exact claims, let us describe the general reasoning behind

these requirements. It was shown in [AMP12] that the tilted CHSH expressions
Iβ and Jβ have a maximum quantum expectation value of 2

√
2
√

1 + β2/4.
Furthermore, this quantum bound is attained with the partially entangled state
|ψθ〉, with θ related to β according to (6.8), and measurements A0 = σz and
A1 and A2 in the X-Y plane on Alice’s side. Given this, the third condition
S = 2

√
2 sin(θ) can only be satisfied if A1 and A2 are orthogonal on the bloch

sphere, i.e., we have something like A1 = σx and A2 = σy. The final condition
〈A2B6〉 = − sin(θ) would then require B6 = σy. At this point, Alice and
Bob could trust that they can extract two bits of global randomness with the
measurements A1 = σx and B6 = σy.



98 CHAPTER 6. RANDOMNESS FROM PARTIAL ENTANGLEMENT

6.2.2 Self-testing

The density operator ψθ associated to the state |ψθ〉 can be written as:

ψθ =
1

4

[
1⊗1+cos(θ)

(
1⊗σz+σz⊗1

)
+sin(θ)

(
σx⊗σx−σy⊗σy

)
+σz⊗σz

]
. (6.10)

If the first condition Iβ = 2
√

2
√

1 + β2/4 is met, we can infer that, in a suitable
choice of basis, the underlying quantum state has the form

ρ = ψθ ⊗ σjunk (6.11)

where σjunk is unknown and the measurements A0 and A1 on Alice’s side are

A0 = σz ⊗ 1, (6.12)

A1 = σx ⊗ 1. (6.13)

This self-testing statement is proved in detail in Appendix D.
The second condition Jβ = 2

√
2
√

1 + β2/4 allows us to make an analogous
self-testing claim for the state and measurements A0 and A2, although not
necessarily in the same basis. However, from the first condition, we have already
determined the state and A0, and the self test tells us that A2 must be related
to A0 by

{A0, A2} = 0 (6.14)

regardless of the choice of basis. Writing generally

A2 = 1⊗A1 + σx ⊗AX + σy ⊗AY + σz ⊗AZ, (6.15)

imposing (6.14) with A0 = σz ⊗ 1 forces A1 = AZ = 0. Requiring in addition
that A2

2 = 1⊗ 1, we find that the measurement A2 must have the form

A2 = σx ⊗AX + σy ⊗AY (6.16)

with

AX
2 +AY

2 = 1, [AX, AY] = 0. (6.17)

We now study the third constraint S = 2
√

2 sin(θ) and show that it implies
AX = 0. Writing

Bi = 1⊗B(i)
1 + X⊗B(i)

X + Y ⊗B(i)
Y + Z⊗B(i)

Z , (6.18)
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i ∈ {4, 5}, the condition Bi
2 = 1⊗ 1 implies:

B
(i)
1

2
+B

(i)
X

2
+B

(i)
Y

2
+B

(i)
Z

2
= 1. (6.19)

That implies in particular:

B
(i)
X

2
+B

(i)
Y

2
≤ 1. (6.20)

We now express S with these notations. Using the expression (6.10) for ψθ in
the Pauli basis and the fact that the Pauli operators are traceless, we get:

〈A2B4〉 = Tr
[
A2B4 (ψθ ⊗ σjunk)

]
= sin(θ)

(
〈AX ⊗B(4)

X 〉junk − 〈AY ⊗B(4)
Y 〉junk

)
(6.21)

and, similarly:

〈A2B5〉 = sin(θ)
(
〈AX ⊗B(5)

X 〉 − 〈AY ⊗B(5)
Y 〉
)
, (6.22)

〈A1B4〉 = sin(θ) 〈1⊗B(4)
X 〉, (6.23)

〈A1B5〉 = sin(θ) 〈1⊗B(5)
X 〉. (6.24)

The condition S = 2
√

2 sin(θ) thus translates to:

〈1⊗B(4)
X 〉+ 〈1⊗B(5)

X 〉+ 〈AX ⊗B(4)
X 〉 (6.25)

− 〈AY ⊗B(4)
Y 〉 − 〈AX ⊗B(5)

X 〉+ 〈AY ⊗B(5)
Y 〉 = 2

√
2.

Since 1, AX and AY commute, we can co-diagonalise them. Together with the
fact that AX

2 +AY
2 = 1, we can thus write:

1 =
∑
k

|k〉 〈k| , AX =
∑
k

xk |k〉 〈k| , AY =
∑
k

yk |k〉 〈k| (6.26)

with
∀k, xk2 + yk

2 = 1. (6.27)

Using this, we have, for instance,

〈AX ⊗B(4)
X 〉 =

∑
k

xk Tr
[(
|k〉 〈k| ⊗B(4)

X

)
σjunk

]
=
∑
k

xk〈B(4)
X 〉k (6.28)
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and similar expressions for the other terms on the left side of (6.25), where the
expectation values 〈 · 〉k = Tr[ · σk] are evaluated on the states

σk = TrAjunk

[(
|k〉 〈k| ⊗ 1

)
σjunk

]
(6.29)

on the ‘junk’ part of the Hilbert space on Bob’s side. Note that their norms
satisfy ∑

k

‖σk‖2 =
∑
k

Tr[σk] = 1 . (6.30)

Using this, together with the Cauchy-Schwarz inequality, on the left-hand side
of (6.25), we get:

〈1⊗ (B
(4)
X +B

(5)
X )〉+ 〈AX ⊗B(4)

X 〉 − 〈AY ⊗B(4)
Y 〉 − 〈AX ⊗B(5)

X 〉+ 〈AY ⊗B(5)
Y 〉

=
∑
k

[
(1 + xk)〈B(4)

X 〉k − yk〈B
(4)
Y 〉k + (1− xk)〈B(5)

X 〉k + yk〈B(5)
Y 〉k

]
≤
∑
k

(√
2(1 + xk)

√
〈B(5)

X 〉k
2

+ 〈B(5)
Y 〉k

2
+
√

2(1− xk)

√
〈B(6)

X 〉k
2

+ 〈B(6)
Y 〉k

2)
≤
∑
k

(√
2(1 + xk) ‖σk‖2 +

√
2(1− xk) ‖σk‖2

)
≤
∑
k

2
√

2 ‖σk‖2

= 2
√

2. (6.31)

The third expression comes from Eq. (6.27), the fourth expression comes from
the fact that

〈B〉k ≤
√
〈B2〉k ‖σk‖ (6.32)

and 〈
B

(i)
X

2
+B

(i)
Y

2〉
k
≤ 〈1〉k = ‖σk‖2. (6.33)

Finally, for Eq. (6.25) to hold, all the inequalities in (6.31) should actually be
equalities. In particular, the vectors:(√

2(1 + xk)√
2(1− xk)

) (
‖σk‖2
‖σk‖2

)
(6.34)

should be collinear, which is only possible if xk = 0 for all k. In other words,
AX = 0, and we conclude that Alice’s third measurement must be of the form

A2 = σy ⊗AY (6.35)
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with AY
2 = 1.

Let us now write B6 in the same way as we did for B4 and B5:

B6 = 1⊗B(6)
1 + σx ⊗B(6)

X + σy ⊗B(6)
Y + σz ⊗B(6)

Z (6.36)

with

B
(6)
1

2
+B

(6)
X

2
+B

(6)
Y

2
+B

(6)
Z

2
= 1 . (6.37)

We now compute |〈A2B6〉|:

|〈A2B6〉| =
∣∣〈σy ⊗ σy〉ψθ 〈AY ⊗B(6)

Y 〉junk

∣∣
= |sin(θ)|

∣∣〈AY ⊗B(6)
Y 〉
∣∣

≤ |sin(θ)|
√
〈B(6)

Y

2
〉
√
〈AY

2〉

= |sin(θ)|
√
〈B(6) 2

Y 〉. (6.38)

The condition 〈A2B6〉 = − sin(θ) then allows us to conclude that〈
B

(6)
Y

2〉
= 1 (6.39)

and, from (6.37), that 〈
B

(6)
1

2〉
=
〈
B

(6)
X

2〉
=
〈
B

(6)
Z

2〉
= 0. (6.40)

6.2.3 Maximal randomness certification

We can now show that the probabilities of the possible outcomes when Alice
and Bob jointly measure A1 and B6 are all 1/4. Indeed, given Eqs. (6.11) and
(6.13), the following holds:

|〈A1〉| = |〈σx ⊗ 1〉ψθ 〈1⊗ 1〉junk|
= 0. (6.41)

