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Abstract

Differently from the majority of the other phases of matter, which are
characterized by local order parameters, the topological phases are char-
acterized by integer or semi-integer numbers, the topological invariants,
which are depending on global properties and robust against impurities
or deformations. In the last decade, the study of the topological phases of
matter has been developing parallel to the field of quantum simulation.
Quantum simulators are fully controllable experimental platforms simu-
lating the dynamics of systems of interest by the use of the mapping be-
tween the two Hamiltonians. These simulators represent a key resource
in the study of topological phases of matter because their observation in
natural systems is usually highly problematic and sometimes impossible.
Quantum simulators are commonly realized with cold atoms in optical
lattices or with photonic systems. The unitary and time-periodic proto-
cols, known as quantum walks, are a versatile class of photonic quantum
simulators. The purpose of this PhD thesis is to design feasible proto-
cols to simulate and characterize topological non-interacting crystalline
Hamiltonians in 1 and 2 dimensions. Moreover, this thesis contains the
description of the experiments that have been completed using the the-
oretical proposals. In details: i) We demonstrate that the topological in-
variant associated to chiral symmetric 1D Hamiltonians becomes appar-
ent through the long time limit of a bulk observable, the mean chiral
displacement (MCD). This detection method converges rapidly and re-
quires no additional elements (i.e. external fields) or filled bands. The
MCD has been used to characterize the topology of a chiral-symmetric
1D photonic quantum walk and to detect a signature of the so-called
topological Anderson insulating phase in a disordered chiral symmet-
ric wire simulated with ultracold atoms. ii) We designed the protocol
to measure the topological invariant that characterizes a 2D photonic
quantum walk simulating a Chern insulator.



Abstract

A diferencia de la mayorı́a de las otras fases de la materia, caracterizadas
por un parámetro de orden local, las fases topológicas de la materia se
definen por su invariante topológico que depende de las propiedades
globales del sistema y es robusto frente a la presencia de impurezas y/o
deformaciones. En la última década, el estudio de las fases topológicas
de la materia se ha desarrollado en paralelo con el campo de la simu-
lación cuántica. Un simulador cuántico es unas plataformas experimen-
tal altamente controlable cuyo objetivo es simular la dinámica de un sis-
tema de interés, mediante la correspondencia entre los dos Hamiltoni-
anos. Estos simuladores representan un recurso clave en el estudio de
las fases topológicas dado que su observación en sistemas reales es en
general muy problemática y en determinadas ocasiones hasta imposible.
Normalmente, los simuladores cuánticos se crean mediante átomos frı́os
en redes ópticas o con sistemas fotónicos. Los paseos cuánticos (quan-
tum walks), un proceso unitario y temporalmente periódico, representan
una de las clases mas versátiles de simuladores cuánticos. El propósito
de esta tesis de doctorado es el diseño de protocolos para la simulación
y la caracterización de Hamiltonianos topológicos no interactivos de es-
tructuras cristalinas, tanto en una como en dos dimensiones. Además,
en esta tesis se expone la descripción de experimentos llevados a cabo
a partir del modelo teórico propuesto. En detalle: i)Demostramos que
el invariante topologico asociado a la simetrı́a quiral en una dimensión
se hace aparente a partir del limite a tiempos largos de un observable
del volumen (bulk), el desplazamiento quiral medio (MCD, por sus siglas
en inglés). Este método de detección converge de manera rápida y no
necesita de elementos adicionales (es decir, de campos externos) o ban-
das pobladas. El MCD ha sido utilizado para caracterizar la topologı́a de
un paseo cuántico en una dimensión con simetria quiral y para detectar
la fase topologica aislante de Anderson en hilos quirales con desorden,
simulados con átomos ultra frı́os. ii) Hemos diseñado una protocolo para
medir el invariante topológico que caracteriza un paseo cuántico en dos
dimensiones simulando un aislante de Chern.
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I

Introduction

Topology is an important topic in mathematics and has direct applica-
tions in physics. In simple words, topology is the branch of mathemat-
ics which classifies the objects on the basis of properties remaining un-
changed under continuous deformations [1]. As an example, a coffee cup
and a doughnut are equivalent from a topological point of view: it is pos-
sible to deform one into the other without breaking them, as shown in
Fig. I.1; while an orange belongs to a different topological class because
there is no continuous deformation which can open up an hole into it.
In other words, these objects can be classified topologically according to
the number of their holes which cannot be closed through continuous
deformations: this number is a topological invariant and is called the
genus. The genus of a smooth and closed surface, according to the Gauss-
Bonnet theorem [1], is given by the surface integral of a function called
Gaussian curvature containing all the second derivatives of the surface’s
equation. The genus can take only positive, integer values: coffee cups
and doughnuts have genus one, an orange has genus zero, a two-handle
cup has genus two.
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Figure I.1: Continuous deformation of a coffee cup into a doughnut.

Topological phases of matter

In solid state physics, topology defines phases whose properties are ab-
solutely unique. Indeed, on the one hand, most of the phase transitions
studied in condensed matter physics share two features: they happen
through symmetry breaking, and they are characterized by local order
parameters which take different values in the different phases [2]. This is
true, for example, in the solid/liquid/gas transitions, in the ferroelectric
transition, or in the superfluid and the superconducting transitions...On
the other hand, topological phase transitions happen without symme-
try breaking and are characterized by topological invariants which are
global properties of the systems. Topological invariants only depend on
systems’ dimensionality and symmetries [3]. An example of a topologi-
cal phase transition is the dissociation of vortex and anti-vortex pairs in
the xy model and in neutral 2D superfluids. This phase transition, stud-
ied by Berezinskii, Kosterlitz and Thouless (BKT) in the 70s [4], has been
the first one to be described in terms of this “topological order” [5]. An-
other paradigmatic example of a topological phase of matter is the in-
teger quantum Hall effect (IQHE) [6]. It has been observed for the first
time in 1980 [7]; it consists in the quantization of the transverse elec-
tric (Hall) conductance of a 2D semiconductor at very low temperature
under a strong magnetic field; changing the magnetic field, the Hall con-
ductance forms plateaus at integer multiples of e2/h. A couple of years
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after its first observation, Thouless, Kohmoto, Nightingale and den Nijs
(TKNN) explained the IQHE with a lattice model [8]. They showed that,
in the low-temperature limit T → 0 and for a Fermi energy lying inside a
gap of the energy spectrum of the bulk, the Hall conductivity is propor-
tional to a topological invariant, the total Chern number of the occupied
bands. The Chern number takes only integer values. Being a topological
invariant, its value remains unchanged under every perturbation, such
as interaction or disorder, which deforms the energy spectrum without
closing its gaps. In other words, it can only change through a gap-closing
in the energy spectrum. This explains the plateaus in the plot of the
Hall conductivity versus the magnetic flux which benchmarks the IQHE
and, in general, the robustness of the Hall conductivity against pertur-
bations. The lattice model used in the TKNN paper is known as Hofs-
tadter model [9]. It describes non-interacting spinless electrons hopping
on a square lattice pierced by a uniform magnetic field. If the magnetic
flux per unit cell is set to a rational value p/q, the system, within peri-
odic boundary conditions, is translationally invariant and it is possible
to define a Bloch Hamiltonian for each value of the quasi-momentum
k on the Brillouin torus. The energy spectrum is made of q separate
bands, see Fig. I.2(a). For each band, the Chern number can be extracted
from the Bloch Hamiltonian through an algebraic calculus analogous to
the one which provides the genus of a closed surface, namely the inte-
gral over the Brillouin zone of the so-called Berry curvature of the en-
ergy band [10]. For a system with boundaries, current-carrying states
arise on the edges [11, 12, 13]. These states are exponentially localized,
have energies inside the gaps of the bulk spectrum and appear in chiral
pairs with the same energy propagating in opposite directions on the two
edges. These states are topological in the sense that, on each edge, their
number is equal to the total Chern number of the occupied bands, see
Fig. I.2(b). This makes them robust against perturbations, namely they
overtake possible obstacles, such as impurities, without being reflected
or backscattered [13]. This relation between edge-states and topologi-
cal invariant is known as bulk-edge correspondence and holds in all the
gapped topological systems in any spatial dimensions [14]. Some years
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later in 1988, Haldane pointed out that the condition necessary for the
IQHE was not the presence of the magnetic flux, but the broken time-
reversal symmetry [6]. He showed it using a model of non-interacting
spinless electrons hopping on a honeycomb lattice pierced by a magnetic
field having zero net flux per unit cell [15], see Fig. I.3(a). The topologi-
cal phase arising in such a system with zero net magnetic flux is known
as anomalous quantum Hall effect and belongs to the same class of the
IQHE, i.e. the class of Chern insulators.

Almost 20 years later, in 2005, Kane and Mele discovered a time-reversal-
invariant analog of the quantum Hall effect, known as quantum spin Hall
effect (QSHE) [16, 17]. They considered a system of non-interacting spin-
ful electrons hopping on a layer of graphene at very low temperature. The
Hamiltonians of the two different spin kinds, regarded separately, are
equivalent to two conjugate Haldane Hamiltonians in which the spin-
orbit coupling terms play the same role as opposite magnetic fields with
zero net flux through the unit cell. Hence, the time-reversal symmetry
is broken in the single spin Hamiltonians, which possess non-zero (op-
posite) Chern numbers, but it is intact in the overall system. This results
in topologically protected edge currents of electrons with opposite spins
which propagate in opposite directions on each edge. However, Kane
and Mele later realized that the QSHE was too small to be observed ex-
perimentally in graphene; subsequently, its observation has been pro-
posed [18], and realized [19], in a system of quantum nano-wells. The
quantum spin Hall effect has been followed by a series of discoveries
of natural and artificial crystalline systems, known as topological insula-
tors [14]. They exhibit topological features wich depend only on their in-
trinsic properties, without any external field. Topological insulators have
gapped bulk Hamiltonians and host localized edge states with energies
inside the spectral gaps. These states are topologically protected against
perturbations since their number on each edge is fixed by the value of the
invariant (bulk-edge correspondence). The latter in general can be com-
puted from the bulk Hamiltonian with periodic boundary conditions and
depends on the system’s dimensionality and symmetries. According to
these features, the topological insulators can be divided in classes la-
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beled by different invariants and can be ordered in a periodic table [3].
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Figure I.2: IQHE in the Hofstadter model. a. Hofstadter butterfly: energy
spectrum (projection) of the Hofstadter model within periodic bound-
ary conditions changing the flux per plaquette φ. The transverse con-
ductivity inside each gap is proportional to the total Chern numbers of
the bands below (ν). b. Energy spectrum of the Hofstadter Hamiltonian
on the cylinder with φ = 1/5. As predicted by the bulk-edge correspon-
dence, the number of edge-states for each edge (red and blue dots) which
traverse each gap during the pumping cycle is equal to the total Chern
number of the bands below.

Quantum simulators

In the last decades, another branch of physics has been growing along-
side the study of topological condensed matter: quantum simulation.
The concept of quantum simulation was first introduced by Feynman in
the beginning of the 80s: a very controllable quantum system is used to
simulate the dynamics of another quantum system, taking into account
the mapping between the two Hamiltonians. Simulators based on cold
atoms in optical lattices [20], and photonic platforms [21] constitute a
very versatile tool to simulate crystalline potentials and represent a fun-
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damental resource in the study of topological phases [22, 23, 24] which in
many cases are very difficult or impossible to observe in natural systems.
Emblematic examples are the superfluid-Mott insulator transition, ob-
served for the first time with bosons in an optical lattice in 2002 [25], and
the 4D Integer quantum Hall effect [26], observed recently in three differ-
ent simulation platforms based on trapped ultra-cold atoms [27, 28] and
array of optical fibers [29].

Ultra-cold atoms simulators essentially consist of gases of neutral
atoms at very low temperature trapped in periodic potentials generated
by interfering laser beams [20]. In these systems, the temperature is be-
low the critical temperature of transition to Bose-Einstein condensate
or Fermi gas (depending on the spin of atoms). In this condition, once
loaded in the optical lattice, the atoms mimic the dynamics of electrons
in a crystalline potential [20]. The features of the lattice potential, such as
the potential depth and the lattice shape, can be adjusted at will by tun-
ing the laser fields. Since the atoms are neutral, it is non trivial to sim-
ulate magnetic fields or spin-orbit couplings. However, these elements
are fundamental in order to simulate topological band-structures, and
they have been realized in many cold-atoms simulators [30, 31, 32, 33,
34, 35, 36, 37, 38, 39]. The basic idea to simulate gauge fields in gen-
eral is to control the phases of the hopping terms of the Hamiltonian;
indeed, they can be incorporate inside these terms as Peierls phase fac-
tors [10]. One method employed to do this consists in laser assisted cou-
pling between atomic levels [40]; another is the so-called Floquet engi-
neering [41]. It consists in modulating periodically in time the atomic
potential with a period much smaller than the characteristic time scale
of the problem. In the long-time limit, the periodically-driven Hamilto-
nian is equivalent to the evolution under a static effective Hamiltonian,
called Floquet Hamiltonian, in which the phases of the hopping terms
depend on the periodically-driven potential. Floquet simulators are par-
ticularly interesting from the topological point of view since they have
been found to possess a topology more complex than their static coun-
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terpart. Indeed, in addition to the topological edge-states counted by
the topological invariants of the corresponding static systems, Floquet
systems can exhibit extra edge-states. Hence, new invariants are needed
to obtain a bulk-edge correspondence for this kind of topological insula-
tors [42, 43, 44, 45, 46]. A fruitful simulation strategy is also to map a lat-
tice dimension onto an internal degree of freedom of the particles [47].
This synthetic dimension approach allowed, for example, for the simula-
tion of a stripe starting from atoms trapped in a 1D potential [36, 37]. The
concept of synthetic dimension can be used also to simulate 1D systems.
For example, in Refs. [48, 49, 50], a 1D topological insulator has been sim-
ulated with a synthetic wire of ultra-cold atoms by mapping the lattice
position onto the atomic momentum of the Bose-Einstein condensate.

(a) (b)

Figure I.3: Floquet honeycomb lattice of helical wave-guides. a. Hal-
dane model [15]: non-interacting spinless electrons hopping on a honey-
comb lattice pierced by a magnetic field having zero net flux per unit cell.
The topological non-trivial phase arises from the broken time-reversal
symmetry and it is known as anomalous quantum Hall effect. b. Sketch
of the simulator reported in Ref. [51]: a Floquet Chern insulator is real-
ized through an honeycomb array of helical wave-guides. Figure adapted
from Ref. [51].
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Photonic simulators constitute another important family of simu-
lators. They are prominently based on two kinds of architectures: pho-
tonic crystals and arrays of optical wave-guides [21]. Photonic crystals
are periodic arrangements of materials with different optical properties [52].
The resulting periodicity of the dielectric and the magnetic permittiv-
ity tensors allows for the application of the Bloch theorem to the wave
equation. For each value of the light wave-vector in the Brillouin zone,
the modes allowed to propagate inside the crystal organize themselves
in bands, as the energy eigenstates of a normal crystal [52]. The photonic
bands can be made topological by choosing suitably the materials which
form the crystal and, in most of the cases, by using magneto-optic crys-
tals which work under strong magnetic field, as for example in the Chern
photonic crystal proposed by Haldane and Raghu [53, 54]. While topo-
logical photonic crystal work in general in the microwave domain, topo-
logical simulators made of arrays of wave-guides can work in the optical
frequency domain [24]. In these systems, the propagation direction im-
plements the time, while the crystalline lattice is mapped onto the trans-
verse plane. Indeed, under the paraxial approximation [52], the wave-
equation which dictates the propagation of the electric field through the
fibers takes the same form of a Schroedinger equation where the elec-
tric field plays the role of the wave function and the propagation direc-
tion that of the time. Each wave-guide represents a lattice site and the
evanescent couplings between them represent the hopping terms. Thus,
the latter can be tuned by adjusting the light wavelength, the refractive
index of the wave-guides and the spacing between them [55]. In this
setup, the Floquet engineering corresponds to give to the wave-guides
a periodic modulation along the propagation direction. This has been
achieved, for example, in Ref. [51], where the authors implemented a
Floquet Chern insulator through an honeycomb array of helical wave-
guides, see Fig. I.3(b).

Quantum walks represent a very versatile class of simulators, im-
plementable with both cold atoms and photons [56]. Quantum walks are
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periodically driven (Floquet) unitary protocols acting on two quantum
observables: the walker, and its internal degree of freedom, the coin. In
the simplest 1D QW, the coin has a spectrum of dimension two and the
walker has an infinite and discrete spectrum of eigenvalues which can
be regarded as lattice sites. The QW dynamics is given by the periodic
repetition of unitary operators acting on coin and walker. It simulates
stroboscopically the evolution of a particle moving on a lattice under a
Floquet Hamiltonian. QWs allow for the simulation of a wide class of
single-particle solid state phenomena, such as the free evolution of cor-
related particles [57, 58], the effect of decoherence [59, 60], Anderson lo-
calization [61], band dynamics of single electrons under constant elec-
tric fields [62], Berry phase measurement [63, 64, 65, 66]. Furthermore,
in 2010, QWs have been discovered to be a valuable resource in the field
of the topological condensed matter physics as they can simulate all the
single-particle topological insulators in 1 and 2D [67]. In the last years,
many topological 1D QW protocols have been implemented in different
architectures based on both cold atoms and photons [68, 69, 70, 66, 71,
72, 73, 74]. In particular, QWs have been largely used in the study of the
Floquet topological phases which, as we already mentioned, are different
from their solid-state counterparts. Indeed, one can not apply to these
systems the standard classification of topological insulators [3], and a
new classification dedicated to Floquet topological isulators [42, 43, 44,
45, 46], and in particular to topological quantum walks [75, 67, 76], has
been created. In this thesis we focused especially on photonic QWs. In
these platforms, the walker is typically mapped onto a degree of freedom
of a laser field, such as the optical path of the beam [59, 57, 58, 76, 77],
the time delay between optical pulses [60, 78, 79], the light orbital angu-
lar momentum [69, 70, 71] (see Fig. I.4(b)) or its wave-vector [80], and the
coin in general corresponds to the light’s polarization.

Contents of this thesis

The aim of this thesis work is to propose detection methods and quan-
tum walk protocols which led to the simulation of topological insulators
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(a) (b)

Figure I.4: Chiral-symmetric QW with twisted photons a. Protocol of the
chiral-symmetric QW. The topological classification of Floquet systems
is different from that of static topological insulators; for instance, chiral-
symmetric QWs are characterized by a couple of invariants which can
be extracted from two Floquet operators corresponding to two different
choices of the starting instant of the driving period (U1 and U2) [75]. b.
Sketch of the photonic implementation of the chiral-symmetric QW with
twisted photons. The walker’s positions are mapped onto the values of
the light’s OAM. The latter counts for the number of times the beam’s
wave front winds around the propagation axis. The picture is adapted
from Ref. [69].

in one and two dimensions. Many previous simulation experiments fo-
cused on detecting topological features at the edges of the systems [76,
81, 49, 82, 36, 37, 53, 51, 39]. In this thesis instead we develop meth-
ods to detect the topological invariants inside the bulk of the systems.
These methods have the important feature of applying also to simulators
in which it is very difficult or impossible to access the system’s edges, as
it often happens in systems which exploit an internal degree of freedom
of particles as a synthetic dimension, for instance Refs. [69, 70, 71] (see
Fig. I.4).

The thesis is organized as follows:
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• In chapter II, we review the main features of static non-interacting
topological insulators in one and two dimensions.

• In chapter III, we focus on the detection of the topology in 1D insu-
lators protected by chiral symmetry.

In Sec. III.1, which is mainly based on Ref. [83], we present our
method to detect the topological invariant labeling the chiral class
in 1D, the winding number [84]. It consists in measuring an observ-
able called mean chiral displacement (MCD) which can be simply
extracted from the particle’s bulk dynamics with no need of addi-
tional elements, such as interferometric architectures [63, 64, 65,
66], introduction of losses [85, 86, 87], and scattering measurements [68]:
the long time limit of the MCD is equal to the winding number. In
this section we derive analytically this result in the case of an infi-
nite clean system.

In Sec. III.2, we show that the MCD can be used to detect topology
also in disordered systems. Then, we present the cold atoms simu-
lation experiment reported in Ref. [50] where the measurement of
the MCD is used to detect topological phase transitions driven by
a strong chiral-preserving disorder. The platform [48, 49, 50] sim-
ulates a chiral-symmetric wire; the lattice sites are mapped onto
the values of the atomic momentum of the Bose-Einstein conden-
sate. In the experiment, the MCD measurement allows for the de-
tection of a signature of the so-called topological Anderson insu-
lating (TAI) phase. This phase arises from the interplay between
topological order and Anderson localization under a strong chiral-
preserving disorder; it has been first predicted to occur in metallic
2D HgTe/CdTe quantum wells [88], but, so far, it was never been
observed experimentally. In the TAI phase, the disorder closes the
energy gap which is replaced by a mobility gap, and the band insu-
lator of the clean system is replaced by an Anderson insulator that
remains topological, with topology carried by localized states in the
spectrum. Thereby experimental probes relying on the adiabatic
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transport are expected to fail and the measurement of the MCD
emerges as a very suitable method to detect the system’s topology.

• In chapter IV, we review the main features of Floquet topological
systems in one and two dimensions, focusing in particular on topo-
logical quantum walks and their topological classification.

• In chapter V, we describe two photonic experiments in which we
realized and characterized two topological QWs, respectively in 1-
and 2D.

In Sec. V.1, we present the simulation experiment reported in Ref. [71]
where we develop and apply for the first time the MCD detection
method to a 1D photonic QW realizing a chiral-symmetric Floquet
topological insulator, see Fig. I.4. In the QW platform [69, 70, 71],
the lattice sites are mapped onto the values of the light’s orbital
angular momentum (OAM) [89, 90] and the coin states onto the
circular polarizations. The OAM is shifted by a liquid crystal de-
vice called q-plate [91] which twists the light beams according to
their polarization. Being a Floquet topological insulator, our QW is
not characterized by a single winding number, as the static chiral-
symmetric insulators, but by a couple of winding numbers which
can be extracted from two inequivalent versions of the protocol
corresponding to two different choices of the starting time of the
periodic evolution [75]; we accomplish a complete topological char-
acterization of our QW by measuring the MCD of the walker in these
two different time-frames.

