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“Nothing in life is to be feared,  

it is only to be understood.  

Now is the time to understand more,  

so that we may fear less.”  

 
 

Marie Curie (1867-1934). 

Polish physicist and chemist. 

Winner of two Nobel Prize (Physics, 1903; Chemistry, 1911). 
  

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



  

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



CONTENT 

SUMMARY………………………………………………………………………………..… 1 

RESUM………………………………………………………………………………….…… 3  

ABBREVIATIONS…………………………………………………………………….….. 5 

I. INTRODUCTION.......................................................................................... 11 

1. BIOLOGICAL RHYTHMS……………………………………………………………… 13 

1.1. Day length as the primary zeitgeber………………………………………… 13 

1.2. Circadian rhythms………………………………………………………………….. 15 

1.2.1. Molecular machinery of the circadian clock……………………....…….. 16 

1.2.2. Circadian physiological and metabolic outcomes…………………...... 18 

1.2.3. Circadian rhythms disruption…………………………………………………. 20 

1.3. Circannual rhythms…………………………………………………………………21 

1.3.1. Seasonal molecular mechanisms…………………………………………….. 22 

1.3.2. Seasonal physiological and metabolic variations in humans…….. 24 

1.3.3. Seasonal physiological and metabolic responses in  

 mammalian animal models…………………………………………………….. 27 

1.3.3.1. Seasonal mammalian animal models………………………………………… 28 

1.3.3.2. Fischer 344 rats: an alternative model in the study of  

seasonal responsiveness in physiology and health…………………….. 29 

1.3.3.3. Non-seasonal mammalian animal models…………………………………. 31 

2. LIVER AND SKELETAL MUSCLE HOMEOSTASIS…………………………... 32 

2.1. The liver………………………………………………………………………………… 32 

2.2. The skeletal muscle………………………………………………………………… 33 

2.3. Metabolic integration at a molecular level……………………………….. 34 

2.3.1. Akt: the downstream post-receptor target of insulin………………...35 

2.3.2. AMPK: the major regulator of energy homeostasis…………………... 39 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



2.4. Metabolic disruption in obesity………………………………………………..43 

3. PHYTOCHEMICALS: SECONDARY METABOLITES IN PLANTS……….. 46 

3.1. The role of phytochemicals in plants……………………………………….. 46 

3.2. The role of phytochemicals in mammals………………………………….. 49 

3.2.1. The xenohormesis theory……………………………………………………….. 50 

3.2.2. How do phytochemicals interact with mammals?............................... 51 

3.3. Sweet cherry (Prunus avium L.)……………………………………………….  54 

4. REFERENCES……………………………………………………………………………... 56 

II. HYPOTHESIS AND OBJECTIVES……………………………………….. 71 

III. RESULTS…………………………………………………………………………... 77  

MANUSCRIPT 1. The exposure to different photoperiods strongly 

modulates the glucose and lipid metabolisms of normoweight 

Fischer 344 rats……………………………………………………………………………………… 79 

MANUSCRIPT 2. Intake of an obesogenic cafeteria diet affects body 

weight, feeding behavior and glucose and lipid metabolism in a 

photoperiod-dependent manner in F344 rats………………………………………… 129 

MANUSCRIPT 3. Cherry consumption out of season alters lipid  

and glucose homeostasis in normoweight and cafeteria-fed obese 

Fischer 344 rats……………………………………………………………………………………. 169 

IV. GENERAL DISCUSSION…………………………………………………… 211 

V. CONCLUSIONS………………………………………………………………… 231 

LIST OF PUBLICATIONS……………………………………………………………. 235

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



1 

SUMMARY 

Through evolutionary history, the coexistence of animals and plants have led to 

the development of an adaptive phenomenon that has been recently explained 

by the xenohormesis theory. This theory postulates that the phytochemicals 

synthesized by stressed plants could be recognized as signals by the 

heterotrophs that consume them, being informed about the external conditions 

in which plants were harvested and allowing them to favorably adapt to 

unpredictable changes in the environment. Thus, each plant contains a 

distinctive phytochemical composition informing about the environmental 

status. In this framework, the main aim of the present thesis was to evaluate 

whether fruit consumption out of season would induce an erroneous signaling, 

leading to detrimental effects on physiology and metabolism of normoweight 

and cafeteria-fed obese Fischer 344 rats, by analyzing glucose and lipid 

metabolism-related parameters in blood, liver and skeletal muscle. To achieve 

this objective, we firstly characterized the physiological and metabolic 

adaptations to the chronic exposure to different photoperiods, which resembled 

seasonal variations in day length, in normoweight and obesogenic conditions. 

Once characterized, we evaluated the effects of the consumption of sweet cherry, 

a popular anthocyanin-rich fruit harvested in spring/summer, in short and long 

photoperiods resembling winter and summer, respectively. Firstly, we reported 

that the chronic exposure to different photoperiods induces several variations in 

physiological and metabolic parameters in normoweight and diet-induced obese 

rats, mainly affecting glucose and lipid metabolism and insulin signaling. 

Secondly, we revealed that cherry intake induces marked photoperiod-

dependent effects, promoting more pronounced and, to some extent, more 

negative effects concerning glucose metabolism and insulin signaling in 

normoweight and diet-induced obese F344 rats when it was consumed out of 
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season. These findings could contribute to highlighting the importance of the 

consumption of seasonal fruits to maintain an optimal health. 
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RESUM 

Històricament, la coexistència d’animals i plantes ha comportat el 

desenvolupament d’un fenomen adaptatiu recentment definit per la teoria de la 

xenohormesi. Aquesta, postula que els fitoquímics sintetitzats per plantes en 

estat d’estrès podrien ser reconeguts pels heteròtrofs que els consumeixen, sent 

informats sobre les condicions ambientals en les quals han crescut aquestes 

plantes i permetent una adaptació favorable als canvis no predictius en 

l’ambient. Per tant, cada planta conté una composició distintiva de fitoquímics 

que informa sobre l’estat de l’entorn. L’objectiu principal d’aquesta tesi va ser 

avaluar si el consum de fruita fora de temporada induiria una senyalització 

errònia, promovent efectes perjudicials en la fisiologia i el metabolisme en rates 

Fischer 344 normopès i obeses, mitjançant l’anàlisi de paràmetres relacionats 

amb el metabolisme glucídic i lipídic en sang, fetge i múscul esquelètic. Per 

assolir aquest objectiu, vam caracteritzar les adaptacions fisiològiques i 

metabòliques a l’exposició crònica a diferents fotoperíodes, els quals simulen les 

variacions estacionals en la durada del dia, en condicions de normopès i obesitat. 

Posteriorment, vam avaluar els efectes del consum de cirera, una fruita rica en 

antocianines i cultivada a la primavera/estiu, en un fotoperíode curt i llarg, 

simulant hivern i estiu, respectivament. Els resultats van revelar que l’exposició 

crònica a diferents fotoperíodes indueix canvis en diferents paràmetres 

fisiològics i metabòlics en rates normopès i obeses, afectant majoritàriament al 

metabolisme glucídic i lipídic i a la senyalització d’insulina. D’altra banda, vam 

concloure que el consum de cirera indueix efectes dependents del fotoperíode, 

promovent efectes més pronunciats, i en certa mesura, més deleteris sobre el 

metabolisme de la glucosa i la senyalització d’insulina en rates normopès i obeses 

quan es consumeix fora de temporada. Aquests resultats podrien contribuir a 

destacar la rellevància del consum de fruites de temporada en el manteniment 

d’una salut òptima.   
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ABBREVIATIONS 

