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Era un padre que valoraba excepcionalmente la riqueza
interior que puede hallar el ser humano. Por eso envi
a sus hijos a recibir instruccion y ejercitamiento espir-
ituales de un gran maestro. Los muchachos estuvieron
un afio recibiendo la instruccion para la evolucidn inte-
rior y después regresaron junto a su padre.

-, Habéis tenido la experiencia de lo Sublime? - les
pregunto.

Uno de los hijos comenz6 a extenderse sobre esa ex-
periencia utilizando toda clase de conceptos, palabras
y retdricas filosoficas. Cuando dejo de hablar, el padre
preguntd al otro muchacho, pero éste se limito a guardar
silencio. Entonces el padre dijo:

-Hijo mio, tu si has obtenido una experiencia de lo
Sublime.

- Ramiro A. Calle
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Abstract

High-throughput molecular dynamics (MD) simulation is a valuable com-
putational tool to study protein-ligand interactions and protein conforma-
tional plasticity at an atomic resolution. In this doctoral thesis we ap-
plied it to drug discovery by (1) running the first MD-driven 150-fragment
screening against the chemokine CXCL12 with a total simulation time of
8.2ms, (2) developing an application to detect cryptic binding sites based
on simulations of protein in a mixed solution of water/benzene and (3)
studying the molecular basis of functional selectivity by simulating the
p-opioid receptor bound to two different ligands for 500 pus. Addition-
ally, we have developed a web platform called PlayMolecule where we
shared with the scientific community some of the applications developed
during this thesis, including a tool for protein preparation before running
molecular simulations.

Resum

La simulacié de dinamica molecular (MD) d’alt rendimient és una valuosa
eina per estudiar les interaccions proteina-lligand amb resolucié atomica.
En aquesta tesi doctoral, I’hem aplicat al camp de desenvolupament de
farmacs mitjancant (1) I’execuci6 del primer cribat de 150 fragments con-
tra la quimiocina CXCL12 usant exclusivament dinamica molecular amb
un total de 8.2ms de temps de simulacid, (2) el desevolupament d’una
aplicaci6 per trobar cavitats d’unié criptiques utilizant simulacions de
proteina en un solvent mixte d’aigua/benze 1 (3) I’estudi de la base molec-
ular de la selectivitat funcional realitzant 500 ;s de simulacions del recep-
tor p-opioid unit a dos farmacs diferents. A més a més, hem desenvolu-
pat una plataforma web anomenada PlayMolecule on hem compartit amb
la comunitat cientifica algunes de les aplicacions desenvolupades durant
aquesta tesi, incloent una eina per preparar proteines abans d’executar
simulacions moleculars.
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Preface

The voice of my grandmother still echoes inside me: “you will be a great
scientist”, she used to tell me. And I, truth be told, always aimed to be
an inventor since I can remember. You know, one of those crazy-haired,
carefree lunatics with more papers stacked on his desk than clean socks in
his wardrobe. So, after realizing that the Invention Faculty and the Royal
Inventors Guild were just a result of my overexcited imagination, I slowly
became tantalized by Science, which finally seduced my brain and stole
all my economic pretensions in exchange for having my curiosity needs
fulfilled.

The first years of our unique relationship were phenomenal. Her abil-
ity to surprise me and the richness of biological details she would offer
me amazed each of my neurons. For instance, I never got to learn so many
names of viruses, or bacteria, or diseases, or bones in the human body. I
never got to pronounce words longer than the name of that one muscle
called sternocleidomastoid or cultivate the patience Avogadro needed to
heroically count 6.022-10% tiny little particles in his spare time.

Our relationship started to change after we had finished the Biology
chapter of our lives. Instead, Bioinformatics looked a much more ma-
ture approach. Less wet, perhaps, but much more computationally inten-
sive. Science surprised me once again by changing my own existential
paradigms: I suddenly started counting from 0, repeating “Hello world”
like a possessed creature and speaking languages that I thought only Harry
Potter would speak. It was a fun time.

Later on, things started to get pretty serious. Science started to ask me
much more commitment, require more of my invaluable time and really
started to give me a hard time in terms of communication. At some point |
even played a joke on her by suggesting I needed a PhD to understand her!
But overall, it was an instructive time: she taught me how to philosophize
about scientific reproducibility, how to cook data, how to solve problems
simply by pressing a restart button and how not to get desperate when
things seem not to work out...

Luckily, I seem to have made it through. I must confess, however,
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that I ended with a bittersweet taste in my mouth. I drank a dose of
reality, if you will. Let me explain. We all look up to our heroes in
the media thinking how lucky are they to hold this or that position, or to
earn that much of a salary, or to have such a good wife, or to hold such an
amazing intellect... Well. The fact is that there is no shortcut for success,
there are no magical recipes or luck enough in the world to get something
worthwhile for free. Behind each masterful action, there are hours, and
hours, and hours of training and the patience of a stoic. Let this PhD
thesis be a humble proof.




“thesis” — 2017/10/25 — 15:46 — page xi — #11

Publications

This section lists the publications that were carried out during the period
of this thesis. Publications 1, 4, 5, 6 and 8 are published. Publications 2, 3
and 7 are currently submitted or under review. The numbering of the list
does not apply in following sections. However, the papers under “First
author” and “Co-author” categories are contained integrally in Section 3
of this thesis (Publications). The specific subsection of each paper is writ-
ten in bold at the end of each reference.

First author

1. PlayMolecule ProteinPrepare: A Web Application for Protein Prepara-
tion for Molecular Dynamics Simulations. Martinez-Rosell G, Giorgino
T, De Fabritiis G. J. Chem. Inf Model. 2017 Jul 24;57(7):1511-1516.
doi: 10.1021/acs.jcim.7b00190. Pub. 3.1.

2. PlayMolecule CryptoScout: predicting protein cryptic sites using mixed-
solvent molecular simulations and mutual information. Martinez-Rosell
G, de Fabritiis G. Submitted to J. Chem. Theory Comput. Pub. 3.2.

3. Molecular simulation-driven fragment screening for the discovery of
new CXCLI12 inhibitors. Martinez-Rosell G, Harvey MJ, de Fabritiis
G. Submitted to J. Chem. Inf Model. Pub. 3.3.

4. Dynamic and Kinetic Elements of ;-Opioid Receptor Functional Se-
lectivity. Kapoor A, Martinez-Rosell G, Provasi D, de Fabritiis G,
Filizola M. Sci. Rep. 2017 Sep 12;7(1):11255. doi: 10.1038/s41598-
017-11483-8. Pub. 3.4.

5. Drug Discovery and Molecular Dynamics: Methods, Applications and
Perspective Beyond the Second Timescale. Martinez-Rosell G, Giorgino
T, Harvey MIJ, de Fabritiis G. Curr. Top. Med. Chem. 2017;17(23):2617-
2625. doi: 10.2174/1568026617666170414142549. Pub. 3.5.

X1




“thesis” — 2017/10/25 — 15:46 — page xii — #12

Co-author

6. High-Throughput Automated Preparation and Simulation of Membrane
Proteins with HTMD. Doerr S, Giorgino T, Martinez-Rosell G, Damas
JM, De Fabritiis G. J. Chem. Theory Comput. 2017 Sep 12;13(9):4003-
4011. doi: 10.1021/acs.jctc.7b00480. Pub. 3.6.

7. Data Augmentation and Predictions by Molecular Dynamics Simula-
tions and Machine Learning. Pérez A, Martinez-Rosell G, de Fabritiis
G. Under review in Curr. Opin. Struct. Biol. Pub. 3.7.

Other publications

8. DeepSite: Protein binding site predictor using 3D-convolutional neural
networks. Jiménez J, Doerr S, Martinez-Rosell G, Rose AS, De Fabri-
tiis G. Bioinformatics. 2017 Oct 1;33(19):3036-3042. doi: 10.1093/bioin-
formatics/btx350. Pub. 6.1.

Xii




“thesis” — 2017/10/25 — 15:46 — page xiii — #13

Contents

Index of figures

1 INTRODUCTION
1.1 Drug discovery: molecular recognition . . . . . . . . ..

1.1.1
1.1.2

Fragment-based drug design (FBDD) . . . . ..
Current methods in biophysics . . . . . . . . ..

1.2 MD applied to drug discovery . . . . . ... ... ...

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

MD: Jigglings and wigglings . . . . . ... ...
Force-fields . . . . .. ... ... ... .....
Software, hardware and future perspectives . . .
High-throughput molecular dynamics and MSMs
Adaptive sampling . . .. ... ... ... ...
MD limitations . . . . . .. ... ... ... ..
Evolution of MD applications in drug discovery .

1.3 PlayMolecule: the computerization of the drug discovery
pipeline . . . . ... ... L
1.4 Biological systems investigated . . . . . . ... .. ...

1.4.1
1.4.2
1.4.3
1.4.4

CXCLI2/SDF-1 . ... ..... ... .....
p-opioid receptor MOR) . . . . . . . . ... ..
Eukaryotic membrane proteins from the OPM . .
Cryptic pocket-containing protein test set . . . .

2 OBJECTIVES

Xiii

»
<

WO 00 J 1 ~J B N — =

P
A

17
19
20
21
23
25

27




“thesis” — 2017/10/25 — 15:46 — page xiv — #l14

2.1 Computerize the drug discovery pipeline by means of MD

simulations . . . . ... ...
2.2 Transfer know-how and applications to the web-based plat-

form PlayMolecule . . . . . . ... .. ... ......
PUBLICATIONS

3.1 PlayMolecule ProteinPrepare: A Web Application for Pro-
tein Preparation for Molecular Dynamics Simulations . .
3.2 PlayMolecule CryptoScout: predicting protein cryptic sites
using mixed-solvent molecular simulations and mutual
information . . .. ... ... Lo
3.3 Molecular simulation-driven fragment screening for the
discovery of new CXCL12 inhibitors . . . . . . ... ..
3.4 Dynamic and Kinetic Elements of ;-Opioid Receptor Func-
tional Selectivity . . . . . ... ... oL
3.5 Drug Discovery and Molecular Dynamics: Methods, Ap-
plications and Perspective Beyond the Second Timescale
3.6 High-Throughput Automated Preparation and Simulation
of Membrane Proteins with HTMD . . . . . .. ... ..
3.7 Data Augmentation and Predictions by Molecular Dynam-
ics Simulations and Machine Learning . . . . . . . . ..

DISCUSSION

4.1 MD-driven fragment screening . . . . . . . . .. . ...

4.2 Benzene binding as a proxy for cryptic pocket detection .

4.3  PlayMolecule: a web infrastructure for supporting drug
discovery . . . . . ...

CONCLUSIONS

APPENDIX: OTHER PUBLICATIONS

27

28

31

31

39

91

107

117

133

151

151
153

155

157

159

6.1 DeepSite: Protein binding site predictor using 3D-convolutional

neural networks . . . . . .. .. ...

X1v

159




“thesis” — 2017/10/25 — 15:46 — page xv — #15

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8
1.9
1.10
1.11

4.1
4.2

Comparison of main investigative methods in biophysics 5
Basic MD force-field equation . . . . ... ... .... 8
Prediction of the second timescale in 2022 . . . . . . . . 10
Basic MSM example . . ... ... ... ........ 12
Parameter fittingusingQM . . . . . . ... ... 15
Evolution of the MD field applied to drug discovery . . . 16
PlayMolecule applications and Publications in the drug

discovery pipeline . . . . .. ... ... ... ...... 18
Evolution of the PlayMolecule web platform . . . . . . . 19
CXCLI12 system overview . . . . . . . . . .. .. ... 22
p-opioid receptor overview . . . ... ... ... 24
OPM database distribution . . . . . ... ... ... .. 25
Fragment-based tethering overview . . . . . . . ... .. 154
PlayMolecule usage statistics . . . . . . .. ... .... 155

XV




“thesis” — 2017/10/25 — 15:46 — page xvi — #16




“thesis” — 2017/10/25 — 15:46 — page 1 — #17

Chapter 1
INTRODUCTION

1.1 Drug discovery: molecular recognition

The origin of drug discovery dates back to ancient times, when natural
products, mainly extracted from plants, were used for medicinal purposes.
In the early times, just like in any developing discipline, serendipity and
empiricism would drive the discovery and application of new therapies.
However, the idea of “chemoreceptors” by Paul Erlich in 1872 and the
conceptual description of receptors by Langley in 1905 marked a point of
inflection that augured the beginning of rational drug design [1]. In par-
ticular, Langley’s description of the receptors as “switches” that receive
and generate specific signals and that can be either blocked by antagonists
or turned on by agonists [2] established the seeds of our current theories
on pharmacology and mechanisms of action from a structural standpoint.

Different models of protein-ligand interaction have been formulated
along the years, starting by the basic lock-and-key model [3] that states
that a protein and its ligand possess geometric complementarity and that
specificity is explained as a result of one fitting perfectly into the other.
Half a century later, in 1958, once proteins started to be understood as
dynamic and flexible structures, induced fit model superseded lock-and-
key [4]. This new model suggested that the interaction of the ligand with
the protein was able to induce and stabilize a particular protein conforma-
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tion. Soon after, in 1965, conformational selection model was introduced
[5] postulating that, differently from induced fit, the protein alone already
fluctuates along a number of intermediate states among which, one par-
ticular conformation, is able to bind the ligand. Discussions and debates
over which of the latter paradigms is the correct one have survived until
the present day [6, 7, 8, 9]. In fact, is likely that both mechanisms may
play a role in a system-dependent manner.

While most of the first drugs were discovered by serendipity [10],
such as the emblematic penicillin [11], or even in absence of a tridimen-
sional structure of the ligand and its receptor, such as in early steroid stud-
ies [12], nowadays drug discovery is driven by biological targets, genetic
studies, transgenic animals models, molecular biology, gene technology
or protein science, although serendipity still plays a role in late stages of
drug development especially when we are still unable to efficiently predict
drug activity and properties until they are tested on animal models.

When the tridimensional structure of a protein and a ligand is known,
a particular type of drug discovery called structure-based drug design can
be applied. In this type of drug design, the interactions between a pro-
tein and a ligand can be described or modeled with atomic resolution.
In particular, one can study the binding of the ligand in terms of non-
bonded interactions established between the protein and the ligand (Van
der Waals repulsive and attractive forces, Hydrogen-bonds, salt-bridges,
and mediation by water molecules and ions).

1.1.1 Fragment-based drug design (FBDD)

One of the steps in early drug discovery, once the protein target is de-
fined, 1s discovering compounds with a high potential to bind the protein
and becoming a marketable drug. These compounds, usually called leads,
can be found by screening libraries of ligands, either experimentally, i.e.
high-throughput screening (HTS) [13], or in silico, i.e. virtual screening
(VS) [14]. A particular strategy to find leads is called fragment-based
drug discovery (FBDD). Because of the relevance of FBDD in the current
thesis and included publications, it is worth explaining what the charac-

2
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teristics and advantages of FBDD are.

FBDD started to get popular in early 2000s as an alternative to high-
throughput screening or virtual screening of drug-like molecules. This
tendency has continued until our days to the point that FBDD has become
a mainstream technique and the driver technology of more than 30 drug
candidates [15]. The main characteristic that differentiates FBDD from a
typical drug-like HTS approach is the size of the ligands employed in the
screening phase. In particular, fragments are usually defined as having
less than 20 non-hydrogen (or “heavy”) atoms while drug-like molecules
can go up to 30 heavy atoms or more [15]. Therefore, while the objective
of a HTS technique is to find directly a drug-like lead, the approach used
in FBDD is to discover small millimolar-binding fragments with high lig-
and efficiency [16, 17] (LE) that can later be extended or linked together
to form a drug-sized lead [18].

