
 

 

 

 

 

 

 

 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A 

PLATFORM FOR AMINOACID BIOCONJUGATES AND PEG-DERIVED 
AMPHIPHILIC COPOLYMERS 

 
Carmen Valverde Sarmiento 

 

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 

can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 



 
 
 
 
 
 

 

 

 
10-Undecenoic acid-based biodegradable hydroxy polyesters:  
a platform for amino acid bioconjugates and PEG-derived 
amphiphilic copolymers 

 

 

CARMEN VALVERDE SARMIENTO 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DOCTORAL THESIS 
2018 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



 

 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



 

Carmen Valverde Sarmiento 

 

10-Undecenoic acid-based biodegradable hydroxy 

polyesters: a platform for amino acid bioconjugates and 

PEG-derived amphiphilic copolymers. 

 

PhD Thesis 

Supervised by Prof. Virginia Cádiz and 

 Prof. Juan Carlos Ronda 

 

Department of Analytic Chemistry and Organic Chemistry 

 

 

Tarragona 

2018 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



 
Departament de Química Analítica i Química Orgànica 
C/ Marcel·lí Domingo, 1 
43007, Tarragona 
Telf. 977 559 769 
Fax. 977 558 446 

 
 
Prof. Virginia Cádiz Deleito and Prof. Juan Carlos Ronda Bargalló from the 

Department of Analytical Chemistry and Organic Chemistry, University Rovira 

i Virgili,  

 

We STATE that the present study, entitled: 

 

 “10-Undecenoic acid-based biodegradable hydroxy polyesters: a platform 

for amino acid bioconjugates and PEG-derived amphiphilic copolymers” 

 

presented by Carmen Valverde Sarmiento for the award of the degree of 

Doctor, has been carried out under our supervision at the Department of 

Analytical Chemistry and Organic Chemistry of this University. 

 
 
Tarragona, 03 September, 2018 

Doctoral Thesis Supervisors 

 

 

 

 

 

Prof. Virginia Cádiz Deleito         Prof. Juan Carlos Ronda Bargalló 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



ABSTRACTS: 

CATALÀ 

El gran desenvolupament que actualment estan experimentant els biopolímers es deu 

fonamentalment als alts preus i a la disminució de les reserves de petroli, juntament amb 

la preocupació que existeix avui en dia en matèria de sostenibilitat ambiental. Entre els 

polímers d'origen renovable, els polièsters alifàtics són dels més estudiats ja que es 

consideren molt adequats per aplicacions com a biomaterials a causa de la seva 

biocompatibilitat i biodegradabilitat. 

En aquesta tesi s'han preparat polièsters renovables mitjançant química sostenible i 

utilitzant derivats de l'oli de ricí, com a producte de partença.  Concretament, s'han fet 

servir reaccions amb àcid 10-undecenoïc per obtenir els monòmers, que contenen grups 

funcionals àcid carboxílic i epòxid o alcohol. Tots dos tipus de monòmer són capaços 

d'experimentar polimerització, obtenint així polímers lineals i ramificats amb grups 

hidroxilo funcionalitzables. S'ha demostrat que aquests polímers són degradables 

enzimàtica i hidrolíticament. A més a més s'han modificat aquests polièsters amb diferents 

biomolècules com els aminoàcids. 

Finalment, utilitzant enzims com a catalitzador s'han sintetitzat copoliésters de bloc i 

d’empelt a partir d'aquests monòmers o polièsters i derivats del polietilenglicol. Com a 

resultat s’han obtingut polímers amfifílics capaços de formar micel·les en les quals és 

possible encapsular drogues per ser alliberades de forma controlada. 
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CASTELLANO 

El gran desarrollo que están experimentando actualmente los biopolímeros se debe 

fundamentalmente a los altos precios y disminución de las reservas de petróleo, junto con 

la preocupación que existe hoy en día en materia de sostenibilidad ambiental. Entre los 

polímeros de origen renovable los poliésteres alifáticos son los que se han estudiado en 

mayor profundidad por ser los más adecuados como biomateriales, debido a su 

biocompatibilidad y biodegradabilidad. 

En esta tesis se han preparado poliésteres renovables mediante química sostenible y el uso 

de derivados de aceite de ricino como materia de partida. Concretamente, se han usado 

reacciones a partir del ácido 10-undecenoico para obtener monómeros que contienen 

grupos funcionales ácido carboxílico y epóxido o alcohol.  Ambos monómeros son capaces 

de experimentar polimerización, obteniendo así polímeros lineales y ramificados con 

grupos hidroxilo funcionalizables. Se ha demostrado que estos polímeros son degradables 

enzimática e hidrolíticamente. Además, estos poliésteres se han modificado con diferentes 

biomoléculas como aminoácidos. 

Finalmente, utilizando enzimas como catalizador se han sintetizado copoliésteres de 

bloque y de injerto a partir de estos monómeros o poliésteres y derivados del 

polientilenglicol. Como resultado, se han obtenido polímeros amfifílicos capaces de formar 

micelas, en las cuales es posible encapsular drogas para ser liberadas de forma controlada. 
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ENGLISH 

Currently biopolymers experienced a great development due to the high prices and 

decrease of petroleum reserves along with the concern increasing in terms of 

environmental sustainability. Aliphatic polyesters are among the most studied polymers 

from renewable resources, because they are considered very suitable for applications as 

biomaterials due to their biocompatibility and biodegradability. 

In this thesis, renewable polyesters have been prepared from derivatives of vegetable 

castor oil and using sustainable chemistry. Specifically, 10-undecenoic acid has been used 

to synthesize the monomers which contain carboxylic acid and epoxide or alcohol. These 

monomers by polymerization lead to linear or branched polymers with available reactive 

hydroxyl groups. It has been shown that these polymers are enzymatically and 

hydrolytically degradable. In addition, these polyesters have been modified with different 

biomolecules as amino acids. 

Finally, using enzymes as catalyst have been synthesized block and grafted copolyesters 

from these monomers or polyesters and polyethylene glycol derivatives. As result, 

amphiphilic polymers capable of forming micelles have been synthesized, which can 

encapsulate drugs to be released. 
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1. AIM AND OUTLINE  

Biopolymers are potential candidates for replacing fossil-derived polymers mainly due to 

their sustainability, biodegradability, and biocompability. Biobased polymers have had a 

significant increase of interest in the last years due to at least two important reasons. The 

first one is related to the availability of raw materials for the synthesis of polymers. 

Currently, the majority of polymers is produced from crude oil with the problems 

associated with the high prices and rapid fluctuations. The second reason of interest is 

related to waste management. Expected solution to this problem cannot rely on only one 

approach but rather on combination of a variety of them. Taking advantage of chemistry, 

the efficient transformation of renewable resources avoiding the use of fossil reserves that 

contributes negatively to the planet’s energy problem, is a useful approach. Moreover, the 

synthesis of degradable polymers is also pursued, decreasing the negative environmental 

impact of huge amounts of plastic waste generation.  

By selecting appropriate biomass feedstock and appropriate transformation processes, a 

wide range of molecules are accessible and these bioplatform molecules are a new 

challenge for chemistry. Then, the question is if we can build on these molecules as we 

have done over the last 70 years with the well stablished petroplatform molecules. A 

substantial grow in research activity on the conversion of these platform molecules to 

valuable and competitive products is needed.    

The synthesis of polyesters and copolyesters made from monomers obtained by chemical 

modification of naturally-occurring compounds such as vegetable oils may lead to 

renewable polyesters with improved properties regarding to those displayed by the 

traditional ones.  

Poly(lactic acid) or poly(lactide) (PLA) and poly(Ɛ-caprolactone) (PCL) are two of the leading 

and most mature biobased plastics among other aliphatic polyesters. However, the 
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versatility and successful use as commodity plastics are limited as is their exploitation in 

biomedical, electronic and optical sectors. The absence of reactive functionalities on the 

polymer backbone greatly limits their use. Thus, the introduction of functional groups can 

modulate their physical, chemical and biological properties. 

General objective 

The aim of this Thesis is preparing renewable functional polyesters from platform 

chemicals derived from vegetable oils, and developing environmentally friendly monomers 

and polymer synthesis strategies to keep moving toward more sustainable polymer 

chemistry. To achieve this goal special emphasis in no metallic and enzymatic catalysis has 

been done.  

Specific objectives 

The specific objectives are enumerated as follows: 

• To prepare AB and AB2 monomers using green methods exploiting the reactivity of 

10-undecenoic acid, available from the pyrolysis of castor oil, as key substrate. 

• To develop new linear and branched hydroxyl functionalized polyesters by 

chemical or enzymatic polymerizations.  

• To study the enzymatic and hydrolytic degradation behaviour of these hydroxyl 

polyesters and to compare to that of poly(11-hydroxyundecanoate) and 

commercial poly(ε-caprolactone). 

• To carry out the post-polymerization modification of free hydroxyl groups with N-

Boc protected L-phenylalanine and L-serine, and a cysteine derivative as models 

for polymer bioconjugates. 
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• To develop hyperbranched amphiphilic copolyesters by copolymerization with 

methoxypolyethylenglycols or by grafting onto the polyesters using carboxyl 

functionalized di and triethyleneglycols. 

• To study the ability of these amphiphilic copolyesters for self-assembling into 

micelles and to investigate their micellar behaviour. 

Outline 

The work presented in this Thesis is structured in seven chapters including aim and outline, 

general introduction, experimental part and general conclusions. 

Chapter 1. The present chapter focuses on the objectives and the outline of the Thesis 

Chapter 2. This chapter contains a general introduction and reviews the state-of-the-art of 

biobased polyesters from fatty acids, hydroxy functional polyesters and their 

postpolymerization modification and formation of micelles from amphiphilic copolyesters. 

Chapter 3.  Hydroxyl functionalized renewable polyesters derived from 10-undecenoic 

acid: polymer structure and postpolymerization modification.  

Chapter 4.  Hydrolytic and enzymatic degradation studies of aliphatic 10-undecenoic acid-

based polyesters. 

Chapter 5. PEG-modified poly(10,11-dihydroxyundecanoic acid) amphiphilic copolymers. 

Grafting versus macromonomer copolymerization approaches using CALB.  

Chapter 6. This chapter deals with experimental part. 

Chapter 7. General conclusions. 

In the Annex part, the Supporting Information (SI) of Chapters 3, 4 and 5 is collected 

(Annexes A, B and C). 
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2.1 SUSTAINABILITY  

Nowadays, plastics are the most important materials that we use in the modern life. 

However, this kind of materials is not new, early uses date back from 1600 B.C., when 

ancient Mesoamerican people harvested latex from Castilla elastica (Figure 2.1).1 

 

Figure 2.1 Castilla elastica sheet. 

In 1284 it was used horn and tortoiseshell as the predominant natural plastic.2 In 1839 

American Goodyear invented vulcanized rubber and a German apothecary Eduard 

Simon discovered polystyrene (PS).3 He distilled an oily substance from storax, the resin 

of the Sweetgum tree, which he named "styrol". Several days later he found that the 

styrol had thickened, presumably due to polymerization, into a jelly which he named 

styrol oxide ("Styroloxyd"). However, the first synthetic polymer was Bakelite, that was 

developed by a Belgian chemist Leo Baekeland in 1907. Nevertheless, the great 

development of polymers was not until 20th century. 

The plastics industry gives directly employment to over 1.5 million people in Europe 

currently. There are close to 60000 plastic companies, the European plastics industry 

ranks 7th in Europe in industrial value, at the same level as the pharmaceutical industry. 

The plastic world production is increasing and more than 300 Mt have been fabricated 

in 2016 (Figure 2.2). Its large annual production is due to plastic properties like: 

lightweight, resistance, versatility, economic, easy processing… becoming one of the 
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main materials we use daily in packaging, construction, medical industry, electronic 

devices, etc.4  

 

Figure 2.2 World and European production of plastic. 

Within the last few decades plastics have revolutionized our daily lives. At the same 

time, the environmental consequences are being manifested so that the concern about 

the need to legislate its use is growing up. Owing to the wide usage of plastics and its 

additives, plastics can be a potential human health and environmental risks.5 Figure 2.3 

illustrates a historical summary in the development, production and use of plastics 

together with associated concerns and legislative measures.6  

 

Figure 2.3 Historical overview summarizing the development and production of plastic, together 
with associated concerns, regulatory measures and some potential future trends. 
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Although there are regulatory measures in plastic materials, the growing up world 

global industrialization leads to the use of large quantities of fossil resources. More 

than 80 % of consumed energy is from fossil resources, and they have some inherent 

problems, they generate a lot of harmful emissions like as greenhouse gases (GHG), 

CO2, methane and others pollutants, which are risks to the humankind and animal 

health. The different emissions are harmful for humankind, moreover they produce 

plastic wastes.  

The polymer fossil-based industry is deeply rooted in European economy, with its well-

known environmental and health consequences. With regard to this problem, the 

European Commission, in 2012, adopted strategies to change the European economy 

to bioeconomy. Bioeconomy is the sustainable exploitation of renewable biological 

resources from land and sea (such as crops, forests, fish, animals and microorganisms) 

to produce food, biomaterials and bioenergy.7 So the plastic industry is inside of this 

new view of economy, and biopolymers are the most important alternative plastic 

materials to contribute with bioeconomy.  Climate change and the associated need to 

reduce greenhouse gases mean it is time for a rethink.  

The most the plastics come from crude oil, natural gas and coal. Some of the negative 

impacts could be reduced by bioplastics that are biodegradable o bio-based.8 European 

bioplastics has done a forecast about bioplastics (Figure 2.4).4 Bioplastics can be 

described by two different concepts: 

• Biodegradable plastics: which are materials that are degraded by microorganisms into 

water, carbon dioxide (or methane) and biomass under specified conditions and can be 

made from organic and/or fossil resources.  

• Bio-based plastics: which are materials made from biological and renewable 

resources such as grains, corn, potatoes, beet sugar, sugar cane or vegetable oils. 
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Renewable resource can be described like: “any animal or vegetable specie which is 

exploited without endangering its survival and which is renewed by biological (short 

term) instead of geochemical (very long term) activities”.9  

 

Figure 2.4 Forecast from European Bioplastics. 

On the other hand, look for renewable resources in not new from 21st century, already 

in the 19th century renewable resources such as cellulose, vulcanised natural rubber 

and some vegetable oils were used. However, the interest in alternative sources fell in 

the 20th century due to the domination of the fossil sources. There is still one major 

problem usually associated with the biopolymers, it is their relatively high cost 

compared to their petrochemical homologues. Perhaps, the effective implementation 

of the biorefinery concept is the solution for the difference between prices and will 

make biopolymers available.10 

Over the last decades, there is the trend in the development of polymer from 

renewable-based material.9 Nowadays, there are a large quantity of materials derived 

from biological sources (cellulose, vegetable oils, sugars, proteins...) and other 

materials which microorganisms (bacterial or fungi) can convert into different 

monomers. Scheme 2.1 shows some examples of renewable monomers suitable for 

develop biopolymers.11   
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Scheme 2.1 Biomonomers and their biopolymers from renewable sources. 

Development and production of polymers from renewable sources is currently a reality 

in some large companies. For example, The Coca-Cola Company launched its 

PlantBottle TM technology, they developed polyethylene terephthalate (PET) with 30 

% plant-based material, in 2009. Afterwards, H. J. Heinz (ketchup producer) and Ford 

Motor Company used this material and Coca-Cola try to produce its PlantBottle using 

only renewable resources. LEGO, an important toy manufacturer, invested 135 € 

million in its own Sustainable Materials Centre, in 2015. Now, LEGO is using polymers 

from renewable resources in its building bricks. IKEA wants to manufacture all its plastic 

products from renewable and recycle materials (bags, toys, boxes…). Other example is 

Synvina, which is a joined venture company between BASF and Dutch Company 

Avantuim. Synvina produces the chemical building block furandicarboxylic acid (FDCA) 

from fructose. With FDCA it possible to develop polyethylenefuranoate (PEF) to 
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manufacture bottles and food packaging.12 The mind of business is changing to have a 

sustainable world where we do not depend on fossil sources.  

2.1.1 Vegetable oils as renewable feedstocks  

Cellulose is the most abundant renewable polymer in nature because it is the main 

building component of our planet’s vegetation, however one of the most widespread 

and used renewable source are vegetable oils (VOs).13,14 VOs are considered to be one 

of the most important biological sources available which are alternative to fossil 

sources. 15,16  From 1950s decade vegetable oils are introduced into chemical industry 

because they are environmentally friendly, biodegradable, they have availability, low 

cost, high purity and low toxicity. Renewable feedstocks are replacing the use of fossil 

resources to make new polymers, as result of this, by green chemistry it is being 

developed a new polymer generation.17,18 Vegetable oils meet with 7th point of 12 

Principles of Green Chemistry which promote sustainability in chemistry.18-2019,20  

Vegetable oils are composed by mixtures of triglycerides. Triglycerides are three fatty 

acids linked to glycerol. By transesterification with monohydroxyalcohols they generate 

the corresponding esters and glycerol (Scheme 2.2).17 Vegetable oils are liquids at room 

temperature and insoluble in water, about 95 % by weight are fatty acids.  

Vegetable oils have some potential reactive sites which play an important role in its 

chemistry reactions and transformations. By esterification of a triglyceride, is obtained 

the corresponding esters and they can be reduced to alcohols. Scheme 2.2 shows 

esterification and reduction reactions and some examples of reactive groups, (1) 

reactions of the ester moiety, (2) reaction related to the methylene group directly 

attached to the carbonyl site of the ester moiety, (3) reaction involving the unsaturation 

and (4) reaction related to the allylic methylene.21,22  
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Scheme 2.2 Chemical conversion of a triglyceride from vegetable oil. 

Vegetable oils have some potential reactive sites which play an important role in its 

chemistry reactions and transformations. By esterification of a triglyceride, are 

obtained the corresponding esters which can be reduced to alcohols. Scheme 2.2 shows 

esterification and reduction reactions and some examples of reactive groups, (1) 

reactions of the ester moiety, (2) reaction related to the methylene group directly 

attached to the carbonyl site of the ester moiety, (3) reaction involving the unsaturation 

and (4) reaction related to the allylic methylene.23,24  

There are different vegetable oils naturally available and the composition of each 

vegetable oil is related to the natural species from where the oil is extracted. Glycerol 

and fatty acids are widely used in the industry. Glycerol is a versatile compound which 

can be converted in a wide range of products; it is very used in foods, pharmaceutical 

industry, cosmetics and biodiesel. 24,25  

Fatty acids can be used as starting materials to synthesize renewable oil-based 

monomers and polymers, with interesting hydrophobic and biodegradable 

properties.26 They have a long aliphatic chain, saturated or unsaturated, with 0 to 3 

double bounds per chain. Iodine value (IV) measures the average degree of 

unsaturations, that is the double bonds content in 100 g of oil.  There are three groups 

of oils: drying (IV>130), semidrying (90<IV>130) or non-drying (90<IV). They have an 
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even number of carbon atoms, from 4 to 28 and the most common fatty acids have 14-

22 number of carbon atoms.27 Scheme 2.3 shows the most common fatty acids used as 

renewable feedstocks. The vegetable oils have different percentages of fatty acids 

according to their nature.   

 

Scheme 2.3 Some fatty acids used as renewable feedstocks. 

There is a large list of vegetable oils: canola, corn, linseed, olive, soybean, castor, palm, 

rapeseed, sunflower, however castor oil is one of the best renewable feedstocks 

alternative to fossil raw materials. 28,29 Castor oil is important due to biodegradability, 

not edible, low cost, environmentally friendly, easily extraction (50 % oil by weight), 

and renewability. Castor oil has carboxylic groups and unsaturations, both groups are 

highly reactive and modifiable, as well as the most of the fatty acids, and in addition it 

has a secondary hydroxyl group. Castor oil comes from castor plant and contains more 

than 90 % of ricinoleic acid (Table 2.1). Castor oil can be extracted from castor seeds by 

mechanical pressing, solvent extraction or both.  

Table 2.1 Castor oil composition. 

Fatty acid Percentage (%) 

Palmitic 0.8-1.1 

Stearic 0.7-1.0 

Oleic 2.2-3.3 
Linoleic 4.1-4.7 

Linolenic 0.5-0.7 
Ricinoleic >90 
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The castor plant (Ricinus communis) is from Euphorbiaceae family and it grows up in 

different climate (especially tropical climate). The plant is perennial, and usually is 10-

12 m high. India is the largest producer (75 %), followed by China (12.5 %) and Brazil 

(5.5 %).30 The production of castor plant is increasing 36 % in last decade because the 

chemical structure of the oil is very versatile in industry, thus decreasing its price in the 

market. Castor oil is non-edible because it has toxic compounds (ricine and ricinine), 

which are toxic proteins that inhibit some human and animal protein synthesis. 

Castor oil hydrolysis easily produces ricinoleic acid which is a renewable raw material 

with a huge importance in chemical industry due to its three functional groups (Scheme 

2.4). The polymerization of ricinoleic acid has been studied to obtain poly(ricinoleic 

acid) (PRA) by different polycondensation ways: acid catalysis or enzymatic catalysis. 

PRA has been exploited in different fields such as biomedicine and industrial 

preparation of polyesters, polyurethanes and polyamides.31 

 

Scheme 2.4 Some potential applications from ricinoleic acid in the biopolymeric field. 

Moreover, by pyrolysis under vacuum conditions, it can be obtained 10-undecenoic 

acid (UA) and heptaldehyde from crude castor oil or from ricinoleic acid (Scheme 2.4). 

Several mechanisms have been proposed to explain this pyrolysis: a McLafferty-like 

rearrangement in a concerted mechanism and free-radical mechanisms.32,33 Nowadays, 
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UA is a good antitumor and antibiotic precursor although the most important industry 

application is Nylon 11 synthesis. UA is also important in cosmetic, perfume, 

pharmaceutical and material applications.34 

2.2 POLYESTERS 

2.2.1 Historical overview 

The polyesters are polymers which are synthesized by polycondensation process, by a 

wide range of reactions. The most common is the polyesterification between 

dihydroxyl compounds with diacids, or their derivatives by polycondensation reactions. 

The main chain in polyester is composed of aliphatic or aromatic moieties linked 

together by ester groups (R-COO-R’). Ester linkage can be easily cleaved by hydrolysis 

under alkaline, acid or enzymatic conditions, so that, polyesters can be biodegradable. 

In the early nineteenth century General Electric Company developed resins from 

carboxylic polyacids and glycerol resulting in resinous compounds. This type of resins is 

still widely used for the production of coatings, varnishes and paints.  

In 1930s Carothers synthesized for first time polyesters by the reaction between 

aliphatic diols and aliphatic diacids. He established the bases of step-growth 

polymerization through conversion, functionality and gel point studies.35 At the begins 

these polyesters were not very promising because they had low melting points, they 

were sensitive to hydrolysis and no practical applications. These first polyesters could 

not compete with aliphatic polyamides or nylons, and the search for better polyesters 

continued, to get polyesters with higher melting points and better thermomechanical 

properties. In order to improve polyester properties, it was necessary to stiffen the 

polyester chain by using rigid aromatic monomers instead of flexible aliphatic.  
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In the early 1940s in United Kingdom, Calico Printers Association laboratories 

developed poly(ethylene terephthalate) (PET) synthesis.36 Whinfield and Dickson, 

carried out the reaction between terephthalic acid and aliphatic diols, yielding high 

melting point fibre-forming polyesters. Nowadays, PET is one of the most produced 

polymers primarily for the textile and packaging applications. In Whinfield’s patent is 

also described the synthesis of poly(butylene terephthalate) (PBT) and 

poly(trimethylene terephthalate) (PTT). PET, PBT and PTT (Scheme 2.5) are important 

in textile industry because aromatic polyesters have great mechanical properties and 

good heat resistance. Actually, aliphatic polyesters were the first fully characterized 

step-growth polymers, but they were not used in commercial applications until late 

50s.  

 

Scheme 2.5 Chemical structure of a) PET, b) PBT and c) PTT. 

By the end of the 1930s, a new type of crosslinkable polyesters resins was discovered 

by Carothers and Flory. By the reacting mixtures of saturated and unsaturated diacids 

or anhydrides with aliphatic diols unsaturated polyesters were synthesized.37 

The development of polyesters has continued until nowadays, so that polyesters 

become one of the most important polymers in wide variety of applications. Polyesters 

are present in fibres, engineering thermoplastics, resins, bottles, injection-moulding 

resins for UV-resistant, biomedical devices…38 

In 1990s, environmental concerns began to be gaining ground so that, in the last 

decades development of polyesters focused on biodegradable and biobased 

polyesters. Due to the versatility of the ester linkage, able to undergo hydrolysis, 
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alcoholysis and acidolysis in some conditions, aliphatic polyesters are the polymers of 

choice to fulfil the increasing demand for recyclable and /or biodegradable polymers.39   

Most polyesters are degraded after a few weeks or months in soils. Polyesters are 

hydro-biodegradables and they can be converted by microorganisms to carbon dioxide 

(or methane in anaerobic conditions), water and biomass. Currently there are many 

biodegradable polyesters type obtained from renewable resources, such as sugars, 

vegetable oils, organic acids, glycerol, suberin, cutin…  

Biodegradable aliphatic polyesters can be used to implants for orthopaedic fixations or 

sutures, because polyesters are slowly degraded in the body so that a second surgical 

intervention is not required for implant removal after healing. Some examples of 

biobased aliphatic polyesters are poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL), 

poly(trimethylene carbonate) (PTMC), poly(glycolic acid) (PGA) or their copolyesters 

which are used in food tray, cosmetic bottles, beverage bottles, shopping bags...40 

Nowadays, poly (lactic acid) (PLA) is the most relevant industrial biobased aliphatic 

polyester. Polyesters from lactic acid have been used since 1960s in medical sutures 

because PLA is bioresorbable. It can be considered as a green polymer because it is 

biobased and degradable to CO2 and H2O through microorganisms forming a closed 

cycle (Scheme 2.6).41  

Aromatic polyesters resist microbial attack and do not degrade under normal 

conditions, and they show great mechanical properties and good heat resistance. 

Several companies commercialize fully or partially biodegradable aromatic polyester:  

BASF developed Ecoflex® that is poly(butylene adipate-co-terephthalate) (PBAT) which 

is biodegradable by some plastic-degrading enzymes, DuPontTM developed Sorona® EP 

and Hytrel® RS, which are poly(trimethylene terephthalate) (PTT) and 

poly(tetramethylene glycol) (PBT-b-PTMG), respectively. They contain between 20 % 
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and 60 % renewable sourced polyether glycol derived from non-food biomass. Other 

example is PlantBottleTM from recyclable PET from The Coca-Cola Company.10   

 

Scheme 2.6 PLA cycle. 

2.2.2 Synthetic methods  

Polyesters can be produced via several methods such as high-temperature bulk 

esterifications, low temperature enzyme-catalysed esterifications. Moreover, solid 

state is also used to restrain side reaction and thermal degradation of the products. 

Polycondensations can be carried out in solution, however, the use of solvents hinders 

applications at industrial scale.42 

The synthesis of polyesters can be performed by polycondensation of hydroxyacids, 

diacids and diols or by ring opening polymerization of cyclic esters (Scheme 2.7).  

These reactions are usually carried out in presence of catalyst. There are different kind 

of catalysts: metallics and organometallics, organics and enzymatics (lipases). 
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Scheme 2.7 Polyester synthesis from a) polycondensation of a diacid and a diol (AA + BB), b) 
polycondensation of a hydroxy acid (AB), and c) ring-opening polymerization of a lactone (ROP). 

2.2.2.a Polycondensations  

Polycondensation (Scheme 2.7, reaction a and b) is an equilibrium process. The 

synthesis of polyesters is carried out by a stoichiometric reaction between bifunctional 

reactants and are accompanied by the release of low molecular weight condensation 

products. To get high molecular weight polymers, vacuum is generally applied during 

last steps. So, it is possible to remove water and get conversions close to 100 %.43 

Moreover, the synthesis of high molecular weight polyesters requires maintaining 

proper end-groups stoichiometry and the continuous removal of the condensate to 

prevent depolymerization.  Side reactions may cause imbalance of reactive groups and 

limit the molar mass or may led to produce undesired polymer structures. Sometimes 

with high temperature (150-300 ºC) and bulk conditions these problems are minimized. 

The synthesis of polyesters can be also carried out utilizing an AB monomer. An 

advantage of utilizing this AB monomer is the inherent balance of the two reactive 

groups in a single molecule as the absolute precision of the reactant’s molar ratio is a 

necessary requirement to obtain polymers of sufficient molecular weight.44  

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Introduction 

23 

 

The direct reaction between alcohol and carboxylic acid to get polyester is conducted 

under acid or basic catalysis conditions when the reaction is without activator, although 

catalyst-free conditions are more desirable. Esterification or transesterification 

polycondensation reactions from melt usually employ metal salts, metal oxides or 

metal alkoxides as catalysts, reaching high molar mass polyester, so that this kind of 

catalysts is widely used.45 

When the substrates are acids-resistant, usually the reaction is carried out in presence 

of BrØnsted acid (HCl, HBr, H2SO4, NaHSO4, HSO3Cl, NH2SO3, H3PO4, HBF4, AcOH, 

camphorsulfonic acid…). If the acid is not high enough to trigger the reaction, an 

activator of acid can be added.  Also, the use of Lewis acids, milder than BrØnsted acids, 

are rapidly increasing. BF3·OEt2, FeCl3, SnCl2, Sn (Oct)2, Sc(OTf)3, HfCl4·2THF are some of 

the most important Lewis acids catalysts. 

Other usual catalysts in polyesterification are organic catalysts, such as 

diclyclohexylcarbodiimide (DCC) or N-(3-dimethylamino-propyl)-N’-ethylcarbodiimide 

hydrochloride (DECH). The use of DCC as a promoter in polyesterifications, represents 

one of the most versatile polymerization and post-modification methods. The reactions 

usually proceed at room temperature and the reactions conditions are so mild that 

substrates with various functional groups can be employed. As such, a wide range of 

applications have been achieved in the fields of natural products, peptides, nucleotides, 

etc… The applications of the DCC methods in pure organic synthesis dates back to 1967.  

In addition to the metallic and organic catalysts, enzymatic catalysts are frequently 

used in polyesterification. Enzymes are non-toxic, recyclable and eco-friendly 

biocatalysts… They can be easily removed from the reaction and play an important role 

in polyesterification technology. 
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Hydrolase enzymes can performance polymerizations of various sugar and natural 

monomers in vitro with bond-formation to made polyesters (polysaccharides). So, 

enzymes catalyse the reaction in a reverse direction in vitro to in vivo (Figure 2.5).  

 

Figure 2.5. A model expression of lipase-catalysed reactions: a) in vivo hydrolysis and b) in vitro 
polymerization of monomers to procedure a polyester molecule. 

In the three last decades, a lot of polyesters were synthesized by enzymes; the most 

used for in vitro polyesterifications are in the next table (Table 2.2).46  

Table 2.2 Origen of enzymes used for in vitro polyesterification and their abbreviations. 

Enzyme origin abbreviation 

Candida cylindracea lipase CC 

Pseudomonas fluorescens lipase PF 

porcine pancreas lipase PPL 

Aspergillus niger lipase A 

Candida rugosa Lipase CR 

Penicillium roqueforti lipase PR 

Pseudomonas cepacia lipase PC 

Rhizopus japonicus lipase RJ 
Rhizomucor meihei lipase RM 

Mucor meihei lipase MM 

Candida antarctica lipase CA 

Candida antarctica lipase B CALB (Novozym 435)a 

Yarrowia lipolytica lipase YL 
aCALB immobilized on an acrylic resin is commercially called as Novozym 435. 
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In order to improve its efficiency, enzymes are immobilized as cross-linked enzyme 

aggregates, call them CLEAs (cross-linked enzyme aggregates).47 The CLEA technology 

is a simple and effective way of immobilizing enzymes that offer several advantages 

when compared to the corresponding free enzymes, such as increased thermal 

stability, facile recovery and reuse, and high productivities as compared to carrier-

bound enzymes. Some of materials which are used to immobilized are celite or acrylic 

resin.48  

Lipases are nature proteins so that polyesterifications are carried out in mild conditions, 

below 100 °C (20-90 °C) and low or not pressure. Solvent hydrophobicity plays an 

important role in enzymatic activity, particularly for lipases which normally act at oil-

water interfaces in living cells. The best reactivity is found for hydrophobic solvents 

such as hexane, toluene, diisopropylether or diphenylether. Hydrophilic polar solvents 

such as DMSO or methanol lead to significant modifications in enzyme conformation 

and, therefore, to a dramatic decrease in catalytic activity. Water, supercritical carbon 

dioxide and ionic liquid are also used as solvents, although the use of water is more 

limited because of monomer and polymer solubility and the unfavourable 

equilibrium.49   

Nowadays, Candida antarctica lipase B (CALB) is the most used lipase in organic 

synthesis. In 1994 Uppenberg research group described the amino acid and genic 

sequence of CALB which consists of 317 amino acid residues giving molar mass 33 

kg·mol-1.50 Its active site is composed of a nucleophilic serine residue activated by a 

hydrogen bond in relay with histidine and aspartate or glutamate, and the binding site 

is directly exposed to the solvent.51,52 When the CALB is immobilized is more effective 

catalytically, it is possible to remove it from reaction mixture and reuse it even up to 

ten times. Furthermore, CALB immobilized in poly(methylmethacrylate) resin (PMMA, 

Lewatit VP OC 1600, Bayer), it knows as Novozym 435, is stable until 100 °C, and its 

optimal conditions are pH 5-9 and 90 °C.53-56,54,55,56  
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2.2.2.b Ring opening polymerization  

Ring-opening polymerization (ROP) is used with a large number of cyclic monomers to 

prepare degradable aliphatic polyesters, using organometallic catalysts, enzyme 

catalysts (eROP) and organic catalyst (nucleophilic ROP and metal-free ionic ROP).57 The 

most used cyclic monomers are cyclic esters such as lactones and lactides, although 

others cyclic monomers are also used (Scheme 2.8). Polycaprolactone (PCL), polylactic 

acid (PLA), poly(glycolic acid) (PGA) and their copolymers are usually synthesized by 

ROP, being PCL the most studied.58  

 

 

Scheme 2.8 eROP by lipase catalysts of lactones and lactides. 
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The thermodynamic polymerizability of lactones is strongly related to ring size, and 

some computational studies show that ring strain is highest for β-propiolactone (4-

membered ring) and much lower for γ-butyrolactone (5-membered ring) and δ-

valerolactone (6-membered ring).59,60 

Some cyclic monomers were polymerized using metal salts, organometallic and organic 

catalysts such as zinc complexes, Tin (II) chloride, stannous octoate or 1,5,7-

Triazabicyclo[4.4.0]dec-5-ene (TBD).61-63
62, 63 More recently, in order to decrease the 

toxicity to be used as biomaterials, a large number of cyclic monomers have been 

polymerized by enzyme catalysts and definitively, CALB is the most used enzyme in 

ROP.64-70
65,66

 In order to start the propagation of the polymer chain,  an initiator such as 

water, aliphatic alcohol or primary amine, is added to CALB.  