In Sec. V.2, we present a novel photonic 2D QW realizing a Flo-
quet Chern insulator [80]. In this experiment, the lattice position
is mapped onto the transverse wave-vector of the light beam. This
degree of freedom is manipulated through a liquid crystal device
called g-plate; this device is obtained from a technology similar to
that of q-plates and is essentially a polarization dependent diffrac-
tion grating. This setup represents a complete novelty in the still
almost unexplored field of 2D quantum walks: these systems have
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been implemented in few experiments [78, 79, 92, 93, 94] and, to
our knowledge, the transverse light wave-vector has never been used
as lattice position in any platform. We simulate a constant elec-
tric field acting on the system along one direction. Quantum walks
with an extra costant driving, often referred to as electric quantum
walks [95, 62, 96], have attracted attention for the study of phenom-
ena such as quantum state refocusing and probability distributions
revivals [95, 97, 98, 96], Bloch oscillations and Landau Zener transi-
tions [62] and for the measurement of topological invariants [63, 64,
65, 66]. We observe the motion under the constant force of various
wave-packets prepared in the lower energy band of the QW Floquet
Hamiltonian and we extract the band’s Chern number from their
overall transverse displacement [99].
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II

Non-interacting static
topological insulators

In this chapter, we review the properties of two classes of non-interacting
topological insulators in one and two dimensions. These Hamiltonians
have a gapped bulk spectrum, but exhibit gapless modes exponentially
localized on the edges, when they are in a topologically non-trivial phase.
These systems are protected by a global topological order which makes
their transport properties robust against gap preserving and symmetry
preseving perturbations. Indeed, a set of discrete nonspatial symme-
tries, together with the systems’ dimensionality, determines the topo-
logical classification of these Hamiltonians. Each class is labelled by a
topological invariant which can be derived from the bulk Hamiltonian, it
counts the number of topological states with energy inside the gap which
arise on each edge of the system; this unique property of topological in-
sulators is called bulk-edge correspondence.

In Sec. II.1, we review the properties of the 1D topological insulators
protected by chiral symmetry: we give the definition of the associated
topological invariant, the winding number (SubSec. II.1.2) and we com-
pute it for a concrete model, the celebrated SSH model (SubSec. II.1.3).
Finally, we give the definitions of Berry-Zak phase (SubSec. II.1.4) and of
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bulk polarization for a band insulator (SubSec. II.1.5).
In Sec. II.2, we review the Integer Quantum Hall effect (IQHE) on the

lattice: we give the definition of Chern number and outline its relation
with the quantized Hall conductivity (SubSec. II.2.2) and with the nor-
malized density of particle (SubSec. II.2.3). Finally, we consider a system
with cylindrical boundary conditions (periodic along one direction and
open along the other) and topological edge states (SubSec. II.2.4).

II.1 1D chiral-symmetric systems

II.1.1 Chiral symmetry and nonspatial discrete symmetries

Figure II.1: SSH model. The SSH model [100] is the simplest 1D chiral
model. It describes non-interacting electrons hopping along the poly-
acetylene chain. Each cell of the chain is composed of two sitesA andB.
The dynamics of the electrons is described to a very good approximation
by a tight-binding model with staggered tunneling a and b, see Eq. (II.12).

In this section, we review the properties of 1D topological Hamiltoni-
ans with chiral symmetry (CS) [84]. An Hamiltonian is chiral-symmetric,
if there exists an hermitian and unitary operator Γ, such that Γ2 = 1,
which anticommutes with it:

ΓHΓ−1 ≡ ΓHΓ = −H. (II.1)
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Equation (II.1) has a remarkable consequence: in a chiral system one
may always identify two intertwined sublatticesA andB, of equal length.
Each unit cell of the lattice contains D sites, with D even: D/2 sites be-
long to A and D/2 to B; the Hamiltonian swaps them. We call canonical
basis the eigenbasis of the chiral operator, where it takes the form:

Γ =

(
I 0
0 −I

)
. (II.2)

If we denote the eigenstates of the Bloch Hamiltonian in the canonical
basis by |ψj(k)〉, with j = ±1, . . . ,±D/2, and the corresponding energies
by Ej(k) (with Ej(k) > 0 for j > 0), then Γ|ψj〉 = |ψ−j〉, with E−j = −Ej ;
namely, the eigenstates of chiral systems appear in chiral-partners pair.
We can write Γ in terms of partial chiral operators:

Γ =

D/2∑
j=1

Γj =

D/2∑
j=1

|ψj〉〈ψ−j |+ |ψ−j〉〈ψj |. (II.3)

Together with the chiral symmetry, other two nonspatial discrete sym-
metries, the time-reversal symmetry (TRS) and particle-hole symmetry
(PHS), allow for a topological classification of the gapped non-interacting
Hamiltonians according to the celebrated periodic table of topological
insulators and superconductors [14, 3]. For example, a 1D chiral-symmetric
system of spinless non-interacting particles belongs to the AIII class if it
has no other discrete symmetries, or to the BDI class if it has also TRS
and PHS.

An Hamiltonian is time-reversal-symmetric if it commutes with a anti-
unitary operator T = τK, where τ is a unitary operator and K is the
complex conjugation. The complex conjugation K acts in real space as
Kf(r) = f∗(r)K and in quasi-momentum space as Kg(k) = g∗(−k)K. A
time-reversal-symmetric Hamiltonian verifies:

T HT −1 ≡ τH∗τ † = H. (II.4)

T 2 gives either 1 or −1. In particular systems of particles with odd-half-
integer spin have T 2 = −1, while systems of particles with integer spin
(or spinless) have T 2 = 1 [3].
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An Hamiltonian is particle-hole symmetric if it anticommutes with a
anti-unitary operator P = PK, where P is a unitary operator and K the
complex conjugation:

PHP−1 ≡ PH∗P † = −H. (II.5)

Ifψj is an eigenstate of a particle-hole symmetric non-interacting Hamil-
tonian of eigenvalue Ej , its particle-hole reversed partner, P|ψj〉 = |ψ−j〉
is still an eigevector of energy−Ej , [3]. P2 gives either 1 or−1.

A chiral operator can be found as combination of a particle-hole and
a time-reversal operator, Γ = T P . Therefore, an Hamiltonian can pos-
sess either just one or the complete set of symmetries.

II.1.2 Winding number

The topological invariant characterizing 1D chiral systems is an integer
called winding numberW . According to the bulk-edge correspondence,
the number of edge states on each edge is equal to |W|. The winding
numberW may be found in various equivalent ways, starting from either
the Hamiltonian with periodic boundary conditions, or its eigenstates. In
this subsection we give three equivalent definitions of it.

Let us consider a non-interacting tight-binding Hamiltonian on a lat-
tice ofN unit cells andD sites per unit cell. We will only consider the case
where D is even, else chiral model necessarily present flat bands at zero
energy. For the chiral symmetry, D/2 sites per unit cell belongs to the
sublattice A andD/2 to the sublattice B. In the canonical basis, where the
chiral operator takes the form (II.2), the Hamiltonian has a completely
block-off-diagonal form

H =

(
0 h†

h 0

)
. (II.6)

W can be found in terms of the winding of the lower-left block h of the
off-diagonal Hamiltonian [84], for simplicity, unless explicitly needed,
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from now on we will often drop momentum indices:

W =

∮
dk

2πi
Tr[h−1∂kh] =

∮
dk

2πi
∂k log[Det(h)] (II.7)

=

∮
dk

2π
∂k arg[Det(h)] =

D/2∑
j=1

∮
dk

2πi
∂k log hj ,

where {hj} denote the complex eigenvalues of the matrix h. We have im-
plicitly assumed that the Hamiltonian is gapped at zero energy, so that
bothH and h are invertible, and we have used the fact that the integral of
the derivative of a continuous and periodic function is zero over a com-
plete period. The winding of the model is therefore given by the cumu-
lative winding of all eigenvalues of h around the origin of the complex
plane.

Equivalently, one may computeW using the flat-band Hamiltonian,
the Q-matrix [3]. This is defined as the difference between the projec-
tor on the eigenstates of positive energy, minus the one on the states of
negative energy,

Q =

D/2∑
j=1

Qj =

D/2∑
j=1

Pj − P−j , (II.8)

where Pj = |ψj〉〈ψj |, with j = ±1, . . . ,±D/2, are the projectors on the
Bloch Hamiltonian’s eigenstates. TheQ-matrix has the following proper-
ties: (i) it is Hermitian and unitary, (ii) it satisfiesQ2 = I, so that its eigen-
values are simply λQ = ±1, (iii) it is diagonal in any basis of eigenvectors
of H , (iv) once expressed in the canonical basis, it becomes block-off-
diagonal,

Q =

(
0 q†

q 0

)
, (II.9)

with q unitary.
W can be extracted from the winding of q,

W =

∮
dk

2πi
Tr[q−1∂kq] =

∮
dk

2π
∂k arg[Det(q)]. (II.10)
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The last equality may be simply demonstrated writing q =
√

Det(q)u, so
that u ∈ SU(2), and exploiting the fact that the winding of any SU(2)
matrix is zero

Alternatively, as discussed in Ref. [101], the winding may be identified
with a bulk observable called skew polarization S =

∑
j∈occ. Sj ,

W =

∮
dk

π
S(k). (II.11)

The quantity Sj = i〈Γψj |ψ′j〉 (with |ψ′j〉 ≡ ∂k|ψj〉) may be shown to be a
purely real number, and occ. denotes the set of occupied bands (i.e., of
negative energies). From these definitions, it is clear that the winding is
not a property of a single band, but rather of the D/2 negative (or posi-
tive) energy bands, which all contribute to its value.

Chiral symmetric chains have been simulated with cold atoms [63,
49] and photonic architectures [76, 86], and their topological properties
have been witnessed through the observation of edge states [76, 49] or
the direct measure of the invariant [63, 86].
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Figure II.2: Energy dispersion and winding number of the SSH model.
a. Energy dispersion of the Bloch Hamiltonian for different values of the
hopping ratio b/a, from left to right b/a = 0.6, b/a = 1, b/a = 1.4. The
spectrum is gapped in both the topological phases and gapless at the
transition. b. Winding number of the SSH model. The three definitions
of the winding number (II.7), (II.10) and (II.11) coincide in predicting for
the SSH model a non-trivial phase (W = 1) when the intra-cell hopping
a is smaller that the inter-cell one b. The insets display the winding of
h(k) varying k, namely the value of h(k) = a+ beik in the complex plane,
as k is varied between 0 (blue) to 2π (white), for b/a = 0.6 (left side) and
b/a = 1.4 (right side). In the trivial phase, when W = 0, the winding of
h(k) does not enclose the origin, in the non-trivial one (W = 1), it en-
closes it.
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II.1.3 The SSH model

The simplest 1D chiral model is the one introduced by Su, Schrieffer and
Heeger (SSH) to provide an effective model for a single electron moving
along the polyacetylene chain [100]. It is a tight-binding model with stag-
gered tunnelings, so that the unit cell is composed of two sites (i.e., it has
internal dimensionD = 2), see Fig. II.1.

H =
∑
n

[
ac†nσxcn + b

(
c†n+1

(σx − iσy)
2

cn + h.c.
)]

, (II.12)

where c†n = (c†n,A, c
†
n,B) creates a particle at unit cell n in sub-lattice

site A or B, cn is the corresponding annihilation operator, and σi are the
Pauli matrices. The a and b characterize the intra- and inter-cell tunnel-
ing energies. It is straightforward to see that the SSH Hamiltonian pos-
sesses also time-reversal and particle-hole symmetries squaring to 1 and
therefore it belongs to the BDI topological class [84].

We can consider an infinite chain and pass to the quasi-momentum
space. For each value of k, the Bloch Chiral operator is σz. In the eigen-
basis of σz, the Bloch Hamiltonian (II.6), and the Q-matrix (II.9) take an
off-diagonal form. We will have h = a + beik, and q = h/|h|, so that
arg h = arg q. As k traverses the Brillouin zone from 0 to 2π, both complex
numbers h and q wind once in the positive (counter-clockwise) direction,
so that the winding number computed using Eq. (II.7) and (II.10) is either
0 or 1, depending on whether these circles enclose or not the origin, see
Figure II.2(b). We can compute the winding number also using the skew
polarization (II.11). The normalized eigenvectors, which are also chiral

partners, are |ψ±〉 = 1√
2

(√
a2+2ab cos(k)+b2

a+beik
,±1

)
, andW =

∮
dk
π i〈ψ+|ψ′−〉

equals either 0 or 1. All methods above therefore coincide in predicting
for the SSH model a non-trivial phase (W = 1) when the intra-cell hop-
ping a is smaller that the inter-cell one b. The distinction between intra
and inter-cell hopping depends on the choice of the unit cell and then it
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has a physical meaning only when the SSH chain is cut. The energy spec-
trum in the bulk of the SSH model, for b 6= a, is gapped around E = 0,
see Fig. II.2(a); when the chain is cut in such a way that b > a, the en-
ergy spectrum exhibits two eigenstates of energy E = 0 exponentially
localized on opposite edges and opposite sublattices, while, when a > b,
there are no edge-states in the gap of the spectrum, see Fig. II.3. Thus, the
winding number predicts correctly the number of states on each chain’s
edge according to the bulk-edge correspondence. The edge-states are ro-
bust against disorder since they survive as long as the winding number
remains unchanged, that means as long as the energy gap remains open.
In Fig. II.3(a), we show the energy spectrum of the SSH model with open
boundary conditions in both the trivial and non-trivial phases, in this lat-
ter, localized edge-states with zero energy are visible. In Fig. II.3(b), we
show the energy spectrum when a chiral-preserving spatial disorder is
added: the hoppings of the Hamiltonian are multiplied by a factor (1+ε),
where ε is a random number in the range [−∆/2,∆/2] with ∆ = 0.6. It is
clear that, whereas the zero energy edge-states remain unaffected, the
unprotected bulk states change their energy when disorder is applied.

II.1.4 Berry-Zak phase

The Berry-Zak phase γ [102, 10] is a fundamental concept, ubiquitous in
the study of the topological matter. It appears in the adiabatic motion of
a particle, is the phase accumulated by the Hamiltonian eigenstates dur-
ing their parallel transport through the Brillouin zone. Differently from
what happens in most of the systems, where the global phase factor of a
wave function has no physical meaning, this phase can be observed as in
the Aharanov-Bohm effect [103]. More recently, various works have pro-
posed [64, 65] and experimentally realized [63, 66] the observation of this
phase.

Let H(R) be an Hamiltonian which depends smoothly on N param-
eters, Ri(t), 1 ≤ i ≤ N . The states |n(R(t))〉, multiplied by an arbitrary
phase factor, are its instantaneous eigenvectors, satisfying at each time t,
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Figure II.3: Bulk-edge correspondence in the SSH model. a. Energy
spectrum with open-boundary conditions on a lattice of 2N + 1 = 201
cells varying the hopping ratio b/a. The color coding of the spectrum
indicates the degree of localization log10(1−|〈m̂〉)|/N) of each eigenstate
on the two edges x = −N , x = N ; light (dark) colors indicate bulk (edge)
states. The red dashed line passing through the point b = a corresponds
to the phase transition from trivial (W = 0) to topological (W = 1). b. We
have added a chiral-preserving disorder with amplitude ∆ = 0.6 (see text
for details) showing that the edge states are topologically protected.

the relation:
H(R(t))|n(R)〉 = En(R)|n(R)〉. (II.13)

During the time t → T , each parameter R defines a continuous curve C
and |n(R)〉 is smooth along C. Let us assume that at t = 0 the system’s
state is |ψ(t = 0)〉 = |n(R0)〉, with R0 = R(t = 0). The state of the system
evolves according to the time-dependent Schrodinger equation:

i
d

dt
|ψ(t)〉 = H(R(t))|ψ(t)〉. (II.14)

In the adiabatic approximation, the variation of R(t) along C is slow com-
pared to the frequencies corresponding to the energy gaps |En(R)−En±1(R)|,
and then the system remains in the energy eigenstate |n(R)〉 only picking
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up a phase:

|ψ(t)〉 = eiφn(t)e−i
∫ t
0 En(R(t′)))dt′ |n(R(t))〉. (II.15)

Putting Eq. (II.15) in Eq. (II.14) and projecting on |n(R)〉, we find:

φn =

∫
C
i〈n(R)|∂R|n(R)〉dR. (II.16)

i〈n(R)|∂R|n(R)〉 is called Berry connection and is denoted asA(n)(R) [10].
A(n) is not a gauge invariant quantity, and therefore γn in general

is not gauge invariant unless C is a closed path. If C is a closed line,
Eq. (II.16) gives the Berry phase:

γn = i

∮
dR〈n(R)|∂R|n(R)〉. (II.17)

When the slowly varying parameterR is the quasi-momentum k, and the
integral in Eq. (II.17) is taken over the Brillouin zone, the Berry phase is
called Zak phase [104]. In a chiral-symmetric Hamiltonian, the Zak phase
is equal toWπ modulo 2π.

II.1.5 Bulk polarization and Zak phase

A physical manifestation of the Zak phase is the bulk polarization of a
band insulator [105, 10]. The polarization of a neutral molecule is de-
fined as the difference between the centre of mass’ positions of nega-
tive and positive charges. According to this definition, the bulk polariza-
tion of a band insulator with a fully occupied valence band, is simply the
mean position of the centre of the negative charges. This quantity can-
not be found straightforwardly working in the basis of the energy eigen-
states, since these latter are Bloch waves delocalized over all the bulk.
One has to use a complete orthonormal set of localized states, the Wan-
nier states [106, 107, 105].

In the simple case of a 1D insulator with only one occupied band,
the bulk polarization is the Zak phase of the occupied band divided by
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2π, [107, 105]. For each quasi-momentum k in the Brillouin zone, the
energy eigenstates are Bloch functions:

|Ψi(k)〉 = |k〉 ⊗ |ψi(k)〉 =
1√
N

N∑
m=1

eiα(k)eimk|m〉 ⊗ |ψi(k)〉, (II.18)

where |ψi(k)〉 are the eigenstates of the Bloch Hamiltonian, i is the band
index and α(k) is an arbitrary phase factor. We can omit the band in-
dex i since we are considering the case in which only the lowest band is
occupied.

The Wannier states |w(j)〉 should fulfill the following set of properties:

• 〈w(j)|w(j′)〉 = δjj′

• ∑N
j=1 |w(j)〉〈w(j)| = ∑k∈B.Z. |Ψ(k)〉〈Ψ(k)|

• 〈m+ 1|w(j + 1)〉 = 〈m|w(j)〉
• 〈w(j)|m〉〈m|w(j)〉 < e−|j−m|/ξ, with ξ some finite localization length.

We can find such a wave-function performing the inverse Fourier trans-
form of the Bloch function of the occupied band,

|w(j)〉 =
1√
2π

∮
dke−ijkeiα(k)|Ψ(k)〉, (II.19)

and setting α(k) in order to make them as localized as possible. In the
thermodynamic limit N → ∞, the average position of a Wannier state
can be calculated easily writing the position operator in quasi-momentum
space m̂ = i∂k:

〈w(j)|m̂|w(j)〉 =
i

2π

∮
dk〈ψ(k)|∂kψ(k)〉+ j. (II.20)

This equation shows that the centre of each Wannier state is given by
the position of the lattice cell where it is exponentially localized, plus the
Zak phase of the occupied band divided by 2π. The bulk polarization is
simply the sum of the centres of the Wannier states for j ∈ [−N/2, N/2]
divided by N , hence, it corresponds to the Zak phase of the occupied
band in units of 2π.
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II.2 The Integer Quantum Hall effect

Discovered in the 80s [7], the integer quantum Hall effect constitutes
a paradigmatic example of topological insulating phase of matter [6].
When a magnetic field is applied on a 2D semi-conductor at very low
temperature, the transverse conductivity, Hall conductivity, inside the
energy gaps is quantized. Its value is proportional to the bulk topolog-
ical invariant, the total Chern number of the occupied energy bands [8].
The system is thus very robust against perturbations: while the gap is
open, the Hall conductivity remains the same. Finally, for a system with
boundaries, topologically protected current-carrying edge-states arise,
their number is proportional to the total Chern number (bulk-edge cor-
respondence), as it has been demonstrated in the seminal papers [11,
12, 13]. The IQHE has been experimentally observed in the last years in
a multitude of synthetically engineered systems such as atomic [22, 23],
superconducting [108], photonic [24] and acoustic platforms [109, 110,
111].

II.2.1 Integer Quantum Hall effect on the lattice: the Hofstadter
model

The Hofstadter Hamiltonian [9] has been used to describe the Integer
Quantum Hall effect by Thouless, Kohmoto, Nightingale, and den Nijs
in the celebrated TKNN paper [8]. It is a tight-binding model of spin-
less electrons on a square lattice pierced by a uniform magnetic field, see
Fig. II.4:

H = −tx
∑
〈j,k〉x

eiθjkc†kcj − ty
∑
〈j,k〉y

eiθjkc†kcj , (II.21)

where the first summation is taken over all the nearest-neighbour sites
along the x direction and the second sum along the y direction, and the
lattice spacing is set to one. The phase factor θjk is called the Peierls
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phase factor and is defined on a link as:

θjk =
e

~

∫ rk

rj
A · dl, (II.22)

where A is the vector potential. The sum of the Peierls phase factors on
a plaquette is equal to the magnetic flux per plaquette φ in units of the
magnetic flux quantum φ0 = ~/e, φ =

∑
plaquette θjk. We can write the

vector potential in the Landau gauge: A = BxIy. Hence, θjk = 0 for the
links along x, and θj,k = 2πxφ for the link between (j, k) and (j, k + 1)
along y.

For a rational magnetic fluxφ = p/q, the system is periodic over super-
cells made by q cells in one direction (x) and one cell in the other (y).
Thus, we can still write the eigenvalues problem for the Hamiltonian
with periodic boundary conditions in terms of Bloch functions ψk(r) =
eik·ruk(r), obtaining the equation known as Harper equation [112] for
each discrete position x from 0 to q:

Ekuk(x) = −txeikxuk(x+ 1)− txe−ikxuk(x− 1)− 2ty cos(2πxφ+ ky)uk(x).
(II.23)

For tx and ty 6= 0, the energy spectrum is made by q bands.