Moreover, Eq. (6.40) implies that:

|〈B6〉| =
∣∣∣〈1⊗ 1〉ψθ 〈1⊗B

(6)
1 〉junk + 〈1⊗ σz〉ψθ 〈1⊗B

(6)
Z 〉junk

∣∣∣
≤
∣∣〈1⊗B(6)

1 〉
∣∣+ cos(θ)

∣∣〈1⊗B(6)
Z 〉
∣∣

≤
√〈

B
(6)
1

2〉
+ cos(θ)

√〈
B

(6)
Z

2〉
= 0. (6.42)
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and that:

|〈A1B6〉| =
∣∣〈σx ⊗ σx〉ψθ 〈1⊗B

(6)
X 〉junk

∣∣
= |sin(θ)|

∣∣〈1⊗B(6)
X 〉
∣∣

≤ |sin(θ)|
√〈

B
(6)
X

2〉
= 0. (6.43)

We thus find, for all quantum realisations compatible with the four conditions
(6.2)–(6.5), that:

P (ab|x = 1, y = 6) ≤ 1

4

(
1 + |〈A1〉|+ |〈B6〉|+ |〈A1B6〉|

)
=

1

4
. (6.44)

This implies that G(AB|1, 6) = 1/4, i.e., two bits of global randomness are
certified when performing measurements A1 and B6.

Let us add that, if Alice and Bob are not limited to projective measurements,
but can perform POVM, they could in principle certify up to two bits of local
randomness and four bits of global randomness. The authors of [APVW16]
presented a construction that achieves the maximal local value. One can combine
their argument and the proof presented in this Chapter to show that this value
can be moreover achieved with any partially entangled qubit state.

6.3 Conclusion

When two agents perform two dichotomic measurements, they can generate up
to two bits of global randomness. In that case, the CHSH inequality does not
certify that much randomness, but other schemes do (see [MP13], or [DPA13]
together with [ŠASA16]).

Since randomness can be certified in a device-independent way only if the
measurements are performed on an entangled state, one could think that there
exists a quantitative connection between randomness and entanglement. One
way to address this question is to study whether one has to impose constraints on
the entanglement of the underlying state in order to certify maximal randomness.
The authors of [AMP12] already proved that almost maximal randomness could
be certified with an almost unentangled state. We here proved that the exact
maximal value of 2 bits of global randomness can be certified from any partially
entangled qubit state.
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This result also suggests that practical DIRG with high rates could be achieved
without demanding resources, namely, maximally entangled state. However, our
scheme requires three measurements for Alice, seven for Bob, and the observation
of four Bell expression values, which could be experimentally challenging to
implement. One might then look for construction simpler than ours, or might
couple our construction with other results where DIRG is also studied from a
resource point of view [BMP18].





Chapter 7

Conclusions and outlook

The random nature of quantum theory is perplexing. This property was long
debated by the founding fathers of quantum mechanics, and several of them, chief
among them Albert Einstein, tried to refute it. However, the fact that quantum
theory gives rise to nonlocal correlations proves that it cannot be completed
in a way that would make its laws deterministic. In turn, nonlocality-based
randomness is guaranteed to be intrinsic: the fact that the outcomes of a Bell test
are unpredictable cannot be attributed to a lack of knowledge. Deriving trade-offs
between nonlocality and randomness, as we did in this Thesis, has two objectives.
First, it allows us to understand quantum theory in terms of its (un)predictive
power. Second, it gives us the ability to certify, in a device-independent way,
that a Bell test generates private random bits, a crucial resource for numerous
cryptographic protocols.

In this Chapter, we remind the different frameworks in which we derived
such trade-offs. We then briefly state the results that we obtained, and their
implications. Finally, we describe possible future lines of investigation for these
different frameworks.

Randomness based on no-signalling and time-ordering We have looked
into how much randomness can be certified when one does not rely on the
quantum formalism, but only on the no-signalling principle. In that case, the
formalism is simpler, but also poorer. At the moment, it is not clear whether, in
that simple framework, one could obtain a sequence of perfect private random
bits of any desired length by using a Bell test. Previous investigations have

105



106 CHAPTER 7. CONCLUSIONS AND OUTLOOK

explored whether it is possible to create a sequence of perfect private random
bits from a longer sequence of partially private random bits, that is, whether
privacy amplification is possible. In this Thesis, we investigated a prior problem:
can a sequence of Bell tests generate a sequence of partially private random
bits of any length? If the Bell tests are assumed to be causally independent,
the answer is yes. If no causal structure is assumed, the answer is no. But the
question remains open if one makes the natural assumption of time-ordering, i.e.,
if one assumes that past Bell tests have an influence on future Bell tests, but
not the other way around. We proved that, in that case, the unpredictability of
the outputs of each Bell test decreases with each repetition, but not as much as
when no causal structure is imposed. This shows that time-ordering entails a
fundamental difference for randomness, compared with the two above-mentioned
cases, even in the case where only no-signalling is assumed.

To answer the question in the negative, one would have to show that the
min-entropy rate of the outcomes of all the Bell tests, and even its smooth
version, tends to zero as the number of repetition increases. To answer in the
positive, one would have to show that the min-entropy rate tends to infinity
when the number of repetitions increases. Our results and the framework we
developed might help in proving one of these two statements.

Practical randomness generation via regularisation A black-box ap-
proach to quantum information aims to derive relations between mathematical
objects such as a behaviour and information-related quantities such as random-
ness: they hold for a theoretical Bell test and its associated underlying behaviour.
However, in a practical Bell experiment, the behaviour is not accessible, as it is
an ideal mathematical object. If one directly infers the underlying behaviour
from the frequencies collected in a real Bell experiment, one obtains a behaviour
that does not obey the no-signalling principle, due to finite statistics. In order
to evaluate a device-independent quantity on that behaviour, it should then be
first regularised, that is, projected onto the no-signalling or quantum set. In this
Thesis, we investigated how well this approach works for certifying randomness.
More precisely, we compared two approaches to DIRG: the first one gives a
bound on the min-entropy of the Bell tests’ outputs based on a pre-determined
witness of nonlocality; the second one requires to first estimate and regularise
the underlying behaviour, to then derive a better suited nonlocality witness
for that specific behaviour, that is, one that yields a better randomness versus
nonlocality trade-off. We carried out several numerical simulations that show
that the second approach is more favourable, in the sense that it certifies more
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randomness.

Our method relies on a derivation of min-entropy bounds that holds only
against an eavesdropper with classical-side information. This restriction is
reasonable for DIRG, as no quantum information needs to be sent on a public
channel. A possible future line of investigation would be to extend it to the case
of quantum-side information. It could then be used for DIQKD, where it might
yield higher key rates. However, the current derivations of min-entropy bounds
against quantum-side information heavily relies on specific nonlocality witnesses.
One would thus need to derive such bounds that hold for generic witnesses.

Randomness in the tripartite scenario As nonlocality was primarily defined
on correlations between two agents, so was nonlocality-based randomness. How-
ever, the concept of nonlocality can be extended to more than two parties. In this
Thesis, we derived analytical trade-offs between randomness and nonlocality for
three parties, that is, we evaluated how much randomness could be certified from
the outcomes of one, two, and three parties, when these three parties evaluate
the violation of a tripartite Bell inequality, namely, the Mermin inequality. The
original motivation was to use such trade-offs to design device-independent secret
sharing protocols. However, we provided strong arguments that tend to show
that secret sharing is not compatible with the device-independent approach. One
reason for that is that the evaluation of a Bell inequality violation is meaningful
only if the different parties collaborate and trust each other, an assumption
that one cannot make in the framework of secret sharing. Yet the results that
we obtained are valuable on their own, as the trade-offs that we obtained are
surprising: the generalisation of the guessing probability to many parties seems
to be far from trivial.

Finding applications of such trade-offs to other multi-partite information
protocols would enables us to perform new tasks in a device-independent way.
However, even if they might not have such applications, deriving similar trade-
offs for other Bell inequalities, or for more parties, could help us understand the
specificities of quantum correlations through the prism of randomness.