In vitro enzyme-catalysed ROP in non-aqueous medium has been also extensively 

studied.67 Scheme 2.9 shows the mechanism of enzyme-catalysed ROP with CL as 

substrate. The active site of a lipase comprises a triad consisting of serine, histidine and 

aspartate. The ester moiety of CL undergoes a nucleophilic attack from the primary 

alcohol group of serine in the enzyme’s active site. Via the enzyme intermediate 

species, the original alkoxy group is released, forming the so-called enzyme-activated 

monomer (EAM) species. Subsequently, a nucleophile R1-OH can attack these EAM-

species releasing the final product and thereby regenerating the enzyme. In the 

propagation step, the EAM is nucleophilically attacked by the terminal hydroxy group 

with a growing polymer moiety extending the polymer chain by one more monomer 

unit. Thus, the polymerization proceeds via an activated monomer mechanism, and the 

rate determining step of the overall polymerization is the formation of the EAM.68 
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Scheme 2.9 Mechanism of enzyme-catalysed ring opening polymerization of ε-caprolactone. 

 

2.2.3 Polyesters from vegetable oil-derivatives  

Vegetable oils and their corresponding fatty acids are some of the most promising raw 

materials for polymeric synthesis and constitute an interesting source to obtain 

aliphatic polyesters.  

Castor oil has attracted much attention to polyester synthesis because the 85-95 % of 

its composition is ricinoleic acid (RA) (12-hydroxy-cis-9-octadecenoic acid). RA has an 
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unsaturation in carbon 9 (fatty acid ω9), a secondary hydroxyl in carbon 12 and a 

carboxyl group. Moreover, it can be obtained in large quantities from agricultural crops 

and it is considered as not edible. RA is highly valued as raw material for polymer 

synthesis.69-71,70,71   

In 1986, Matsumura et al. obtained polyricinolate (Mn 600-1307 g·mol-1) by enzymatic 

dehydration-polycondensation using Candida rugosa lipase or Chromobacterium 

viscosum lipase of RA from castor oil under mild conditions (35 °C).  

Moreover, copolymers from RA and other monomers have also been described, for 

example, Slivniak and Domb, in 2005, synthetized copolymers from RA and lactic acid 

(LA) by direct polycondensation and transesterification with different RA:LA ratios. The 

obtained polyesters by direct polycondensation had 2-8 kg·mol-1 whereas the 

polyesters obtained by transesterification reached 6-14 kg·mol-1, both were liquid at 

room temperature and they found applications in the biomedical field (Scheme 2.10).69  

 

Scheme 2.10 Poly(RA-LA) synthesis by a) random condensation of LA and RA acids or b) 
transesterification with PLA and further RA polycondensation. 

Afterwards, in 2007 Ebata et al. obtained also polyricinolate (PRA) (Mn 2.1-73.2 kg·mol-

1) from methyl ricinolate (MR) with Pseudomonas cepacia immobilized on ceramics (IM-

PC) as catalyst which was further crosslinked to produce thermosetting elastomers. 

Furthermore, it has been also demonstrated that PRA can be easily recycled by 

enzymatic hydrolysis followed by repolymerization (Scheme 2.11). The result of this 
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study showed a notable catalyst activity for RA polymerization although lipases are 

known to have low reactivity for the esterification of secondary hydroxyl groups.72,73 

 

Scheme 2.11 Lipase-catalysed preparation and curing of polyricinolate.  

 

Scheme 2.12 Copolymerization of 12-hydroxydodecanoic acid and methyl 12-hydroxystearate 
by IM-CA and recyclability. 
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Polycondensation of hydroxyl groups in internal positions led to polyesters with alkyl 

dangling chains which serve as internal plasticizer. In this way, in 2008, Ebata et al. 

prepared thermoplastic polyesters by polycondensation of 12-hydroxydodecanoic acid 

and methyl 12-hydroxystearate using Candida Antarctica lipase. Both monomers were 

obtained from vernolic acid and hydrogenated methyl ricinoleate respectively (Scheme 

2.12). These polymers are a novel green and sustainable elastomers having both good 

biodegradability and chemical recyclability properties.74  

In 2010, Petrović et al. obtained a castor oil-derived linear polyester with high 

molecular weight (62 kg·mol-1). Starting from castor oil, after ozonolysis followed by 

reduction and transesterification they obtained 9-hydroxynonanoic acid (Scheme 2.13). 

The polymer was synthesized in the presence of Ti(IV) isopropoxide by bulk 

esterification. This polyester is potentially biodegradable with interesting applications 

in industry as substitute for PCL, because it has higher melting point (70 °C) and glass 

transition temperature (-31 °C).75 

 

Scheme 2.13 Preparation of methyl 9-hydroxynonanoate from castor oil. 
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Also, in 2010 Quinzler et al. reported a semicrystalline polyester with long-chain 

hydrocarbon segments by combining oleic acid and erucic acids, which have C18 and C22 

length. Oleic acid is the major fatty acid in plants such as sunflowers or olive trees and 

erucic acid is readily available from rape seed oil (Scheme 2.14).76 

 

Scheme 2.14 Long-chain linear polyester synthesis (x=1: oleic acid or x=5: erucic acid). 

In the same year, methyl 10-undecenoate was used to prepare α,ω-bifunctional fatty 

acids. Türünç et al. used thiol-ene additions to methyl 10-undecenoate to synthesize 

renewable monomers and polymers (Scheme 2.15).77   

 

Scheme 2.15 Some renewable monomers from castor oil-derived methyl 10-undecenoate.  

Polyesters from polyesterification of aliphatic α,ω-dicarboxylic acid (α,ω-diacids) with 

diols are widely used for engineered plastics, adhesives, lubricants… The majority of 

α,ω-dicarboxylic acid come from non-renewable petrochemical feedstocks. However, 

Gross et al. (2010) synthesized polyesters from diacids with diols from vegetable oils by 

microorganisms as catalysts (Scheme 2.16). It is well-known that many microorganisms 

such as Candida tropicalis, Candida cloaca, Cryptococcus neoforman and 
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Corynebacterium sp can convert n-alkanes and fatty acids to their corresponding α,ω-

dicarboxylic acid. For example, Candida tropicalis (C. tropicalis) can hydroxylate the 

terminal methyl group by cytochrome P450 monooxygenase that is further transformed 

via the addition of fatty alcohol oxygenase and aldehyde dehydrogenase to form the 

corresponding diacids (Scheme 2.16 a). Moreover, CALB (Candida antarctica lipase B) 

can epoxidize double bounds to convert unsaturated dicarboxylic fatty acids to 

epoxidized monomers for preparing functional polyesters (Scheme 2.16 b). These linear 

and epoxidized polyesters have high molecular weight (25-57 kg·mol-1) with low 

melting points (23-40 °C).78  

 

Scheme 2.16 Lipase-catalysed polycondensation of unsaturated a) dicarboxylic acids and diols 
and b) epoxidized dicarboxylic acid and diols. 

In 2011, Matsumura focused on the preparation of biodegradable and biobased 

thermoplastic elastomers from macrolides (dodecanolide, pentadecanolide and 

hexadecanolide) as hard segment and methyl 12-hydroxystearate as soft segment, by 

lipase catalysed copolymerization.79 Moreover, α,ω-hydroxy-terminated poly(ricinoleic 
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acid) was used as macroinitiator for the ring opening polymerization of LA.80 A series of 

triblock copolymers with composition ranging from 35-83 % of PLA was prepared. The 

fatty acid-derived aliphatic polyesters are highly hydrophobic and have functional 

groups prone for further modification. Reactions to induce branching, grafting or 

crosslinking as well as functionalization with macromolecules are well known strategies 

for improving thermomechanical, chemical and biological properties.   

Also, Vilela et al. prepared long-chain polyesters using erucic acid by self-metathesis to 

synthesize dicarboxylic monomers. This renewable aliphatic polyester was proposed 

for replacing PE or other polyolefins (Scheme 2.17).81  

 

Scheme 2.17 Renewable aliphatic polyesters from erucic acid. 

Aliphatic polyesters are one of materials that can potentially meet the varying 

requirements required for tissue scaffolds: synthesis simplicity, use of low cost and 

non-toxic monomers and ease control of the properties of the obtained materials.  
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2.3 FUNCTIONAL POLYESTERS: HYDROXYPOLYESTERS 

Functional polyesters are biodegradable polymers with the ability to modulate their 

physico-chemical characteristics such as hydrophilicity and degradation rate through 

the introduction of additional functional groups, making thus suitable materials for 

many applications.82 Among all biodegradable polymers, aliphatic polyesters are used 

in the medical field as bone screws, tissue engineering scaffolds, sutures and drug 

delivery systems. These aliphatic polyesters generally can be degraded by hydrolysis of 

main chain ester bonds and the time/rate of degradation depends on the polymer 

characteristics (hydrophobicity, crystallinity…) and the introduction of additional 

functional groups can improve their degradation behaviour. Biodegradable polyesters 

can be completely degraded in landfills, composters or sewage treatment plants by the 

action of naturally occurring microorganisms. Truly biodegradable plastics leave no 

toxic, visible or distinguishable residues following degradation. There are so many 

studies reported to improve the properties of aliphatic polyesters in order to gain 

sustainability.83-85, 84, 85   

One of the different methods to synthesize functional polyesters is the post-

polymerization functionalization. The main drawback of this method is the competence 

of side reactions so post-polymerization functionalization is not the preferred route of 

choice to obtain functional polyesters. Another way to synthesize functional polyesters 

is the homopolymerization of functional (protected) monomers or its copolymerization 

with commercially available non-functionalized monomers. As monomers have to be 

protected to allow polymerization and avoid side reactions an additional deprotection 

step is always mandatory.86  

The ROP of lactones or different ring sizes, with or without protected functional groups 

constitutes another approach to functional polyesters and has extensively been 
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explored in the case of ε-CL derivatives.87, 88  The enzymatic polymerization using lipases 

is very selective and thus protection/deprotection steps are not necessary.89  

Recently, bio-based triblock copolyesters with free hydroxy groups were synthesized 

by Muñoz-Guerra et al. by ROP of L-lactide in solution using hydroxyl-ended 

polytartrate as di-functional macroinitiator.90  

Industrially, the most common route to prepare polyesters is the step-growth 

polymerization of diacids or diesters with diols. This method is energy-intensive 

because it is necessary to remove small byproduct molecules such as water or alcohol 

and high temperatures are necessary to reach high molecular weights.  

The polycondensation of hydroxyl-containing dicarboxylic acids under certain 

conditions allow preparing hydroxy functionalized polyesters. These aliphatic 

hydroxypolyesters easily degrade under physiologic conditions allowing to be used in 

medical devices. Moreover, the presence of vic-diols conferes antibacterial and 

antifungal properties as demonstrated in in vitro and clinical studies, in addition to 

enhanced biocompatibility.91-94,92,93,94 

In 2005, poly(butylene tartrate) (PBT) was developed (Scheme 2.18). This 

biodegradable and biocompatible polyester has been studied as steroid-type anti-

inflammatory drug carrier.  

 

Scheme 2.18 Synthetic pathway for the preparation of PBT. 

Poly(1,8-octanediol-co-citrate) (POC) has been reported in 2011. POC is biodegradable 

hydroxypolyester compatible with vascular cells, subcutaneous tissues and bone cells. 

Moreover, POC has antibacterial properties having important engineering and 
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biomedical applications (Scheme 2.19).95,96 Actually, three-dimensional POC has been 

used as scaffold with different pore shapes and permeabilities on chondrogenesis using 

primary chondrocytes in vivo.97   

 

Scheme 2.19 Chemical reaction of POC synthesis.  

Besides the examples commented before, the synthesis of linear polyesters having 

pendent hydroxyl groups is generally difficult requiring of multistep reactions including 

tedious protection and deprotection of the hydroxyl groups in the repeating units, 

which often engender degradation of the polymer backbone. The synthesis of 

poly(sebacoyl diglyceride) (PSeD) and poly(butylene succinate-co-butylene malate) 

have been reported through a simple protection and deprotection strategy, however 

sometimes, undesirable degradation and gelation occurred during deprotection step 

(Scheme 2.20 a). Using a similar protection-deprotection strategy hydroxypolyesters 

derived from malic and succinic acids have also been described and used for post-

polymerization modification with biomolecules (Scheme 2.20 b).98,99 

 

Scheme 2.20 Functionalizable hydroxypolyestres. a) poly(sebacoyl diglyceride) (PSeD). b) 
poly(butylene succinate-co-butylene malate). 

Hydroxypolyesters can be also obtained by reaction of carboxylic acid with epoxide 

groups. This methodology has been extensively described for crosslinking oxirane 
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resins with dicarboxylic acids and/or dicarboxylic anhydrides. The reaction of epoxy 

groups with carboxylic and anhydride groups have a huge economic importance in the 

coating and polymer industry.  However, these approaches can be used to produce 

linear hydroxypolyesters by reaction of epoxidized fatty acids.100 Oxirane ring can be 

easily introduced in unsaturated fatty acids by selective oxidation of double bonds. 

Although a great number of epoxidation procedures have been described, most of 

them use metallic oxidizing reagents or catalysts. As green and environmentally friendly 

alternative, enzymatic methodologies through in situ formed peroxy acids using CALB 

and hydrogen peroxide have been extensively described (Scheme 2.21).101-103,102,103 

  

Scheme 2.21 Epoxidation of methyl oleate acid with CALB and hydrogen peroxide.  

The reaction between carboxyl groups and oxirane rings and can be catalysed by a wide 

range of catalyst such as amines, ammonium and phosphonium salts, 

polyoxometalates, organic and phosphazene bases and enzymes. The reaction has also 

been described to proceed when acid halides instead of carboxylic acids are used.104-

107,105,106,107 

Rhodococcus sp. NCIMB 11216, Candida rugose, porcine pancreatic lipase, 

Pseudomonas sp, CALB and some others lipases have been described to polymerize 

oxirane rings with carboxylic derivatives (dicarboxylic anhydrides).108 Moreover, some 

ionic liquids have been used as catalyst in the reaction of oxirane ring-opening with 

carboxylic acids ([bmim]Cl, [bmim]Br, [hmim]Br…), avoiding the use of toxic solvents 

and harsh conditions.109  

Carboxylic acid oxirane ring opening reaction can be also catalysed with active 

hydrogen compounds such as phenols or acids. The carboxylic acid ring opening 

condensations have the additional advantage of not producing volatile by-products.  
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The reaction between epoxy and carboxyl groups (nucleophilic group) can proceed 

leading two different hydroxy esters, depending on the nucleophilic attack of the 

carboxylic acid occurs on the less substituted position of the oxirane ring, usually 

named normal ring opening, or in the more substituted position, usually named 

abnormal ring opening (Scheme 2.22 a).  

As a consequence of the two reaction pathways, the resulting product from the normal 

ring opening is a primary ester with a secondary hydroxyl group and the resulting 

product from the abnormal ring opening is a secondary ester with a primary hydroxyl 

group (Scheme 2.22 a). However, the reaction does not necessary stop here, as the 

resulting hydroxyesters can be further esterified by the carboxylic acid to lead a diester 

and water as byproduct (Scheme 2.22 b).  Water and the hydroxyl compounds mixture 

can also react with epoxy groups producing new hydroxylic compounds having ether 

linkages (Scheme 2.22 c).  

 

Scheme 2.22 Possible reaction products on the oxirane ring-opening by carboxylic acids.  

Epoxide ring opening by carboxylic acids can be catalysed by cationic and anionic 

catalysts. Anionic catalysts, usually metallic or organic bases, act producing more 

nucleophilic carboxylate anions that attack preferentially on the less substituted carbon 

of the oxirane ring following a SN2 mechanism (Scheme 2.23 a). The activity of different 
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bases was found to decrease in the following order: pyridine > isoquinoline > quinoline 

> N,N-dimethylcyclohexylamine > tributylamine > N-ethylmorpholine > dimethylamine 

> potassium hydroxide.110 

 

Scheme 2.23 Anionic and cationic catalysed oxirane ring-opening by carboxylic acids. 

Cationic catalysts, usually protic or Lewis acid, activate oxirane ring opening by 

coordinating to the oxygen of the oxirane ring increasing the electrophilic character of 

the oxirane carbons (Scheme 2.23 b). Inorganic salts from Al, B, Be, Fe (III), Sn, Ti, Zr 
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and Zn halides are frequently used as active catalysts, being the boron trifluoride (BF3) 

the most extensively used cationic catalyst (Scheme 2.24). 

 

Scheme 2.24 Oxirane ring opening catalysed by boron trifluoride. 

Metal alkoxides, metal chelates, dionate complexes, metal oxides and in general 

bidentate metallic compounds typically follow a more complex ring opening 

mechanism that combines both of the characteristics of the anionic and cationic ones. 

This named coordinative mechanism involves the coordination of the epoxy and 

carboxylic groups to two different metallic centres close to each other producing the 

activation of both the oxirane ring and the carboxylic nucleophile (Scheme 2.25).111 

 

Scheme 2.25 Coordinative oxirane ring opening with metal oxides, alkoxides and derivatives.   

The aliphatic hydroxypolyesters obtained by ROP with carboxylic acids or carboxylic 

acids derivatives have similar properties than the parent aliphatic polyesters described 

previously. These aliphatic hydroxypolyesters usually show enhanced biodegradability 
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which is mandatory in most biomedical engineering applications. So, many authors 

have described the synthesis of hydroxypolyesters by cationic ROP for uses in 

biomedical fields. Scheme 2.26 shows the preparation of hydroxypolyesters by reaction 

of sebacic acid with diglycidyl sebacate using bis(tetrabutylammonium) sebacate 

(TBAS) as catalyst.112,113  

 

Scheme 2.26 ROP of diglycidyl sebacate with sebacic acid. 

Oxirane-carboxylic acid ROP can also be carried out using AB monomers, for example 

White et al. synthetized a polyester from 10,11-epoxyundecanoic acid with 

phosphonium and ammonium salts (Scheme 2.27).114 And some authors have 

described the use of the resulting hydroxypolyester as macroinitiator for RAFT 

polymerizations.115 

 

Scheme 2.27 Oxirane-carboxylic acid ROP using an AB monomer. 

According these precedents, the reaction between oxirane and carboxyl groups 

constitute a straightforward way to produce polyesters with reactive pendant hydroxyl 

groups. The availability of new hydroxylated aliphatic polyesters can play an important 

role in biotechnological fields, such as release systems for pharmaceutical drugs and 

diagnostic systems.116 Some biotechnology labile products (such as proteins, peptides, 

biomolecules…) are supported on polyesters for treatments of patients suffering from 

different chronic and life-threatening, because these scaffold polyesters are 

biodegradable, biocompatible and non-toxic. So that, functional biodegradable 
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polyesters with hydrophilic reactive pendant groups such as hydroxyl, carboxyl and 

amino have become attractive biomaterials because they have tuneable 

biodegradability and they can be applied in novel biotech fields (Figure 2.6).117  

 

Figure 2.6 Schematic simple synthetic platform to novel biomaterials with a wide range of 
functionalities that can offer fine control of cell-material interactions. 

Linear aliphatic polyester with lateral hydroxyl groups could offer additional benefits 

such as: tuning of the hydrophilic-hydrophobic imbalance resulting in a variety of self-

assembled macromolecular structures like cylinder or core-shell shaped morphologies, 

also a further living/controlled ring opening polymerization of reactive cyclic monomers 

grafted onto the reactive hydroxyl sites to construct functional brush- or comb-like 

macromolecular architectures through controlling the graft density and length.118 
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In the last decade several hydroxypolyester-based drug release systems have been 

developed to supplant the oral administration. Microspheres of functionalized 

hydoxypolyester are injected and the encapsulated drugs are released over a 

predetermined time. Some examples are poly(HMMG-L) and poly(HMG-CL) (Scheme 

2.28).119  

 

Scheme 2.28 Hydroxypolyesters used in microsphere encapsulation systems. 

Some functional hydroxypolyesters have been used as bioadhesives or mucoadhesives. 

The concepts have been introduced into the pharmaceutical field from 1980s. These 

polymers are able to increase the epithelial permeability for many drugs by intensifying 

contact to the mucosa through the formation of covalent linkages (such as disulphide 

bonds) or weak interaction. Moreover, this kind of polymers allows the persistence of 

orally administered drugs by avoiding their enzymatic degradation. 

Superior mucoadhesive polymers have been developed from natural and synthetic 

hydroxyl containing polymers, including hydroxypolyesters as a promising tool in 

therapy and drug delivery (Figure 2.7). Cysteine is usually linked covalently to the 

polymer giving the called thiolated polymers or thiomers that were first described by 

Andreas Bernkop-Schnürch et al in 1999.120 It has been demonstrated that thiomers 

exhibit mucoadhesive properties, permeation enhancement, controlled release as well 

as enzyme and efflux pump inhibitory properties because of the formation of 
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disulphide bonds between thiol bearing side chains of the polymer and cysteine-rich 

subdomains of mucus glycoproteins (mucins).121-126,122,123,124,125, 126 

 

Figure 2.7 Mechanism of action of thiomers: drug encapsulation via disulphide formation and 

precise drug release with covalent binding between thiomer and mucin.   

2.4 POLYMERIC MICELLES 

Amphiphilic polymers are macromolecules which have a polar or hydrophilic moiety 

and a nonpolar or hydrophobic moiety in the same structure. One of the main 

properties of amphiphilic polymers is the formation of molecular nanostructures by 

auto self-assembly under the appropriate conditions (temperature, solvent, 

concentration, etc). When they are exposed to a solvent can develop different complex 

macromolecular structures such as monomolecular layers, vesicles and micelles. In a 

hydrophilic solvent, the polar chain orients itself towards the solvent, while the 

hydrophobic chain of the polymer orientates away from the solvent. So that, 
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amphiphilic polymers can form multimolecular micelles where the hydrophobic 

portions are clustered in a core, away from the solvent, and the hydrophilic portions 

are aligned forming a shell towards the solvent. When amphiphilic polymers form 

micelles in water (most usually) or polar solvents the aggregates are known as normal 

or regular micelles. When amphiphilic polymers are exposed to an hydrophobic 

solvent, they can form micelles with an opposite orientation, that is, with the 

hydrophobic chains on the shell and hydrophilic chains on the core. These micelles are 

known as reverse micelles (Figure 2.8).  

Micelles based on amphiphilics polymers have a large number of potential applications 

as stimuli responsible and drug delivery systems being one of the most promising future 

improvements in therapy and drug administration. 

Drugs generally have poor aqueous solubility and therefore they have low 

bioavailability after oral administration. On average, approximately 40 % of drugs 

available in the market and around 75 % of drugs currently in development stage are 

poorly soluble in water. Amphiphilic polymers have been extensively investigated for 

pharmaceutical applications when they form regular micelle aqueous media. Inside of 

the hydrophobic core, insoluble drugs can be loaded and transported in water media. 

These drugs can be delivered in a controlled way through external stimuli, for example 

light, pH, temperature or oxidant agents (Figure 2.8).127-130.128,129,130, 

Micelles are dispersed in aqueous media above their critical micelle concentration 

(CMC) and under the appropriate conditions drugs can be encapsulated in the core. The 

CMC is defined as the concentration of amphiphilic molecules above which micelles 

start to form.  
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Figure 2.8 Normal and reverse micelle micelle formation and their use in drug delivery systems. 

Different methods have been described to prepare micelles. The most frequent are: 

dialysis, oil/water emulsion, solvent evaporation (or film method), co-solvent 

evaporation and nanoprecipitation (Figure 2.9). In the dialysis method, the amphiphilic 

polymer is dissolved in a water miscible non-volatile organic solvent (such as DMF, 

DMSO…) followed by dialysis of the obtained solution against water. In the oil/water 

emulsion method the polymer is dissolved in a water immiscible volatile organic solvent 

(such as chloroform ethyl acetate or methylene chloride). This solution is slowly added 

to the aqueous phase under stirring to make an oil-in-water emulsion. In the solvent 

evaporation or film method, the amphiphilic polymer is dissolved in a volatile organic 

solvent and then the solvent is evaporated to make a thin polymer-drug film on a flask. 

The film is then reconstituted with the aid of aqueous solvent by vigorous shaking to 

produce polymeric micelles. Finally, in the co-solvent evaporation method the polymer 

is dissolved in a water miscible volatile organic solvent and then added drop wise to 

water under stirring, by the diffusion of solvent in water with simultaneous evaporation 

triggered the self-assembly of copolymer, yielding the polymeric micelles.131-133,132,133 
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To prepare drug loaded polymeric micelles the same methodologies are used but 

starting from solutions of the amphiphilic polymer in which the targeted drug has been 

co-dissolved. 

 

Figure 2.9 Different methods used for micelle preparation and drug encapsulation.  

The hydrophobic core serves as a reservoir for drugs with low aqueous solubility with 

the hydrophilic shell preventing the adsorption of opsonins on the surface. 
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Polyethyleneglycol (PEG), is by far the polymer most used as hydrophilic block whereas 

the hydrophobic block can be chosen based on the required application.134 PEG is an 

inexpensive, non-toxic and FDA (United States governmental agency for Food and Drug 

Administration) approved polymer for the use in drug products.135 Moreover, the 

formed nanoscopic sized micelles (10-200 nm in diameter) are sufficiently large to 

avoid renal excretion ( ≥ 50 kg·mol-1) as well as small enough to bypass the filtration of 

inter-endothelial cells in the spleen. 

Amphiphiles can self-assemble into nano-sized micelles, also known as multimolecular 

micelles, of various morphologies in aqueous solution. However, conventional 

polymeric micelles represent thermodynamic aggregations of multiamphiphilic 

macromolecules above their critical micelle concentration (CMC). When these 

polymeric micelles are subjected to high dilution and alterations in other factors such 

as temperature, pH and ionic strength, they disassemble into free polymeric chains.136 

To overcome the thermodynamic instability issue of polymeric micelles, core and/or 

shell cross-linking approaches have been proposed. Shell and/or core cross-linking 

endows polymeric micelles with excellent structural stability. However, their 

biodegradability or drug release profiles are compromised after cross-linking. From 

certain respects, the crosslinked core-shell particle can be also considered as single 

macromolecules.137  

In addition to the cross-linking approach, design of unimolecular micelles provides an 

alternative strategy and opportunity to prepare stable polymeric micelle. Unimolecular 

micelles are defined as a class of single-molecule micelle with a distinct core and shell 

that are covalently bound together. Due to their unique architecture, unimolecular 

micelles show excellent stability regardless of the high dilution condition and other 

microenvironment changes, making them particularly attractive for the design of stable 

micelles for specific applications (Figure 2.10). Unimolecular micelles are covalently 
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bound molecular architecture than can be made from a variety of amphiphilic 

polymers, for example from amphiphilic dendrimers, amphiphilic hyperbranched 

polymers, amphiphilic dendrimers-like polymers, amphiphilic star polymers and other 

amphiphilic polymers.138    

 

Figure 2.10 Different behaviours of unimolecular and multimolecular micelles under dilution. 
Unimolecular micelles are stable and multimolecular micelles can fall apart.  
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3.1 INTRODUCTION 

Nowadays, the interest in polymers from renewable resources has been witnessing an 

incessant growth in both academy and industry. The situation has advanced to such 

extreme that it does no longer need the arguments previously put forward to justify its 

relevance.1,2 The proposed bio-based economy by the incorporation of renewable raw 

materials, in particular from the biomass, is found on the full utilisation of agricultural 

biomass for the production of fuels and chemicals by employing green and sustainable 

chemistry.3,4 This is also true in the field of materials for which the development and study 

of new bio-based polymers is a growing worldwide interest.  

Natural oils, such as vegetable oils provide interesting feedstock -triglyceride fatty acids- 

that beyond their use in food allow additional chemistry that yields opportunities for 

replacing petrochemicals. Fatty acids are among the most promising candidates for the 

preparation of polymers as they are easily accessible and present in quantity, but the rather 

low reactivity of their unsaturated aliphatic chains makes them ineffective monomers 

when used as such. However, this drawback can be overcome by functionalizing them with 

polymerizable moieties, for instance to introduce hydroxyl groups leading to polyols, which 

can be used for polyurethane synthesis.5 Ricinoleic acid is the main fatty acid in castor oil 

(> 90 %) and its pyrolysis leads to 10-undecenoic acid, a key substrate in polymer chemistry 

for the synthesis of fully renewable Nylon-11 and other precursors for the preparation of 

sustainable polymers.6,7 

Aliphatic polyesters are generally considered to be well-suited for applications as polymer-

based biomaterials due to their demonstrated biocompatibility and biodegradability.8-13
, 9,10,11, 12, 13 

 

While polymeric materials based on -caprolactone, lactide and glycolide are currently 

used in numerous biomedical applications, such polyesters are limited in scope due to their 

hydrophobic and semicrystalline properties and the absence of functionality on the 

polymer backbone, which could otherwise be used for tailoring physical properties and 
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introducing bioactive moieties.14 To widen the versatility of aliphatic polyesters, special 

efforts have been devoted to the functionalization of the polyester backbone.15,16 Thus, 

different strategies via polymerization of functionalized monomers, post-polymerization 

modification or a combination of both, have been used.17-27,
18,19, 20,21,22,23,24,25,26, 

27Our group is interested in extending the use of vegetable oils in the synthesis of 

functionalized polyesters and we recently described some works by design of specialty 

monomers. 28-31,29,30,31   

In this work, we describe an efficient synthesis of new functional biodegradable polyesters 

bearing hydrophilic reactive pendent groups according to the following criteria:   

a) Functionality: we chose the versatile hydroxyl group as the pendent group, as it is one 

of the best understood organic functional groups, and many mild reactions are available 

for further modifications with biomolecules such as peptides.32  

b) Easy preparations: polymerization via nucleophilic ring-opening of an epoxide group 

with carboxylic acid moiety forms the polyester backbone and the pendent hydroxyl groups 

in one step. An added advantage is that the reaction does not produce small molecule by-

products.  

c) Availabilities: the monomer precursor was prepared from bio-based low-cost reagents 

by a simple synthetic transformation in one step. Using renewable monomers with 

potential biocompatibility is not enough when sustainability is pursued and thus, their 

transformation in polymers must be done avoiding metallic and toxic catalyst and using 

benign solvents or no solvent whenever possible. 

Using these criteria, the condensation of sebacic acid and their glycidyl derivatives to obtain 

polyesters with free hydroxyl groups has been described.25 Moreover, approaches with AB 

monomers, containing both epoxy and carboxylic acid groups, using as synthetic strategy 

the oxirane ring opening polymerization, have also been reported.33-35
,34, 35 An advantage of 
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utilizing an AB system for polymerization is the inherent balance of the two reactive groups 

in a single molecule which is desirable to minimize termination or other beside reactions. 

In this contribution, we study the simple route to polyhydroxyester regarding the use of 

10,11-epoxyundecanoic acid as an AB type monomer. Although, the synthesis of this 

polyhydroxyester has been previously reported by White et al. we believe this aliphatic 

polyester having secondary and primary hydroxyl functions on the backbone has a great 

potential as starting biobased polymer, thus, we have thought the convenience to study 

this polymerization in depth.33 For this purpose, systematic variation in the reaction 

conditions of carboxyl-epoxy polyaddition was carried out. Insights into their fine structure 

of obtained polyesters are provided by 1H, 13C, and 19F NMR spectroscopy. In addition, 

synthesized polyesters were characterized by means of size exclusion chromatography 

(SEC), FT-IR and thermal analysis. 

To test the ability of these polyesters with free hydroxyl groups to prepare protein 

bioconjugates, three chemical modifications with N-Boc protected L-phenylalanine, L-

serine and a cysteine derivative were essayed. 

3.2 MONOMER SYNTHESIS  

3.2.1 Synthesis of 10,11-Epoxyundecanoic acid  

As introduced above, our goal is the synthesis of aliphatic polyesters based on 10-

undecenoic acid by using an AB monomer capable to undergo self-polymerization. For this 

purpose 10,11-epoxyundecanoic acid (EUA) was synthesized from 10-undecenoic acid 

using H2O2 in presence of an enzymatic catalyst (Scheme 3.1). Candida Antarctica lipase B 

(CALB), has been demonstrated as very effective for catalysing the formation of peroxyacid 

which acts as reagent for double bond epoxidation.36, 37 
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Scheme 3.1 Synthesis of 10,11-epoxyundecanoic acid (EUA). 

Thus, using the procedure and work up described in the experimental part (Chapter 6.4.1), 

complete conversion of double bond was obtained. The resulting EUA monomer does not 

contain detectable amounts of hydroxyl or other impurities according to 1H NMR 

spectroscopy (Figure 3.1 and Figure SI.1) and was used without any further purification. It 

must be pointed out the EUA (Figure 3.1), under dry and sealed conditions, remains stable 

at room temperature for more than one year.  

 

Figure 3.1 EUA monomer spectra of a) 13C NMR and b) 1H NMR. 
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3.3 MODEL REACTION 

3.3.1 Reaction of 1,2-epoxyhexane and hexanoic acid  

Prior to polyester preparation, the oxirane ring opening efficiency and selectivity of some 

catalysts were studied by reaction of 1,2-epoxyhexane (EH) and hexanoic acid (HA) in 

stoichiometric amounts as model reaction (Scheme 3.2).  

The oxirane ring opening with carboxylic acids has been widely reported using several 

conventional acidic and basic catalysts.38,39 Later, quaternary ammonium and 

phosphonium catalysts have been found as efficient catalyst under mild conditions.40,41 In 

this reaction have been tested some of the next catalysts: BF3·Et2O, 

tetrabutylphosphonium bromide (TBPB), tetraethylammonium bromide (TEAB) and 1,5,7-

triazabicyclo[4.4.0]dec-5-ene (TBD).42,43 Also, enzymatic catalysts have been extensively 

used in polyester synthesis.44-46
, 45,46 However, although biocatalytic transformation of epoxides 

is well known, it has been scarcely applied to the synthesis of polyesters.47,48 So, we also 

tested two enzymatic catalysts: Candida Antarctica immobilized on acrylic resin (5.000 U/g) 

(CALB) and Candida Rugose (CR) lipase immobilized on acrylic-epoxy resin (immobead 150) 

(100 U/g). 

As a general trend, in a reaction of epoxy groups with carboxylic groups different 

consecutive reaction pathways should be expected (Scheme 3.2). The main is the direct 

nucleophilic attack of the carboxylic group on the oxirane ring. This reaction follows a 

typical SN2 mechanism and consequently the nucleophilic attack proceeds preferentially at 

the less substituted carbon producing the named ‘normal ring-opening’ product (A). 