Several advantages characterize FBDD. First, the smaller size of the
ligands reduces the accessible chemical space. A study calculated that
each heavy atom adds roughly one order of magnitude to the number
of possible chemical combinations [19]. This implies that the chemical
space of drug-like molecules is many orders of magnitude bigger than
the fragment chemical space. A practical consequence of this fact is that
a fragment library usually consists of only 1,000-5,000 compounds [20]
while a drug-like library usually comprises between 0.5 and 3 million
compounds [13]. Second, fragment libraries have been reported to yield
higher hit rates than HTS [21, 22]. The rationale behind this observation
is that, as molecules grow, there is more probability that a chemical group
causing an unfavorable interaction is included in the molecule and that
the introduction of this group ruins completely the affinity for the target.
Conversely, fragments, due to their small size, establish less interactions
with the target and should be able to bind to a greater number of sites.
Moreover, the quality of interactions between a fragment and a protein
is usually high, as supported by the conservation of the binding mode as
the fragments are grown into larger molecules [23, 24]. These character-
istics make FBDD specially appealing to tackle difficult targets such as
allosteric sites or protein-protein interaction interfaces (PPIs).

3
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1.1.2 Current methods in biophysics

Several experimental techniques are routinely used in structural biophysics
and in particular in FBDD [15]. These techniques are constrained within a
temporal and spatial resolution range (Fig. 1.1) and their use will depend
on the system and the question at hand.

One of the most important techniques in structural biophysics is X-ray
crystallography. This particular technique revolutionized the biophysics
field since the first crystallization, performed on Mioglobin in 1958 [25],
and allows us to describe the topology of proteins, and sometimes ligands,
with atomic resolution. These crystal structures are static snapshots that
represent either an ensemble of protein conformations in equilibrium or
the most stable conformation. However, crystallography sometimes fail
to resolve flexible regions such as loops. Often, these structures are re-
leased publicly in the PDB database [26, 27], where the number of protein
structures raised from only 507 structures in 1990 to more than 130,000
structures in October 2017, more than 89% of which come from crystal-
lography [28]. Cryo-electron microscopy (cryoEM) is a related technique
which allows to observe bigger structures but with lower resolution. The
application of crystallography in FBDD is exclusively to unravel the bind-
ing mode of fragments and does not yield any affinity information.

Another popular technique used in structural biology and that ac-
counts for an approximate 9% of the total number of structures in PDB
is nuclear magnetic resonance (NMR) spectroscopy. NMR can be used
to determine not only the structure but also the dynamics of an array of
biomolecules including proteins, nucleic acids, carbohydrates and many
metabolites [29]. A major advantage of NMR is that it can quantitatively
describe populations and exchange rates between various conformers.
Furthermore, the application of NMR in drug discovery is quite straight-
forward, for instance: the addition of a ligand in a solution with our fa-
vorite protein will cause a change in the NMR observable spectra (e.g.
chemical shift, NOEs, relaxation times, etc.) if the binding event occurs
[30]. This way, one can leverage NMR in FBDD to detect the affinity of
millimolar-binding fragments and, on top of this, have a rough approxi-

4
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Figure 1.1: Plot showing the main investigative methods routinely used
in biophysics in regard the spatial and temporal resolution they offer. Be-
low the horizontal axis there are the timescales involved in many biolog-
ical phenomena and in the vertical axis the size of different molecular
constituents. Figure extracted from [31].

mation of the protein-ligand interaction location.

Several other experimental techniques exist that can be used to study
structural and dynamic system-specific information. For instance, fluo-
rescence resonance energy transfer (FRET) can be used to study protein
folding [32] and surface plasmon resonance (SPR) can be used to detect
the binding of low-affinity fragments by measuring changes in the refrac-
tive index [15].

Additionally, several computational methods have been developed over
the years to tackle drug discovery and drug development computationally

5
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[33]. From a protein structural point of view, homology modelling al-
lows to infer the tridimensional structure of a protein by comparing its
protein/DNA sequence to the sequence of proteins with known structure.
Although cost-effective, problems associated with template identification,
sequence alignment and refinement hinder its wider use in drug discovery
[34]. Another method, docking, is usually employed in virtual screening.
Docking works by fitting a ligand into a protein cavity and evaluating the
fitness with a scoring function. Several algorithms and implementations
exist, such as AutoDock VINA [35], Glide [36] or Gold [37]. Although
computationally fast, docking suffers from a lack of protein flexibility,
which some algorithms such as flexible docking have tried to mitigate to
some extent [38]. It is worth noticing that, in general, the applicability of
docking in FBDD has been quite limited to date, partially due to promis-
cuity of fragments binding mode [39, 40] and docking limited ability to
correctly describe protein conformational plasticity [38, 41] and to score
fragments [33].

Simulations also can be used to retrieve structural information. For
instance, a particular type of simulations called Monte Carlo simulations
work by introducing small random changes in the system, such as dihe-
dral rotations, and evaluating the validity of the new structure by compar-
ing its energy with the energy of previous structures. This allows to fold
proteins de novo for relatively simple cases, being Rosetta [42] an em-
blematic application example of this type of simulations. Another type of
simulations, quantum mechanics (QM), is used when quantum processes
such as enzymatic reactions want to be studied. The high computational
cost of these simulations limits the size of the system and the length of
the systems investigated usually down to few atoms and maximum one
nano-second, respectively. This makes it impractical to study processes
happening in longer timescales. The development of hybrid QM/MM
[43, 44] methods allowed us to simulate bigger systems by only running
QM-Ievel simulations on a small subset of atoms and the rest in a molecu-
lar mechanics (MM) fashion. In this thesis, we have used QM to optimize
small ligand geometry and charge, as well as inferring drug dihedral pa-
rameters at MM-level by performing energetic scans along the dihedral

6
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angles.

Another type of simulation, molecular dynamics (MD), models real-
ity with atomic resolution and therefore is able to reach bigger time and
spatial scales than QM. The reduction of computational costs and force-
field improvements has made this technique especially valuable for drug
discovery [45]. Although other computational techniques such as dock-
ing were also employed, MD was the main investigative tool used in this
thesis.

1.2 MD applied to drug discovery

1.2.1 MD: Jigglings and wigglings

Richard Feynman in 1965 once described life as “jigglings and wigglins”
of atoms [46] and is precisely the jigglings and wigglings of atoms what
biophysics tries to understand and what molecular dynamics tries to model.

Molecular dynamics simulation is a computational method for study-
ing the physical movements of atoms and molecules. In MD, atoms are
treated as point masses and the bonded and non-bonded interactions be-
tween them are modelled by empiric force-fields [47]. Given a veloc-
ity for each of the atoms, which is usually initially randomized, one can
generate trajectories of atom movements by using numerical integration
schemes such as Verlet integration to solve Newton’s equation of motion
[48]. These trajectories or simulations produce “narratives” of the events
occurring at a nanoscopic scale with an atomic resolution and have been
valuable to describe a wide range of phenomena including protein-ligand
binding, protein conformational changes, protein folding, etc. Section
1.2.7 further expands on the applicability scope and successful stories of
MD in drug discovery.

1.2.2 Force-fields

Most of current force-field implementations differ little from the formula
in Figure 1.2, typically including bond terms such as inter-atom bonds,

7
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Figure 1.2: Basic equation, including bonded and non-bonded terms, for
an MD force-field. Figure extracted from [61].

angles and dihedral angles, and non-bonded terms, typically a van der
Waals term and a Coulomb term.

Main force-fields used in academia include CHARMM [49, 50], Am-
ber [51, 52] and OPLS [53]. Parameters for their force-field terms are
either derived from QM simulations or adjusted to match experimental
observables. For instance, bonds lengths and angles can be extracted from
crystallographic structures. While the official most recent version of these
force-fields are CHARMMZ36 [54], ff14SB [55] and OPLS-AA/M [56],
we use a modified version of CHARMM called CHARMM?22* [57] that
was modified by Piana et al. to solve overstabilization of helices and salt
bridges. Furthermore, general force-fields for small organic molecules
have also been developed such as GAFF [58, 59] for Amber and CGenFF
[60] for CHARMM.

1.2.3 Software, hardware and future perspectives

Note: parts of this section were taken from my Publication 3.5.

Despite the low algorithmic complexity of MD in comparison to quantum
chemistry methods, the computational cost is such that high performance
computing (HPC) systems have been required to perform simulations of
sufficient length to approach biologically relevant timescales [62]. The
size and specialization of the parallel HPC systems required has made

8




“thesis” — 2017/10/25 — 15:46 — page 9 — #25

MD sampling of even small biologically-interesting systems very costly
in terms of Euro per simulated time. Consequently, much technical ef-
fort has been invested in developing specialized hardware, such as Anton
supercomputer [63], and simulation software optimized to maximize per-
formance on these machines.

In the latter half of last decade, developments in the computer graphics
technology sector resulted in the introduction to the HPC field of a new
class of processor with radically different characteristics to conventional
CPUs. The characteristics of these processors, termed GPUs (graphics
processing units), make them highly amenable to certain classes of scien-
tific computation, in particular those such as MD which contain a high de-
gree of intrinsic parallelism. The most efficient GPU MD codes are those
such as ACEMD [64] and recent versions of PMEMD [65], OpenMM
[66] and Desmond [67], all of which have been designed and optimized
specifically for the architecture of GPUs. The computational cost reduc-
tion has been remarkable over the last years and one can expect single
GPU simulation rates in the order of the us/day by 2022 for systems of
intermediate size (circa 50,000 atoms including solvent). When further
coupled to a computing infrastructure that delivers access to large num-
bers of GPUs, such as GPU-based HPC machinery, or a distributed com-
puting network like GPUGRID [68], we can extrapolate (such as done in
in Publication 3.5) that by 2022, MD-based studies will employ aggregate
sampling on the second timescale (Fig. 1.3). Interestingly, the aggregated
simulation time of Publication 3.3 (currently under review) still correlates
well with the predicted trend.

1.2.4 High-throughput molecular dynamics and MSMs

The MD field has experienced drastic improvements since the first MD
simulation ever performed was produced by Karplus in 1977 on BPTI
for 8.8ps [76]. In fact, since not so long ago, anecdotical simulations
and single simulation studies have been superseded by more rigorous and
extensive simulations following the principle that a single observation is
not sufficient to answer hypothesis in a statistically significant way. In
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Figure 1.3: Approximate total aggregate sampled time for high-
throughput all-atom molecular dynamics studies with maximum total
simulation time per year using ACEMD software [64] published in years
2010-2017 (log scale). An exponential function (solid line with 95% con-
fidence interval) was fit to the largest studies of each year (black dots).
Red dot corresponds to Publication 3.3. The trend indicates that we will
reach the second timescale by 2022. References used for this plot are,
from left to right: [69], [70], [71], [72], [73], [74], [75] and Publication
3.3. Modified from Publication 3.5.
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particular, the implementation of MD codes that can run on GPU, as well
as the creation of specialized ASICs such as ANTON [63], combined with
high-performance clusters (HPC) or distributed computing networks such
as GPUGRID [68] have radically expanded the amount of simulation time
we can have access to.

Although one could produce several very long simulations, in highly
parallel clusters such as GPUGRID, the production of hundreds of short
simulations results more cost-efficient. Beyond this technical limitation,
long simulations may get trapped in metastable states or may produce
unrealistic trajectories due to force-field errors.

Instead, a high number of short trajectories can be effectively pro-
duced and analyzed using a mathematical framework called Markov State
Models (MSMs) [77] which are able to describe processes happening in
longer timescales than a single simulation length. In Figure 1.4, we de-
scribe a very simple but visual example of how MSMs are built.

In order to create an MSM, first we need to project the high dimen-
sional space contained in a MD simulation (N® where N is the number of
particles) into a lower dimensional space, for instance contact maps of a
ligand with each residue of the protein (contact map with N dimensions).
We can even reduce the dimensionality further by projecting the afore-
mentioned projection (e.g. contact maps) into tICA space [72], which
is similar in concept to PCA but instead of placing the axes along the
highest variant coordinates it places them along the slowest processes co-
ordinates, which are usually the biologically relevant. Then, we have to
discretize a continuous space into a discrete space, this is we have to clus-
ter tICA coordinates or contact maps into a number of states (note that
contact maps are already discrete, but there is a need to reduce dimen-
sionality even further into few clusters, e.g. 1000). We can achieve this
by using a clustering algorithm such as Kmeans [78]. Then, we calculate
a N to N transition matrix (where N is the number of clusters) by count-
ing how many times a trajectory in a state x jumps to state y or remains
in the same state for a given lag time. From the transition matrix one can
extract the equilibrium probability of each microstate and the microstates
can be clustered together into few macrostates in order to ease human
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Figure 1.4: Visual example of how an MSM works. Lets imagine a given
green ball that moves in the energetic landscape due to thermal fluctua-
tions. The landscape is a continuous space but we could discretize it by
defining a well A and a well B separated by the saddle point. One could
expect that the ball would move around in well A and sometimes it would
jump to well B. Due to the depths of the wells, one would also expect that
the ball would spend more time in well A than in well B. If one records
the ball trajectory (the equivalent to a MD trajectory) and writes down the
state of the ball at regular intervals (e.g. AAABBAAAAA) one could cre-
ate a transition matrix at a specific lag time by counting how many times
the ball in A goes to B or stays in A, and the same for well B. From this
transition matrix one can obtain the probability of the ball being in state
A and B. This simple two-state model could represent the binding of a
ligand to a protein (A being bound state and B being unbound state) or a
folding process (A being folded state and B unfolded state).
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visualization using an algorithm such as Perron-cluster cluster analysis
(PCCA) [79]. The visualization of the macrostate can help us to iden-
tify, for instance, the binding pose of a ligand. Several metrics can be
extracted from the transition matrix and from the equilibrium distribution
of the macrostates. For instance, a metric widely used throughout this
thesis is the protein-ligand binding free energy (i.e. binding affinity) that
can be calculated from the probabilities of a bulk state and a bound state
by using the Boltzmann distribution:

AG = —KyTln (&) : (1.1)
Pruke

where AG is the Gibbs free energy, Kz i s the Boltzmann constant in

kcal/(mol-K), T is the temperature (300K), Py is the equilibrium proba-

bility of the sink or bound state, Py, is the equilibrium probability of the

bulk or unbound state and c is the concentration of the ligand.

Other metrics such as kinetics (K., and K.;) between two macrostates
or mean first passage time can also be obtained. This complex mathe-
matical framework can be easily applied to analyze our MD simulations
by using software such as HTMD [80], implemented in python language,
which leverages pyEMMA [81] to build MSM.

1.2.5 Adaptive sampling

While the computational power has increased over the years and has al-
lowed us to access to longer timescales, the amount of simulations nec-
essary to converge MSM statistics still remains very high. One way to
reduce the computational cost and help the statistics to converge is to in-
crease the sampling of rare events and unexplored configurational space.
In practice, this means that we can re-spawn simulations from under-
visited states in an MSM. This is, if a state has only been visited by very
few simulations, our statistics about whether the state is stable or not will
have a high associated error. In order to solve this, we can re-spawn simu-
lations from that state and see if the system “likes” to stay there or, on the
contrary, easily jumps to other states. This way we can also avoid sam-
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pling states for which we already have lots of statistics. For instance, in a
protein-ligand system, ideally we would like to reduce the sampling of the
bulk (i.e. unbound) state and increase the sampling of sink (i.e. bound)
or quasi-sink states. These simulation schemes are popularly known as
adaptive sampling schemes. For the publications of this thesis, we have
used the adaptive sampling scheme implemented in HTMD [80]. This
particular implementation has proven to reduce the computational cost at
least one order of magnitude in the benzamidine-trypsin system [82].

1.2.6 MD limitations

The validity of MD simulations is highly dependent on several factors: (i)
whether the starting macromolecule structure and coordinates are correct,
(i) whether the protonation states of the protein residues are correctly
assessed, (iii) whether the force-field of use approximate well the atom-
atom interaction forces acting in nature.

In order to address the first two points, we developed the ProteinPre-
pare application (Publication 3.1) in which the hydrogen-bond network of
a protein is optimized and the residues protonation is assessed by titrating
protein residues at a given pH. However, solving force-field limitations
can prove much more complex. For instance, in case of small organic lig-
ands, we used parameterization tools such as GAAMP [83], where quan-
tum mechanics simulations are performed to scan dihedral angles of the
ligands and then a fitting procedure is applied to fit the force-field param-
eters to the energetic profile obtained for those dihedrals (Figure 1.5).