4E-BP1  Eukaryotic initiation factor 4E-binding protein 

AANAT  Arylalkylamine N-acetyltransferase 

ACC  Acetyl-coenzyme A carboxylase 

ADP  Adenosine diphosphate 

AgRP  Agouti-related peptide 

Akt  Akt serine threonine kinase  

ALT  Alanine aminotransferase 

AMP  Adenosine monophosphate 

AMPK  Adenosine monophosphate-activated protein kinase 

AS160  Akt substrate of 160 kDa 

ATGL  Adipose triglycerides lipase 

ATP  Adenosine triphosphate 

BMAL1  Brain and muscle Arnt-like 1 

CAF  Cafeteria diet 

CAMKKβ  Ca2+/calmodulin-dependent protein kinase kinase beta 

cAMP  Cyclic adenosine monophosphate 

CART  Cocaine and amphetamine-regulated transcript 

CBS  Cystathionine β-synthase 

CD36  Fatty acid translocase, homolog of CD36 

CH  Cherry 

CHGA  Chromogranin A 

CLOCK  Circadian locomotor output cycles kaput 

CPT1  Carnitine palmitoyltransferase 1 

CREB  cAMP response element binding protein 

CRP  C-reactive protein  

CRY  Cryptochrome 

CS  Citrate synthase 
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CVD  Cardiovascular disease 

DAG  Diacylglycerol 

DAT  Dopamine transporter 

DGAT2  Diacylglycerol O-acyltransferase 2 

DIO2  Type II iodothyronine deiodinase  

DIO3  Type III iodothyronine deiodinase  

DRD5  Dopamine receptor D5 

EE  Energy expenditure 

eEF2K  Eukaryotic elongation factor 2 kinase 

EYA3  Eyes absent 3 

F344  Fischer 344 

FA  Fatty acid 

FABPm  Fatty acid binding protein 

FASN  Fatty acid synthase gene 

FATP1/5 Fatty acid transporter 1/5 

FBP1  Fructose-1,6-biphosphatase 1 

FOXO1  Forkhead box protein O1 

G6P  Glucose-6-phosphate 

G6Pase  Glucose-6-phosphatase 

GHSR  Ghrelin receptor 

GK  Glucokinase 

GLUT2  Glucose transporter 2 

GLUT4  Glucose transporter 4 

GNG  Gluconeogenesis 

GnRH  Gonadotropin-releasing hormone 

GP  Glycogen phosphorylase 

GPAT  Glycerol-3-phosphate acyltransferase 

GPCR  G protein-coupled receptor 

GSK3  Glycogen synthase kinase 3 
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GSPE  Grape seed proanthocyanidin extract 

GSV  GLUT4 storage vesicle 

HAD  Hydroxyacyl-CoA dehydrogenase 

HDL  High-density lipoprotein 

HFD  High-fat diet 

HK  Hexokinase 

HMGCR  HMG-CoA reductase 

HSL  Hormone-sensitive lipase 

IGF1  Insulin-like growth factor 1 

IKKβ  IκBα kinase beta 

IL6  Interleukin 6 

IML  Intermediolateral cell column 

IMP  Inosine monophosphate 

ipRGCs  Intrinsically photosensitive retinal ganglion cells   

IRS1/2  Insulin receptor substrate 1/2 

JNK  c-Jun N-terminal kinase 1 

Kp  Kisspeptin 

L6  6 hours of light/day 

L12  12 hours of light/day 

L18  18 hours of light/day 

LD  Long day 

LDH  Lactate dehydrogenase 

LDL  Low-density lipoprotein 

LFD  Low-fat diet 

LKB1  Liver kinase B1 

MAFbx  Muscle atrophy Fbox 

MCP1  Monocyte chemoattractant protein 1 

MetS  Metabolic syndrome 

miR  MicroRNA 
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mTORC1 /2 Mammalian target of rapamycin complex 1/2 

MuRF1  Muscle ring finger 1 

NAD  Nicotinamide adenine dinucleotide 

NAMPT  Nicotinamide phosphoribosyltransferase 

ND  Normal day 

NEFAs  Non-esterified free fatty acids 

NF-κB  Nuclear factor kappa B 

NMR  Nuclear Magnetic Resonance 

NPY  Neuropeptide Y 

NR1D1  Nuclear receptor subfamily 1, group D, member 1 

OBRB  Leptin receptor 

p  Phosphorylated 

p70S6K  p70S6 kinase 

PA  Proanthocyanidins 

PBMCs  Peripheral blood mononuclear cells 

PCA  Principal component analysis 

PCK1  Phosphoenolpyruvate carboxykinase 1 

PER  Period 

PFK1  Phosphofructokinase 1 

PI3K  Phosphatidylinositol 3-kinase 

PKB  Protein kinase B 

PKC  Protein kinase C 

PLS-DA  Partial least squares discriminant analysis 

POMC  Proopiomelanocortin 

PT  Pars tuberalis 

PVN  Paraventricular nucleus 

Raptor  Regulatory-associated protein of mTOR 

RFRP  RFamide-related peptides 

RHT  Retinohypothalamic tract 
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RORα  RAR-related orphan receptor alpha 

RORE  ROR/REV-ERB-response element 

ROS  Reactive oxygen species 

RQ  Respiratory quotient 

SAD  Seasonal affective disorder 

SCN  Suprachiasmatic nuclei 

SD  Short day 

SIRT1  Sirtuin 1 

SREBP1  Sterol regulatory element-binding protein 1 

STD  Standard diet 

T3  Triiodothyronine 

T4  Thyroxine 

TAG  Triacylglycerol 

TBC1D1  TBC1 domain family member 4 

TCA  Tricarboxylic acid 

TH  Thyroid hormone 

TNF-α  Tumor necrosis factor alpha 

TSC2  Tuberous sclerosis complex 2 

TSHβ  Thyroid stimulating hormone beta 

TTFL  Transcription-translation feedback loops  

VE  Vehicle  

VLDL  Very low-density lipoproteins 

ZT  Zeitgeber time
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1. BIOLOGICAL RHYTHMS 

Living organisms are constantly exposed to predictable variations in the 

geophysical environment, being forced to adapt themselves in order to ensure 

their survival. These periodic changes, which are consequence of Earth’s 

rotation around its axis (photoperiod), its tilt (day length variations) and its 

simultaneous revolving around the sun (seasonal changes), are responsible for 

major evolutionary changes in life [1]. In this sense, most species evolved in 

order to internalize and predict environmental variations through the 

development of a time-measuring system, which allows them to anticipate daily 

and annual changes and favorably adapt their physiology and metabolism. The 

resulting periodic variations of these functions are known as circadian (from 

the Latin circa, about; dian, day) or circannual (about a year) rhythms [2,3]. 

Both circadian and circannual rhythms are conducted by two principal 

mechanisms: a) an intrinsic endogenous timing system that persists in the 

absence of environmental cues, with oscillating periods of approximately 24 

hours or 365 days, respectively, driven by endogenous central and peripheral 

clocks, and b) environmental cues (Zeitgebers) that entrain these rhythms to 

the external conditions, such as the day length (photoperiod)  [4,5]. 

1.1. Day length as the primary zeitgeber 

Daily changes in dietary patterns, physical activity and temperature are basic 

zeitgebers, coordinating several physiologic and metabolic responses in the 

whole body [6]. Similarly, seasonal variations in rainfalls, barometric pressure, 

food availability and climate can act as environmental signals to synchronize 

circannual clocks [7]. Nevertheless, these cues are not so predictable, since they 

are not consistent in time and magnitude. Hence, the main signal used by most 

organisms in order to establish the astronomical daytime or season is the 
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photoperiod (light/darkness phases) [7]. The ability to use the light as an 

anticipatory cue to environmental changes is known as photoperiodism [8], and 

it involves several cells and tissues forming a complex photoreception 

signalling pathway.  

Photic information is detected in the retina by the complementary action of the 

rods and cones photoreceptors together with the intrinsically photosensitive 

retinal ganglion cells  (ipRGCs) located in the ganglia cell layer, which express 

the photopigment melanopsin [9]. These signals are then transmitted via the 

retinohypothalamic tract (RHT) to the suprachiasmatic nuclei (SCN). This 

bilateral structure located in the ventral periventricular zone of the anterior 

hypothalamus contains approximately 10,000 neurons and it is considered the 

master circadian pacemaker in mammals, as it synchronizes peripheral clocks 

and body rhythms [10].  