Moreover, especially under neutral or acidic conditions, the nucleophilic attack on the 

more substituted carbon of the oxirane ring is also possible yielding the named “abnormal 

ring-opening” product (B).39 The ratio between “normal” and “abnormal” oxirane ring 

opening depends on the reaction conditions, solvent polarity and more importantly on the 

nature of catalyst, thus, when protonic or Lewis acids are used as catalyst, the cationic 
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activation of the oxirane ring produces changes in selectivity increasing the attack on the 

more substituted carbon. These reactions do not necessarily stop here since the carboxylic 

acid can produce an esterification reaction with the hydroxylic group of the above ring 

opening products giving a diester (C) and water as products. Moreover, water can open the 

epoxide to give a diol (D1). Finally, etherification reaction of all hydroxylic compounds in 

the media should be considered (D2-D5). In the last reaction stages, oxirane ring opening by 

water could also lead to ring opening polymerization. In this case, the signals of the 

resulting oligomeric polyethers should have a very close chemical shift in the 1H NMR 

spectrum and they would be hardly to differentiate from D2–D5 compounds signals. All 

these by-side possible reactions indicate that selection of reaction conditions and catalyst 

is mandatory to obtain linear polyesters. 

 

Scheme 3.2 Products in the catalysed ring opening of EH with HA in stoichiometric conditions. 
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The composition of the reaction mixture and the different conditions tested is collected in 

Table 3.1. The percentages of the different compounds were determined by 1H NMR 

spectroscopy taking into account the assignments of the pure compounds A, B and C 

synthesized as model compounds (Figure 3.2 and Figure SI.2).  

Derivatization with trichloroacetylisocyanate (TAI) and trifluoroacetic acid (TFAA) of A and 

B was carried out to determine the chemical shifts of methylene and methane signals 

arising from the hydroxyester moieties (Figure SI.3, Figure SI.4 and Table SI.1).49-51,50, 51 

 

Figure 3.2 1H NMR spectra of a) A, B mixture and b) C. 
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Table 3.1 Composition of the crude reaction mixture in the ring opening of EH with HA. 

Entry Cat. Solv.a Conv. %b
 A %c B %c C %c D2-D5 %d 

Conditions: 1 mol % catalyst, 100   ͦC, 24 h 

1 --- -- 0 -- -- -- -- 
2 BF3.Et2O -- ˜100 20.2 21.3 44.5 14.0 
3 BF3.Et2O Tol. ˜100 13.1 15.9 25.5 45.4 
4 TBD -- 93.3 40.9 27.2 11.7 20.1 
5 TBD Tol. ˜100 58.2 32.3 2.8 6.7 
6 TEAB -- 90.3 60.1 26.3 5.9 7.7 
7 TEAB Tol. ˜100 64.3 29.3 1.1 5.3 
8 TBPB -- 94.1 63.4 32.9 2.4 1.3 
9 TBPB Tol. ˜100 63.4 31.8 1.2 1.0 

Conditions: 10 % (w/w) enzyme, 90   ͦ C, 24 h 

10 CALB -- ˜100 23.9 18.6 14.5 43.0 
11 CALB Tol. 91.7 17.5 15.8 20.7 45.9 
12 CALB DMF 96.4 60.1 29.4 3.0 7.5 
13 CR -- 72.2 22.8 19.5 10.1 47.6 
14 CR Tol. 52.6 40.4 21.5 6.0 32.1 
15 CR DMF ˜100 63.7 28.7 1.4 6.2 

(a) Bulk or 2.5 M solution in toluene or DMF; (b) EH conversion determined by 1H NMR from the signals at 2.92 
and 2.76 ppm in the crude reaction mixture spectrum; (c) Percentage of A, B and C determined by 1H NMR from 
the signals at 4.15 and 3.97 ppm (A), 3.70 and 3.65 ppm (B) and 4.20 ppm (C); (d) Percentage of ether 
compounds D2 to D5 determined by 1H NMR from the signals between 3.40 and 3.20 ppm. 

 
 

First, a control experiment without catalyst was carried out (entry 1). As expected no 

esterification occurs after 24 h at 100 °C. Next, the selected catalysts were used (1 % mol) 

at 100 °C for 24 h in bulk or in 2.5 M toluene solution. The classical Lewis acid BF3·Et2O was 

first tested (entries 2 and 3). As expected no regioselectivity in the ring-opening and 

predominance of secondary reactions were observed: esterification is favoured in bulk 

whereas etherification does in solution. When TBD as basic catalyst was tested (entries 4 

and 5), selectivity toward normal opening increases but large amounts of diester and 

etherification products were observed. When ammonium (entries 6 and 7) and 

phosphonium salts (entries 8 and 9) were used, selectivity increases. In both cases results 

in toluene seem to be better reaching the lowest percentages of diester and etherification 

compounds. According to these results the 70:30 “normal opening/abnormal opening” 

ratio is the maximum selectivity reached. Moreover, ammonium salts (TBAB) seem to be 

less effective than phosphonium salts (TBPB) as lead to higher etherification extent. The 
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presence of about 30 % of units resulting from the attack of carboxylic acid on the more 

substituted carbon in the oxirane ring is consistent with the cationic-like activation by the 

onium salts. 

Enzymatic catalysts CALB (entries 10–12) and CR (entries 13–15) were no selective neither 

in bulk nor in apolar solvent as toluene, rendering significant amounts of diester and 

specially etherification products. However, the polar DMF significantly improves selectivity 

and reduces esterification and etherification reactions although in lower extent than onium 

salts. It is worth to note that according to these results, these enzymatic catalysts are 

effective in the oxirane ring opening with carboxylic acids allowing a different approach, to 

prepare esters and polyesters. 

3.4 POLYESTERS SYNTHESYS AND MICROSTRUCTURAL DETERMINATION  

3.4.1 EUA polymerization with onium salts and CALB 

In view of the above results (Table 3.1), the EUA polymerization (Scheme 3.3) have been 

tested using onium salts and CALB as catalysts. In Table 3.2 reaction conditions, crude 

composition and polyester characteristics are collected.  

 

Scheme 3.3 Synthesis and polymerization of 10,11-epoxyundecanoic acid (PEUA). 

In all cases, the crude polymerization mixture was analysed by 1H NMR to determine the 

monomer conversion and next, polymers were isolated by precipitation to determine their 

molecular weight distribution and structural composition. The percentage of units arising 

from the attack to the less substituted oxirane carbon “normal ring-opening” (Nu), to the 

more substituted oxirane carbon “abnormal ring opening” (Au) (not included in Table 3.2), 

branching by esterification (Bu) and etherification (Eu) was calculated by 1H NMR 
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spectroscopy using the methylene and methine signals whose assignments will be 

commented in detail vide infra. 

Table 3.2 Conversion, molecular weight and polyester composition obtained in the EUA 
polymerization. 

Ent. Cat. Solv. T(h) Conv. 
%a 

IF 
%b 

SF 
%c 

Mnd Ɖd Nu 

%e 
Bu 

%e 
Eu 

%e
 

Conditions: 1 mol % catalyst, 100   ͦC (bulk or 2.5 M in toluene) 

1 -- -- 8 70.0 -- (f) -- -- -- -- -- 

2 TEAB -- 2 86.2 -- 67.8 4110 2.9 60.9 3.2 4.9 

3 TEAB -- 4 ~100 -- 92.2 4950 3.0 58.0 6.0 11.2 

4 TBPB -- 2 91.9 -- 87.7 4350 2.0 67.7 -- -- 

5 TBPB -- 4 ~100 -- 96.4 9050 3.0 68.7 -- -- 

6 TBPB -- 8 ~100 30.2 67.2 14250 4.5 59.2 4.0 -- 

7 TBPB Tol. 2 98.0 -- 88.2 6030 2.3 69.8 -- -- 

8 TBPB Tol. 4 ~100 -- 97.0 7560 3.3 68.6 -- -- 

9 TBPB Tol. 8 ~100 -- 96.8 8570 3.5 70.3 -- -- 

10 TBPB Dowanol 8 93.5 -- 94.2 6360 2.6 78.6 0.4 -- 

Conditions: 10 % (w/w) catalyst, 90   ͦC (2.5 M in DMF) 

11 CALB DMF 2 47.2 -- 21.7 1000 1.5 36.9 26.2 13.7 

12 CALB DMF 4 53.9 -- 26.9 1810 2.0 42.3 21.5 12.2 

13 CALB DMF 8 73.9 -- 55.9 2300 1.9 41.8 16.5 13.8 

14 CALB DMF 12 84.3 -- 63.5 2630 1.7 43.6 13.8 16.4 

15 CALB DMF 48 100 -- 72.4 3480 1.8 51.7 -- 17.1 

(a) Conversion of EUA calculated by 1H NMR from the crude mixture; (b) Insoluble fraction in THF; (c) Polymer 
isolated from the soluble THF fraction; (d) Determined by SEC (g·mol-1); (e) Percentage of normal (Nu), branched 
(Bu) and ether (Eu) units determined by 1H NMR from the signals at 4.15 and 3.97 ppm (A), 3.70 and 3.65 ppm 
(B), 5.1 and 4.20 ppm (C) and 3.40 to 3.20 ppm (E); (f) dimer and trimer species. 
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First, a blank experiment without catalyst was carried out (entry 1, Table 3.2). After 8 h, 70 

% of EUA was consumed but no polymer could be isolated. The analysis of the crude 

showed mainly the formation of dimeric species. With TEAB in bulk (entries 2 and 3, Table 

3.2), 4 h were necessary to achieve complete conversion. Oxirane ring opening occurs with 

good regioselectivity but percentages of Bu and Eu increase with time. However, when TBPB 

was used at the same reaction times (entries 4 and 5, Table 3.2), conversions were similar 

but molecular weight was higher at 4 h and no Bu or Eu were detected indicating a linear 

structure. Attempts to increase Mn, by polymerizing during 8 h (entry 6, Table 3.2) led to a 

significant insoluble fraction and the soluble fraction showed Bu or Eu, indicating post-

polymerization reactions such as transesterification.  

The same conditions with this catalyst in toluene solution (entries 7, 8 and 9, Table 3.2) 

showed a similar behaviour but in all cases, soluble polymer without branching or ether 

links was obtained. For all onium catalysts, molecular weights and polydispersity index 

increase with reaction time as consequence of internal transesterification reactions. 

Referring to percentage of normal opening, this remains practically constant (about 70 %) 

except when branching occurs due to further esterification. The polymerization of EUA with 

tetraphenylphosphonium bromide and tetrabutylammonium bromide has been reported 

at higher temperatures (140   Cͦ) and using Dowanol PMA™ (propylene glycol monomethyl 

ether acetate) as solvent. Under these conditions, polyesters with Mn 13000-30000 g·mol-

1 and polydispersity (Ɖ) 3.7-13 were obtained.33 We tested this solvent with our 

polymerization conditions (entry 10, Table 3.2) and obtained polyesters with narrower 

distribution but lower molecular weights. 

Enzyme catalysed polyesterifications can proceed either in bulk or in solution. Solvent 

hydrophobicity usually plays an important role in enzymatic activity as hydrophilic polar 

solvents such as DMF or dimethyl sulfoxide (DMSO) cause considerable modification in 

enzyme conformation decreasing catalytic activity of lipase.52 In our case, as observed in 

the model study (Table 3.1), the formation of ester linkages in DMF is clearly favoured, but 

we have to point out that in this case ester formation arises from the nucleophilic attack 
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on the oxirane ring by the carboxylic acid group, which is favoured by polar aprotic solvents. 

It must be point out that a blank experiment in DMF without CALB at 90 °C showed scarce 

oligomerization after 24 h, indicating that CALB plays a determining role. This reaction has 

not been reported for CALB, but other enzymes such as halohydrin dehalogenases are 

effective in oxirane ring opening with other nucleophiles such as azide and cyanide 

anions.53  

Working with CALB in bulk and in toluene confirmed the model reaction results giving poor 

monomer conversion. In DMF solution (entries 11-15, Table 3.2), polymerization proceeds 

slowly to give lower polymer yields and lower Mn when compared to TBPB. Long-time 

reaction (48 h) (entry 15, Table 3.2) was necessary to reach 100 % conversion. Remarkably, 

structure of all polyester contains both branched polyester and polyether linkages. 

Whereas low conversion gives branched polyesters, longer times and conversions produce 

extensive etherification. This probably is due to the fact, that ester linkages formed can 

undergo a reverse reaction, catalysed also by lipase, in a similar way than equilibrium 

condensation reactions.46 Thus, the resulting free hydroxyl groups can react with the epoxy 

groups of the unreacted monomer yielding polyether linkages in an irreversible process 

(Scheme 3.4). These transesterification and etherification reactions lead to polymers with 

a significant lower molecular weight and polydispersity when compared to those obtained 

with onium salts. This fact is probably due to differences on fractionation during isolation 

processes. 

Scheme 3.4 Transesterification-etherification reactions in the polymerization of EUA with CALB in 
DMF. 

 
According of these results, TBPB was considered the most suitable catalyst to obtain linear 

polyesters, and a kinetic study was carried out with different concentration of catalyst and 
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different temperatures in order to find out the better reaction conditions. Thus, the kinetic 

study was performed in toluene (100 °C), ethylbenzene (130 °C) and cumene (150 °C). 

Figure 3.3 presents the evolution of monomer conversion and polymer molecular weight 

against time, calculated by 1H NMR and SEC respectively. First, as expected, polymerization 

proceed much faster at 130 °C and 150 °C reaching complete conversion before 2 h. Thus, 

the effect of catalyst concentration was studied at 100 °C and a significant polymerization 

rate increase was observed when increasing TBPB from 0.5 % to 2 % (Figure 3.3 a).  

 

Figure 3.3 Polymerization of EUA with different TBPB concentrations and different temperatures:  
a) Conversion versus time, b) variation of Mn versus time. 

The effect of temperature and catalyst concentration is also remarkable in molecular 

weights (Figure 3.3 b). As a general trend, either increasing catalyst concentration (0.5 to 2 

%) or increasing temperature at (100   Cͦ to 150   Cͦ) produce a progressive and almost linear 

increase in Mn. Noteworthy, maximum molecular weights are reached using 1 % of catalyst 

at 100 °C. However, after the complete monomer conversion, longer polymerization times 

(not shown in Figure 3.3 b), seems to favour transesterification processes leading to 

branching, increasing molecular weight, and finally to the formation of increasing amounts 

of insoluble material. In polymerizations at 100   Cͦ, this behaviour was significant after 12 

h and 6 h when 1 % or 2 % of TBPB was used respectively. Higher temperatures (130   Cͦ and 

150   Cͦ) accelerate even more these processes and significant amounts of insoluble 

crosslinked fraction were detected after only 6 h.  
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The progressive increase of the molecular weight can be followed by the evolution on the 

SEC traces versus conversion on the EUA polymerization with 1 % of TBPB at 100   Cͦ (Figure 

3.4). Molecular weights progressively increase up to Mn = 8600 g·mol-1 at 8 h when 

monomer is completely consumed. At 12 h, insoluble fraction was formed and the soluble 

fraction shows a higher Mn = 14500 g·mol-1. 

 

Figure 3.4 Molecular weights distributions according SEC traces for different monomer conversion 
on the EUA polymerization (1 % of TBPB in toluene at 100   ͦC). 

With all this information in hand, the EUA scaled polymerization (10.0 g, 50.0 mmol) was 

carried out with 1 % of TBPB in a 2.5 M solution in toluene at 100   Cͦ for 8 h (entry 9 in Table 

3.2). In this way, a white polymer with a linear chain structure (PEUA-1) with Mn 9800 

g·mol-1 and Ɖ 3.4 was obtained in 87 % yield. Moreover, for comparative purposes samples 

of partially branched (PEUA-2) and insoluble crosslinked polyester (PEUA-3) were prepared 

using 1 % of TBPB in bulk at 100  Cͦ for 8 h (entry 6 in Table 3.2). Thus, starting from 2.0 g, 

10.0 mmol of EUA, after fractionation in THF, a soluble polymer fraction with Mn 12400 

g·mol-1 and Ɖ 4.1 (62 % yield) and an insoluble fraction (28 % yield) were obtained. 

Molecular weights of all obtained linear and low branched hydroxypolyesters are in the 

range of 8.0–13.0 x 103 g · mol-1 which is quite low for most structural and engineering 

applications. However, a key issue for the potential applications of these hydroxypolyesters 

relies on the pendant hydroxyl free groups. The presence of these reactive groups together 

with low molecular weight of the linear or branched polyesters allows straight introduction 
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of diverse active biomolecules under mild conditions.  Additionally, further modifications 

would allow molecular weight increasing obtaining reticulate materials with modulate final 

mechanical, thermal, chemical and biological properties. In fact, the beneficial effect of the 

hydroxyl pendant groups has been demonstrated improving polymer degradability in both 

hydrolytic and enzymatic media when compared with conventional polyesters such as 

poly(ε-caprolactone) and poly(11-hydroxyundecanoate) (see Chapter 4).  

3.4.2 PEUAs microstructural characterization 

In Figure 3.5, the region between 3.2 and 5.6 ppm of 1H NMR spectra of linear PEUA-1 and 

partially branched PEUA-2 is shown. A representative general structure of these polyesters 

including the three possible different repetitive units arising from the attack to the less 

substituted oxirane carbon “normal ring-opening” (Nu), to the more substituted oxirane 

carbon “abnormal ring opening” (Na), branching through transesterification, and the chain 

ends is also included. It must be pointed out that transesterification occurs either through 

primary or secondary alcohols giving non-distinguishable by NMR branching units. 

 The 1H NMR spectra signals corresponding to the methine and methylene protons of the 

different units, named with the subscript n, a and b for “normal”, “abnormal” or 

“branched” respectively, were unequivocally assigned by comparison with the methylene 

and methine signals of model compounds A, B and C (Figures 3.2 and Figure SI.2), and their 

corresponding trichloroacetylisocyanate (TAI) (Figure SI.3) and trifluoroacetic anhydride 

(TFAA) derivatives (Figure SI.4). Moreover, 10,11-dihydroxy-undecanoic acid was used as 

model for the polymer chain end groups (Figure 5.1 in Chapter 5). 

The content of “normal”, “abnormal” and “branched” units in PEUA-1 and PEUA-2 was 

determined by comparing the intensity of the integration of the corresponding 1H and 19F 

NMR signals of the pristine and their trifluoroacetylated derivatives (Table 3.3, Figure 3.6).  
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Figure 3.5 a) 1H NMR PEUA; b) Region between 3.2 and 5.6 ppm of 1H NMR spectra of PEUA-1; c) 
Region between 3.2 and 5.6 ppm of 1H NMR spectra of PEUA-2 and the corresponding assignments 
in a representative structure. 
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Table 3.3 Quantifications of the different units (%) in PEUA-1 and PEUA-2 and their corresponding 
trifluoroacetates by 1H NMR and 19F NMR. 

Polyester 
1H NMR 19F NMR 

PEUA-1 PEUA-2 PEUA-1 TFA PEUA-2 TFA PEUA-1 TFA 

n 71.1 63.9 66.7 61.7 66.5 
a 28.6 28.4 33.2 30.8 33.5 
b < 0.5 7.6 < 0.5 7.5 -- 
e -- 1.6 -- -- -- 

 

Figure 3.6 Spectra of a) 1H NMR spectrum of PEUA-2 trifluoroacetate and b) 19F NMR spectrum of 

the PEUA-1-trifluoroacetate and 3,5-bis(trifluoromethyl)benzoic acid mixture. 
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For linear PEUA-1, about 71 % of normal units were determined from the pristine polyester 

and a lower value (∼67 %) from their TFA derivative, probably due to the signals of the TFA 

end groups are not included. In both cases, only a negligible number of branched units (less 

than 0.5 %) was detected. For PEUA-2, 62–64 % of “normal” units and 7.5 % of branched 

units were determined. These measurements confirm that, under the studied conditions 

and using onium salts as catalyst, the maximum selectivity toward the ring opening by 

attack to the less substituted oxirane carbon is about 70 %. 

The absolute content of primary and secondary hydroxyl groups in PEUA-1 was determined 

by integration of the 19F NMR signals using accurately weighted amounts of 

trifluoroacetylated PEUA-1 and bis (trifluoromethyl)benzoic acid as internal standard 

(Figure 3.6 b). In this way, 0.169 and 0.353 of primary and secondary hydroxyl equivalents 

per 100 g of polymer were determined (Figure 3.6 and equation 6.2 from Chapter 6). 

According to a linear structure and one hydroxyl group per repeating unit, it is possible to 

roughly estimate a Mn of 4000 g·mol-1 for this sample (equation 6.3 from Chapter 6), which 

is about one half of that determined by SEC (9800 g·mol-1). 

Molecular weights determined by SEC are over or under estimated as consequence of 

differences in the hydrodynamic volume with the polystyrene standards used in the 

calibration. Thus, to validate the actual molecular weight, it was also calculated from the 

carboxylic end group by derivatization as methyl ester using trimethylsilyldiazomethane 

(TMS-CHN2) (Figure 3.7 and equation 6.4 from Chapter 6). Thus, by comparing the 1H NMR 

signal intensity of the methyl ester in the end group and the α-methylene in the repeating 

units, Mn of 4300 g·mol-1 was estimated which is in good agreement with the previous 

measurements and indicates that hydrodynamic volume of these polyesters in THF is 

greater than PS. 
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Figure 3.7 1H NMR of PEUA-TMS-CHN2 derivative. 

 

PEUAs 13C NMR spectra assignments (Figure 3.8) were also undertaken by comparison with 

those of models A, B and C and 1H–13C heteronuclear bidimensional correlations (Figure 

SI.5). The methane and methylene carbons of the “normal” (70.1 and 68.7 ppm 

respectively) and “abnormal” (75.4 and 64.9 ppm respectively) units appear with different 

intensity sustaining the presence of about 70 % of normal units. Interestingly, ester groups 

in both units can be also differentiated by C=O signals at 174.5 ppm and 174.2 ppm, 

respectively. In the case of the spectrum of branched PEUA-2, four additional small signals 

appear: at 71.2 and 64.1 ppm assigned to the methine and methylene carbons of the 

branched units, and at 72.4 and 66.9 ppm assigned to the methine and methylene carbons 

of the diol end groups. 
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Figure 3.8 13C NMR spectra of a) PEUA-1, b) PEUA-2 (both recorded in CDCl3). 

 

As commented above EUA polymerization in bulk with TBPB at 8 h (entry 6 in Table 3.2) led 

also to the formation of some gel insoluble fraction (IF). Longer reaction times increase the 

content of this insoluble fraction up to 100 % at 4 days, presumably due to intramolecular 

transesterification reactions take place. So, to unravel the nature of the side cross-linking 

reactions 13C NMR spectrum of the insoluble material was recorded as swollen gel in TCE-

d2 (Figure 3.9). The spectrum shows significant differences when compared to that of a 

linear PEUA-1 (Figure 3.8 a). In the carbonyl region, in addition to the signals at ca. 175.1 

ppm and 165.6 ppm corresponding to “normal” and “abnormal” units, three additional 

signals are detected. A pair of signals having similar intensity, at 162.8 and 162.4 ppm 
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attributed to the branching units by comparison with the spectrum of a soluble branched 

PEUA sample, confirms the branching by transesterification. The third and more intense 

signal at 180.7 ppm can be attributed to free carboxylic group and could be related to 

etherification processes as signals at 78–82 ppm, characteristic of methine carbons in 

polyether chains, are also observed.54 

 

Figure 3.9 13C NMR spectra of PEUA-3 (recorded in TCE-D2 as swollen gel). 

 

These transesterification and etherification reactions were also confirmed by FTIR 

spectroscopy. In Figure 3.10, the spectrum of soluble PEUA-1 (top) shows the characteristic 

stretching vibration of hydroxyl groups at 3300 cm−1 and only a single carbonyl ester band 

at 1727 cm−1. In the spectrum of insoluble PEUA-3 (bottom), the alcohol hydroxyl band 

disappears and a broad band at 3200–2500 cm−1, characteristic of COOH, together with a 

new carbonyl band at 1707 cm−1 appear. Moreover, a new intense band at 1095 cm−1 

indicates the presence of C-O-C ether linkages. 
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Figure 3.10 FT-IR spectra of PEUA-1 (top) and PEUA-3 (bottom). 

According to these results, both transesterification and etherification reactions are 

responsible of the progressive cross-linking, when high temperatures or long 

polymerization times were used with TBPB, and indicate that an accurate control of 

polymerization conditions is mandatory to obtain linear polyesters. The first reaction (a in 

Scheme 3.5) involves the nucleophilic displacement of alkoxy groups giving new ester 

linkages leading to branching in a reversible way. The second one (b in Scheme 3.5) involves 

the nucleophilic displacement of alkoxycarbonyl leading to the formation of ether linkages 

and carboxylic acid moieties, in an irreversible way. These processes, including the direct 

etherification between two hydroxyl moieties, have been recently described for 

hyperbranched polyesters.55 

 

Scheme 3.5 Transesterification-etherification crosslinking reactions in the polymerization of EUA 
with TBPB. 
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It is worth to note that PEUA obtained with CALB in DMF also contained different 

percentages of etherification (determined by methane protons at 3.40–3.20 ppm in the 1H 

NMR spectra).56 However, in this case, ether formation most probably arises from oxirane 

ring opening as etherification is detected from the early stages of the polymerization when 

EUA is present. 

The thermal behaviour of PEUAs has been examined by differential scanning calorimetry 

(DSC) and thermal gravimetric analysis (TGA) (Table 3.4). A DSC analysis was carried out in 

order to appraise the behaviour of the synthesized polyesters regarding reversible thermal 

transitions. Both PEUA-1 and PEUA-2 were found to be semicrystalline showing a double 

melting peak at ca. 85 and 99 °C in the first heating.  However, the associated melting 

enthalpy is higher in PEUA-2 indicating a greater influence of sample molecular weight over 

its structure. In the second heating, melting temperatures and enthalpies decrease notably, 

but sample with higher molecular weight shows a higher crystallinity. The high melting 

point and crystallinity can be accounted by intermolecular interactions caused by the 

possible intermolecular hydroxyl bonds between two neighbouring hydroxyl and hydroxyl 

or carbonyl groups that can stabilize the aggregated solid crystalline structure. Tg values 

are the same in both polyesters (-16 °C) and fall into the range of polyhydroxyalkanoates.57 

Different behaviour is observed for PEUA-3, in which neither Tg or Tm is detected due to 

its cross-linked structure. 

TGA traces PEAU-1 and PEUA-2 show that decomposition process happens in two main 

steps with maximum rates at temperatures of 385–390 °C and 462 °C, respectively. For 

PEUA-3, probably the ether linkages in its structure produce an increase in thermal stability, 

and maximum rates of both steps appear at higher temperatures. In all cases, the first peak 

contributing about 40 % weight loss corresponds to the decomposition of the ester bonds. 

The second peak could be related to the presence of hydroxyl groups leading to a 

progressive crosslinking on heating by dehydration/etherification reactions, as thermal 

degradation of aliphatic polyesters without reactive pendant groups, usually occurs in one 

main single step.58 
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Table 3.4 Thermal properties of PEUAs. 

Sample SECa DSCb 1st heating DSCb 2nd heating TGAc 

NU/BU  

% 

Mn  

(Kg·mol-1) 
Tm (°C) 

ΔH 

(KJ·mol-1) 
Tg (°C) Tm (°C) 

ΔH  

(KJ·mol-1) 
T5% 

(°C) 

Tmax 

(°C) 

PEUA-1d 9.8 84/99 8.3 -16 35 5.6 341 386/462 

PEUA-2e 12.4 86/98 16.6 -16 44 7.4 334 392/462 

PEUA-3f -- -- -- -- -- -- 360 408/470 

(a) Mn (Kg·mol-1) determined by SEC. (b) DSC traces recorded under nitrogen atmosphere: Glass transition 
temperature (Tg) taken as the inflection point of the heating DSC traces recorded at 10 °C·min-1.; melting 
temperature (Tm) and their enthalpy (ΔH) measured at heating rates of 10 °C·min-1. (c) TGA traces recorded 
under nitrogen atmosphere at 10 °C·min-1: (T5%) temperature of 5 % weight loss, (Tmax) temperature of 
maximum degradation rate; (d) PEUA-1: 71 % NU; (e) PEUA-2: 64 % NU, 7.5 % BU; (f) PEUA-3: insoluble crosslinked 
polyester. 

 

3.5 POST-POLYMERIZATION MODIFICATION OF PEUA 

The synthesized polyesters bearing reactive hydroxyl pendant groups are expected to be 

easily functionalized to ester function by reaction with acid or its derivatives. Alternatively, 

the hydroxyl groups can react with succinic anhydride to provide a polyester bearing active 

carboxylic groups thus investing the polymer reactivity. To demonstrate the potential 

ability to use these hydroxylic and carboxyl groups for biofunctionalization we investigated 

the coupling reaction between PEUA and PEUA-succinate respectively with three protected 

amino acids: phenylalanine, cysteine and serine derivatives as representatives for 

biomolecules (Scheme 3.6).25  
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Scheme 3.6 Post-polymerization modification of PEUA-1. 

PEUA-1 reacted with N-tert-butoxylcarbonyl (Boc)-protected phenylalanine in presence of 

excess of DECH and a catalytic amount of DMAP at room temperature to give PEUA-

phenylalaninate (81 % yield). Its 1H and 13C NMR spectra and the corresponding peak 

assignments made on the basis of the starting reagents, are shown in Figure 3.11.59  

Polyester hydroxyl modification took place in a considerable extent (88-90 %) which was 

calculated by comparing the integration of the 1H NMR signals of Hb and Hc,H’c in the Boc-

phenylalanine moiety, and those of α-methylene to carbonyl in polyester repeating units 

(signal noted 2 in Figure 3.11 a). It is worth to note, that protons Hb and Hc,H’c appear as 

two different signals due to the presence of syn and anti rotamers (Figure 3.11 a).60,61 From 

the relative intensity of these signals, Hb syn (4.57 ppm), Hb anti (4.40 ppm), Hc H’c syn (3.11-

3.02 ppm) and  Hc H’c anti (2.82 -2.76 ppm), about 84 % of “syn” configuration could be 

determined at the 1H NMR recording conditions.  1H NMR spectrum also shows small signals 

at 3.70-3.40 ppm attributable to unreacted polymer units (marked with an asterisk). 13C 

NMR spectrum (Figure 3.11 b) shows differentiated signals for methines and methylenes 

of the normal and abnormal modified units (10n, 11n, 10a and 11a) but also signals of the 

remaining unmodified units (marked with an asterisk) can be observed. In this spectrum, 

only methine b appears unfolded due to the existence of syn-anti rotamers.  

PEUA-1 reacted with 2,2-dimethylthiazolidin-3-(N-formyl)-4-carboxylic acid (DMFT) in 

presence of excess of DECH, DMAP and DMF as solvent, at room temperature to lead PEUA 
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modificated with protected L-cysteine (86 % yield). Its 1H and 13C NMR spectra and the 

corresponding peak assignments made on the synthetized starting reagent: 2,2-

dimethylthiazolidin-3-(N-formyl)-4-carboxylic acid (Figure SI.6 and Figure SI.7) are shown 

in Figure 3.12.62-64
63,64Polyester hydroxyl modification was practically complete as observed by 

1H NMR and 13C NMR spectra (signals noted in Figure 3.12). The methines and methylenes 

of the normal and abnormal units (10n, 11n, 10a and 11a) disappear signals (at 4.90 ppm and 

4.2-3.35 ppm). In 13C NMR appear duplicate signals due to the presence of syn and anti 

rotamers of protected L-cysteine (Figure 3.12 b). The anti rotamer is the most abundant, 

around 90 % of “anti” configuration as can be estimated from the relative intensities of the 

corresponding signals in the 13C NMR spectrum. 

PEUA-1 reacted with excess of succinic anhydride in a mixture of DCM and pyridine at room 

temperature to produce PEUA-succinic monoester in good yield. Their 1H and 13C NMR 

spectra (Figure 3.13) confirm the introduction of the succinate groups but some signals of 

remaining unreacted units were still detectable. From their relative intensity of this signals 

a modification degree of ca. 88 % was estimated.  

This PEUA-succinic monoester reacted with N-tert-butoxylcarbonyl-protected serine 

methyl ester (N-Boc-SerOMe) in presence of excess of DECH and a catalytic amount of 

DMAP in similar conditions as employed for the phenylalanine derivative. The 

corresponding serine PEUA-succinate was isolated in 64 % yield. Its 1H and 13C NMR spectra 

and the corresponding peak assignments made on the basis of the starting reagents, are 

shown in Figure 3.14. 

The spectra show the complete incorporation of the N-Boc-serine methyl ester to the 

succinic residues. No free carboxyl group were detected but the signals of original 

unmodified hydroxyl units can be observed (signals at 4.1 and 3.9 ppm in 1H NMR and 

signals at ca. 69 and 67.5 ppm in 13C NMR). Noteworthy, succinic groups seem to decouple 

the motions of the serine moieties from the polyester backbone thus resulting a simpler 1 

H NMR spectrum with no evidence of rotamers.  
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Referring to the modified polyesters molecular weights in all cases were higher than the 

starting PEUA-1 (9800 g·mol-1) and were in good agreement with the expected mass 

increase and the high modification degrees. All modified polymers showed narrower 

molecular weight distributions probably due to fractionation during the polymer isolation 

and purification. 

 

Figure 3.11 a) 1H and b) 13C NMR spectra of PEUA modified with N-Boc-Phe-OH. Signals of 
unmodified PEUA-1 are designed with one asterisk. 
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Figure 3.12 a) 1H NMR of PEAU-1-DMFT and b) 13C NMR spectra of PEUA-1- DMFT. Signals of syn 
rotamer are designed with one asterisk. 
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Figure 3.13 a) 1H NMR of PEAU-1-succinate and b) 13C NMR spectra of PEUA-1-succinate. Signals of 
unmodified PUEA-1 are designed with one asterisk. 
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Figure 3.14 NMR spectra of PEUA-succinate modified with N-Boc-Ser-OMe, a) 1H and b) 13C NMR. 
Signals of unmodified PEUA are designed with one asterisk. 
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3.6 CONCLUSIONS 

Biobased hydroxyl-functionalized aliphatic polyesters using 10,11-epoxyundecanoic acid as 

an AB type monomer were successfully synthesized via ROP with organic or enzymatic 

catalysts and thus avoiding metallic catalysts. Reaction with 1 % of tetrabutylphosphonium 

bromide in a 2.5 M solution in toluene at 100  Cͦ for 8 h led to the highest conversion of 

linear polyesters with moderate molecular weights. Reaction in bulk, at higher 

temperatures or longer times gave branched polymers with increasing fractions of 

crosslinked polymers. In contrast, reaction with enzymatic catalyst (10 % CALB), in a 2.5 M 

solution in DMF at 90  Cͦ for 48 h yielded branched polymers with polyether units.  Under 

the appropriate conditions, both linear and branched polyesters could be prepared in 

multi-gram scale with complete monomer conversion either in bulk or in toluene solution. 

The synthesis of model compounds and derivatization of polyesters allowed a detailed 

structural characterization of synthesized functionalized polyesters by 1H, 13C, and 19F NMR. 

Likewise, the determination of normal/abnormal ratio (70/30), hydroxyl content (0.522 Eq 

OH/100 g polymer) and molecular weight (4000 g·mol-1) for linear polyester was carried 

out. 