Maximal randomness from partial entanglement At first glance, the
notions of entanglement and nonlocality-based randomness are deeply correlated.
Indeed, performing measurements on a quantum state can give rise to nonlocal
correlations only if the state is entangled. However, it was already observed
that almost maximal randomness could be certified even when the underlying
state is almost not entangled. The maximal amount of global randomness that
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can be certified when two parties perform dichotomic measurements is 2 bits.
In this Thesis, we proved that this maximal amount could be certified in a
device-independent way from any partially entangled pure qubit state. To do so,
we showed that the observation of some specific values for four Bell expressions
provides a self-test for such partially entangled state and measurements that
yield this maximal amount of randomness. This proves that the relation between
randomness and entanglement is only qualitative.

We proved that claim with ten measurements and four Bell expressions.
There is no evidence that this requirement is minimal, and one might prove
that it holds with less measurements or less Bell expressions. Moreover, we
studied only two-dimensional systems. One could investigate the link between
nonlocality-based randomness and entanglement in systems of higher dimension.
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A. Appendix of Chapter 3

We prove the claims of Chapter 3. In Appendix A.1, we prove the guessing
probability value for n = 1 (Eq. 3.2). We then prove that Gn is independent of
the choice of inputs (x∗,y∗) (App. A.2) and that the product of n perfect PR-
correlations is a vertex of the polytopes associated with any of the no-signalling
type constraints introduced in this work (App. A.3).

We proceed with the proofs of all the guessing probability values given in
Table 3.1. We first simplify the optimization problem (3.14) using symmetry
arguments, and we give its general expression, as well as its associated dual
formulation, that follow from these symmetries (App. A.4). The detailed expres-
sion of the feasible points for these two problems that yield the same objective
function value can be found in [BPA18a]. We provide the necessary information
about how to read these files in Appendix A.5.

A.1 Solution for n = 1

We first give a feasible point for (3.14) that attains the bound given in Eq. (3.2).
Let {Di}4i=1 be four deterministic behaviors defined as:

D1(a, b|x, y) = δa,0δb,0,

D2(a, b|x, y) = δa,xδb,0,

D3(a, b|x, y) = δa,0δb,y,

D4(a, b|x, y) = δa,xδb,y+1.

(A.1)

Take

P (α = 0) = P (α = 1) =
1

2
,
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Pα=0(ab|xy) =
1− v

4

4∑
i=1

Di(ab|xy) + vPR1(ab|xy), (A.2)

Pα=1(ab|xy) = Pα=0(ab|xy),

where, for s ∈ {0, 1}, s denotes its complement. Then {P (α), Pα}α∈{0,1} is a
feasible point for (3.14) that has objective value 1− v

2 . Moreover, when n = 1,
Eq. (3.25) implies G1(v) ≤ 1− v

2 . This concludes the proof of Eq. (3.2).

A.2 Symmetries of the guessing probability
problem

The following transformations allow us to express (3.14) in a reduced form.

Lemma 1. Let (T i1), (T i2) and (T i3) be transformations that map a behaviour
Pα(a,b|x,y) onto another behaviour by re-ordering its inputs and outputs in
the following way:

(T i1) :


ai → ai
bi → bi
αi → αi

, (T i2) :

{
ai → ai ⊕ xi
yi → yi

, (T i3) :

{
bi → bi ⊕ yi
xi → xi

.

Then, for all i and for all the NS conditions, (T i1), (T i2) and (T i3) map a
feasible point for (3.14) onto another feasible point. Moreover, (T i1) preserves
the objective function value for all possible NS conditions, and (T i2) preserves
the objective function value for {Full-NS, ABNS, TONS}.

Proof. We first prove that a feasible point is mapped onto another feasible
point. For a given round i, let (T ij ) be one these transformations and let
{P (α), Pα(a,b|x,y)} be a feasible point for (3.14) for some NS condition.
Let {P̃ (α), P̃α(a,b|x,y)} be the image of this point by (T ij ). Since the NS

condition involves all (a,b,x,y), and since (T ij ) simply reorders some elements of

{P (α), Pα(a,b|x,y)} in an individual round i, {P̃ (α), P̃α(a,b|x,y)} satisfies
the same NS condition. Moreover, since the behavior PRv(aibi|xiyi) is invariant
under (T ij ), {P̃ (α), P̃α(a,b|x,y)} also satisfies the constraint on the marginals.

(T ij ) thus maps a feasible point for (3.14) onto another feasible point.

We now show that (T i1) preserves the objective function value of (3.14) for
all the NS conditions. For simplicity, let us take i = 1, the argument for i > 1
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being the same. Let {P̃ (α), P̃α(a,b|x,y)} be the image of a feasible point
{P (α), Pα(a,b|x,y)} by (T 1

1 ). Then:∑
α,b

P̃ (α)P̃α(α,b|0,0) =
∑
α,b

P (α1α>1)Pα1α>1(α1α>1, b1b>1|0,0)

=
∑
α,b

P (α)Pα(α,b|0,0)
(A.3)

We now show that (T i2) preserves the objective function value of (3.14) for all
but the WTONS condition. We again set i = 1, and denote {P̃ (α), P̃α(a,b|x,y)}
the image by (T 1

2 ) of a feasible point {P (α), Pα(a,b|x,y)} for the Full-NS, ABNS
or TONS condition. Then:∑

α,b

P̃ (α)P̃α(α,b|0,0) =
∑
α,b

P (α)Pα(α,b|0, 10 . . . 0)

=
∑
α

P (α)
∑
b

Pα(α,b|0, 10 . . . 0)

=
∑
α

P (α)
∑
b

Pα(α,b|0, 00 . . . 0)

(A.4)

where the last equality holds because, for all α, Pα is ABNS.

Thanks to (T i2) and (T i3), we can now prove that the optimal value Gn(v)
defined in (3.14) is independent of (x∗,y∗), i.e., Gn(A|x∗,y∗)[v] = Gn(A|0,0)[v].
Let us assume that {P (α), Pα(a,b|x,y)} is a feasible point for (3.14) that
achieves the value Gn(A|0,0)[v]. We then construct {P (α), P̃α(a,b|x,y)} by
applying (T 1

2 ) onto {P (α), Pα(a,b|x,y)}. Then:∑
α,b

P (α)P̃α(α,b|00 . . . 0, 10 . . . 0) =
∑
α,b

P (α)Pα(α,b|00 . . . 0, 00 . . . 0)

= Gn(A|0,0)[v]

(A.5)

This implies Gn(A|00 . . . 0, 10 . . . 0)[v] ≥ Gn(A|0,0)[v]. Let us now assume
that {P (α), Pα(a,b|x,y)} is a feasible point for (3.14) that achieves the value
Gn(A|00 . . . 0, 10 . . . 0)[v], and construct {P (α), P̃α(a,b|x,y)} by applying (T 1

2 )
onto it. Then:∑
α,b

P (α)P̃α(α,b|00 . . . 0, 00 . . . 0) =
∑
α,b

P (α)Pα(α,b|00 . . . 0, 10 . . . 0)

= Gn(A|00 . . . 0, 10 . . . 0)[v]

(A.6)
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This impliesGn(A|0,0)[v] ≥ Gn(A|00 . . . 0, 10 . . . 0)[v] and thenceGn(A|0,0)[v] =
Gn(A|00 . . . 0, 10 . . . 0)[v]. The same construction can be done for all other val-
ues of y by applying (T i2) whenever yi = 1, thus proving Gn(A|0,0)[v] =
Gn(A|0,y)[v] for all y.

We now assume that {P (α), Pα(a,b|x,y)} is a feasible point for (3.14) that
achieves the value Gn(A|0,y)[v]. For some x ∈ {0, 1}n, we construct {P (α),
P̃α(a,b|x,y)} by applying (T i3) onto it whenever xi = 1. Then:∑
α,b

P (α)P̃α(α,b|x,y) =
∑
α,b

P (α)Pα(α,b⊕ xy|0,y) =
∑
α,b

P (α)Pα(α,b|0,y)

= Gn(A|0,y)[v]
(A.7)

where the first equality holds because we applied (T i3) only when xi = 1 and
the second one holds because we sum over b. This implies that Gn(A|x,y)[v] ≥
Gn(A|0,y)[v]. Let us now assume that {P (α), Pα(a,b|x,y)} is a feasible
point for (3.14) that achieves the value Gn(A|x,y)[v]. We construct {P (α),
P̃α(a,b|x,y)} by applying (T i3) onto it whenever xi = 1. Then:∑
α,b

P (α)P̃α(α,b|0,y) =
∑
α,b

P (α)Pα(α,b⊕ xy|x,y) =
∑
α,b

P (α)Pα(α,b|x,y)

= Gn(A|x,y)[v]
(A.8)

This impliesGn(A|0,y)[v] ≥ Gn(A|x,y)[v] thenceGn(A|x,y)[v] = Gn(A|0,y)[v].
Altogether, this proves that Gn(A|x,y)[v] = Gn(A|0,0)[v] for all (x,y), and
thus that Gn(v) is properly defined.