II.2.2 Chern number and Hall conductivity

In SubSec. II.1.4, we considered a Hamiltonian with a periodic depen-
dence from a slowly varying parameter R which, during a period T , de-
fines a closed curve C. For an energy band separated from the other
bands by a finite gap, we defined the Berry connection of the n-th band
as the vectorA(n)(R) = i〈n(R)|∂R|n(R)〉, where |n(R)〉 is the eigenvector
of energy En. In 2D, starting from the Berry connection, we can define a
gauge invariant pseudo-vector:

Ω(n)(R) = ∇R ×A(n)(R). (II.24)

The second-rank tensor Ωµν , related to the pseudo-vector above through

the Levi-Civita tensor Ω
(n)
µν = εµνξΩ

(n)
ξ , is called Berry curvature [10]. When
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Figure II.4: Hofstadter model. The Hofstadter model [9] is a tight-
binding model of spin-less electrons on a square lattice pierced by a uni-
form magnetic field, the lattice spacing is taken to be unity. The phase
factor θjk is the Peierls phase factor defined on a link and represents the
magnetic flux through the lattice plaquette. We chose a gauge in which
this phase only enters the hopping along y. The magnetic flux per pla-
quette is a rational number p/q, this defines a magnetic super-lattice
made of q cells in the x direction and one in the y direction.

the parameter R is the quasi-momentum k which varies on the Brillouin
torus, the Berry curvature of the n-th band reads:

Ω(n)
xy (k) = −i

(
〈∂kxu

(n)
k |∂kyu

(n)
k 〉 − 〈∂kyu

(n)
k |∂kxu

(n)
k 〉
)
. (II.25)

The Chern number of the n-th band is defined as:

ν(n) =
1

2π

∫
BZ

dkΩ(n)
xy (k), (II.26)

where
∫
BZ dk is the integral over the Brillouin torus. The Chern number

is an integer topological number: it keeps its value under continuous de-
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formations of the band, as long as the gap separating it from the others
does not close [10].

Following the proof given in the TKNN paper [8], one can use the
Kubo formula to compute the Hall conductivity σH ≡ σxy. When the
system is at zero temperature and the Fermi energy is in an energy gap,
the Kubo formula gives:

σH ≡ σxy =
2~e2

(2π)2

∑
Ei<EF ,Ej>EF

∫
BZ

dk
Im[〈uik|vx|u

j
k〉〈u

j
k|vy|uik〉]

(Ei(k)− Ej(k))2
(II.27)

=
2e2

(2π)2~
∑

Ei<EF ,Ej>EF

∫
BZ

dk
Im[〈uik|∂kxHk|ujk〉〈u

j
k|∂kyHk|uik〉]

(Ei(k)− Ej(k))2
,

where we implicitly used the equality v = 1
~∇kH(k). Using the identity:

∑
Ei<EF ,Ej>EF

Im[〈uik|∂kxHk|ujk〉〈u
j
k|∂kyHk|uik〉]

(Ei(k)− Ej(k))2
= (II.28)

Im
∑
i∈occ.

〈∂kxu
(i)
k |∂kyu

(i)
k 〉 = −1

2
Ω(i)
xy(k),

we find:

σH =
e2

h

∑
i∈occ.

ν(i). (II.29)

Hence, when an external electric field Ey acts on n filled bands of
electrons, the transverse (Hall) current density follows the linear relation:

jx = Eyσyx =
e2

h
Ey

n∑
i=0

ν(i) =
e2

h
EyV(n), (II.30)

where V(n) is the total Chern number of the first n bands.
This Hall response is robust while the gap remains open; for exam-

ple, it does not change under small changes of the magnetic flux. This is
the origin of the plateaus in the plot of the Hall conductivity versus the
magnetic field which benchmark the IQHE [7].
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II.2.3 Hall conductivity and the normalized density of particle

We can relate the Hall conductivity with the normalized density of par-
ticles of the Hofstadter model through a purely geometrical considera-
tion [113]. However, this result is very general as it applies to all the Chern
insulators with a fixed number of particles [114]. The label r of the r-th
energy gap and the integers p and q giving the magnetic flux per plaque-
tte φ are linked by a Diophantine equation:

r = ptr + qsr, (II.31)

where 0 ≤ r < q, tr and sr are integers and |tr| < q
2 . For a system with

a fixed number of particles and r filled bands, the normalized density
of particles is given by the number of filled bands divided by the total
number of bands, i.e. Nr = r

q , hence:

Nr = φtr + sr. (II.32)

The Streda formula [115] predicts the response of the density of parti-
cles of the system to small changing of the perpendicular magnetic field:

σH =
e2

h

∂N
∂B

. (II.33)

Then Eq. II.32 reads
Nr = φV(r) + sr. (II.34)

Figure II.5 shows the Hofstadter butterfly [9], namely the projection
of the energy spectrum of the Hofstadter model with periodic boundary
conditions for different values of the rational magnetic flux φ = p/q in
the range [0, 1]. This plot exhibits a fractal structure of the energy gaps.
The Hall conductivity is quantized and constant inside each gap, we used
Eq. (II.34) to compute its values and we associated to each value a color
in a scale going from blue to red.
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Figure II.5: Hofstadter butterfly. Energy spectrum (projection) of the
Hofstadter model within periodic boundary conditions changing the flux
per plaquette φ, for tx = ty = 1. The plot shows a fractal structure with
energy gaps, the transverse conductivities inside the gaps are quantized,
their values have been computed using Eq. (II.34) and are associated with
a colour going from blue to red.

II.2.4 Hofstadter model on the cylinder

If we consider the Hofstadter Hamiltonian on a cylinder, i.e. with peri-
odic boundary conditions along y and open boundary conditions along
x, states with energy laying in the gaps of the bulk energy spectrum arise
on each edge; their number is equal to the total Chern number of the
filled bands. This bulk-edge correspondence can be understood with the
socalled Thouless’ pump argument [13]. In a cylindrical configuration,
the effect of a constant electric field Ey is to shift the quasi-momentum
ky, since k̇y =

−eEy
~ . It works as a periodic pump which in a period

T = 2π
e|Ey | pushes across the bulk region a number of electrons equal
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Figure II.6: Spectrum of the Hofstadter model on a cylinder. The ratio-
nal flux is fixed to φ = 1/5, tx = ty = 1 and the number of cells in the
x direction is 2Nx + 1 = 401. The color of each energy value indicates
the degree of localization of the corresponding eigenstate ψ on the edges
x = −Nx (dark blue) and x = Nx (red), i.e. the value of the function
log10[1 − 〈x̂〉ψ]/Nx. The integers labelling the gaps are the total Chern
numbers of the bands below. In agreement with the bulk-edge corre-
spondence, they count correctly the number of edge-states (for each
edge) which traverse the corresponding gap during the pumping.

to the total Chern number. Figure II.6 shows the energy spectrum of
the Hofstadter Hamiltonian with φ = 1/5 and with periodic boundary
conditions on y and open boundary conditions on x (cylindrical geom-
etry) while shifting ky from 0 to 2π. Since φ = 1/5, the spectrum is
made of 5 energy bands; the total Chern number under then-th gap, V(n),
counts the number of edge-states crossing the gap during the pumping
cycle. The sign of V(n) corresponds to the chirality of the modes on one
edge, i.e. the sign of their group velocity. Let us consider the Harper
equation (II.23) with cylindrical boundary conditions, and let us replace
the quasi-momentum component ky with a parameter ξx called phason
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varying in the same range [0, 2π]. We get a family of Hamiltonians la-
belled by ξx:

H(ξx) =
∑
x

[
tc†xcx+1 + h.c.+ λ cos(2πφx+ ξx)c†xcx

]
. (II.35)

The energy spectrum of each H(ξx) is gapped but, exactly as the original
2D Hamiltonian, it does not posses any discrete nonspatial symmetry.
While in 2D, the absence of symmetries corresponds to the topological
Chern class, in 1D, it corresponds to the topological triviality [3]. Then
the single H(ξx) is topologically trivial, but the union of the H(ξx) for
all the values of ξx in the period is topologically non-trivial: the topo-
logical invariant associated to this family of Hamiltonians is the Chern
number of the corresponding 2D system. In Refs. [116] and [117], it is
demonstrated that when the parameter φ in Eq. (II.35) is incommensu-
rate with the lattice length, for example when φ is an irrational number,
the integration over all the values of ξx is not needed and one can as-
sociate the same Chern number to every H(ξx) in the family. The fact
that φ is incommensurate with the lattice length makes the system quasi-
periodic, namely a quasi-crystal (QC). Equation (II.35) with an irrational
φ is known as Aubry-Andrè quasi-crystal (AAQC) [118]. If edges are intro-
duced in such a system, topologically protected edge states arise. Chang-
ing adiabatically the parameter ξx these modes cross the energy gaps. In
Ref. [116], this phenomenon has been observed in a AAQC implemented
with an array of optical fibers. Another quasi-crystal is the celebrated Fi-
bonacci quasi-crystal (FQC) [119]; interestingly, the AAQC and the FQC
have been proven to be topologically equivalent [120].
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III

Detecting the winding number
in the bulk of a 1D chiral
model

In this chapter we present a method to extract the winding number W
of a 1D chiral-symmetric non-interacting system from the free bulk dy-
namics of the single particle. We find that W emerges in the long time
limit of an observable, the mean chiral displacement (MCD), measured
over initially localized states. This detection requires no precise knowl-
edge about the Hamiltonian’s details (apart from the fact that it is chi-
ral symmetric), and it simply relies on the detection of the average po-
sition of the particle’s wavepacket within each sublattice. Our detection
method does not require any kind of external intervention on the sys-
tem, such as interferometric architectures [63, 66, 64, 65], introduction
of losses [85, 86, 87], or scattering measurements [68] and it does not re-
quire the access to the system’s edges [76, 49]. This feature makes this
method suitable in simulation platforms where the chiral lattice is en-
coded in a degree of freedom which has no physical edges, as for example
in Ref. [71].

In Sec. III.1, which is based on Ref. [83], we derive our result in the
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case of an infinite, clean, chiral system with an arbitrary (even) num-
ber of sites per unit cell: we demonstrate the relation between MCD and
winding number analytically in terms of spectral projectors written in
quasi-momentum space. In SubSec. III.1.2, and III.1.3, we apply our method
to two models extracting their winding numbers from the numerical sim-
ulations of their dynamics. All the figures of this section are adapted from
Ref. [83].

In Sec. III.2, we show that the MCD detects the winding number also
in systems with a strong chiral-preserving disorder. In SubSec. III.2.1,
we derive the relation between MCD and winding number in presence
of disorder. In SubSec. III.2.2, we present the experiment reported in
[50]; here the MCD measurement has been used to detect a signature of
the topological Anderson insulating phase (TAI) in a disordered chiral-
symmetric wire simulated with ultra-cold atoms. All the figures in this
subsection are adapted from Ref. [50].

III.1 Detection of the winding number in translation-
ally invariant systems

III.1.1 Winding number and mean chiral displacement in quasi-
momentum space

Let us consider a non-interacting tight-binding chiral Hamiltonian on
a lattice of N unit cells, and D (even) sites per unit cell. We describe a
particle moving in such a system using as basis a set of localized wave-
functions:

|ψj〉 =

∮
dk√
2π
|ψj〉, (III.1)
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where |ψj(k)〉 are the eigenstates of the Bloch Hamiltonian with j = ±1, . . . ,
±D/2. The generic state written in this basis reads:

|Ψ〉 =
∑
j

cj |ψj〉 =
∑
j

cj

∮
dk√
2π
|ψj〉 =

∮
dk√
2π

∑
j

cj |ψj〉 =

∮
dk√
2π
|Ψ〉,

(III.2)

where cj are complex coefficients which do not depend on k. Comparing
expression (III.1) with (II.19) it is clear that |ψj〉 are Wannier functions
localized in the central site of the lattice, m = 0, with a particular choice
of the phase α(k), namely α(k) = 0 for all values of the quasi-momentum
k. In the following demonstrations, we will use a particular subclass of
these localized functions, the chiral localized states |Γj〉:

|Γj〉 =
sgn(j)|ψj〉+ |ψ−j〉√

2
=

∮
dk√
2π
|Γj〉. (III.3)

These states are eigenstates of the partial chiral operator, Eq. (II.3), such
that Γj |Γj′〉 = δjj′sgn(j)|Γj〉. The average value of the partial Q operator,
Eq. (II.8), evaluated on them yields 〈Qj〉Γj′ = 0.

We now introduce the position operator m̂ (where the integersm label
whole unit cells, as shown in Fig. III.1), and the chiral position operator
Γ̂m ≡ Γm̂. From now on we will set to unity the length of the unit cell.
The position operator in momentum space is represented as usual by a
derivative,

〈k|m̂|k̃〉 =
∑
m,m̃

〈k|m〉〈m|m̂|m̃〉〈m̃|k̃〉 (III.4)

=
∑
m,m̃

mδ(m− m̃)
ei(k̃m̃−km)

2π
= i∂k

∑
m

ei(k̃−k)m

2π
= i∂kδ(k̃ − k).

The average displacement at time t for a particle starting from the state
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|Ψ〉 is given by:

〈m̂(t)〉Ψ =

∮
dk

2π
〈U−t(i∂k)U t〉Ψ =

D/2∑
j=1

∮
dk

2π

{
t∂kEj〈Qj〉Ψ (III.5)

+ Sj sin(2tEj)〈iQjΓj〉Ψ − Sj [1− cos(2tEj)]〈Γj〉Ψ
}

+

D/2∑
j,j′=−1 and |j|6=|j′|

∮
dk

2π
i〈ψj |ψ′j′〉〈Ψ|ψj〉〈ψj′ |Ψ〉eit(Ej−Ej′ ),

where U t ≡ e−iHt is the unitary evolution operator, U−t ≡ eiHt is its in-
verse and Sj is the skew polarization introduced in SubSec. II.1.2. The
explicit derivation of Eq. (III.5) is given in App. VII.1.1. When evaluated
on the chiral localized states |Γj〉, the mean displacement reduces to

〈m̂(t)〉Γj = −sgn(j)

∮
dk

2π
Sj [1− cos(2tEj)]. (III.6)

Let us now define the chiral average displacement as:

〈Γ · m̂(t)〉Ψ ≡
∮

dk

2π
〈ΓU−t(i∂k)U t〉Ψ =

∮
dk

2π
〈U tΓ(i∂k)U

t〉Ψ, (III.7)

and the mean chiral displacement as:

〈Γ̂m(t)〉Ψ ≡
∮

dk

2π
〈U−tΓ(i∂k)U

t〉Ψ. (III.8)

Using Eq. (III.6), we find that, in the long-time limit, 〈Γ · m̂(t)〉Γj , when
summed on the chiral localized states with j > 0, converges to minus
one half of the winding numberW (see App. VII.1.2 for details):

D/2∑
j=1

〈Γ · m̂(t)〉Γj =

D/2∑
j=1

〈m̂(t)〉Γj =

D/2∑
j=1

∮
dk

2π
Sj [−1 + cos(2tEj)] (III.9)

= −W
2

+

D/2∑
j=1

∮
dk

2π
Sj cos(2tEj) = −W

2
+ . . . .
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We find a similar result for 〈Γ̂m(t)〉Γj :

D/2∑
j=1

〈Γ̂m(t)〉Γj =

D/2∑
j=1

〈Γ̂m(t)〉ψj =

D/2∑
j=1

∮
dk

2π
Sj [1− cos(2tEj)] =

W
2

+ . . . ,

(III.10)
The expressions (III.9) and (III.10) are invariant under the change of j to
−j, as the skew polarization is invariant under such change. Therefore,
we can compute the traces over all theD chiral localized states:

− Tr[Γ · m̂(t)] = Tr[Γ̂m(t)] = 2

D/2∑
j=1

∮
dk

2π
Sj [1− cos(2tEj)] =W + . . . ,

(III.11)
As the trace does not depend of the choice of the basis, these results im-
ply that a trace taken on any set of D vectors forming a complete basis
of the unit cell will converge to the winding numberW in the long time
limit. At topological critical points, the mean chiral displacement con-
verges to the average of the invariants computed in the two neighboring
phases in agreement with Ref. [121].

As we derive in App. VII.1.2, when D = 2, the contribution of the two
sub-lattice sites A(+) and B(−) is the same, and the trace of the mean
chiral displacement can be rewritten as:

C(t) = Tr[Γ̂m(t)] = 2〈Γ̂m(t)〉|ψ+〉 = 2

∮
dk

2π
i〈ψ+|ψ′−〉[1−cos(2tE)] =W+. . . ,

(III.12)
From now on, we will refer to the trace of the mean chiral displacement,
C(t) as to MCD.

In the following subsections, we will benchmark our method on two
concrete Chiral Hamiltonians. The first model is a direct generalization
of the SSH model with four sites per unit cell, and the second one is an
SSH model with staggered long-range hopping which possesses a richer
topological diagram with phases corresponding to winding numbers±1,
0 and±2.
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(a) (b) (c)

Figure III.1: 1D chiral models. Sketch of the SSH (a), the SSH4 (b) and
the SSH model with staggered long range hoppings (c). Red and blue
sites belong respectively to the A and B sublattices, thin lines denote
hoppings, and the unit cells of the lattice are indexed by the integer m.
The corresponding Hamiltonians are explicitly chiral, as these contain
no term coupling a sublattice directly with itself.

III.1.2 The SSH4 model

We now discuss an example of chiral model with D = 4. This model is
a direct generalization of the SSH model (Fig. III.1(a)), we will refer to it
as to SSH4. The SSH4 has a non-interacting Hamiltonian with nearest-
neighbour hoppings. As shown in Fig. III.1(b), the system is a Bravais
lattice with a four atom unit cell of sites A1, B1, A2, B2. The intra-cell
hoppings are a, b and c, the inter-cell hopping is d. The Hamiltonian
defines two sublattices, containing two sites each: A = {A1, A2}, and
B = {B1, B2}. Since the Hamiltonian contains no term acting within a
given sublattice, the model is chiral for arbitrary values of {a, b, c, d}. The
model belongs to class AIII when the tunnelings are complex numbers
and hence the TRS is broken, while it belongs to the more constrained
class BDI if all tunnelings are purely real [3]. We will for simplicity restrict
ourselves to the latter case, but note that our results hold for all 1D chiral
models, i.e., also for AIII ones, such as the one considered in Ref. [50].
Finally, note that for a = c and d = b, the SSH4 reduces to the usual SSH
model, shown in Fig. III.1(a). In the canonical basis {ψA1 , ψA2 , ψB1 , ψB2},
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the Bloch Hamiltonian assumes the off-diagonal form

H(k) =

(
0 h†(k)

h(k) 0

)
=


0 0 a de−ik

0 0 b c
a b 0 0
deik c 0 0

 . (III.13)

The energy spectrum and the eigenvectors of the different bands may be
found analytically (see App. VII.1.3 for details). The corresponding wind-
ings are computed from Eq. (II.7), and by direct integration one finds
W = 0 when ac > bd, and W = 1 when ac < bd. Figure III.4(a) shows
the energy spectrum for a = c = d and for different values of b. The gap
closing appears at b = 1, as it is the case for the SSH model. Figure III.4(b)
shows the winding number in terms of b (solid line). The yellow and
green dashed lines are the separate contributions of the two pairs of chi-
ral partners to the total winding number. The separate contributions are
not quantized, but their sum is. Finally, the insets show parametric plots
of the determinant of h, which performs a circle in the complex plane as
k traverses the Brillouin zone. In the topological phase, the circle con-
tains the origin (right inset) whereas in the trivial phase the circle does
not contain the origin (left inset).

Measuring the winding number of the SSH4 in real space

We simulate the dynamics of a finite system of 200 unit cells. We prepare
localized initial states at the center of the chain m = 0, and we let them
evolve under the SSH4 Hamiltonian. In particular, we choose as initial
states two different bases of the internal space: the chiral basis, and an
arbitrary basis. At each time t, we compute (minus) the trace of the chiral
average displacement−Tr[Γ·m̂(t)] (Eq. (III.9)) on the chiral basis, and the
trace of the mean chiral displacement Tr[Γ̂m(t)] (Eq. (III.11)) on an arbi-
trary basis. With the choice of the unit cell {ψA1 , ψB1 , ψA2 , ψB2}, in real
space these operators are simply represented by the diagonal matrices
m̂ = diag(. . . , 1, 1, 1, 1, 2, 2, 2, 2, . . .) and Γ̂m = diag(. . . , 1,−1, 1,−1, 2,−2, 2,
−2, . . .).
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Figure III.2: Traces of mean chiral and of chiral average displacements
of the SSH4 model. Parameters are chosen in the topological phase:
{a, b, c, d} = {1, 2.5, 0.3, 0.6}, so that bd > ac andW = 1. There are 2 com-
pletely superposed series of dots, showing the results of the two observ-
ables discussed in the text, and the blue line shows the analytical result,
Eq. (III.11). The yellow line shows a sliding average of the data, which
rapidly converges to the expected value of 1.

Figure III.2 shows the results of the numerical simulations for the
SSH4 model. The two traces in the different bases are superimposed
(green dots), and match perfectly with the theoretical curve (blue curve)
given in Eq. (III.11). In the figure we also show a sliding average of the
data over ten points (orange curve), which shows a smoother and quicker
convergence to the winding number.

Finally, let us note that the simplest procedure which yields the de-
sired result (the winding) is to follow Eq. (III.9) and take the sum of the
mean displacement measured over two orthogonal states which are com-
pletely localized on the central unit cell, and which form a complete basis
of the left sublattice (the one corresponding to the +1 eigenvalue of the
chiral operator). Minus two times this quantity will give the result plotted
in Fig. III.2. Explicitly, e.g., two states of the form Ψ̄a = (0, . . . , 0,1,0,0,0,
0, . . . , 0) and Ψ̄b = (0, . . . , 0,0,1,0,0, 0, . . . , 0),where the four central num-
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bers (marked in bold) indicate the amplitudes on the cell with coordinate
m = 0 in the basis where the chiral operator is (1, 1,−1,−1).

III.1.3 The SSH model with staggered long range hoppings

In this Section we wish to test the validity of our detection method using
a system which exhibits a richer phase diagram (W = 0,±1, 2). To this
aim, we study a one-dimensional chiral Hamiltonian, which is a standard
SSH model with staggered nearest-neighbor hoppings a and b, and with
additional staggered third-nearest-neighbor hoppings c and d (that is to
say, there is a hopping c between sites 1 and 4, d between sites 2 and
5, c between 3 and 6, and so on). The model is shown schematically in
Fig. III.1(c), and given its long-range character we refer to it as the LR-
SSH model.