Quantum phenomena such as polarizability and protonation changes
are not usually regarded by classical MD force-fields and the extent in
which the lack of these terms may affect the results is probably system-
dependent. In order to solve these issues, polarizable force-fields [84]
such as AMOEBA [85], constant-pH simulations [86] and hybrid QM/MM
simulations [87] have been developed. However, these improvements al-
ways come in exchange for a higher computational cost and this is one
of the reasons why their use in research and industry is yet to become
mainstream.
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Figure 1.5: Examples of force-field dihedral energies fitted from QM data
using GAAMP [83]. In green is depicted the energy profile for the dihe-
dral angle before the fitting procedure (original force-field parameters, in
this case CGenFF). In black is the energy profile obtained from 1D QM
scans. In red is the energy profile of the force-field dihedral parameters
after fitting the QM data.

1.2.7 Evolution of MD applications in drug discovery

In Publication 3.5 we followed the historical trajectory of the oldest MD
code implementation for GPU: ACEMD. The objective of the publication
was to describe the evolution of MD applied to drug discovery and how
the scientific community was able to tackle increasingly more complex
tasks. We outline here some of the milestones achieved in the MD field
applied to drug discovery (Figure 1.6).

ACEMD was released in 2009 and already in 2010 the first publi-
cations appeared focusing peptide-protein, ligand-protein and ion-protein
binding using ACEMD as simulation software. However, the limited sam-
pling time available at that moment (partially due to slower GPUs) moti-
vated the use of biased simulation techniques such as umbrella sampling
[88] or metadynamics [89], which rely on the knowledge of reaction co-
ordinates (i.e. collective variables) along which sampling is enhanced.
Note, however, that unbiased simulations were also used to observe sin-
gle isolated binding events of ion-protein, whose binding kinetics are ex-
tremely fast and therefore observable within few nanoseconds simulation
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Figure 1.6: Evolution of the MD field from 2009 to 2017 in terms of
applications in drug discovery using the software ACEMD. Publications
listed from left to right and from up to down are: [64], [68], [90], [91],
[68], [70], [92], [93], [94], [95], [82], [74], [96], [75], [80], [97] and
Publication 3.3.

time.

The creation of distributed computing networks such as GPUGRID in
2010 [68] allowed us to launch and simulate hundreds of parallel simula-
tions which could be later analyzed using Markov State Models (MSMs)
to obtain binding states (i.e. binding poses), kinetics, state equilibrium
distribution and therefore binding free energies. This particular setup
was employed in the landmark study of benzamidine-trypsin binding [70],
which was one of the first efforts to demonstrate the utility of the so-called
high-throughput molecular dynamics [62], a new paradigm that, opposed
to the single simulation studies, leverages hundreds of short simulations
to describe biological processes with timescales longer than a single sim-
ulation time. By 2012, full pathway reconstruction of peptide-protein
binding processes were produced using distributed computing and MSMs
[93]. In 2015, a similar technology that reproduced trypsin-benzamidine
binding was applied in the first multiple ligand binding reconstruction
with a total of 15 ligands against the protein factor Xa [74]. In 2016,
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the first unbiased multi-body [96] and lipid-protein binding [75] studies
were published using ACEMD. Finally, in 2017, latest MSM innovations
plus a decrease in computational cost allowed us to tackle full pathway
reconstruction of protein-protein binding events with the Barnase-Barstar
system [97]. Additionally, in Publication 3.3 we fully leveraged adaptive
sampling scheme developed in 2014 [82] to produce the first large-scale
fragment screening exclusively using MD and MSM.

The aforementioned studies help us to draw a general picture of how
the field is steadily pushing the limits to reach harder and harder mile-
stones: from single simulation ion-protein binding events to converged
multi-body high-throughput studies, from binding free energy prediction
using metadynamics simulations to converged free energy calculations
for tenths of ligands using high-throughput unbiased simulations. This
scientific advancement has been the fruit of an interdisciplinary effort:
implementation of faster MD codes, improvement of hardware specifi-
cations, enhancement of analysis tools, acquisition of a better scientific
understanding of the biologic systems and phenomena, adjustment of the
force-fields, collaboration of hundreds of computing time donors, etc.

1.3 PlayMolecule: the computerization of the
drug discovery pipeline

One of the main contributions of the current thesis is the transfer of sci-
entific knowledge to a web platform that we have named PlayMolecule.
The aim of the platform is offering all the generated know-how and tools
to the scientific community for the better and faster advancement of ba-
sic research and drug design. As we have seen in the previous section,
our experience in drug discovery and the continuous advancement to-
wards more sophisticated methods has yielded the creation of a num-
ber of applications, some of which have been packaged into accessi-
ble web apps (apps in red in Figure 1.7) in the PlayMolecule platform
(www.playmolecule.org).

In Figure 1.7 we show a typical in silico drug discovery pipeline and
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- Bioinformatics - Library design
- Systems biology - Docking - Structure-based optimization
- Protein structure prediction - De-novo design - Ligand-based optimization (QSAR)
- Drug repurposing - Pharmacophore - ADME/PK/Toxicity
- Target druggability - Target flexibility - Drug-drug interaction
Target identification . q Lead generation
g S Hit generation g .
& validation & optimization
® .L
(6) MOR drug functional selectivity study

(5) MD-driven fragment screening against CXCL12
(4) CryptoScout - Cryptic pocket detector
(3) DeepsSite - Binding pocket predictor
(2) OPM-DB - OPM built systems

—(1) ProteinPrepare - Protein preparation wizard

Figure 1.7: PlayMolecule applications and Publications in the drug dis-
covery pipeline. (1) to (6) refer to Publications 3.1, 3.6, 6.1, 3.2, 3.3 and
3.4.

the publications included in this thesis annotated below. Interestingly,
publications span all along the drug discovery pipeline, starting from pro-
tein preparation (Publication 3.1) where the crystallographic structure of
a protein is titrated, protonated and optimized in terms of H-bond net-
work. Then, in Publication 3.6 we offer a database of built membrane
systems ready for simulation. In Publication 6.1 we describe a method
that allows to detect binding pockets based on convolutional neural net-
works trained on scPDB database [98]. Publication 3.2 offers a method
for cryptic pocket detection using mixed-solvent simulations of the pro-
tein solvated in water and benzene. In Publication 3.3 we perform the
first MD-driven fragment screening. Finally, in Publication 3.4 we study
the conformational changes of a GPCR based on ligand-mediated modu-
lation.

PlayMolecule is the fruit of several prototypes and iterations start-
ing as early as 2014 (Figure 1.8). The final result is a modular platform
that leverages latest technologies such as Angular]JS, Angular Material
and NGL [99] protein viewer for the client-side and Flask server, slurm
queue, HTMD [80] analysis package, ACEMD [64] and the invaluable
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Figure 1.8: Evolution of the PlayMolecule web platform in terms of pro-
totyping and design.

collaboration of thousands of GPU contributors in GPUGRID [68] in the
server-side.
1.4 Biological systems investigated

Note: parts of this section were taken or adapted from my Publications
3.3 and 3.6.

This section will give an overview of the systems studied in this doctorate.
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In particular, CXCL12/SDF-1 and p-opioid receptor systems have been
extensively investigated in Publications 3.3 and 3.4, respectively. Note
that in Publications 3.2 and 3.6, a total of 18 and approximately 700 sys-
tems have been built and simulated, respectively. However, these systems
were built and simulated in an automatic manner with little or no manual
work involved and therefore were not thoroughly studied further than in
the particular scope of the paper.

14.1 CXCL12/SDF-1

CXCL12 (stromal cell-derived factor-1/SDF-1) is a chemokine, a small
dimerizable soluble protein that stimulates chemotactic cell migration via
activation of a G-protein coupled receptor (GPCR) [100]. Its structure
consists of a C-terminal «-helix, three anti-parallel §-sheets and a N-
terminal flexible loop (Fig. 1.9A). CXCL12 and its receptor CXCR4 are
particularly well studied and their participation in physiological processes
[101] (e.g. embriogenesis, wound healing, stell cem homing) as well as
morbid processes (e.g. autoimmune diseases [102], cancer [103, 104,
105], HIV [106, 107]) is known.

In particular, the significant role of the CXCR4/CXCL12 axis in metas-
tasis, tumor survival and tumor angiogenesis has raised the interest in de-
veloping targeted drug therapies [103]. While most attempts have been
focused in inhibiting the receptor CXCR4 [108], which presents a clear
druggable cavity where the chemokine CXCL12 docks, targeting CXCL12
has traditionally deemed “undruggable” due to its shallow surface [109].

However, recent studies have shown that CXCL12 surface is not com-
pletely flat. In fact, scientists have learned about CXCL12 druggability
by studying the interaction between the chemokine and its receptor. This
protein-protein interface has been resolved via NMR in several cases, one
of which is displayed in Figure 1.9B. From the inspection of these struc-
tures and mutation studies, we learned the CXCL12-CXCR4 interaction
and affinity is mediated by key CXCR4 residues [110, 111, 112], some of
the most important being tyrosines 7, 12, 21 (Fig. 1.9B) and isoleucines 4
and 6. The o-sulfation of the aforementioned tyrosines (Fig. 1.9B) in the
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Golgi apparatus seem to selectively enhance the affinity of CXCR4 for
CXCL12 [112]. Furthermore, CXCL12 has also been resolved bound to
heparin [113] (Fig. 1.9C). The binding of all these residues to CXCL12
involve the formation of small pockets and therefore reveal potential bind-
ing hot spots (Fig. 1.9D and 1.9E) that can be leveraged to design and
dock specific inhibitors. Consistently with this hypothesis, recent studies
report small molecules binding to sY21 [109, 114, 115], sY12 [116] and
14/16 [116] binding pockets.

1.4.2 p-opioid receptor (MOR)

p-opioid receptor (MOR) is a member of the family of G protein-coupled
receptors (GPCRs). Opioid therapeutics that target the main (orthosteric)
MOR binding site remain the preferred treatment for chronic pain, which
is known to affect more individuals than those impacted by cancer, heart
disease, and diabetes combined [117]. However, these classical opioid
drugs (e.g., morphine) produce a number of dangerous side effects (e.g.,
respiratory depression), which have captured the public’s attention due to
an increased number of opioid overdose deaths in the last decade [118,
119, 120].

MOR undergoes specific conformational changes upon ligand bind-
ing, leading to the activation of G protein and/or S-arrestin signaling path-
ways. Notably, suppression of morphine’s analgesic efficacy in MOR
knockout mice suggested that this receptor is absolutely necessary to
mediate morphine action on pain pathways [121]. While mice lacking
p-arrestin2 exhibited enhanced morphine analgesia suggesting that the
drug’s beneficial effect is mediated by G proteins, MOR-dependent -
arrestin recruitment appeared to contribute to some of the side effects of
classical opioids [122, 123, 124].

Although the majority of known opioid analgesics activate both G
protein and [-arrestin pathways, a few MOR ligands have recently been
shown to have an improved pharmacological profile in vivo by virtue of
their G protein-biased agonism. Among them is TRV-130, a potent anal-
gesic exhibiting less respiratory depression and constipation than mor-

21




“thesis” — 2017/10/25 — 15:46 — page 22 — #38

Figure 1.9: CXCL12 system overview. A. CXCL12 monomer (chain
A of PDB 4UAI) in cartoon-style colored by secondary structure. B.
CXCL12 monomer (chain A of PDB 2K05) represented as grey surface
bound to CXCR4 (green and orange chains) with sulfo-tyrosines depicted
in VDW-style. C. CXCL12 monomer (chain A of PDB 2NWG) bound
to two heparin molecules depicted in VDW-style. D. Detail of the sY7
pocket. E. Detail of the HIS168 pocket.
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phine [125, 126], which is currently being evaluated in human clinical
trials for acute pain management [127, 128, 129].

Comparison between the high-resolution crystal structures of inactive
[130] and activated MOR [131] bound to the morphinans S-funaltrexamine
(6-FNA) and BU72, respectively, suggests very small structural differ-
ences in the extracellular region of the receptor with larger conforma-
tional changes occurring at its cytoplasmic side as the result of a large
outward movement of transmembrane helix (TM) TM6 relative to TM3
(Fig. 1.10A) and smaller inward movements of TMS and TM7 (Fig.
1.10A). Notably, the classical R**°-D/E®3° salt bridge (superscript num-
bers refer to the Ballesteros and Weinstein’s generic numbering scheme
[?]) that stabilizes the inactive conformation of TM6 in a number of in-
active GPCR crystal structures (e.g., refs [132, 133, 134, 135, 136]) does
not form in MOR because of the lack of an acidic amino acid at position
6.30. This salt bridge is replaced by a hydrogen bond between R1653°
and T279%3* in the MOR inactive crystal structure and a hydrogen bond
between R165>3° MOR and Y252%8 in the MOR activated crystal struc-
ture. Together with residues N33274°, Y336753, L1584, and V285540,
Y2528 is also involved in a hydrogen bonding network that stabilizes
the inward movement of the so-called N”*PxxY’>? (Fig. 1.10B) motif
towards TMS in the MOR activated crystal structure.

1.4.3 Eukaryotic membrane proteins from the OPM

For Publication 3.6, we built and equilibrated all the eukaryotic mem-
brane proteins of the OPM database [137] using AMBER and CHARMM
force-fields, with the exception of 9 systems in both force-fields due to the
presence of non-standard residues and additional 8 systems in AMBER
due to the presence of deprotonated arginines, which are not supported by
AMBER. The total number of systems automatically prepared, built and
equilibrated was 699 for the CHARMM force-field and 691 for the AM-
BER system. Overall, the built database contains membrane proteins with
a variable size between 10 and 4,898 residues (1.1 to 410 kDa), the 90%
of which ranged from 3.0 to 175.5 kDa with a median of 31.1 kDa. Addi-
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Figure 1.10: p-opioid receptor (MOR) overview. A. Structural differ-
ences between the active and inactive conformation of MOR. Biggest re-
arrangements include mainly TM6 and TMS and TM7 to a lesser extent.
B. Internal H-bond network of the active MOR. The amino-acids forming
part of the NPxxY motif are written in red and numbered from (1) to (5).
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Figure 1.11: Distribution of the different OPM entry types (as of 20 July
2011). Note that the entire OPM is featured, therefore not only contains
eucaryotic membranes but also prokaryotic. Image extracted from 1.11.

tionally, the OPM database classifies the proteins in a four-level hierarchy,
the first one of which is the type according to which each protein is de-
scribed as a (1) transmembrane (TM) protein, a (2) peripheral/monotopic
protein or a (3) peptide (Fig. 1.11).