A.3 Product of n perfect PR-correlations

We now show that the product of n PR-boxes is a vertex of any of the no-
signalling polytopes we introduced in Chapter 3. We do it for n = 2, the
generalisation to n ≥ 3 is straightforward. Let us assume that there exists two
ABNS (resp. WTONS) joint distributions P1 and P2 such that:

PR1(a1, b1|x1, y1)×PR1(a2, b2|x2, y2) = λ1P1(a,b|x,y)+λ2P2(a,b|x,y) (A.9)

for some (λ1, λ2) ∈ [0, 1] such that λ1 + λ2 = 1.
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Then:

PR1(a1, b1|x1, y1) = λ1

∑
a2,b2

P1(a,b|x,y) + λ2

∑
a2,b2

P2(a,b|x,y)

= λ1P1(a1, b1|x1, x2, y1, y2) + λ2P2(a1, b1|x1, x2, y1, y2).
(A.10)

Let us fix a specific value (x∗2, y
∗
2) for (x2, y2). Then P1(a1, b1|x1, x

∗
2, y1, y

∗
2)

is a no-signalling bipartite binary behaviour. Indeed,∑
b1

P1(a1, b1|x1, x
∗
2, y1, y

∗
2) =

∑
a2,b1,b2

P1(a1, a2, b1, b2|x1, x
∗
2, y1, y

∗
2) (A.11)

is independent of y1 because P1 is ABNS (resp. WTONS), and, for the same
reason,

∑
a1
P1(a1, b1|x1, x

∗
2, y1, y

∗
2) is independent of x1. The same goes for

P2(a1, b1|x1, x
∗
2, y1, y

∗
2). Since the PR-box is a vertex of the polytope of bipartite

binary no-signalling behaviours, Eq. (A.10) implies

P1(a1, b1|x1, x
∗
2, y1, y

∗
2) = P2(a1, b1|x1, x

∗
2, y1, y

∗
2) = PR1(a1, b1|x1, y1) (A.12)

for all values of (x∗2, y
∗
2). The same holds for P1(a2, b2|x∗1, x2, y

∗
1 , y2) for all values

of (x∗1, y
∗
1), as well as for P2(a2, b2|x∗1, x2, y

∗
1 , y2). That implies:

P1(a,b|x,y) = P2(a,b|x,y) = PR1(a1, b1|x1, y1)× PR1(a2, b2|x2, y2). (A.13)

The product of two PR-boxes cannot be decomposed over different joint
distributions in ABNS (resp. WTONS): it is thus a vertex of the ABNS (resp.
WTONS) polytope. Since Full-NS and TONS are subsets of these polytopes, it
also implies that it is a vertex of Full-NS and TONS.

A.4 Primal and dual form of the guessing
probability problem

The symmetry (T i1) given in Appendix A.2 implies that the solutions to the
problem defined by Equation (3.14) can be found in the reduced space:

S =
{

(P (α), Pα(a,b|x,y))
∣∣∣Pα(a,b|x,y) = Pα=0(a,b

α|x,y), P (α) =
1

2n

}
(A.14)

where ai, bi
αi

=

{
ai, bi if αi = 0,

ai, bi if αi = 1.
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From here on, we’ll thus only consider distributions with such symmetries,
and we’ll write P (a,b|x,y) for Pα=0(a,b|x,y). Note that, for P ∈ S, the
objective function of (3.14) becomes∑

α,b

P (α)Pα(α,b|0,0) =
∑
α,b

1

2n
P 0(0,b|0,0) =

∑
b

P (0,b|0,0). (A.15)

Moreover, a constraint on the marginals is now expressed in the following
way: ∑

α

P (α)Pα(a,b|x,y) =

n∏
i=1

PRv(ai, bi|xi, yi)

⇔ 1

2n

∑
α

Pα=0(a,b
α|x,y) =

n∏
i=1

PRv(ai, bi|xi, yi)

⇔ 1

2n

∑
a

P (a,a⊕ b|x,y) =

n∏
i=1

PRv(0, bi|xi, yi).

(A.16)

The optimisation problem defined in (3.14) can thus be written as:

Gn(v) = max
∑
b

P (0,b|0,0)

s.t. ∀(x,y,b),
∑
a

P (a,a⊕ b|x,y) = 2n ×
n∏
i=1

PRv(0, bi|xi, yi)

P ∈ NS
(A.17)

In order to construct the dual of (A.17), note that P can be seen as a
vector, on which two kinds of constraints apply: on the one hand positivity, as it
represents some probability distributions, on the other hand linear constraints,
that arise both from the marginal constraints and the no-signalling scenario that
is considered.

The optimisation problem (A.17) and its associated dual problem can then
be summarised as:

Gn(v) = max c>p
s.t. Ap = b

p ≥ 0
(A.18)

Gn(v) = min b>y

s.t. A>y ≥ c
(A.19)

where and A and b describe the marginal and no-signaling constraints and

ci =

{
1 if pi = P (0,b|0,0),

0 otherwise.
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Strong duality holds here because (A.18) is linear and feasible (the target
correlation, i.e., n noisy i.i.d. PR boxes, is always a solution). This implies
that finding the optimum now amounts to finding feasible points for these two
problems that yield the same objective function value.

A.5 Solutions of the primal and dual problems

The solutions of (A.18) and (A.19) when n = 2, 3 can be found in [BPA18b].
Since Gn(v) is the same for TONS and WTONS when n = 2, 3, we give only a
primal feasible point for TONS and a dual feasible point for WTONS with the
same objective function value, which is sufficient to prove the values given in
Table 3.1 for TONS and WTONS. Indeed, let us call momentarily p∗TONS (resp.
p∗WTONS) the solution of (A.18) for TONS (resp. WTONS), and d∗WTONS the
solution of (A.19) for WTONS. Let us call pTONS the objective function value
associated to our primal feasible point for TONS, and dWTONS the objective
function value associated to our dual feasible point for WTONS. We then have

pTONS ≤ p∗TONS , (A.20)

d∗WTONS ≤ dWTONS . (A.21)

Moreover, p∗TONS ≤ p∗WTONS because TONS ⊂ WTONS and p∗WTONS =
d∗WTONS because strong quality holds. Altogether, this gives:

pTONS ≤ p∗TONS ≤ d∗WTONS ≤ dWTONS . (A.22)

Finding a primal feasible point for TONS and a dual feasible point for WTONS
such that pTONS = dWTONS is thus sufficient to solve (3.14) both for TONS
and WTONS.

For the solutions of (A.18), we give only P (a,b|x,y = 0): since the symmetry
(T i2) is valid both for TONS and ABNS, the distributions for other values of
y can be derived from P (a,b|x,y = 0) alone, by applying the corresponding
transformation.

For the solutions of (A.19) to be defined without ambiguity, the order of the
constraints listed in the matrix A and vector b should be fixed. We thus include
in [BPA18b] the scripts that construct the specific matrices A and vectors b for
which our dual solutions are defined.





B. Appendix of Chapter 4

B.1 Tuning the parameters

We present here the analysis that we conducted in order to tune the parameters of
the protocol presented in Chapter 4. We first generated four random distributions,
in the same way as explained in Chapter 4, and computed the min-entropy rates
for varying Nest, to see how many bits should be sacrificed for estimation. We
fix ε = ε′ = 10−6, we divide the interval [Il, I

+
q ] in M + 1 = 1000 segments of the

same length, we use the NPA local level 2 [MBL+13] for the regularisation and
the guessing probability problems, we set Ntot = 108, and we run 500 simulations
for each point. We compute the average min-entropy rates 〈Hmin/Ntot〉 as a
function of log10Nest for both regularisation methods ML and LS, and with two
possible choices for χ: χall = {0, 1}2 and χone = (x∗, y∗), where (x∗, y∗) is the
most random input pair, i.e. the one that yields the highest RB function. In that
case, we set the input distribution to PXY (x∗, y∗) = πx∗y∗ = 0.9 (and uniform
on the other inputs). The results are presented in Figure B.1.