The model can be written in momentum space when using a two-
atom unit cell. The corresponding Hamiltonian is a 2× 2 matrix,

HLR =

(
0 a+ be−ik + ceik + de−2ik

a+ beik + ce−ik + de2ik 0

)
. (III.14)

The winding W of this model equals +2, +1, 0, or -1. The topolog-
ical phase diagram with a = b is shown in Fig. III.3(a). As shown in
Fig. III.3(b), the long time limit of the trace of the mean chiral displace-
ment detects correctly the winding in all topologically distinct regions.
In particular, when c = d = 0, the model is at the critical point between
the phases with W = 0 and W = 1, recovering the expected SSH re-
sult, which is critical when a = b. In this point, as in all other phase
transitions, the mean chiral displacement converges to the intermediate
(integer, or half integer) value between the windings of the neighboring
phases (see dashed lines in Fig. III.3(b)), as discussed in Ref. [121].

III.1.4 Possible experimental implementations

Various possible experimental scenarios may be envisaged to study chi-
ral models with large internal dimensions. For example, a D = 4 chiral
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Figure III.3: Topology of the LR-SSH model. a. Winding numbers, with
a = b. b. Trace of mean chiral displacement computed for the values
of (c, d) indicated by the corresponding dot in the left figure. The three
dashed lines correspond to values of the parameters at the border be-
tween two phases, where the model is critical; in these cases, the observ-
able remarkably converges to the average of the corresponding invari-
ants.

model with ultracold atoms may be implemented by means of a suitable
superlattice as it has been proposed also in Ref. [122]. Three superposed
optical lattices with lattice spacings λ/2, λ, and 2λ effectively realize an
SSH4 model with two equal tunnelings. The three lattices may be ob-
tained from a single laser working at λlaser = 1064nm, which once retrore-
flected produces an optical potential with lattice spacing λ = λlaser/2.
The λ/2 lattice may be obtained by retroreflecting the frequency-doubled
laser, while the one at 2λ may be obtained by crossing two λlaser beams
at a small angle. Otherwise, the superlattice may be by directly imprinted
with a spatial light modulator (SLM) or with a digital mirror device (DMD).
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Driven models may be realized by periodically pulsed Hamiltonians, such
as the one discussed, e.g., in Ref. [44]. Another suitable platform is the
synthetic wire implemented in the space of the discrete momentum of
a Bose-Einstein condensate in an optical lattice [49, 48, 50] which we
will describe in further detail in the following section. In a photonic set-
ting, we envisage to use a lattice of evanescently coupled optical wave-
guides, where the different hopping amplitudes correspond to different
distances between the wave-guides [24]. Finally, the SSH4 model may be
implemented in exciton-polariton experiments, by a slight modification
of the approach used by the group of A. Amo in Ref. [123].
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Figure III.4: Spectrum and topology of the SSH4 model. a. Energy dis-
persions for a = c = d, and b/a = 0.4, 1, 1.6 (from left to right). The model
is in the trivial phase for bd < ac (W = 0, left), and in the non-trivial
phase for bd > ac (W = 1, right). At the critical point, the two central
bands touch at E = k = 0 (center). Eventual gap closings between the
other bands (such as the one visible in the central figure, atE/a ≈ ±π/2)
have no topological relevance for this model. b. Winding number for the
SSH4 model with a = c = d, as a function of b/a. The yellow and green
dashed lines are the separate contributions of the two pairs of chiral part-
ners to the total winding number, respectively

∮
dk
π S1 and

∮
dk
π S2, while

the blue solid line is the actual winding number, given by their sum. The
insets display the value of the determinant of h(k) in the complex plane,
as k is varied between 0 (blue) to 2π (white).
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III.2 Detection of the winding number in disordered
systems

III.2.1 Winding number and mean chiral displacement in real
space

So far we have dealt with translationally invariant systems where the wind-
ing number is simply calculated in momentum space using the Bloch
wavefunctions of the energy bands as derived in SubSec. II.1.2. In the
presence of disorder, where translational symmetry is broken, the wind-
ing number must be computed in real space. A method to derive the
winding in real space, valid with periodic boundary conditions, is pre-
sented in Ref. [124] and references therein. Here we present an alterna-
tive one which can be used also with open boundary conditions. After
having derived the winding in real-space for a disordered system, we will
derive the MCD and we will prove that these two quantities are still equal
in the long-time limit. From now on, we will refer to this real-space wind-
ing number using the letter ν.

Let us consider a two-bands Hamiltonian H and the corresponding
Q-matrix, Q = P+ − P−, given in Eq. (II.8). If the original Hamiltonian is
chiral, so is the Q-matrix, and it is therefore possible to write it as

Q = QAB +QBA = ΓAQΓB + ΓBQΓA, (III.15)

where ΓA,ΓB are projectors onto the A or B sublattices respectively, and
Γ = ΓA − ΓB is the chiral operator given in Eq. (II.2). The real-space
expression of the winding number proposed in Ref. [124] reads:

ν = T {QBA[X,QAB]} = T {QBAXQAB −QBAQABX}, (III.16)

where T indicates a “trace per volume” (i.e., per number of unit cells N )
and X is the position operator in real space.

In order to compute the winding number within open boundary con-
ditions we modify a formalism introduced by Bianco and Resta for a real-
space calculation of the Chern number in quantum Hall insulators, in
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Refs. [125, 126]. This method consists of defining a “local topological
marker” that depends on the eigenfunctions of the system. This marker
gives a local value for a topological invariant when evaluated in a region
away from the physical boundary of the system. While this quantity is not
exactly quantized, it converges smoothly and rapidly to the integer value
of the corresponding invariant in the limit of an infinite system with mild
assumptions of homogeneity of the bulk phase. Hence, we use the idea
of Bianco and Resta to directly evaluate a symmetrized version of the ar-
gument of the trace per volume of Eq. (III.16), over the central part of the
chain. Our topological marker then takes the form:

ν(j) ≡ 1

2

{
(QBA[X,QAB])jA,jA + (QBA[X,QAB])jB,jB (III.17)

+ (QAB[QBA, X])jA,jA + (QAB[QBA, X])jB,jB

}
=

1

2

∑
a=A,B

{
(QBA[X,QAB])ja,ja + (QAB[QBA, X])ja,ja

}
=
∑
a=A,B

〈ja|M |ja〉,

where j indicates the lattice site index, the subscripts jA and jB indicate
the entries of the matrix corresponding to theA orB sublattice for lattice
site j and:

M =
QBAXQAB −QBAQABX −QABXQBA +QABQBAX

2
. (III.18)

To extract a value for the winding number ν in a disordered system we
average ν(j) over a small region (∼ N/8 unit cells with N length of the
chain) in the center of the lattice, that is j = 0, and over different dis-
order configurations. In particular we consider a state |0a〉, completely
localized on the central cell of the chain, either in a site a = A or in a
site a = B. We project this state on the eigensystem of the Hamilto-
nian {|φi〉}, with i = −N, ..N and energies E−i = −Ei denoting 〈0a|φi〉
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with αai. Note that the Chiral symmetry implies that the states φi satisfy
|φ−i〉 = Γ|φi〉. We can now evaluate ν(0) as:

ν(0) =
∑
a=A,B

〈0a|M |0a〉 =
∑
a

[∑
i

|αai|2〈φi|ΓX|φi〉 (III.19)

+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉+

∑
i,j>0;i 6=j

α∗aiαaj〈φi|ΓX|φj〉

 .
The explicit derivation of this result is given in App. VII.2.1. Numerically,
we observe that the off-diagonal part of this expression provides a very
small contribution (typically ∼ 1% of the total), so that the sum is com-
pletely dominated by the diagonal term.

Now, we can derive the real-space formulation of the mean chiral dis-
placement C(t) whose momentum-space formulation is given in Eq. (III.12).
Since the projections αai of the initial state on the energy eigenstates are
effectively randomly distributed variables, upon disorder average, the re-
sult from initializing the system on site A is the same as initializing it on
site B. Hence, the MCD can be computed as mean value of 2ΓX(t) over
a state initially localized equivalently on either the A or the B site:

C(t) = 〈0a|eiHt(2ΓX)e−iHt|0a〉 = 2
∑
i

|αai|2〈φi|ΓX|φi〉 (III.20)

+ 2
∑
i 6=j

α∗aiαaje
−i(Ej−Ei)t〈φi|ΓX|φj〉,

and the disorder-averaged MCD, C̄(t), is:

¯C(t) ≈ ν̄(0) + ... (III.21)

where the dots corresponds to the oscillatory off-diagonal terms which
go to zero in the long time limit.
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III.2.2 Observation of the Topological Anderson Insulator in a
disordered chiral-symmetric wire

Introduction

Here we present the experiment reported in Ref. [50] where the MCD
is used to detect disorder-driven topological transitions of a chiral wire
implemented in the space of the discrete momentum sates of trapped
ultracold atoms. In particular, two phenomena are observed: a transi-
tion from a topological phase to a trivial one, and, for the first time, ev-
idences of the the so-called topological Anderson insulator (TAI) phase,
namely a topological non-trivial phase induced by a strong disorder. The
TAI has been first predicted to occur in metallic 2D HgTe/CdTe quantum
wells [88], but so far it was never been observed experimentally.

The topological phases are robust against weak symmetry-preserving
disorder, but a strong disorder can kill them. In a low-dimensional sys-
tem, like the one we are considering, a static disorder also causes the An-
derson localization of the particle wave-functions [127]. Without energy
gap, experimental probes relying on the adiabatic transport are expected
to fail and thus the measure of the MCD emerges as suitable method to
detect the system’s topology. During the last phase of our work [50], a
related work [128] provided a complementary evidence of the TAI phase
through the observation of topological edge states in a 2D photonic waveg-
uides’ array.

Experimental platform

We consider the following chiral Hamiltonian in real space:

H =

N/2∑
n=−N/2

[
mnc

†
nScn + tn

(
c†n+1

(σx − iσy)
2

cn + h.c.
)]

, (III.22)

where c†n = (c†n,A, c
†
n,B) creates a particle at unit cell n in sublattice site A

or B, cn is the corresponding annihilation operator, and σi are the Pauli
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Figure III.5: Synthetic chiral symmetric wires engineered with atomic
momentum states. a. Schematic lattice of the nearest-neighbor-
coupled chiral symmetric wire. Site-to-site links within the unit cell
(solid) and those connecting different unit cells (dashed) have indepen-
dent tunneling energies mn and tn, respectively. b. Schematic of the
experimental implementation of the tight-binding model depicted in a,
with tunneling based on two-photon Bragg transitions between discrete
atomic momentum states.

matrices. The mn and tn characterize the intra- and inter-cell tunneling
energies. This model can describe chiral wires of the AIII or BDI symme-
try classes, by choosing the intra-cell hopping term to be S = σx (BDI) or
S = σy (AIII).

In Refs. [48, 49, 50], the Hamiltonian Eq. (III.22) is implemented by
using the controlled, parametric coupling of many discrete momentum
states of ultracold atoms, see Fig. III.5. A pair of counter-propagating
laser fields with nominal wavelength λ = 1064nm and wavevector k =
2π/λ are applied to a weakly-trapped Bose-Einstein condensate (BEC) of
87 Rb atoms. Both lasers are far-detuned from any atomic transitions;
most of the trapping power is in one of the beams while the other pro-
vides only a weak confinement. This arrangement results in a weak har-
monic trapping along the propagation axis of the high-power beam (with

52



0 1 2 3 4 5 60 1 2 3 4 5 6 0 1 2 3 4 5 6
WWW

0.0

0.5

1.0

1.5

2.0

m

0.0

0.5

1.0

1.5

2.0

m

0.0

0.5

1.0

1.5

2.0

m

(a)

0 1 2 3 4 5 6

(a) (c)

0 1 2 3 4 5 6 0 1 2 3 4 5 6
WWW

0.0

0.5

1.0

1.5

2.0

m

0.0

0.5

1.0

1.5

2.0

m

0.0

0.5

1.0

1.5

2.0

m

(b)

0 1 2 3 4 5 6

(a) (b)

0 1 2 3 4 5 6 0 1 2 3 4 5 6
WWW

0.0

0.5

1.0

1.5

2.0

m

0.0

0.5

1.0

1.5

2.0

m

0.0

0.5

1.0

1.5

2.0

m

(c)

Figure III.6: Topological phase diagrams of the BDI model with disor-
der W ≡ W2 = 2W1. All the simulations have been performed for a sys-
tem of 50 unit cells and averaged over 1000 disorder realizations. a. Real
space winding number ν. b. Disorder- and time-averaged mean chiral
displacement 〈C̄〉. The temporal sliding average has been done for times
τ ∈ [5, 50] with ∆τ = 1. c. Disorder-averaged MCD in the long time limit
of 1000 tunneling times, 〈C̄〉∞. The red lines (identical in all panels) indi-
cate the critical phase boundary, where the localization length diverges
in the thermodynamic limit according to Ref. [124].

a harmonic trapping frequency of roughly 10 Hz) and tighter trapping
(with a harmonic frequency of roughly 130 Hz) along the other two axes.
The lattice is created by passing the high-power trapping beam through a
series of acousto-optic modulators which turn the single frequency beam
into a beam containing many slightly detuned frequency components.
This multi-frequency beam is then directed to counter-propagate with
itself at the location of the atoms. The spatial periodicity of the laser in-
terference pattern, π/k, defines the set of momentum states separated by
integer values of 2~k. These states may be coupled from the BEC, which
is a source of atoms with essentially zero momentum, and they repre-
sent the effective sites of the synthetic lattice. The tunneling of atoms be-
tween these sites is precisely controlled by simultaneously driving many
two-photon Bragg transitions with the applied laser fields. The individ-
ual, spectroscopically-resolved, control over many such transitions is al-
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Figure III.7: Comparison of the winding number ν and the time-
and disorder-averaged MCD 〈C̄〉. Cuts through the phase diagrams in
Figs.III.6(a) and III.6(b), comparing the winding number ν (filled dia-
monds), the time- and disorder-averaged MCD, 〈C̄〉 (lines with filled cir-
cles), and its infinite time limit 〈C̄〉∞ (open circles), for a BDI model with
disorder ratio W ≡W2 = 2W1.

lowed for by the Doppler shifts experienced by the atoms, which are unique
to the various Bragg transitions. This provides local (in momentum space)
control of the intra- and inter-cell tunneling amplitudes and phases, di-
rectly through the amplitudes and phases of the corresponding Bragg
laser fields [48].

In particular, the expressions:

tn = t(1 +W1ωn), (III.23)

mn = t(m+W2ω
′
n), (III.24)

define the variations of the hopping terms, where t is the characteristic
inter-cell tunneling energy, m is the ratio of intra- to inter-cell tunneling
in the clean limit, ωn and ω′n are independent random real numbers cho-
sen uniformly from the range [−0.5, 0.5], and W1 and W2 are the dimen-
sionless disorder strengths applied to inter- and intra-cell tunneling.
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The BDI model: detecting a phase transition from topological to trivial
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Figure III.8: Disorder-driven transition from topological to trivial
wires. a. Topological phase diagram of a BDI wire of N = 200 unit cells.
The diagram shows the real space winding number ν (inset color scale) as
a function of disorder strength W and tunneling ratio m with tunneling
disorder strengths W ≡ W2 = 2W1. The dashed line at m = 0.1 indi-
cates the region explored experimentally. The solid red curve indicates
the critical phase boundary predicted for an infinite system in Ref. [124].
b. Integrated absorption images of the bulk dynamics following a sud-
den quench of the tunnel couplings, for both weak disorder (W = 0.5)
and strong disorder (W = 5), each for a single disorder configuration.
The data refer to a system of N = 20 unit cells. c. Dynamics of the MCD,
C(τ), as calculated from the data shown in b. The solid red curves are
numerical simulations with no free parameters. The dashed gray hori-
zontal lines denote 〈C̄〉 for each data set. The error bars in c denote one
standard error of the mean.
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Figure III.9: Time- and disorder-averaged MCD. Time- and disorder-
averaged MCD, 〈C̄〉, as a function of W for m = 0.1. The data are aver-
aged over 20 independent disorder configurations and over times τ vary-
ing from 0.5 to 8~/t in steps of 0.5~/t. The solid gold line represents a
numerical simulation for 200 disorder configurations, but with the same
time-average as the data. The dashed gold line represents a numerical
simulation for 200 disorder configurations, as the solid one, but sampled
to much longer times (τ = 1000~/t) in a wire with 250 unit cells. The dot-
ted grey curve shows the topological index in the thermodynamic limit
which takes a value of 0.5 at the critical point, as indicated by the hori-
zontal dashed line. The inset shows C(τ) for W = 3 as a function of time
for all 20 disorder configurations with C(τ) for each disorder shown in the
histogram. The error bars denote one standard error of the mean.

Let us first consider the influence of disorder added to a strongly dimer-
ized BDI wire (Eq. (III.22) with S = σx) characterized by a small intra- to
inter-cell tunneling ratio ofm = 0.1 (with t/~ ≈ 2π×1.2 kHz). In the clean
limit, this system is in the topological regime. The disorder amplitudes
are fixed to W ≡ W2 = 2W1. Figure III.6(a) shows the disorder-averaged
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topological phase diagram of the BDI model as a function of W and m
in terms of the real-space winding number (Eq. (III.19)) together with
the critical phase boundary predicted for an infinite system in Ref. [124].
We show, through numerical simulations of the BDI system’s dynam-
ics in the thermodynamic limit, that the disorder- and time- averaged
MCD matches the expected value of the real-space winding number, see
Figs. III.6(b), III.6(c) and III.7.

The entire atomic population is initially localized in the central site
of the lattice of N = 20 unit cells, in particular in the site A of the unit
cell n = 0, with all the tunneling couplings turned off. Then the tunnel
couplings are quenched on in a stepwise fashion. The projection of the
localized initial state onto the quenched system’s eigenstates leads to a
rich dynamics for both weak (W = 0.5) and strong (W = 5) disorder.
Such site-resolved dynamics of the atomic population distribution is di-
rectly measured by a series of absorption images taken after a time τ , for
16 values τ evenly spaced between 0.5~/t ≈ 65µs and 8~/t ≈ 1040µs, and
the discrete momentum states are separated according to their momenta
during a time-of-flight period [48]. The measure is repeated within 20
different disorder configurations. The MCD and its time- and disorder-
average 〈C̄〉 are extracted from the data and shown in Fig. III.8. In par-
ticular, figure III.9 shows that 〈C̄〉 is robust to weak disorder maintaining
a nearly-quantized value close to one, while, for strong disorder, W & 2,
we observe a relatively steep drop in 〈C̄〉, with it falling below 〈C̄〉 = 0.5
for W & 3. This behaviour is associated to a disorder-driven transition
from topological (W . 4) to trivial wires (W & 4). We observe a smooth
crossover due to finite-time broadening from the abbreviated period of
quench dynamics and the corresponding finite number of sites. How-
ever, on an infinitely long chain, we would expect to observe a sharp
phase transition in the infinite-time limit of 〈C̄〉 measurement, yielding
quantized values of the invariant for all disorders, and half-integer values
at the critical phase boundary, as shown in Fig. III.3 for a clean system.

57



0 1 2 3 4 5 6
W

0.0

0.2

0.4

0.6

0.8

1.0
W

in
di

ng
20
50
100
200
400

Figure III.10: Emergence of the TAI plateau. Winding number ν of the
AIII model computed as a function of the disorder strength W ≡ W2,
with W1 = 0 and m = 1.12, averaged over 1000 disorder realizations. The
various lines display results for systems with an increasing number of
unit cells N , and the gray dashed line indicates the expected thermody-
namic limit, given by the divergence of the localization length, as found
in Ref. [124].

The AIII model: observation of the topological Anderson insulator phase

The mechanism for the formation of a TAI phase was first elaborated in
Ref. [129] for 2D systems. In that work, the disorder is taken into ac-
count perturbatively using the self-consistent Born approximation, and
it was shown to effectively renormalize the parameters in the Hamilto-
nian, including the parameter that tunes between the topological and
trivial phases. In a system described by the Hamiltonian (III.22), the
TAI phase arises because, as disorder is added to the trivial phase tuned
near the clean critical point that is m = 1, m is renormalized through
a value smaller that one which is into the topological phase. This type
of reasoning was adapted and extended to describe the TAI phase in 1D
systems including both the BDI- and AIII-class wires that we consider
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Figure III.11: Observation of the topological Anderson insulator phase.
a. Topological phase diagram of the AIII wire with N = 200 unit cells.
The diagram shows the computed winding number (color scale at right)
as a function of disorder strength W and tunneling ratio m with tunnel-
ing disorder strengths W ≡ W2 (W1 = 0). The striped black and white
line at m = 1.12 indicates the region explored experimentally. The solid
red curve indicates the critical boundary. b. 〈C̄〉 as a function of W for
m = 1.12. The data refer to a system ofN = 20 unit cells. The disorder av-
erage is taken over 50 independent disorder configurations and the time
average over the range 1.5-4.5 ~/twith steps of 0.5 ~/t. The solid gold line
refers to a numerical simulation for 200 disorder configurations, but with
the same time sampling as the data. The dashed gold line is based on the
same simulation as the solid gold line, but sampled to much longer times
(τ = 1,000 ~/t) in a 250 unit cell system. The dotted grey curve shows the
topological index in the thermodynamic limit, which takes a value of 0.5
at the critical points, as indicated by the horizontal dashed line. C(τ) as a
function of time for for W = 2.5 and for W = 6 for all 50 disorder realiza-
tions. All error bars in b denote one standard error of the mean.

here [130, 121, 124]. Numerical simulations show that, in the thermo-
dynamic limit, a random tunneling disorder induces the TAI phase over
a broad range of weak to moderate W values, see Fig. III.10. It can also
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been shown that a very large disorder generates again a trivial Anderson
insulator phase, see Fig. III.11(a). Let us now consider an Hamiltonian
belonging to the AIII class (Eq. (III.22) with S = σy), with m = 1.12 . In
the clean limit, the system is in a trivial phase. Since the system is so
near the critical point, the band gap in the clean limit is much smaller
than in the previous experimental setup. Here differently from the previ-
ous case, the disorder is added only to the intra-cell hopping terms, i.e.
W1 = 0 and W ≡W2. From Refs. [129, 130, 121], we expect that, for weak
disorder of this form, the intra-cell hopping m should be renormalized
toward the topological phase resulting in a TAI. Figure III.11(b) shows
the dependence of 〈C̄〉 on the disorder strength. The measured 〈C̄〉 values
are obtained, as in the previous case, through the non-equilibrium bulk
dynamics of the atoms following a quench of the tunneling. Due to the
different experimental conditions, the explored time-range is narrower
than in the previous case, τ goes from 1.5 to 4.5~/t with steps of 0.5~/t.
However, the experiment has been repeated within more disorder con-
figurations, 50, to allow for stable measures of 〈C̄〉. For weak disorder, 〈C̄〉
rises and reaches a pronounced maximum at W ≈ 2.5. This is consis-
tent with the expected change in the renormalizedm parameter for weak
disorder. In fact, according to Refs. [129, 130, 121], the lowest-order cor-
rection to m has a negative sign. 〈C̄〉 then decays for very strong applied
disorder. Therefore, the initial increase of 〈C̄〉 followed by its decrease
is indicative of two phase transitions, from trivial wires to the TAI phase
and from the TAI phase to a trivial Anderson insulator.
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IV

Topological quantum walks

Quantum walks (QWs) are periodically driven (Floquet) protocols imple-
mentable within a large variety of atomic and photonic platforms [131].
QWs have been firstly studied for their importance in matter of quan-
tum computation [132] and searching algorithms [133, 134]. More re-
cently, in 2010, they have been discovered to be a valuable resource in the
field of the topological condensed matter physics as they can be regarded
as stroboscopic simulators of all the single-particle topological lattice
Hamiltonians in 1 and 2D [67]. These systems exhibit extra topologically
protected edge states with respect to their static counterparts [46, 76].
The existence of these edge states is not predicted by the topological in-
variant associated to the system by the standard topological classifica-
tion [3]. Hence, a new classification dedicated to Floquet topological sys-
tems has been built [67, 42, 75, 43, 44, 45]. In the last years, many topolog-
ical protocols of QW have been implemented in different architectures
based on both cold atoms and photons in 1D [68, 69, 70, 66, 71, 72, 73, 74].