Polyesters showed very good thermal stability and were found to be semicrystalline. The 

postpolymerization modification of the reactive hydroxyl sites present along the polymer 

backbone with N-Boc protected L-phenylalanine, protected L-cysteine and L-serine were 

successfully performed conferring them potential for the design of polymers with demand 

in biomedical applications. Moreover, thiolated polymers can be prepared from PEUA-

DMFT. 
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4.1 INTRODUCTION 

For the last 60 years, synthetic polymeric materials have grown progressively basically due 

to their low cost, their reproducibility, and their resistance to physical aging and biological 

attacks. However, the resistance of synthetic polymers to the degrading action of living 

systems is becoming increasingly problematic in several domains where they are used for 

a limited period of time before becoming wastes. This is the case in surgery, in 

pharmacology, in agriculture, and in the environment as well. 

Nowadays the open and the patent literature propose a large number of polymers whose 

main chains can be degraded usefully. Among these degradable polymers, aliphatic 

polyesters are receiving special attention because they are all more or less sensitive to 

hydrolytic and enzymatic degradation.1-3
,2, 3 Aliphatic polyesters containing flexible ester 

bonds appear to be the most promising because of their excellent biocompatibility and 

variable degradability and are the most representative examples of environmentally 

relevant polymeric materials.4-7
,5,6,7

 

Many aliphatic polyesters biodegrade via a two-step process. First, polymer backbone 

bonds must be enzymatically or otherwise hydrolysed to produce oligomers, which are 

subsequently broken down and further, in soil return water, carbon dioxide, and hummus.8 

Generally, polyester degradation rate is impacted by the structure of the polymer 

backbone, including the electrophilicity of the carbonyl atoms and the presence or absence 

of bulky substituents. Among the critical factors that affect the degradation rate of 

polyesters, one is the distance between ester groups in the polymer which determine the 

polymer character, e.g. hydrophobicity and crystallinity. Molecular weight and crystallinity 

have been shown to have the largest impact in polyester degradation due to a hindrance 

in water being able to diffuse into the matrix. 

Moreover, the presence of hydrophilic (hydroxyl and carboxyl) end groups also promotes 

the polyester degradation. It is well known the effect of autocatalysis by the acid ended 
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chain fragments, which leads to a dramatic increase of the rate of degradation as 

degradation advances.9 It is established that carboxyl end groups formed by chain cleavage 

catalyse degradation and that amorphous regions are preferably degraded.5,10,11 

The introduction of functional groups into commonly used polyesters such as PLA and PCL 

provides polymers with tuneable degradation behaviour by suppression of crystallinity and 

enhanced hydrophilicity that also favours cell adhesion to the surfaces important for tissue 

engineering purposes.12 Further, increased hydrophilicity results in a greater water 

absorbing capacity of the polymers, thereby increasing the degradation rate and probably 

preventing a pH drop inside the degrading matrices and hence preventing incomplete 

release of degraded fragment or encapsulated compounds.13 

Aliphatic polyesters degrade either by bulk erosion or surface erosion.14-16
,1 5, 16 Polymer 

hydrolytic degradation is produced by scission of chemical bonds in the polymer backbone, 

by water uptake, to form oligomers and finally monomers. In the first step, water molecules 

attack the water-labile bonds by either direct access to the polymer surface or by imbibition 

into the polymer matrix followed by bond hydrolysis. This nucleophilic attack by water can 

be catalysed by acids, bases or enzymes.17 

In this work it studied the hydrolytic and enzymatic degradation of two aliphatic polyesters 

synthesized from castor oil-derived 10-undecenoic acid: poly(10,11-epoxyundecanoic acid) 

(PEUA from Chapter 3) which contains primary and secondary hydroxyl pendant functions 

along the main chain and poly(11-hydroxyundecanoate)diol, and compared with 

commercial poly(ε-caprolactonediol). Changes taking place in sample weight, molecular 

weight, chemical constitution, thermal properties, crystallinity and surface morphology of 

the polyesters were evaluated and related to the polymer structure and degradation 

conditions.  
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4.2 POLYESTER SYNTHESIS AND CHARACTERIZATION 

Linear poly(10,11-epoxyundecanoic acid) (PEUA) was synthesized through carboxylic ring 

opening polymerization of 10,11-epoxyundecanoic acid catalysed by TBPB with high yields 

(87 %), described in Chapter 3.18 Poly(11-hydroxyundecanoate)diol (PHU) was synthesized 

by transesterification reaction initiated by 1,6-hexanediol and catalysed by titanium 

tetraisopropoxide, with high yield (92 %). These two polymers are obtained from 10-

undecenoic acid-derived monomers.  The first contains primary and secondary hydroxyl 

pendant groups along the main chain in about 30:70 ratio, arising from normal and 

abnormal oxirane ring opening.18 Poly(ε-caprolactone)diol (PCL) diethylenglycol  initiated 

was purchased and  used to compare the degradation behaviour of our 10-undecenoic acid-

derived renewable polyesters with a commercial versatile and widely used polymer with 

similar structure.  

Structure of the three polymers is represented in Scheme 4.1 and the main features in 

connection with the degradation study carried out in this work are listed in Table 4.1, Table 

4.2 and Table 4.3. 

 

Scheme 4.1 Structure of polymers a) PEUA, b) PHU and c) PCL. 
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Table 4.1 Molecular weight of initial polymers. 

 Molecular weight 

Polymer 
RMN SEC 

Mn (kg·mol-1)a Mn (kg·mol-1)b Ɖb 

PEUA 3.65 8.40 3.4 

PHU 3.52 3.90 2.0 

PCL 2.58 3.60 1.9 

(a) Number average molecular weight determined by NMR; (b) Number average molecular weight and 
polydispersity index determined by SEC in THF relative to PS standards. 

Table 4.2 Thermal properties and XRD of initial polymers. 

 DSC 1st heating DSC 2nd heating TGA XRD 

Pol. Tg 

(°C)a 
Tm

 

(°C)b 
ΔHm

 

(KJ·mol-1)b 
Tm

 

(°C)c 
ΔHm

 

(KJ·mol-1)c 
c 

 

%d 

T5%
 

(°C)e 
Tmax

 

(°C)f 
c 

 

%g 

PEUA -12 92.1±0.6 
100.1±0.5 

17.5±0.6 43.2±0.2 7.1±0.3 -- 342 386 
432 

54.2 

PHU -- 73.8±0.3 27.7±0.4 72.9±0.3 22.4±0.4 56.7 327 425 66.3 

PCL -- 58.0±0.6 11.7±0.3 52.0±0.4 9.8±0.2 54.7 217 413 62.0 
(a) Glass-transition temperature (Tg) taken as the inflection point of the first heating DSC curves recorded at 
10 °C·min-1; (b) Melting temperatures (Tm) and enthalpies (ΔHm) determined by DSC on the first heating scan at 
heating rates of 10 °C·min-1; (c) Melting temperatures (Tm) and enthalpies (ΔHm) determined by DSC on the 
second heating scan at heating rates of 10 °C·min-1; (d) Fractional crystallinity estimated by DSC using ΔH0

m 
described in literature; (e) Temperature at which 5 % weight loss was observed by TGA; (f) Temperature for 
maximum degradation rate from TGA; (g) Fractional crystallinity estimated by XRD from the amorphous and 
crystalline pattern areas. 

 

The absolute molecular weights were determined by NMR measurements. Mn of PEUA was 

calculated by 19F NMR of the corresponding trifluoroacetyl derivative as previously 

reported.18 In the case of PHU and PCL, Mn was calculated by 1H NMR spectroscopy by 

comparison of the intensities of signals corresponding to the α-methylene to ester group 

in the main chain at 2.3 ppm, and CH2OH end groups at ca. 3.6 ppm in both cases (Figure 

4.8 a and Figure 4.9 a). As can be seen, PEUA and PHU have similar Mn whereas Mn of 

commercial PCL is something lower. Mn of the three polyesters was also determined by 
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SEC which was the technique used to follow the hydrolytic and enzymatic degradation. The 

resulting values are higher, especially in the case of PEUA. This can be attributed to 

differences in the hydrodynamic volume with the PS standards. Moreover, as PEUA 

contains hydroxyl pendant groups it should be expected to have a more expanded coil in 

good solvents such as THF.  

According to DSC scans, all polyesters PEUA, PHU and PCL are semicrystalline.  Relatively 

small decreases in melting temperature and melting enthalpy between the first and second 

scan are observed for PHU and PCL indicating a strong tendency of the chains to reorganize 

and crystallize.  Moreover, melting temperatures of PHU and PCL are lower than those 

reported for the pure crystalline samples, which confirms its semicrystalline character. 19 In 

regard to commercial PCL, it is reported that melting temperature occurs in the range of 

59-64 °C depending upon the crystallite size.20 PEUA shows a different behaviour having 

much higher melting temperature and melting enthalpy in the first scan, which is consistent 

with literature.21 From the observed melting temperatures of pristine polyesters, it was 

established that 45 °C had to be the maximum incubation temperature to maintain the 

shape and integrity of all samples. 

After erasing the thermal history, the fractional crystallinity (c) of PHU and PCL based on 

their enthalpy of fusion in the second heating scan could be estimated, as the heat of fusion 

for the 100 % crystalline samples is reported (PHU 39.5 KJ·mol-1 and  PCL 17.9 KJ·mol-1).22,19 

According this estimation, PHU has slightly higher crystallinity degree than PCL and XRD 

measurements confirms the same result. The complete linear structure of both polymers 

favours aliphatic chain packing and fast reorganization. In the case of PEUA there is no 

reference for the pure crystalline sample. However, according to XRD data it seems to be 

less crystalline than PHU and PCL, which is concordant to its random copolymer structure 

and the presence of hydroxyl pendant groups. 

TGA curves for the three polyesters have approximately the same shape with the only 

difference that the hydroxypolyester, PEUA, shows and additional decomposition process 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Chapter 4 

110 

 

and a slight lower thermal stability.18 Aliphatic polyesters without reactive pendant groups 

usually have a single step degradation. Under the given experimental conditions, no 

measurable number of volatile compounds (moisture, unreacted monomers, and small 

molar mass product of reaction) is detected below 270 °C. From the measured TGA curves 

of three polyester samples, temperatures obtained for mass losses of 5 % and maximum 

rate temperatures for main decomposition processes were calculated and collected in 

Table 4.2. 

Hydrophilic/hydrophobic behaviour of these polyesters (Table 4.3) was determined 

measuring their solubility, water uptake and contact angle. 

Table 4.3 Solubility, water uptake and contact angle of PEUA, PHU and PCL. 
 

 Solubilitya Water uptakeb Contact angle 

Polymer H2O EtOH DMSO DMF THF CHCl3 37 °C 45 °C Ɵwater (°) 

PEUA - - + + + + 1.5±0.1 1.86±0.0 79.1±1.4 

PHU - - - + + + 0±0.0 0.23±0.0 83.4±1.3 

PCL - - - + + + 2.2±0.2 5.25±0.2 66.2±2.6 

(a) (-) insoluble, (+) soluble. (b) expressed as weight increase percentage. 

 

Solubility properties were assessed in an assortment of representative polar, protic and 

aprotic solvents. As expected by their predominant polymethylene moieties, all polyesters 

were insoluble in water and ethanol but soluble in medium to high polarity aprotic solvents. 

The hydrogen bonding interactions between hydroxyl groups in PEUA and the highly 

polarized S=O groups could explain its different solubility in DMSO. 

Polymer water uptake was measured at 37 °C and 45 °C, temperatures at which hydrolytic 

and enzymatic degradation were performed. It can be observed increasing values 

according to their expected hydrophilic character, PCL > PEUA > PHU taking into account 

their relative ester density and the presence of additional hydroxyl groups in PEUA.  The 
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same behaviour was observed through water contact angle measurements (Figure 4.1) 

confirming the hydrophilicity order. 

 

Figure 4.1 Water contact angle images of starting polymers a) PEUA, b) PHU and c) PCL. 

4.3 HYDROLYTIC AND ENZYMATIC DEGRADATIONS  

The study is focused on two main elements: composition of the polymer matrix during the 

hydrolysis (weight loss and molecular weight decrease) and composition of the degradation 

products. 

The variation in sample weight and Mn for PEUA, PHU and PCL upon incubation in aqueous 

buffers at pH 2.0 and 45 oC and at pH 7.4 with porcine pancreas lipase and 37 oC, 

respectively, is depicted in Figure 4.2 and Figure 4.3.   

Figure 4.2 Remaining weight of polymers by measure of weight loss versus time: a) at pH 2.0 at 45 
oC; b) at pH 7.4 at 37 oC with porcine pancreas lipase. 
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The weight losses undergone by PCL and PEUA were about 7 % and 5 %, respectively, after 

10 weeks of incubation at pH 2.0 at 45 oC, thus showing the release of soluble oligomers 

produced by degradation. By contrast, the invariance observed for PHU in both weight loss 

and Mn is indicative of none degradation. When incubated under enzymatic conditions, 

after 10 weeks, scarce variance was observed in remaining weights in PEUA and PHU, 

therefore none of them underwent significant degradation. However, the weight loss for 

PCL was about 60 % but the fact that there was no significant change in molecular weight 

(Figure 4.3 b), indicates clearly a surface erosion mechanism for polymer degradation as 

confirmed by the observed sample size reduction.14,23 

Figure 4.3 Degradation of polymers by SEC determination; a) Molecular weight at pH 2.0 at 45 oC; b) 
Molecular weight at pH 7.4 at 37 oC with porcine pancreas lipase. 

 
In the case of PEUA, a significant decrease of Mn was observed for at pH 2.0 at 45 oC. The 

initial Mn was 8400 g·mol-1 with Ð 3.4 and the final Mn 3700 g·mol-1 with Ð 2.6, however, 

weight loss is very low (up to 5 %). This seems to indicate that, even in small extent, 

hydrolytic degradation proceeds through a bulk erosion mechanism. In enzymatic 

degradation, Mn also decrease but in a minor extension and without significant changes in 

Ð. This is consistent with the difficulty of enzymes to penetrate polymer systems and only 

to diffuse into poorly ordered amorphous regions.24,25 

By comparison to PHU behaviour in both hydrolytic and enzymatic media it can be inferred 

that the pendant hydroxyl group and the superior amorphous character in PEUA play a 
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significant role in the degradation mechanism by increasing hydrophilicity, water uptake 

and swelling of the amorphous domains, facilitating the ester cleavage and the decrease of 

molecular weight. This behaviour is especially remarkable in acidic medium where the 

formation of shorter chains modify crystallinity (vide infra).  

4.4 THERMAL ANALYSIS  

To evaluate thermal changes during hydrolytic and enzymatic degradation, second heating 

DSC traces of the three polyesters after 10 weeks of incubation at pH 2.0 at 45 oC and at pH 

7.4 at 37 oC with porcine pancreas lipase were carried out, and compared with those of the 

pristine polymers (in Table 4.3). DSC scans are shown in Figure 4.4 a and measured melting 

temperatures, melting enthalpies and estimated fractional crystallinities (c) are collected 

in Table 4.4.  

Table 4.4 Melting temperatures, melting enthalpies and crystallinity degrees estimated by DSC and 
XRD of polyesters after 10 weeks of incubation at pH 2.0 at 45 oC and at pH 7.4 at 37 oC with porcine 
pancreas lipase. 

 pH 2.0 (45 °C) pH 7.4 (37 °C) lipase 

Polymer Tm
 

(°C)a 
ΔHm

 

(KJ·mol-1)a 
c 

 

%b 

c 
 

%c 

Tm
 

(°C)a 

ΔHm
 

(KJ·mol-1)a 
c 

 

%b 

c
 

%c 

PEUA 29.2±0.2 6.2±0.3 -- 54.4 52.5±0.2 7.7±0.3 -- 57.9 

PHU 72.9±0.2 21.7±0.2 54.9 65.1 73.2±0.2 21.4±0.3 54.2 67.0 

PCL 49.3±0.4 9.5±0.2 53.0 66.6 50.9±0.2 9.8±0.2 54.7 66.4 
(a) Melting temperatures and melting enthalpies measured by DSC at heating/cooling rates of 10 °C·min-1; (e) 
Fractional crystallinity estimated by DSC using ΔH0

m described in literature; (c) Fractional crystallinity estimated 
by XRD from the amorphous and crystalline pattern areas. 

   

Several factors can provoke crystallinity changes during polymer degradation.14 One is the 

generation of crystallizable oligomers and monomers. The other stems from the behaviour 

of semicrystalline polymers during erosion. It was well recognized that degradation is much 

faster in amorphous domains that in crystalline ones, mostly because water penetration is 

easier within a disordered network of polymer chains.5,26,27. Moreover, when introducing 

the samples in the incubation media, water uptake lowered the glass transition 
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temperature, increasing mobility of the chains making it possible for them to reorganize 

and crystallize.23 In our case, from DSC traces different behaviour for the three polyesters 

is observed. For PCL, both melting enthalpy and melting temperature remain almost 

unaffected after incubation in both hydrolytic and enzymatic media. This confirms that 

surface erosion is the predominant degradation mechanism producing a layer-by-layer 

ester cleavage and solubilisation. This mechanism is especially remarkable under enzymatic 

conditions where about 60 % of the initial weigh is lost after 10 weeks. For PHU, also no 

significant changes in melting enthalpy and melting temperature are observed what is 

consistent with a scarce degradation observed. It must be pointed out that PHU, due to the 

linear aliphatic chain structure, possess the highest crystalline and hydrophobic character 

of the three samples studied, and shortage of amorphous domains to promote a fast 

degradation mechanism. 

PEUA due to the presence of hydroxyl groups and the two different sequence monomeric 

units possess a lower ability to crystallize as it is shown by their relative lower melting 

enthalpy values (Tables 4.2 and 4.4). On incubation after 10 weeks at pH 2.0, a decrease in 

both melting temperature and melting enthalpy is observed as result of the formation of 

smaller crystals from shorter chains resulting after the bulky degradation process.28 This 

behaviour is consistent with the significant molecular weight decrease produced in the 

degradation in this medium (Figure 4.3 a). On the contrary, on incubation after 10 weeks 

at pH 7.4 in enzymatic media, a moderate increase in both melting temperature and 

melting enthalpy is observed, suggesting a crystallinity increase. In this case, the observed 

decrease of molecular weight is much lower (Figure 4.3 b) and the increase of crystallinity 

could be related to the increased mobility and rearrangement of polymer chains promoted 

by water swelling during incubation. 
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 Figure 4.4 Second heating DSC (a) and TGA plots (b) of initial polyesters (       ), polyesters after 10 
weeks incubation at pH 2.0 at 45 oC (----) and polyester after 10 weeks incubation at pH 7.4 at 37 oC 
with porcine pancreas lipase (·····). 

Thermal stability changes were studied by TGA (Figure 4.4 b).  Curves of initial and 

incubated samples for each polymer, show the same degradation profile. For PHU no 

significant changes are observed according to the negligible degradation and no variation 

in the crystallinity degree. For PCL and PEUA a slight increase in thermal stability is 

observed, which can be related with the reduction of the low molecular weight fractions 

by degradation/solubilization after incubation.  

4.5 XRD ANALYSIS 

Although crystallinity can be roughly estimated by DSC, X ray measurements afford a more 

accurate crystallinity measurement and crystalline arrangement determination. XRD 

patterns of pristine and incubated samples of PEUA, PHU and PCL are shown in Figure 4.5. 

Moreover, fractional crystallinity (c) determined from the amorphous and crystalline 

pattern areas are collected in Tables 4.2 and 4.4.  
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Figure 4.5 XRD patterns of initial polyesters (―), polyesters after 10 weeks incubation at pH 2.0 at 
45 oC (- - -) and polyester after 10 weeks incubation at pH 7.4 at 37 oC with porcine pancreas lipase 
(·····). 

 

 XRD patterns for PHU and PCL coincide with the previously described in literature and 

confirm the high crystalline character of both polymers.29,30 Calculated fractional 

crystallinities are systematically higher (c = 62-67 %) than those estimated by DSC (c = 54-

57 %) and confirm the lower crystallinity of PEUA, also indicated by the significant broad 

dispersion pattern shown in Figure 4.5. In the case of PEUA, c values before and after 

incubation at pH 2.0 at 45 oC are similar, although by DSC lower melting enthalpy and 

melting temperature are observed. Under incubation at pH 7.4 at 37 oC and lipase, a slight 

increase in crystallinity is observed which is in agreement with DSC results. In the case of 

PCL, despite the fact that by DSC no increase in melting enthalpy was observed, XRD 

pattern suggest a slight enrichment in crystallinity that could be related with the 

preferential degradation of the amorphous domains in the surface erosion. 

4.6 MORPHOLOGICAL OBSERVATIONS  

Surface morphology changes of PEU, PHU and PCL after hydrolytic and enzymatic 

degradation were observed by ESEM. PHU and PCL micrographs are shown in Figures 4.5. 

PHU ESEM micrographs (Figure 4.6 a, b and c) revealed that no changes in morphology had 

taken place upon incubation. For PCL (Figure 4.6 d, e and f) images are consistent with a 

degradation mechanism by erosion. Initially, the surface appears fairly flat, and surface 

morphology is induced by the mould used for compression moulding. After incubation 10 
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weeks, a homogeneous and porous structure indicating hydrolytic attack at the amorphous 

phase at the surface is observed. This erosion seems to be more prominent under 

enzymatic degradation conditions. This result is in agreement with the superior weight loss 

observed in Figure 4.2 b.  

 

Figure 4.6 ESEM micrographs of a) initial PHU; b) PHU after incubation at pH 2.0 at 45 oC; c) PHU 
after incubation at pH 7.4 at 37 oC, d) initial PCL; e) PCL after incubation at pH 2.0 at 45 oC and f) PCL 
after incubation at pH 7.4 at 37 oC with porcine pancreas lipase. 

ESEM micrographs of PEU are shown in Figure 4.7. 

For PEUA surface, ESEM micrographs show that the initial flat surface is transformed in a 

porous structure indicating hydrolytic attack at the amorphous domains occurs both in acid 

and enzymatic media. This erosion mechanism can be visualized more clearly in the cut 

vertical edge (Figure 4.7 d and e) of samples degraded in acid media. The stretch marks 

induced by the cutting blade become deeper and in addition, some eroding regions 

can be observed in the surface. 
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Figure 4.7 ESEM micrographs of a) initial PEUA, b) PEUA after incubation at pH 2.0 at 45 oC, c) PEUA 
after incubation at pH 7.4 at 37 oC, d) vertical initial PEUA and e) vertical APEUA after incubation at 
pH 2.0 at 45 oC. 

To provide a better understanding of microstructural changes in PEUA morphology after 

incubation at pH 2.0 and 45 oC, we use atomic force microscopy (AFM) that provide high-

resolution, three-dimensional imaging of material surface.31 The three-dimensional 

topographic images and the corresponding two-dimensional images of initial PEUA and 

after incubation of 10 weeks are displayed in Figure 4.8. As can be seen after incubation in 

these conditions a significant surface erosion with deep valleys and pores is observed.  

The processes involved in the erosion of a degradable polyester are complex. Water enters 

the polymer bulk, which might be accompanied by swelling. The intrusion of water triggers 

the chemical polymer degradation, leading to the creation of oligomers and monomers. 

Progressive degradation changes the microstructure of the bulk through the formation of 

pores.14 
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Figure 4.8 AFM images three-dimensional representation (top): a) initial PEUA; b) PEUA after 
incubation at pH 2.0 at 45 oC and two-dimensional representation (bottom): c) initial PEUA; d) PEUA 
after incubation at pH 2.0 at 45 oC. 
 

4.7 DEGRADATION STUDY BY 1H NMR 

In order to deep insight the degradation of polyester chain at the molecular level a NMR 

study was carried out. 1H NMR spectra of the residual material resulting after 10 weeks of 

incubation at pH 2.0 at 45 oC, and at pH 7.4 at 37 oC have been recorded. Residual material 

of PHU and PCL spectra showed only negligible differences with their initial spectra (Figures 

4.9 b and c and 4.10 b and c respectively), confirming no significant variations in the 

chemical constitution. By contrast, some structural changes in residual material are 

observed after both hydrolytic and enzymatic degradation of PEUA (Figure 4.11 b and c), 

due to the progressive chain cleavage. These changes agree to the decrease of Mn 

observed by SEC (Figure 4.3).  

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Chapter 4 

120 

 

 

Figure 4.9 1H NMR spectra of PHU a) initial sample; b) after incubation at pH 2.0 at 45 oC; after 
incubation at pH 7.4 at 37 oC; d) after accelerated hydrolytic degradation at 100 oC. 

 
Figure 4.10 1H NMR spectra of PCL a) initial sample; b) after incubation at pH 2.0 at 45 oC; after 
incubation at pH 7.4 at 37 oC; d) after accelerated hydrolytic degradation after 100 oC. 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Chapter 4 

121 

 

Figure 4.11 1H NMR spectra of PEUA: a) initial sample; b) after incubation at pH 2.0 at 45 oC; after 

incubation at pH 7.4 at 37 oC; d) after accelerated hydrolytic degradation at 100 oC. 

4.8 ACCELERATED HYDROLYTIC DEGRADATION 

To study in detail all residual material of three polyesters, accelerated degradation tests 

with methanesulfonic acid 1 M for 1 day at 100 oC were performed. Accelerated 

degradation methods allow obtaining degradation results in a shorter period of time.32,33 

1H NMR spectrum of residual material after accelerated degradation of PEUA (Figure 4.11 

d) shows a great extent of polymer degradation giving mostly 10,11-dihydroxy undecanoic 

acid (DHU) and oligomers as bear out by SEC curves (Figure 4.12 a). 

1H NMR spectrum of residual material after accelerated degradation of PHU (Figure 4.9 d) 

shows an increase of hydroxyl end group signals (at 3.64 ppm) and the appearance of a 

new signal (at 2.35 ppm) corresponding to the carboxyl end group signals, confirming the 

partial cleavage of ester groups, leading to a polymer with lower molecular weight (Figure 

4.12 b). 
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1H NMR spectrum of residual material after accelerated degradation of PCL (Figure 4.10 d) 

reveals a great extent of polymer degradation giving mainly 6-hydroxy-hexanoic acid, 

confirming the almost complete degradation of PCL. (Figure 4.12 c). 

Figure 4.12 SEC traces for hydrolytic accelerated degradation with methanesulfonic acid at 100 oC. 
a) PEUA; b) PHU; c) PCL. Initial sample (continue line) and after degradation (dashed line). 

To study in detail the structural changes undertaken by PEUA during accelerated hydrolytic 

degradation a kinetic study was carried out by 1H NMR spectroscopy (Figures 4.13 and 

4.14). In Figure 4.13 a is shown the weight percentage decrease of PEUA and the increase 

of DHU versus time. As can be seen, although degradation occurs through intermediate 

oligomeric species, there is a complementary relationship between PEUA degradation and 

DHU formation (Figure 4.14, 5 h). 

As commented above, on the structure of PEUA there are two kinds of repetitive units with 

pendant secondary or primary alcohols arising from the attack of the carboxylic acid either 

to the less (leading to a normal unit) or the more substituted carbon (leading to an 

abnormal unit) of oxirane ring on the starting 10,11-epoxyundecanoic acid. According to 1H 

NMR microstructural determination these normal/abnormal units are present in a 72:28 

molar ratio in the starting polymer (Figure 4.13 b and 14, 0 h). During degradation studies 

we observed a change in the comonomer composition due to the different hydrolysis rates 

of primary and secondary esters (Figure 4.13 b). Thus, as observed in the first degradation 

stages, selective primary ester (normal unit) degradation is predominant and consequently 

its relative content in the copolymer decreases. Moreover, a significant percentage of 
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branched units was detected from 1 h (Figure 4.13 b and 14, 2 h and 3 h). The characteristic 

NMR signals of these branched units in PEUA have been previously assigned and 

reported.19 The formation of these units is related with transesterification reactions 

throughout process. These transesterification reactions have been previously reported for 

PEUA and similar polyesters.19 Thus, progressive degradation of PEUA lead not only to a 

decrease in molecular weight but also to a change in its microstructure that goes from 

linear to branched oligomers. 

Figure 4.13 Accelerated hydrolytic degradation kinetic of PEUA with 0.5 M of methanesulfonic acid 
at 100 oC. a) Weight percentage of PEUA and PHU determined by 1H NMR spectroscopy; b) 
Percentage of normal, abnormal and branched units in PEUA determined by 1H NMR spectroscopy. 
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Figure 4.14 1H NMR spectra of PEUA accelerated hydrolytic degradation with 0.5 M of 
methanesulfonic acid at 100 oC versus time. Assigned signals correspond to normal (10n, 11,11’n), 
abnormal (10a, 11,11’a), branched (10b, 11,11’b) units and DHU monomer (10m, 11,11’m). 

 

4.9 CONCLUSIONS 

PEUA with hydroxy pendant groups and PHU, both derived from 10-undecenoic acid were 

synthesized with high yield. The hydrolytic and enzymatic degradations of PEUA and PHU 

were studied and compared with that of the commercial PCL. PEUA, PHU and PCL were 

characterized by 1H RMN, SEC, DSC, TGA, XRD and hydrophilic/hydrophobic character. PHU 

showed the highest hydrophobicity and crystallinity, so that scarce hydrolytic degradation 

was detected. In contrast, in PEUA a Mn decrease by both hydrolytic and enzymatic 
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degradations was observed demonstrating that in this polyester the presence of 

hydrophilic pending group together with the superior amorphous character are 

determinant when comparing degradation of polyesters with the same chain length (C11) 

and similar Mn. Significant weight loss (60 %) was only observed for PCL under enzymatic 

conditions. This different behaviour seems to indicate that PCL degrades through a surface 

erosion mechanism while PEUA do it through bulk erosion mechanism.  Even after 

accelerated degradation in stronger conditions, PHU undergoes slight degradation whereas 

that PEUA and PCL suffer a significant degradation to produce low molecular weight 

products.   
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5.1 INTRODUCTION 

The development of polymers that are sustainable by combination of environmental, 

societal, human health and economic perspectives is a major challenge in polymer science. 

The key to shifting to sustainable alternatives will be to obtain both existing and new low-

cost polymers with competitive performance properties from renewable resources.1 

Nowadays, the interest in polymers from renewable resources has been witnessing an 

incessant growth in both academic and industrial communities.2,3 The situation has 

advanced to such extreme that it does no longer need the arguments previously put 

forward to justify its relevance. Among available renewable resources, vegetable oils and 

derived fatty acids represent a promising feedstock for the polymer industry, owing to their 

abundant availability, relative low cost and inherent degradability. Castor oil is one of the 

most valuable choices. Their high versatility and exclusion of alimentary sector convert this 

material in a good candidate to explore new routes to obtain biopolymers. 10-Undecenoic 

acid is available from the pyrolysis of castor oil, and it is a key substrate in polymer 

chemistry for the synthesis of precursors for the preparation of sustainable materials.4 

The synthesis of vegetable oil-based linear polyesters has been extensively studied in the 

last years, including our group that has extended the use of 10-undecenoic acid to the 

synthesis of functionalized polyesters from specialty monomers.5-14,6,7,8,9,10,11,12,13,14 

However, only limited attention has been dedicated to hyperbranched polyesters derived 

from plant oils. Related examples have involved the polycondensation of ABn type 

precursors.15-17 
16, 17Oil-based polyesters bearing hydroxyl reactive pendent groups have also 

been reported.14-21,18,19,20,21 

Interestingly, a linear hydroxyl functionalized hydrophobic polyester chain was modified to 

obtain a macro-chain transfer agent on which grafting from with bio-based acrylates was 

performed to prepare amphiphilic grafted copolymers.21 

For many years, postpolymerization modification has been perceived as unavoidable, when 

one is unable to synthesize a polymer by direct polymerization. However, as it has become 
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apparent nowadays, the reasonable combination of efficient chemical transformations 

with macromolecular structures can provide a profusion of materials with irresistible 

properties, myriad functionalities, and elaborated architectures.22 

By self-assembly or co-assembly of amphiphilic block copolymers have been prepared 

nanosized micelles with a core-shell architecture in a selective solvent and have attracted 

increasing attention for drug delivery.23-26
,2 4,25, 26 The hydrophobic core serves as a natural carrier 

environment for hydrophobic drugs, and the hydrophilic shell stabilizes the particles in 

aqueous solution.27 Micelles can be classified as simple and complex according to their 

structure and size.  Primary micelles are generally smaller than 50 nm whereas complex 

micelles, larger in size (higher than 100 nm) are usually formed by secondary aggregation 

of primary micelles.28 

Simple multimolecular micelles are generally formed by primary aggregation of block 

copolymers due to the microphase separation in selective solvents. The resulting self-

assembled materials usually lack of the necessary thermodynamic stability when changes 

in concentration or other parameters as temperature or ionic strength occur, producing 

disassemble and the formation of free polymeric chains. These drawbacks can be overcome 

by core or shell crosslinking approaches endowing micelles with excellent structural 

stability although crosslinking generally compromises the final biodegradability. 

Alternatively, design of amphiphilic polymers with certain architectures such as dendritic, 

hyperbranched, star or heterografted brush-shaped molecules, provides an alternative 

strategy to prepare stable polymeric micelles. Due to their unique architecture can form 

unimolecular micelles with excellent stability regardless of the high dilution condition and 

other microenvironment changes.29 

Amphiphilic hyperbranched polymers is one type of materials that have been widely used 

for unimolecular micelle preparation.30 On contrary to other architectures such as dendritic 

polymers, these hyperbranched polymers can be synthesized following convenient one-

step synthesis on a large scale and good yields, by simply polycondensation of ABx 
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monomers or ring opening polymerization of latent ABx monomers.31 Strategies for 

preparing amphiphilic hyperbranched polymers include incorporation of hydrophobic 

components into a preformed hydrophilic polymeric chain, which essentially renders a 

block copolymer, or the modification of the hydrophobic hyperbranched core by the 

incorporation of multiple hydrophilic arms rendering graft polymers.29,32 In this sense, 

PEGylation has for a long time been known as a simple and effective approach to provide 

the amphiphilic structures, enhanced water compatibility and self-aggregation 

properties.33,34 

Both, amphiphilic PEG-derived block copolymers and grafted polymers can associate in the 

appropriate solvent to produce micellar architectures. Intramolecular assembly will lead to 

unimolecular micelles while intermolecular assembly will induce to multimolecular 

micelles. Moreover, in contrast to linear block copolymers, block hyperbranched and 

grafted polymers enable to tune the different associate structures by controlling branching 

degree or grafting density. Some examples of PEG-derived hyperbranched amphiphilic 

polyesters have been reported in the last decade including one that uses the 

environmentally friendly CALB as catalyst.35-38,36,37,38 

In this report, we describe the synthesis and characterization of a renewable hydroxyl 

hyperbranched polyester: poly(10,11-dihydroxyundecanoic acid) (PDHU), by 

polycondensation using CALB as catalyst. Moreover, different approaches were used for 

the synthesis of partially renewable amphiphilic copolymers by incorporation of 

methoxypolyetileneglycol moieties (mPEGn).  First, copolymerization of mPEGn-OH of 

different lengths and 10,11-dihydroxyundecanoic was used to produce block 

hyperbranched copolymers. Moreover, mPEG containing carboxylic acid groups 

(mPEG2OCH2COOH and mPEG3OOC(CH2)2COOH) was attached to hydroxyl groups of linear 

and hyperbranched PDHU to render different grafted polymers. The self-assembly and 

micellar behaviour of these amphiphilic structures was investigated. 
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5.2 MONOMER SYNTHESIS 

5.2.1 Synthesis of 10,11-epoxyundecanoic acid (EUA) 

Following a general procedure, 10,11-epoxyundecanoic acid (EUA) was synthesized from 

10-undecenoic acid using 30 % H2O2 and CALB as catalyst as previously described (Chapter 

3). This monomer was used to prepare linear PEUA for mPEG grafting (Chapter 5.5).39,14 

5.2.2 Synthesis of 10,11-dihydoxyundecanoic acid (DHU) 

Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenases, hydratases, 12-

hydrolases and diol synthases allow regio-specific synthesis of a variety of hydroxyl fatty 

acids.40 Dihydroxy fatty acids are also accessible using bacterial or fungal synthases, but 

generally mixtures of unsaturated diol compounds are obtained which are not easily 

scalable because imply biotechnological methodologies or the use of non-commercial 

enzymatic catalysts. Thus, transformation of fatty acid double bonds into vic diols via 

chemical transformation seems much more feasible. Several efficient methods for direct 

dihydroxylation have been described but rely on the use of metallic catalysts (Ag, Mn, Ru, 

Os, Rh) which, due to their toxicity, must be avoided specially in biomedical applications.  