From those graphs, we deduce that setting Nest = 106, i.e., 1% of the total
data, is optimal. Note that, to distinguish these four distributions, we give their
CHSH values ICHSH. It does not mean that the CHSH inequality is the best
Bell expression for certifying randomness from these behaviours: we merely give
it as a way to quantify how nonlocal these distributions are, because it might be
interesting for the reader to see that the effects we observe seem to depend on
that. For instance, generating randomness from only one input seems to give an
advantage only when the CHSH value is high enough.

We then study, under the same conditions, the effect of the input in the bias
distribution πx∗y∗ , to see if one can observe an advantage when setting χ = χone

instead of χ = χall. The results can be found in Figure B.2.
We observe that for three distributions, no advantage is obtained when

generating randomness from only one input pair, independently of how the input

119
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Figure B.1: Average min-entropy rates as a function of the size of the data that
is sacrificed for estimation.
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Figure B.2: Average min-entropy rates as a function of the input distribution.
In most cases, both regularisation methods give the same value for χone, which
is why they cannot be distinguished.
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Figure B.3: Black asterisk: ratio between the rate obtained via our protocol
and via the direct use of the CHSH inequality. Red circle: ratio between the
maximal achievable min-entropy and the rate obtained via the direct use of the
CHSH inequality.

distribution is biased towards that input pair. That confirms the observation
based on the first graph: setting χ = χone can give an advantage only for the
behaviour with highest CHSH value. This is not surprising when one compares
these results with the examples provided in [NSBSP18], where the authors
also observed that generating randomness from one input pair starts giving an
advantage only for high enough Ntot > 108. We thus decided not to use this
possibility and to set χ = χall.

We then compared the min-entropy rates obtained from the ML and LS
regularisations. In that case, there is no varying parameter, so we decided to
directly run the simulations described in Section 4.3.3 for both regularisations,
and to compare the obtained ratios 〈Hmin/H

CHSH
min 〉. The results can be found

in Figure B.3.
The ML regularisation performs better than the LS regularisation in 98% of

the cases. Moreover, while the protocol based on ML performs well for 98% of
the cases, that holds for LS only in 94% of the cases. This led us to claim that
when one wants to regularise data in order to certify randomness, one should
preferably minimise the KL divergence.
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Figure B.4: Asterisk: ratio between the rate obtained via our protocol for χone

and via the direct use of the CHSH inequality. Circle: ratio between the maximal
achievable min-entropy for χone and the rate obtained via the CHSH inequality.
Dot: ratio between the maximal achievable min-entropy for χall and the rate
obtained via the CHSH inequality.

B.2 Generating randomness from one input
pair

To ensure that our method could result in better min-entropy bounds for χ =
χone when the total number of rounds is big enough, we carried out the same
simulations as the ones presented in the main text, but with Ntot = 1012. In that
case, our method allows us to identify which input pair (x∗, y∗) yields the most
favourable RB function, thanks to the ML regularised distribution. We then
bias the input distribution towards that pair, setting πx∗y∗ = 0.99. The results
are presented in Figure B.4, where we plot the ratios between the min-entropy
rate obtained via our protocol and via the direct use of the CHSH inequality
HCHSH

min , as well as the ratios between − log2(Gχfull(PAB|XY )) and HCHSH
min , for

χ = χone and χ = χall. We highlighted in grey the region between these two
ratios. 98% of the simulations led to points falling in that region. In those cases,
our protocol is good in two ways: not only it performs better than the direct use
of CHSH, but it also achieves a higher ratio than the optimal one for all inputs.
In that case, the advantage of our protocol is twofold: it allows us to identify
the most favourable input pair, and then to taylor the Bell inequality to that
specific input pair.





C. Appendix of Chapter 5

We give the no-signalling guessing probability for the Mermin-Bell experiment
with three parties presented in Chapter 5. We then give a conjecture on the
quantum guessing probability for the same experiment with n parties.

C.1 No-signalling bounds

The main text gave tight bounds on the guessing probability assuming all the
measurements are performed on a quantum system. The tightest bound that
can be derived for the local guessing probability using only the no-signalling
constraints is

G(A|0) ≤ 3

2
− 1

8
|M | − 1

8
|M ′| . (C.1)

For the two-party guessing probability there are two distinct tight bounds,

G(AB|00) ≤ 3

2
− 1

4
|M | (C.2)

and

G(AB|00) ≤ 7

4
− 1

4
|M | − 1

8
|M ′| , (C.3)

as well as the same bounds with M and M ′ swapped. Finally, there are three
bounds for the global guessing probability,

G(ABC|000) ≤ 3

2
− 1

4
|M | , (C.4)

G(ABC|000) ≤ 7

4
− 1

4
|M | − 1

8
|M ′| , (C.5)

G(ABC|000) ≤ 7

4
− 1

16
|M | − 5

16
|M ′| . (C.6)
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The same upper bounds hold for G(ABC|011), G(ABC|101), and G(ABC|110).
The upper bounds forG(ABC|001), G(ABC|010), G(ABC|100), andG(ABC|111)
are the same except with M and M ′ swapped.

Following an approach similar to [SPM13], the local-guessing-probability
bound (C.1) is implied by the eight inequalities

1− 〈A0〉+ 〈B0C0〉 − 〈A0B0C0〉 ≥ 0 , (C.7)

1− 〈A0〉+ 〈B0C1〉 − 〈A0B0C1〉 ≥ 0 , (C.8)

1− 〈A0〉+ 〈B1C0〉 − 〈A0B1C0〉 ≥ 0 , (C.9)

1− 〈A0〉 − 〈B1C1〉+ 〈A0B1C1〉 ≥ 0 , (C.10)

1 + 〈A1〉 − 〈B0C0〉 − 〈A1B0C0〉 ≥ 0 , (C.11)

1− 〈A1〉 − 〈B0C1〉+ 〈A1B0C1〉 ≥ 0 , (C.12)

1− 〈A1〉 − 〈B1C0〉+ 〈A1B1C0〉 ≥ 0 , (C.13)

1 + 〈A1〉+ 〈B1C1〉+ 〈A1B1C1〉 ≥ 0 . (C.14)

Each of these is in turn implied by two positivity constraints. For example, (C.7)
is just stating that

4P (−++|000) + 4P (−−−|000) ≥ 0 . (C.15)

The inequalities (C.7) to (C.14) sum to

8− 4〈A0〉 −M −M ′ ≥ 0 (C.16)

which, together with symmetries of the problem, implies (C.1).
The upper bound G(AB|00) ≤ 3/2 −M/4 is similarly implied by the five

inequalities

1 + 〈C0〉 − 〈A0B0〉 − 〈A0B0C0〉 ≥ 0 , (C.17)

1− 〈A0〉 − 〈B1C1〉+ 〈A0B1C1〉 ≥ 0 , (C.18)

1− 〈B0〉 − 〈A1C1〉+ 〈A1B0C1〉 ≥ 0 , (C.19)

1− 〈C0〉 − 〈A1B1〉+ 〈A1B1C0〉 ≥ 0 , (C.20)

1 + 〈A1B1〉+ 〈A1C1〉+ 〈B1C1〉 ≥ 0 (C.21)

(the last of these is just stating that

4P (+++|111) + 4P (−−−|111) ≥ 0 ), (C.22)
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which sum to
6− 4PAB|XY (++|00)−M ≥ 0 . (C.23)

The second upper bound (C.3) for G(AB|00) is implied by the inequalities

2 + 2〈C0〉 − 2〈A0B0〉 − 2〈A0B0C0〉 ≥ 0 , (C.24)

1− 〈A0〉+ 〈B0C1〉 − 〈A0B0C1〉 ≥ 0 , (C.25)

1− 〈C0〉+ 〈A0B1〉 − 〈A0B1C0〉 ≥ 0 , (C.26)

1− 〈B0〉+ 〈A1C0〉 − 〈A1B0C0〉 ≥ 0 , (C.27)

2− 〈A0〉 − 〈C1〉 − 〈A0B1〉
− 〈B1C1〉+ 2〈A0B1C1〉 ≥ 0 , (C.28)

2− 〈A1〉 − 〈B0〉 − 〈A1C1〉
− 〈B0C1〉+ 2〈A1B0C1〉 ≥ 0 , (C.29)

2− 〈B1〉 − 〈C0〉 − 〈A1B1〉
− 〈A1C0〉+ 2〈A1B1C0〉 ≥ 0 , (C.30)

1 + 〈A1〉+ 〈B1〉+ 〈C1〉+ 〈A1B1〉
+ 〈A1C1〉+ 〈B1C1〉+ 〈A1B1C1〉 ≥ 0 , (C.31)

which sum to
14− 8PAB|XY (++|00)− 2M −M ′ ≥ 0 . (C.32)