In Sec. IV.1, we focus on topological protocols of QW in 1D. In Sub-
Sec. IV.1.1, we review the classification of 1D Floquet topological insula-
tors in terms of nonspatial discrete symmetries (PHS, TRS, CS) provided
in Refs. [67, 42, 75, 43, 45]. Then, in SubSec. IV.1.2, we introduce briefly
the general concept of discrete time quantum walk (DTQW) in 1D, and
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in SubSecs. IV.1.3 and IV.1.4 we describe in details two concrete proto-
cols of chiral symmetric DTQW in 1D. The protocol described in Sub-
Sec. IV.1.3 has been experimentally implemented within a photonic ar-
chitecture with twisted light beam [69, 70, 71]. This setup is discussed in
details in the next chapter in Sec. V.1. The protocol described in IV.1.4 has
been proposed in Ref. [83].

In Sec.IV.2, we focus on topological protocols of DTQW in 2D. In Sub-
Sec. IV.2.1, we review the topological classification of these systems pro-
vided by Rudner et al. in Ref. [44]. In SubSec. IV.2.2, we apply this anal-
ysis to a concrete protocol of topological 2D DTQW which we have im-
plemented with a novel photonic platform where the walker’s position
is mapped onto the transverse light wavevector [80]. The description of
this setup is discussed in details in the next chapter in Sec. V.2

IV.1 Topological discrete time quantum walks in 1D

IV.1.1 Topological classification of 1D Floquet Hamiltonians

Let us consider non-interacting particles evolving on a 1D lattice under
a time-dependent Hamiltonian H(t) such that H(t + T ) = H(t), where
T is the period of the driving cycle. The evolution operator of the system
over a full period reads:

U(T ) = Te−i
∫ T
0 H(t)dt, (IV.1)

where T is the time-ordering operator. U(T ) is called Floquet opera-
tor [42]. If |φ〉 is an eigenstate of U(0), then U(T )|φ〉 = eiεT |φ〉, and ε is
called quasi-energy. In the long time limit, the system is a stroboscopic
simulator of an effective (Floquet) Hamiltonian:

Heff =
i logU(T )

T
. (IV.2)

It is important to notice two important differences between Heff and a
static Hamiltonian: i) the Floquet operator and thus Heff depends on
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the choice of the starting time of the period, changing this starting time
means applying a unitary operation on U(T ) and then changing Heff , in
this case, the eigenvalues remain unchanged but the eigenvectors can be
different; ii) the eigenvalues of the effective Hamiltonian, called quasi-
energies ε, are defined up to integer multiples of 2π/T . These differences
are crucial in the topological analysis of Floquet systems.

We could be tempted to classify periodically-driven systems possess-
ing a gapped Floquet Hamiltonian, by using the standard topological
classification of static topological insulators and superconductos [3]. Namely,
by looking for the discrete nonspatial symmetries (TRS, PHS and CS) of
their effective Hamiltonians. However two issues appear immediately:
i) the symmetries of the effective Hamiltonian depend on the arbitrary
choice of the starting time of the driving period or time-frame; ii) if the ef-
fective energy spectrum is gapped around ε = 0, it is also gapped around
ε = ±π/T . As a consequence of this, when a 1D periodically-driven sys-
tem lies in a topological phase and edges are inserted in the system, the
topologically protected edge modes can have quasi-energies ε = 0 or
ε = π/T [46, 76]. Hence, in order to have a bulk-edge correspondence for
periodically driven systems, one needs two topological indices counting
separately the number of edge-modes of the two species.

For these reasons, a new topological classification for 1D periodically
driven systems has been defined in the last decade [42, 67, 75, 43]. Within
this classification, each topological class in 1D, is associated to a couple
of topological invariants recovering the bulk-edge correspondence sepa-
rately for the 0 and the π/T energy modes.

Particle-hole symmetry

Let us start the analysis of the effective Hamiltonian’s symmetries with
the partice-hole symmetry. An effective Hamiltonian is particle-hole sym-
metric if it satisfies Eq. (II.5) withP = PK andP2 = ±1, where P is a uni-
tary operator and K is the complex conjugation. The associated Floquet
operator will satisfy:

PU(T )∗P † = U(T ). (IV.3)
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If this condition is satisfied within a choice of the time-frame, it is satis-
fied within all the others by the same particle-hole operator [42, 135]. In
particular, if there exists a basis where all the elements of U(T ) are real
numbers, then P = k [42]. The quasi-energy spectrum of a PHS effective
Hamiltonian is gapped around ε = 0 and ε = ±π/T . For 1D transla-
tional invariant PHS systems, the Z2 invariant associated to the D class
in the standard topological classification [3] is replaced by a couple of Z
invariants, (Q0, Qπ). They are respectively the total number of times the
curves described by the eigenvalues of the Bloch unitary evolution op-
erators Uk=0(t) and Uk=π(t) in the complex plane for t going from 0 to
T, cross the value 1. Q0 and Qπ count correctly the number of topologi-
cally protected modes with energy 0 and π/T arising at the edges of a cut
periodically-driven PHS chain [46].

Chiral symmetry

For the chiral symmetry the analysis is more complex. In Refs. [75, 43],
the authors provide an operative definition of chiral symmetry in a 1D
Floquet system. Such a system is chiral-symmetric if there exists a time
t1 ∈]0, T [ such thatU1(T ) = ΓF †ΓF with Γ hermitian and unitary and the
operator F defined as

F = Te−i
∫ t1
0 H(t)dt. (IV.4)

These conditions imply that the effective Hamiltonians associated with
U1(T ) and withU2(T ) = FΓF †Γ anticommute with Γ. The couple of Z in-
variants which provide the bulk-edge correspondence for 1D chiral Flo-
quet systems, (W0,Wπ) is defined as:

W0 =
W1 +W2

2
(IV.5)

Wπ =
W1 −W2

2
,

whereW1 andW2 are the winding numbers of the effective Hamiltonians
H1 = i logU1(T )

T and H2 = i logU2(T )
T which can be computed equivalently
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from Eqs. (II.7), (II.10), (II.11). In Ref. [43], the authors derive another
equivalent definition ofW0 andWπ in terms of the blocks of the matrix F
written in quasi-momentum space in the canonical basis (the eigenbasis
of Γ). If

F =

(
a(k) b(k)
c(k) d(k)

)
, (IV.6)

then

W0 =

∮
dk

2πi
∂k log[Det(b(k))] (IV.7)

Wπ =

∮
dk

2πi
∂k log[Det(d(k))].

Time reversal symmetry

Finally, as mentioned in SubSec. II.1.1, if an Hamiltonian possesses two
of the three discrete symmetries entering the topological classification,
it possesses also the third one which can be obtained as product of the
others. Therefore, if an effective Hamiltonian is particle-hole and chiral-
symmetric, it is also time-reversal-symmetric. Namely, it satisfies Eq. II.4
with T = ΓP ≡ τK and T 2 = ±1, where τ is a unitary operator and K is
the complex conjugation. The associated Floquet operator will satisfy:

T U(T )∗T † = U(T )†. (IV.8)

As proven in Ref. [42], to satisfy this equivalence, a sufficient, but not
necessary condition, is the existence of a time t0 such that:

T H(t+ t0)∗T † = H(−t+ t0). (IV.9)

IV.1.2 1D discrete time quantum walks

A 1D discrete time quantum walk is a unitary protocol acting on a single
quantum observable, the walker, and on its internal degree of freedom,
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the coin [56]; the walker moves on an infinite 1D lattice. A unitary opera-
tor U acts N times on the system |walker〉 ⊗ |coin〉. Hence, U is regarded
as a Floquet operatorU(T ) with T = 1 andN as the total number of steps
of walk. The total QW is given by the operator:

U ≡ UN = e−iNHeff , (IV.10)

where Heff is the effective Hamiltonian of the QW.
In the standard DTQW [56], the Hilbert space of the coin has dimen-

sion 2 and the unitary evolution operator is of the kind U = RT , whereR
is a rotation acting in the coin space, and T is a coin-dependent transla-
tion of the walker position. A standard choice isT =

∑
x [|x+ 1〉〈x| ⊗ |+〉〈+|+

|x− 1〉〈x| ⊗ |−〉〈−|], where {|+〉, |−〉} is a basis of the coin space.
Let us consider the standard DTQW and let us set the lattice spacing

equal to one. For every value of k in the Brillouin zone [−π, π], the Bloch
effective Hamiltonian reads:

Heff (k) = ε(k)n(k) · σ, (IV.11)

with σ = {σx, σy, σz} and n(k) = {nx(k), ny(k), nz(k)} being a unitary
vector.

A state fully localized on the m-th cell of the lattice reads:

|Ψ〉 =

∮
dk√
2π
eikm|k〉 ⊗ |s〉 ≡

∮
dk|Ψ〉, (IV.12)

where
∮

dk is the integral over the quasi-momentum Brillouin zone, |Ψ〉 ≡
eikm√

2π
|k〉 ⊗ |s〉 and |s〉 = c+|+〉 + c−|−〉, with c± complex coefficients such

that |c+|2 + |c−|2 = 1. For a walker starting in such a state, after N steps
in the DTQW, we have:

〈m̂〉Ψ
N

=

∮
dk

2π
〈Ψ|eiNHeff (i∂k)e

−iNHeff |Ψ〉 =

∮
dk

2π

dε

dk
〈s|n · σ|s〉+O(1/N),

(IV.13)
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where, for simplicity, we chose as starting site the 0-th cell and we omit-
ted the explicit dependence on k. Equation (IV.13) clearly shows that, de-
spite from the fact that the quantum walk was firstly proposed in Ref. [56]
as a quantum analogue of the classical random walk, the two protocols
are dramatically different. Indeed, the propagation of a particle perform-
ing a random walk is diffusive, namely 〈x2〉 ∝ N , withN number of steps,
while the propagation of particle performing a quantum walk is ballis-
tic, namely 〈x2〉 ∝ N2. Interestingly, by adding decoherence to the 1D
DTQW, one can progressively retrieve the classical random walk’s diffu-
sive distribution, and by adding a strong static disorder one can induce
Anderson localization [60].

Discrete time 1D quantum walks have been realized in many exper-
imental platforms with both trapped ultra-cold atoms and photons, see
Refs. [60, 59, 131] and references therein.

IV.1.3 Chiral symmetric discrete time quantum walks

The first topological protocol of 1D DTQW has been proposed by Kita-
gawa et al. in 2010 in Ref. [67] and implemented experimentally two years
later, within a photonic architecture [76]. It was called split-step QW as
the standard translation operator T was split in two parts (two transla-
tions in opposite directions) by a rotation operator. The split-step QW
possesses PHS and CS in the sense of the topological classification of Flo-
quet systems reviewed in SubSec. IV.1.1. Thus, its bulk-edge correspon-
dence is provided by the couple of topological indices (W0,Wπ). How-
ever, when this protocol was experimentally implemented for the first
time in Ref. [76], the topological classification of the Floquet system was
still incomplete; then, the observation of a couple of edge states, whose
existence was not predicted by the static system’s winding number, is re-
ported as a novel phenomenon to be further studied.

Here, we present a protocol of chiral DTQW, belonging to the same
topological class of the split-step QW. We implemented this protocol for
the first time in Ref. [70], within a photonic architecture with twisted light
beams which we will describe in details in the next chapter in Sec. V.1. In
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this first work, we detected a topological phase transition by looking at
the even moments of the probability distribution of the walker final po-
sitions. One year later, in Ref. [71], we provided a complete experimental
characterization of this protocol by measuring W0 and Wπ through the
walker mean chiral displacement.

The building blocks of the protocol are:

W =
∑
m

c†m(σ0 − iσx)cm, (IV.14)

Q =
∑
m

cos
δ

2
c†mcm + i sin

δ

2

(
c†m+1

(σx − iσy)
2

cm + h.c.

)
,

with c†m = (c†m,+, c
†
m,−). The corresponding Bloch operators for each

value of k in the B.Z. read:

W = e−i
π
4
σx =

1√
2

(
1 −i
−i 1

)
(IV.15)

Q = ei
δ
2

(cos(k)σx+sin(k)σy) =

(
cos(δ/2) ie−ik sin(δ/2)

ieik sin(δ/2) cos(δ/2)

)
.

As we will discuss in further details in the next chapter, in the photonic
implementation of this protocol, the operators W and Q correspond to
two unitary optical devices acting on the light polarization and OAM. The
default Floquet operator is U ≡ U(T ) = QW . The effective Hamiltonian
is Heff = i logU , (T = 1). In quasi-momentum space Heff is given by
Heff = ε(k)n(k) · σ with

ε(k) = − cos−1

(
cos(δ/2) + sin(δ/2) cos(k)√

2

)
. (IV.16)

and

n(k) =
1

c

 − cos(δ/2) + sin(δ/2) cos(k)
sin(δ/2) sin(k)
− sin(δ/2) sin(k)

 (IV.17)

68



where c =
√

2− 2 cos2(E) =
√

2| sin(E)|. The spectrum has vanishing
gaps (or band-touchings) at E = 0 for δ = {π2 , 7π

2 }, and at E = ±π for
δ = {3π

2 ,
5π
2 }.

The system is particle-hole symmetric; the particle-hole operator in
quasi-momentum space reads P = Kσz. It is straightforward to see
that P anticommutes with Heff (k) for every k. As mentioned in Sub-
Sec. IV.1.1, P will anticommute also with the effective Hamiltonians cor-
responding to the other possible choices of the QW time-frame [42, 135].

For the chiral symmetry, we should find an operator F which fulfils
Eq. (IV.4). We find F =

√
Q
√
W , with Γ = σz. In perfect agreement with

Refs. [75, 43], we find that U1 =
√
WQ
√
W and U2 =

√
QW
√
Q have ef-

fective Hamiltonians which anticommutes with Γ. We can compute the
invariants (W0,Wπ) using Eq. (IV.5) starting from the winding numbers
W1 andW2 of the effective Hamiltonians H1 = i logU1 and H2 = i logU2.
These invariants provide the correct bulk-edge correspondence for the
system once this is cut.

The fact that (W0,Wπ) can be obtained from the winding numbers
W1 andW2 makes possible to measure them using the mean chiral dis-
placements of the walker, as we proved in SubSec. III.1.1. In the long time
limit, namely for the number of QW steps N → ∞, the mean chiral dis-
placement C1(N) (C2(N)) of the walker starting localized in the 0-th cell
and evolving under U1 (U2) will giveW1 (W2), see Eq. (III.12). Hence, we
obtain the complete topological characterization of the system in terms
of the long time limit of the observables C0(t) ≡ (C1(t) + C2(t))/2 and
Cπ(t) ≡ (C1(t) − C2(t))/2. In the next chapter, we show the results of the
measurement of C0 and Cπ for our QW [71].

IV.1.4 Periodically driven SSH4 model

Here we consider a periodically-driven version of the SSH4 model pre-
sented in SubSec. III.1.2, where even and odd tunnelings are turned on
and off in a periodic sequence. More specifically, a single period of the
evolution is generated by the one-step operatorU given by a composition
of two unitary operators obtained extending W and Q to a coin-space of
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(a) (b)

Figure IV.1: The driven SSH4 model. a. Scheme of the unit step of the
driven SSH4 model, or quantum-walk with four dimensional coin. The
figure is taken from Ref. [83]. The four sites of each unit cell correspond
to the coin states |A1〉, |A2〉 (red spots), and |B1〉, |B2〉(blue spots). The dy-
namics is obtained by the repeated application of two unitary operators:
W is a rotation acting on the odd sites of the lattice (which are all intra-
cell), while Q acts on the even sites, thereby coupling different cells. b.
Scheme of the quantum-walk protocol. In a periodically driven system,
the choice of the initial instant of the time period, i.e. the time-frame,
is arbitrary. The single-step unitary operators U1 and U2 are explicitly
chiral symmetric in the sense of the topological classification of Floquet
systems [75, 43].

dimension 4. The extended operator W reads:

W = e−i
π
4
S0x (IV.18)

where S0x = σ0 ⊗ σx = I⊗ σx. As shown in Fig. IV.1, the operator W acts
within each unit cell of the effective lattice (see Fig. IV.1(a)). On the other
hand, the extended operatorQ acts both within a given cell, and between
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Figure IV.2: Mean chiral displacement of the driven SSH4 model. Tem-
poral average of the MCD, obtained performing a sliding average be-
tween the 30th and the 50th step of the numerically simulated walker’s
evolution, as a function of the parameters δ1 and δ2 parametrizing the
action of the Q operators, for the time-frames U1 (a) and U2 (b). The fig-
ure is readapted from Ref. [83]

two consecutive cells. It reads:

Q · (|A1〉 ⊗ |m〉) = cos
δ2

2
|A1〉 ⊗ |m〉 − i sin

δ2

2
|B2〉 ⊗ |m− 1〉 (IV.19)

Q · (|B1〉 ⊗ |m〉) =

(
cos

δ1

2
|B1〉 − i sin

δ1

2
|A2〉

)
⊗ |m〉

Q · (|A2〉 ⊗ |m〉) =

(
cos

δ1

2
|A2〉 − i sin

δ1

2
|B1〉

)
⊗ |m〉

Q · (|B2〉 ⊗ |m〉) = cos
δ2

2
|B2〉 ⊗ |m〉 − i sin

δ2

2
|A1〉 ⊗ |m+ 1〉.

In order to characterize the topology of this driven model we have still
to consider the two explicitly chiral inversion-symmetric time-frames de-
fined by the evolution operators U1 =

√
WQ
√
W and U2 =

√
QW
√
Q,

where now W and Q are given by Eq. (IV.18) and (IV.19), see Fig. IV.1(b).
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Figure IV.3(a) depicts the temporal average of C1(t) and C2(t) obtained
performing a sliding average between the 30th and the 50th step of a nu-
merical simulation of the walker’s evolution. To illustrate the bulk-boundary
correspondence for this model, in Fig. IV.3(b), we show the energy spec-
trum and the degree of localization of eigenstates in a chain with open
boundary conditions. Comparing the two panels, it may be seen that the
invariantsC0 andCπ converge, respectively, to the number of edge states
with energy equal to 0 and to π. Finally, figure IV.3(b) also shows the pres-
ence of edge states with energy π/2. These states are not protected by the
chiral symmetry, and therefore not robust against (chiral-preserving) dis-
order. In order to illustrate this fact, we add a spatial disorder in the oper-
ator W : the hoppings of the Hamiltonian of W are multiplied by a factor
(1 + ε), where ε is a random number in the range [−∆/2,∆/2]. The right
side of the energy spectrum (after the dashed line) in Fig. IV.3(b) shows
clearly that, when disorder is applied, the unprotected states change of
energy, whereas the 0 and the π−energy states remain unaffected.

For the chiral symmetric DTQW with coin having dimension two, we
verified that the observables C0 and Cπ are robust topological marker by
observing that, in presence of chiral-preserving dynamical disorder of
amplitude small compared to the gap, the ensemble average of the mean
chiral displacement smoothly converges to the value obtained for a clean
system. At a qualitative level, systems with internal dimension D > 2 in
presence of disorder behave analogously to systems withD = 2.

The driven SSH4 may be implemented in a photonic setting using a
lattice of evanescently coupled optical wave-guides. In these devices,
the different hopping amplitudes correspond to different distances be-
tween the wave-guides [86, 136, 137, 61]. The periodic driving could be
achieved by periodical modulation of the separation between the wave-
guides along the propagation direction [136, 61].
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Figure IV.3: Bulk-edge correspondence for the driven SSH4. a. Time
average of the mean chiral displacements C0(t) ≡ C1(t)+C2(t)

2 (blue line)

and Cπ(t) ≡ C1(t)−C2(t)
2 (yellow line). The points are obtained perform-

ing a sliding average between the 30th and the 50th step of the numeri-
cally simulated walker’s evolution. b. Quasi-energy spectrum of the ef-
fective QW Hamiltonian within open boundary conditions for a chain of
2N + 1 = 21 cells varying δ1 at fixed δ2 = π. The color coding of the
spectrum indicates the degree of localization log10(1− |〈m̂〉)|/N) of each
eigenstate on the two edges m = −N , m = N ; light (dark) colors indicate
bulk (edge) states. For δ1 > 2π, we have added weak chiral-preserving
disorder (see text for details) with ∆ = 0.6, showing explicitly that the
edge states withE = ±π/2 are localized, but not topologically protected.
Comparing the left and right image, it is easy to see that C0 and Cπ pre-
dict respectively the number of edge states with 0- and π−energies. The
figure is readapted from Ref. [83].
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IV.2 Topological discrete time quantum walks in 2D

IV.2.1 Topological classification of 2D Floquet Hamiltonians

Let us consider a non-interacting periodically driven system on a 2D lat-
tice whose effective Hamiltonian (IV.2) belongs to the class of the Chern
insulators according to the classification of static topological insulators.
The topological invariant associated to this class is the Chern number de-
fined in Eq. II.26. As discussed in SubSec. II.2.4, the total Chern number
below an energy gap counts the number of edge states with the same chi-
rality (living on the same edge) crossing the gap during one cycle of the
adiabatic pumping. This is equivalent to say that the Chern number of
each band equals the difference between the number of edge modes with
the same chirality exiting and entering the band during the pumping cy-
cle. The quasi-energy spectrum of a Floquet Hamiltonian is periodic,
therefore a mode could for example exit from the upper band from above
and enter the lower band from below. In Ref. [44], it is shown that, for this
reason, in a Floquet system, one can have chiral edge modes despite the
fact that all the Chern numbers are null. Hence, the authors find a new
invariant,W [Uε], which counts the number of edge states at quasi energy
ε living on the same edge. Then the total Chern number of all the bands
between two energy values ε and ε′ reads Vε,ε′ = W [Uε]−W [Uε′ ]. In order
to defineW [Uε] Rudner et al. start from the case of a unitary evolution op-
erator U whose Floquet operator U(T ) is the identity. The quasi-energy
spectrum of the Floquet Hamiltonian is thus made of a single value ε = 0.
Since they are considering a translation invariant system of N cells with
periodic boundary conditions, they can write the Bloch unitary operator
U(kx, ky, t) for each value of (kx, ky, t) in [−π, π]×[−π, π]×[0, 1] (the lattice
spacings and the time period are set to 1). Hence, U defines a map from
a 3D torus to the space of the unitary matrices of dimensions N × N .
The index theorem [138], states that U can be associated to an integer
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winding number:

W [U ] =
1

8π2

∫ 1

0

∫ π

−π

∫ π

−π
dkxdkydtTr

(
U−1∂tU

[
U−1∂kxU,U

−1∂kyU
])
,

(IV.20)
Rudner et al. demonstrate analytically that, in this trivial case, W [U ]
equals the number of edge states [44]. Then they consider a generic
unitary evolution operator U , with U(T ) 6= I and with a gapped quasi-
energy spectrum of the Floquet Hamiltonian. In order to obtain the num-
ber of edge states with quasi-energy equal to a certain value ε inside the
gap (nedge(ε)) they continuously deform U into an operator Uε, such that
Uε(T ) = I. Thennedge(ε) = W [Uε] whereW [Uε] is computed using Eq. IV.20.