In this sense, the ring opening of epoxy fatty acids is a more convenient way as can be easily 

carried out via simple acid or basic hydrolysis. Epoxides are readily accessible by 

conventional epoxidation with peracids without the aid of metallic catalysts. Moreover, 

epoxidation with hydrogen peroxide catalysed by lipases, is a more convenient route from 

the sustainability point of view.41 Both transformations, epoxidation and oxirane ring 

opening, can be carried out under mild conditions and are easily scalable. Moreover, they 

have the additional advantage that can be performed in one pot reaction, by the 

consecutive double bond epoxidation with “in situ” generated performic acid, epoxide ring 

opening by formic acid and hydrolysis of the resulting mixture of vic-hydroxy formiates 

(Scheme 5.1).42,43 
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Scheme 5.1 One pot-three steps synthesis of 10,11-dihydroxyundecanoic acid. 

 

This ancient procedure is nowadays envisaged as a green and useful synthetic tool because 

it uses water as solvent and hydrogen peroxide and formic acid as reagents. Formic acid is 

the major byproduct from lignocellulosic biomass processing and thus, constitutes a 

versatile new green reagent.44,45 Using this procedure, 10,11-dihydroxyundecanoic acid 

(DHU) was synthetized in multigram scale with almost quantitative yield and high purity 

(Figure 5.1). 

 
Figure 5.1 DHU monomer spectra of a) 13C NMR recorded in DMSO-d6 and b) 1H NMR 
recorded in CDCl3. 
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5.3 HOMOPOLYMER SYNTHESIS AND STRUCTURAL DETERMINATION 

In a previous work our group reported the ring opening polymerization of 10,11-

epoxyundecanoic acid catalysed by tetrabutylphosphonium bromide (TBPB to prepare 

linear hydroxypolyesters (PEUA) as precursors for amino acid decorated bio-polymers 

(Chapter 3.4).14 This study demonstrated that, under certain conditions, (ie. T > 100 °C or 

long polymerization times) different percentages of branched structures were also 

obtained. However, attempts to extend this polymerization methodology to the 

preparation of hyperbranched polyesters led to the formation of important percentages of 

insoluble crosslinked materials. Thus, the polycondensation of dihydroxy fatty acid 

derivatives was considered as a more straightforward way to prepare these bio-based 

hyperbranched hydrophobic structures.  

5.3.1 EUA polymerization  

EUA homopolymerization was carried out with 1 % of TBPB in a 2.5 M solution in toluene 

at 100  Cͦ for 8 h following a described procedure.14 Thus, a linear hydroxyl polyester (PEUA) 

with Mn 9800 g·mol-1 and Ɖ 3.4 was obtained. Its structure contained 71 % of normal ring-

opening units (secondary hydroxyl groups) and 29 % of abnormal ring-opening groups 

(primary hydroxyl groups) (see Figure 3.5 and Figure 3.8 in Chapter 3). 

5.3.2 DHU polymerization 

5.3.2.a Synthesis of poly(10,11-dihydroxyundecanoic acid) (PDHU)  

First, DHU homolymerization with different catalysts was considered to study the 

monomer polycondensation behaviour (Scheme 5.2). 
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Scheme 5.2 Representative structure of PDHU indicating the three possible structural units 
via homopolymerization of DHU. 

First metallic Lewis acid catalysts were considered. Metal salts, oxides or alkoxides have 

been described as effective condensation catalyst but usually require too high 

temperatures (160-250 °C) that, in the case of DHU, would lead to crosslinked materials. 

So only relatively low temperatures were tested with Ti(t-BuO)4 and Sn(Oct)2 as catalysts. 

At 120 °C either in bulk or in toluene solution (2.5 M) complete conversion was achieved 

after 24 h. Moreover, the obtained polyesters contained important fractions of crosslinked 

material. Working at 110 °C with Sn(Oct)2, soluble polyesters could be obtained (Table 5.1, 

entries 1 and 2). After 6 h of reaction, monomer conversion was not complete and the 

resulting polymer had a predominant linear structure. Increasing polymerization time lead 

to almost complete conversion of branched polyester with moderate molecular weight was 

obtained. Lanthanide triflates have been described as effective catalysts under mild 

conditions allowing the condensation of dihydroxydicarboxylic acids with diols with good 

conversion and moderate molecular weight.46 We tested the polymerization with Sc(OTf)3 

and Sm(OTf)3 at 80 °C in solution of DPE (2.5 M) (Table 5.1, entries 3 and 4). After 24 h, in 

both cases, poor conversions of medium molecular weight polyesters with a branched 

structure were achieved. This behaviour is not in accordance with the described selectivity 

of these catalysts towards esterification of primary alcohols and evidences poor chemo-

selectivity when both alcohol types are in vicinal positions.47 Enzymatic catalysts, especially 

lipases, have been reported as a green alternative in the effective ring opening and 

polycondensation polymerization to produce polyesters under mild conditions.48,49 

Candida antarctica lipase B (CALB) is by far the most studied as it is available as an 

heterogeneous bio-catalyst consisting of CALB physically immobilized within a 

macroporous resin of poly(methylmethacrylate). This catalyst form, commercialized as 
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Novozym 435, offers additional advantages as easy manipulation, easy removal from the 

polymerization mixture and robust nature that, under certain conditions, allows recycling. 

The polycondensation of monomers containing both hydroxyl and carboxyl groups in the 

same structure have also been described with CALB.50,51 The efficiency of enzymatic 

catalysts can be affected by process parameters such as polymerization temperature, 

polymerization technique (solution or solvent-free) as well as water removal methods (e.g. 

application of vacuum, water absorption in molecular sieves, azeotropic distillation).49 Thus 

DHU polymerization was tested at 80 and 90 °C in bulk and in DPE solution (2 M) with 

continuous application of vacuum (200 mmHg) and in toluene solution (2 M) in presence 

and absence of 4 Å  molecular sieves (MS) (Table 5.1).  

CALB polymerization test in bulk and in DPE solution at 90 °C led to formation of extensive 

crosslinked insoluble fractions, but in toluene and in presence of MS (Table 5.1 entry 5) 

high conversion of soluble almost linear polyester was obtained after 24 h. Extending the 

polymerization time to 48 h (Table 5.1 entry 6) lead to complete conversion of branched 

polyester with increase of both molecular weight and polydispersity due to that 

transesterification reactions probably takes place. Working at 80 °C for 24 h in bulk (Table 

5.1 entry 7) lead to good conversions of soluble branched polyester with lower molecular 

weight than those obtained in toluene at 90 °C. In DPE solution (Table 5.1 entry 8) 

noticeably better results were obtained with a complete conversion and the formation of 

a medium molecular weight polyester with considerable branching degree (  2̴2 % of 

branched units) was observed. 

Assays in toluene solution with and without the 4Å MS as water scavenger (Table 5.1 

entries 9-10) gave much better results. Complete conversion of relatively high molecular 

weight branched polyester was obtained after 24 h indicating that under the studied 

conditions enzyme has higher activity when working at 80 °C in toluene (compare with 

Table 5.1 entry 8). 
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Table 5.1 Conversion, molecular weight and microstructure composition of PDHU obtained 
with various catalysts and conditions. 

Ent. Cat. Solv.a 
Temp 
(°C) 

T 
(h) 

Conv. 

%b 
Mn 

(g·mol-1)c 
Ðc 

Nu
 

%d
 

Au
 

%d
 

Bu
 

%d
 

Conditions: 0.5 mol % metallic catalysts 

1 Sn(oct)2 --- 110 6 27.0 1450 1.30 80.0 18.0 2.0 

2 Sn(oct)2 --- 110 24 95.5 3900 4.53 47.5 28.3 24.2 

3 Sc(OTf)3 DPE 80 48 52.2 2440 1.67 56.8 24.4 18.8 

4 Sm(OTf)3 DPE 80 48 48.2 1860 1.61 44.8 32.7 22.5 

Ent. 
Water 

removal 
Solv.a 

Temp 
(°C) 

T 
(h) 

Conv. 

%b 
Mn 

(g·mol-1)c 
Ðc 

Nu
 

%d 
Au

 

%d 
Bu

 

%d 

Conditons: 10 % (w/w) enzymatic catalyst [CALB] 

5 4Å MS Tol. 90 24 92.3 11840 2.0 64.8 34.8 0.4 

6 4Å MS Tol. 90 48 ̴ 100 16080 3.2 58.3 18.7 23.0 

7 vacuum -- 80 24 88.0 8500 2.1 64.2 20.9 14.9 

8 vacuum DPE 80 24 ̴ 100 14870 2.2 56.2 22.0 21.8 

9 4Å MS Tol. 80 24 ̴ 100 19700 2.3 50.0 23.4 26.6 

10 4Å MS Tol. 80 48 ̴ 100 25860 2.0 47.8 18.0 34.2 

11 --- Tol. 80 24 ̴ 100 28470 1.6 49.0 18.3 32.7 

12 --- Tol. 80 48 ̴ 100 39460 1.6 45.8 14.1 40.1 

a) 2M solution; b) DHU conversion calculated by 1H NMR from the crude mixture; c) Determined by SEC; d) 
Percentage of normal (Nu), abnormal (Au) and branched units determined by 1H NMR from the signals at 4.15 
and 3.97 ppm (Nu), at 4.90 and 3.69 ppm (Au) and 5.12 and 4.20 ppm (Bu). 

 

Extending the polymerization time (48 h) translates into an increase in molecular weight 

and branching degree but a decrease in the polydispersity. This indicates that in these 

conditions, the post condensation transesterification processes recombine chains of 

different length furnishes a more uniform hyperbranched structure. Polymerizations in 

absence of water scavenger agent (Table 5.1 entries 11-12) led to similar good conversions 
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but, unexpectedly, narrower polyesters with significantly higher molecular weight were 

obtained. This behaviour is against the generally observed for esterification and 

transesterification polycondensations with CALB and could be related with the number of 

molecular sieves used in the polymerization tests. Excessive dehydrating conditions could 

remove part of tightly bound water from the enzyme domains which is essential for enzyme 

catalytic activity.52,53 In any case, under these simple conditions, polyesters with the highest 

molecular weight (  3̴9500 g·mol-1) and branching degree (  4̴0 % of branched units) were 

obtained. 

At this point, it must be noted that according to the results, although it is described that 

esterification occurs selectively at primary hydroxyl groups during the initial 

polycondensation step (percentage of Nu is always greater than Au), branching and post 

condensation transesterification processes seem to proceed indistinctly from both types of 

hydroxyl groups. (Increase in branching decreases Nu and Au in a similar percentage).54 CALB 

catalysts are described to be more active in transesterification of both primary and 

secondary alcohols than in their direct polycondensation. This fact could explain the minor 

selectivity observed in the final polyesters.48,49  

To prepare a PDHU sample of intermediate molecular weight, polymerization of DHU using 

conditions in entry 6 table 5.1 was scaled to 3.0 g (15.0 mmol) to obtain a polyester sample 

with 15800 g·mol-1 and Ð 2.7, with 22.1 % of branching units, 57.5 % of secondary hydroxyl 

units and 20.3 % of primary hydroxyl units, which was used as substrate for the post-

polymerization modification with mPEG carboxylic derivatives vide infra. In Figure 5.2 a the 

1H NMR spectrum of PHDU with the corresponding assignments in a representative 

structure is shown.  

5.3.2.b Structural characterization of PDHU  

In Figure 5.2 a is shown the 1H NMR spectrum of PDHU. A representative general structure 

of polyester including the three possible different repetitive units arising from normal ring-

opening, abnormal ring-opening and branching through transesterification, and the chain 
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ends is also included. It must be pointed out that transesterification occurs either through 

primary or secondary alcohols giving non distinguishable signals by NMR branching units.   

 

 

Figure 5.2 a) 1H and b) 13C NMR spectra of PDHU recorded in CDCl3 with the corresponding 
assignments. 
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The 1H NMR spectra signals corresponding to the methine and methylene protons of the 

different units, named with the subscript n, a and b for “normal”, “abnormal” or 

“branched” respectively, were unequivocally assigned by comparison with the methylene 

and methine signals of model compounds (Figure SI.1), and their corresponding 

trifluoroacetate derivatives (Figure SI.2 and SI.3). Moreover, 10,11-dihydroxyundecanoic 

acid was used as model for the polymer chain end groups (Figure 5.1). 

The content of normal, abnormal and branched units was determined by comparing the 

integration of the corresponding 1H (Figure 5.2 a) and 19F NMR (Figure 5.3) signals of the 

pristine and their trifluoroacetylated derivatives (see SI.4). The percentage of normal, 

abnormal, branched and diol end groups could be estimated from integration of the 

corresponding signals in the 1H NMR spectrum of pristine polyester and 1H and 19F NMR 

spectra of the corresponding trifluoroacetylated derivative (PDHU-TFA) are collected in 

Table 5.2. As can be seen, all quantifications show acceptable concordance with the 

proposed unit distribution, with about 56-57 % of normal units and 21-23 % of branched 

units. It must be noted that   percentage of diol end groups is slight lower than the expected 

according to the percentage of branched units what could be related to the different 

relaxation times in NMR of the corresponding protons. 
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Figure 5.3 a) 1H NMR and b) 19F NMR spectra of PDHU-TFA with the corresponding assignments. 
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Table 5.2 Quantifications of the different units in PDHU and PDHU-TFA by 1H NMR and 19F NMR. 

 
 PDHU PDHU-TFA 

 1H NMR 1H NMR 19F NMR 

Unit  ppm %  ppm %  ppm % 

n 3.83 57.5 5.27 56.5 -75.68 55.9 

a 4.91 20.3 5.15 21.9 -75.47 23.5 

b 5.08 22.1 5.08 23.0 -75.52/-75.68 20.6 

e    3.62 19.5 5.34 20.9 -- --- 

 

PDHU 13C NMR spectrum assignments (Figure 5.2 b) were also undertaken by comparison 

with those of models (compounds A, B and C) and 1H-13C heteronuclear bidimensional 

correlations (Figure SI.4). The methine and methylene carbons of the normal (70.0 and 68.7 

ppm), abnormal (75.4 and 64.9 ppm), branched (71.4 and 65.1 ppm) units, and diol end 

groups (72.4 and 66.9 ppm) appear with different intensity sustaining the presence of 

about 56-57 % of normal units and 22-23 % of branched units. Ester groups in abnormal 

and normal units can be differentiated by C=O signals at 174.5 ppm and 174.2 ppm 

respectively. Moreover, branched units, that could not be differentiated by 1H NMR, can 

be distinguished by C=O signals that appear at 173.9 and 173.7 ppm. 

5.4 DHU COPOLYMERIZATION WITH mPEG-OH  

The good results obtained in the homopolymerization of DHU led us to consider CALB in 

toluene at 80 °C as the catalyst and polymerization conditions of choice for the 

copolymerization of DHU using mPEG-OH as comonomer (Scheme 5.3).  In the literature, 

amphiphilic copolymers were mostly prepared by CALB catalysed chemical modification of 

the corresponding methyl or vinyl esters through a transesterification reaction, but some 

few examples using free carboxylic acids also do exist.55,56 
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Scheme 5.3 Synthesis of amphiphilic polymers by copolymerization of DHU in presence of mPEG-
OH, showing a representative mPEG-b-PDHU structure. 

Two commercial monomethylated mPEGs of 550 and 2000 g·mol-1 were selected as 

hydrophilic macromonomers. Their formula weight corresponds to 12 and 45 ethylenoxy 

repeating units, and were named as mPEG12OH and mPEG45OH. The polymerizations were 

carried out in the same conditions as in Table 5.1, entry 12 (2 M toluene solution, 10 % 

(w/w) of CALB at 80 °C for 48 h). For each mPEG two different mPEG:DHU molar ratios in 

the feed were tested, 1:10 and 1:20. Using these conditions, according to the 1H and 13C 

NMR spectra of the crude reaction mixture, complete DHU conversion was achieved but 

incorporation of mPEGn-OH was lower than those in the feed was. Even that, degrees of 

modification are considerable high (see SI.5) and repeated warm water washings could 

remove remaining unreacted mPEG-OH (confirmed by 13C NMR spectroscopy).  

Once purified, the copolymer compositions were determined by 1H NMR (Figure SI.6 and 

SI.8) taking into account the relative intensities of the signals at ca. 2.35 ppm of the α-

methylene to ester group (CH2-COO), and at 3.38 ppm of methyl of mPEGn. Thus, when 

working with 1:10 molar ratio, mPEGn incorporation was about 90 % of the feed which 

correspond to copolymers with molar composition mPEG12-PDHU9 and mPEG45-PDHU9. In 

the case of 1:20 molar ratio, incorporation decreases to 75 % which correspond to 

copolymers with molar composition mPEG12-b-PDHU15 and mPEG45-b-PDHU15 (Table 5.3). 

In Figure 5.4 b the 1H NMR spectrum of mPEG12-b-PHDU9 with the corresponding 

assignments in a representative structure is shown. 
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Figure 5.4 Region between 5.2 and 3.2 ppm 1H NMR spectrum of a) PDHU and b) mPEG12-b-PHDU9 

with the corresponding assignments in a representative structure. 

Moreover, the microstructure of the PDHU block was determined by comparing the 1H 

NMR intensity of the signals at ca. 5.07 ppm, 4.87 ppm and 3.83 ppm corresponding 

respectively to methines attached to an ester (in a branched unit), to a primary hydroxyl 

(in an abnormal unit) and to a secondary hydroxyl (in a normal unit) respectively. The 

results are collected in Table 5.3.  
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Table 5.3 Composition, molecular weight and microstructure of copolymers mPEGm-b-PDHUn 
obtained after 48 h with CALB in toluene at 80 °C.  

 
 

mPEG:DHU 
molar ratio 

Molecular 
weight 

Structure 

Copolymer name feed 1H NMRa Mn 

(g·mol-1)a 
Mn 

(g·mol-1) b 
Ðb Nu 

%c 
Bu 

%c 

mPEG12-b-PDHU9 1:10 1:09 2300 4100 2.5 54 23 

mPEG12-b-PDHU15 1:20 1:15 3530 5300 2.1 53 27 

mPEG45-b-PDHU9 1:10 1:09 3800 5500 2.1 52 29 

mPEG45-b-PDHU15 1:20 1:15 5030 9100 2.3 48 32 

a) Determined by 1H NMR from signals at 3.38 and 2.35 ppm; b) Determined by SEC in THF; c) Percentage of 
normal (Nu) and branched units (Bu) determined by 1H NMR from the signals at 3.83 ppm (Nu) and 5.07 ppm 
(Bu).  

 

Polymerizations initiated by mPEG12OH and mPEG45OH with increasing amounts of DHU 

lead to copolymers with increasing molecular weight that according to their 1H NMR 

spectra suppose the introduction of about 9 (mPEGn-b-PDHU9) and 15 (mPEGn-b-PDHU15) 

DHU units in an hyperbranched arrangement. Molecular weights determined by SEC are 

60-80 % higher than those estimated by 1H NMR spectroscopy. These differences are 

attributed to the different hydrodynamic volume when compared with polystyrene 

standards. This behaviour has been previously described for PEUA and it is also observed 

in PDHU homopolymers.14 Referring to polydispersity indexes (Ð), they are in rang 2.1-2.5 

and close to PDHU homopolymers. The microstructure of the PDHU block can be inferred 

from the relative percentage of normal, abnormal and branched units. In general, all 

copolymers show branching degree (23-32 %) and percentage of normal units (48-54 %) 

but branching seems to increase as DHU content does, as mPEGn-b-PDHU9 have lower 

branching degrees than mPEGn-b-DHU15. This behaviour, seems to indicate that the 

presence of mPEG-OH in the polymerization medium does not affect CALB activity in a 

measurable way.  
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5.5 PDHU AND PEUA GRAFTING WITH mPEG2OCH2COOH AND 

mPEG3OOC(CH2)2COOH 

CALB has also been reported as efficient catalyst in the chemical functionalization of many 

different polymers and has specifically been used for preparing amphiphilic polymers by 

esterification-modification of polyglycerol with mPEG carboxylic derivatives.57,24 According 

to that, polyester hydroxyl group modifications were carried out using CALB in toluene 

working at 80 °C during 48 h in order to achieve maximum modification degrees.  

To study the possible effect of the starting polymer structure, two different 

hydroxypolyesters were tested: a hyperbranched PDHU of 15800 g·mol-1 and Ð 2.7 with 

22.1 % of branched units and a linear PEUA of 9800 g·mol-1 and Ð 3.4. Also, two different 

carboxy-functionalized mPEG derivatives with different PEG length were used: 2-(2-(2-

methoxyethoxy)ethoxy)acetic acid (mPEG2OCH2COOH) and 2-(2-(2-

methoxyethoxy)ethoxy)ethyl monosuccinate (mPEG3OOC(CH2)2COOH). The reaction is 

represented in Scheme 5.4. 

 

Scheme 5.4 Schematic representation of the CALB modification of PEUA and PDHU with 
mPEG2OCH2COOH and mPEG3OOC(CH2)2COOH (in the grafted polyesters, only the modification of 
one vic-diol end group is represented). 

In all cases, two equivalents of grafting acids per hydroxyl group were used. After 48 h, the 

partial grafting onto both polymers could be detected by 1H and 13C NMR spectroscopy (42-

56 %, see SI.6) and quantified using the 1H NMR signals at 3.38 and 2.35 ppm for 

mPEG2OCH2COO-g- (Figure SI.10 b and Figure SI.12 b) and at 3.35, 2.66 and 2.33 ppm for 
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mPEG3OOC(CH2)2COO-g- (Figure SI.10 c and Figure SI.12 c) (Table 5.4). Moreover, 13C NMR 

allowed confirming the complete elimination of unreacted acids after work-up. 

Percentages of grafting achieved with mPEG2OCH2COOH are higher than those with 

mPEG3OOC(CH2)2COOH, probably due to major reactivity of α-alkoxy carboxylic acid.  

Microestructure of the remaining non grafted units was determined (see SI.6) by 

comparing the 1H NMR intensity of the signals at ca. 5.06 ppm, 4.87 ppm and 3.82 ppm 

corresponding respectively to methines attached to an ester (Bu), to a primary hydroxyl (Au) 

and to a secondary hydroxyl (Nu) respectively (Table 5.4). In Figure 5.5 the 1H NMR 

spectrum of mPEG2OCH2COO-g-PEUA and mPEG3OOC(CH2)2COO-g-PEUA with the 

corresponding assignments in a representative structure are shown. 

As can be seen, grafting onto PDHU takes place without significant changes in the branching 

structure which remains about 20 %. On the contrary, grafting onto linear PEUA lead to a 

branched structure (16-17 %) which indicates that during grafting process CALB also 

catalyses transesterifications altering the linear structure. Mn determined by SEC, are 

significantly lower than those of starting PEUA and PDHU, which could be related to the 

drastic variation on the hydrodynamic volume when introducing hydrophilic side chains. 

Moreover, some CALB promoted ester cleavage and transesterification with the excess of 

grafting reagent should not be discarded. 1H NMR spectroscopy does not allow confirming 

this ester cleavage since the expected resulting vic-diol moieties are also esterified by the 

carboxylic PEG derivatives. In any case, PDHU derivatives show higher Mn and Ð than PEUA 

derivatives. 
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Figure 5.5 Region between 5.3 and 2.6 ppm of the 1H NMR spectrum of a) mPEG2OCH2COO-g-PEUA 
and b) mPEG3OOC(CH2)2COO-g-PEUA with the corresponding assignments in a representative 
structure. Assignments of the un-grafted starting units are indicated in Figure 5.4 a). 
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 Table 5.4 Composition, molecular weight and microstructure of PEUA and PDHU grafted with 
mPEG2OCH2COOH and mPEG3OOC(CH2)2COOH using CALB in toluene at 80 °C. 

Polymer name Grafting 

%a 
Mn 

(g·mol-1)b 
Ðb Nu  

%c 
Bu  

%c 

mPEG2OCH2COO-g-PEUA 56 1600 2.0 20 16 

mPEG3OOC(CH2)2COO-g-PEUA 42 1700 2.2 33 17 

mPEG2OCH2COO-g-PDHU 54 4500 3.0 19 20 

mPEG3OOC(CH2)2COO-g-PDHU 46 6700 3.6 28 20 

a) Percentage of grafting determined by 1H NMR from signals at 3.38 and 2.35 ppm for mPEG2OCH2COO-g-

PEUE/PDHU and at 3.35, 2.66 and 2.33 ppm for mPEG3OOC(CH2)2COO-g-PEUA/PDHU; b) Determined by SEC in 

THF; c) Percentage of normal (Nu) and branched units (Bu) determined by 1H NMR from the signals at 3.82 ppm 

(Nu) and 5.07 ppm (Bu).  
 

5.6 THERMAL CHARACTERIZATION OF mPEG BLOCK AND GRAFTED POLYMERS 

The thermal characteristics of homopolymers, block copolymers and grafted polymers 

were determined by DSC and TGA and are collected in Table 5.5. PDHU is semicrystalline 

and shows a Tm of 39 °C which is lower than that of PEUA (43° C) according to its branched 

structure. Block copolymers also show semicrystalline character with Tm between 44 °C 

and 56 °C and superior melting enthalpies for those with longer mPEG.14 Unlike PDHU, 

block copolymers do not show detectable Tgs. Concerning grafted polymers, they are 

amorphous with low Tgs indicating that grafting mPEG groups prevent crystallization of 

aliphatic polymer chains. 

Thermal stability evaluated by TGA shows scarce differences between the homopolymer 

and its corresponding block copolymers. Different behaviour was observed for grafted 

polymers with a significant decrease in temperature at which 5 % weight loss takes place 

although temperature for maximum degradation rates are similar. This could be related to 

the higher percentage of labile ester groups and their lower molecular weight. 
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Table 5.5 Thermal properties of PDHU and their block and grafted polymers. 

Polymer name DSC analysis TGA analysis 

 
Tm 

(°C)a 

ΔH 
(KJ·mol-1)a 

Tg 
(°C)b 

T5% 

(°C)c 

Tmax 

(°C)d 

PDHU  39.0 5.7 - 13 360 408/469 

mPEG12-b-PDHU9 43.8 2.6 - 354 407/461 

mPEG12-b-PDHU15 55.7 3.7 - 360 403/465 

mPEG45-b-PDHU9 46.7 27.3 - 372 412/472 

mPEG45-b-PDHU15 47.3 20.0 - 370 409/465 

mPEG2OCH2COO-g-PEUA - - - 64 200 401/455 

mPEG2OCH2COO-g-PDHU - - - 46 205 394/458 

mPEG3OOC(CH2)2COO-g-PEUA - - - 58 204 399/448 

mPEG3OOC(CH2)2COO-g-PDHU - - - 52 204 387/462 

a) Melting temperatures (Tm) and enthalpies (ΔHm) determined by DSC on the second heating scan at heating 
rates of 10 °C·min-1; (b) Glass-transition temperature (Tg) taken as the inflection point of the second heating 
DSC curves recorded at 10 °C·min-1; (c) Temperature at which 5 % weight loss was observed by TGA; (d) 

Temperature for maximum degradation rate from TGA. 

 

5.7 SELF-ASSEMBLY BEHAVIOUR OF mPEG BLOCK COPOLYMERS AND GRAFTED 
POLYMERS 

All DHU-based mPEG block copolymers and grafted polymers showed a great ability to self-

assemble to form different unimolecular and mainly multimolecular round shaped 

micelles. The high hydrophobicity of the PDHU hyperbranched block allows forming a 

dense core arranging the mPEG hydrophilic block in the shell, thus leading to stable 

supramolecular micelles. The micellar characteristics of the different copolymers are 

collected in Table 5.6 and DLS plots measured at 0.5 mg·ml-1 solution in water are collected 

in Figure SI.18. 
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Table 5.6 Micellar characteristics of the block copolymers and grafted polymers obtained after 48 h 
with CALB in toluene at 80 °C.  

 Micellar characteristics 

Polymer name CMC 
(mg L-1)a 

Size 

(d/nm)b 

PdIb Zaverage
 

(d/nm)b 

mPEG12-PDHU9 0.02 242±3 0.178±0.01 239±4 

mPEG12-PDHU15 0.01 290±6 0.123±0.01 299±1 

mPEG45-PDHU9 0.10 155±4 (78 %) 

39±7 (22 %) 

0.356±0.00 100±1 

mPEG45-PDHU15 0.03 167±4 0.273±0.01 140±1 

mPEG2OCH2OO-g-PEUA nd 287±3 (92 %) 

75±2 (8 %) 

0.342±0.04 253±9 

mPEG2OCH2COO-g-PHDU 0.20 284±1 (93 %) 

68±7 (7 %) 

0.188±0.01 239±4 

mPEG3OOC(CH2)2COO-g-PEUA nd 328±3 (67 %) 

106±3 (33 %) 

0.325±0.11 270±4 

mPEG3OOC(CH2)2COO-g-PDHU 3.24 294±3 (89 %) 

94±9 (11 %) 

0.217±0.00 241±1 

a) Determined using pyrene as fluorescence probe; b) Size, PdI (size polydispersity index) of micelles (0.5 mg 
mL-1) and Z-average determined by DLS. 

 

In all cases, unimolecular micelles were not detected by DLS at 0.5 mg·ml-1 concentration. 

Measurements at lower concentrations (0.01 and 0.05 mg·ml-1) showed also the formation 

of multimolecular micelles of similar shape and size. On the contrary, by TEM imaging, 

unimolecular micelles ranging 15-20 nm were occasionally observed in some samples 

probably due to different conditions during sample preparations. As an example, in 

mPEG3OOC(CH2)COO-g-PDHU, isolated monomolecular micelles could be observed (Figure 

5.6 a). Moreover, monomolecular micelles were detected surrounding some 

multimolecular micelles, at short distance in a uniform-like arrangement indicating the 

easiness of secondary unimolecular micelle aggregation processes. 
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Figure 5.6 TEM images of mPEG3OOC(CH2)COO-g-PDHU micelles obtained in drying mode a) region 
showing isolated monomolecular micelles of 15-20 nm, b) region showing monomolecular micelles 
(15-20 nm) arranged around a multimolecular spherical micelle of 145 nm. 

DLS intensity size distribution curves for mPEG12-b-PDHU9 and mPEG12-b-PDHU15 show 

quite narrow distributions with Z average size of about 240 and 300 nm respectively. 

Copolymers with longer mPEG moiety mPEG45-b-PDHU9 and mPEG45-b-PDHU15 present also 

secondary aggregation micelles of smaller size (100-140 nm) but with broader distribution. 

In fact, for mPEG45-b-PDHU9 a bimodal distribution with about 22 % of micelles of 40 nm 

were detected. 

According to these results, the length of the flexible PEG moiety is not as determinant as 

the number of units that need to be assembled in a secondary aggregation to form a stable 

hydrophobic core.28 Thus in the case of shorter mPEG12 chains, higher number of copolymer 

units seem to be necessary leading to multimolecular micelles with larger hydrophobic 

cores and larger size. Usually, in the case of multimolecular micelles by self-assembly of 

linear block copolymers, the opposite behaviour is observed.58 TEM images under negative 

stain (PTA) show nice micellar distributions in the case of mPEG12-b-PDHU9 and mPEG12-b-

PDHU15 (Figure 5.7 a and Figure SI.19 a and SI.19 b) but in the case of mPEG45-b-PDHUn 

micelles stick together into great glomerular aggregates in which the multicellular micelles 

retain somewhat the shape and size. (Figure SI.19 c and SI.19 d). This seem to indicate that 

under the imaging conditions the large mPEG45 shells interact and come near as water 

evaporates. For all samples, size distribution histograms show broader distributions than 
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those observed by DLS. This can be attributed to changes during the TEM sample 

preparation, which clearly is the case of the cluster aggregates observed in the two mPEG45-

b-PDHUn samples. In any case, TEM images indicates that the micelles retain their roughly 

spherical shape. 

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400

 

Figure 5.7 TEM images in negative stain mode (top) and size distribution histograms (analysed by 
ImageJ software (bottom) of a) mPEG12-b-PDHU15 and b) mPEG2OCH2COO-g-PDHU micelles obtained 
with a 0.5 mg/mL solution in water. 

Microstructural analysis of grafted copolymers obtained from linear PEUA and branched 

PDHU proved to have similar hyperbranched structure with few differences in branching 

degree (20-30 %) and grafting percentage (45-60 %). Accordingly, a similar self-assembly 

behaviour could be expected for all these copolymers and this was confirmed by DLS 

measurement. All grafted copolymers show (Table 5.6 and Figure SI.20) two narrow micelle 

distributions of different size. The average size by intensity show a bimodal distribution 

with multimolecular micelles with Z average ranging 240-270 nm accompanied lower 

percentages (7-33 %) of smaller micelles of 100 nm or less. No significant differences were 

observed when comparing polymers grafted with mPEG2OCH2COOH and 

mPEG3OOC(CH2)2COOH. However, grafting onto linear PEUA seems to produce 
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multimolecular micelles of higher size and PdI which could be related to a more 

heterogeneous structure due to transesterification occurred during the grafting process. 

Thus, for mPEG3OOC(CH2)2COO-g-PEUA two size distributions micelles were clearly 

detected (Figure 5.7 b). TEM imaging under drying and negative stain modes also show the 

presence of round shaped multimolecular micelles of different size (Figure SI.20 a, SI.20 c 

and SI.20 d) and in some cases great glomerular aggregates (Figure 5.7 b). The two modal 

distribution observed by DLS, is only observed in size distribution histogram of 

mPEG2OCH2COO-g-PDHU. For the other grafted copolymers very broad distributions were 

also observed (Figure SI.20 c and SI.20 d).  