Each of the eight inequalities above can be obtained from up to three positivity
constraints. For instance, the left-hand side of (C.28) is equal to

4P (+−−|011) + 8P (−+−|011) + 4P (−−+|011) . (C.33)

The first two upper bounds (C.4) and (C.5) on the three-outcome guessing
probability G(ABC|000) are implied by (C.2) and (C.3). Using symmetries of
the problem, the remaining inequality (C.6) reduces to showing that

max
(
P (+++|000), P (−−−|111)

)
≤ 7

4
− 1

16
M − 1

16
M ′. (C.34)

One can readily verify that

7
4 − P (+++|000)− 1

16M − 5
16M

′

= 1
4P (++−|000) + 1

4P (+−+|000) + 1
4P (−++|000)

+ 3
4P (−−−|000)
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+ P (+−+|001) + P (−++|001) + 1
2P (−−−|001)

+ P (++−|010) + P (−++|010) + 1
2P (−−−|010)

+ P (++−|100) + P (+−+|100) + 1
2P (−−−|100)

+ 1
2P (+−−|011) + 1

2P (−+−|101)

+ 1
2P (−−+|110)

+ 1
4P (+++|111) + 3

4P (+−−|111)

+ 3
4P (−+−|111) + 3

4P (−−+|111)

≥ 0 (C.35)

and

7
4 − P (−−−|000)− 1

16M − 5
16M

′

= 1
2P (+++|000)

+ 1
4P (++−|001) + P (+−+|001) + P (−++|001)

+ 1
4P (−−−|001)

+ P (++−|010) + 1
4P (+−+|010) + P (−++|010)

+ 1
4P (−−−|010)

+ P (++−|100) + P (+−+|100) + 1
4P (−++|100)

+ 1
4P (−−−|100)

+ 1
4P (+++|011) + 1

4P (+−−|011)

+ 1
4P (+++|101) + 1

4P (−+−|101)

+ 1
4P (+++|110) + 3

4P (−−+|110)

+ 1
2P (−−−|110)

+ P (+−−|111) + P (−+−|111) + 1
2P (−−+|111)

≥ 0 (C.36)

under the no-signalling constraints.
The bounds given here are the tightest that can be derived given that there

are no-signalling distributions for which:(
G(A|0),M,M ′

)
∈
{(

1, 0, ±′4
)
,
(
1, ±4, 0

)
,
(

1
2 , ±4, ±′4

)}
, (C.37)

(
G(AB|00),M,M ′

)
∈
{(

1, ±2, ±′2
)
,
(

1
2 , ±2, ±′4

)
,(

1
2 , ±4, ±′2

)
,
(

1
4 , ±4, ±′4

)}
, (C.38)
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and (
G(ABC|111),M,M ′

)
∈
{(

1, ±2, ±′2
)
,
(

1
2 , ±4, ±′2

)
,(

1
2 , 0, ±′4

)
,
(

1
4 , ±4, ±′4

)}
. (C.39)

The only case that might not be immediately obvious is that there are no-
signalling distributions for which simultaneously G(AB|00) = 1/2, M = ±4,
and M ′ = ±′2; these can be attained with vertices of class 34 according to the
classification used in table 1 of [PBS11].

C.2 Possible bound for n > 3 parties

In Section 5.3.3 we showed that the upper bound (5.16) on the two-party guessing
probability G(AB|00) is tight and the nonlinear part M ≥ 3 can be attained if
the parties measure σx and σy on a state of the form

|Ψ〉 = λ |+++〉+ µ
(
|+−−〉+ |−+−〉+ |−−+〉

)
. (C.40)

We mention a possible extension here for the n-partite Mermin correlator

Mn = Re

[〈 n∏
p=1

(
A

(p)
0 + iA

(p)
1

)〉]
, (C.41)

where A
(p)
x are the pth party’s measurement operators, whose local and quantum

bounds are respectively [Mer90]

Ln =

{
2(n−1)/2 if n odd

2n/2 if n even
(C.42)

and

Qn = 2n−1 (C.43)

(although the local bound Mn ≤ Ln is a facet of the local polytope only for odd
n).

The obvious generalisation of the strategy of section 5.3.3 is for the n parties
to measure

A
(p)
0 = σx , A

(1)
2 = σy (C.44)
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on an n-partite state of the form

|Ψ〉 = λ |+〉⊗n + µ
∑
s∈S
|s〉 , (C.45)

where S ⊂ {+,−}×n is the subset of all vectors of n signs with a nonzero even
number of minuses. The state is normalised if

λ2 + (Qn − 1)µ2 = 1 . (C.46)

In terms of λ and µ, the probability that the first n− 1 parties (or all n of them,
for that matter) obtain the result ‘+’ if they measure σx is

PA|X(+|1) = λ2 (C.47)

and the Mermin expectation value is

Mn =
(
λ+ (Qn − 1)µ

)2
. (C.48)

Relating PA|X(+|1) = λ2 to Mn yields the dependence PA|X(1|1) = Pn(Mn),
where

Pn(Mn) = 1− 1

Qn
− Qn − 2

Q 2
n

Mn

+ 2

√
Qn − 1

Q 2
n

√
Mn(Qn −Mn) . (C.49)

By suitably mixing this strategy with a deterministic strategy with PA|X(1|1) = 1
and Mn = Ln, we obtain a strategy for which the guessing probability and
Mermin expectation value are related by

G(A|0) =

{
Pn(Mn) if Mn ≥M th

n

Γn(Mn) if Mn ≤M th
n

, (C.50)

where

Γn(Mn) =
Ln(Qn − 1)− (Ln − 1)Mn

Ln(Qn − Ln)
. (C.51)

The threshold M th
n in (C.50) is the point where the linear interpolation Γn(Mn)

coincides with the curve Pn(Mn) and their derivatives are the same. This occurs
at

M th
n =

L 2
n (Qn − 1)

L 2
n − 2Ln +Qn

, (C.52)
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at which point

G(A|0) =
Qn − 1

L 2
n − 2Ln +Qn

. (C.53)

For odd n, we remark that Ln =
√
Qn and in that case (C.52) reduces to the

average M th
n = (Ln +Qn)/2 of the local and quantum bounds.

The strategy we have described here shows that the upper bound on the
guessing probability cannot be better than (C.50). For n = 4 and 5 parties,
some numerical tests we carried out seemed to support that the upper bound on
the guessing probability coincides with (C.50), although we did not attempt to
prove this.





D. Appendix of Chapter 6

The tilted CHSH expression [AMP12] reads:

Iβ = β〈A〉+ 〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉, (D.1)

where A, A′, B, and B′ are measurement operators with −1A ≤ A,A′ ≤ 1A

acting on HA and −1B ≤ B,B′ ≤ 1B acting on HB. For 0 ≤ β < 2, Iβ satisfies
the tight quantum bound

Iβ ≤ 2
√

2
√

1 + β2/4 (D.2)

which is strictly higher than the local bound Iβ ≤ |β| + 2. Eq. (D.2) can be
attained with equality if (for example) Alice and Bob measure

A = σz , A′ = σx (D.3)

and

B = cos
(µβ

2

)
σz + sin

(µβ
2

)
σx , B′ = cos

(µβ
2

)
σz − sin

(µβ
2

)
σx (D.4)

on the two-qubit pure state

|ψβ〉 = cos
( θβ

2

)
|00〉+ sin

( θβ
2

)
|11〉 , (D.5)

where µβ and θβ are related to β by

sin(θβ) =

√
1− β2/4

1 + β2/4
, cos(θβ) =

√
2β2/4

1 + β2/4
, (D.6)

sin
(µβ

2

)
=

√
1− β2/4

2
, cos

(µβ
2

)
=

√
1 + β2/4

2
. (D.7)
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Inversely, β and µβ are related to θβ by

β =
2 cos(θβ)√
1 + sin(θβ)2

, tan
(µβ

2

)
= sin(θβ) . (D.8)

This tells us what value of β and what measurements to do on Bob’s side if we’re
aiming to identify a state for some given angle θβ .

The purpose of this Appendix is to establish the following self-testing result:
if the quantum bound (D.2) is attained with equality then there is a choice of
basis in which the state has the form:

ρ = ψβ ⊗ σjunk , (D.9)

where ψβ = |ψβ〉 〈ψβ | is the pure qubit state above, and Alice’s measurements
are:

A = σz ⊗ 1 ⊕ A⊥ , (D.10)

A′ = σx ⊗ 1 ⊕ A′⊥ , (D.11)

where σz⊗1 and σx⊗1 act only on the support of the marginal state ρA = TrB[ρ]
on Alice’s side and A⊥ and A′⊥ act only on its orthogonal complement in HA.