The interpolation betweenU andUε is achieved by a family of unitary
Us parametrized by s ∈ [0, 1], such that Us=0(t) = U(t) and Us=1(t) =
Uε(t). The Floquet operator Us(T ) for every s has to keep a gapped quasi-
energy spectrum whose centre moves from ε, for s = 0, to π, for s = 1.
Rudner et al. provide also one simple way, among the many possible, to
associate an operator Uε to U .

Uε(t,k) =

{
U(2t,k) = e−2i

∫ t
0 H(2τ,k)dτ 0 ≤ t ≤ T/2

Vε(t,k) = e−iH
ε
eff (T−2t)U(T,k) T/2 ≤ t ≤ T,

(IV.21)

with
Ĥε
eff = i log(Ûe−iε)− ε. (IV.22)

Then, the method proposed by Rudner et al. consists in shrinking the
evolution operatorU(t) over half of its original period and using the other
half to connect it to the identity through a trivial return map Vε. They
apply this method to a concrete 2D DTQW protocol and they compute
W [Uε=0] and W [Uε=π]. They show that these invariants count correctly
the edge states arising in the quasi-energy spectrum of the QW, when
edges are introduced in one of the two directions.
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IV.2.2 Full topological characterization of a protocol of 2D quan-
tum walk

Here we apply the method presented by Rudner et al. in Ref. [44] to the
2D QW protocol that we proposed and experimentally implemented with
a photonic platform [80]. In this setup the walker’s coordinates on the 2D
lattice are mapped onto the transverse components of the light wavevec-
tor, and the unitary operators which consitute the building blocks of the
protocol are implemented with polarization dependent diffraction grat-
ings. Further details on the experimental implementation are discussed
in Sec. V.2 of the next chapter. This protocol belongs to the same topo-
logical class of the ones presented in Ref. [44] and in Ref. [42].

The building blocks of the protocol are the same operators W and Q
which constitute the 1D DTQW (Eqs. (IV.14)). However, now, the unitary
evolution operator of one step contains two operators,Qx andQy, which
shift the walker’s position in two perpendicular directions x and y, and
the phase in the W operator has opposite sign. In the momentum space
they read:

W = ei
π
4
σx =

1√
2

(
1 i
i 1

)
(IV.23)

Qx(kx) = ei
δ
2

(cos(kx)σx+sin(kx)σy) =

(
cos(δ/2) ie−ikx sin(δ/2)

ieikx sin(δ/2) cos(δ/2)

)
Qy(ky) = ei

δ
2

(cos(ky)σx+sin(ky)σy) =

(
cos(δ/2) ie−iky sin(δ/2)

ieiky sin(δ/2) cos(δ/2)

)
The Floquet operator of the QW reads:

U ≡ U(T ) = QyQxW, (IV.24)

with T = 1. The quasi-energy spectrum of the associated Floquet Hamil-
tonian is gapped around ε = 0 and ε = ±π. We consider the QW step
T divided in three parts of the same duration (1/3) and we consider the
operators W , Qx and Qy in Eq. (IV.23) as the Floquet operators of three
time-dependent operators W (t), Qx(t) and Qy(t), with W ≡ W (1/3),

76



Qx ≡ Qx(2/3) and Qy ≡ Qy(1). The unitary evolution operator U(t,k),
for each k = (kx, ky) in the Brillouin torus, reads:

W (t) = ei
3π
4
tσx 0 ≤ t ≤ 1/3

Q(t, kx)W = ei
3δ
2

(t−1/3)[cos (kx)σx+sin (kx)σy ]W 1/3 ≤ t ≤ 2/3

Q(t, ky)Q(kx)W = ei
3δ
2

(t−2/3)[cos (ky)σx+sin (ky)σy ]Q(kx)W 2/3 ≤ t ≤ 1

(IV.25)

Now we build the operatorUε(t) associated toU(t) using the method pro-
posed by Rudner, Eq. (IV.21), and we compute the windings of Uε=0 and
Uε=π using Eq. (IV.20), as

W [U0(π)] = W [U ]+ (IV.26)∫ 1

1/2
d
dt

8π2

∫ π

−π

∫ π

−π
dkxdkyTr

(
V −1

0(π)∂tV0(π)

[
V −1

0(π)∂kxV0(π), V
−1

0(π)∂kyV0(π)

])
In order to compute the winding of V0 and Vπ over the second half of

the period [1/2, 1], we use the relation derived in the Appendix of Ref. [44]:

1

8π2
Tr
(
A(t,k)−1∂tA(t,k) ·

[
A(t,k)−1∂kxA(t,k), A(t,k)−1∂kyA(t,k)

])
(IV.27)

= − 1

2π2
∂tε(t,k) sin2 (ε(k, t))n(k) ·

(
∂kxn(k)× ∂kyn(k)

)
,

with
A(t,k) = e−iε(k,t)n(k)·σ. (IV.28)

Figure IV.4(a) shows the values of W0, Wπ and V = Wπ −W0 that we
computed for our 2D DTQW changing the parameter δ in Qx and Qy si-
multaneously. Figures IV.4(b)-IV.4(d) show the quasi-energy spectrum
of the QW Floquet Hamiltonian evaluated on an infinite stripe along y
(open boundary conditions on x) changing ky, with δ corresponding to
three different topological sectors. The comparison with Fig. IV.4(a) shows
that the new invariants count correctly the number of states for each
edge crossing the quasi-energy gap during the pumping (red and dark
blue dots in Figs. IV.4(c) and IV.4(d)).
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Figure IV.4: Bulk-edge correspondence for the 2D DTQW. a. Expected
values of the lower band’s Chern number ν,Wπ ≡W [Uπ] andW0 ≡W [U0]
changing the parameter δ. b, c, d. Quasi-energy spectrum of the QW
effective Hamiltonian on an infinite strip along y (with 2N +1 = 201 sites
along x) for δ = π/8 (b), δ = π/2 (c), δ = 7π

8 (d). The color coding of the
spectrum indicates the degree of localization on the two edges x = −N
(dark blue) and x = N (red). As degree of localization of each state ψ we
take the function log10(1 − 〈x̂〉ψ)/N). The invariants W0 and Wπ predict
the correct number of edge states crossing respectively the 0 and the π
quasi-energy gaps.
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V

Topological photonic
quantum walks in one and two
dimensions

In this chapter, we present two photonic experiments in which we real-
ized and characterized two topological QWs, respectively, in 1- and 2D;
their unitary protocols have been introduced in SubSec. IV.1.3 and Sub-
Sec. IV.2.2. Section V.1 is dedicated to the experiment reported in Ref. [71]
where we realized a 1D chiral-symmetric QW and measure its topological
invariants. Section V.2, is dedicated to the 2D QW simulation experiment
reported in Ref. [80] where we realized a Floquet Chern insulator under-
going a constant electric field and we measure its Chern number.

V.1 1D quantum walk of twisted photons

In this section, we discuss the experimental implementation of the pho-
tonic quantum walk introduced in Refs. [69, 70, 71] and the bulk mea-
surement of its topological invariants through the MCD detection. In the
literature, various photonic protocols of 1D QW have been realized in dif-
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ferent architectures: the walker is typically mapped onto a degree of free-
dom of a laser field, such as the optical path of the beam [59, 57, 58, 76,
77], the time delay between optical pulses [60, 78, 79]. Our QW, whose
protocol has been discussed in Subsec. IV.1.3, exploits for the first time
two degrees of freedom of paraxial beams: polarization and orbital angu-
lar momentum (OAM). Furthermore, eventhough other methods to mea-
sure topological invariants inside the bulk of chiral symmetric systems
have been proposed [85, 87], so far, they have only been applied to static
systems (arrays of optical waveguides) [86]. These detection schemes are
also inherently different from ours, as they require the introduction of
sub-lattice dependent losses and a well-defined initial state.

In SubSec. V.1.1, we introduce the OAM and we describe the optical
device acting on it, the q-plate. In SubSec. V.1.2, we present the exper-
iment: the detection of the topological invariants W0 and Wπ through
the measurements of the walker’s MCD in two inequivalent time-frames.
This experiment is reported in Ref. [71], figures V.2-V.6 are adapted from
this paper.

V.1.1 Twisted light beams

Firstly observed in 1995 [139], the OAM has been extensively studied from
a fundamental point of view [140, 89, 141, 142, 90] and it found many ap-
plications in the fields of quantum communication and simulation [143,
144, 145, 146]. Here, we provide a definition of the OAM valid for monochro-
matic and paraxial electromagnetic waves, as it is reported in the semi-
nal paper of Allen et al. [140].

A wave is monochromatic when its electric field may be written as
E(r, t) = E(r)e−iωt, with ω being the frequency of the radiation; a wave
is paraxial when two components of its wavevector are negligible with
respect to the third one, conventionally kz, namely kz ≈ k = ω

c [52]. The
electric field of a monochromatic and paraxial wave reads

E(r, t) = A(r)ei(kz−ωt), (V.1)
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Figure V.1: Twisted light beams. LG modes with p = 0 and m =
−2,−1, 0, 1, 2. The intensity profiles show the characteristic donut shape
due to the phase singularity on the propagation axis. This image is
adapted from the Wikipedia page ”Orbital Angular Momentum of light”,
edited by L. Marrucci and E. Karimi.

with A satisfying the so-called slow-varying envelope approximation [52]:

∂2Ai

∂z2 <<
1

λ

∂Ai
∂z

<<
Ai
λ2
, (V.2)

for i = x, y while Az ≈ 0. One can define the OAM density in vacuum by
using the classical definition of this quantity in terms of linear momen-
tum density [52]:

j ≡ r× p = r× S

c2
, (V.3)

where c is the light’s velocity in vacuum and S ≡ E×B
µ0

is the Poynting
vector with µ0 being the magnetic permeability of vacuum. The Poynting
vector transports the electromagnetic power; the continuity equation for
the electromagnetic energy in vacuum, known also as Poynting theorem,
reads:

∂u

∂t
= −~∇ · ~S, (V.4)

where u = 1
2ε0E

2 + 1
2
B2

µ0
is the electromagnetic energy density with ε0 be-

ing the electric permittivity of vacuum. Replacing Eq. (V.1) in (V.3) and
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performing a time average over a period T = 2π/ω, the z-component of
the angular momentum flux, Jz, reads:

Jz = −i~
∫ ∫

dxdy[E∗⊥ · (−ir×∇)zE⊥ + (E∗⊥ × E⊥)z]∫ ∫
dxdyE∗⊥ · E⊥

, (V.5)

where
∫

is an integral over an arbitrary volume,

E⊥ = (Ex, Ey) ≈ E (V.6)

with
Ex(y) = A(z)E0

x(y) cos
(
ωt− z

c
+ φx(y)

)
. (V.7)

Thus, the transverse components are the only two non-negligible com-
ponents of the electric fields, as it follows straightforwardly from the first
Maxwell law within paraxial approximation [52].

Since, in this approximation,Ex andEy only differ in amplitude,E0
x(y),

and phase, φx(y), one can express the polarization of a paraxial beam as a
Jones vector [147], namely a complex column vector which reads

|E〉 ≡
(
Ex
Ey

)
, (V.8)

where Ex(y) = E0
x(y)e

iφx(y) and |Ex|2 + |Ey|2 = 1. The scalar product be-
tween two Jones vectors |χ〉 and |ψ〉 is defined as:

〈χ|ψ〉 ≡
∫
dxdy

(
χ∗1 χ∗2

)(ψ1

ψ2

)
. (V.9)

Hence, we can safely use the bra-ket notation. The two orthogonal linear
polarizations {|H〉, |V 〉} are conventionally chosen as the basis; in this
basis, the two orthogonal left and right circular polarizations read:

|L〉 =
|H〉+ i|V 〉√

2
; (V.10)

|R〉 =
|H〉 − i|V 〉√

2
.
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By defining the orbital angular momentum as

Lz ≡ −i(r×∇)z (V.11)

and the spin angular momentum (SAM) as

Sz ≡
(

1 0
0 −1

)
, (V.12)

then, Eq. V.5 reads:

Jz =
〈E|Lz|E〉+ 〈E|Sz|E〉

〈E|E〉 , (V.13)

where the denominator is a normalization term and can be safely set to
one by a proper choice of the wave amplitude [140]. Thus, the angular
momentum of a paraxial beam is the sum of two terms which can be
regarded as the expectation values of two operators: the SAM and the
OAM [140]; these two terms respectively read:

〈E|Sz|E〉 =

∫ ∫
dxdy(|ER|2 − |EL|2) (V.14)

〈E|Lz|E〉 = ~
∫ ∫

dρdφE∗L
∂EL
∂φ

+ E∗R
∂ER
∂φ

, (V.15)

ER(L) are the complex components of the polarization vector in the basis
{|R〉, |L〉} and ρ and φ are the polar coordinates in the transverse plane.

By putting Eq. (V.1) in the wave equation, we obtain the paraxial Helmholtz
equation [52]:

∇2
⊥A + 2ik

∂A
∂z

= 0 (V.16)

where∇2
⊥ is the transverse Laplacian ∂2

∂2x
+ ∂2

∂2y
. The solutions of Eq. (V.16)

are called paraxial beams; they have transverse dimensions much smaller
than the typical longitudinal distance over which the field changes ap-
preciably in magnitude. Laser beams are described by a class of paraxial

83



beams called Gaussian modes as the envelope A(r) is a Gaussian func-
tion. Other solutions of Eq. (V.16) are the modes of Laguerre-Gauss (LG) [140].
Laguerre-Gaussian modes in cylindrical coordinates (ρ, φ, z) read:

ALG =
A0w0

w(z)

(
ρ

w(z)

)|m|
Lp

m

(
2ρ2

w2(z)

)
e
− ρ2

w2(z) e
i[kz+ kρ2

2R(z)
+mφ−(|m|+2p+1)ζ(z)]

,

(V.17)
where A0 is a constant, w(z) and R(z) are two functions measuring re-
spectively the beam width and the radius of curvature of the wave-front,
w0 is the beam waist, ζ(z) is the Gouy phase [52] and Lmp is the gener-
alized Laguerre polynomial of indices p and m, called respectively radial
and azimuthal number. As shown in Fig. V.1, the integer |m| counts the
number of twisted wave-fronts winded up around the z axis and the sign
of m yields the chirality of the helices [140]; the azimuthal phase φ is not
defined on the optical axis where there is a singularity, namely the inten-
sity of the LG beams is zero on the propagation axis, see the bottom row
of Fig. V.1. LG modes are eigenmodes of the orbital angular momentum
Lz of eigenvalue m [140]; the mode with p = m = 0, often indicated with
TEM00, is a Gaussian beam. While the circular polarizations are eigen-
modes of the spin of eigenvalues±1.

The distinction between the SAM and the OAM of a paraxial beam
is not purely formal, but has a physical meaning: the two angular mo-
menta interact with the matter in different ways. Being absorbed by a
small particle,a circularly polarized beam produces a rotation of the par-
ticle around itself [148, 149, 150], whereas a LG beam produces a revolu-
tion of the particle around the optical axis [139, 141, 142]. The distinction
between SAM and OAM holds also at the level of single photons, namely
each photon of a circularly polarized paraxial beam carries a well defined
SAM equal to±~ and an OAM equal to ~m [89, 141].

The q-plate

In the interaction with the majority of the materials, SAM and OAM can
be regarded as independent degrees of freedom [89]. However, when a
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paraxial beam interacts with an inhomogeneous anisotropic medium, a
polarization’s flip can change the beam’s OAM [144]. This phenomenon
allows one to manipulate the OAM of a paraxial beam using a slab of
birefringent material patterned in the transverse plane, such a device is
called q-plate [91].

A birefringent material is a material presenting two different refrac-
tive indicesn1 andn2 along two different directions called principal axes [52].
Thus, it introduces a phase retardation between the two polarization com-
ponents oriented along the principal axes. The phase retardation δ intro-
duced by a birefringent plate of thickness d is given by δ = 1

λ [2π(n2−n1)d],
where λ is the wavelength of the incident radiation in vacuum. The Jones
matrix of such a medium, in the basis of its own principal axes, reads:

P =

(
1 0
0 e−iδ

)
(V.18)

If δ = π, the plate is called half-wave plate (HWP); whereas, if δ = π
2 , it is

called quarter-wave plate (QWP). These names derive from the fact that
the difference of optical path-length between the polarization compo-
nents is λ

2 in the first case, λ4 in the second one. In a generic frame, where
the x axis forms an angle θ with one of the principal axes of the plates,
the Jones matrices of the HWP (H) and the QWP (Q) read [147]:

Hθ = R−1(θ)HR(θ) =

(
cos (2θ) sin (2θ)
sin (2θ) − cos (2θ)

)
(V.19)

Qθ = R−1(θ)QR(θ) =
1√
2

(
1− i cos (2θ) −i sin (2θ)
−i sin (2θ) 1 + i cos (2θ)

)
,

with

R(θ) =

(
cos (θ) − sin (θ)
sin (θ) cos (θ)

)
. (V.20)

From these expressions, we can deduce that a HWP rotates the linear
polarizations, whereas a QWP turns a linear polarization into a circular
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polarization and vice versa. With both plates, rotated of two different
angles θ and φ, it is possible to achieve every polarization state [147]. The
Jones matricesHθ andQθ, in the circular basis {|R〉, |L〉} read:

Hθ =

(
0 ei2θ

e−i2θ 0

)
(V.21)

Qθ =
1√
2

(
1 −ie−i2θ

−iei2θ 1

)
.

In addiction to the natural birefringent materials, such as quartz or mica,
there exist some artificial ones [52]. For instance, a thin slab of liquid
crystal (LC) can exhibit a refractive index along the direction in which the
molecules’ axes are oriented, and another along the perpendicular one.
Furthermore, the phase retardation introduced by a thin slab of LC can
be tuned by changing the temperature [151], or by applying a voltage to
the slab [152].

The q-plate is a LC plate where the liquid crystal is arranged according
to an azimuthal pattern; if one sets a couple of axes x and y in the plane,
the local orientation of the LC optic axis reads:

α = α0 + q arctan (y/x) = α0 + qφ, (V.22)

where q is an integer or semi-integer number, namely the topological
charge of the q-plate. The Jones matrix of the q-plate, in the linear po-
larizations basis, reads

Q = R−1(α)

(
1 0
0 e−iδ

)
R(α) (V.23)

where δ is the phase retardation introduced by the liquid crystal andR(α)
is the rotation matrix given in Eq. (V.20). In the basis of the circular po-
larizations Q reads:

Q =

(
cos(δ/2) ie−i(2α0+2qφ) sin(δ/2)

iei(2α0+2qφ) sin(δ/2) cos(δ/2)

)
(V.24)
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A circularly polarized beam outgoing from a q-plate contains two terms:
one identical to the input, and the other having an OAM of ±2q and a
circular polarization with opposite chirality. The rate of conversion de-
pends on the LC phase retardation δ; this parameter can be tuned at will
by means of an applied voltage [152]. If we set α0 = 0 and q = 1/2,
equation (V.24) yields the unitary operator Q of the quantum walk pro-
tocol in Eq. (IV.15), with φ being the walker’s quasi-momentum k. In this
chapter, we will use the letter q instead of k to denote the walker’s quasi-
momentum in order to avoid possible confusion with the light wave-
vector.

There are other devices allowing for the manipulation of the light’s
OAM, such as the spiral phase plate and the spatial light modulator (SLM).
This latter is a LC screen whose pixels are addressed by an individually
controllable voltage, and thereby it can shape the phase profile of a light
beam according to almost every pattern. It is a very versatile tool whose
applications go beyond the manipulation of light OAM, however it is not
a scalable resource. To conclude, the q-plate offers the opportunity of
coupling light’s polarization and OAM in a scalable and unitary fash-
ion and it can generate beams with high values of OAM. For these rea-
sons, it has been employed many times in the field of quantum informa-
tion [153, 154, 155, 156, 157, 158, 159], and in the fascinating branch of
classical optics called singular optics [160, 161].

V.1.2 Implementation of the 1D DTQW and detection of the topol-
ogy

Here we present the experiment reported in Ref. [71] from which the data
and the figures shown in this subsection are readapted. The photonic
setup of this experiment has been previously reported in [69, 70].

The QW takes place on a lattice whose discrete positions |m〉 corre-
spond to values m of the OAM carried by the twisted light beam; the
two coin states are mapped onto the left and right circular polarizations.
Such a QW can be implemented in both a classical regime, i.e. using light
beams as in [71], or in a single-photon regime as in [69, 70]. The uni-
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tary evolution operatorU = QW is implemented with a couple of optical
plates: a quarter wave-plate rotated by π/2 radians with respect to the
horizontal direction implements the operator W , and a q-plate imple-
ments Q. Both the operators are given in Eq. (IV.14). The sketch of the
setup is shown in Fig. V.2.