1.4.4 Cryptic pocket-containing protein test set

In Publication 3.2 we developed an application to detect cryptic cavities
based on mixed-solvent MD simulations. In order to test our applica-
tion, we aimed to find pairs of structures, where one of the structure had
the cryptic pocket closed (apo) and the other structure had the cryptic
pocket opened by the binding of a ligand (holo). Hence, we assembled
a comprehensive set of 18 cryptic pocket-containing proteins including
classic systems such as interleukine-2 (IL-2), Polo-like kinase 1 (PLK1)
and [-lactamase (TEM-1), whose cryptic pockets are throughly studied
in the literature, and additional 15 systems obtained from a recent publi-
cation [138]. These extra 15 systems were chosen based on the follow-
ing characteristics: globularity, small to medium size (i.e. less than 250
residues), structure-completeness (i.e. no missing loops) and absence of
non-standard residues. All the systems are summarized in Table 1.1.
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Protein name Apo PDB  Apochain Holo PDB Holo chain
Interleukine-2 1M47 A 1PY2 C
Beta-lactamase 1JWP A 1PZO A
Polo-like kinase 1 1Q4K A 3P37 C
Niemann-Pick C2 protein INEP A 2HKA C
Staphylococcal nuclease 1TQO A 1TRS A
Toluene-4-monooxygenase 2BF3 A 3DHH E
Adipocit Lipid-Binding protein 1ALB A 1LIC A
Calcium-Bound Domain VI 1ALV A INX3 A
Guanylate Kinase 1EX6 A 1GKY A
Pyrophosphokinase 1HKA A 31PO A
Heme oxygenase INI6 D 3HOK B
Ribonuclease A IRHB A 2WS5K B
RhoA protein 1XCG B 10W3 B
Chymotrypsinogen A 2CGA B 1AFQ C
HSP90 2QFO B 2WI7 A
LFA I domain 3F74 C 3BQM C
NM23-H1 3L7U C 2HVD C
Adenylate kinase 4AKE B 1ANK B

Table 1.1: Systems used as a test set for the CryptoScout application.
PDB entries for the apo-holo pairs are listed, as well as chains used in the
MD simulations. Adapted from Publication 3.2.
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Chapter 2
OBJECTIVES

The exhaustion of the so-called “low hanging fruits” in the pharma in-
dustry requires the development of novel methods to tackle the complex
drug discovery cases and expanding the druggable protein space. One
source of this innovation must come from computational efforts focused
in understanding better the behavior of proteins and the nature of protein-
ligand interactions. Therefore, the main objective of this doctorate has
been to support the computerization of the drug discovery pipeline by de-
veloping innovative and state-of-the-art applications, some of which were
presented to the scientific community via a web-based platform. Hence,
the aims of this thesis can be formulated as below:

2.1 Computerize the drug discovery pipeline
by means of MD simulations

In structure-based drug discovery (SBDD) the protein-ligand binding mode
is the basic unit of knowledge. From the atomic description of the protein-
ligand interactions we are able to build models that allow us to modify or
extend a lead to enhance its affinity and produce a potential drug. There-
fore, there is a need for the accurate detection and description of protein-
ligand interactions.
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These interactions, however, are difficult to study at an atomic scale
using experimental techniques. In this sense, MD simulations can fulfill
the gap. In particular, their ability to reconstruct full protein-ligand bind-
ing pathways and its combination with MSM in high-throughput molec-
ular dynamics, makes them an interesting tool to the detect and predict
protein-ligand binding de novo.

We have applied these principles in three different pioneer applica-
tions documented in Publications 3.2, 3.3 and 3.4. Specifically, we have
studied the binding of benzene molecules to 18 protein systems as a proxy
to detect cryptic cavities (Pub. 3.2). We have also performed the first
150-fragment screening against the chemokine CXCL12 fully driven by
high-throughput MD simulations in combination with an MSM analysis
framework (Pub. 3.3). Finally, we have studied the differential confor-
mational plasticity of the p-opioid receptor (MOR) bound to a classical
opioid drug (morphine) and a G protein-biased agonist such as TRV-130
(Pub. 3.4).

2.2 Transfer know-how and applications to the
web-based platform PlayMolecule

One of the greatest barriers for the adoption of a new technology, further
than the computational or economical cost, is the access format to this
technology. In the case of bioinformatics tools, packages such as HTMD
have made a great progress in reducing the learning curve and entry bar-
rier to technology such as the production and analysis of MD simulations.
However, for these tools to work, medium to high informatics expertise
is needed to configure a working environment and to use the existing API
(Application Programming Interface) to fit one’s custom needs.

A step further than a command-line and programming language-based
environment, is the implementation of an intuitive graphic user inter-
face (GUI) that allows the user to access the technology without any
programming skills required. For instance, a web-based platform could
disseminate the technology to a higher segment of users, with no pro-
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gramming skills restrictions and by virtually solving any configurational
and computing hardware issues by relying on Cloud computing. This
is the philosophy that drove the creation of the PlayMolecule platform
(www.playmolecule.org).

As part of this doctorate, we have fostered the access to state-of-the-
art technology by developing and deploying four novel web applications
and associated publications. First, ProteinPrepare (Pub. 3.1) allows to
prepare a protein structure for MD simulations by optimizing the H-bond
network and titrating the residues at a given pH. Second, CryptoScout
(Pub. 3.2) allows to detect protein cryptic pockets by running simulations
of the protein in presence of benzene, a probe that binds to hydrophobic
regions of the protein including potential ligand binding sites and cryptic
cavities. Third, we have developed OPM-DB (Pub. 3.6) a database of
OPM membrane systems built and ready to run MD simulations. Finally,
we have developed DeepSite (Pub. 6.1) a state-of-the-art ligand binding
pocket detector based on convolutional neural networks.
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Chapter 3
PUBLICATIONS

3.1 PlayMolecule ProteinPrepare: A Web Ap-
plication for Protein Preparation for Molec-
ular Dynamics Simulations

Martinez-Rosell G, Giorgino T, De Fabritiis G. PlayMolecule ProteinPrepare: A
Web Application for Protein Preparation for Molecular Dynamics Simulations. ]
Chem Inf Model. 2017 Jul 24;57(7):1511-6. DOI: 10.1021/acs.jcim.7b00190

Summary

ProteinPrepare is a web application leveraging PROPKA 3.1 and PDB2PQR
2.1 software to prepare a protein extracted from the PDB database or up-
loaded by the user to be run in MD simulations. First, residues are titrated
and the most likely protonation state is assessed. Second, the missing
hydrogens are added to the structure based on the titration. Third, the
H-bond network is optimized. The application allows the user to over-
ride the default protonation and inspect the predicted protonation in a
user-friendly webGL protein viewer. The application is part of the Play-
Molecule suit of apps and available at www.playmolecule.org.
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3.2 PlayMolecule CryptoScout: predicting pro-
tein cryptic sites using mixed-solvent molec-
ular simulations and mutual information

Gerard Martinez-Rosell and Gianni de Fabritiis. Submitted to J. Chem.
Theory Comput.

Summary

CryptoScout is a novel method and web application leveraging MD sim-
ulations of protein solvated in a mixed-solvent of water and benzene to
detect the presence of cryptic pockets (i.e. binding pockets invisible in
available crystal structures) and structural insight of the opening mecha-
nism. In the simulations, benzene binding to the protein surface is used as
an indicator of binding pockets and cryptic sites. In order to detect them,
first we calculate the occupancy of benzene and define binding hot spots.
Additionally, we detect communities of residues with correlated fluctu-
ation of solvent-accessible surface area (SASA) and calculate a likeli-
hood of containing a cryptic pocket based in a pre-trained model. We test
our protocol on 18 different cryptic pocket-containing systems, being the
largest validation study of this kind. Finally, we present the method to the
scientific community in a web application available at the PlayMolecule
platform (www.playmolecule.org/cryptoScout/).
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PlayMolecule CryptoScout: predicting protein
cryptic sites using mixed-solvent molecular
simulations and mutual information

Gerard Martinez-Rosell” and Gianni De Fabritiis**

T Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra,
Barcelona Biomedical Research Park (PRBB), C/ Doctor Aiguader 88, 08003 Barcelona,
Spain
IInstitucid Catalana de Recerca i Estudis Avangats (ICREA), Passeig Lluis Companys 23,
Barcelona 08010, Spain

E-mail: gianni.defabritiis@upf.edu

Abstract

Cryptic pockets are protein cavities that re-
main hidden in resolved apo structures and gen-
erally require the presence of a co-crystallized
ligand to become visible. Finding new cryptic
pockets is crucial for structure-based drug dis-
covery (SBDD) to expand the druggable space
and to modulate protein activity via alloster-
ism. We present here an application leveraging
mixed-solvent molecular dynamics (MD) simu-
lations using benzene as a hydrophobic probe
to detect cryptic pockets and mutual infor-
mation for the analysis. Our all-atom MD-
based workflow was systematically tested on
18 different systems, being the largest valida-
tion study of this kind. CryptoScout first iden-
tifies benzene binding hot-spots, which corre-
late well with known cryptic pockets; second,
it detects communities of residues with coordi-
nated fluctuation of solvent-accessible surface
area (SASA) and evaluates the likelihood of
containing a cryptic pocket. CryptoScout also
provides structures extracted from the MD sim-
ulations which may serve as starting structures
for SBDD. The method is presented to the sci-
entific community in a web application available
at www.playmolecule.org using distributed and
cloud computing infrastructures for the simula-

tions.

Introduction

Knowing the tridimensional structure of a bind-
ing pocket is fundamental in structure-based
drug discovery! (SBDD). While many cavities
are already visible in crystal structures, for in-
stance in the case of an orthosteric site bound
to a natural ligand, other cavities remain closed
and generally invisible in apo crystal struc-
tures.2 These hidden cavities, known as cryp-
tic sites,* % may offer a number of advantages
in comparison to conventional binding pockets.
For instance, they are known to play a role
in protein-protein interactions” or in allosteric
modulation.®? Therefore, detecting and under-
standing their dynamics can open the way for
the development of novel highly selective drugs,
i.e. involved in therapies based on allosteric
modulation,® or targeting proteins previously
considered undruggable.’

Cryptic sites are often discovered serendipi-
tously® when they become co-crystallized with
a ligand. Although is not clear if these pock-
ets already open in solution by conformational
selection, via an induced-fit mechanism or a
mix of both,!® the presence of a ligand seems
to stabilize their opening as suggested by crys-
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tal structures. Experimental techniques such as
tethering associated with fragments!*~!3 lever-
age from this phenomenon in order to reveal
potential cryptic sites.

Different computational approaches to detect
cryptic pockets or druggable hot-spots in gen-
eral have been developed over the years.'® In
broad terms, these could be classified into: (a)
molecular simulation-based, (b) bioinformatics-
based'®16 and (c) docking-based.!™?® While
the last two are computationally cheaper to
perform, molecular simulations are the only
ones able to resolve a molecular mechanism for
pocket opening and the only one to provide
structures eligible for SBDD. Several methods
leveraging molecular simulations have been re-
ported and they could be generally grouped into
(a) protein-alone simulations and (b) mixed-
solvent simulations. While the first type of
methods assume that cryptic pockets can open
in equilibrium in the absence of a ligand*!%:20
(i.e. via conformational selection), the sec-
ond one includes a ligand or co-solvent in the
simulation whose binding to the protein is ex-
pected to reveal the presence of druggable pock-
ets (i.e. via induced fit or a combination of
both). Several successful applications of mixed-
solvent methods have been published in the lit-
erature. A recent review?' describes them ex-
tensively, giving special mention to MDmix,??
SILCS?? and MixMD.2*

In this work, we present a new approach that
leverages a well-established protocol of mixed-
solvent MD simulations, similar in nature to
the recently published work of Kimura et al.,?®
but with a novel analysis framework consist-
ing on the identification of protein regions with
correlated solvent exposed surface area (SASA)
that may contain a cryptic pocket. The co-
solvent used in our study is benzene, a sim-
ple yet generic and versatile hydrophobic probe
that has already proved useful in detecting new
cryptic sites.?® Additionally, binding hot-spots
of benzene on the protein surface are mapped
and their correspondence with known cryptic
sites is assessed. Our protocol has been tested
on the largest dataset known to date for a
mixed-solvent MD technique, consisting on 18
systems including 3 classic cases and other 15

systems extracted from the work of Cimerman-
cic et al.,'® where a collection of cryptic pocket-
containing apo-holo protein pairs was reported.

In our study we aim to assess: (a) whether a
mixed-solvent MD simulation protocol includ-
ing benzene as a probe is able to identify cryptic
pockets, (b) whether the novel analysis frame-
work can improve the prediction performance
and (c) whether benzene binding can actually
sample cryptic pocket opening and conforma-
tions valid for SBDD.

The described protocol is wrapped up and
made available at www.playmolecule.org to the
scientific community in a web application that
leverages latest web technologies to enable users
to prospect cryptic pockets and druggable hot-
spots on their protein of interest.

Results and discussion

Benzene as an ubiquitous bulky
and unspecific hydrophobic probe

Druggable binding sites are known to have
a higher average hydrophobicity than non-
druggable binding sites,2” 3% although, at the
same time, a recent study concludes that cryp-
tic pockets are less hydrophobic than conven-
tional binding pockets.'® Furthermore, cryptic
sites opening seems to be specially dependent
on induced-fit mechanisms, as these pockets are
usually discovered in holo structures. There-
fore, the predominantly hydrophobic nature of
these cryptic pockets and the fact that induced
fit may play an important role in their opening
suggest that a technique using unspecifically-
binding hydrophobic probes should be able to
correctly increase the sampling of pocket open-
ing. A recently reported computational tech-
nique called SWISH,? precisely leverages from
this fact in MD simulations by scaling down
the non-bonded interactions of water molecules,
which turn them into “ligand-like” molecules
with higher affinity for apolar cavities such as
cryptic pockets.

In a study by Wang et a all the ligands
in the PDB?3? database were fragmented and a
list of the most repeated chemical groups was
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produced. Benzene turned out to be the most
common of all by far. This aromatic molecule
constitutes a 6-carbon ring, bulkier than linear
carbon chains such as propane or butane. Its
bulkiness, added to the fact that is an ubiqui-
tous chemical group in the drug chemical space,
makes it an excellent hydrophobic probe to in-
duce a substantial opening of cryptic pockets
while also sampling, when possible, pocket re-
gions with relatively high affinity to aromatic
rings, as long as these interactions are captured
by the forcefield of use.

Our protocol

Several protocols involving mixed-solvent simu-
lations have been proposed over the last years.
One of the most notorious, SILCS, has been re-
ported using high concentrations (around 1M)
of benzene as a co-solvent and has shown rel-
ative success in the identification of binding
hot-spots in various targets. However, the ap-
proach followed by the original SILCS algo-
rithm included atom constraints and an inter-
ligand repulsion potential to avoid denaturation
of the protein and probe aggregation, respec-
tively. These protocol peculiarities, although
were claimed to reduce the computational cost
necessary to reach convergence, introduce clear
protein flexibility restraints and potential arti-
facts that can hinder the results. In another
study, the creators of mixMD discarded ben-
zene as a good co-solvent arguing the existence
of aggregation at the high concentrations (50%
water/50% co-solvent) used in their repulsion-
free protocol.3?

In our study, we have chosen a restraint-free
protocol and the use of lower benzene co-solvent
concentrations, which allowed us to avoid ag-
gregation without introducing repulsion poten-
tials. In particular, we have tested our proto-
col in three different concentrations of benzene
(0.2M, 0.1M and 0.05M) to assess the influence
of the co-solvent concentration on the conver-
gence of results and prediction power. At lower
concentrations (0.2M) and using our benzene
charmm-derived parameters, aggregation does
not occur as shown by the radial distribution
function (RDF) tending to 1 calculated from

water+benzene simulations at 0.2M (S5.1).

Test set of labelled cryptic pocket-
containing proteins

In order to test our protocol we have as-
sembled a comprehensive set of 18 cryptic
pocket-containing proteins (table 1) including
classic systems such as IL-2,33438 PLK13%40
and TEM-1,3%4! whose cryptic pockets are
throughly studied and have been used as bench-
marks in the past, and additional 15 systems
extracted from a dataset recently published
by Cimermancic et al..*> The criteria we fol-
lowed to select the later systems were: glob-
ularity, small to medium size (i.e. less than
250 residues), sequence-completeness (i.e. no
missing loops) and absence of non-standard
residues.

Summary of results

In the present work, we used mixed-solvent MD
simulations in the presence of three concentra-
tions of co-solvent benzene to unravel cryptic
pockets on a set of 18 test proteins. For the
analysis, we used two parallel methods for cryp-
tic pocket discovery. The first method is the
detection of co-solvent binding hot-spots, which
are obtained following a protocol that has been
widely used in similar applications. Results
show that our algorithm detects the cryptic cav-
ity within the first 3 hot-spots in 15 out of 18
proteins and with an average rank position of
2.3 in the 0.1M benzene condition. The sec-
ond method we propose, designed to be used
in parallel to the hot-spot-based one, leverages
mutual information analysis to define commu-
nities of residues with coordinated SASA fluc-
tuation. Cryptic pockets appear contained pre-
dominantly in one of these communities. A set
of descriptors for each community is calculated
(e.g. binding free energy score, SASA ampli-
tude) and used to train a logistic regression
model. Given a set of descriptors for a com-
munity, our regression model predicts the like-
lihood for a community of containing a cryptic
pocket. In order to assess the predictive power
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Table 1: Systems used as a test set for CryptoScout. PDB entries for the apo-holo pairs are listed,
as well as chains used in the MD simulations, names of the ligands used to define the cryptic pockets
and references from where the proteins were obtained. Additionally, RMSD of the backbone for
each apo-holo pair is reported. The PDBID of the apo form is used throughout the present work as
a unique identifier for each system.The asterisk (*) denotes that the ligand for 1Q4K system was a

peptide chain instead of a small molecule.