The self-assembling of mPEG/PDHU block copolymers and grafted polymers was confirmed 

by critical micelle concentration measurements (Table 5.7, Figure 5.8 and Figure SI.21) from 

the I1/I3 fluorescence intensity ratio using pyrene.59 Block copolymers, mPEG12-b-PDHU9 

and mPEG45-b-PDHU9 were analysed giving CMC of 2·10-4 and 1·10-4 mg·ml-1 respectively, 

indicating that above very low concentrations in water, unimolecular micelles 

spontaneously aggregate together forming supramolecular multimolecular micelles that 

increase the solubility of the fluorescent probe. Increasing the percentage of PDHU block 

seems not to affect the CMC as mPEG12-b-PDHU15 and mPEG45-b-PDHU15 gave similar 

values, 1·10-4 and 3·10-4 mg·ml-1.  

CMC for grafted polymers, mPEG2OCH2COO-g-PDHU and mPEG3OOC(CH2)2COO-g-PDHU 

was also determined. It was found an increase of the CMC necessary to produce the self-

assembly to 2·10-3 mg·l-1 for mPEG2OCH2COO-g-PDHU and to 32.4·10-3 mg·ml-1 for 

mPEG3OOC(CH2)2COO-g-PDHU, indicating that grafted polymers have less hydrophobic 

core, due to the statistical grafting and heterogeneous distribution of mPEG moieties. 

However, according to rapid increase of the I1/I3 intensity ratio in the fluorescence spectra 

of pyrene above CMC, higher loadings for grafted polymers than for block copolymers 

seems to occur. Anyway, CMC are much lower than the used for DLS measurements and 

TEM imaging (0.5 mg·l-1 solutions) confirming the predominant presence of multimolecular 

micelles at these concentrations. 
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Figure 5.8 Fluorescence spectra of pyrene in mPEG2OOC(CH2)2COO-g-PDHU micelles a) and 
calculation of the CMC of the multimolecular micelles using the I1/I3 diagram. 

5.8 CONCLUSIONS  

A renewable hydroxyl hyperbranched polyester: poly(10,11-dihydroxyundecanoic acid) 

(PDHU), by self-polycondensation of 10,11-dihydroxyundecanoic acid was successfully 

synthesized using CALB as catalyst and thus avoiding metallic catalysts. Branching and post 

polymerization transesterification processes seem to proceed indistinctly from both types 

of hydroxyl groups even though it is described that esterification occurs selectively at 

primary hydroxyl groups during polymerization.  

The synthesis of model compounds and derivatization of polyesters allowed a detailed 

structural characterization of hyperbranched polyesters by 1H, 13C and 19F NMR. 
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Branched amphiphilic copolyesters by copolymerization with methoxypolyethylenglycols 

of different lengths (550 and 2000 g·mol-1) were successfully synthesized using CALB as 

catalyst. Incorporation of DHU units is lower than the feed in all cases. 

Amphiphilic polyesters were also prepared by grafting carboxyl functionalized di and 

triethyleneglycols onto PEUA and PDHU hydroxypolyesters. 50-60 % extend of hydroxyl 

groups esterification was achieved. In linear PEUA grafting proceeds together with 

transesterification reactions leading to a branched structure. 

The microstructure of these block copolymers and grafted polymers was determined by 

NMR by using models and 1H-13C heteronuclear bidimensional correlations. The self-

assembly of these amphiphilic polyesters form well-defined micelles of 100-300 nm in 

aqueous solutions. Critical micellar concentration indicates that even at low concentration 

these copolymers self-assemble to lead multimolecular micelles, and that unimolecular 

micelles are scarcely observed. 
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6.1 MATERIALS  

1,2-epoxyhexane (97 %) (EH), n-hexanoic acid (99.5 %) (EA), 1,2-hexanediol (98 %), 1,6-

hexanediol (99 %), 10-undecenoic acid (98 %) (UA), methyl 10-undecenoate (96 %), N-Boc-

phenylalanine (99 %) (Boc-Phe-OH), N-Boc-serine metylester (95 %) (Boc-Ser-OMe), L-

cysteine (97 %), 2-[2-(2-methoxyethoxy)ethoxy] acetic acid (technical grade), poly(ethylene 

glycol)methyl  ether (Mn   ̴550) (mPEG12), poly(ethylene glycol)methyl  ether (Mn   ̴2000) 

(mPEG45),  (trimethylsilyl) diazomethane solution 2.0 M in diethyl ether (TMS-CHN2), 

succinic anhydride (99 %), tri(ethylene glycol) monomethyl ether (95 %), pyrene (99.9 %), 

trichloroacetyl isocyanate (97 %) (TAI), trifluoroacetic anhydride (99 %) (TFAA), hydrogen 

peroxide (30 %), 2,2-dimethylthiazolidine-4-carboxylic acid (97 %), phosphotungstic acid 

(99.9 %) (PTA), 3,5-bis(trifluoromethyl)benzoic acid (98 %), sodium formate (99.98 %), 

poly(ε-caprolactone)diol (PCL) Mn 2.000 Da, titanium (IV) isopropoxide (97 %), 

methanesulfonic acid (99.5 %), tetrabutylphosphonium bromide (98 %) (TBPB), glacial 

acetic (99.8 %), acetic anhydride (99 %),  hydrogen peroxide (30 %), formic acid (95 %), 

tetraethylammonium bromide (98 %) (TEAB), 1,5,7-triazobicyclo[4.4.0]dec-5-ene (98 %) 

(TBD), N-(3-dimethylamino-propyl)-N’-ethylcarbodiimide hydrochloride (98 %) (DECH), 4-

dimethyl-aminopyridine (99 %) (DMAP), boron trifluoride diethyl etherate (46 %) (BF3Et2O), 

boron trifluoride diethyl etherate (99 %) (BF3Et2O),  Candida Antarctica immobilized on 

acrylic resin (5.000 U/g) (CALB), candida rugose lipase immobilized on immobead 150 (100 

U/g) (CR), lipase from porcine pancreas (100-500 U/g, pH 8.0, 37 °C), soda lime, cumene 

(99 %), propylene glycol monomethyl ether acetate (99 %) (Dowanol), 

trichlorofluoromethane (99.5 %) (CFCl3) and phosphate buffered saline pH 7.4 (at 25   Cͦ) 

from Sigma Aldrich. Anhydrous magnesium sulfate, maleic anhydride (99 %), potassium 

hydroxide (KOH) and tetramethylsilane (TMS) from Scharlau; ethylbenzene (99 %) from 

Baker; citric acid buffer solution pH 2.0 (20  Cͦ) from Fluka, sodium azide and sodium 

borohydride from Probus; 1,1,2,2-tetrachloroethane-D2 (TCE-D2), chloroform-D (CDCl3), 

deuterated dimethylsulfoxide (DMSO-d6) and dimethylformamide-D7 (DMF-D7) from 
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euriso-top;  toluene, tetrahydrofuran (THF), acetone, dimethylformamide (DMF), diethyl 

ether, dichloromethane (DCM), diphenyl ether (DPE) and 1,2-dichloroethane (DCE), 

ethanol (EtOH)   and methanol (MeOH) from Scharlau. Analytical grade solvents were 

purified and dried by standard methods. 4 Å powdered molecular sieves were activated 24 

h at 220  Cͦ and cooled under vacuum prior use. Flash column chromatography was carried 

out using neutral silica-gel 60 F254 (from Panreac) and hexane-ethyl acetate as eluent. 

6.2 INSTRUMENTATION AND ANALISYS 

6.2.1 Nuclear Magnetic Resonance (NMR) analysis  

1H (400 MHz), 13C (100.5 MHz) and 19F (376.8 MHz) NMR spectra were recorded using a 

Varian Gemini 400 spectrometer. Spectra were recorded at room temperature using 10-15 

mg (1H and 19F NMR) or 30-40 mg (13C NMR) of sample in CDCl3, DMF-D7 or TCE-D2 as solvent 

and TMS (1H NMR) or CFCl3 (19F NMR) as internal standard. In 13C NMR the central peak of 

the deuterated solvent was taken as reference and the chemical shifts given in ppm from 

TMS using the appropriate shifts conversions. Spectra for semi-quantitative measurements 

were degassed with helium and recorded using a D1=15 s and 32 transients in 1H and 19F 

NMR and a flip angle of 45   ,ͦ a D1=0.5 s and 10000 to 20000 transients in 13C NMR.  2D 1H-

1H homonuclear (gCOSY) and 13C-1H gradient heteronuclear Single Quantum Coherence 

(gHSQC) spectra were recorded as a means of obtaining the hh and hx correlation 

respectively. 

6.2.2 Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

The FTIR spectra were recorded on a FTIR-680PLUS spectrophotometer with a resolution 

of 4 cm-1 in absorbance and transmittance modes. An attenuated total reflection (ATR) 

accessory with thermal control and a diamond crystal (Golden Gate heated single-

reflection diamond ATR, Specac, Teknokroma) was used.  
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6.2.3 Liquid Chromatography-Mass Spectrometry (ESI MS) 

The chromatographic system was an Agilent 1200 liquid chromatograph coupled to 6210 

Time of Flight (TOF) mass spectrometer from Agilent Technologies (Waldbronn, Germany) 

with an ESI interface, using a Zorbax Eclipse XDB C18 column (4.6 mm × 150 mm × 5 µm) 

provided by Agilent Technologies. 

6.2.4 Size exclusion chromatography (SEC) 

The number-average molecular weight (Mn), weight average molecular weight (Mw) and 

molecular weight distribution (polydispersity, Ɖ, Mw/Mn) were measured by SEC. Polymer 

molecular weight analysis was carried out with an Agilent 1200 series system equipped 

with an Agilent 1100 series refractive-index detector. The analysis was performed on the 

three following column system: 3 μm PLgel MIXED-E, 5 μm PLgel MIXED-D, 20 μm PLgel 

MIXED-A at a nominal flow rate of 1.0 ml·min-1 and a sample concentration of 0.1 % w/w 

in THF as solvent. The instrument was calibrated with linear monodisperse polystyrene 

standards from Polymer Laboratories with molecular weights ranging from 500 to 400.000 

Kg·mol-1. 

6.2.5 Thermogravimetric analysis (TGA) 

Thermal stability studies were carried out on a Mettler TGA/SDTA851e/LF/1100 with N2 as 

purge gas in the 30-800 °C temperature range at scan rates of 10 °C· min-1.  

6.2.6 Fluorescence Spectroscopy  

The spectrofluorimetric data were acquired on an Aminco-Bowman series 2 Luminescence 

spectrometer (SLM Amino, Rochester, NY, USA) equipped with a 150 W continuous xenon 

lamp and a PMT detector.                                                                                                    
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6.2.7 Differential Scanning Calorimetry (DSC) 

Calorimetric studies were carried out on a Mettler DSC3+ thermal analyser using N2 as a 

purge gas (100 ml·min-1). Calibration was made using an indium standard (heat flow 

calibration) and an indium-lead-zinc standard (temperature calibration). Samples of 5-7 mg 

were sealed in aluminium pans. A three-step procedure was applied at scanning rate of 

10 °C·min-1: first, heating up to 30-40 °C above the melting temperature of the polymer and 

holding for 5 min, to erase the thermal history; second, cooling down to -80 °C and holding 

for 5 min; finally, a second heating from -80 °C to the same temperature at the first heating. 

The second heating scans were used to characterize the crystallinity and melting behaviour. 

The crystallinity was calculated according to the equation (6.1). 

 (%) = Δ Hm / Δ Hm
0 x 100          equation 6.1 

where the melting enthalpy (Δ Hm) is the value of the second heating run and Δ Hm
0 is the 

melting enthalpy reported for a 100 % pure crystalline polyester. The average value of three 

measurements were given. 

6.2.8 Contact angle 

Contact angle measurements were determined at 25 °C using deionized water on polymer 

surfaces prepared by casting and curing monomers over glass slides.  The water drop 

method (3 mL) was used on an OCA 15EC contact angle setup (Neutek Instruments) 

equipped with a motorized pipet. 

6.2.9 Atomic Force Microscope (AFM) 

Atomic Force Microscope (AFM) AFM analysis was performed in Agilent 5500/SPM 

microscope in acoustic AC (AAC) mode at room temperature in air, using silicon cantilevers. 
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6.2.10 Environmental scanning electron microscope (ESEM) 

Environmental scanning electron microscopy (ESEM) images were obtained with a FEI 

QUANTA 600 instrument using low vacuum and an accelerating potential of 20 KV. 

6.2.11 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) observations were carried out on a JEOL 1011 

high-resolution transmission electron microscope at an accelerating voltage of 80 kV. 

Samples were imaged in bright field at tension of 80 Kv using an ITEM imaging software.  

6.2.12 Dynamic Light Scattering measurements (DLS) 

Dynamic Light Scattering measurements were performed on a Malvern NanoZS 

instrument, equipped with an avalanche photodiode detector and a solid-state laser He-

Ne laser with output power was 4 mW at  = 632.8 nm) at a scattering angle of 90°. 

6.2.13 X-ray diffraction (XRD) 

XRD measurements were made using a Siemens D5000 diffractometer (Bragg-Brentano 

parafocusing geometry and vertical θ-θ goniometer) fitted with a curved graphite 

diffracted-beam monochromator, incident and diffracted-beam Soller slits, a 0.06 º 

receiving slit and scintillation counter as a detector. The angular 2θ diffraction range was 

between 15 and 30 º. The data were collected with an angular step of 0.03 º at 6 s per step 

and sample rotation. A low background Si (510) wafer was used as sample holder. 

Cukα radiation (= 1.5418 Å) was obtained from a copper X-ray tube operated at 40 kV and 

30 mA. Each diffractogram was fitted as a sum of several pseudo-Voigt functions 

representing the crystalline and the amorphous part with the software TOPAS 6.0 (Bruker, 

TOPAS V6. Bruker AXS, Karlsruhe, Germany). The percentage of crystallinity was then 

calculated as the area ratio between the peaks associated to the crystalline part and the 

amorphous part. 
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6.2.14 Polymer solubility 

In a 25 mL vial, 0.25 g of finely grounded polymer and 2 mL of each solvent was mixed and 

stirred, for 2 h at room temperature. 

6.2.15 Water uptake 

In a closed chamber, accurately weighted disk samples were kept in a constant humidity 

environment (saturated solution of Na2CO3·10H2O) at 37 or 45   Cͦ for 48 h. Next, samples 

were weighted and the water uptake was determined by difference and was expressed as 

weight increase percentage. An average of three measurements was taken. 

 

6.3 SYNTHESIS MODEL COMPOUNDS 

6.3.1 Reaction between 1,2-epoxyhexane and n-hexanoic acid  

 

Scheme 6.1 Model reaction between 1,2-epoxyhexane and n-hexanoic acid.  

Reactions were carried out in a 2 mL cylindrical flask with a screwed cap and teflon®/silicon 

septa with stirring and under argon. 0.25 g (2.5 mmol) of 1,2-Epoxyhexane, 0.29 g (2.5 

mmol) of n-hexanoic acid and the catalysts of choice (1 % molar for organic and 

organometallic catalysts) were heated in bulk or in toluene solution (2.5 M) at 100   Cͦ. For 

enzymatic catalysts (10 % w/w) the mixture was heated in bulk or in solution (2.5 M in 

toluene or DMF) at 90   Cͦ during 24 h. 
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6.3.2 Synthesis of 2-Hydroxyhexyl hexanoate (A) and 1-hydroxyhexan-2-yl 

hexanoate (B) 

An equimolar mixture of 1,2-epoxyhexane (0.5 g, 4.3 mmol), n-hexanoic acid (0.5 g, 4.3 

mmol) and TBPB (0.01 g, 0.04 mmol) was heated at 100  Cͦ for 24 h. The resulting oil was 

purified by column chromatography using hexane/ethyl acetate (8:2) as eluent yielding 

0.54 g (64 %) of the mixture of A and B as a colourless oil. 

2-Hydroxyhexyl hexanoate (A): ESI-TOF MS: m/z calc.: 216.17725; found: 216.1727. 1H NMR 

(CDCl3/TMS, δ ppm): 4.15(dd, 1H, COOCH2-COH), 3.95(dd, 1H, COOCH2-COH), 3.83(m, 1H, 

COO-(CH2)2-CH-OH), 2.33(t, 2H, CH2-CH2-COO), 1.63-1.32(m, 12H, (CH2)n), 1.31 (t, 1H, -OH), 

0.90 (t, 6H, CH2-CH3). 

13C NMR (CDCl3, δ ppm): 174.4 (s, 1C, COO), 70.3 (d, 1C, COO-CH2), 68.8 (t, 1C, HOCH), 34.5 

(t, 1C, CH2-COO), 33.3-22.9 (t, 6C, (CH2)n), 14.3 (q, 2C, CH2-CH3).  

1-Hydroxyhexan-2-yl hexanoate (B): ESI-TOF MS: m/z calc.: 216.17725; found: 216.1727.  

1H NMR (CDCl3/TMS, δ ppm): 4.92(m, 1H, (CH2)2-CH-OOC), 3.71(dd, 1H, HO-CH2-CH), 

3.62(dd, 1H, HO- CH2-CH), 2.33(t, 2H, CH2-CH2-COO), 1.63-1.32(m, 12H, (CH2)n), 0.90(m, 6H, 

CH2-CH3).  

13C NMR (CDCl3, δ ppm): 174.7 (s, 1C, COO), 75.6 (d, 1C, CH2-CH-OCO), 66.0 (t, 1C, OH- CH2-

CH), 34.8 (t, 1C, CH2-CH2-COO), 31.6-22.6 (t, 6C, (CH2)n), 14.2 (q, ,2C, CH2-CH3).  

6.3.3 Synthesis of hexane-1,2-diyl dihexanoate (C)  

 

Scheme 6.2 Synthesis of hexane-1,2-diyl dihexanoate (C). 
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An equimolar mixture of 1,2-hexanediol (0.25 g, 2.1 mmol), n-hexanoic acid (0.48 g, 4.2 

mmol) and CALB (0.050 g, 10 % wt) was heated at 90   Cͦ for 24 hours in toluene (2.5 M). 

After solvent evaporation under reduced pressure, the resulting oil was purified by column 

chromatography using hexane/ethyl acetate (8:2) as eluent yielding 0.48 g (73 %) of C as a 

colourless oil.  

Hexane-1,2-diyl dihexanoate (C): ESI-TOF MS: m/z calc.: 314.2457; found: 314.2464. 1H 

NMR (CDCl3/TMS, δ ppm): 5.12(m, 1H, (CH2)2-CH-OOC), 4.22(dd, 1H, COOCH2-CH), 4.04(dd, 

1H, COOCH2-CH), 2.33(t, 4H, CH2-CH2-COO), 1.63-1.32(m, 18H, (CH2)n), 0.90(m, 9H, CH2-

CH3).  

13C NMR (CDCl3, δ ppm): 173.8 (s, 1C, COO), 173.6 (s, 1C, COO), 71.4 (d, 1C, (CH2)2-CH-O), 

65.1 (t, 1C, O- CH2-CH), 34.9 (t, 1C, CH2-CH2-COO), 34.8 (t, 1C, CH2-CH2-COO), 31.5-21.3 (t, 

9C, (CH2)n ), 13.9 (q, 3C, CH2-CH3).  

6.3.4 1H and 19F NMR “in situ” model derivatization 

Derivatization with trichloroacetylisocyanate (TAI) and trifluoroacetic anhydride (TFAA) of 

A and B was carried out to determine the chemical shifts of methylene and methine signals 

arising from the hydroxyester moieties. 1,2,3 

6.3.4.a Reaction of A and B with TAI 

Scheme 6.3 Reaction of derivatization of A and B with TAI. 

In a NMR tube, 25 mg (0.025 mmol) of a mixture of A and B was dissolved in CHCl3 (0.7 mL). 

TAI (0.05 mL) was added drop to drop and the mixture was stirred for 2 minutes to lead to 

the corresponding trichloroacetylcarbamates.  
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2-(((2,2,2-trichloroacetyl)carbamoyl)oxy)hexyl hexanoate: 1H NMR (CDCl3/TMS, δ ppm): 

5.15 (m, 1H, COO-CH2-CH-OCONH), 4.32 (dd, 1H, COO-CH2-CH-OCONH), 4.12 (dd, 1H, COO-

CH2-CH-OCONH), 2.33 (t, 2H, CH2-CH2-COO), 1.66-1.33(m, 9H, -CH2), 0.90 (m, 6H, CH2-CH3). 

1-(((2,2,2-trichloroacetyl)carbamoyl)oxy)hexan-2-yl hexanoate:  1H NMR (CDCl3/TMS, δ 

ppm): 5.15 (m, 1H, CH2-CH-CH2-OCONH), 4.42 (dd, 1H, COO-CH-CH2-OCONH), 4.25 (dd, 1H, 

COO-CH-CH2-OCONH), 2.33 (t, 2H, CH2-CH2-COO), 1.66-1.33(m, 9H, CH2), 0.90 (m, 6H, CH2-

CH3). 

6.3.4.b Reaction of A and B with TFAA 

 

Scheme 6.4 Derivatization of A and B with TFAA. 

In a 5 mL flask under inert atmosphere, 100 mg (0.0045 mmol) of a mixture of A and B was 

dissolved in CH2Cl2 (2 mL), and TFAA (0.6 mL) was added. The mixture was heated under 

reflux for 20 minutes and the solvent evaporated under vacuum to dryness, and the 

resulting oils analysed by 1H NMR.  

2-(Trifluoroacetoxy)hexyl-1-hexanoate: ESI-TOF MS: m/z calc.: 259.2548. 1H NMR 

(CDCl3/TMS, δ ppm): 5.28 (m, 1H, (CH2)2-CH-OOC-CF3), 4.38 (dd, 1H, COO-CH2-CH-OOC-CF3), 

4.09 (dd, 1H, COO-CH2-CH-OOC-CF3), 2.33(t, 2H, CH2-CH2-COO), 1.63-1.32(m, 12H, CH2), 

0.90(m, 6H, CH2-CH3).  

19F NMR (CDCl3/CFCl3, δ ppm): -75.21 (s, CF3-COO-CH-). 
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1-(Trifluoroacetoxy)-hexan-2-yl hexanoate: ESI-TOF MS: m/z calc.: 259.2548. 1H NMR 

(CDCl3/TMS, δ ppm): 5.18 (m, 1H, CF3-COO-CH2-CH-OOC), 4.52 (dd, 1H, CF3-COO-CH2-CH-

COO), 4.31 (dd, 1H, CF3-COO-CH2-CH-COO), 2.33(t, 2H, CH2-CH2-COO), 1.63-1.32(m, 12H, 

CH2), 0.90(m, 6H, CH2-CH3).  

19F NMR (CDCl3/CFCl3, δ ppm): -75.02 (s, CF3-COO-CH2). 

6.3.4.c Synthesis of hexane-1,2-diyl bis(2,2,2)-trifluroacetate 

 

Scheme 6.5 Synthesis of hexane-1,2-diyl bis(2,2,2,)-trifluoroacetate. 

In a 5 mL flask under inert atmosphere, 875 mg (7.4 mmol) of 1,2-hexanediol was dissolved 

in CH2Cl2 (3 mL), and TFAA (2 mL) was added. The mixture was heated under reflux for 20 

minutes and the solvent evaporated under vacuum to dryness, and the resulting oils 

analysed by 1H NMR. 

 1H NMR (CDCl3/TMS, δ ppm): 5.37 (m, 1H, CF3-COO-CH2-CH-OOC), 4.60 (dd, 1H, CF3-COO-

CH2-CH-COO), 4.42 (dd, 1H, CF3-COO-CH2-CH-COO), 1.77 (m, 2H, CH2-CHO), 1.39 (m, 4H, 

(CH2)2), 0.94 (m, 3H, CH3).  

19F NMR (CDCl3/CFCl3, δ ppm): -75.45 (s, CF3-COO-CH2), -75.50 (s, CF3-COO-CH). 

6.3.5 Purification of 2-[2-(2-Methoxyethoxy)ethoxy]acetic acid (mPEG2CH2COOH) 

The commercial grade product from Aldrich was dried by azeotropic distillation with 

toluene and further evaporation under vacuum.  
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6.3.6 Synthesis of decane-1,2- diyl bis(2-(2-(2-methoxyethoxy)ethoxy)acetate 

 

Scheme 6.6 Synthesis of decane-1,2diyl bis(2-(2-(2-methoxyethoxy)ethoxy) acetate. 

In a 5 mL flask 500 mg (2.87 mmol) of 1,2-decanediol and (2-(2-(2-methoxyethoxy)ethoxy) 

acetic acid 777 mg (4.30 mmol) were dissolved in toluene (3 mL) and 127 mg CALB (10 % 

w/w) was added. The mixture was heated at 80 °C for 24h. The resulting solution was 

diluted in dichloromethane (3 mL) and extracted with water several times. Finally, the 

solvent was evaporated under vacuum to dryness, and the resulting oil analysed by 1H 

NMR.  

6.4 MONOMERS SYNTHESIS  

6.4.1 10,11-Epoxyundecanoic acid 

 

Scheme 6.7 Synthesis of 10,11-epoxyundecanoic acid (EUA). 

In a 250 mL two necked round bottomed flask, 15.0 g (80.5 mmol) of 10-undecenoic acid 

in 90 mL of toluene, 6.6 mL (130 mmol) of 30 % hydrogen peroxide and 3.0 g (10 % w/w) 

of CALB were vigorously stirred at 40  Cͦ for 24 h.  Enzyme was filtered off and the resulting 

solution diluted in toluene, washed several times with water, dried over anhydrous 

magnesium sulfate, concentrated and dried under vacuum. The product was obtained as a 

white solid (yield 98 %) with melting point of 49-52   Cͦ (lit. 50   Cͦ ). 4  

ESI-TOF, exact mass m/z 200.1414 [M+H] (Theoretical mass: 200.1412).  
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1H NMR (CDCl3/TMS, δ ppm): 2.91 (m, 1H, (CH2)2-CH-O, in oxirane ring), 2.75 (dd, 1H, Jcis = 

5.2 Hz, CH-CH2-O), 2.47 (dd, 1H, Jtrans = 2.4 Hz, CH-CH2-O), 2.33 (t, 2H, CH2COOH), 1.64-1.32 

(m, 12H, CH2). 

13C NMR (CDCl3, δ ppm): 180.72 (s, 1C, COOH), 139.26 (d, 1C, CH2-CH-O), 114.29 (t, 1C, CH-

CH2O-), 34.25-25.78 (t, 8C, CH2). 

6.4.2 Methyl-11-hydroxyundecanoate 

 

Scheme 6.8 Methyl 11-hydroxyundecanoate synthesis. 

In a 250 mL round bottomed flask under argon, 2.46 g (65 mmol) of sodium borohydride 

were suspended in anhydrous THF (120 mL) and 47.2 mL (210 mmol) of methyl 10-

undecenoate were added with stirring. The mixture was cooled on an ice-bath and 9.9 mL 

(80 mmol) of freshly distilled boron trifluoride diethyletherate were added drop wise 

during 1 h. The ice-bath was removed and mixture stirred for two additional hours and 

cooled again with a new ice-bath. Next, 21 mL of 3 M NaOH and 21 mL of 30 % H2O2 were 

added in this order in small portions during 1 h and the mixture kept at room temperature 

overnight. After neutralization with a concentrated NaH2PO4 solution, the organic layer was 

extracted several times with diethyl ether. After solvent evaporation, the resulting yellow 

oil was distilled under vacuum (120-125 °C, 0.8 mmHg) to afford 31.7 g of colourless oil 

(yield 72 %).5 

1H NMR (CDCl3/TMS, δ ppm): 3.68 (s, 3H, COOCH3); 3.63 (t, 2H, CH2OH); 2.32 (t, 2H, 

CH2COO); 1.71-1.50 (m, 4H, CH2CH2COO and CH2CH2OH); 1.40-1.20 (m, 12H, (CH2)6).  

13C NMR (CDCl3, δ ppm): 174.2 (s, 1C, COO); 63.2 (t, 1C, CH2OH); 51.4 (q, 1C, CH3); 33.8 (t, 

1C, CH2COO); 32.1 (t, 1C, CH2CH2OH); 29.7-29.0 (t, 5C, (CH2)5); 25.6 and 25.0 (t, 2C, 

CH2CH2COO and CH2CH2OH).  

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Chapter 6 

181 

 

6.4.3 10,11-Dihydroxyundecanoic acid  

 

Scheme 6.9 10,11-Dihydoxyundecanoic acid synthesis (DHU). 

Based on a reported procedure, 15.0 g (80.0 mmol) of 10-undecenoic acid and 73 mL (130 

mmol) of formic acid were introduced in a 500 mL two necked round bottomed flask.6 Next, 

5.5 mL (98 mmol) of 50 % (w/w) hydrogen peroxide was added drop by drop with vigorous 

stirring during 20 min and the reaction mixture maintained at 40  Cͦ for 1.5 h.  Excess of 

formic acid was removed under reduced pressure and the resulting oil refluxed with 1.5 M 

NaOH solution (200 mL, 300 mmol) for 2 h. The clear solution was cooled in a water-ice 

bath, adjusted to pH 2 using 1 M HCl and stirred for 1 h. The resulting supernatant white 

solid was filtered, washed several times with water and dried under reduced pressure for 

48 h. The product was obtained as a white solid (yield 96 %) with melting point of 92-94   Cͦ 

(lit. 87-88  Cͦ).7  

ESI-TOF, exact mass m/z 218.1518 (Theoretical mass: 218.1518). 

 1H NMR (CDCl3/TMS, δ ppm): 3.72 (m, 1H, HOCH2-CHOH-), 2.75 (dd, 1H, HOCH2-CHOH), 

2.47 (dd, 1H, HOCH2-CHOH), 2.33 (t, 2H, CH2COOH), 1.64-1.32 (m, 12H, (CH2)6). 

13C NMR (DMSOd6, δ, ppm): 174.6 (s, 1C, COO), 71.2 (d, 1C, CHOH), 66.01 (t, 1C, CH2OH), 

33.7, 33.5 (t, 2C, CH2COOH and CHOH-CH2), 29.4 to 28.7 (t, 6C, (CH2)n), 24.6 (t, 2C , 

CH2CH2COOH). 
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6.4.4 Synthesis of (tri(ethylene glycol) monomethyl ether)succinic acid mono 

ester  

 

Scheme 6.10 (Tri(ethylene glycol)monomethyl ether)succinic acid mono ester synthesis (mPEG3-
OOC(CH2)2COOH). 

In a 250 mL flask with a Dean-Stark apparatus tri(ethylene glycol) monomethyl ether (16.4 

g, 100 mmol) and 1,2-dichloroethane (150 mL) were heated under reflux for 1 h to remove 

water. Next the solution was concentrated to 100 mL and succinic anhydride (25.0 g, 250 

mmol) and N,N-dimethylaminopyridine (1.2 g ,10 mmol) were added. A condenser was 

adapted and the mixture heated under reflux for 24 h. Next, the solvent was distilled off 

and the crude reaction mixture dissolved in water, extracted with a mixture of hexane-

ethyl acetate 1:1 and extracted again with dichloromethane. The dichloromethane solution 

was dried over MgSO4 and concentrated under vacuum. The resulting product was dried 

overnight under vacuum to give 22.4 g (83 %) of a colourless viscous oil. 

1H NMR (CDCl3/TMS, δ ppm): 9.49 (s, 1H, COOH), 4.26 (m, 2H, COO-CH2), 3.72-3.67 (m, 8H, 

CH2-O), 3.60 (m, 2H, CH3-O-CH2), 3.40 (s, 3H, CH3), 2.67 (m, 4H, OOC(CH2)2-COOH).  

13C NMR (CDCl3, δ ppm): 176.6 (s, 1C, COO), 172.2 (s, 1C, COOCH2), 71.7 (t, 1C, CH3-O-CH2), 

70.3 (t, 2C, -O-CH2CH2-O-CH2-), 68.9 (t, 1C, -CH2CH2-OOC-), 63.8 (t, 1C, -CH2CH2-OOC-), 58.9 

(q, 1C, CH3), 28.9 (t, 1C, CH2-COOH).  
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6.5 POLIMERS SYNTHESIS  

6.5.1 10,11-Epoxyundecanoic acid polymerization tests with organic and 

enzymatic catalysts 

 

Scheme 6.11 Polymerization of 10,11-epoxyundecanoic acid (PEUA).  

Polymerization tests were carried out in 5 mL cylindrical flasks with a Teflon coated screwed 

cap with a small stirring bar. 0.50 g (2.5 mmol) of EUA and the necessary amount of TBPB 

(1 % mol) or CALB (10 % w/w) catalysts were carefully weighted followed by the addition 

of 1.0 mL of solvent (toluene or DMF) if necessary. Flasks were closed, the content 

homogenized by stirring 30 min at 60  Cͦ and fitted in oil bath at 100  Cͦ (TBPB) or 90  Cͦ 

(CALB). At present times (2, 4, 8, 24 or 48 h), a small sample was taken, dried under vacuum 

and analysed by 1H NMR.  Polymers were isolated by adding THF (3 mL), shaking the flask 

for 5 min and precipitating the clear solution in cold diethyl ether (100 mL). The resulting 

white polymer was collected by filtration and dried under vacuum. CALB beads and 

insoluble materials (when formed) were separated by decantation and rinsing with fresh 

THF.  

6.5.2 10,11-Epoxyundecanoic acid polymerization kinetics with TBPB 

1.0 g (5.0 mmol) of EUA was dissolved in 2.0 mL of toluene, ethylbenzene or cumene (2.5 

M). Next, the necessary amount of TBPB (0.5, 1.0 or 2.0 mol %) was added. Using a syringe, 

0.20 mL aliquots of each mixture were introduced in 2.0 mL screwed cap cylindrical flasks 

with a small stirring bar. The flasks were closed and heated and stirred in an oil bath at 100 

 Cͦ (toluene), 130  Cͦ (ethylbenzene) or 150  Cͦ (cumene). At prefixed times, flasks were 
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cooled down, the solvent evaporated under vacuum, and the resulting solid mixture 

analysed by 1H NMR and SEC. 

6.5.3 Synthesis of linear PEAU-1, branched PEAU-2 and crosslinked PEUA-3 

6.5.3.a Synthesis of linear PEUA-1 

EUA polymerization (10.0 g, 50.0 mmol) was carried out with 1 % of TBPB in a 2.5 M solution 

in toluene at 100  Cͦ for 8 h. The reaction mixture was dissolved in THF and then it was 

precipitated twice into cold diethylether. In this way, a white polymer with Mn 9800 g·mol-

1 and Ɖ 3.4 was obtained in 87 % yield. The NMR data ascertaining the constitution and 

purity of this polyester are described below. 

1H NMR (CDCl3/TMS, δ ppm): 4.90 (m, HO-H2C-CH-OCO, abnormal unit), 4.13 and 3.96 (dd, 

OCO-CH2-CHOH, normal unit), 3.82 (m, (-OCOCH2-CH-OH, normal unit), 3.69 and 3.62 (dd, 

OCOCH-CH2-OH, abnormal unit), 2.35 (m, 2H, OOC-CH2), 1.62-1.29 (m, 14H, (CH2)7).  