As we already mentioned in SubSec. IV.1.3, in order to fully character-
ize the system’s topology in terms ofW0 andWπ, we should measure the
walker’s MCD in the two explicitly chiral-symmetric time-frames corre-
sponding to the unitary operators U1 =

√
WQ
√
W and U2 =

√
QW
√
Q.

However, for experimental reasons, we measured the walker’s MCD in
the time-frames corresponding to U = QW and Ũ ≡ U2 =

√
QW
√
Q.

This choice does not affect the final result since the winding number of
the default Floquet Hamiltonian H = i logU , for every value of the pa-
rameter δ, is the same as that of H1 = i logU1. We prepared a QW of
seven steps, once within the protocol U , and once within the protocol
Ũ ; we initialized the system’s state in |0〉 ⊗ |s〉, with |0〉 being the state of
zero OAM (TEM00 mode) corresponding to the center of the lattice, and
|s〉 being two different polarizations for every protocol, namely |L〉 and
(|L〉 + |R〉)/

√
2; we repeated the measurement of the MCD ten times for

every polarization in correspondence of different values of δ sampling
the range [0, 2π], and we took the measurements’ average. As expected,
in both the time-frames, the mean chiral displacement does not depend
on the initial polarization and it oscillates around the value of the wind-
ing number, see Fig. V.3(b) and V.3(d). Combining the measured MCD,
C(t) and C̃(t), we obtained the two observables C0(t) and Cπ(t) whose long
time limits give, respectively, the topological invariantsW0 andWπ, see
Fig. V.4.

Robustness of the mean chiral displacements to the dynamical noise

We tested the stability of the quantization of the MCD against disorder.
We chose the protocol U and introduced a dynamical disorder by off-
setting the optical retardation δj (1 ≤ j ≤ 7) of each q-plate by a small
random amount |εj | < ∆ around their common mean value δ̄: we set
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∆ = π/10 and π/5. This disorder is dynamic, in the sense that it affects
independently the various q-plates crossed by the beam, but crucially it
respects chiral symmetry. As shown in Fig. V.5, in single realizations, the
mean chiral displacement presents oscillations featuring higher ampli-
tude for increasing disorder, but an ensemble average over independent
realizations smoothly converges to the expected theoretical result which,
in the infinite time limit, gives the winding number. A similar robustness
of the chiral displacement shall hold for every 1D QW chiral protocol,
and more generally for every 1D chiral system, as long as the disorder
does not break chiral symmetry and its strength is smaller than the gap
size, as it is shown in Fig. V.6 for the SSH model.
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Figure V.2: Scheme of the experimental setup of the 1D chiral DTQW.
a. The output of a Ti:Sa pulsed laser source (pulse duration = 100 fs, cen-
tral wavelength = 800 nm, repetition rate = 82 MHz) is coupled into a
single mode fiber (SMF) so as to clean the laser spatial mode; this pro-
vides a single OAM state with m = 0 at the input of the QW. b. At the exit
of the fiber, the beam passes through an interferential filter (IF), whose
transmittance is peaked at 800 nm with bandwidth of 3 nm, which al-
lows to have a stable control of the light’s wavelength and a narrower
frequency distribution. Then the desired input polarization state is pre-
pared by means of a half-wave plate (HWP) and a quarter-wave plate
(QWP). c. The light beam passes through a sequence of QWPs and q-
plates, as shown in detail in the inset, which are positioned in order to
realize either protocol U or Ũ . d. At the end of the QW, a polarization
component is selected by means of a QWP and a HWP, followed by a lin-
ear polarizer (LP). e. The OAM spectrum is measured by diffraction on
a spatial light modulator (SLM), that displays standard pitchfork holo-
grams for the projection over OAM states. At the first diffraction order,
the light is coupled into a SMF that is directly connected to a power meter
recording the field intensity. f. Legend of optical components displayed
in panels a-e.
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Figure V.3: Detection of the winding numbers for the two protocols U
and Ũ a. Sketch of the setup implementing the default protocol U =
QW . A light beam performs a QW by propagating through a sequence
of quarter-wave plates (purple disks) and q-plates (turquoise disks). b.
Mean chiral displacement C after a 7-steps QW of protocol U vs. the
optical retardation δ. Each data point is an average over ten different
measurements (error bars are the associated standard errors). Purple
and red dots refer, respectively, to different input polarizations, |L〉 and
(|L〉 + |R〉)/

√
2. The lines represent the expected value of the MCD for

different values of the time t. In the long time limit the MCD converges
to the winding number of the Floquet Hamiltonian (straight dotted line).
c. Sketch of the setup implementing the protocol Ũ =

√
Q ·W · √Q. The

two q-plates at the beginning and end of the optical path (shown in bright
green) yield an optical retardation δ/2, where δ is the optical retardation
characterizing bulk q-plates (turquoise). d. Mean chiral displacement C̃
after a 7-steps QW with protocol Ũ .

91



(a)

(b)

Figure V.4: Bulk-edge correspondence for the chiral symmetric DTQW.
a. Quasi-energy spectrum of the effective QW Hamiltonian within open
boundary conditions for a chain of 2N + 1 = 21 cells. The plot is taken
from Ref. [71]. The color coding of the spectrum indicates the degree
of localization log10(1 − |〈m̂〉)|/N) of each eigenstate on the two edges
m = −N ,m = N ; light (dark) colors indicate bulk (edge) states. The spec-
trum looks similar to the one of the static SSH model (Fig. II.3) but here
localized edge states have both effective energy 0 and π. b. Time aver-
age of the measured mean chiral displacements C0(t) ≡ C1(t)+C2(t)

2 (green

line) and C0(t) ≡ C1(t)−C2(t)
2 (orange line). The points are obtained aver-

aging the results obtained from the two different initial states (the error
bars are the propagated standard error). Their long-time limits, namely
the topological indicesW0 andWπ (dotted lines), yield respectively the
number of edge states at energy 0 and π.
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Figure V.5: Robustness of the MCD to dynamical disorder. Measure-
ment of the mean chiral displacement C of protocol U for a localized in-
put state in presence of dynamical disorder. For the orange (blue) lines,
we chose a mean value of the q-plate optical retardation δ̄ = 7π/4 (δ̄ = π),
expected to yield a winding number W = 0, and we add at each time
step a small random retardation |ε| < ∆, with ∆ = π/10 (a) and π/5
(b). Thin solid lines display the measurements of single realizations, and
their average is shown as filled circles (error bars are the standard error of
the mean). In all plots, empty diamonds represent theoretical simulation
calculated for the ideal case ∆ = 0 and dotted lines the expected result
for t→∞.
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Figure V.6: Mean displacement and mean chiral displacement in the
SSH model with dynamical disorder. Evolution of a walker on an SSH
lattice with dynamical disorder in the tunnelings a and b. The disorder
is implemented by discretizing the time of the system’s evolution and by
adding to a, at each discrete time, a small random amount chosen in the
range [−∆/2,∆/2]. At t = 0, the walker is initialized on the central unit
cell of the chain, with a random polarization (different for each realiza-
tion); we set a = b/2, so that the SSH Hamiltonian (II.12) is in the topo-
logical phase phaseW = 1. Dashed (solid) lines depict the mean (mean
chiral) displacement. a. Single realization in absence of disorder. b. Sin-
gle realization with disorder amplitude ∆ = 1/5. c. Ensemble-average
over 100 realizations of disorder with ∆ = 1/5:the mean chiral displace-
ment smoothly converges toW .
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V.2 2D quantum walk in the momentum space of struc-
tured light

In this section, we describe the implementation and the topological char-
acterization of the 2D DTQW whose protocol has been introduced in
SubSec. IV.2.2. This experiment is reported in Ref. [80] and all the figures
in this section are adapted from this paper.

The experimental research on QWs has been almost entirely focused
on 1D walks, few exceptions are the studies presented in Refs. [78, 79, 94]
where a 2D walk is cleverly simulated by folding a 2D lattice in a 1D chain
and in Ref. [74], where path and OAM encoding are combined. Very re-
cently, a continuous-time walk has been realized in a 2D array of cou-
pled waveguides [92]. In our 2D QW, the coin is still encoded in the light
polarization, but the walker position is now encoded in the transverse
wavevector of the beam which is manipulated by means of polarization-
dependent diffraction gratings; to our knowledge, this mapping has never
been used in any previous platform. Here we use a 2DQW to simulate a
Floquet Chern insulator; these systems, so far, have only been realized
with cold atoms in periodically driven optical potentials [32, 33, 38, 34]
and with arrays of helical waveguides [51].

In SubSec. V.2.1, we describe the photonic platform. In SubSec. V.2.2,
we consider the dynamics of several wave-packets moving under a con-
stant force acting in one direction, and we extract the Chern number
of the QW from their transverse displacement. Various methods to de-
tect topology through the center of mass displacement have been pro-
posed [10, 31, 162, 99] and implemented in various simulators [116, 38,
35, 163, 164]; nonetheless, it is the first time that this method is used to
detect the Chern number of a 2DQW.

V.2.1 Experimental setup

The scheme reported in Ref. [80] is based on mapping the coin onto the
circular polarizations {|L〉, |R〉} (as in our first scheme based on twisted
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light), and the walker’s position onto the transverse component of the
beam wavevector. Let us stress that, since, in our encoding, the walker’s
position corresponds to the light’s wavevector, then, the walker’s quasi-
momentum corresponds to the light’s transverse position. To our knowl-
edge, this encoding has not been considered hitherto in any photonic
platform. As walker’s states, we use a family of Gaussian modes whose
transverse wavevector assumes the discrete values k⊥ = ∆k⊥m, where
m = (mx,my) are the integer walker’s coordinates on the square lattice,
and the lattice spacing ∆k⊥ is taken to be much smaller than the longi-
tudinal momentum component kz ≈ 2π/λ (λ is the light wavelength).
Then, the modes propagate along a direction slightly tilted with respect
to the z axis; their explicit expression reads:

|m〉 = A(r)ei[∆k⊥(mxx+myy)+kzz], (V.25)

where A(r) is a Gaussian envelope with waist w0.
The Floquet operator of our protocol isU = QyQxW , see SubSec. IV.2.2,

whereQx,Qy andW are given in Eq. (IV.23). The operatorsQx andQy are
implemented with LC devices similar to standard q-plates (V.24), the g-
plates. The difference is that, in the g-plate, the liquid crystal is arranged
in the plane of the slab according to a pattern which depends linearly
from the transverse coordinate (see Fig. V.7); the local orientation α of
the LC optic axis in the plane of the plate reads

α =
π

Λ
i+ α0, (V.26)

with i = x, y, α0 being the residual angle at i = 0 and Λ being the g-plate’s
spatial periodicity yielding the lattice spacing ∆k⊥ = 2π/Λ. The g-plates’
action in the basis of circular polarizations reads:

Qx|m〉 ⊗ |L〉 = cos

(
δ

2

)
|m〉 ⊗ |L〉+ i sin

(
δ

2

)
ei2α0 |mx + 1,my〉 ⊗ |R〉,

(V.27)

Qx|m〉 ⊗ |R〉 = cos

(
δ

2

)
|m〉 ⊗ |R〉+ i sin

(
δ

2

)
e−i2α0 |mx − 1,my〉 ⊗ |L〉.
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The action ofQy is obtained replacing xwith y in Eq. (V.27). In the follow-
ing, for simplicity, every time we will have to refer to one of the transverse
directions, we will use x. The birefringent optical retardation δ of the g-
plates may be controlled dynamically through an applied voltage as in
the q-plates.

For the coin rotation W this time has been used a g-plate yielding
the transformation of a standard quarter-wave-plate, namely a g-plate
with δ = π/2 and α = 0. In this way, all the QW operators are physi-
cally implemented by plates having exactly same size and shape. This
allows for mounting them in a compact system realized by a 3D printing
technique (see Fig. V.7) which reduces the distance between consecutive
steps. Making the inter-step distance as short as possible is crucial in or-
der to minimize the relative phases between the rays forming the same
mode. Indeed, each output mode |m〉 corresponds to a superposition
of waves which have followed different trajectories during the QW, ac-
cumulating relative phases which act as a decoherence process. In our
platform, these phases are negligible (≈ 10−3π) and then the physical
system realizes with a very good approximation the ideal (perfectly co-
herent) QW protocol.

The experimental setup is sketched in Fig. V.7. A collimated Gaussian
laser beam passes through the sequence of LC devices implementing the
QW. At the exit of the walk, a camera placed in the focal plane of a lens
reads out the field intensity providing the probability distribution of the
walker’s positions. Indeed, the lens performs a Fourier transform of the
Gaussian beam: in its focal plane, each mode |m〉 corresponds to a spot
centred in a point of coordinates R = 2π∆k⊥m

λf , with f being the focal
length; the diameter of the spot is given by the waist of the Fourier trans-
form of the beam, i.e. w̃0 = 2/w0. The frequency of the g-plates Λ and
the input beam waist w0 have been chosen in order to have a negligible
overlap between neighbour spots.

Figure V.8 shows the measured probability distribution after a 2DQW
of 5 steps for a walker starting localized at m = (0, 0). All the data show a
good agreement with the numerical simulations of the ideal QW dynam-
ics. A quantitative comparison between experimental P e and simulated
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P s distributions is provided by computing the SimilarityS =

(∑
m

√
P emP

s
m

)2
(
∑
m P em

∑
m P sm)

.

V.2.2 2D motion under a constant force: anomalous displace-
ment and Chern number

Simulating a constant force in a DTQW

Quantum walks with an extra constant driving, often referred to as elec-
tric quantum walks [95, 62, 96], have attracted attention for the study of
phenomena such as quantum state refocusing and probability distribu-
tions revivals [95, 97, 98, 96], Bloch oscillations and Landau-Zener tran-
sitions [62] and for the measurement of topological invariants [63, 64, 65,
66].

A constant force acting on QW along one direction (x) can be simply
simulated by a modified single-step operator [62, 65, 66]. Indeed, the op-
erator implementing the potential of the constant dimensionless force,
F xx̂, can be regarded as a translation of the walker’s quasi-momentum
component qx of a quantity F x. Since the only dependence on the quasi-
momentum qx is contained in the g-plate operator Qx:

Qx(qx) =

(
cos(δ/2) ie−iq

x
sin(δ/2)

ieiq
x

sin(δ/2) cos(δ/2)

)
, (V.28)

thereby, at the t-th step, the Bloch Floquet operator of the QW reads:

Ũ(q, t) ≡ Ũ(qx + F xt, qy) = Qy(q
y)e−it

Fx

2
σzQx(qx)eit

Fx

2
σzW. (V.29)

The force can be implemented by progressively displacing the g-plates
without using any additional optical device: the g-plate which acts at
time step t is shifted laterally along the x direction by an amount of ∆x =
−tΛFx

2π .

Adiabatic dynamics of a filled band under a constant force

Let us assume to be in adiabatic regime, namely that the variation qx(t) =
qx0 +F xt is slow with respect to the frequency associated to the gap of the
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effective energy spectrum. As derived in Refs. [165, 99], in the adiabatic
approximation, the semi-classical equations of motion of a wave-packet
initially peaked around an energy eigenstate eiq0m0 |u±(q0)〉 read:

ṁi = ∂qiε±(q)− q̇jΩ(±)
ij (q), (V.30)

q̇i = F i,

where i and j ∈ {x, y},± are the band indices, ε± is the energy disper-
sion and Ω

(±)
ji = −Ω

(±)
ij is the Berry curvature (II.25).

Hence, the components of the particle velocity read

ṁi = ∂qiε±(q) + F jΩ
(±)
ji (q), (V.31)

where ∂qiε(q) is the standard group velocity vgi of the band and F jΩji is
the anomalous velocity. It comes straightforwardly that, if the system’s
state is an homogeneous superposition of all the upper (lower) band’s
eigenstates, the overall mean displacements read:

〈∆my(t)〉± =
F xν(±)

2π
t, (V.32)

〈∆mx(t)〉± = 0,

where ν(±) is the upper (lower) band’s Chern number (Eq. (II.26)). The
total displacement along the x direction is null since the integrals of both
components of the standard group velocity over the Brillouin zone are
zero.

Wave-packet‘s dynamics with no external force

In our experiment, we use as initial states Gaussian wave-packets sharply
peaked around specific values of the quasi-momentum q0 and belong-
ing to one energy band of the Floquet Hamiltonian; we denote these
states as |Ψg(q0,±)〉. These wave-packets are physically generated as
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narrow Gaussian beams with a small waist wg (with wg � Λ), centred
around specific transverse positions r⊥ = q0Λ/(2π), and with polariza-
tions equal to the eigenstates of the Floquet Hamiltonian |u±(q0)〉. The
transverse position r⊥ is controlled by translating the whole QW setup
(mounted on a single motorized mechanical holder) with respect to the
input laser beam. In the simulated square lattice of the walker’s positions
the states |Ψg(q0,±)〉 are delocalized and cover multiple lattice sites m,
but with a well defined average position 〈m〉. Since they approximate the
system’s eigenstates, if we set the external force to zero, they propagate by
preserving their shape, with a dynamics dictated by the standard group
velocity, see Fig. V.9. Figure V.9(c) shows the linear motion of a gaussian
wave-packet under the QW evolution with no force. In Fig. V.9(d), we re-
trieve the band’s group velocity by measuring the trajectories of 22 × 22
wavepackets belonging to the upper band of the Floquet spectrum. The
overall displacement of the band, obtained by summing the data, is very
close to the value of zero expected for a band insulator, see Eqs. (V.32)
with F x = 0.

Wave-packet‘s dynamics under a constant force and Chern number de-
tection

The Chern number of the Floquet Hamiltonian of our QW is extracted
from the overall transverse displacement of the upper band under a force
F x = π/20, see Fig. V.10. The total transverse displacement is obtained
by summing up the transverse displacements measured for 11 × 11 dis-
tinct wave-packets |Ψg(q0,−)〉which provide an homogeneous sampling
of the Brillouin zone.

We choose two values of δ corresponding to two different topologi-
cal sectors: δ = π/2, where the lower band’s Chern number is ν(−) = 1,
and δ = 7π/8, where the lower band’s Chern number is ν(−) = 0, see
Fig. IV.4(a). At δ = π/2, topological edge states arise only in the gap of the
Floquet energy spectrum centered around zero. Thereby, for this value
of δ, the Chern number provides the correct bulk-edge correspondence,
see Fig. IV.4(c). However, for other values of δ, for example, δ = 7π/8, the
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Chern number’s value is zero, but topological edge states are expected
to arise simultaneously in both the gaps of the Floquet energy spectrum,
see Fig. IV.4(d). For this reason, as we mentioned in the previous chapter,
the full topological classification of 2D QWs is given in terms of the in-
variants W0 and Wπ, which count separately the topological edge states
in the two gaps of the Floquet energy spectrum.

In Figs. V.10(a) and V.10(b), experimental data (points) are compared
to the numerical simulations of the ideal QW dynamics (dashed lines)
and to the overall lower band’s displacement predicted by the semi-classical
theory within adiabatic regime, Eq. (V.32) (black continuous line). At δ =
π/2, the energy bandgap ≈ 1 is sufficiently larger than the applied force
Fx = π/20 to ensure the validity of the adiabatic approximation. How-
ever, the measured overall displacements of the lower band 〈∆my(t)〉−
(blue empty markers) and 〈∆mx(t)〉− (red empty markers) diverge from
the semi-classical predictions. To reduce this discrepancy, which we as-
cribe to residual group-velocity effects, we consider also the inverse pro-
tocol whose evolution is defined by the Floquet operatorU−1 = W−1Q−1

x Q−1
y .

Indeed, the bands of this inverse protocol have the same dispersion as
the direct one U , but feature opposite Chern numbers. In this way, if fill-
ing the same band, we expect to observe identical contributions from the
group velocity dispersion, while the anomalous displacement should be
inverted. (〈∆my(t)〉U −〈∆my(t)〉U−1)/2 and (〈∆mx(t)〉U −〈∆mx(t)〉U−1)/2
(solid markers) show a better agreement with the expected results. The
measured value of the Chern number extracted from the improoved mea-
surement at δ = π/2 is ν(−) = 1.19± 0.13, consistent with the theoretical
value of 1 (errors are given at one standard deviation) and at δ = 7π/8 is
ν(−) = 0.10± 0.15 consisted with the expected 0 value.
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Figure V.7: Platform working principle. a. Sketch of the setup. A col-
limated beam crosses a sequence of LC devices which implement either
coin rotations (W ) or spin-dependent walker discrete translations (Qx
and Qy) forming the Floquet operator U = QyQxW . Each shift of the
walker position (transverse wavevector) tilts slightly the photon propa-
gation direction. The QW is mounted in a compact holder, so that the
transverse diffraction is negligible and the entire evolution effectively
occurs in a single beam. At the QW exit, a lens performs the beam
Fourier transform. b. The light intensity pattern which appears in the
focal plane of the lens is directly imaged on a camera. It is a grid of
small Gaussian spots of radius ≈20 µm spaced of ≈ 63 µm. The nor-
malized intensities of the spots give the probability distribution of the
walker’s positions. c. Pattern of the LC optic-axis in a g-plate imple-
menting a Qx operator. The spatial period Λ fixes the lattice spacing
∆k⊥ = 2π/Λ. d. Action of a single Qx on a state |Ψ0〉 = |m, H〉, with
m = (0, 0), for different values of the optical retardation δ. For δ = 0,
the device acts as the identity operator; for δ = π/2, the final state is
|Ψout〉 = |mx,my, H〉/

√
2 + |mx−1,my, L〉/2 + |mx+ 1,my, R〉/2, i.e. three

spots are visible; for δ = π, |Ψout〉 = (|mx−1,my, L〉+|mx+1,my, R〉)/
√

2,
i.e. two spots are visible. 102
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t = 3

t = 5

measured reconstructed simulated

Figure V.8: 2D Quantum Walk with localized input state. Proba-
bility distributions of the walker’s positions for a QW with initial state
|Ψ0〉 = |m, H〉, with m = (0, 0), and optical retardation δ = π/2. From
top to bottom, we display results after 0, 3, and 5 steps. From left to
right, we show: measurements, probabilities reconstructed by integrat-
ing and normalizing the light intensities of the Gaussian spots, and nu-
merical simulations. The excellent agreement between the theoretical
and the measured distributions is quantified by the similarity, which
equals S = 98.2% ± 0.5%, 98.0% ± 0.3%, 98.0% ± 0.2% for the distribu-
tions at t = 0, 3, 5, respectively. The data points are averages over four
independent measurements. The uncertainties on the values of S are
obtained by propagating the standard errors of the mean.
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Figure V.9: Wave-packet’s dynamics without external force. a. Effective
energy ε±(q) at δ = π/2. b. Light intensity distribution measured for a
wave-packet |Ψg(q0,+)〉 with q0 = (−π/2, π) which evolves through our
QW without external force. For this value of the quasi-momentum, the
group velocity components are expected to be vgx = 0 and vgy = −0.5.
The coloured marker correspond to the center of mass. The width of the
initial beam is 150µm on the plane of the camera, corresponding to a
wave-packet covering a diameter of ≈ 5 lattice sites. c. Dynamical evo-
lution of the center of mass of |Ψg(q0,+)〉. Experimental results (points)
are compared to numerical simulations (continuous lines) and to semi-
classical predictions (dashed lines). d. Measured and simulated group
velocity component vgy, for 22 × 22 values of the quasi-momentum in
the Brillouin torus. The experimental vgy has been extracted from the
displacements of the center of mass of the corresponding wave-packets
through a linear fit.
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Figure V.10: Anomalous displacement under a constant force a, Over-
all center-of-mass average displacements of the lower band 〈∆mx〉(−)(t)
and 〈∆my〉(−)(t) under a force F x = π/20 measured for δ = π/2. Empty
markers show results from the simple protocol U , while solid symbols
show the improved results obtained by combining protocolU with its in-
verse U−1. Straight lines correspond to the theoretical results dictated
by the semi-classical equations of motion, predicting an anomalous dis-
placement proportional to the band Chern number. b, Center of mass
displacements of the lower band under a force F x = π/20 measured with
δ = 7π/8. Meaning of all symbols and lines as in panel a. Statistical un-
certainties include estimated misalignment effects.
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VI

Conclusions and outlooks

The work presented in this thesis consisted in designing protocols and
detection methods to simulate and characterize non-interacting topo-
logical insulators in 1- and 2D. We studied both static and Floquet Hamil-
tonians based on different architectures and paid a particular attention
to quantum walk protocols and photonic implementations. We focused
on detection methods of the topological invariants of the systems di-
rectly inside their bulk. Thereby, our proposals perfectly fit simulation
platforms with no physical boundaries, as for instance the ones in Refs. [70,
71, 80].