This result follows mostly from [AMP12]. We proceed by proving progressively
more general self-testing results, first restricting to projective measurements
on a bipartite pure qubit state, then generalising to arbitrary dimension using
the Jordan lemma, then explicitly allowing for an underlying mixed state and
non-projective measurements.

D.1 Qubit systems

The most general two-qubit pure state has the form:

|ψ〉 = cos
(
θ
2

)
|00〉+ sin

(
θ
2

)
|11〉 , (D.12)

for 0 ≤ θ ≤ π/2, in its Schmidt decomposition, while the most general projective
measurements worth considering are:

A = a · σ , B = b · σ , (D.13)

A′ = a′ · σ , B′ = b′ · σ (D.14)
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with ‖a‖ = ‖a′‖ = ‖b‖ = ‖b′‖ = 1, since we can’t exceed the classical bound if
any of the measurements are ±1, and where σ = (σx, σy, σz). We remind that
the density operator associated with the state (D.12) can be written:

ψ =
1

4

[
1⊗1+cos(θ)

(
σz⊗1+1⊗σz

)
+sin(θ)

(
σx⊗σx−σy⊗σy

)
+σz⊗σz

]
. (D.15)

We write the expectation value of Iβ as

Iβ = β cos(θ)az + S (D.16)

where

S =
〈
A(B +B′) +A′(B −B′)

〉
= a ·T(b+ b′) + a′ ·T(b− b′) (D.17)

and

T =

sin(θ) 0 0
0 − sin(θ) 0
0 0 1

 . (D.18)

Substituting now

b+ b′ = 2 cos
(
µ
2

)
b+ , b− b′ = 2 sin

(
µ
2

)
b− , (D.19)

where b± are normalised and orthogonal and we take cos
(
µ
2

)
, sin

(
µ
2

)
≥ 0,

S = 2 cos
(
µ
2

)
a ·Tb+ + 2 sin

(
µ
2

)
a′ ·Tb−

≤ 2 cos
(
µ
2

)
‖Tb+‖+ 2 sin

(
µ
2

)
‖Tb−‖

≤ 2
√
‖Tb+‖2 + ‖Tb−‖2

= 2

√
Tr
[
T2
(
b+b

T
+ + b−b

T
−
)]

≤ 2
√

1 + sin(θ)2 , (D.20)

where the last line follows from the inequality discussed in Appendix D.5. Using
this in (D.16),

Iβ ≤ β cos(θ)az + 2
√

1 + sin(θ)2

≤ β cos(θ) + 2
√

1 + sin(θ)2

≤ 2
√

2
√

1 + β2/4 . (D.21)
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In order to attain the quantum bound Iβ = 2
√

2
√

1 + β2/4, all of the
inequalities used to get from (D.16) to (D.21) must hold with equality. Working
backwards, we extract that

2 cos(θ) = β
√

1 + sin(θ)2 , (D.22)

a = 1z , (D.23)

b+ = 1z , (D.24)

b− = cos(ϕ)1x − sin(ϕ)1y , (D.25)

a′ = cos(ϕ)1x + sin(ϕ)1y , (D.26)

cos
(
µ
2

)
sin(θ) = sin

(
µ
2

)
. (D.27)

Under the convention β > 0 and 0 ≤ θβ ,
µβ
2 ≤ π

2 that we are working with,
these imply the relations (D.6) and (D.7) for θβ and µβ given above. The
remaining undetermined parameter ϕ can be set to 0 e.g. with the phase changes
|1〉A 7→ eiϕ |1〉A and |1〉B 7→ e−iϕ |1〉B, under which the Schmidt decomposition
is invariant.

In the derivation above we started by expressing |ψ〉 in its Schmidt decompos-
ition and have shown that, if the quantum bound is attained, the measurements
must satisfy:

A0 = σz , A1 = cos(ϕ)σx + sin(ϕ)σy, (D.28)

and

B0 +B1 ∝ σz, B0 −B1 ∝ cos(ϕ)σx − sin(ϕ)σy (D.29)

with respect to the Schmidt basis. It is important to note that the converse also
holds: if the quantum bound is attained with measurements satisfying these
conditions then the state must be exactly |ψβ〉 = cos

( θβ
2

)
|00〉 + sin

( θβ
2

)
|11〉.

The reasoning is thus the following: if the quantum bound is attained with
qubits, then there is a choice of bases in which A0 = σz, A1 = σx, B0 +B1 ∝ σz,
and B0 −B1 ∝ σx, and this then determines that the state is |ψβ〉 with respect
to that choice of the bases.

D.2 Arbitrary dimension

According to the Jordan lemma the measurement operators A, A′ and B, B′

can be block diagonalised in their respective Hilbert spaces into blocks no larger
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than 2× 2. We express the block diagonalisation as

A =
∑
j

Aj ⊗ |j〉 〈j| ⊕ A⊥ , (D.30)

A′ =
∑
j

A′j ⊗ |j〉 〈j| ⊕ A′⊥ , (D.31)

B =
∑
k

Bk ⊗ |k〉 〈k| ⊕ B⊥ , (D.32)

B′ =
∑
k

B′k ⊗ |k〉 〈k| ⊕ B′⊥ , (D.33)

where Aj , A
′
j , Bk, and B′k are 2 × 2 operators and the operators with ‘⊥’ as

subscript collectively denote any 1×1 blocks. Note that this implies [A⊥, A
′
⊥] = 0

and [B⊥, B
′
⊥] = 0. With respect to this splitting of the Hilbert space, we can

express an arbitrary pure state as

|Ψ〉 =
⊕
mn

√
pmn |ψmn〉 (D.34)

where the indices m,n ∈ {2,⊥} indicate whether the state is in the subspace
containing the 2× 2 or 1× 1 blocks in HA and HB. The expectation value of Iβ
splits accordingly as

Iβ =
∑
mn

pmnI
(mn)
β . (D.35)

In order to attain the quantum bound Iβ = 2
√

2
√

1 + β2/4 we must have

I
(mn)
β = 2

√
2
√

1 + β2/4 for each m,n for which pmn 6= 0. However, except for

(m,n) = (2, 2), I
(mn)
β is limited to the classical bound since the measurements

on Alice’s and/or Bob’s side commute in the corresponding subspace. Thus, all
of the support of |Ψ〉 must be in the subspace of HA ⊗HB containing the 2× 2
blocks on both sides.

With respect to the 2× 2 blocks, the state can be expressed as

|Ψ〉 =
∑
jk

√
qjk |φjk〉 |j〉 |k〉 (D.36)

and the value of Iβ , accordingly,

Iβ =
∑
jk

qjk 〈φjk|
(
Aj(Bk +B′k) +A′j(Bk −B′k)

)
|φjk〉 ,

=
∑
jk

qjkI
(jk)
β . (D.37)
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Again, in order to attain the quantum bound, for each contribution (j, k), we

must have either I
(jk)
β = 2

√
2
√

1 + β2/4 or qjk = 0. We can first get rid of the
parts of Alice’s and Bob’s Hilbert spaces that don’t contain |Ψ〉: if there are
any j’s such that ∀k, qjk = 0 or any k’s such that ∀j, qjk = 0, we absorb the
corresponding blocks Aj ⊗ |j〉 〈j| and A′j ⊗ |j〉 〈j| or Bk ⊗ |k〉 〈k| and B′k ⊗ |k〉 〈k|
respectively into A⊥ and A′⊥ or B⊥ and B′⊥. For the remaining blocks, for each
j there is at least one k and for each k at least one j such that qjk 6= 0 and we

must have I
(jk)
β = 2

√
2
√

1 + β2/4. Following the remark at the end of the last
Section, there is a choice of bases in which, for all the remaining j and k,

Aj = σz , A′j = σx , (D.38)

and

Bk +B′k = 2 cos
(µβ

2

)
σz, Bk −B′k = 2 sin

(µβ
2

)
σx. (D.39)

This in turn implies |ψjk〉 = |ψβ〉 for all the remaining j, k for which qjk 6= 0. We
can also choose to set |ψjk〉 for the others since if qjk = 0 then

√
qjk |ψjk〉 = 0

regardless of what |ψjk〉 is. We thus obtain that the state and measurements, in
a suitable choice of the bases, are

|Ψ〉 = |ψβ〉 ⊗ |junk〉 , (D.40)

with |junk〉 =
∑
jk

√
qjk |j〉 |k〉, and

A = σz ⊗ 1 ⊕ A⊥ , (D.41)

A′ = σx ⊗ 1 ⊕ A′⊥ , (D.42)

B =
(

cos
(µβ

2

)
σz + sin

(µβ
2

)
σx

)
⊗ 1 ⊕ B⊥ , (D.43)

B′ =
(

cos
(µβ

2

)
σz − sin

(µβ
2

)
σx

)
⊗ 1 ⊕ B′⊥ , (D.44)

where only the first terms (. . .)⊗ 1 act on the parts of HA and HB containing
|Ψ〉.