Ref Protein name

Apo PDB  Apo chain Holo PDB Holo chain Holo ligand Apo-Holo RMSD

1M47 38  Interleukine-2 1M47 A
1JWP 41  Beta-lactamase 1JWP A
1Q4K 40  Polo-like kinase 1 1Q4K A
INEP 15 Niemann-Pick C2 protein INEP A
1TQO 15  Staphylococcal nuclease 1TQO A
2BF3 15  Toluene-4-monooxygenase 2BF3 A
1ALB 15  Adipocit Lipid-Binding protein 1ALB A
1ALV 15  Calcium-Bound Domain VI 1ALV A
1EX6 15  Guanylate Kinase 1EX6 A
1HKA 15 Pyrophosphokinase 1HKA A
INI6 15 Heme oxygenase 1NI6 D
1IRHB 15 Ribonuclease A 1RHB A
1XCG 15 RhoA protein 1XCG B
2CGA 15  Chymotrypsinogen A 2CGA B
2QFO 15 HSP90 2QFO B
3F74 15  LFA I domain 3F74 C
3L7U 15 NM23-H1 3L7U C
4AKE 15  Adenylate kinase 4AKE B

1PY2 C FRH 1.07
1PZO A CBT 0.91
3pP37 C Chain F* 0.79
2HKA C C3S 1.11
1TR5 A THP 0.64
3DHH E BML 0.69
1LIC A HDS 0.52
INX3 A ISA 0.63
1GKY A 5GP 3.64
3P0 A HHR 1.84
3HOK B Q80 1.75
2W5K B NDP 0.57
10W3 B GDP 1.90
1AFQ C O0FG 5.36
2WI7 A 2KL 1.00
3BQM C BQM 1.58
2HVD C ADP 0.73
1ANK B ANP 6.91

of our model, we use a leave-one-out cross vali-
dation scheme which yields an average AUC of
0.86 in the 0.2M benzene condition.

Additionally, we study the dynamics of the
cryptic pockets in presence and absence of the
co-solvent benzene to assess whether simula-
tions starting from the apo conformation ever
reach the holo conformation. Results based on
a PCA dimensionality reduction show that, in
some systems, the binding of benzene seems to
trigger conformational changes towards the holo
conformation. Additionally, we use AutoDock
VINA*? to assess whether docking is able to
reconstruct the holo ligand binding pose using
structures extracted from the MD simulations.
We are able to reconstruct the pose of 5 out 17
ligands within 3 RMSD when using 10 repre-
sentative conformers in comparison to recover-
ing only 1 out 17 when using the apo structure
as docking structure.

Mutual information analysis iden-
tifies communities of residues with
correlated SASA fluctuations

Most of mixed-solvent simulation approaches
for druggability assessment focus on the de-
tection of binding hot-spots by mapping the
co-solvent affinity on the protein surface. In
the present study we approached the ques-
tion slightly differently: additionally to bind-
ing hot-spots, can we determine communities
of residues that fluctuate in a coordinated way
and, if so, can we detect and rank cryptic pock-
ets enclosed in these communities? To an-
swer this question we used a mutual informa-
tion framework, usually employed in allosterism
studies, with few modifications to account only
for short-range residue-residue interactions. We
measured the SASA for every residue along our
simulations and calculated how its fluctuation
was correlated with the residues around them.
This allowed us to define “patches” of protein
with correlated SASA. See Methods section for
further details.
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SASA residue j

SASA residue i

if distance(r,r) >10A - 0

networkx

if logyo(c) < ¥ logye(c) ~ 0
i=1

3

Figure 1: Workflow to define communities of residues with co-variant fluctuation of SASA. 1. For
each protein residue pair, a SASA co-variation is calculated by building a contingency table (a 2D
histogram with 20 equally spaced bins). 2. A co-variance matrix for all residue pairs is calculated.
3. The co-variance matrix is filtered for (a) values lower than the mean of the logarithm of the
correlation in order to keep only strong co-variants and (b) all those co-variances between residues
further than 10 A to keep only short-range co-variations. 4. Communities of residues are clustered
together using networkz.*® 5. Note the similarity between the residue communities in the SASA
short-range co-variation graph and the 3D structural position of those residues.
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The majority of residues involved
in a cryptic pocket are contained
within one or two CryptoScout
communities

In order to assess if our framework was able to
identify and differentiate regions with cryptic
pockets from non-cryptic pocket regions, we
created an automated protocol to calculate the
overlap between CryptoScout-defined residue
communities and the experimental cryptic
pocket residues (i.e. residues in contact with
the ligand in the experimental holo form). To
do so, first we assigned each residue of the apo
structure to a community of residues using our
mutual information protocol based on SASA
(figure 1.4). Then, we aligned the apo and holo
structures and calculated the contacts within 3
A between the apo structure and the aligned
ligand present in the holo form (figure 1.5).
We added up the number of “real” contacts per
CryptoScout community. Finally, we labelled
those communities with at least 30% of the
total contacts as “positive” (i.e. they contain a
cryptic pocket) and labelled all others as “neg-
ative”. The results show that, with a degree
of variability, our model assigns the majority
of the apo-ligand contacts to one, sometimes
two, main communities (column PRCP in ta-
ble 2 which stands for percentage of residues
in positive community). These results suggest
that different regions of the protein fluctuate
or “breath” in a coordinated way, including the
cryptic pockets. Furthermore, while in most
cases one single community includes most of
the residues of the cryptic pocket, in some cases
two different communities may independently
fluctuate and contribute to pocket opening.

A logistic regression model cor-
rectly identifies cryptic pockets in
leave-one-out cross-validation us-
ing the community-based Cryp-
toScout score

A number of features was calculated for each

community (see Methods for further details).
Then, a logistic regression model was trained

using those features to categorize “positive”
communities (i.e. containing cryptic pockets)
and “negative” communities. Stepwise regres-
sion analysis was performed to select the most
meaningful and correlated features and dis-
card the noisy ones from our model. We used
the Akaike information criterion? implemented
in R.% For each benzene concentration condi-
tion (0.2M, 0.1M and 0.05M) different metrics
turned out significant or explicative. To solve
this issue we ended up picking a consensus set
of 4 descriptors: SASA max, SASA mean, FEG
relative mean score and FEG amplitude. The
features selected, p-values and logistic model
correlation for 0.1M benzene condition can be
found in table 3.

Using these features, we followed a leave-one-
out cross-validation scheme to calculate an av-
erage AUC (area under the curve). This scheme
consists in using as training dataset n-1 pro-
teins and predicting on the test set, consist-
ing of one protein (leave-one-out). The out-
put of our logistic regression model is, for each
test community, a probability of containing a
cryptic pocket. Therefore, for each test pro-
tein and for each community in that protein
defined by SASA mutual information, we ob-
tained the probability of containing a cryptic
pocket. Based on our predictions we obtained
an AUC which reflects how correctly our pre-
diction score could separate the true positive
communities from the true negative communi-
ties. The average AUC is 0.86, 0.80 and 0.74
for 0.2M, 0.1M and 0.05M conditions respec-
tively (table 2). The standard deviation was
0.18, 0.19 and 0.22, respectively, which reflects
the system-specific variability, i.e. our model
ranked very well the positive communities of
some proteins (e.g. AUC=1) but worked con-
siderably worse on others (e.g., AUC=0.4).

Benzene binding affinity (FEG
score) is the most relevant feature
in the prediction of communities
containing cryptic sites

FEG score is the most significant descriptor in
our regression model. The higher the relative
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Table 2: Community-based and hot-spot-based score prediction results for each of the three
CryptoScout benzene conditions (0.2M, 0.1M, 0.05M) and results for fpocket*® and DeepSite” in
pocket detection. AUC stands for area under the curve and measures how well the community-
based score separates the true positives from the true negatives in a leave-one-out cross-validation
scheme. Hotspot represents the rank position of the best benzene binding hot-spot found within
5 A of the ligand in the holo form. The first value represents the rank and the second represents
the total number of hot-spots found. NA means no hot-spot was found within 5 A. PRPC stands
for percentage of residues in positive community which reflects the ability of the mutual informa-
tion framework to include cryptic pockets inside one or two main communities. The number in
parentheses in the average row represents the number of NA predictions. The asterisk (*) in the
DeepSite column denotes that the particular holo PDB was present in the DeepSite training set
and therefore the predictive model “had already seen” where the pocket should be located.

0.2M 0.1M 0.05M

AUC Hotspot PRPC AUC Hotspot PRPC AUC Hotspot PRPC fpocket DeepSite
1Q4K 1.0 1/13 0.562 0.89 1/20 0.809 0.79 1/23 0.745 1/30 1/20
1ALB 1.0 2/12 0.609 1.0 1/13 0.652 1.0 1/25 0.652 1/25 1/20
3F74 1.0 1/12 0.959 0.86 1/18 0.959 0.86  3/21 0.581 7/30 NA/6*
2QFO 1.0 2/19 0.348 0.67  2/22 0.348 0.17 15/24 0.478 1/22 1/20
1IJWP 1.0 1/22 0.929 1.0 1/22 0.955 1.0 2/37 0.536 1/28 NA/20
1M47 1.0 8/14 0.768 0.43 7/12 0.821 0.67  3/17 0.982 NA/41 NA/1
1IRHB 1.0 2/8 0.75 0.4 1/10 0.688 0.75  3/15 1.0 4/29 NA/20
1NI6 1.0 2/19 0.867 0.88 1/22 0.583 0.75 1/32 0.617 1/35 1/20
INEP 1.0 1/9 0.851 1.0 1/13 0.836 0.8 1/18 0.94 NA/27  1/1*
2BF3 1.0 1/7 0.923 1.0 1/9 0.923 1.0 1/15 0.923 5/28 NA/2
1EX6 1.0 1/12 0.938 0.86  3/17 0.938 0.75  5/22 0.938 1/33 11/17*
1HKA 075 3/13 0.769 0.86 1/18 1.0 0.5 7/15 0.769 1/29 1/20
3L7U 0.57 NA/13 0.917 0.75  NA/13 0.917 0.9 12/23 0.917 5/37 2/20%
2CGA 064 5/13 1.0 1.0 2/22 1.0 0.89  3/30 0.75 3/28 NA/20
1TQO 0.67 2/8 1.0 0.58  3/11 1.0 0.7 6/17 1.0 3/30 1/11
4AKE 05 3/19 0.896 086  2/21 0.979 0.83 1/26 0.875 1/35 4/20%*
1XCG  0.57 12/13 0.898 0.56 11/16 0.51 0.64  4/28 0.776 2/31 NA/20*
1ALV 0.75 14/19 0.75 0.88 1/22 0.75 0.25 1/23 0.75 4/30 1/20%*

average 0.86 359(1) 082 080 2.35(1) 081 074 3.89(0) 079  256(2) 2.27(7)
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mean and amplitude are for a community, the
more likely the community contains a cryptic
pocket. This point is supported by the positive
signs of the FEG score relative mean and FEG
score amplitude coefficients (third column of ta-
ble 3). Although the deletion of FEG score rel-
ative mean and amplitude from the model sep-
arately is responsible for a small loss of AUC
mean (fourth column of table 3), the reason
for these results resides in the fact that both
FEG score measurements share common and
redundant information. As such, models us-
ing these descriptors as a single feature yield
AUC means of 0.79 and 0.77 for the 0.1M ben-
zene condition (table 3). On the other hand,
SASA measurements perform poorly in single
feature models but seem to be significant and
may add predictive power when combined with
FEG score descriptors. Interestingly, SASA
mean and max are inversely correlated with
cryptic pocket-containing communities. This
may be explained by the fact that cryptic pock-
ets are usually non-terminal regions and remain
partially closed for long time in the simulation.
This fact is reflected in the density plots in fig-
ure S6.

Benzene binding hot-spots can be
recovered and correlate well with
the known cryptic pockets

In order to detect binding hot-spots, we have
followed a similar approach as previous stud-
ies by generating a free energy grid (FEG) and
clustering together free energy minima to de-
fine what we call “binding hot-spots”. These
hot-spots were compared to the cryptic cavity
by aligning apo and holo structures and defin-
ing “cryptic hot-spots” as those hot-spots closer
than 5 Angstrom to the aligned holo ligand.
Hot-spots were ordered in increasing free energy
order and the position where the best cryptic
hot-spot was ranked was annotated and shown
in table 2. CryptoScout was able to rank cryp-
tic hot-spots with an average rank position of
2.3 (table 2, 0.1M condition). Specifically, it
was able to identify the cryptic hot-spot in the
first 3 positions in 15 out of 18 systems. Some

examples of detected hot-spots can be found in
figure 2.

Autodock VINA applied to struc-
tures extracted from MD simula-
tions are able to reconstruct origi-
nal holo ligand binding poses

We tried to recover the holo ligand binding pose
using a AutoDock VINA applied to conforma-
tions extracted from the simulations, consider-
ing that we started the simulations from the
apo structure, which had the cryptic pocket
closed. In order to sample different conforma-
tions, we used Kmeans clustering algorithm on
SASA fluctuation data for the community of
residues containing the cryptic pocket to ob-
tain up to 10 clusters with variable degree of
SASA (i.e. pocket opening) and sampled one
representative per cluster. Autodock VINA ap-
plied to these conformations recovered 10 out
of 17 holo ligand binding poses within 5A in
RMSD and 5 out of 17 within 3A RMSD (S4).
For comparison, docking of the ligands onto
the apo form recovered 5 out 17 within 5A
RMSD and only 1 out of 17 within 3A RMSD
(S4). Note that the reported poses were specif-
ically selected as those with minimum RMSD
to the original holo pose. The number of bind-
ing poses generated by AutoDock VINA were a
maximum of 10 per each of the 10 automatically
selected conformations. System 1Q4K was ex-
cluded from the docking due to the complexity
of the peptide ligand. The majority of systems
whose holo binding pose could not be recovered
include the largest ligands, for which docking
becomes extremely difficult due to the ligand
rotameric variability and the challenge of sam-
pling the exact protein conformation that al-
lows a successful docking. In supplementary fig-
ure S3 we show the strong correlation between
number of heavy atoms per ligand and RMSD
of the docked pose closest to the holo pose.
Two examples of docking can be found in figure
3 where major side-chain re-arrangements are
well captured.
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Table 3: Consensus of metrics used for the training of a logistic regression predictor model. p-
values as reported by the Akaike Information Criterion (AIC) for each feature, Coefficients for the
particular descriptor in the regression model, mean AUC loss on removing the descriptor from the
model and mean AUC on building a regression model with the particular single feature.

Descriptor p-value Coefficient AUC loss on removal AUC single descriptor model
FEG score relative mean  0.0151%  0.7639 -0.0061 0.7962
FEG score amplitude 0.1973  0.0034 -0.0572 0.7709
SASA mean 0.0146* -0.9596 -0.0175 0.4694
SASA max 0.9861 -1.0718 -0.0036 0.4896

CryptoScout performs better than
fpocket and DeepSite in detecting
cryptic pockets

In order to compare CryptoScout performance
with other algorithms of non-cryptic pocket de-
tection, we used fpocket*® and DeepSite?” to
detect binding pocket centers on the apo struc-
ture (table 2). Results show that fpocket is rea-
sonably good at detecting cryptic pockets using
a cutoff of 5A distance between predicted center
and holo ligand, with only 2 proteins for which
no center was predicted within that cutoff. On
the other hand, DeepSite seems to find cryp-
tic pockets on some proteins but is unable to
detect them in 7 out of 18 systems. On aver-
age, CryptoScout was the best performer with
an mean hot-spot rank of 2.35 and only 1 pro-
tein for which no hot-spot was detected within
5A of the holo ligand. Although fpocket seems
to be a very good option to detect cryptic sites
at a extremely lower computational cost com-
pared to CryptoScout, there’s two main con-
siderations that justify the extra computational
cost of CryptoScout. The first is that fpocket
algorithm works by detecting concave surfaces
and most of the cryptic sites used in the current
study are pre-formed in some way. Therefore,
fpocket would probably fail to detect pockets
in really complex cases. The second is that, al-
though some part of the cryptic pockets may
be pre-formed (for instance, the protein may
present an internal cavity inaccessible from the
exterior such as in 1ALB system), fpocket sheds
no light on the pocket opening mechanism or
how a ligand can access the pre-formed part of
the pocket. On the other hand, CryptoScout,

as it requires benzene to bind in order to de-
tect the pocket, provides explicit hints of the
pocket opening mechanism at an atomic resolu-
tion and provides additional information about
the pocket conformation. For example, figure
3.A shows the case of 1ALB, where benzene
triggers a sidechain rotation that reaches a pose
similar to the holo conformation and that helps
to expose the internal cavity.