The first result presented in this thesis is the derivation of a method to
detect the topological invariant associated to 1D chiral-symmetric topo-
logical insulators, the winding number. We showed that the winding
number can be directly read out from the free dynamics of the bulk through
the measurement of the mean chiral displacement (MCD). We derived
analytically this equivalence in the quasi-momentum space of a clean
and infinite chiral system [83]. The MCD measurement does not require
any external intervention, such as forces, losses nor interferometric se-
tups, and it can be accomplished in systems both static and periodically
driven with any internal dimension [83]. This method has, then, first
been applied to a 1D chiral-symmetric QW taking place in the space of
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the light’s OAM [71]. Furthermore, we measured the MCD in two in-
equivalent timeframes in order to characterize the full topology of the
Floquet system. Indeed, QW protocols are periodically driven systems
and are described by effective Floquet Hamiltonians, the bulk-edge cor-
respondence for 1D chiral-symmetric Floquet Hamiltonians is expressed
by a couple of winding numbers instead of just one. These invariants can
be extracted by two versions of the unitary operator of the QW protocol
written in two different time-frames [75]. In the experiment, we imple-
mented these two versions, changing the optical devices at the edges of
the sequence, and we measured their MCDs.

Recently, it has been pointed out [166] that 1D discrete time QWs
can realize the so-called dynamical topological phase transition which
can arise in topological Hamiltonians undergoing a quench [167]. The
dynamical topological phases are labelled by dynamical topological in-
variants which generalize the standard Berry phases: finding and imple-
menting a method to detect such numbers might be an interesting out-
look for our research on topological QW.

Then, we have shown that the MCD measurement can also be used
in disordered systems. We derived both the MCD and the winding num-
ber in the real space of chiral systems with broken translation symmetry
and we showed that they still converge to the same quantity in the long
time limit. The MCD measurement allowed for the detection of disorder-
driven topological phase transitions in a synthetic chiral-symmetric wire [50].
The experiment, performed within an ultra-cold atoms simulator, has
been the first experimental observation of the so-called topological An-
derson insulator (TAI) which is a disorder driven topological insulator.

Finally, we contributed to the theoretical proposal of a 2D photonic
QW experiment [80], in particular, with a method to measure the Chern
number inside the bulk of the system. This QW simulates a Floquet Chern
insulator in the space of the transverse wavevector of a light beam. It is
the first inherently 2D implementation of a topological QW and the first
QW setup exploiting the transverse components of the light wavevector
as synthetic dimensions. In this experiment, we characterized the system
by measuring one band’s Chern number. We extracted it from the over-
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all transverse displacement of the band under a constant force. In order
to achieve a cleaner experimental estimate of the Chern number, we ex-
ploited the symmetry of the spectrum of the QW effective energy: we
combined the overall band’s transverse displacement measured for the
QW unitary operator and the one measured for the inverse unitary oper-
ator. While, in static Chern insulators, the bulk-edge correspondence is
provided by the system’s Chern number, in Floquet Chern insulators, it
is expressed by a couple of invariants [44]. In the specific case of our
model, characterized by two bands which are symmetric around zero
quasi-energy, edge states may appear independently within the gap cen-
tred at quasi-energy 0, or within the gap at quasi-energy ±π. The bulk-
edge correspondence of such systems is provided by a couple of topo-
logical invariantsW0 andWπ, which count, respectively, the number of
pairs of edge modes in the 0-energy and π-energy gaps. An interesting
prospect would be to propose and implement a method to measure these
invariants in the bulk of a 2D topological QW. In general, the photonic 2D
QW is a new and versatile resource, which paves the way to various inter-
esting outlooks. For instance, changing the symmetries of our unitary
protocol, it might be possible to address different topological classes [3]
in 2D.

Furthermore, it might be possible to add another degree of freedom
to the beams, like for instance the OAM, and accomplish a system with
three synthetic dimensions [168]. This could allow us to simulate 3D
topological classes. In this scenario, it would be interesting to focus on
the 3D chiral class and to detect the associated invariant through a 3D
generalization of the MCD.

The platform may also be adapted to simulate a 2D crystal with quan-
tized quadrupole momentum, a quadrupole insulator [169]. In particu-
lar, in order to implement the minimal model proposed by Benalcazar,
Bernevig and Hughes, one should find the suitable optical devices to in-
troduce controllable phases in the hopping terms of the effective Hamil-
tonian.

Finally, it is interesting to study how to simulate some kind of interac-
tion among the walkers in one or two dimensions. A way to accomplish
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this can be for instance to add some non-linear optical effect to the QW
mapped onto the wavevector space of the light beam: we could work in
a quantum regime and exploit the phase-matching conditions to couple
the wavevectors of different photons. In this frame, finding an analogue
of the MCD for interacting chiral systems would provide a way to detect
the topology of the latter. The idea might be developed following the
line of thought displayed in the works of Gurarie [170], and Gurarie and
Essin [171]. They provided an expression of the topological invariant of
Chiral systems in terms of the zeros of the Green’s functions; we may try
to find a bulk observable containing this quantity and being measurable
in simulation experiments.
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VII

Appendix

VII.1 Detection of the winding number in transla-
tionally invariant systems

VII.1.1 Mean displacement

In terms of projectors on energy eigenstates, the mean displacement of a
generic localized state |Ψ〉 reads:

〈m̂(t)〉Ψ =

∮
dk

2π

∑
j,j′=±1,...,±D/2

〈Ψ|PjU−t(i∂k)U tPj′ |Ψ〉. (VII.1)

Using ∂kU tPj′ = e−itEj′ [(−it∂kEj′)Pj′ + |ψ′j′〉〈ψj′ |+ |ψj′〉〈ψ′j′ |], we have

PjU
−t∂kU

tPj′ = eitEjPj∂kU
tPj′ (VII.2)

= δjj′ [−it(∂kEj)Pj + |ψj〉〈ψ′j |] + eit(Ej−Ej′ )Pj |ψ′j′〉〈ψj′ |.

Mean displacement inD = 2

For D = 2, we will denote with +/− the positive/negative energy eigen-
states, so that the skew polarization is simply S = i〈ψ+|ψ′−〉. Multiplying
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Eq. (VII.2) by (+i), using |ψ+〉〈ψ−|− |ψ−〉〈ψ+| = QΓ, and inserting a com-
pleteness relation P+ + P− = I after |ψj〉〈ψ′j |, one finds:

〈m̂(t)〉Ψ =

∮
dk

2π

{
t∂kE+〈Q〉Ψ + sin(2tE+)S〈iQΓ〉Ψ − S[1− cos(2tE+)]〈Γ〉Ψ

}
.

(VII.3)

Now we use the following relations:

• Q = n · σ

• iQΓ = −nyσx + nxσy

• S〈iQΓ〉 = 〈∂kn · σ〉/2

• S[1− cos(2tE+)] = 2S sin2(tE+) = sin2(tE+)(n× ∂kn).

Then Eq. (VII.3) may be written as:

〈m̂(t)〉Ψ =

∮
dk

2π

{
t∂kE+〈n · σ〉Ψ (VII.4)

+
sin(2tE+)

2
〈∂kn · σ〉Ψ − sin2(tE+)(n× ∂kn)〈Γ〉Ψ

}
.

In the particular case of a chiral localized state |Γj〉, only the last term
of Eq. (VII.3) survives. This comes from the facts that 〈Q〉Γj = 0 and
〈QΓ〉Γj = 0. On the other hand, for a localized state built as flat superpo-
sition of states in a single band |ψj〉, Eq. (VII.3) gives 0. This comes from
the facts that

∮
dk∂kE+〈Q〉ψj = sign(j)

∮
dk∂kE+ = 0, 〈QΓ〉ψj = 0 and

〈Γ〉ψj = 0.
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Mean displacement inD > 2

For D > 2, the mean displacement at time t, starting from a generic lo-
calized state |Ψ〉 reads:

〈m̂(t)〉Ψ = (VII.5)
D/2∑
j=1

∮
dk

2π

{
t∂kEj〈Qj〉Ψ + Sj sin(2tEj)〈iQjΓj〉Ψ − Sj [1− cos(2tEj)]〈Γj〉Ψ

}
+

∑
j,j′=±1,...,D/2 and |j|6=|j′|

∮
dk

2π
i〈ψj |ψ′j′〉〈Ψ|ψj〉〈ψj′ |Ψ〉eit(Ej−Ej′ ).

It can be shown that the terms arising from the second summation give
rise to a purely real number, in agreement with the fact that the result is
the expectation value of a Hermitian operator.

Noting that QjΓj = |ψj〉〈ψ−j | − |ψ−j〉〈ψj |, it is easy to see that the
states |ψj〉 are again stationary, as expected. On the other hand, for a
chiral localized state |Γj〉, Eq. (VII.5) gives:

〈m̂(t)〉Γj = −sgn(j)

∮
dk

2π
Sj [1− cos(2tEj)], (VII.6)

which proves Eq. III.9:

D/2∑
j=1

〈m̂(t)〉Γj =

D/2∑
j=1

〈Γ · m̂(t)〉Γj = −
D/2∑
j=1

∮
dk

2π
Sj [1− cos(2tEj)], (VII.7)

VII.1.2 Mean chiral displacement

In terms of projectors on energy eigenstates, the mean chiral displace-
ment of a generic localized state |Ψ〉 reads:

〈Γ̂m(t)〉Ψ =

∮
dk

2π
〈Ψ|U−tΓ(i∂k)U

t|Ψ〉. (VII.8)
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We have

Pj [U
−tΓ∂kU

t]Pj′ = (VII.9)

δjj′

[
PjΓ∂k

ei2tEj

2
+ ei2tEj |ψj〉〈ψ′−j |

]
+ eit(Ej−Ej′ )|ψj〉〈ψ−j |ψ′j′〉〈ψj′ | =

= δjj′

[
PjΓ∂k

ei2tEj

2
+ ei2tEj |ψj〉〈ψ′−j |

]
− eit(Ej−Ej′ )|ψj〉〈ψ′−j |Pj′ .

Mean chiral displacement inD = 2

ForD = 2, the mean chiral displacement at time t, starting from a generic
localized state |Ψ〉 reads:

〈Γ̂m(t)〉Ψ = (VII.10)∮
dk

2π

{
S[1− cos(2tE+)] 〈I〉Ψ +

1

2
∂k [〈Γ〉Ψ cos(2tE+) + 〈iQΓ〉Ψ sin(2tE+)]

}
=

=

∮
dk

2π
S[1− cos(2tE+)] =

∮
dk

2π
S sin2(tE+)

2
=

∮
dk

2π
sin2(tE+)(n× ∂kn).

This expression coincides with the one given in Ref. [71].

Mean chiral displacement inD > 2

Let us now define the projector on the subspace of chiral-partner eigen-
states,

Rj = Pj + P−j , so that
D/2∑
j=1

Rj = I. (VII.11)

When D > 2, we find that Eq. (VII.9) multiplied by i gives the sum of
two terms, a term A which acts in the subspace of chiral partner states
(|j| = |j′|) and a term B which acts in the subspace of the states with
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|j| 6= |j′|.

A =

D/2∑
j=1

Sj [1− cos(2tEj)]Rj + iRjΓ∂k

[
cos(2tEj)

2

]
−QjΓ∂k

[
sin(2tEj)

2

]
(VII.12)

− iQjSj sin(2tEj) =

=

D/2∑
j=1

Sj [1− cos(2tEj)]Rj + ∂k

[
iΓj

cos(2tEj)

2
−QjΓ

sin(2tEj)

2

]
,

where we have used the facts that RjΓ = Γj , ∂kΓ = 0 and iQjSj =
∂k(QjΓ)/2. And

B =
∑

j,j′=±1,...,D/2 and |j|6=|j′|

i〈ψ−j |ψ′j′〉|ψj〉〈ψj′ |eit(Ej−Ej′ ). (VII.13)

The term B has no diagonal term between chiral partners, and is purely
oscillatory, so for genericEj andEj′ it will average to zero in the long time
limit. Once integrated over the whole Brillouin zone the total derivative
contained in A vanishes, so that the final result is

〈Γ̂m(t)〉Ψ =

∮
dk

2π

〈
B +

D/2∑
j=1

Sj [1− cos(2tEj)]Rj

〉
Ψ

. (VII.14)

For the states |ψj〉 and |Γj〉, we have that 〈B〉ψj = 〈B〉Γj = 0 and
〈Rj〉ψ′j = 〈Rj〉Γ′j = δjj′ . This proves Eq. (III.10):

D/2∑
j=1

〈Γ̂m(t)〉Γj =

D/2∑
j=1

〈Γ̂m(t)〉Ψj =

∮
dk

2π

D/2∑
j=1

Sj [1− cos(2tEj)]. (VII.15)

The mean chiral displacement of a generic localized state, with sup-
port on all bands, in the long time-limit would instead be given by:

lim
t→∞
〈Γ̂m(t)〉Ψ =

∮
dk

2π

D/2∑
j=1

Sj〈Rj〉Ψ, (VII.16)
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which, differently from the case D = 2, is not a multiple of the winding
number.

VII.1.3 Eigensystem of the SSH4 model

Given a generic block anti-diagonal matrix M =

(
0 M12

M21 0

)
, we

have M2 =

(
M12M21 0

0 M21M12

)
. The eigenvalues of M therefore are

the square roots of the eigenvalues of M̂ = M12M21. Thus, if we start
from the SSH4 Hamiltonian written in its completely off-diagonal form

(in the canonical chiral eigenbasis), we have H2 =

(
ĥ 0
0 h̃

)
, with

ĥ = h†.h =

(
a2 + d2 ab+ cde−ik

ab+ cdeik b2 + c2

)
, (VII.17)

and h̃ = h.h†. If we denote by λ2
1 and λ2

2 the two eigenvalues of ĥ, the
eigenvalues of the Hamiltonian are simply given by their square roots:

λ±1 = ±λ1 = ±

√
T

2
−
√
T 2

4
− D̂, λ±2 = ±λ2 = ±

√
T

2
+

√
T 2

4
− D̂,

(VII.18)
where T = a2 + b2 + c2 +d2 and D̂ = a2c2 + b2d2− 2abcd cos(k) are respec-
tively the trace and determinant of ĥ, and |λ±1| < |λ±2|. The topological
phase transition of the SSH4 model takes place when ac = bd and k = 0,
where λ±1 = 0.

In order to find the eigenvectors of H , let us first consider the eigen-
vectors of H2. Provided that eik 6= −ab/cd, we have H2|ĥl〉 = λ2

l |ĥl〉 (for
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l = 1, 2) with:

|ĥ1〉 =
1√
〈ĥ1|ĥ1〉


λ2

1 − (b2 + c2)
ab+ cdeik

0
0

 , |ĥ2〉 =
1√
〈ĥ2|ĥ2〉


λ2

2 − (b2 + c2)
ab+ cdeik

0
0

 .

(VII.19)
Similarly, provided that eik 6= −bc/ad, we have H2|h̃l〉 = λ2

l |h̃l〉, with:

|h̃1〉 =
1√
〈h̃1|h̃1〉


0
0

λ2
1 − (c2 + d2)
bc+ adeik

 , |h̃2〉 =
1√
〈h̃2|h̃2〉


0
0

λ2
2 − (c2 + d2)
bc+ adeik

 .

(VII.20)
It is obvious that these will also be eigenvectors of Γ.

The eigenvectors of the Hamiltonian, |ψ±l〉 are also eigenvectors of
H2, with eigenvalue λ2

l . Therefore, for each value of l, we may write them
as a normalized superposition of the two eigenvectors of H2 with eigen-
value λ2

l :
|ψ±l〉 = α̂±l|ĥl〉+ α̃±l|h̃l〉. (VII.21)

In particular, chiral symmetry imposes that energy eigenstates have equal
support on both sublattices, i.e., |α̂±l| = |α̃±l| = 1/

√
2. Then, with an ap-

propriate choice of phases, we can write them as:

|ψ±l〉 =
|ĥl〉 ± eiφl |h̃l〉√

2
. (VII.22)

The phase φl needs to be fixed imposing that |ψ±l〉 is an eigenstate of H
with positive/negative energy. This may be done using the first line of the
matrix equality H|ψ+l〉 = +λl|ψ+l〉, which yields:

eiφl =
λl|ĥl〉1

a|h̃l〉3 + de−ik|h̃l〉4
, (VII.23)
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where |ψ〉n indicates the nth component of the vector |ψ〉. Note finally
that, upon sending k → −k, the eigenstates of H satisfy

|ψ±l(−k)〉 = |ψ±l(k)〉∗, (VII.24)

which tells us that the Hamiltonian is time-reversal symmetric. Now we
can explicitly build the Q-matrix in the canonical chiral eigenbasis, it
reads:

Q =
∑
l=1,2

eiφl |h̃l〉〈ĥl|+ e−iφl |ĥl〉〈h̃l| =
∑

1≤r,s,t≤4

|Γr〉MrsΓss(M
†)st〈Γt|,

(VII.25)
withMrs = 〈Γr|ψs〉 the unitary matrix for the change of basis between the
canonical-chiral and energy eigenstates. Computing the determinant of

q, the lower-left block of Q, we see that arg[Det(q)] = −ilog
(
ac−bdeik
|ac−bdeik|

)
=

arg[Det(h)]. The winding of the SSH4 model may now be computed from
Eq. (II.7), or equivalently from Eq. (II.10).

VII.2 Detection of the winding in disorderd systems

VII.2.1 Real-space definition of the Winding number

Here we compute the winding number within open boundary conditions
using the “local topological marker” introduced by Bianco and Resta in
Refs. [125, 126]. In particular we use the symmetrized version of the ar-
gument of the trace per volume appearing in Ref. [124] evaluated over
the central part of the chain. Its explicit expression is given in Eq. (III.17)
in terms of the operator M :

M =
QBAXQAB −QBAQABX −QABXQBA +QABQBAX

2
. (VII.26)

The winding number is given by ν(0) =
∑

a=A,B〈0a|M |0a〉 where |0a〉 is a
state completely localized on the central cell of the chain, either in a site
a = A or in a site a = B. αai are its projections on the eigensystem of the
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Hamiltonian {|φi〉}, with i = −N, ..N and energies E−i = −Ei. Note that
the Chiral symmetry implies that the states φi satisfy |φ−i〉 = Γ|φi〉.

In order to compute the scalar product 〈0a|M |0a〉we use the following
properties:

• The state is localized in 0, then X|0a〉 = 0.

• ΓBQ = QΓA. With open boundary conditions, this equality does
not hold for zero-energy edge states, but here we are only interested
in a bulk state, like |0〉, which has negligible overlap with the edge
states.

• ΓA and ΓB are projectors, so that, e.g., ΓAΓA = ΓA.

• The chiral operator is local (i.e., diagonal in the position basis), so
that [X,ΓA] = [X,ΓB] = 0.

These gives:

〈0a|M |0a〉 =
1

2
〈0|QBAXQAB −QBAQABX −QABXQBA +QABQBAX|0〉

(VII.27)

=
1

2
〈0a|QBAXQAB −QABXQBA|0a〉

=
1

2
〈0a|Q(ΓA)4XQ−Q(ΓB)4XQ|0a〉

=
1

2
〈0a|QΓXQ|0a〉.

Finally, using Q = I− 2P−, we arrive to Eq. (III.19)
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ν(0) =
∑
a=A,B

〈0a|M |0a〉 (VII.28)

=
∑
a

〈0a|
[

1

2
ΓX − P−ΓX − ΓXP− + 2P−ΓXP−

]
|0a〉

= 2
∑
a

〈0a|P−ΓXP−|0a〉

= 2
∑
a

∑
i<0

|αai|2〈φi|ΓX|φi〉+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉


=
∑
a

∑
i

|αai|2〈φi|ΓX|φi〉+
∑

i,j<0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉

+
∑

i,j>0;i 6=j
α∗aiαaj〈φi|ΓX|φj〉

 .
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A. Politi, M. Lobino, M. Gräfe, M. Heinrich, S. Nolte, A. Szameit, and
J. L. O’Brien, “Quantum Walks of Correlated Photon Pairs in Two-
Dimensional Waveguide Arrays,” Physical Review Letters, vol. 112,
p. 143604, 2014.
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