Under darkness conditions, the SCN sends the photoperiodic information via a 

multisynaptic projection that initiates in the nucleus and travels through the 

paraventricular nucleus (PVN), the preganglionic sympathetic neurons in the 

intermediolateral cell column (IML) of the thoracic spinal cord and the superior 

cervical ganglia, whose projections ends in the postganglionic adrenergic fibers 

that innervate the pineal gland [11,12]. These sympathetic nerves produce 

norepinephrine, which stimulates postsynaptic β1 and α1 adrenergic receptors 

on the pinealocytes, increasing the intracellular levels of 3’-5’-cyclic adenosine 

monophosphate (cAMP). The rise of cAMP levels stimulates the activity of 

arylalkylamine N-acetyltransferase (AANAT), which is considered the rate-

limiting enzyme in melatonin production from serotonin [7,11,13]. Melatonin 

synthesis and secretion into the circulation is regulated on a 24-h basis by the 

SCN, exhibiting a 150-fold increase at night and being inhibited during the 

daytime, in which light exposure interrupts the transmission of signals from the 
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SCN to the pineal gland, repressing the release of norepinephrine [13] (Figure 

1).  

 

Figure 1. Photoreception signaling pathway regulating melatonin release. Adapted from 

[11]. 

The rhythmic secretion of melatonin functions as a crucial indicator of 

photoperiod variations, informing the brain with an internal hormonal 

representation of the external day length [14]. 

1.2. Circadian rhythms 

As it has been briefly above-commented, circadian rhythms are evolutionary 

endogenous and self-sustained timing systems that modulate the oscillation of 
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several physiological and behavioral processes in a 24-hour timescale, in order 

to guarantee the maintenance of a robust homeostatic balance. Among these 

processes, feeding patterns, hormonal regulation, the activity/rest cycle and 

several metabolic functions are highly regulated by these rhythms [15]. In 

mammals, this complex and coordinated system is composed by a central clock 

in the brain’s SCN, which accurately warrants a correct phase alignment of the 

peripheral clocks present in most organs and tissues’ cells, via neural 

connections and hormonal signaling [16].  

1.2.1. Molecular machinery of the circadian clock 

These endogenous circadian rhythms are generated by a series of 

interconnected positive and negative transcription-translation feedback loops 

(TTFL), which have been described in all organisms. However, the several 

genes and proteins involved in these TTFL differ among species [17]. In 

mammals, the most important core clock components are the circadian 

locomotor output cycles kaput (CLOCK) and the brain and muscle Arnt-like 1 

(BMAL1), two transcription factors which form a heterodimer complex in the 

nucleus and activates the transcription of Period (PER) and Cryptochrome 

(CRY) by binding to the E-box elements of these genes [18,19]. The 

accumulation of both resulting proteins in the cytoplasm induces the formation 

of a complex (PER-CRY) that enters the nucleus and represses CLOCK-BMAL1, 

constituting a cyclic expression pattern of 24 hours in which CLOCK and BMAL1 

dimerize in the morning and the transcription of PER and CRY peaks at midday 

[18,20]. The fluctuation of these core-clock genes is increased and stabilized by 

a secondary loop in which Bmal1 expression is activated by the nuclear 

receptor RAR-related orphan receptor alpha (RORα) and inhibited by the 

nuclear receptor subfamily 1, group D, member 1 (NR1D1, also known as RER-

ERBα) through binding the ROR/REV-ERB-response element (RORE) in the 

promoter region of BMAL1 [21] (Figure 2).  
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Figure 2. Circadian core-clock transcriptional machinery in mammals. Adapted from [22]. 

Although this TTFL system is mainly modulated by transcriptional and 

translational processes, there are several posttranslational regulators that 

ensure the correct phase and periodicity of this rhythmic system. As an 

example, it has been reported that CLOCK is a histone acetyltransferase highly 

regulated by sirtuin 1 (SIRT1), a histone deacetylase dependent on the 

intracellular levels of nicotinamide adenine dinucleotide (NAD+). Relevantly, 

this substrate is controlled by the enzyme nicotinamide 

phosphoribosyltransferase (NAMPT), which catalyzes the first step in NAD 

synthesis and whose promoter is activated by CLOCK:BMAL1 dimer [23]. It has 

been proposed that adenosine monophosphate-activated protein kinase 

(AMPK), a key metabolic energy sensor, can stimulate NAMPT transcription 

through the phosphorylation and inhibition of CRY, which reinforces the fact 

that circadian rhythms are directly associated with metabolism [24].  

These positive and negative feedback loops control several circadian-regulated 

output genes, which are involved in the regulation of several physiological and 

metabolic functions [25–27]. 

PER

CRY

C
L

O
C

K

B
M

A
L

1

E-box Target genes

R
O

R
α

N
R

1
D

1

(+) (-)

Bmal 1RORE BMAL1

Per1/Per2

Rorα

Per1/Per2

Cry1/Cry2

CCGs

Nr1d1

PER

CRY

CRY

PER

clock-controlled genes’ products

RORα

NR1D1

CytoplasmNucleus

circadian output

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



     I. Introduction       

18 

1.2.2. Circadian physiological and metabolic outcomes 

The circadian clock machinery is also accountable for the regulation of several 

tissue-specific rhythmic programs that permit an easiest adaptation to external 

demands. Thus, sleep/wake and feeding/fasting cycles, as well as other 

physiological parameters such as body temperature, blood pressure and 

hormone secretion, possess 24-hour rhythms [28–31] (Figure 3).  

 

Figure 3. 24-hour rhythms of several physiological processes in humans. Adapted from 

[32]. 

Over the past decades, the study of how circadian rhythms modulate the 

metabolic homeostasis has gained interest for many reasons. For instance, the 

study of this area, known as chronobiology, is crucial for human’s health, since 

daily oscillations of several biochemical and metabolic parameters clearly 

determine in which timing of administration a specific drug will be more 

effective [33]. For example, as illustrated in Figure 3, the study of the daily 

fluctuations in blood pressure has contributed to detect its sharpest peak in the 

morning and its decline during the night [34]. In accordance, several drugs, 

such as the calcium channel blocker Verapamil, have been adjusted in order to 
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display the maximum plasma levels in the morning after their administration at 

night [35].  

It has been described that approximately up to the 10% of all mammalian genes 

in the whole organism display circadian rhythms, involving a high number of 

interactive specialized cells, tissues and organs, such as the liver and the 

skeletal muscle, which are crucial in the regulation of the whole-body metabolic 

homeostasis [36,37]. Relevantly, by carrying out studies with genetic knockout 

mice, there is a large number of evidences about the direct or indirect 

modulation of several metabolic processes by the components of the circadian 

core-clock machinery (Table 1). 

Table 1. Metabolic processes modulated by the mammalian circadian core-clock 

components in the liver and the skeletal muscle. 

Tissue 
Clock 
component 

Metabolic effect References 

Liver 

CLOCK 

BMAL1 

 

PER 

 

CRY 

NR1D1 

Enhances glycogen synthesis (↑ Gys2) 

Improves insulin sensitivity (↑ Akt) and 

promotes lipogenesis de novo (↑ FASN) 

Promotes glucose storage to glycogen  

(↑ Gys2) 

Inhibits gluconeogenesis (↓ G6Pase, Pck1) 

Stimulates bile acid synthesis (↑ CYP7A1) 

[38] 

[39] 

 

[40] 

 

[41] 

[42] 

Skeletal 

muscle 

CLOCK 

BMAL1 

 

RORα 

 

NR1D1 

Increases glucose uptake (↑ Glut4) 

Enhances glucose uptake (↑ Glut4) and 

glycolysis (↑ Hk and Pfk1) 

Stimulates fatty acid β-oxidation and 

cholesterol efflux (↑ Cpt1 and Cav3) 

Improves mitochondrial biogenesis and 

oxidative function (↑ AMPK) 

[43] 

[44,45] 

 

[46] 

 

[47] 

Akt, Akt serine threonine kinase; AMPK, adenosine monophosphate-activated protein kinase; Cav3, 

caveolin 3; Cpt1, carnitine palmitoyltransferase 1; CYP7A1, cholesterol 7 alpha-hydroxylase; FASN, fatty 

acid synthase; G6Pase, glucose-6-phosphatase; Glut4, glucose transporter 4; Gys2, glycogen synthase 2; Hk, 

hexokinase; Pck1, phosphoenolpyruvate carboxykinase 1; Pfk1, phosphofructokinase 1. 
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Relevantly, although all the circadian molecular mechanisms regulating these 

metabolic processes can act autonomously, the perturbation of the 

environmental cues that act as synchronizers of this system can alter its 

rhythmicity and consequently, contribute to the development of several 

pathologies. 