13C NMR (CDCl3, δ ppm): 174.5 (s, 1C, COO, abnormal unit), 174.2 (s, 1C, COO, normal unit), 

75.4 (d, 1C, HOH2C-CH-OCO, abnormal unit), 70.1 (s, 1C, -OCOCH2-CH-OH, normal unit), 

68.7 (t, 1C, OCO-CH2-CHOH, normal unit), 64.9 (t, 1C, OCOCH-CH2-OH, abnormal unit), 34.6 

(t, 1C, CH2-COO, abnormal unit, 34.3 (t, 1C, CH2-COO, normal unit), 25.6-25.1 (t, 7C, (CH2)7).   

6.5.3.b Synthesis of branched PEUA-2 and crosslinked PEUA-3 

EUA polymerization (2.0 g, 10.0 mmol) was carried out with 1 % of TBPB in bulk at 100  Cͦ 

for 8 h. The insoluble fraction was filtered off and rinsed several times with THF (28 % yield). 

The soluble polymer fraction was isolated by precipitation in diethylether resulting a white 

polymer with Mn 12400 g·mol-1 and Ɖ 4.1 in 62 % yield.  
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6.5.4 Preparation of poly(11-hydroxyundecenoate) by polymerization of methyl 

11-hydroxyundecanoate initiated by 1,6-hexanediol 

 

Scheme 6.12 Polymerization of methyl 11-hydroxyundecanoate initiated by 1,6-hexanediol. 

In a 50 mL Schlenk flask 5.4 g (25 mmol) of methyl 11-hydroxyundecanoate and 0.25 g (2.1 

mmol, molar ratio 12:1) of 1,6-hexanediol were melted with stirring under argon 

atmosphere at 130   Cͦ. Over the resulting homogeneous clear mixture, 0.07 mL (0.00025 

mol, 1 % molar) of titanium tetraisopropoxide was added and the temperature raised to 

190   Cͦ with the application of vacuum (2 mmHg). After 4 h the mixture was cooled and the 

resulting solid white mass was dissolved in 25 mL of THF and precipitated twice over 1000 

mL of cold diethylether. The resulting white solid was collected by filtration, rinsed with 

diethyl ether, and dried under vacuum. (Yield: 92 %, Mn: 3520 g·mol-1, by 1H NMR, and 

3900 g·mol-1, Ð 2.0 by SEC).  

1H NMR (CDCl3/TMS, δ ppm): 4.86 (m, 2H, CH2-OH (end group), 4.05 (t, 8H, COO-CH2-CH2), 

3.64 (t, 4H, HO-CH2) (end group), 2.29 (t, 4H, CH2-COO), 1.61 (m, 20H, -COO-CH2-CH2; HO-

CH2-CH2; CH2-CH2-COO), 1.28 (m, 56H, CH2)n).  

13C NMR (CDCl3, δ ppm): 175.1 (s, 2C, COO), 64.4 (t, 2C, CH2-OOC), 63.0 (t, 2C, CH2-OH), 34.4 

(t, 2C, CH2-COO), 29.4-25.0 (t, 20 C, CH2)n. 

6.5.5 Purification of PCL 

Commercial PCL-diol was solved in THF and precipitated twice in cold methanol yielding a 

white solid that was filtered and dried under vacuum. (Yield: 88 %, Mn: 2580 g·mol-1, by 1H 

NMR, and 3600 g·mol-1, Ð 1.9 by SEC). 
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6.5.6 Polymerization of 10,11-dihydoxyundecanoic acid 

 

Scheme 6.13 Polymerization of 10,11-dihydroxyundecanoic acid (PDHU). 

Polymerization tests were carried out in cylindrical Schlenk flasks with 0.28 g (1.3 mmol) of 

DHU. In the case of bulk polymerizations, vacuum (2 mmHg) was applied after 1 h of 

reaction. Polymerizations in solution were carried out using a 2.5 M monomer 

concentration in the appropriate solvent. 0.25 g of 4 Å activated molecular sieves were 

added in anhydrous tests. Samples of the reaction mixture were taken at present times an 

analysed by 1H NMR. Finally, the polymer was isolated by adding chloroform (2 mL) and 

filtered to remove insoluble material (CALB beads or molecular sieves).  The resulting clear 

solution was precipitated in cold diethyl ether (200 mL) and the resulting solid collected by 

filtration, dried under vacuum and analysed by SEC and 1H NMR.  

1H NMR (CDCl3/TMS, δ ppm): 5.11  (m, 1H, OCO-CH-CH2-OCO, 1H, branched unit), 4.94 (m, 

1H, HO-H2C-CH-OCO, abnormal unit), 4.24 and 4.03 (dd, 2H, OCO-CH2-CHOCO, branched 

unit), 4.12 and 3.96 (dd, 2H, OCO-CH2-CHOH, normal unit), 3.85 (m, 1H, OCOCH2-CH-OH, 

normal unit), 3.70- 3.58 (m, 2H, OCOCH-CH2-OH, abnormal unit; 1H, OH-CH2-CHOH, and 1H 

OH-CH2-CHOH, end groups), 3.45 (m, 1H, OH-CH2-CHOH, end group), 2.34 (m, 2H, CH2-

COO), 1.62-1.29 (m, 14H, (CH2)7).  

13C NMR (CDCl3, δ ppm): 174.4 (s, 1C, COO, abnormal unit), 174.2 (s, 1C, COO, normal unit), 

173.8 and 173.6 (s, 1C, COO, branched units), 75.4 (d, 1C, HOH2C-CH-OCO, abnormal unit), 

72.4 (d, 1C, OH-CH2-CHOH, end group), 71.4 (d, 1C, OCOCH2-CH-OCO, branched unit), 70.0 

(d, 1C, OCOCH2-CH-OH, normal unit), 68.7 (t, 1C, OCO-CH2-CHOH, normal unit), 66.9 (t, 1C, 

OH-CH2-CHOH, end group), 65.1 (t, 1C, OCOCH-CH2-OCO, branched unit), 64.9 (t, 1C, 

OCOCH-CH2-OH, abnormal unit), 34.6-33.4 (t, 1C, CH2-COO), 29.6-25.0 (t, 7C, (CH2)7).  
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6.5.6.a Scaled polymerization of 10,11-dihydoxyundecanoic acid  

Scaled polymerization of 10,11-dihydroxyundecanoic with CALB in toluene following the 

conditions: in a 25 mL Schleck flask under inert atmosphere 3.0 g DHU (13.8 mmol) were 

dissolved in 5.5 mL of toluene (2.5 M) and with vigorous stirring 0.3 g (10 % (w/w)) of CALB 

and 0.5 g of 4 Å MS were added. The mixture was heated at 80 °C with stirring during 24 h. 

The resulting polymerization mixture was diluted in 25 mL of chloroform and solids (CALB 

beards and MS) removed by filtration and rinsed with some free solvent. Chloroform was 

removed under reduce pressure and the resulting solid dissolved in THF and precipitated 

twice into cold diethylether (400 mL). The resulting fine solid collected by filtration and 

dried under vacuum for 24h. Yield 98 %; molecular weight 15800 g·mol-1; Ð 2.7; percentage 

of branching units 22.1 %, percentage of secondary hydroxyl units 57.5 % and percentage 

of primary hydroxyl units 20.3 %. 1H and 13C NMR and the heteronuclear single quantum 

correlation (HSQC) spectra of PDHU was recorded.  

6.6 DERIVATIZATION POLYMERS  

6.6.1 PEUA trifluoroacetylation  

 

Scheme 6.14 Derivatization of PEUA with TFAA. 

In 10 mL round bottomed flask under inert atmosphere 50 mg (0.02 mmol) of PEUA-1 or 

PEUA-2 were dissolved in CHCl3 (2 mL) and TFAA (0.2 mL) was added.  The mixture was 

heated at 40 °C for 30 minutes and further concentrated to dryness under vacuum for 2 h 

(soda-lime trap protection) to remove solvent and excess of reagent. The resulting PEUA 

trifluoroacetates were characterized by 1H and 19F NMR and the assignments made 

according to the corresponding trifluoroacetates of model compounds A and B.  
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1H NMR (CDCl3/TMS, δ ppm): 5.26 (m, 1H, (CH2)2-CH-OOC-CF3), 5.15 (m, 1H, (CH2)2-CH-

OOC), 4.51 (dd, 1H, CF3-COO-CH2-CH), 4.36 (dd, 1H, COO-CH2-CH), 4.29 (dd, 1H, CF3-COO-

CH2-CH), 4.06 (dd, 1H, COO-CH2-CH), 2.30 (t, 2H, CH2-CH2-COO), 1.63-1.32 (m, CH2), 0.90 

(m, CH2-CH3). 

19F NMR (CDCl3/ CFCl3, δ ppm): -75.46 (s, CF3-COO-CH2-), -75.67 (s, CF3-COO-CH-). 

6.6.1.a PEUA-1 hydroxyl content and molecular weight determination  

The absolute primary and secondary hydroxyl content was determined by 19F NMR 

spectroscopy using an internal reference.3 In a NMR tube, accurate amounts of dried PEUA-

1-TFA (14.57 mg) and 3,5-bis(trifluoromethyl)benzoic acid (14.22 mg) were dissolved in 

0.65 mL of CDCl3. By comparing the intensity of the signals of trifluoroacetate groups in the 

PEUA-TFA and trifluoromethyl groups of the internal standard, the amount of primary 

(0.169 EqOH per 100 g of polymer) and secondary (0.353 EqOH per 100 g of polymer) alcohols 

was estimated using equation 6.2. 

EqOH

100 gpol
=

IOH

Ist
x 

Wst

Wpol
 x 

200

FWst
        equation 6.2 

 

IOH: Intensity of PEUA-1-TFA signal. 
Ist: Intensity of 3,5-bis(trifluoromethyl) benzoic acid. 
Wst: Weigh of 3,5-bis(trifluoromethyl) benzoic acid. 
Wpol: Weigh of PEUA-1-TFA. 
FWst: 3,5-Bis(trifluoromethyl) benzoic acid FW (258.12 g·mol-1). 

 

From the total hydroxyl content (0.522 EqOH/100 g polymer) and considering a linear 

structure with one carboxylic acid and one hydroxy end groups, the polymerization degree 

was estimated using equation 6.3: 

Eq OH

100g Polym.
=

n+1

M unit+M water
;   n = 19    equation 6.3  

 
M unit: Mass of the repeating unit (200.28 g·mol-1).    
M water: FW of water (18 g·mol-1).  
n: Polymerization degree. 
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6.6.2 PEUA derivatization with trimethylsilyldiazomethane 

 

Scheme 6.15 PEUA-1 TMS-CHN2 derivative. 

In a 10 mL flask under argon atmosphere, 0.02 g (0.12 mmol) of PEUA-1 was dissolved in 1 

mL of a mixture of CHCl3 and CH3OH (2:1). A 2 M solution of TMS-CHN2 in hexane (0.1 mL, 

0.2 mmol) was added using a syringe until a yellow colour persists.8,9 The mixture was 

stirred at r.t. for 1 h, evaporated under vacuum to dryness and analysed by 1H NMR.  

1H NMR (CDCl3/TMS, δ ppm): 4.90 (m, 1H, OCH-CH2), 4.13 (dd, 1H, OCH2-CH), 3.96 (dd, 1H, 

OCH2-CH), 3.82 (m, 1H, (CH2)2-CH-OH), 3.67 (dd, 1H, CH-CH2-OH), 3.65 (s, 3H, CH3-OCO), 

3.61 (dd, 1H, CH-CH2-OH), 2.32 (m, 2H, CO-CH2-CH2), 1.61-1.28 (m, 28H, CH2-CH2). 

Molecular weight was calculated by comparing the intensity of the COOCH3 end group and 

the CH2COO methylene of the repeating unit according to equation 6.4: 

 n =  
3

2
 

I∝CH2

 ICOOCH3
  =  

3

2
  

I2.35−2.25

 I3.70−3.64− I3.62−3.55
 ;   n~19   equation 6.4 

 

IαCH2= Intensity of the signal at 2.30 ppm. 
ICOOCH3= Intensity of signals from 3.55 to 3.62 ppm – intensity of signals from 3.64 to 3.70 ppm. 
 

6.6.3 PDHU trifluoroacetylation  

 
Scheme 6.16 Derivatization of PDHU with TFAA. 

In 10 mL round bottomed flask under inert atmosphere 75 mg (0.03 mmol) of PDHU were 

dissolved in CHCl3 (3 mL) and TFAA (0.4 mL) was added.  The mixture was heated at 40 °C 
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for 30 minutes and further concentrated to dryness under vacuum for 2 h (soda-lime trap 

protection) to remove solvent and excess of reagent. The resulting PDHU trifluoroacetates 

were characterized by 1H and 19F NMR and the assignments made according to the 

corresponding trifluoroacetates of model compounds A and B and the bis-trifluoroacetate 

of 1,2-hexanediol.  

1H NMR (CDCl3/TMS, δ ppm): 5.35 (m, 1H, CH-OOCCF3 end group), 5.28 (m, 1H, CH-OOCCF3 

normal unit), 5.14 (m, 1H, CH-OOCCF3 abnormal unit), 5.07 (m, 1H, CH-OOC branched unit), 

4.58 (dd, 1H, CH2-OOCCF3 end group), 4.50 (dd, 1H, CH2-OOCCF3 abnormal unit), 4.42 (dd, 

1H, CH2-OOCCF3 end group), 4.39 (dd, 1H, CH2-OOCCF3 normal unit), 4.29 (dd, 1H, CH2-

OOCCF3 abnormal unit), 4.20 (m, 1H, CH2-OOC branched unit), 4.06 (dd, 1H, CH2-OOCCF3 

normal unit), 4.02 (dd, 1H, CH2-OOC branched unit), 2.30 (m, 2H, CH2COO), 1.73-1.28 (m, 

14H, (CH2)7). 

19F NMR (CDCl3/ CFCl3, δ ppm): -75.48 (s, CF3COO-CH abnormal units), -75.52 (s, CF3COO-

CH2 end group), -75.68 (m, CF3COO-CH normal units and CF3COO-CH end group).   

6.6.3.a PDHU hydroxyl content and molecular weight determination  

The absolute content of primary and secondary hydroxyl groups in PDHU was determined 

by integration of the 19F NMR signals using accurately weighted amounts of PDHU-TFA and 

bis(trifluoromethyl)benzoic acid as internal).  

In a NMR tube, accurate amounts of dried PDHU-TFA (22.20 mg) and 3,5-

bis(trifluoromethyl)benzoic acid (12.45 mg) were dissolved in 0.65 mL of CDCl3. By 

comparing the intensity of the signals of trifluoroacetate groups in the PEUA-TFA and 

trifluoromethyl groups of the internal standard, the amount of primary (0.215 EqOH per 100 

g of polymer) and secondary (0.297 EqOH per 100 g of polymer) alcohols was estimated 

using equation 6.5. 
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EqOH

100gpol
=

IOH

Ist
x 

Wst

Wpol
 x 

200

FWst
        equation 6.5 

 
IOH: Intensity of PEUA-1-TFA signal. 
Ist: Intensity of 3,5-bis(trifluoromethyl) benzoic acid. 
Wst: Weigh of 3,5-bis(trifluoromethyl) benzoic acid. 
Wpol: Weigh of PEUA-1-TFA. 
FWst: 3,5-Bis(trifluoromethyl) benzoic acid FW (258.12 g·mol-1). 

 

From the total hydroxyl content (0.512 EqOH/100 g polymer) and considering the branched 

structure, the polymerization degree can be estimated using equation 6.6: 

Eq OH

100g Polym.
=

n+1

M unit+M water
;   n   ̴  36    equation 6.6  

 
 
M unit: Mass of the repeating unit (200.28 g·mol-1).    
M water: FW of water (18 g·mol-1).  
n: Polymerization degree. 

 

In this way, 0.215 and 0.295 equivalents of primary and secondary hydroxyl per 100 g of 

polymer were determined. According to a branched structure and one hydroxyl group per 

repeating unit and one hydroxyl end group it is possible to roughly estimate a Mn of 7200 

g·mol-1 for this sample, which is about one half of that determined by SEC (15800 g·mol-1). 

Molecular weights determined by SEC are over or under estimated as consequence of 

differences in the hydrodynamic volume with the polystyrene standards used in the 

calibration. 
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6.7 POST-POLYMERIZATION MODIFICATION  

6.7.1 PEUA modification with N-Boc-phenylalanine 

 

Scheme 6.17 Post-polymerization modification of PEUA-1 with N-Boc-Phe-OH. 

In a 100 mL flask, 0.5 g (2.5 mmol) of PEUA 0.73 g (2.75 mmol) of Boc-Phe-OH, 0.96 g (5.01 

mmol) of DECH and 0.02 g (0.13 mmol) of DMAP were dissolved in DCM (40 mL). The 

mixture was stirred at 20   Cͦ under inert atmosphere for 24 h. After solvent evaporation, 

the resulting solid was dissolved in THF (3 mL) and precipitated twice in deionized water. 

The modified polymer was dried under vacuum for 24 h. Yield: 81 %. Mn = 15700 g·mol-1; 

Ɖ = 2.4. 

1H NMR (CDCl3/TMS, δ ppm): 7.30-7.19 (m, 5H, Har), 5.10 (m, 1H, NH), 4.98 (m, N-Boc-Phe-

Ala-O-CH-CH2OCO, normal unit), 4.77 (m, N-Boc-Phe-Ala-O-CH2-CH-COO, abnormal unit), 

4.57 (s, 1H, HN-CH-COO), 4.19 and 4.01 (m, 2H, N-Boc-Phe-Ala-O-CH-CH2-COO, normal 

unit), 4.12 and 3.81 (N-Boc-Phe-Ala-O-CH2-CH-COO, abnormal unit), 3.11 and 2.92 (m, 2H, 

Ph-CH2), 2.29-2.35 (m, 2H, CH2-COO), 1.64-1.26 (m, 23H, (CH2)7 and C(CH3)3).  

13C NMR (CDCl3, δ ppm): 174.1 (s, 1C, COO, abnormal unit), 173.6 (s, 1C, COO, normal unit), 

171.8 (s, 1C, HN-CH-COO-CH), 155.1 (s, 1C, HNCOO), 136.1, 129.4, 128.6 and 127.1 (Ph), 

80.0 (s, 1C, C(CH3)3), 73.7 and 73.1 (d, 1C, N-Boc-Phe-Ala-O- CH-CH2-COO, normal unit), 70.0 

(d, 1C, N-Boc-Phe-Ala-O-CH2-CH-COO, abnormal unit), 65.9 (s, 1C, t-Boc-Phe-Ala-O-CH2-CH-

COO, abnormal unit), 64.9 and 64.7 (s, 1C, N-Boc-Phe-Ala-O-CH-CH2-COO, normal unit), 

54.4 (d, 1C, OOC-CH-NH), 38.3 (s, 1C, Ph-CH2-CH), 34.4 (s, 1C, CH2-COO), 30.7-24.8 (s, 7C, 

CH2)7 and (q, 3C, C(CH3)3). 
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6.7.2 PEUA modification with 2,2-dimethylthiazolidin-3-(N-formyl)-4-carboxylic 

acid  

 

Scheme 6.18 Post-polymerization modification of PEUA-1 with 2,2-dimethylthiazolidin-3-(N-formyl)-
4-carboxylic acid (DMFT). 

6.7.2.a Synthesis of 2,2-dimethylthiazolidin-3-(N-formyl)-4-carboxylic acid  

Synthesis of DMFT was accomplished following a two-step synthetic approach. 

 

Scheme 6.19 Synthesis of a) 2,2-dimethylthiazolidin-4-carboxylic acid and b) 2,2-

dimethylthiazolidin-3-(N-formyl)-4-carboxylic acid from L-cysteine. 

Synthesis of 2,2-dimethylthiazolidin-4-carboxylic acid 

Synthesis was carried out using a reported procedure. 36.3 g (0.30 mol) of L-cysteine, 880 

mL of dry acetone (12 mol) and 1 mL of glacial acetic acid were refluxed with stirring until 

all solid dissolves (6 h). The warm solution was filtered and the clear solution stand in the 

refrigerator (-20   Cͦ) for crystallization. The white solid was collected by filtration, washed 

with cool acetone and dried to yield 42.8 g of crystalline product. Yield (88.0 %). Melting 

point 152-154   Cͦ (lit.  163-165   Cͦ). 

ESI-TOF, exact mass m/z 161.0513 (Theoretical mass: 161.0510). 

1H NMR (DMSOd6/TMS, δ ppm): 13.05 (s, 1H, -COOH), 4.00 (dd, 1H, CH-NH-), 3.33 (dd, 1H, 

-CH2-S-), 2.96 (dd, 1H, -CH2-S-), 2.09 (s, 1H, -NH), 1.59 (s, 3H, CH3-), 1.43 (s, 3H, CH3-). 
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13C NMR (DMSOd6, δ, ppm): 172.6 (s, 1C, C=O), 75.8(s, 1C, -CH-NH), 64.4 (s, 1C, C(CH3)2), 

32.2 (t, 1C, -CH2S-), 29.9 (q, 1C, CH3). 

Synthesis of 2,2-dimethylthiazolidin-3-(N-formyl)-4-carboxylic acid 

Based on a reported procedure, a solution of 13.6 g (0.2 mol) of sodium format in 260 mL 

formic acid was cooled to 0  Cͦ and 32.2 g of 2,2-dimethylthiazolidin-4-carboxylic acid were 

added and stirred until solution. Next, 100 mL of acetic anhydride were added dropwise 

during an hour. When the addition was complete the mixture was stirred at room 

temperature for two hours and a white precipitate separate. 200 mL of cool water were 

added, the mixture cooled to 0-5   Cͦ and the solid filtered, washed with cool water and 

dried under vacuum over KOH to produce 33.0 g (86 %) of crude product that was purified 

by recrystallization in 750 mL EtOH/H2O (1:1) to give 29.8 g (78 %) of white crystalline solid. 

Yield (75 %). Melting point 211  Cͦ (lit.  221-222   Cͦ). 

ESI-TOF, exact mass m/z 189.0466 (Theoretical mass: 189.0460). 

1H NMR (DMSOd6/TMS, δ ppm): 13.00 (s, 1H, -COOH), 8.39, 8.21 (s, 1H, -CHO), 5.05, 4.82 

(dd, 1H, -CH-NCHO-), 3.43, 3.36 (dd, 1H, -CH2-S-), 3.17, 3.14 (dd, 1H, -CH2-S-), 2.09 (s, 1H, -

NH), 1.74, 171 (s, 6H, CH3). 

13C NMR (DMSOd6, δ, ppm): 172.6 (s, 1C, COOH), 160 (s, 1C, N-CHO), 75.8 (d, 1C, -CH-N-

CHO), 64.4 (s, 1C, C(CH3)2), 32.2 (t, 1C, -CH2S-), 29.9 (q, 1C, CH3). 

6.7.2.b PEUA modification with 2,2-dimethylthiazolidin-3-(N-formyl)-4-carboxylic 

acid 

In a 50 mL flask, 0.5 g (2.5 mmol) of PEUA 0.73 g (2.75 mmol) of DMFT, 0.96 g (5.01 mmol) 

of DECH and 0.02 g (0.13 mmol) of DMAP were dissolved in DMF (10 mL). The mixture was 

stirred at 20   Cͦ under inert atmosphere for 24 h. The solution was precipitated twice in 

deionized cool water. The modified polymer was dried under vacuum for 24 h. Yield: 86 %. 

Mn = 11630 g·mol-1; Ɖ = 2.9. 
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1H NMR (CDCl3/TMS, δ ppm): 8.33, 8.25 (s, 1H, CHO), 5.12-5.02 (m, 1H, O-CH2-CH-COO, 

normal and abnormal units), 4.33-3.99 (m, 2H, O-CH-CH2-COO, normal and abnormal 

units), 3.32-3.22 (m, 3H, CO-CH-, CH-CH2-S), 2.29-2.35 (m, 2H, CH2-COO), 1.64-1.26 (m, 23H, 

(CH2)7 and C(CH3)3).  

13C NMR (CDCl3, δ ppm): 173.6 (COO, normal and abnormal units), 169.1(s, 1C, COO), 159.1 

(d, 1C, N-CHO), 73.3 (d, 1C, -O-CH2-CH-COO, normal and abnormal units),64.7 (d, 1C, O-

CH2-CH-COO, normal and abnormal units), 70.3 (d, 1C, -CH-N-CHO), 62.6 (t, 1C, -CH2S-), 

29.3(s, 1C, C(CH3)2), 29.7 (q, 1C, CH3), 30.7-24.8 (t, 7C, CH2)7 and (s, 1C, C(CH3)3). 

6.7.3 Modification with succinic anhydride (PEUA-Succinate) 

 

Scheme 6.20 Post-polymerization modification of PEUA-1 with succinic anhydride. 

Following a described procedure, in a 50 mL flask under inner atmosphere 0.50 g (2.5 

mmol) of PEUA-1 were dissolved in anhydrous THF (5 mL). Next, 0.8 mL (0.79 g, 10 mmol) 

of anhydrous pyridine and 0.76 g (7.5 mmol) of succinic anhydride were added in this order. 

The mixture was stirred at room temperature for 24 h and precipitated twice in deionized 

water. The resulting PEUA-monoester dried was under vacuum for 24 h. Yield: PEUA-

succinate (84 %). Mn = 10500 g·mol-1; Ɖ = 2.8.10 

1H NMR (CDCl3/TMS, δ ppm): 5.01 (m, 1H, CH-OCO), 4.16 and 3.97 (m, 2H CH2-OCO), 2.55 

(m, 4H, OC-CH2CH2COOH), 2. 23 (m, 2H, CH2-COO), 1.6-1.22 (m, 14H (CH2)7). 

13C NMR (CDCl3 + DMF-d7, δ ppm): 174.3 (s, 1C, COOH), 173.5 (s, 1C, COO, normal unit), 

173.4 (s, 1C, COO, abnormal unit), 172.3 (s, 1C, COO succinate in abnormal unit), 172,13 (s, 

1C, COO succinate in normal unit), 71.8 (d, 1C, CH-OCO, normal unit), 71.2 (d, 1C, CH-OCO, 
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abnormal unit), 65.3 (t, 1C, CH2-OCO, abnormal unit), 64.8 (t, 1C, CH2-OCO, normal unit), 

34.4 (t, 1C, CH2 -COO), 34.1-24.8 (q, 7C, (CH2)7. 

6.7.4 Modification of PEUA-succinate with N-Boc-serine methylester  

 

Scheme 6.21 Post-polymerization modification of PEUA-1 with N-Boc-Ser-OMe. 

In a 25 mL flask, 0.34 g (1.12 mmol) of PEUA-Succinate and 0.24 g (1.12 mmol) of Boc-Ser-

OMe were dissolved in anhydrous DCM (10 mL). The mixture was stirred and 0.38 g of DECH 

(2.06 mmol) and 0.006 g (0.06 mmol) of DMAP were added. The reaction was kept at room 

temperature under inert atmosphere for 24 h. The resulting suspension was washed 

several times with water and concentrated. The resulting polymer was dissolved in the 

minimum quantity of THF and precipitated over deionized water. The final product was 

dried under vacuum for 24 h. Yield: 64 %. Mn = 16250 g·mol-1; Ɖ = 2.8. 

1H NMR (CDCl3/TMS, δ ppm): 5.38 (s, 1H, -NH), 5.07 (m, 2H, CH2-OCO), 4.57 (m, 1H, -CH-

NH), 4,45-4.36 (m, 2H, NH-CH-CH2-OCO), 4,30-4.21 (m, 2H, -CH2-OCO), 3.77 (s, 3H, OCH3), 

2.61 (s, 4H, COO-CH2-CH2-OCO), 2.30 (m, 2H, -CH2-COO), 1.62-1.29 (m, 23H, (CH2)7, C(CH3)3).  

13C NMR (CDCl3, δ ppm): 172.5 (s, 1C, COO Succinate), 170.7 (s, 1C, COO abnormal unit), 

170.6 (s, 1C, COO normal unit); 169.6 (s, 1C, COOCH3); 154.9 (s, 1C, O-CO-NH); 79.9 (s, 1C, 

C(CH3)3); 71.3 (d, 1C, CHCH2OOC normal unit); 70.2 (d, 1C, CH-OOC abnormal unit); 64.5 (t, 

1C, CH2CHOOC abnormal unit); 63.8 (t, 1C, CH2OOC normal unit); 63.5 (t, 1C, 

NHCHCH2OOC); 56.1 (d, 1C, NHCHCH2OOC); 51.7 (q, 1C, OCH3); 28.7-21.7 (t, 7C, (CH2)7, 

OOCCH2CH2COO, (s, 3C, C(CH3)3). 
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6.8 DEGRADATION PROCEDURES 

Sample disks (12.0 mm x   0̴.40 mm; surface area to volume ratio equal to 0.1 cm-1) 

weighting about 50 mg, were prepared by compression moulding (4 ton) using a manual 

hydraulic press 15 ton sample pressing (SPECAC) equipped with a water cooled heater. 

Finely grounded samples were introduced into the preheated (40  Cͦ) mould and after 3 h 

pressed under vacuum and kept at room temperature for 1 h. Disks were demoulded under 

cool N2 and dried under vacuum to constant weight (m0).  After incubation in the selected 

media for the scheduled period of time, three samples of each polymer were rinsed 

thoroughly with distilled water and weighted immediately after wiping the surface with a 

filter paper to absorb the surface water to obtain the wet weight (mw). Next, the samples 

were vacuum-dried for 48 h and weighted again to obtain the dry weight (md).  

 6.8.1 Hydrolytic degradation 

For hydrolytic degradation, samples were immersed in Falcom tubes containing about 24 

ml of citric acid buffer (pH 2.0) and kept sterile by adding 0.03 % (w/v) of NaN3. Incubation 

took place at 45   Cͦ. Samples were removed at specific intervals, cleaned and dried under 

vacuum to constant weight. 

Weight loss was determined by equation (6.7). 

 

WL % = [(m0 – md )/m0] x 100          equation 6.7 

 

where m0 is the initial mass, mt is the final mass after drying at a predetermined time.              

An average of three measurements was taken. 

6.8.2 In vitro enzymatic degradation 

In vitro enzymatic degradation tests were carried out in a similar way using a phosphate 

buffer (pH 7.2) containing lipase from porcine pancreas (20 mg). Buffered enzyme solution 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Chapter 6[Escriba aquí] [Escriba aquí] [Escriba aquí] 

198 

 

was replaced every 72 h to maintain enzyme activity. Incubation took place at 37   Cͦ. 

Samples were removed at specific intervals, cleaned and dried under vacuum to constant 

weight. Weight loss was determined by equation (6.7). 

6.8.3 Accelerated degradation 

500 mg of powdered polymer were mixed with methanesulfonic acid water solution (1 M, 

20 mL) and the mixture was heated under reflux. After 24 hours the solution was 

neutralized with Na2CO3 saturated solution and the organic products were extracted with 

DCM, concentrated under vacuum and analysed by SEC and 1H NMR.  

6.8.4 PEUA accelerated degradation: kinetic study 

180 mg of PEUA were mixed with methanesulfonic acid water solution (0.5 M, 8 mL), and 

heated under reflux. At prefixed times, aliquots of solutions were taken, cooled down, 

neutralized with Na2CO3 saturated solution and the organic products extracted with DCM. 

The solvent was removed under vacuum and products analysed by SEC and 1H NMR. 

6.9 COPOLYMERIZATION 

6.9.1 Block polymerization of mPEG-OH and DHU 

In a typical procedure, in a 15 mL Schlenck flask, the necessary amount of monomethoxy 

poly(ethylene glycol) 550 (mPEG12) or 2000 (mPEG45) and dihydroxyundecanoic acid (DHU) 

(0.5 g, 2.3 mmol), were dissolved in 3mL of toluene. The used feed molar ratios of 

mPEG/DHU were 1:20 and 1:30. CALB (10 % (w/w) vs. total substrates) was transferred into 

the flask and the mixture heated with stirring at 80 oC for 48 h. The reaction was quenched 

with chloroform (5mL mL) and the enzyme was removed by filtration and rinsed with free 

solvent. The clear solution was concentrated under vacuum, dissolved in 1,2-

dichloroethane and stirred with 20 mL of distilled water at 80 °C during 2 h. The aqueous 

phase was removed off and the extraction was repeated four times with new portions of 
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water (total amount 100 ml) every two hours and the last kept overnight. The organic phase 

was dried with anhydrous MgSO4, concentrated and the resulting polymer dried under 

vacuum at room temperature for 48 h.   

1H NMR (CDCl3/TMS, δ ppm): 5.07 (m, CH-OOC, branched unit), 4.90 (m, HO-H2C-CH-OOC, 

abnormal unit), 4.22 (m, 2H, O-CH2CH2-OOC and 1H, COO-CH2, branched unit), 4.13 (dd, 

1H, COO-CH2, normal unit), 4.11 (dd, 1H, COO-CH2, branched unit), 3.96 (dd, 1H, COO-CH2, 

normal unit), 3.82 (m, 1H, CH-OH, normal unit), 3.69-3.62 (m, 4H, CH2-OH, abnormal unit 

and CHOHCH2OH end group), 3.60 (m, 24H or 88H, O(CH2)2O), 3. 54 (m, 2H, CH3-O-CH2), 

3.43 (m, 1H, CH2OH end group), 3.38 (s, 3H, CH3O), 2.35 (m, 2H, COOCH2), 1.62-1.29 (m, 

14H, (CH2)7).  

13C NMR (CDCl3, δ ppm): 174.5 (s, 1C, COO, abnormal unit), 174.2 (s, 1C, COO, normal unit), 

173.6 (s, 1C, COO-CH2CH2-O), 172.5 and 172.3 (s, 1C, COO, branched unit), 75.1 (d, 1C, CH-

OOC, abnormal unit), 72.2 (d, 1C, CHOHCH2OH end group), 71.8 (t, 1C, CH3OCH2CH2), 71.2 

(d, 1C, CH-OOC, branched unit), 70.5  (t, 1C, O-CH2-CH2), 69.7 (d, 1C, CH2-CH-OH, normal 

unit), 69.1 (t, 1C, O-CH2CH2-OOC), 68.5 (t, 1C, COO-CH2-CHOH, normal unit), 66.7 (t, 1C, 

CHOHCH2OH, end group), 64.9 (t, 1C, COOCH-CH2, branched unit), 64.4 (t, 1C, COOCH-CH2-

OH, abnormal unit), 63.3 (t, 1C, OCH2CH2-OOC), 59.0 (q, 1C, CH3O),  34.6 (t, 1C, CH2-COO, 

abnormal unit, 34.3 (t, 1C, CH2-COO, normal unit), 25.6-25.1 (t, 7C, (CH2)7).  