Principal = component analysis
shows that some simulations start-
ing from the apo conformation visit
the holo conformation

Detecting cryptic cavities constitutes a great
challenge by itself. However, in order to apply
SBDD technologies efficiently, scientists need a
structure of the open cryptic pocket with a spa-
tial configuration of the lateral chains that al-
lows the correct inference of the ligand binding
pose.

In order to assess whether our simulations
sampled valid configurations for SBDD, i.e. the
holo protein conformation, we decomposed the
geometry of the cryptic pocket into 2 princi-
pal components using a Principal Component
Analysis (PCA). Cryptic residues were defined
as those with an atom within 4A from the lig-
and present in the holo form as in Kimura
et al..?® To do so, first we calculated an N-
dimensional vector by applying PCA on the
minimum distance between each N pair of cryp-
tic residues for each frame of our simulations in
presence of benzene. Later, we projected each
frame of the simulations with or without ben-
zene into this N-dimensional vector and selected
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Figure 2: Benzene binding hot-spots found for
each of 9 representative systems simulated in
the 0.1M benzene condition. Column A shows
the surface of the apo structure and the ligand
present in the holo pose after aligning apo and
holo structures by the backbone. The commu-
nity of residues labelled as “positive” (i.e. con-
tains a cryptic pocket) is colored in red. Note
how most of the ligands present clashes with
the apo surface due to the closure of the cryp-
tic pocket. Column B shows the apo backbone,
aligned with the holo ligand and the hot-spots
detected by CryptoScout depicted as beads col-
ored from red to green, being green the lowest
free energy. Residues part of a community la-
belled as “positive” are colored in red.

10

Figure 3: Examples of docking performed
against 10 conformers extracted from the MD
simulations. Docking for 1ALV system de-
picted on the top, and 1HKA on the bottom.
Docked ligand colored in yellow licorice. Orig-
inal ligand in the holo structure represented
as transparent red licorice. Holo conforma-
tion backbone in red cartoon, apo conforma-
tion backbone in white cartoon and backbone
conformation extracted from the simulations
in cyan. Important residues are displayed in
licorice style. Green arrows point out side-chain
rotations from the apo position to an holo-like
position adopted during the MD simulation in
presence of benzene.
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the first two principal components to produce
a 2-D histogram plot (figure 4). This dimen-
sionality reduction allowed us to assess visually
whether our simulations reached and sampled
extensively the holo lateral chain configuration
(red crosses in fig. 4) starting from the apo con-
formation (green crosses in fig. 4) in presence
or absence of benzene. The presence of ben-
zene seems to shift cryptic pocket configuration
to the holo form in some cases (e.g. as seen
in 1HKA, INI6 and INEP to certain extent),
although in some other cases there’s little or
no difference between benzene and water condi-
tions (e.g. 1TQO) and sometimes water alone
shifts to holo even better than with benzene
(e.g. 1ALV).

Is also interesting to notice two points: first,
the post-equilibration conformation of the pro-
tein (purple crosses in figure 4), this is the con-
formation of the protein after performing the
equilibration of the apo structure, is different
from the apo one and its effect on the explo-
ration of the landscape can be very determi-
nant. For instance, in 2CGA PCA analysis (fig-
ure 5) we can see that at 0.1M and 0.05M ben-
zene concentrations the post-equilibration pose
(purple cross) is close to a minimum below the
holo pose (red cross) while in 0.2M and wa-
ter conditions the simulations are spawned from
a post-equilibration conformation located in a
deep well to the right of the holo conformation,
from which they were unable to exit.

Second, the presence of benzene seems to
modify the configuration landscape. For in-
stance, in the 1M47 system (figure 4), although
in both benzene and water conditions the post-
equilibration structure was very similar, the
landscape in the water condition is a double
well while in benzene condition is a single well.

Overall, seems that benzene modifies the con-
figuration landscape, sometimes shifting it to
the holo pose, but the effect of the post-
equilibration pose on the exploration of confor-
mational space has also to be taken into con-
sideration. Note that a possible improvement
of the current protocol would be to run two
or more equilibrations in order to start simula-
tions from a diverse conformational space which
would lead to a better sampling of the land-
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scape. Note also that reaching convergence was
not the intention of the current study.

One of the aims of this work was to as-
sess the effect of the co-solvent concentra-
tion in cryptic pocket discovery using mixed-
solvent MD with our community-based or hot-
spot-based scoring system. To our surprise,
a second factor was introduced in the analy-
sis, which is the post-equilibration conforma-
tion (i.e. the conformation achieved by the
protein after the equilibration run). This last
confounding factor may influence the extent in
which the conformational space is explored, es-
pecially in such short amount of simulated time,
and therefore can influence the results by pro-
viding conformations with a differential affin-
ity for benzene, whose binding is crucial for
cryptic pocket detection in our protocol. Un-
fortunately, the post-equilibration conforma-
tion factor is hardly separable from the con-
centration factor. However, we believe broad
conclusions can still be drawn. For instance,
seems that a higher concentration of benzene
(0.2M) enhances the community-based score
(+0.06 AUC mean in respect to 0.1M con-
dition) and a lower concentration (0.1M) en-
hances the hot-spot-based scoring system (it
improves more than 1 rank position in respect
to 0.2M). One possible explanation is the fact
that the community-based score depends on the
benzene binding free energy to the whole com-
munity surface, where transient aggregates of
benzene can be effectively detected as molecules
stack up, while hot-spot-based score requires a
more fine protein-ligand interaction, ideally un-
perturbed by competitive interactions of other
benzene molecules. A low concentration like
0.05M, although still detects most of the cryp-
tic sites, is probably very sensitive to lack of
sampling as convergence time is highly depen-
dent on the number of molecules available to
interact with the protein.




“thesis” — 2017/10/25 — 15:46 — page 51 — #67
1ALV_benzene 1ALV_water 1TQO_benzene 1TQO_water INEP_benzene INEP_water
5
s0 o + + ‘ O
0 a0
25 +
= =
a0
s 0 s 5 5 0 s m = ° s B B 0 5 0 5 B s o s EE
real PeAL oAl FoAl Peal Feal
1HKA_benzene 1HKA_water 1NI6_benzene INI6_water 1M47_benzene 1MA47_water
1
" 5
- QO

rore

Y 2 2

0
PeAL

)
PCAL

Figure 4: 2D histogram plot calculated from the
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first 2 PCA components of the minimum inter-

residue distance between all cryptic pocket residues pairs for 6 representative systems in the 0.1M
benzene and water-only conditions. Green crosses represent the apo conformation, red color rep-
resents the holo conformation and purple crosses represent post-equilibration conformation in the

PCA space.
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Figure 5: 2D histogram plot calculated from
the first 2 PCA components in all benzene con-
centrations and water for the 2CGA system.
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Total simulation time necessary for
model convergence can be down-
scaled in production

We analyzed the effect of sampling time over
the hot-spot-based and community-based scor-
ing methods for decreasing amounts of data by
bootstrapping 5 times from 100% of data to
only 30% of data in 10% data jumps, this is
from 800ns total simulation time to only 240ns.
Results in figure 6 show that while hot-spot de-
tection convergence is quite dependent on the
amount of data, the community-based score is
much more independent to the point that 30%

12

of the data is able to give equal or even better
classification of communities containing a cryp-
tic pocket than the full data (notice, however,
the higher standard deviation). Based on this
fact and the need to find a compromise between
results and computational cost, we have set the
amount of simulation time to half the maximum
(400ns) in the production CryptoScout web ap-
plication.

CryptoScout limitations

Although CryptoScout has proved effective in
detecting and ranking the cryptic pockets for
most of the systems, both community-based
and hot-spot-based scoring methods failed on
few systems. In this section we will mention
some of the possible underlying causes.

First, benzene may not bind the cryptic cav-
ity. It is possible that the cryptic cavity has
low affinity for benzene, such as in the case of
hydrophilic cryptic pockets. Other probe or co-
solvent molecules could be added to expand the
chemical space that could potentially bind and
unravel cryptic pockets. The preference of a
cryptic pocket for specific fragments has been
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Figure 6: Prediction performance on data bootstraps using the community-based and hot-spot-

based scores.

recently reported by Kimura et al. > where they
show that hydrophobic and hydrophilic frag-
ments tend to bind and reveal cryptic pockets
in a differential way.

Second, convergence may not have been
reached within the simulation time, 800
nanoseconds in our case. The timescales for
cryptic pocket opening or the necessary confor-
mational rearrangements for benzene binding
may be orders of magnitude slower than the
simulated time. One indication supporting this
point can be found when measuring the RMSD
between the apo and the holo forms for each
system, which is an indicator of the amount of
atomic rearrangements that the apo structure
must undergo in order to reach the holo confor-
mation, in some cases exceeding 5A (table 1).
Another indication is found in the inconsisten-
cies between the PCA analysis of the same sys-
tem in different benzene concentrations, whose
cause could be possibly due to lack of conver-
gence rather than a direct effect of the benzene
concentration on the spatial rearrangement of
the cryptic cavity residues. An example of the
latter case is the 2CGA system, where only in
the 0.05M condition the PCA landscape shifted
towards the holo configuration (S2.1).

Finally, causes may also include bad detec-
tion of regions containing cryptic pockets (e.g.
low PRPC value due to lack of SASA short-
range covariation) such as in the case of system
1XCG. Another possible cause is the existence
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of alternative strong benzene binding hot-spots,
some of which could be unknown cryptic pock-
ets.

PlayMolecule CryptoScout web ap-
plication details

The CryptoScout web application has been
made available through the PlayMolecule web
platform (see figure 7) and uses the GPUGRID
volunteer infrastructure for the MD simulation
calculations. The access to the app is open to
the scientific community but a request needs
to be made first by filling a quick form with
identification details and purpose of the usage.
This measure allows us to moderate the access
to these intensive resources and provide a good
service. See S7 for more details.

Conclusions

In this study we propose a new and completely
automated approach using mixed-solvent MD
simulations to discover cryptic pockets combin-
ing two predictor metrics consisting in (a) the
assessment of benzene binding hot-spots and
(b) the identification of communities of residues
with correlated SASA associated with a prob-
ability of containing a cryptic pocket. Both
prediction methods have shown success in de-
tecting cryptic cavities in our test dataset with
an average hot-spot rank position of 2.3 (0.1M)
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Figure 7: Screenshots of PlayMolecule CryptoScout web application. A. Report of the system
after building. B. Visualization of a benzene binding hot-spot. C. Metrics and CryptoScout score
for each community of residues detected, identified by a distinct color. D. Visualization of 10
representative frames per community extracted from the MD simulations colored by residue name.
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and an average AUC of 0.86 (0.2M) for the hot-
spot-based and the community-based scores, re-
spectively.

Furthermore, we assessed whether simula-
tions starting from the apo structure visited
the holo conformation in presence or absence
of benzene. Our results suggest that in some
cases benzene not only binds and triggers the
opening of the cavity but also induces the re-
arrangement of the pocket residues towards the
holo conformation. This is further confirmed
using AutoDock VINA by reproducing 10 out
of 18 binding poses within 5A RMSD.

Knowing the exact holo conformation is cru-
cial for all SBDD endeavors, such as in virtual
screening or ligand optimization. While detect-
ing a cryptic cavity is of a great interest, further
development must be undergone to sample and
correctly identify cavity conformations compat-
ible with SBDD. Assuming the cryptic site had
been correctly determined, one could leverage
an adaptive sampling scheme based on SASA
per residue or inter-residue distance to sample
exhaustively all possible conformational states
and pinpointing stable conformations and con-
verged kinetics by using, for instance, Markov
State Models. These models could be further
employed to prioritize a conformation or ensem-
ble of conformations for SBDD activities.

Methods

System building and simulation

Benzene parameters were calculated using the
Parameterize module included in HTMD. *® Pq-
rameterize performs charge fitting and rotamer
scans using quantum mechanics calculations
with PSI4° to fit parameters and optimize the
topology.

Proteins were obtained from the PDB3?
database, with entry code specified in table 1,
and simulated from the apo form. In case of
1M47, missing loops were modelled by Mod-
eller® using the LoopModeller module included
in HTMD. Protein protonation and hydrogen-
bond network optimization was made using
the ProteinPrepare module included in HTMD.
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Systems were built using HTMD, including the
protein in the center of the water box and
placing benzene molecules around the center to
reach the target benzene concentration. Water
padding was set to distance between the cen-
ter and furthest atom of the protein plus a 6 A
water margin. In the case the 0.2M condition,
padding was reduced in some cases to ensure a
ratio protein residue/number of ligands higher
than 4.5, which limited the amount of benzene
molecules added to the system and prevented
the formation of potential aggregates. Sodium
and chloride ions were added to neutralize the
system.

One equilibration was performed per system
and 20 production runs of 40ns were performed
(total of 0.8 us per system). Equilibration
protocol consisted of 500 system minimization
steps, 500 NVT steps (4fs each) and the rest
of the simulation for 40ns in NPT ensemble;
restraints of 1 Kcal/mol were applied to heavy
atoms and 0.1 kcal /mol to non-heavy atoms and
were progressively switch off from the beginning
of the simulation until half of the simulation,
where the system was set restraint-free. The
force-field used was charmm?22*.5%52 The simu-
lations were run in our local cluster equipped
with 16 GPUs using the simulation software
ACEMD.?

Free Energy Grid (FEG)

In order to detect co-solvent binding we cal-
culated a free energy grid (FEG) and clus-
tered energy minima to define binding hot-
spots. Specifically, first, we computed the ben-
zene occupancy by calculating a 3D histogram
with 1A cubic bins of the location of C1 of
the benzene probes along our MD simulations.
After, we transformed these occupancies into
probabilities by dividing by the number of MD
trajectory frames. Then, using the Boltzmann
equation (eq. 1), we transformed the probabil-
ities into free energies:

N
AG=—-KgT'Ih|{— ),
G B H<NO)’

(1)

where T is the simulation temperature (300K),
Kp is the Boltzmann constant in kcal/mol-K,
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N is the co-solvent occupancy probability and
Ny is the standard occupancy in equilibrium,
calculated as:

_ VeN4[C]
ng

Ny (2)
where Vg is the total volume of our system
box (in liter units); Na is Avogadro’s number
(6.022140857-10%%), [C] is the co-solvent con-
centration in molarity (0.2M, 0.1M or 0.05M);
and ng is the number of boxes in our grid. In
practice, the numerator calculates the number
of ligands for a given concentration and the
denominator divides the occupancy probability
among the number of boxes present in the grid;
this assumes that ligands do not aggregate and
spatial distribution of benzene is similar to a
noble gas. These last two assumptions are sup-
ported by the pair correlation function (also
known as radial distribution function; RDF)
converging to one in water+benzene simula-
tions at 0.2M concentration (S5.1), which de-
notes the lack of benzene aggregation. RDF was
also calculated for 0.1M condition (S5.2) and,
for comparison, also for 1M condition (S5.3), in
which benzene clearly aggregates in correspon-
dence with results obtained by Lexa et al..
RDF was calculated using VMD.?