1.2.3. Circadian rhythms disruption 

Biological rhythms are the result of an evolutionary adaptation to unfavorable 

environmental conditions, such as food insufficiency and continuous variations 

in day length and climate. Despite the fact that circadian rhythms still persist in 

modern societies, the extreme variation of the external cues that synchronize 

these rhythms, as a consequence of the appearance of artificial light and air 

conditioning, as well as sedentary lifestyles and the continuous food 

availability, can critically disrupt their function, altering all the aforementioned 

physiological and metabolic outcomes [6]. 

Apart from all the research performed in order to describe the effects of the 

depletion of core-clock genes on metabolism in cell cultures and rodents, 

several epidemiological and observational studies have evidenced that the 

disruption of these circadian rhythms in humans (e.g. rotating night shift work 

or jet lag) can produce hyperphagia, hyperinsulinemia, body weight gain and 

hypertriglyceridemia [27], and can increase the risk for coronary heart disease 

[48], obesity [49], diabetes [50], cancer [51]) and psychiatric disorders [52]. 

Indeed, an interventional study carried out with healthy young men reported 

that sleep restriction (4 hours in bed) induced significant changes in the 

regulation of appetite, leading to reduced levels of the anorexigenic hormone 

leptin, increased levels of the orexigenic hormone ghrelin and consequently, 

increased hunger [53]. Moreover, in another study performed with 26 healthy 

subjects, it was described that after shifting the time of sleep, individuals 
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displayed a reduced insulin sensitivity and higher inflammation in comparison 

with those who maintained a regular nocturnal bedtime [54].  

In addition, several studies have evidenced that the misalignment between 

circadian rhythms and feeding can also induce detrimental effects in energy 

metabolism, emphasizing the relevance of the time of nutrient intake. Thus, in a 

study performed with healthy obese women submitted to a weight-loss 

program for 12 weeks, the authors reported that the intake of a high-energy 

diet at lunch induced more beneficial effects in terms of body weight loss and 

insulin sensitivity than those who consumed that diet at dinner [55].   

1.3. Circannual rhythms 

The persistent annual variations of the environment (e.g. day length, 

temperature and food abundance), especially in those zones located far from 

the equator, pressed the different species to develop specific long-term 

mechanisms in order to ensure their survival throughout the year. These 

mechanisms are known as circannual clocks, which are defined as self-

sustained physiological rhythms that exhibit a periodicity of approximately a 

year [56]. In natural conditions, as previously commented, these rhythms are 

set by light, responding to the absolute seasonal day length and also to the 

direction of the photoperiod variations [57]. Regarding this photoperiodic 

response, two different types of circannual rhythms have been described. Type 

I rhythms are those that cannot persevere more than one cycle in the absence 

of light stimuli, typically observed in animals with a short lifespan (e.g. Syrian 

and Siberian hamsters). Differently, type II rhythms have evolved in order to 

persist more than two cycles without light resetting throughout the year, as it 

has been reported in animals with a longer lifespan, such as hibernators [58]. 

Behind the strong responses of several physiological, behavioral and 

reproductive functions through the changing seasons, there is a complex and 
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highly regulated hormonal coordination that shapes the seasonal molecular 

mechanisms.  

1.3.1. Seasonal molecular mechanisms 

Although the molecular mechanisms underlying these circannual rhythms and 

their involvement to circadian clocks are still not fully elucidated, there is 

growing evidence that the transcriptional coactivator eyes absent 3 (EYA3), a 

clock-controlled gene product, exerts a crucial role in the regulation of seasonal 

responses entrained by the photoperiod [59]. This protein acts in the 

thyrotroph cells, located in the pars tuberalis (PT) region of the anterior 

pituitary gland, which is considered the master regulator of seasonal biology in 

mammals [14].  

Being modulated by CLOCK and BMAL1, EYA3 protein exhibits a circadian 

pattern in which its expression rises 12 h after the darkness onset [59]. Thus, in 

long day (LD) seasons, EYA3 peaks in light conditions and coactivates the 

transcription of the gene encoding the thyroid stimulating hormone beta 

(TSHβ) subunit in the thyrotroph cells of the PT. PT-derived TSHβ operates 

locally, enhancing the transcription of type II iodothyronine deiodinase (DIO2) 

in the tanycytes, which are specialized ependymal cells of the third ventricle 

and whose processes reach toward the hypothalamic parenchyma [60,61]. The 

higher DIO2 enzymatic activity induces the activation of thyroid hormones 

(TH), converting the inactive form thyroxine (T4) to the active triiodothyronine 

(T3), which stimulates other hypothalamic signalling that modulates the 

seasonal metabolic and reproductive adaptation to an LD state [62]. As an 

example, it has been evidenced that T3 regulates the expression of the 

hypothalamic RFamide-related peptides (RFRP) and kisspeptin (Kp) peptides, 

which are described to be involved in seasonal breeding through the regulation 

of the gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus, 

being able to synchronize reproduction with a specific season [63,64]. 
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Differently, in short day (SD) seasons, EYA3 rises in dark conditions, being 

markedly reduced due to melatonin’s repression of cAMP release. The 

consequent decrease of TSHβ and DIO2 activity, and the upregulation of the 

type III iodothyronine deiodinase (DIO3), which deiodinates the biologically 

active T3, cause a significant decline of T3 availability in the hypothalamus, 

inducing a different seasonal response to SD [62] (Figure 4). 

 

Figure 4. Molecular mechanisms involved in the physiological response to seasonal day 

length variations. Adapted from [62]. T, tanycytes. 

In addition, it has recently been described that several proteins, genes and cells 

involved in these seasonal photoperiodic responses can be also associated with 

the endogenous circannual timing, which can persist under constant conditions 

[65,66]. Briefly, in a study performed in sheep, it was observed that PT 

thyrotrophs could act as calendar cells defining the phase of the circannual 
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rhythms by displaying a specific proportion of two different states: cells 

expressing TSHβ/EYA3 (LD state) or chromogranin A (CHGA) (SD state) [65]. 

The SD marker CHGA is a prohormone involved in the production of secretory 

granules in neuroendocrine tissues, which are associated with several 

inhibitory actions that could account for the quiescent state of PT during SD 

seasons [66]. Moreover, the same author reported a marked seasonal-

dependent morphogenic cycle of these cells, in which animals exposed to the LD 

photoperiod exhibited a higher size of PT thyrotroph and a higher number of 

junctional contacts between these cells compared to those submitted under an 

SD one, suggesting an enriched cell-to-cell communication [65]. In this study, 

after 27 weeks of being exposed to an LD photoperiod, sheep’s phenotype was 

reverted to an SD state without being exposed to any day length variation [65]. 

This phenomenon is known as photorefractoriness, and it is promoted by the 

endogenous circannual rhythms, which ensure the adaptation of the organism 

to the upcoming season, anticipating seasonal day length variations [80]. 

It is widely evidenced that the resulting switch of these seasonal responses 

stimulates a differential remodeling of physiological, reproductive and 

metabolic pathways, which characterize the adaptive process toward seasonal 

variations [62].  

1.3.2. Seasonal physiological and metabolic variations in 

humans 

Despite the fact that humans living in industrialized and modern societies are 

isolated from seasonal variations due to man-made alterations in the 

environment, such as the appearance of artificial light, heating and air 

conditioning systems [67], an extensive variety of events and biological 

processes with seasonal rhythms have been reported in numerous 

observational studies [68,69]. Body fat mass increases during winter in 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



  Biological rhythms      
 

25 

latitudes far from the equator, in which higher changes in day length and 

temperature are recorded, as well as physical activity and energy expenditure 

levels, which are reported to be lower in winter than in summer [70,71]. In 

addition, the amount of injuries in some field sports are higher in autumn 

regardless of the state of the pitch, being the month of the year a relevant factor 

influencing injury risk [72]. 