D.3 Mixed states

The derivation up to this point easily adapts to allow for mixed states, since an
arbitrary mixed state can be expressed as a convex sum

ρ =
∑
s

psΨs (D.45)



D. APPENDIX OF CHAPTER 6 139

of pure states. In order to attain the quantum bound for Iβ , it must be attained
with each pure state |Ψs〉. Following the reasoning of the previous Section, we
deduce that all the |Ψs〉 are in the subspace of HA ⊗HB containing the 2× 2
measurement operator blocks and have the form

|Ψs〉 =
∑
jk

√
qsjk |φsjk〉 |j〉 |k〉 . (D.46)

The only difference is that we only discard the blocks j for which ∀k, s, qsjk = 0
and k for which ∀j, s, qsjk = 0. We then obtain

|Ψs〉 = |ψβ〉 ⊗ |junks〉 (D.47)

and, in turn,

ρ = ψβ ⊗ σjunk , (D.48)

where σjunk is a (not necessarily pure) state

σjunk =
∑
s

ps |junks〉 〈junks| . (D.49)

D.4 General measurements

In general, measurements with only two outcomes can be expressed as convex
sums of projective measurements. For the measurement operators we may write

A =
∑
j

pjAj , A′ =
∑
j

pjA
′
j , (D.50)

B =
∑
k

qkBk , B′ =
∑
k

qkBk , (D.51)

with Aj
2 = A′j

2
= 1A and Bk

2 = B′k
2

= 1B. Iβ then decomposes as

Iβ =
∑
jk

pjqk I
(jk)
β (D.52)

with

I
(jk)
β =

〈
βAj +AjBk +AjB

′
k +A′jBk −A′jB′k

〉
. (D.53)
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Obviously, if the quantum bound is attained then all the I
(jk)
β s have to attain

it individually. In particular, for i = j = 1, the results of the previous Sections
imply that there is a choice of the bases in which the underlying state is

ρ = ψβ ⊗ σjunk (D.54)

and

A1 = σz ⊗ 1 ⊕ A
(1)
⊥ , (D.55)

A′1 = σx ⊗ 1 ⊕ A′
(1)
⊥ , (D.56)

B1 =
(

cos
(µβ

2

)
σz + sin

(µβ
2

)
σx

)
⊗ 1 ⊕ B

(1)
⊥ , (D.57)

B′1 =
(

cos
(µβ

2

)
σz − sin

(µβ
2

)
σx

)
⊗ 1 ⊕ B′

(1)
⊥ . (D.58)

Consider now I
(j1)
β for j 6= 1. We can write it as

I
(j1)
β =

〈
Aj
(
β1 +B1 +B′1

)〉
+
〈
A′j
(
B1 −B′1

)〉
= Tr

[
Aj (ρ̃+ ⊗ σA)

]
+ Tr

[
A′j (ρ̃− ⊗ σA)

]
(D.59)

where

ρ̃+ =
(
β
2 + cos

(µβ
2

)
cos(θβ)

)
1

+
(
β
2 cos(θβ) + cos

(µβ
2

))
σz , (D.60)

ρ̃− = sin
(µβ

2

)
sin(θβ)σx , (D.61)

and σA is the marginal of σjunk on Alice’s side. Using the relations (D.6) and
(D.7) for θβ and µβ in terms of β,

ρ̃+ ⊗ σA =
1

2

[
2β 1 +

√
2
(
1 + 3β2/4

)√
1 + β2/4

σz

]
⊗ σA , (D.62)

ρ̃− ⊗ σA =
1

2

√
2
(
1− β2/4

)√
1 + β2/4

σx ⊗ σA . (D.63)

In order for the traces in (D.59) to reach their maximal values, Aj and A′j must
be diagonal in the same bases as the operators ρ̃+ ⊗ σA and ρ̃− ⊗ σA that they
are multiplied with. Note that ρ̃+ in (D.62) has a negative eigenvalue for β < 2;
a little algebra shows that

√
2
(
1 + 3β2/4

)√
1 + β2

> 2β (D.64)
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rearranges to and is implied by (1− β2/4)2 > 0. We can thus infer that

Aj = σz ⊗ 1 ⊕ A
(j)
⊥ , A′j = σx ⊗ 1 ⊕ A′

(j)
⊥ (D.65)

for all j, and that A and A′ have the form

A = σz ⊗ 1 ⊕ A⊥ , A′ = σx ⊗ 1 ⊕ A′⊥ (D.66)

where A⊥ =
∑
j pjA

(j)
⊥ and A′⊥ =

∑
j pjA

′(j)
⊥ are bounded between −1 and 1.

Applying the same approach to I
(1k)
β for k 6= 1 we can similarly deduce that

B =
(

cos
(µβ

2

)
σz + sin

(µβ
2

)
σx

)
⊗ 1 ⊕ B⊥ , (D.67)

B′ =
(

cos
(µβ

2

)
σz − sin

(µβ
2

)
σx

)
⊗ 1 ⊕ B′⊥ (D.68)

with B⊥ =
∑
k qkB

(k)
⊥ and B′⊥ =

∑
k qkB

′(k)
⊥ .

D.5 Eigenvalue von Neumann trace inequality

If A and B are Hermitian operators then:

1. The trace of their product respects

Tr[AB] ≤
∑
k

akbk (D.69)

where ak and bk are the eigenvalues of A and B ordered from largest to
smallest.

2. (D.69) is attained with equality if and only if there is a basis in which A
and B are both diagonal and the ordering of their eigenvalues by magnitude
match.

Eq. (D.69) is just a version of von Neumann’s trace inequality for Hermitian
operators. We go over the proof here just to explicitly confirm point 2.

We write

A =
∑
k

ak |αk〉 〈αk| , B =
∑
k

bk |βk〉 〈βk| , (D.70)
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where we choose the labelling such that ak and bk are ordered from largest to
smallest. Then

Tr[AB] =
∑
kk′

akbk′
∣∣〈αk〉βk′ ∣∣2 . (D.71)

Here,
∣∣〈αk〉βk′ ∣∣2 are the elements of a doubly stochastic matrix which, according

to the Birkhoff-von Neumann theorem, can be expressed as the convex sum of
permutation matrices, i.e., we can write∣∣〈αk〉βk′ ∣∣2 =

∑
π

pπ δπ(k),k′ (D.72)

where the sum is taken over all permutations π of the set of indices {k}. So,

Tr[AB] =
∑
π

pπ
∑
k

akbπ(k) ≤
∑
k

akbk .

In order for the upper bound to be attained with equality, we must have either
pπ = 0 or

∑
k akbπ(k) =

∑
k akbk for every permutation π in the sum. The latter

can only happen for permutations other than the identity permutation if some
of the eigenvalues ak or bk are degenerate, in which case we can change the
basis {|αk〉} or {|βk〉} until we are only left with |〈αk〉βk′ |2 = δkk′ . For example,
suppose bk = bk′ for some k 6= k′. Then we can force 〈αk〉βk′ = 0 by replacing

|βk〉 ←[ c∗ |βk〉+ c′∗ |βk′〉
|βk′〉 ←[ −c′ |βk〉+ c |βk′〉 , (D.74)

where

c =
〈αk〉βk√∣∣〈αk〉βk∣∣2 +

∣∣〈αk〉βk′ ∣∣2 , (D.75)

c′ =
〈αk〉βk′√∣∣〈αk〉βk∣∣2 +

∣∣〈αk〉βk′ ∣∣2 . (D.76)
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A. Aćın. Full randomness from arbitrarily deterministic events.
Nat. Commun., 4:2654, 2013.

[GZ17] S. Gogioso and W. Zeng. Generalised Mermin-type non-locality
arguments. arXiv:1702.01772, 2017.
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