Hot-spot detection

Once we had a free energy grid, we proceeded
to filter out all those free energies higher than a
-1.75 keal/mol cutoff, which is a bit lower than
other reported cutoffs (-1 kcal/mol as in Bakan
et al. 50 and -1.5 kcal /mol as in Kimura et al. ?®).
This cutoff allowed us to reduce the number of
hot-spots found and is probably force-field de-
pendent as suggested in Kimura et al..?® Then,
we proceeded to find the minima in our grid and
cluster them together. The algorithm we used
to cluster the minima consists in joining clus-
ters closer than 8A and discarding those closer
than 2.7A (benzene diameter) starting from the
lowest minima and moving to the next minima
in growing order. The cutoff used to cluster is
a bit higher than the 6.2A cutoff reported by
reference 56 but allowed us to generate fewer
clusters and generally enhance the performance.
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Finally, for each cluster, instead of adding up
the minima free energies as in reference 25, we
followed a different approach, which is adding
up the probabilities of both minima and then
calculating the free energy of the joint proba-
bility by using the Boltzmann equation. This
fundamental difference implicates that, for in-
stance, two minima of -3 kcal/mol add up to
a joint free energy of -3.4 kcal/mol instead of
-6 kcal/mol. 3D structure plots were produced
using VMD.%?

Community definition by mu-
tual information (MI) analysis on
residue SASA

A matrix with SASA co-variance for every pair
of protein residues was calculated. To do so we
built a histogram based on 20 equally spaced
bins along the SASA fluctuation per residue in
our simulations and proceeded to calculate the
correlation (figure 1.2) from the corresponding
residue-residue pair contingency table (figure
1.1). We then applied two filters, setting to
0 the correlations that fulfill one of these con-
ditions (figure 1.3): (a) the correlation weight
is smaller than the mean of the weight loga-
rithms, this way we only retain the most mean-
ingful correlations; (b) the distance between
two residues is bigger than 10 Angstroms, this
way we remove long-range correlations and fo-
cus in the local correlations. Finally, we clus-
ter the residues into hubs or communities of
residues (figure 1.4 and 1.5) using the python
module networks.43

Free Energy Grid (FEG) score

For each carbon alpha of a community of
residues, we created a box of 5A padding cen-
tered on the CA (containing 5-5-5 1A3 sub-
boxes), and calculated the average free energy
in that box obtaining a measure in cal/A3. The
FEG score for a certain community was ob-
tained by performing the mean of FEG score
of all carbons alpha.
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Other
model

metrics and regression

Maximum, minimum, mean, standard devia-
tion and amplitude was obtained grouping all
the SASA per residue in a community. Mutual
information intra-correlation was calculated as
the average of the MI network weights within a
community. The logistic regression model was
calculated using scikit-learn.?®”

Simulation bootstrap

In order to check the effect of decreasing the
simulation time in the results convergence and
robustness, we bootstrapped the data used for
the analysis 5 times with decreasing amount of
data, from 1 to 0.3 (over 1) with steps of 0.1 de-
crease. In practice this means that from a total
of 800ns per system we decreased it to 240ns
in 80ns steps and used our hot-spot-based and
community-based scores to identify the cryp-
tic pockets. For cryptic sites that were not de-
tected during the analysis, instead of labelling
them as “NA” (not available) we set the rank
position to the total number of hot-spots found
in order to penalize the average.

CryptoScout web application

CryptoScout application is part of the Play-
Molecule bundle of web apps. It leverages
webGL-powered protein viewer NGL,%® as well
as AngularJS and Angular Material for the
client-side and Flask for the server-side. The
computing infrastructure is currently GPU-
GRID.?
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S.7 PlayMolecule CryptoScout web application details
The web application consists of the following 4 steps:

(1) Job submission. The user is able to launch a new cryptic pocket prospection starting
from an id of the PDB database, a custom protein from a pdb file or a protein prepared with
PlayMolecule ProteinPrepare’. The user can also choose a protein chain, a pH that is used
for the residue ftritration and a benzene concentration, although the recommended 0.1M
concentration is pre-selected.

(2) System building. The web app reports to the user details about the built system (figure
7.A) or, in case something went wrong, an error message with suggestions to solve the
issue.

(3) Equilibration and production. The equilibration and production simulations are run and
the user is reported with the current stage of the progress.

(4) Analysis and results. The analysis is performed and the results are reported to the
user. The results consist of: (a) a tab including each community of residues with an
associated color, stats and CryptoScout score, i.e. likelihood of containing a cryptic/binding
site (figure 7.C). (b) A central webGL-powered protein structure visualizer with the reference
structure colored by CryptoScout community (figures 7.B and 7.C), hot-spots represented as
beads with color from white to red proportional to decreasing free energy and an isosurface
representing the benzene occupancy (figure 7.B). Several options are available such as
showing/hiding surface representation. (c) A right accordion panel with each selectable
hot-spot detected and associated free energy. (d) Another right panel with buttons for each
of the community detected and its associated color. Each of these buttons allow the user to
visualize 1 representative for each of the 10 clusters based on SASA fluctuation of the
specific community (figure7.D). These structures are aligned by the backbone and lateral
chains of the community are shown and colored by residue name to give a rough idea of the
community dynamics and the potential cryptic sites. (e) Finally, a download button allows the
user to download all result tables in csv format and the filtered raw simulations (i.e. without
water to reduce the file size). (f) Additionally, a tab titled Analysis with HTMD offers to the
user an example of analysis script using the HTMD module to encourage a further analysis
of the trajectories.

" Martinez-Rosell, Gerard and Giorgino, Toni and De Fabritiis, Gianni. PlayMolecule ProteinPrepare:
A Web Application for Protein Preparation for Molecular Dynamics Simulations. J. Chem. Inf. Model.
1511--1516
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3.3 Molecular simulation-driven fragment screen-

ing for the discovery of new CXCL12 in-
hibitors

Martinez-Rosell G, Harvey MJ, De Fabritiis G. Molecular-
Simulation-Driven Fragment Screening for the Discovery of
New CXCL12 Inhibitors. J] Chem Inf Model. 2018 Mar
26;58(3):683-91. DOI: 10.1021/acs.jcim.7b00625

Summary

In this work we produce the first 150-fragment screening exclusively
driven by high-throughput molecular dynamics (MD) against CXCL12,
a chemokine closely related to diseases such as cancer metastasis. As
a result, we are able to predict the binding of 8 millimolar-affinity frag-
ments to two CXCL12 cavities detected experimentally, namely sY7 and
H1S68. The binding mode and the pharmacophoric properties of the frag-
ment hits are consistent with the natural ligand-like binding moieties. The
steady decrease in computational cost and the present study pave the way
for the introduction of MD simulation as a screening tool in early phases
of the mainstream drug discovery pipelines.
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3.4 Dynamic and Kinetic Elements of ;-Opioid
Receptor Functional Selectivity

Kapoor A, Martinez-Rosell G, Provasi D, de Fabritiis G,
Filizola M. Dynamic and Kinetic Elements of p-Opioid
Receptor Functional Selectivity. Sci Rep. 2017 Sep
12;7(1):11255. DOI: 10.1038/541598-017-11483-8

Summary

In this publication we study the effect of two drugs on the conforma-
tional plasticity of the p-opioid receptor (MOR): (1) morphine, a clas-
sical opioid drug, and (2) TRV-130, a potent G protein-biased agonist.
Particularly, we produced more than half millisecond of MD simulations
of MOR bound to these two ligands to study the effect of the drugs on
the dynamics and kinetics of MOR and to understand better the molec-
ular basis of functional selectivity. As a result, we identify differential
metastable states across the inactivation pathway, as well as differential
deactivation pathways, kinetics and differential allosteric communication
of the drugs across MOR.

Note: my contribution to this work has been the production of the simu-
lations as well as the validation of analysis and manuscript.
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3.5 Drug Discovery and Molecular Dynamics:
Methods, Applications and Perspective Be-
yond the Second Timescale

Martinez-Rosell G, Giorgino T, Harvey M], de Fabritiis G.
Drug Discovery and Molecular Dynamics: Methods,
Applications and Perspective Beyond the Second Timescale.
Curr Top Med Chem. 2017 Aug 8;17(23):2617-25. DOI:
10.2174/1568026617666170414142549

Summary

In this review we follow the steps of the oldest GPU MD code, ACEMD,
since its inception in 2009 until 2016. In particular, we focus on publi-
cations focusing on drug discovery and we analyze the evolution of the
field since its humble beginnings with studies of protein-ion binding un-
til complex studies of multi-fragment binding. Furthemore, we analyze
the evolution of GPU hardware performance and we predict that we will
reach the second timescale by 2022 based on the observed trend.
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3.6 High-Throughput Automated Preparation
and Simulation of Membrane Proteins with
HTMD

Doerr S, Giorgino T, Martinez-Rosell G, Damas JM, De
Fabritiis G. High-Throughput Automated Preparation and
Simulation of Membrane Proteins with HTMD. ] Chem
Theory Comput. 2017 Sep 12;13(9):4003-11. DOI: 10.1021/
acs.jctc.7b00480

Summary

In previous work it was shown that HTMD [80] python module offered
a powerful solution for the analysis of MD simulations and for running
adaptive sampling schemes. In this publication, we extend the HTMD
software functionality to include a module for building and running mem-
brane protein systems. To test the reliability of our building protocol,
we automatically built and equilibrated more than 640 membrane pro-
teins from the OPM database for both CHARMM and AMBER force-
fields. we then perform a short analysis to determine the quality of the
built systems and their equilibration. Finally, we share all the built sys-
tems to the scientific community through the PlayMolecule web platform
(http://www.playmolecule.org/OPM/).

Note: my contribution to this work has been the production of a web
application that allows the users to access the data generated in this pub-
lication.
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3.7 Data Augmentation and Predictions by Molec-

ular Dynamics Simulations and Machine
Learning

Adria Pérez, Gerard Martinez-Rosell, Gianni de Fabritiis. Under review
in Curr. Opin. Struct. Biol.

Summary

In this opinion article we envisage an upcoming scenario in which MD
simulations will be used as data augmentation tools for machine learn-
ing algorithms such as deep learning and convolutional neural networks
(CNN). With the current explosion of machine learning applications ap-
plied to chemistry and biophysics (such as Publication 6.1), we have re-
alized that data scarcity is the main limiting factor for these algorithms to
learn efficiently. Therefore, we propose that MD simulations can extend
the amount of available data by, for instance, predicting protein-ligand
binding affinity or protein folding for which no experimental data is avail-
able. These in silico-generated data points (e.g. Ky or protein folded
structure) can be appended to the amount of experimental data already
available and fed together into deep learning algorithms obtaining better
generalizations and results than with experimental data alone.
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Data Augmentation and Predictions by Molecular
Dynamics Simulations and Machine Learning

Adria Pérez®, Gerard Martinez-Rosell?, Gianni De Fabritiis®"

@ Computational Biophysiscs Laboratory (GRIB-IMIM), Universitat Pompeu Fabra,
Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona,
Spain
b Institucié Catalana de Recerca i Estudis Avanats (ICREA), Passeig Lluis Companys 23,
Barcelona 08010, Spain

Abstract

In the next five years, all-atom molecular dynamics (MD) simulations are
expected to reach sampling within the second timescale, producing petabytes
of simulation data. Notwithstanding this, MD will still be limited to low-
throughput, high-latency predictions. To overcome this limitation, we en-
visage that MD simulations will also be used as a data augmentation tool
integrating experimental data to train fast machine learning predictive mod-
els. The synergy between MD simulations and machine learning methods,
such as artificial neural networks, has the potentiality to drastically reshape
the way we make predictions in computational structural biology and drug
discovery.

Highlights

e Within five years, MD will reach the second timescale and generate
petabytes of data, yet MD is limited to low-throughput predictions.

e MD simulations can be used as a tool for data augmentation to train
machine learning predictive models.

e Potential synergies exist between MD and machine learning, from force-
fields to predictive models.

Email address: gianni.defabritiisQupf.edu (Gianni De Fabritiis )

Preprint submitted to Curr Opin Struct Biol. October 11, 2017
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Introduction

Molecular dynamics (MD) simulations are one of the predominant tech-
niques to study protein dynamics. MD is often used to capture dynamical
processes of proteins across different timescales with atomistic details, as a
way to rationalize some biological phenomena. Despite the potential to be-
come a surrogate model of real protein dynamics, some important issues still
remain to be solved, mainly: i) forcefield accuracy and precision [1, 2, 3, 4],
ii) high computational cost and sampling limitations. Classic MD simula-
tions constitute a balance between accuracy and efficiency. Quantum-level
phenomena such as enzymatic reactions and proton transfers are completely
neglected in exchange for computational speed. The extent to which these
limitations may affect the validity of the results depends on the system and
the biological question at hand.

Nevertheless, MD has evolved from single simulation studies [5, 6, 7] to
a high-throughput molecular dynamics [8, 9, 10, 11, 12] where hundreds of
microseconds of simulations are performed in parallel to obtain converged
statistics and new hypotheses about the underlying molecular phenomena of
the given study. Although it is possible to generate a lot of data for a single
system, the knowledge extracted from it is currently mainly used to rational-
ize a particular mechanism. Here, we envision an alternative use of the data
generated from all these isolated studies in a way that general patterns can
be learned and further predictions can be drawn by using machine learning
approaches. By doing so, one could expand the system-specific knowledge to
a much wider scope.

In this review, we first describe high-throughput simulation studies pro-
ducing high quantity of data in the fields of protein folding and protein-ligand
binding, to demonstrate the computer power currently available and future
expectations in terms of data production. Secondly, we discuss state-of-the-
art machine learning technology that has been recently applied to structural
biology. Finally, we combine both ideas by hypothesizing the use of MD
simulations to augment existing experimental data (structural and dynami-
cal information about proteins, thermodynamics and kinetics estimations of
recognition processes) and enhance the prediction power of machine learning
approaches. We focus on two practical examples: the prediction of protein-
ligand binding free energy and the prediction of protein structure.
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Accelerated and high-throughput molecular dynamics

Software and hardware innovations, such as the implementation of MD
codes for GPUs [13, 14, 15, 16], the appearance of distributed computing
projects like Folding@home[17] or GPUGRID [18] and the development of
special-purpose supercomputers like ANTON [19], are steadily decreasing the
computational cost of molecular simulations. Additionally, the development
of adaptive sampling schemes have introduced more efficient ways to explore
the conformational space, decreasing the amount of simulations needed to
obtain converged statistics [20, 21, 22]. Recently, new adaptive sampling
algorithms have been proposed, aimed at improving even more the efficiency
of the existing schemes [23, 24, 25]. Inspired by the multi-armed bandit
problem, these algorithms balance between exploration of the conformational
space and exploitation of a given metric, such as residue contacts or protein-
ligand distances, to guide the sampling. They have proven to speed up
convergence in different applications, such as ligand binding in GPCRs [23],
protein folding [24, 25] and protein conformational exploration [24].

The introduction of GPU MD software made simulations of full protein-
ligand binding processes faster and widely accessible, allowing for the predic-
tion of thermodynamic and kinetic properties, e.g. binding free energy and
binding rates [26]. MD simulations can efficiently reconstruct full protein-
ligand binding events and kinetic properties. This has been demonstrated
in several studies, such as the benzamidine-trypsin system [26], as well as in
[8, 9], both using fragment-sized ligands, for which kinetics are known to be
particularly fast and therefore computationally attainable. MD simulations
have also proven to be a valuable approach in the field of protein folding,
obtaining atomic-level descriptions of folding dynamics and shedding light
on protein conformational plasticity. Several examples of atomistic folding
simulations were performed with fast-folding proteins, like the Villin head-
piece subdomain [5], the Trp-cage miniprotein [27, 28, 29] or the mutant Pinl
WW domain [30].

Specialized supercomputers and GPU computing made millisecond simu-
lations possible and expanded the possibilities regarding protein folding. The
first reported trajectory to surpass the millisecond barrier was a BPTI fold-
ing simulation, performed with the supercomputer ANTON [31]. One year
later, ANTON was used again to perform a total of 8.2 ms of folding simula-
tions for 12 fast-folding proteins in explicit solvent [32], generating between
0.1 and 1 ms for each protein and capturing several folding and unfolding
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events. Besides fast-folding proteins, bigger systems with folding timescales
in the order of milliseconds have also been successfully simulated, such as
ubiquitin [33] and ACBP (in implicit solvent) [34].