In a study performed with geographically and ethnically diverse individuals, 

Dopico and collaborators found more than 5,000 genes related with the 

immune system with seasonal-dependent expression patterns in peripheral 

blood mononuclear cells (PBMCs) [73] (Figure 5). In addition, this study 

reported a more inflammatory status in Europeans during the northern 

hemisphere winter, which was illustrated by higher circulating levels of the 

soluble receptor of interleukin 6 (IL6) and C-reactive protein (CRP), which are 

biomarkers for autoimmune, cardiovascular and psychiatric diseases [73]. 

This winter-like responsiveness has also been described for different metabolic 

parameters in several populations [74]. In this sense, a 12-months longitudinal 

study conducted with 517 healthy volunteers reported a marked seasonal 

variation in circulating lipid levels, in which men and women showed a peak of 

total cholesterol in December and January, respectively [75]. In another study, 

diabetic treated patients displayed a higher systolic and diastolic blood 

pressure, pre-prandial glucose and low-density lipoprotein (LDL) cholesterol in 

winter than in summer [76]. Similarly, seasonal-dependent differences have 

been reported in insulin secretion and/or in its glucose lowering effects, which 

were illustrated by a faster and bigger insulin response in autumn than in 

spring [77,78] (Figure 5). 

In another study carried out with 1,202 middle-age Japanese males, Kamezaki 

et al. described increased fasting circulating glucose levels and higher systolic 

and diastolic blood pressure in winter than in summer, reporting significant 
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seasonal variations in the prevalence of metabolic syndrome (MetS) [79], which 

is described as a group of interconnected risk factors —obesity, insulin 

resistance, hypertension and dyslipidemia— that induces a higher risk of 

cardiovascular disease (CVD) [80,81]. In a similar study, these authors also 

reported that the higher incidence of MetS in winter was linked with an 

increase in insulin resistance [82].  

The importance of these seasonal metabolic changes on human’s health is 

illustrated by the significant higher rates of cardiovascular mortality during 

winter in both northern and southern hemispheres [83]. Related with this, it 

was reported that 20,000 deaths per year were caused by the winter peak of 

coronary and cerebrovascular diseases in England and Wales [74]. 

 

Figure 5. Seasonal variations in human’s physiology and metabolism. On the left, Dopico 

and collaborators identified more than 5,000 immune system-related genes showing seasonal 

variations in children. Among these seasonal genes, two anti-phasic expression patterns were 

markedly differentiated: winter- (green) or summer- (blue) upregulated genes.  On the right, 

the insulin response to an oral glucose load in healthy young men showed a marked seasonal 

variation, being faster and stronger in October than in April. Adapted from Dopico et al. [73] 

and Haus [77], respectively. 

In addition, depressive episodes with seasonal patterns have been reported 

mostly in young adults and women, exhibiting a major decline during fall and 
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winter with a remission in spring and summer seasons [84]. Known as seasonal 

affective disorder (SAD), it is defined as a mood disorder in which people show 

depressive states symptoms (sadness, lack of concentration and decreased 

activity levels), hyperphagia, carbohydrate cravings and a greater weight gain 

and fat mass caused by overeating [84,85]. 

The aforementioned scientific evidences and the strong negative correlation 

found between CVD mortality and the hours of sunshine [86], strongly suggest 

that human health is placed more at risk in winter than in summer. 

Nevertheless, human variability (age, sex and lifestyle conditions) and external 

environmental factors other than the photoperiod that can be risk factors for 

disease, such as low temperatures and sedentarism, makes it difficult to 

stablish the relevance of seasonal variations in day length on health. In this 

sense, the use of animal models, which can be maintained under constant 

temperature and social input, have emerged as a useful strategy to shed more 

light on how seasonal changes in day length can impact on human’s health. 

1.3.3. Seasonal physiological and metabolic responses in 

mammalian animal models  

The use of animal models has helped to elucidate the basics of the seasonal 

physiologic, behavioral, metabolic and reproductive responses to day length 

variations to a greater extent. Most of these studies have been focused in 

mammals and birds, since they exhibit a robust seasonal rhythmicity in several 

functions [3]. Among the different laboratory mammalian models, there have 

been differentiated two kind of groups, depending on their seasonal 

responsiveness: seasonal or non-seasonal animals. 
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1.3.3.1. Seasonal mammalian animal models 

Seasonal mammals exhibit circannual rhythms that allow them to temporarily 

distribute several energy-demanding processes in order to ensure reproduction 

and survival among different seasons [87]. In terms of reproductive responses 

toward seasonal variations, two different kinds of seasonal breeding mammals 

have been described: SD or LD breeders. SD breeders, which include goats, 

sheep and deer, mate in autumn and have a gestation period of six months. 

Differently, LD breeders, such as hamsters and voles, mate in spring and early 

summer and gestate only for a few weeks. In both SD and LD breeders, progeny 

is born in LD seasons due to the optimal conditions of temperature and food 

availability [88,89]. 

The LD breeder Siberian hamster (Phodopus sungorus), is considered one of the 

most optimal mammalian models in the study of seasonality in laboratory 

facilities, since they exhibit large-amplitude circannual cycles in several 

parameters in response to changes in the photoperiod, such as food intake, 

body weight, energy expenditure and reproduction [90]. As well as other 

seasonal species, Siberian hamster is characterized for exhibiting two clear 

phenotypes depending on seasonal day length: a stimulatory or inhibitory 

response to LD or SD photoperiods, respectively [89]. However, the critical day 

length that induces each response is species-dependent [91]. In winter-like SD 

photoperiods, these animals display decreased food intake, body weight (10-

20%) and adiposity, as well as reduced size and function of their reproductive 

system, illustrated by gonadal regression and diminished spermatogenesis and 

testosterone levels [92]. In addition, it has been reported that after a prolonged 

exposure of ≈20–30 weeks to an SD photoperiod, these animals display a 

photorefractory response switching to a spring/summer-like LD phenotype and 

stimulating somatic and reproductive regrowth [93].  
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However, one of the main disadvantages to using these animal models is the 

scarce genetic information available in data repositories and limited molecular 

and biochemical tools to study them. For this reason, in recent decades, the 

inbred Fischer 344 (F344) rat strain, which has been reported to display a clear 

photo-responsiveness without any kind of manipulation [94], has emerged as 

an interesting model in the study of photoperiodism and circannual rhythms. 

1.3.3.2. Fischer 344 rats: an alternative model in the study of 

seasonal responsiveness in physiology and health 

Among all the studies that have been performed by using F344 rats, strong 

physiological and reproductive responses to photoperiod variations have been 

reported [94–98].  

Similarly to what was observed in other seasonal mammalian animals, several 

studies have described two different phenotypes in response to the exposure to 

an SD or LD photoperiods in this rat strain. In this sense, Tavolaro and 

collaborators showed a decreased food intake, body weight gain, lean mass and 

testis size in 4-week-old F344 rats exposed to photoperiods of ≤10 h of 

light/day for 4 weeks, as well as a downregulation in the mRNA levels of Dio2, 

which is considered a LD photoperiod marker, as previously explained [98]. 

Furthermore, Ross et al. reported a strong photoperiod-dependent response in 

the hypothalamic gene expression profile in F344 rats. They observed that 

animals exposed to an SD photoperiod (10 h of light/day) for 28 days displayed 

a significant downregulation of hypothalamic Tshβ and Dio2 mRNA levels, both 

considered LD markers, and an upregulation of Dio3 gene expression. 

Moreover, as previously reported by other authors, SD animals exhibited 

decreased cumulative food intake and body weight after approximately 20 days 

of photoperiod exposure [99].  
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Relevantly, different studies have also observed a refractory response after the 

continuous exposure to a specific photoperiod in this rat strain, although the 

time required to develop this adaptive phenomenon is controversial. 