6.9.2 Grafting of mPEG2OCH2COOH onto PEUA and PDHU   

In a 50 mL flask with a condenser, 0.5 g (2.3 mmol) of PEUA or PDHU were dissolved under 

reflux with 25 mL of toluene. After 2 h, temperature was dropped to 80 °C and 0.82 g (4.6 

mmol) of 2-[2-(2-methoxyethoxy)ethoxy]acetic acid and CALB (10 wt % vs. total substrates) 

were added.  After stirring at 80   Cͦ for 24 h the mixture was quenched with chloroform (10 

mL), the enzyme was removed by filtration and after concentration dissolved in 1,2-

dichloroethane and extracted with hot water following the procedure described in the 

block copolymerization.  
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mPEG2OCH2COO-graft-PEUA and mPEG2OCH2COO-graft-PDHU: 

1H NMR (CDCl3/TMS, δ ppm): 5.15 (m, 1H, CH-OOC-mPEG normal unit), 5.05 (m, 1H, CH-

OOC branched unit),  4.95 (m, 1H, CH-OOC-mPEG abnormal unit), 4.88 (m, 1H, CH-OOC 

abnormal unit), 4.31-4.23 (m, 1H, CH2-CH-COOmPEG), 4.14 (m, 1H, CH2-OOC normal unit 

and 1H, CH2OOC branched unit), 4.10 and 4.04 (s, 2H, mPEG-OCH2COO), 3.98 (m, 1H, CH2-

CH-COOmPEG), 3.67 (m, 1H, CH2-OOC normal unit and 1H, CH2OOC branched unit), 3.82 

(m, 1H, CHOH normal unit), 3.73, 3.69 and 3.65 (m, 6H, CH3O-CH2CH2-O-CH2-), 3.55 (m, 2H, 

CH2O-CH2COO), 3.35 (s, 3H, CH3O), 2.30 (m, 2H, CH2COO), 1.59-1.28 (m, 14H, (CH2)7).  

13C NMR (CDCl3, δ ppm): 174.5 (s, 1C, COO, abnormal unit), 174.2 (s, 1C, COO, normal unit), 

172.6 and 172.4 (s, 1C, COO, branched unit), 170.6, 170.4 and 170.2 (s, 1C, O-CH2COO 

grafted end groups and normal and abnormal units), 76.3 (d, 1C, CHOOC grafted abnormal 

unit), 75.3 (d, 1C, CHOOC, abnormal unit), 72.3 (d, 1C, CHOOC grafted normal unit), 71.9 (t, 

1C, CH3OCH2), 71.3 (d, 1C, CH-OOC, branched unit), 70.9 (t, 1C, CH2OOCCH2O), 70.6 and 

70.5 (t, 1C, O-CH2-CH2), 69.9 (d, 1C, CH2-CH-OH, normal unit), 68.6 and 68.4 (t, 1C, CH2OOC 

grafted units), 66.8 (t, 1C, CH2OH end group) , 65.4 (t, 1C, CH2OOCCH2O grafted unit), 64.8 

(t, 1C, COOCH2, branched unit), 64.7 (t, 1C, CH2-OH, abnormal unit), 59.1 (q, 1C, CH3O), 

34.5-33.9 (t, 1C, CH2COO), 25.6-24.6 (t, 7C, (CH2)7).  

6.9.3 Grafting of mPEG3OOC(CH2)2COOH onto PEUA and PDHU 

In a 50 mL flask with a condenser 0.5 g (2.3 mmol) of PEUA or PDHU were heated under 

reflux with 25 mL of toluene. After 2 h, temperature was dropped to 80 °C and 1.2 g (4.6 

mmol) (tri(ethylene glycol)monomethyl ether)succinic acid monoester and CALB (10 wt % 

vs. total substrates) were added.  After stirring at 80   Cͦ for 24 h the mixture was quenched 

with chloroform (10 mL), the enzyme was removed by filtration and after concentration 

dissolved in 1,2-dichloroethane and extracted with hot water following the procedure 

described in the block copolymerization. 
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mPEG3OOC(CH2)2COO-g-PEUA and mPEG3OOC(CH2)2COO-g-PDHU  

1H NMR (CDCl3/TMS, δ ppm): 5.08 (m, 1H, CH-OOC-mPEG normal unit and 1H, CH-OOC 

branched unit), 4.98 (m, 1H, CH-OOCmPEG abnormal unit), 4.91 (m, 1H, CHOOC abnormal 

unit), 4.28-4.23 (m, 2H, CH2-OOC(CH2)2COO), 4.18 (m, 1H, CH2OOC normal unit), 4.15-4.12 

and 4.08-4.04 (m, 2H, CH2-OOC(CH2)2COOmPEG, 1H CH-OOC(CH2)2COOmPEG, 1H CH2OOC 

normal unit and 2H, CH2OOC branched unit), 3.84 (m, 1H, CHOH normal unit),  3.77 (m, 2H, 

CH2CH2OOC(CH2)2COO, 3.62 (m, 6H, CH2OCH2CH2O), 3.57 (m, 2H, CH3OCH2), 3.40 (s, 3H, 

CH3), 2.66 (m, 4H, OOC(CH2)2COO), 2.33 (m, 2H, CH2COO) 1.61-1.29 (m, 14H, (CH2)7).   

13C NMR (CDCl3, δ ppm): 174.3 (s, 1C, COO, abnormal unit), 174.2 (s, 1C, COO, normal unit), 

172.6 and 172.4 (s, 1C, COO, branched unit), 172.4 (s, 1C, O-CH2COO grafted), 75.2 (d, 1C, 

CHOOC grafted abnormal unit), 75.1 (d, 1C, CHOOC, abnormal unit), 72.3 (d, 1C, CHOOC 

grafted normal unit), 71.9 (t, 1C, CH3OCH2 and CHOH end group), 71.2 (d, 1C, CH-OOC, 

branched unit), 70.9 (t, 1C, CH2OCH2CH2O), 69.9 (d, 1C, CHOH normal unit), 69.2 (t, 1C, 

CH2OOC grafted normal unit), 69.1 (t, 1C, CH2OOC(CH2)2COO), 68.50 (t, 1C, CH2-CH-OH, 

normal unit), 66.8 (t, 1C, CH2OH end group), 65.0 (t, 1C, CH2OOC branched unit), 64.6 (t, 

1C, CH2OH abnormal unit), 64.0 (t, 1C, CH2OOC(CH2)2COO), 63.4 (t, 1C, CH2OOC grafted 

abnormal unit), 59.1 (q, 1C, CH3O), 34.5-33.9 (t, 1C, CH2COO), 25.6-24.6 (t, 7C, (CH2)7)  

6.10 COPOLYMERS SELF-ASSEMBLY BEHAVIOR 

6.10.1 Preparation and characterization of micelles by self-assembly 

Block and graft copolymer micelles were prepared by the co-solvent evaporation nano-

precipitation method. Samples of mPEGn-b-PDHUm, mPEG2OCH2COO-g-PDHU or 

mPEG3OOC(CH2)2COO-g-PDHU were directly dissolved in HPLC grade THF (1 mL·5 mg-1) and 

added dropwise to deionized water at room temperature with stirring (800 rpm). THF was 

gradually evaporated by bubbling argon during 60 min and the resulting micellar solution 

filtered through a membrane syringe filter (0.20 m) and diluted with HPLC water to obtain 
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a 0.5 mg·mL-1 concentration.  Average size, size distribution and Z-average of micelles were 

determined by Dynamic Light Scattering (DLS) at 20 o C.  

The Stokes-Einstein equation was used by the instrument to calculate Z-average size. Size 

and morphology of the polymeric micelles were analysed by transmission electron 

microscopy (TEM) in drying and negative stain mode. Typically, a drop of 25-50 g·ml-1 was 

dropped onto a cooper grid coated with carbon film and drying in air at room temperature 

and atmospheric pressure at least for 12 h was allowed. In the stain mode, a solution of 2 

% phosphotungstic acid (PTA) was added to the droplet. Samples were imaged in bright 

field at tension of 80 Kv using an ITEM imaging software. 

6.10.2 Critical micelle concentration (CMC) measurements 

The critical micelle concentration of copolymers was determined by the pyrene 1:3 ratio.11 

Typically, stock mater solution of fluorescent probe (6.0·10-7 M) in THF were prepared and 

pre-calculated volumes were transferred to vials followed by argon flow evaporation. 

Different concentrations (from 0.4 mg·mL-1 to 1·10-8 mg·mL-1) of block or graft copolymer 

solutions in water were added and the mixture stirred overnight protected from light. 

Samples were excited at 335 nm, and the emission spectra were recorded from 350 to 500 

nm at room temperature. The intensity values of fluorescence emission, I372 and I382 at 372 

nm and 382 nm, respectively, were used from the subsequent calculations. The CMC was 

determined from the plots of the I382/I372 ratio versus the logarithm of the polymer 

concentration using the intersection of the linear regression lines as the CMC values. All 

solutions were filtered through filters of 0.20 m pore size before DSL measurements that 

were made by triplicate. 
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7. GENERAL CONCLUSIONS  

It has been demonstrated in this Thesis that it is possible preparing renewable functional 

polyesters from platform chemicals derived from vegetable oils, and developing 

environmentally friendly monomers and polymer synthesis strategies to keep moving 

toward more sustainable polymer chemistry.  

The general conclusions of these research are summarized as follows: 

• Biobased linear and branched hydroxyl functionalized aliphatic polyesters using AB 

(10,11-epoxyundecanoic acid, EUA) and AB2 (10,11-dihydroxyundecanoic acid, 

DHU) monomers, were successfully synthesized via ROP or polycondensation with 

organic or enzymatic catalysts and thus avoiding metallic catalysts.  

• The synthesized hydroxypolyesters (poly(10,11-epoxyundecanoic acid), PEUA) and 

poly(10,11-dihydroxyundecanoic acid), PDHU) and their block and grafted 

copolymers, were structurally characterized in detail, on the basis of model 

compounds, by 1H, 13C and 19F NMR spectroscopy and 1H-13C heteronuclear 

bidimensional correlations. 

• The enzymatic and hydrolytic degradation behaviour of hydroxy polyester PEUA, 

was studied and compared to that of poly(11-hydroxyundecanoate) and 

commercial poly(ε-caprolactone). The presence of hydrophilic pending groups 

together with the superior amorphous character in PEUA are determinant in its 

enhanced enzymatic and hydrolytic degradation rates. 

• PEUA degradation proceeds through bulk erosion mechanism whereas commercial 

poly(ε-caprolactone) degraded through a surface erosion mechanism. 
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• The post-polymerization modification of the linear hydroxypolyester has been 

carried out with N-Boc protected, L-phenylalanine, L-serine and a cysteine 

derivative, as model for polymer bioconjugates 

• Branched amphiphilic copolyesters by copolymerization with 

methoxypolyethylenglycols of different lengths (550 and 2000 g·mol-1) were 

successfully synthesized using CALB as catalyst. Incorporation of DHU units into a 

hyperbranched arrangement is lower than the feed in all cases. 

• Grafting onto PEUA and PDHU hydroxypolyesters using carboxyl functionalized di 

and triethyleneglycols proceed with 50-60 % hydroxyl esterification. In linear PEUA 

grafting proceeds together with transesterification reactions leading to a branched 

structure. 

• The self-assembly of these amphiphilic polyesters form well-defined micelles of 

100-300 nm in aqueous solutions. Critical micellar concentration indicates that 

even at low concentration these copolymers self-assemble to lead multimolecular 

micelles and unimolecular micelles are scarcely observed. 
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SI.1 Synthesis of 10,11-epoxyundecanoic acid monomer (EUA) 

 

Figure SI.1 1H NMR spectra of a) EUA monomer and b) UA. 
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SI.2 Synthesis of 2-hydroxyhexyl hexanoate (A) and 1-hydroxyhexan-2-yl hexanoate (B). 

 

Figure SI.2 2D-1H NMR gCOSY of A and B mixture. 

SI.3 Synthesis of 2-(((2,2,2-trichloroacetyl)carbamoyl)oxy)hexyl hexanoate and 1-(((2,2,2-

trichloroacetyl)carbamoyl)oxy)hexan-2-yl hexanoate 

 

Figure SI.3 1H NMR spectrum of the mixture of A and B with TAI. 
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SI.4 Synthesis of 2-(trifluoroacetoxy)hexyl-1-hexanoate and 1-(trifluoroacetoxy)-hexan-2-

yl hexanoate 

Figure SI.4 a) 1H and b) 19F NMR spectra of the mixture of A and B with TFAA. 

In Table SI.1 are collected the chemical shifts of the hydroxyester moieties in A and B and 

their TAI and TFAA derivatives. For TAI derivatives upfield shielding of 0.6-0.7 for the 

methylene protons of primary alcohol and 1.20 ppm for the methine protons of secondary 

alcohols were observed. For TFAA derivatives upfield shielding of 0.7-0.8 for the methylene 

protons of primary alcohol and 1.33 ppm for the methine protons of secondary alcohols 

were observed. All these values are in good agreement to those reported in the literature. 
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Table SI.1. 1H and 19 F NMR chemical shifts of the hydroxyester moieties in A and B and their TAI and 
TFAA derivatives. 

Position   

ROH 
  

ROCONHOCCl3 
Δ   

ROOCCF3 
Δ     

19F NMR 

Compound A    

2n 3.95 5.15 + 1.20 5.28 +1.33  
-75.21 1n 4.15   4.38 +0.23 

1’n 3.83   4.09 0.26 

Compound B    

2a 4.92   5.18 +0.26  
-75.02 1a 3.71 4.42 + 0.71 4.52 +0.81 

1’a 3.62 4.25 + 0.63 4.31 +0.69 

 

SI.5 Synthesis of PEUA 

 

Figure SI.5 Heteronuclear single quantum correlation (HSQC) spectra of PEUA-1. 
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SI.6 PEUA hydroxyl content and molecular weight determination 

Table SI.2 1H NMR chemical shifts of CH2 and CH hydroxyester units in PEUA-2 and their 
trifluoroacetyl derivative. 

Position  R-OH  R-OOC-CF3 Δ  

Normal units 

10n 3.81 5.26 + 1.45 
11n 4.13 4.36 + 0.23 
11’n 3.96 4.06 + 0.10 

Abnormal units 

10a 4.90 5.15 + 0.25 
11a 3.70 4.51 + 0.81 
11’a 3.60 4.29 + 0.69 

Branched units 

10b 5.08 5.08 0.00 
11b 4.22 4.22 0.00 
11’b 4.03 4.03 0.00 

1,2-Diol end groups 

10e 3.62 5.34 + 1.72 
11e 3.67 4.59 + 0.92 
11’e 3.42 4.40 + 0.98 
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SI.7 Synthesis of cysteine derivatives 

 

Figure SI.6 a) 1H and b) 13C NMR spectra of 2,2-dimethylthiazolidin-4-carboxylic acid (DMT) in DMSO-
d6. 
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Figure SI.7 a) 1H and b) 13C NMR spectra of 2,2-dimethylthiazolidin3-(N-formyl)-4-carboxylic acid 
(DMFT) in DMSO-d6. 
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SI.1 Synthesis of PEUA 

Figure SI.1 a) 1H NMR and b) 13C NMR spectra of PEUA. 
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SI.2 Synthesis of PHU 

Figure SI.2 a) 1H NMR and b) 13CNMR spectra of PHU. 
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Figure SI.3 Heteronuclear single quantum correlation (HSQC) spectra of PHU. 
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SI.1 Synthesis of 2-hydroxyhexyl hexanoate (A), 1-hydroxyhexan-2-yl hexanoate (B) and 

hexane-1,2-diyl dihexanoate (C) 

 

Figure SI.1 1H NMR spectra of a) A, B mixture and b) C. 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Annex C 

228 

 

SI.2 Synthesis of 2-(trifluoroacetoxy)hexyl-1-hexanoate, 1-(trifluoroacetoxy)-hexan-2-yl 

hexanoate and hexane-1,2-diyl bis(2,2,2,)-trifluoroacetate 

 

Figure SI.2 a) 1H and b) 19F NMR spectra of A and B trifluoroacetates with the corresponding 
assignments. 

 

Figure SI.3 a) 1H and b) 19F NMR spectra of hexane-1,2-diyl bis(2,2,2,)-trifluoroacetate with the 
corresponding assignments. 
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SI.3 Synthesis of PDHU 

 

Figure SI.4 Heteronuclear single quantum correlation (HSQC) spectra of PDHU recorded in CDCl3. 
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SI.4 PDHU hydroxyl content and molecular weight determination 

 

Figure SI.5 19F NMR spectrum of the PDHU-1-TFA and 3,5-bis(trifluoromethyl)benzoic acid mixture. 

 

Table SI.1 1H NMR chemical shifts in ppm, of CH2 and CH hydroxyester units in PDHU and PDHU-TFA.  

Position  R-OH  R-OOC-CF3 Δ  

Normal units 

10n 3.81 5.26 + 1.45 
11n 4.13 4.36 + 0.23 
11’n 3.96 4.06 + 0.10 

Abnormal units 

10a 4.90 5.15 + 0.25 
11a 3.70 4.51 + 0.81 
11’a 3.60 4.29 + 0.69 

Branched units 

10b 5.08 5.08 0.00 
11b 4.22 4.22 0.00 
11’b 4.03 4.03 0.00 

1,2-Diol end groups 

10e 3.62 5.34 + 1.72 
11e 3.67 4.59 + 0.92 
11’e 3.42 4.40 + 0.98 
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SI.5 Structural characterization of mPEG-b-PDHU copolymers 

1H and 13C NMR spectra of copolymers and the corresponding peak assignments made on 

the basis of the starting reagents and reported data are shown in Figures SI.6, SI.7, SI.8 and 

SI.9.1 

1H NMR spectra of mPEG12-b-PDHU9, mPEG12-b-PDHU15, mPEG45-b-PDHU9 and mPEG45-b-

PDHU15 (Figures SI.6 and SI.8) show the same patterns where signals of branched PDHU 

block and starting mPEGn moieties are clearly identified. The actual comonomer 

composition (Table 5.3 in Chapter 5) was estimated from the relative signals intensities of 

-methylene to the ester at 2.35 ppm in PDHU moiety and methyl at 3.38 ppm in mPEGn 

moiety. The branched structure of grown PDHU was confirmed by the methine signals at 

5.07, 4.90 and 3.82 ppm. It must be pointed out that non-reacted mPEG-OH cannot be 

distinguished by 1H NMR because signals appear overlapping and only 13C NMR allow 

confirm that it has been completely removed during the work-up. Thus, in 13C NMR spectra 

(Figures SI.7 and SI.9) the absence of signal of CH2OH in mPEG-OH at 61.3 ppm, and the 

presence of the signal of CH2-OOC in mPEG-b-PDHU at 63.3 ppm is the main feature that 

confirm the copolymer structure. The carbonyl of this block-linking ester bond can be also 

observed at 173.6 ppm. Moreover, characteristics C signals of both moieties appear well 

resolved at defined chemical shift. The methine and methylene region of the 13C NMR 

spectra of m-PEG12-b-PDHU9 and m-PEG12-b-PDHU15 also show some extra small intensity 

signals (marked with an asterisk in figure SI.7) which can be attributed to the unit directly 

linked to the m-PEG moiety, as they are almost not detected in the block copolymers with 

major mPEG content (m-PEG45-b-PDHU9 and m-PEG45-b-PDHU15). 
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Figure SI.6 1H NMR spectra recorded in CDCl3 of mPEG12-b-PDHU9 and mPEG12-b-PDHU15 block 
copolymers with the corresponding assignments. 
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Figure SI.7 13C NMR spectra recorded in CDCl3 of mPEG12-b-PDHU9 and mPEG12-b-PDHU15 block 
copolymers with the corresponding assignments. 
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Figure SI.8 1H NMR spectra recorded in CDCl3 of mPEG45-b-PDHU9 and mPEG45-b-PDHU15 block 
copolymers with the corresponding assignments. 
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Figure SI.9 13C NMR spectra recorded in CDCl3 of mPEG45-b-PDHU9 and mPEG45-b-PDHU15 block 
copolymers with the corresponding assignments. 
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SI.6 Structural characterization of PDHU and PEUA grafted with mPEG2OCH2COOH and 

mPEG3OOC(CH2)2COOH 

1H and 13C NMR spectra and the corresponding peak assignments made on the basis of the 

chemical shifts of parent polymers the starting reagents and model compounds, 

heteronuclear single quantum correlation (HSQC) spectra and data reported in the 

literature are shown in Figures SI.10, SI.11, SI.12, SI.13, SI.14 and SI.15.1 

1H NMR of polymers grafted with mPEG2OCH2COOH (Figures SI.10b and SI.12b) were 

undertaken taking into account that alkoxyacetyl ester units produce a higher up-shielding 

than regular aliphatic ester units in the repeating PEUA and PDHU units (Figures SI.10a and 

SI.12a). This was inferred by comparing the spectra of model compounds A, B and C (Figure 

SI.1) compounds with the mixture of 1,2-decanediol 2-(2-(2-methoxyethoxy)ethoxy) 

acetate esters (Figure SI.17). In this way the unequivocal assignment of methine signals in 

repeating units at 5.15 ppm (normal unit grafted with mPEG), 5.05 (branched unit), 4.95 

(abnormal unit) and 3.82 (normal unit) was made. From these signals the percentage of the 

different units were estimated (Table 5.4 in Chapter 5). The main features of the grafted 

moiety are the methylene of the O-CH2COO linking unit at 4.04 ppm, the polyoxyethylene 

chain at 3.69-3.55 ppm and the methyl end group at 3.35 ppm. This last signal was used to 

estimate the grafting degree by comparing to that of the -CH2COO in the repeating unit 

(Table 5.4 in the Chapter 5). 13C NMR spectra signals (Figures SI.11b and SI.13b) were 

undertaken using the same methodology with the aid of heteronuclear single quantum 

correlation (HSQC) spectra (Figures SI.14 and SI.15). The main feature is the carbonyl of the 

grafted moiety that appears at 170.6, 170.4 and 170.2 ppm due to the different chemical 

shifts of signals arising from grafting onto normal, abnormal and diol end group units. This 

difference can be also observed on the methine and methylene signals of the different 

repeating units. 

1H NMR of polymers grafted with mPEG3OOC(CH2)2COOH (Figures SI.10c and SI.12c) were 

undertaken in a similar way as above, in this case methine in the grafted normal unit 
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appears at lower chemical shift and overlapped with the methine corresponding to the 

branched units at 5.08 ppm. The grafted abnormal unit appears at 4.98 ppm and the non-

grafted abnormal and normal units appear respectively at 4.91 and 3.84 ppm and from 

their relative intensity the percentage of the different units could be estimated (Table 5.4 

in Chapter 5). Signals of the grafted moiety appear at 4.28 and 3.77-3.57 for the 

polyoxyethylene protons, 3.40 for the methoxy end group and 2.66 for succinic methylene 

units. From the intensity of these last two signals, the percentage of grafting was estimated 

by comparing to that of the -CH2COO in the repeating unit at 2.33 ppm (Table 5.4 in 

Chapter 5). In 13C NMR (Figures SI.11c and SI.13c) the most significant signals are those of 

the grafted units, the carbonyls that appear at 172.4 ppm and the methine and methylene 

of the normal, abnormal and end diol units appear at different chemical shifts and that 

could be distinguished from the signals corresponding to the unmodified polymer. 

The most relevant structural feature is that for both grafting reagents, mPEG2OCH2COOH 

and mPEG3OOC(CH2)2COOH, the spectra obtained from grafting PEUA and PDHU contain 

identical signals with differences in their relative intensity which reveal a branched 

structure for all polymers. 
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Figure SI.10 1H NMR spectra recorded in CDCl3 of PEUA grafted with mPEG2OCH2COOH and 
mPEG3OOC(CH2)2COOH with the corresponding assignments. 
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Figure SI.11 13C NMR spectra recorded in CDCl3 of PEUA grafted with mPEG2OCH2COOH and 
mPEG3OOC(CH2)2COOH with the corresponding assignments. 
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Figure SI.12 1H NMR spectra recorded in CDCl3 of PDHU grafted with mPEG2OCH2COOH and 
mPEG3OOC(CH2)2COOH with the corresponding assignments. 
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Figure SI.13 13C NMR spectra recorded in CDCl3 of PDHU grafted with mPEG2OCH2COOH and 
mPEG3OOC(CH2)2COOH with the corresponding assignments. 
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Figure SI.14 Heteronuclear single quantum correlation (HSQC) spectra recorded in CDCl3 of PDHU 
grafted with mPEG2OCH2COOH. 

 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



Annex C 

243 

 

 

Figure SI.15 Heteronuclear single quantum correlation (HSQC) spectra recorded in CDCl3 of PDHU 
grafted with mPEG3OOC(CH2)2COOH. 
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SI.7 Synthesis of (tri(ethylene glycol) monomethyl ether)succinic acid mono ester (mPEG3-

OOC(CH2)2COOH) 

 

Figure SI.16 a) 1H and b) 13C NMR spectra of mPEG3-OOC(CH2)2COOH recorded in CDCl3 with the 
corresponding assignments. 
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SI.8 Synthesis of decane-1,2diyl bis(2-(2-(2-methoxyethoxy)ethoxy) acetate 

 

Figure SI.17 1H NMR spectra of a) 2-(2-(2-methoxyethoxy)ethoxy) acetic acid and b) crude reaction 
mixture with 1,2-decandiol with the corresponding assignments. 
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SI.9 Dynamic light scattering of mPEG-b-PDHU and mPEG-g-PDHU copolymers 

 

Figure SI.18 Hydrodynamic diameter distributions by intensity of the block and graft copolymers 
determined by DLS in water (0.5 mg·ml-1). 
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SI.10 TEM imaging of mPEG-b-PDHU and mPEG-g-PDHU copolymers 

 

 

Figure SI.19 TEM images at images under negative stain mode (top) and size distribution histograms 
(bottom) (analysed by ImageJ software using various TEM images and a minimum of 40 micelles). a) 
mPEG12-b-PDHU9, b) mPEG12-b-PDHU15, c) mPEG45-b-PDHU9, d) mPEG45-b-PDHU15. 
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50 100 150 200 250 300 350 40050 100 150 200 250 300 350 400
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Figure SI.20 TEM images at different magnifications (top) and size distribution histograms (bottom) 
(analysed by ImageJ software using various TEM images and a minimum of 40 micelles). a) 
mPEG2OCH2COO-g-PEUA in drying mode, b) mPEG2OCH2COO-g-PDHU in negative stain mode, c) 
mPEG3OOC(CH2)2COO-g-PEUA in drying mode, and d) mPEG3OOC(CH2)2COO-g-PDHU in drying 
mode. (1) No analysed. 
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SI.11 Critical micelle concentration determination of mPEG-b-PDHU and mPEG-g-PDHU 

copolymers 

 
 

 

Figure SI.21 Calculation of CMC of selected multimolecular micelles using the I1/I3 intensity ratio 
method based on the fluorescence spectra of pyrene. 
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List of abbreviations 

Sc(OTf)3 Scandium(III) triflate 

[bmim]Br 1-Butyl-3-methylmidazolium bromide 

[bmim]Cl  1-Butyl-3-methylmidazolium chloride 

[hmim]Br 1-Hexyl-3-methylmidazolium bromide 

µm micrometres  
13C NMR  Carbon nuclear magnetic resonance 
19F NMR  Fluorine nuclear magnetic resonance 
1H NMR  Proton nuclear magnetic resonance 

Å Amstrong 

AcOH Acetic acid 

AFM Atomic force microscopy  

Be Beryllium 

BF3.Et2O Boron trifluoride diethyl etherate  

Bu Branching units 

C. tropicalis Candida tropicalis 

ca. Calculated 

CALA Candida antarctica lipase A 

CALB Candida antarctica Lipase B 

Cat.  Catalyst 

CDCl3 Deuterated chloroform  

CFCl3 trichlorofluoromethane 

CL ε-Caprolactone 

CLEAs Cross-linked enzyme aggregates 

CMC Critical micelle concentration 

Conv. Conversion 

d Doublet 

DCC Diclyclohexylcarbodiimide 

DCM Dichloromethane  

dd Doublet of doublets 

DDL 12-Dodecanolide 

DECH N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide 
hydrochloride 

DHU 10,11-Dihydroxyundecanoic acid 

DLS Dynamic Light Scattering 

DMAP  4-(Dimethylamino)pyridine 

DMF N,N-Dimethylformamide 

UNIVERSITAT ROVIRA I VIRGILI 
10-UNDECENOIC ACID-BASED BIODEGRADABLE HYDROXY POLYESTERS: A PLATFORM FOR AMINOACID 
BIOCONJUGATES AND PEG-DERIVED AMPHIPHILIC COPOLYMERS 
Carmen Valverde Sarmiento 
 



252 
 

DMF-D7  Deuterated dimethylformamide  

DMFT 2,2-dimethylthiazolidin-3-(N-formyl)-4-carboxylic acid 

DMSO Dimethyl sulfoxide  

DMSO-d6 Deuterated dimethyl sulfoxide  

DMT 2,2-Dimethylthiazolidin-4-carboxylic acid 

Dowanol PMA™ Propylene glycol monomethyl ether acetate 

DPE Diphenyl ether  

DSC Differential scanning calorimetry  

Ɖ  Polydispersity by SEC 

EAM  Enzyme-activated monomer  

EC 3.1.1.3 Triacylglycerol acylhydrolase  

EH 1,2-epoxyhexane  

Ent. Entry 

eROP Enzymatic ring-opening polymerization 

ESEM Enviromental scanning electron microscopy 

ESI MS Liquid chromatography-mass spectrometry  
EtOH Ethanol 

Eu Etherificated units 

EUA 10, 11-Epoxyundecanoic acid 

FDA United States governamental agency for Food and Drug 
Administration 

FDCA Furandicarboxylic acid 

FT-IR  Fourier-transform infrared spectroscopy 
γ-BL γ-Butyrolactone 

gCOSY Gradient 2D 1H-1H Homonuclear NMR spectra 

GHG Green house gases 

gHSQC Gradient 2D 1H-13C Heteronuclear Single Quantum 
Coherence  

h Hours 

HA Hexanoic acid  

HDL 16-Hexadecanolide 

HSO3Cl Chlorosulfuric acid 

IF Insoluble fraction 

IM-PC Pseudomonas cepacia immobilized on ceramics 

J Coupling constant 

Kv Kilovolt 

LA Latic acid 

lipase A Aspergillus niger 

lipase CA Candida Antarctica 

lipase CC Candida cylindracea 
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Lipase CR or CR Candida rugosa 

lipase MM Mucor meihei 

lipase PC Pseudomonas cepacia 

lipase PF Pseudomonas fluorescens 

lipase PR Penicillium roqueforti 

lipase RJ Rhizopus japonicus 

lipase RM Rhizomucor meihei 

lipase YL Yarrowia lipolytica 

m Multiplet  

M Molar (g·mol-1) 

m.p. Melting point 

MARPOL Marine pollution 

md Dry weight  

g Micrograms 

MHz Megahertz 

min. Minutes 

Mn Number average molecular weight 

mPEG2OCH2COOH 2-(2-(2-Methoxyethoxy)ethoxy)acetic acid 

mPEG3OOC(CH2)2COOH 2-(2-(2-Methoxyethoxy)ethoxy)ethyl monosuccinate  

mPEGn Methoxypolyetileneglycol moieties  

mPEGn-OH  Methoxypolyetileneglycol 

MR Methyl ricinolate 

MS Molecular sieve 

Mt Megatonne 

Mw Weight average molecular weight 

mw Wet weight  

Na Abnormal units 

N-Boc-Phe-OH N-tert-butoxylcarbonyl phenylalanine  

N-Boc-SerOMe N-tert-butoxylcarbonyl serine methyl ester 

nm Nanometres 

NMR Nuclear magnetic resonance 

Nu Normal units 

Ɵ Contact angle in degrees (º) 

OL 8-Octanoline 

PBS Poly(butylene succinate) 

PBT poly(butylene terephthalate) or Poly(butylene tartrate) 

PBT-b-PTMG poly(butylene adipate-co-terephthalate)  

PBT-b-PTMG poly(buthylene terephthalate) 

PCL poly(ε-caprolactone) 

PDHU Poly(10,11-dihydroxyundecanoic acid) 
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PDI Polydispersity by DLS 

PDL 15-Pentadecanolide 

PE Polyethylene 

PEF Poly(ethylene furanoate) 

PEG Polyethylene glycol 

PET Poly(ethylene terephthalate) 

PEUA Poly (10,11-epoxyundecanoic acid) 

PGA poly(glycolic acid)  

PHA Poly(hydroxyalkanoate) 

PHFA Poly(dihydroferulic acid) 

PHP Poly(hydroxypropionic acid) 

PHU Poly(11-hydroxyundecanoate)  
PL ß-Propiolactone 

PLA Polylactic acid  

PLGA Poly(lactic-co-glycolic acid) 

PMMA Poly(methylmethacrylate)   

POC 1,8-Octanediol-co-citrate 

Poly(12-HD-co-12HS) Poly(12-hydroxydodecanoic acid)-co-(methyl-12-
hydroxysterate) 

PP Polypropylene 

PPC Polypropylene carbonate 

PPL Porcine pancreas lipase 

ppm Part per million 

PPT Polypropylene terephthalate  

PRA Poly(ricinoleic acid)  

PS Polyestirene 

PSeD Poly(sebacoyl diglyceride) 

PTA Phosphotungstic acid 

PTMC Poly(trimethylene carbonate) 

PTSA p-Toluensulfonic acid 

PTT Poly(trimethylene terephthalate) 

PVC Polyvinylchloride 

Py Pyridine 

q Quartet 

r.t.  Room temperature 

RA Ricinioleic acid  

ROP Ring-opening polymerization 

rt Room temperature 

s Singlet  

Sc(OTf)3 Scandium (III) triflate 
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scCO2 Supercritical carbon dioxide 

SEC Size exclusion chromatography 

SF Soluble fraction 

SI Supporting information 

Sn(Oct)2 Tin(II) 2-ethylhexanoate 

SN2 Bimolecular nucleophilic substitution 

Solv. Solvent 

Succ. Succinic acid 

t Triplet or time 

T Temperature 

t0 Initial time 

t10 After 10 weeks time 

T5%  Temperature of 5% weight loss 

TAI Trichloroacetylisocyanate  

TBAS Bis(tetrabutylammonium) sebacate  

TBD 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene  

TBPB Tetrabutylphosphonium bromide 

Tc Crystallization temperature 

TCE-d2  Deuterated tetrachloroethane  

TEAB Tetrabutylammonium bromide 

TEM Transmission electron microscopy 

TFA Trifluoroacetic acid 

TFAA Trifluoroacetic anhydride  

Tg Glass-transition temperature 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

Tm Melting temperature 

Tmax  Temperature of maximum degradation rate 

TMS Tetramethylsilane 

TMS-CHN2 Trimethylsilyldiazomethane 

TOF Time of Flight  

Tol. Toluene 

U Unit.  

UA 10-Undecenoic acid 

UDL 11-Undecanolide 
VL δ-Valerolactone 
Vos Vegetable oils  

w/w Weight/weight 

XRD X-Ray diffraction 

δ Chemical shift (ppm) 
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ΔHc Crystallization enthalpy 

ΔHm Melting enthalpy 

ΔT ΔT=Tm-Tc  

c  Fractional crystallinity  
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