Data augmentation for machine learning

In a recent review we estimated that MD will reach seconds of aggregated
sampling using commodity hardware by 2022 [35], generating petabytes of
simulation data. This amount of data constitutes a valuable source of po-
tential information that can be exploited. For instance, instead of using MD
as a way to learn about a particular protein or mechanism, simulation data
coming from a diverse set of proteins can be combined and fed into ma-
chine learning algorithms to create predictive models based on MD training
data. By following this approach, it is possible to exploit curated simulation
datasets, so that the knowledge extracted from it can be applied to many
more cases. In such way, MD would be used as a data augmentation tool to
generate data and machine learning techniques would be used to exploit this
data efficiently, creating faster and more accurate predictive models [Fig 1].

To illustrate the proposed approach, let us take as an example the case
of binding affinity prediction. Currently, there are several ways to predict
binding affinity of protein-ligand complexes. Although widely used, docking
algorithms usually provide fast but inaccurate results. MD is a more expen-
sive approach but with promising results throughout the literature. Unbiased
MD simulations can sample the spontaneous binding of a ligand, but they
are computationally very expensive to converge. To overcome this limita-
tion, alternatives to unbiased methods have also arisen, such as free energy
perturbation methods (FEP) [36, 37, 38], metadynamics [39, 40], umbrella
sampling [41, 42] and steered MD [43, 44]. All these techniques are valuable
to obtain binding free energies and literature provides plenty of successful
cases. However, techniques and results seem to be relatively system-specific
and low-throughput.

For illustrative purposes, a way to overcome these limitations could be to
extend the PDBbind database [45]. This database includes 16.000 protein-
ligand pairs and corresponding annotated affinity. The PDBbind database
reviewed more than 50.000 protein-ligand structures from the PDB database
in order to curate the general set of 16.000 structures. This reflects, once re-
dundancy is excluded, the massive amount of ligand-protein structures with
missing annotated affinity that could be computed using MD. While the
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Figure 1: General scheme of the suggested approach. MD simulations and machine learn-
ing methods are both combined to obtain predictive models which can be used for high-
throughput prediction studies. MD is used as a data augmentation tool to expand the
training data available. Then, structural, thermodynamic and kinetic experimental data
and simulation data are integrated together with machine learning methods to create pre-
dictive models. The synergy between MD and machine learning expands their current
capabilities to perform fast and accurate predictions.

amount of computational work may be currently unattainable, our predic-
tions foresee enough computational power in the near future to attempt this
challenge. More interestingly, once an expanded structure-affinity dataset
is created, one could use it to train machine learning models, such as deep
neural networks. These algorithms are particularly sensitive to the amount
of training data but, once extensively trained, they can yield predictions in
an infinitesimal fraction of time compared to MD simulations.

Another example application where MD can be used to produce train-
ing data is protein structure prediction. One recent achievement showcased
the use of evolutionary information and Rosetta to predict the unknown
structure for 614 proteins [46]. While large-scale predictions, such as the
aforementioned, are currently impossible using plain molecular dynamics due
to sampling limitations, a combined approach of a protein folding simulation
training dataset plus a machine learning algorithm that learns and generalizes
could prove effective. Machine learning algorithms could leverage petabytes
of folding simulation data of a representative group of proteins to learn about
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the general mechanisms of folding. By doing so, the prediction of hundreds
of protein structures could become feasible.

Current state of machine learning in computational structural bi-
ology

One of the main challenges then is how to efficiently analyze all the data
generated to obtain knowledge of different biological events. Machine learn-
ing approaches are already being used to analyze MD trajectories, such as
different clustering methods, signal processing methods (tICA [47, 48], PCA
[49, 50, 51]) and Markov state models [52, 53, 54, 55]. These algorithms help
to unravel the dynamic information contained in the simulation data. With
MSMs, one can obtain a good representation of a protein's free energy land-
scape in a human-understandable way. Still, the current analysis methods
used in MD have limited power when trying to leverage all simulation data
in order to gain a generalized understanding of it.

To learn from simulation data, the analysis techniques should be data
driven, being able to integrate the information from different simulations
and learn from it, detecting the basic features inside the data and creat-
ing models for the general mechanisms of protein dynamics. This type of
analysis is slowly rising in computational biology in the form of deep learn-
ing [56]. Several achievements have been accomplished using deep neural
networks (DNN) in computational biology. For instance, the Merck molec-
ular activity challenge demonstrated the potential of DNN-like models in
the field [57]. Focusing on computational chemistry problems, variational
autoencoders [58], a generative flavor of DNNs; were recently applied to con-
vert discrete representations of molecules to and from a multidimensional
continuous representation [59], allowing for efficient search and optimization
through open-ended spaces of chemical compounds. DNN-like approaches
consistently outperform previous existing models. For instance, DeepTox
[60] won the Tox21 toxicology prediction challenge in 2014 by a large mar-
gin. The DeepChem software [61] and the MoleculeNet challenge [62] have
recently helped by providing multiple featurization algorithms and access
to relevant QSAR prediction datasets. Regarding the analysis of structural
data, deep convolutional neural networks have become increasingly popular
due to its extraordinary performance in machine vision [63, 64], and they
have been used in problems such as virtual screening by classifying com-
pounds as active or inactive [65], ligand binding site detection [66], ligand
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pose prediction [67] and ligand affinity prediction [68].

A new interesting approach living in between machine-learning and MD
is followed in [69, 70, 71], where a neural network is trained with QM simu-
lation data to generate the potential energy surface and forces for a general
system of atoms. In the same way as MD force-fields do, the forces are true
derivatives of the interpolated potential energy surface using the gradients
of the neural network and can be used to run dynamics. The QM simulation
data is therefore learned by the model, with the accuracy of first-principle
based methods at a computational cost several orders of magnitudes faster
than the QM computational model, comparable to classical MD.

Discussion

Modern machine learning approaches can learn representative features
from data obtained by MD simulations and could provide effective predic-
tive models to apply in different structural biology problems, such as protein
folding or protein-ligand binding. The synergy between MD simulations and
state-of-the-art machine learning methods could bring the current prediction
performance of MD substantially beyond its limits, in a more cost efficient
way than with simulations alone. The main aim would be to develop pre-
dictive models, based on novel machine learning algorithms and trained on a
unique datasets of petabytes of MD and QM simulation data. In this context,
MD could be an in silico data generation method to expand experimental
data.

From the point of view of in silico data generation, we can make a broad
comparison between MD simulations and other machine learning applica-
tions. For instance AlphaGo, the artificial intelligence software designed to
play the board game Go, which recently defeated the best human Go player
[72], was trained with board positions from thousands of real-life games. In a
second training phase, the computer was set to play against itself. While in
the first phase the computer was trained with experimental data, the second
phase used training data generated completely in silico.

The examples provided throughout this article illustrate that, soon, in
silico generated data coming from MD simulations might be used as input for
machine learning models to augment experimental data, in order to develop
new integrated predictive models.
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Chapter 4
DISCUSSION

In this chapter we discuss some of the results obtained in this thesis, as
well as challenges and future work to be performed.

4.1 MD-driven fragment screening

In Publication 3.3 we performed the first MD-driven screening of more
than 150 fragments against the chemokine CXCL12. The analysis of
hundreds of short MD simulations with a MSM framework allowed us
to predict binding sites, kinetics and binding free energy. Overall, the
MSM results were satisfying and demonstrate its utility to analyze MD
simulations. However, there are several critical points in the protocol of
Publication 3.3 that need to be regarded and likely corrected in upcoming
work. It is important to note that these issues do not compromise the va-
lidity of the work but would enhance the quality of the results in future
applications of the protocol.

First, there is a need for a correct and accurate selection of a fragment
library for screening. Our lack of experience in the field of virtual screen-
ing made us take specific decisions, some of which were sub-optimal. For
instance, while picking negatively-charged residues was a good decision,
performing docking against the whole CXCL12 surface is a sub-optimal
strategy. Instead, we should have picked a number of pockets, from exper-
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imental structures or from MD simulations, and screen the library against
each pocket individually. This would exclude the possibility of docking
ligands in very flexible regions, which we already knew a priori, such as
the N-terminal tail of CXCL12.

Second, the binding pose of the fragments was, for several fragments,
blurry (i.e. was not defined, more like a cloud of structures) and future
development should be focused on automatically identifying, inside the
bound macrostate, the most stable and defined micro-states to ease the
human visualization of the binding pose. However, we must take into
consideration that small fragments are very promiscuous and prone to
move if the protein structure that accommodates them is also flexible,
such as in the case of arginine 20, in the sY7 pocket. In such cases,
the observed cloudy binding pose would be consistent with the expected
behavior of the fragment.

Finally, the parameterization of the fragments must be accurate and,
possibly, automated. The enormous amount of ligands we had to param-
eterize for Publication 3.3 pushed us to look for a compromise solution
between automatic parameterization using GAFF or CGENFF and the
manual work of running QM simulations for the dihedral angles and man-
ually fitting parameters. The solution we decided to use is GAAMP [83],
an automatic tool for parameterization that runs QM scans along the dihe-
dral angles and fits them automatically. The visual inspection of the pre-
and post- QM parameters was generally satisfactory. However, GAAMP,
as a black-box procedure, is really susceptible to introduce, if any, un-
noticed errors. Therefore, work should focus on making these automatic
tools as reliable as possible while requiring the least human intervention
possible. Finally, just mentioning that even if automatic parameterization
was perfect, there are phenomena like polarizability, protonation changes
or tautomerization that are not regarded by standard force-fields and may
have a big impact in the correct description of the protein-ligand interac-
tions. Future adoption of polarizable force-fields or constant-pH simula-
tions could address some of these issues.
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4.2 Benzene binding as a proxy for cryptic pocket
detection

In Publication 3.2 we used MD simulations of protein solvated in mixed-
solvent of water and benzene to detect cryptic pockets based on benzene
binding. We tested our protocol on 18 different systems and proved that
the protocol is able to detect cryptic pockets based on (a) the detection
of benzene binding hot-spots and (b) the results of a community-based
score function. We compared our protocol to other non-cryptic pocket
detector algorithms, DeepSite and fpocket, and, while our method was the
most accurate, fpocket was suprisingly good for the metric used and at a
fraction of computational time.

However, one of the advantages of our technique, CryptoScout, in
comparison to methods such as fpocket, is the structural description of
the pocket opening. In fact, the identification of a cryptic cavity alone
results quite useless without a structural description of how the cavity
looks when is open. The knowledge about the presence of a cryptic cav-
ity can be leveraged by experimental techniques such as fethering, that
can design protein mutants with cysteines on the predicted cryptic pocket
and test a library of disulfide-containing fragments against that pocket ex-
pecting the formation of a fragment-cysteine disulfide bridge (Fig. 4.1).
However, in order to apply additional in silico techniques, such as dock-
ing, is really important to decipher the structure of the open cryptic pocket
and, in particular, in a conformation that allows the successful docking of
the ligands.

For this reason, we assessed whether the binding of benzene could
actually sample the pocket opening in a conformation compatible with
docking by comparing conformations extracted from the MD simulations
to the holo conformation, this is the conformation of the protein when a
ligand is binding the cryptic cavity. We performed a PCA analysis of the
distances between the residues forming the cryptic pocket and observed
that, in some of the systems, the simulations reach pocket inter-residue
distances corresponding with the holo conformation. This fact is further
assessed by applying docking of the holo ligand to both the apo structure

153




“thesis” — 2017/10/25 — 15:46 — page 154 — #170

rSH i 6 rs;
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Introduce cysteine Screen against library
residue, if necessary of disulfide-containing
fragments

Figure 4.1: Overview of how tethering technique works. Extracted from
[139].

and 10 representative frames extracted from the simulations. By doing
so, we were able to reconstruct 10 out 17 ligands binding poses within
5A RMSD when using the 10 frames as protein structure compared to
only 4 out of 17 when using the apo conformation.

However, the question remains unanswered: can we know a priori
which exact conformation should we use in docking? One could argue
that knowing the position of the cryptic pocket one could run further MD
simulations using an adaptive sampling scheme to explore thoroughly the
conformational space of the pocket. However, should we run the simu-
lations with or without benzene? The answer to this question lies in the
eternal debate about whether the protein-ligand binding mechanism is due
to the conformational selection paradigm or the induced fit paradigm. If
the first paradigm is the case, then simulation of the protein alone should
already be able to sample the pocket opening. If the case is the second
paradigm, simulations with benzene may be a possible approximation al-
though probably in most cases we would need the actual ligand or the lig-
and moiety responsible for the induction of the protein binding conforma-
tion. As it is likely that both paradigms may be true in a system-specific
manner, the best approximation, arguably, would be to run the protein
with and without benzene, sample pocket conformations from both sim-
ulations and dock the ligands to the conformation ensemble hoping that
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Figure 4.2: Statistics of PlayMolecule platform usage. Obtained using
Google Analytics and data from the local database.

the ligand binding is mostly due to enthalpic energy (opposed to entropic)
and the docking scoring function is good enough at approximating the in-
teraction energy.

4.3 PlayMolecule: a web infrastructure for sup-
porting drug discovery

One of the main contributions of this doctorate has been to transfer know-
how and applications developed in the research group to a web platform
that exposes those services to be used by the scientific community and,
eventually, support the development of better drugs.

The platform, called PlayMolecule, was launched in June 2017 and,
since then, it has had an affluence of an average of 300 unique users per
month, as well as a continuous growth of number of jobs launched, which
indicates the raising interest and trust by the user community (Fig. 4.2).
Furthermore, at the time of writing, more than 40 users have registered
into the platform, including at least 3 big pharma companies, several im-
portant principal investigators and PhD students from all over the world.
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Chapter 5
CONCLUSIONS

1. High-throughput MD simulations are able to capture protein-ligand
binding events and can be applied in fragment-based drug discovery
to screen a library of fragments

2. The chemokine CXCL12 possesses two binding pockets, termed
sY7 and H1S68, where we predicted that small compounds con-
sisting of a hydrophobic core and a negatively-charged group could
bind

3. Mixed-solved simulations of a protein solvated in water and ben-
zene are able to identify cryptic pockets and capture the molecular
mechanism of pocket opening based on benzene binding

4. The molecular simulation of the -opioid receptor bound to a ligand
is able to capture the dynamic and kinetic behavior of the receptor
and can be used to rationalize GPCR functional selectivity

5. The transfer and implementation of applications in the web plat-
form PlayMolecule is an approach to broaden the accessibility and
applicability scope of the generated know-how and has been well
received by the scientific community
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Chapter 6

APPENDIX: OTHER
PUBLICATIONS

6.1 DeepSite: Protein binding site predictor us-
ing 3D-convolutional neural networks

Jose Jiménez, Stefan Doerr, Gerard Martinez-Rosell, Alexander Rose, Gi-
anni de Fabritiis. Bioinformatics. 2017 Oct 1;33(19):3036-3042.
doi: 10.1093/bioinformatics/btx350.

Summary

DeepSite is a novel method for binding pocket detection leveraging con-
volutional neural networks (CNN) trained with the scPDB database, a
database of protein-ligand structure complexes. In order to train the CNN,
the experimentally-resolved binding pockets are featurized by creating 3D
maps of chemical properties such as atom occupancies, H-bond donors,
H-bond acceptors and aromaticity. The feature maps of binding pockets
are then used to train a CNN, that learns to differentiate feature maps of
binding sites from non-binding sites. In prediction mode, a query protein
structure is segmented into overlapping boxes and for each box the feature
maps are calculated. Then, the feature maps are fed into the pre-trained
CNN, which returns a probability of containing a binding site. Finally,
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an iso-surface of the probability of containing a binding site is generated
from the overlapping boxes all around the protein and binding site centers
are calculated by clustering the probabilities. The application has been
made available free of charge as part of the PlayMolecule suite of apps
(www.playmolecule.org/deepsite/).
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