Shoemaker and collaborators found that after 18 weeks of treatment, F344 rats 

submitted to the SD photoperiod (8 h of light/day) adopted the characteristic 

LD phenotype regarding body weight, food intake and testis volume [96]. 

Differently, in another study carried out with the same rat strain and light 

schedules, animals exposed to the SD photoperiod exhibited a refractory 

response only after 8 weeks of day length exposure, increasing their testis 

volume and no longer differing from LD animals [94]. 

Recent studies have focused in the study of the susceptibility of this rat strain to 

obesogenic conditions. Studies in diet-induced obese rats fed highly caloric 

palatable diets, which reflect the variety of energy-rich foods in Western diets 

that are associated with the development of obesity and other metabolic 

alterations [100], have shown a clear interaction between diet and photoperiod 

[101,102]. For example, Togo et al. described that the exposure to an LD 

photoperiod (16 h of light/day) for 3 weeks increased the preference for high-

carbohydrate, low-fat diet (LFD) more than for a high-fat diet (HFD), which was 

accompanied by higher total energy intake, body weight and epididymal 

adipose tissue than SD animals, which did not display any preference between 

both diets [101]. In another study, both normoweight and HFD-fed animals 

exhibited clear photoperiod-dependent responses regarding TH metabolism 

(increased hypothalamic Tshβ and Dio2 and decreased Dio3 mRNA levels in LD 

animals) and food intake regulation (increased gene expression of the 

orexigenic agouti-related peptide (Agrp) mRNA levels in the hypothalamus in 

LD animals). Nevertheless, these authors also reported that the combination of 

a HFD and the exposure to different day lengths resulted in the loss of LD 

photoperiod stimulation of fat mass, contrary to what was observed in 

normoweight rats [102]. 
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1.3.3.3. Non-seasonal mammalian animal models  

Except for F344, most laboratory mice and rats have been considered 

unsuitable for the study of seasonal responses, since they are not seasonal 

breeding animals [88]. However, several studies have shown a significant 

metabolic and affective response of these animals towards seasonal day length 

variations [103–106]. As an example, Otsuka and collaborators reported that 4-

week-old C57BL/6J male mice exposed to an SD photoperiod (8 h of light/day) 

during 3 weeks displayed season-dependent changes in different behavioral 

and physiological parameters, such as increased depression-like behaviors and 

sucrose intake, which are the main symptoms of SAD [104]. In a similar study, 

Tashiro et al. described a decreased insulin sensitive-phenotype in those 

animals exposed to a short photoperiod, attributed to the downregulation of  

the glucose transporter 4 (GLUT4) protein and gene expression levels in the 

gastrocnemius muscle [106].  

In addition, it has also been described a marked interaction between 

photoperiod exposure and obesity. As an example, Larkin et al. reported that 

genetically obese Zucker rats exhibited a more evident response to seasonal-

like photoperiods than lean rats, as it was illustrated by the increased food 

intake, total and lean body mass and epididymal adipose tissue weight in 

animals exposed to an LD photoperiod (14 h of light/day) for 9 weeks in 

comparison with those exposed to a SD one (10 g of light/day), effects that 

were not observed in lean rats [107]. 
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2. LIVER AND SKELETAL MUSCLE HOMEOSTASIS 

Living organisms have adapted to persistent variations in nutritional conditions 

as an evolutionary mechanism toward food availability changes. These 

metabolic adaptations are possible due to a complex and interconnected 

network that involves physiological and molecular mechanisms, which control 

the mobilization of energy substrates through the different energy-demanding 

tissues and organs, such as the liver and the skeletal muscle. Hence, through a 

robust metabolic and hormonal modulation, each tissue displays specific 

molecular responses that are integrated with the whole-body in order to 

maintain a correct energy homeostasis.  

2.1. The liver 

The liver is an essential metabolic organ that plays a central role in energy 

homeostasis through the synthesis, storage and redistribution of 

carbohydrates, lipids and proteins, regulating the availability of metabolic 

substrates in the organism [108]. Having first access to most consumed 

nutrients because of their absorption into the hepatic portal vein, the liver is 

the most relevant organ in terms of postprandial metabolism due to its ability 

to transform these dietary nutrients into ready-to-use energetic substrates and 

provide them to energy-demanding tissues, such as the skeletal muscle, brain 

and heart [109]. This organ is mainly characterized by its metabolic flexibility 

to operate under the constant variations that occur in the feeding and fasting 

states in order to maintain the homeostatic balance in the whole-body 

metabolism [108–110]. 

In postprandial conditions, which are characterized by the rise of circulating 

insulin levels, glucose enters hepatocytes through the glucose transporter 2 

(GLUT2) and is phosphorylated by glucokinase (GK) to produce glucose-6-
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phosphate (G6P). Then, G6P can be transformed into glycogen in order to be 

stored in the liver (glycogenesis) or degraded to pyruvate and acetyl-CoA 

(glycolysis) so as to a) generate adenosine triphosphate (ATP) within the 

tricarboxylic acid (TCA) cycle, or b) synthesize fatty acid (FA) de novo, which, 

together with dietary FA, are stored as triacylglycerol (TAG) in the liver 

(lipogenesis) or exported to the adipose tissue as very low-density lipoproteins 

(VLDL) particles. In addition, dietary amino acids are metabolized as 

precursors of hepatic and other tissular protein synthesis, as well as for the 

synthesis of FA, hormones and nucleotides [111,112].  

In contrast, in the fasting state, the release of glucagon from the pancreatic α 

cells together with the decreased circulating insulin levels, stimulates the 

synthesis of hepatic glucose and its release to the systemic circulation. Glucose 

production can derive from a) glycogen hydrolysis (glycogenolysis), which is 

associated with short-term fasting periods, and b) de novo synthesis of glucose 

(gluconeogenesis (GNG)) in long-term fasting periods in which glycogen stores 

are exhausted. The main precursors in the GNG process are the muscular 

lactate, TAG-derived glycerol, alanine and other glucogenic amino acids derived 

from protein degradation. In addition, hepatocytes degrade TAG to FA 

(lipolysis), which through its β-oxidation produce energy and ketone bodies 

(ketogenesis), such as acetoacetate and β-hydroxybutyrate, which are sent to 

other extrahepatic tissues as metabolic fuel [108,111–114].   

2.2. The skeletal muscle 

The skeletal muscle is the single largest organ of the body, comprising up to the 

50% of total body mass and containing 50-75% of all body proteins. Differently 

from other muscle types, the skeletal muscle contributes to generate the 

voluntary movement by transforming chemical to mechanical energy. This 

function is possible due to a complex display of muscle cells, known as 
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myocytes or fibers, and connective tissue. These skeletal muscle cells are very 

heterogeneous in structure and role among the different kinds of skeletal 

muscle. There have been described three types of fibers: type I or red fibers, 

which are characterized by a slow contraction, high fatigue-resistance and high 

mitochondrial content, being the most oxidative muscle cells (predominant in 

the soleus muscle); type IIa or intermediate fibers, which structure have the 

characteristics of both I and IIb fibers; and type IIb or white fibers, 

characterized by a fast contraction, low fatigue-resistance and low 

mitochondrial content (predominant in the gastrocnemius muscle) [115,116]. 

Besides being specialized in ATP production as energy source, these cells also 

contribute to the whole-body metabolic homeostasis, regulating the protein 

synthesis and degradation balance and storing relevant substrates, such as 

carbohydrates, depending on the nutritional status or physical activity level, 

among other factors. Similar to the liver, in the postprandial state, glucose 

enters the myocytes through GLUT4 and is phosphorylated by hexokinase (HK) 

to produce G6P, which can generate ATP through the glycolytic pathway or 

polymerize in order to be stored as glycogen. These anabolic pathways are also 

observed in protein and TAG synthesis from circulating and dietary amino acids 

and FA [117,118]. However, in energy-demanding conditions due to fasting or 

physical activity, TAG and glycogen stores are degraded, as well as proteins, and 

the resulting substrates are used as energy sources in the skeletal muscle or 

sent to the liver as GNG precursors [111,115]. 

2.3. Metabolic integration at a molecular level 

The metabolic integration of organs and tissues that ensures a robust metabolic 

homeostasis and their flexibility to adapt to persistent changes in the 

nutritional status are mediated by the activation and inhibition of several 
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intracellular signaling pathways that involve genes and proteins with key 

metabolic roles.  

In the regulation of glucose, lipid and amino acid metabolism and, 

consequently, in the maintenance of the homeostatic robustness in metabolic 

tissues, there are two proteins that play a key role: Akt serine threonine kinase 

(Akt) and AMPK. 

2.3.1. Akt: the downstream post-receptor target of insulin 

As it has been aforementioned, insulin secretion from the pancreatic β-cells in 

the postprandial state induces several cellular processes in different insulin-

sensitive organs and tissues in order to maintain glucose and other metabolites 

homeostasis. To accomplish this goal, this hormone requires a multifaceted 

network of metabolic pathways in order to transduce its signal into cells in 

different context-dependent responses [119]. Akt, also known as protein kinase 

B (PKB), has been described as a key intermediate in the insulin signalling 

pathway [120]. It includes three mammalian isoforms with a similar structure 

but different function and tissue-specific expression: Akt1/PKBα, ubiquitously 

expressed and highly related with cell survival; Akt2/PKBβ, mainly expressed 

in insulin-responsive tissues such as liver, skeletal muscle and adipose tissue, 

involved in the regulation of energy homeostasis; and finally Akt3/PKBγ, 

expressed in the brain and associated with postnatal brain development [121]. 

Akt is activated by the phosphorylation cascade stimulated by insulin’s union 

with its receptor and also by the G protein-coupled receptor (GPCR), as 

illustrated in Figure 6. Once activated, Akt phosphorylates protein targets on 

serine and threonine residues, triggering the activation or inhibition of a wide 

range of downstream substrates related with several metabolic functions. 
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Figure 6. Molecular mechanisms involved in Akt activation. Insulin or IGF1 binds the 

insulin receptor (IR) and activates the IR tyrosine kinase (IRTK), which induces the recruitment 

and Tyr phosphorylation of the IR substrate 1/2 (IRS1/2) protein. This protein interacts with 

phosphatidylinositol 3-kinase (PI3K), activating it and inducing the synthesis of 

phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) from phosphatidylinositol‑4,5‑bisphosphate, 

(PIP2) by the action of the phosphatase and tensin homolog (PTEN). PIP3 serves as a docking 

site for several PH domains engaging recruited Akt Ser and Thr kinases. Akt is fully activated by 

the phosphorylation of T308 and S473 residues by phosphoinositide-dependent kinase 1 

(PDK1) and mammalian target of rapamycin complex 2 (mTORC2), respectively, which are also 

activated by PIP3. Adapted from [119]. 

Glucose metabolism 

Akt1 has been found to act in the pancreatic insulin-secreting β-cells, increasing 

the expansion of pancreatic islets and insulin production through the activation 

of the mammalian target of rapamycin complex 1 (mTORC1), a protein 

considered the master regulation of cell growth and metabolism [121].  

In the liver, insulin-mediated Akt2 activation exerts a markedly suppressive 

effect on glucose output through two different mechanisms. Firstly, Akt2 

inhibits the GNG process by phosphorylating the forkhead box protein O1 

(FOXO1), which is a key transcription activator of gluconeogenic key enzymes, 
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such as phosphoenol pyruvate carboxykinase (PCK) and glucose 6-phosphatase 

catalytic subunit (G6Pase). By being phosphorylated in three conserved 

residues, FoxO1 is excluded from the nucleus and sequestered in the cytosol, 

repressing its activity [122,123]. Secondly, Akt2 can inhibit glucose production 

by redirecting the synthesized G6P to glycogen. Nevertheless, the mechanism 

involved in Akt2-mediated hepatic glycogen synthesis has not been fully 

elucidated, since it has been described to be independent of the essential 

glycogen synthase kinase 3 (GSK3) phosphorylation and inhibition observed in 

the skeletal muscle [124]. 

In the adipose tissue, and especially, in the skeletal muscle, Akt2 promotes 

insulin-stimulated glucose uptake by increasing the GLUT4 content in the 

plasmatic membrane. Specifically, it has been described that Akt2 

phosphorylates and inhibits two RabGTPases (Akt substrate of 160 kDa 

(AS160) and  TBC1 domain family member 4 (TBC1D1)) present in GLUT4 

storage vesicle (GSV), promoting its redirection and translocation to the plasma 

membrane in these tissues [125]. Furthermore, Akt2 also directs G6P toward 

glycogen synthesis, phosphorylating and inhibiting the GSK3 and allowing the 

action of the glycogen synthase [126]. 

Lipid metabolism 

Akt2 is involved in insulin-mediated lipogenesis de novo in the liver, skeletal 

muscle and adipose tissue. In hepatocytes, Akt2 activates mTORC1 by 

phosphorylating and inhibiting the tuberous sclerosis complex 2 (TSC2), which 

results in the activation of the lipogenic sterol regulatory element-binding 

protein 1 (SREBP1). Subsequently, this protein is translocated to the Golgi 

complex and proteolyzed, activating several lipogenic enzymes, such as fatty 

acid synthase (FASN), acetyl-coenzyme A carboxylase (ACC) and glycerol-3-

phosphate acyltransferase (GPAT), involved in the synthesis of FA and TAG 

[127]. In muscle and adipose tissue, SREBP1 is also induced by the activation of 
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PI3K/Akt, but the role of muscular mTORC1 in this process remains unknown 

[128,129]. In addition, mTORC1 has been described to suppress the lipolysis in 

the adipose tissue, mainly affecting the activation of the lipolytic adipose 

triglycerides lipase (ATGL) and hormone-sensitive lipase (HSL) [130]. 

In the skeletal muscle, Akt2 is critically associated with insulin-mediated FA 

uptake, regulating FA transport through promoting the translocation of the FA 

translocase, homolog of CD36 (CD36) and the FA transporter 1 (FATP1). 

Regarding the molecular mechanisms involved in this process, it has been 

suggested that the Akt2 downstream target AS160 could also account for the 

internalization of CD36 [131]. 

Protein metabolism 

Akt2 also plays a key role in the insulin-like growth factor 1 (IGF1) and insulin 

regulation of the development of skeletal muscle growth, by controlling the 

muscular protein turnover [132]. mTORC1 activation by Akt2, stimulates 

protein synthesis by activating p70S6 kinase (p70S6K) and inhibiting eIF4E-

binding protein (4E-BP), which possess downstream targets involved in the 

enhancement of protein translation and elongation [133]. Moreover, Akt2 

inhibition of FoxO1, downregulates the expression of the E3 ubiquitin ligases 

muscle atrophy Fbox (MAFbx) and muscle ring finger 1 (MuRF1), both involved 

in protein degradation [133]. 

The actions of Akt on glucose, lipid and protein metabolism are summarized in 

Figure 7. 
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Figure 7. Summary of the metabolic actions of Akt in different organs and tissues. 

2.3.2. AMPK: the major regulator of energy homeostasis 

AMPK is a sensor of the cellular energy status that modulates several metabolic 

pathways to balance energy supply and demand, being considered the major 

regulator of energy homeostasis in the organism. This protein is allosterically 

activated by the increase of intracellular adenosine monophosphate (AMP) 

levels, which are associated with energy demanding conditions (e.g. fasting or 

physical activity). Hence, AMPK activates catabolic pathways that produces ATP 

and inhibits ATP-consuming anabolic pathways, such as cell proliferation or 

biosynthetic processes [134].  

This protein is a heterotrimeric Ser/Thr kinase constituted by three different 

subunits (α, β, γ) with specific functions. The α is the catalytic subunit 

containing the Thr172 residue, whose phosphorylation fully activates AMPK. The 

β subunit contains a carbohydrate-binding module, allowing glycogen and 

other oligosaccharides to interact and inhibit AMPK. Finally, the γ subunit 

comprises 4 tandem repeats known as cystathionine β-synthase (CBS), which 

Akt

Glycogenesis

Lipogenesis

Gluconeogenesis

Glucose uptake

Lipogenesis 

Glycogenesis

FA uptake

Protein synthesis

Protein degradation

β- Cell growth

Insulin

secretion

Glucose uptake

Lipogenesis

Lipolysis 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



     I. Introduction       

40 

create binding sites for two adenosine molecules including AMP, adenosine 

diphosphate (ADP) or ATP in an exchangeable fashion, a third one that 

permanently binds AMP and a fourth one that remains empty. As 

aforementioned, although AMP binding to this subunit promotes a 2 to 5 fold 

increase in AMPK activity (nucleotide-dependent regulation), this protein is 

completely activated when phosphorylated. It has been reported that the two 

main kinases involved in AMPK phosphorylation are the liver kinase B1 (LKB1) 

and the Ca2+/calmodulin-dependent protein kinase kinase beta (CAMKKβ), both 

acting independently of variations in AMP [135,136].  

Being activated by energy suppression and inhibited by an over-nutrition, 

AMPK regulates energy balance in a wide range of organs and tissues by 

targeting crucial metabolic substrates, ranging from key enzymes to 

transcriptional regulators. 

Glucose metabolism 

AMPK effects on glucose metabolism are focused in the production of cellular 

ATP through stimulating glucose degradation and suppressing its synthesis and 

storage [137,138]. 

This protein promotes glucose uptake in the skeletal muscle by stimulating 

GLUT4 translocation to the plasma membrane. Although this process is 

produced by phosphorylating the same target proteins described in Akt action, 

AMPK acts through an insulin-independent pathway [139]. Moreover, it has 

been reported that AMPK can stimulate the glycolytic process by activating 

phosphofructokinase 1 (PFK1), the rate-limiting enzyme of glycolysis in 

cardiomyocytes and macrophages [138].  

In order to reduce energy-wasting processes, AMPK inhibits glycogen synthesis 

by phosphorylating hepatic and muscular GYS isoforms and stimulates its 

degradation, by activating glycogen phosphorylase (GP) [140]. In addition, this 
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protein suppresses hepatic GNG by phosphorylating and inhibiting several co-

activators of the cAMP response element binding protein (CREB) and FOXO1, 

the two main regulators of the gluconeogenic process [141]. 

Lipid metabolism 

AMPK exerts a marked inhibitory effect on de novo synthesis of FA, promoting 

the phosphorylation and inhibition of two different targets. Firstly, it 

suppresses ACC1 and ACC2, which catalyze the reaction that converts acetyl-

CoA to malonyl-CoA, which is the rate-limiting step of FA synthesis; and 

secondly, it also inhibits SREBP1c, a transcription factor that stimulates the 

expression of ACC1 and FASN in the liver and adipose tissue [142,143]. In 

addition, it has been described that AMPK can also inhibit hepatic synthesis of 

TAG and cholesterol, by directly suppressing the rate-limiting enzymes GPAT 

and HMG-CoA reductase (HMGCR), respectively [144,145]. Although the role of 

AMPK in lipogenesis is clear, its regulation of the lipolytic process is 

controversial. While it has been described an anti-lipolytic effect mediated by 

AMPK in the adipose tissue in mice [146], recent studies performed in similar 

animal models have evidenced a clear activation of the lipolytic ATGL and HSL 

by this protein [147]. 

AMPK also increases FA uptake by triggering the translocation of the FA 

transporters CD36 and plasma membrane fatty acid binding protein (FABPm) 

in the skeletal muscle [148]. Moreover, AMPK inhibition of ACC2 consecutively 

induce the activation of β-oxidation of FA. This simultaneous action is produced 

by the activation of carnitine palmitoyltransferase 1 (CPT1), which is 

suppressed by malonyl-CoA at the mitochondria outer membrane [145]. CPT1 

is a key enzyme in the carnitine-dependent transport from the cytosol to the 

mitochondrial matrix, allowing the initiation of the FA oxidation process, which 

involves other key enzymes such as citrate synthase (CS) and hydroxyacyl-CoA 

dehydrogenase (HAD) [111]. 
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Protein metabolism  

AMPK inhibits protein synthesis by modulating mTORC1 through two different 

mechanisms. It can phosphorylate and activate TSC2, which negatively 

regulates mTORC1, or inhibit a subunit of this protein known as regulatory-

associated protein of mTOR (Raptor) [135]. Moreover, AMPK can also inhibit 

the elongation process, by activating the eukaryotic elongation factor 2 kinase 

(eEF2K), which is also a downstream of mTOR protein [149]. Indeed, it has 

been evidenced that AMPK can be negatively regulated by Akt, being involved 

in Akt-mediated activation of protein synthesis through the activation of mTOR 

[150]. As one of the main modulators of skeletal muscle turnover, AMPK 

stimulates protein degradation by phosphorylating FOXO3a, which increases 

the expression of the E3 ligases MAFbx and MuRF1 [151].  

The actions of AMPK on glucose, lipid and protein metabolism are summarized 

in Figure 8. 

 

Figure 8. Summary of the metabolic actions of AMPK in different organs and tissues.  
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2.4. Metabolic disruption in obesity 

The maintenance of all these interconnected mechanisms in order to ensure a 

homeostatic balance is extremely relevant on health, since its disruption can 

induce the development of several medical conditions, such as obesity, and 

metabolic diseases, such as dyslipidemia and insulin resistance. Indeed, obesity 

is currently considered the global epidemic of the twenty-first century, affecting 

more than 650 million people worldwide [152]. This increasing prevalence has 

also raised the appearance of several comorbidities, such as insulin resistance 

and dyslipidemia, contributing to a higher risk for CVD, the first cause of death 

globally [153]. It has been widely evidenced that the main triggering factor of 

these metabolic dysfunction is the overconsumption of high-energy foods, 

which deregulates the mechanisms involved in the mobilization of energy 

substrates [154]. 

There have been described three principal disturbances promoted by diet-

induced obesity: fat accumulation in different tissues, a systemic low-grade 

chronic inflammation and the development of insulin resistance [155–157]. 

Briefly, under a constant caloric supply due to over-nutrition, the adipose tissue 

capacity to store this energy excess in the adipocytes through the adipogenesis 

process becomes unsustainable. Consequently, this tissue promotes a pro-

inflammatory response through the release of adipokines, such as tumor 

necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP1) and 

IL6 [158]. Several adipokines have been described to activate the lipolysis in 

the adipose tissue, triggering the release of FA to systemic circulation and other 

metabolic tissues that are not specialized in lipid storage, such as liver and 

skeletal muscle [159]. In both tissues, the accumulation of FA, diacylglycerol 

(DAG) and ceramides also prompts a pro-inflammatory response mediated by 

several serine kinases such as c-Jun N-terminal kinase 1 (JNK1), IκBα kinase 

beta (IKKβ) and protein kinase C (PKC), which impairs insulin-stimulated 
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tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) by 

phosphorylating the Ser residue and consequently, inhibiting IRS1 and its 

associated phosphatidylinositol 3-kinase (PI3K) activity [160,161]. Moreover, 

these adipokines induce the translocation of the nuclear factor kappa B (NF-κB) 

into the nucleus, which triggers a local pro-inflammatory response by 

stimulating the synthesis of inflammatory cytokines [162]. 

Insulin resistance is associated with an inhibition of insulin-mediated Akt 

actions, which results in the activation of the hepatic GNG process stimulated 

by FOXO1, the inhibition of glycogen synthesis in the liver and skeletal muscle, 

and the decrease of glucose uptake by the inhibition of muscular GLUT4 

translocation [157,163,164]. However, in this pathologic state, insulin 

sensitivity is maintained in the upregulation of hepatic SREBP1c, the enhancer 

of the lipogenic process, stimulating TAG synthesis and its release to circulation 

as VLDL. These particles are exported to other tissues, such as skeletal muscle, 

triggering its accumulation and expanding its associated detrimental effects 

[165,166]. Hence, this selective insulin resistance leads to the characteristic 

hyperglycemia and hypertriglyceridemia reported in this pathology [166]. 

Relevantly, a significant decrease in AMPK activity and consequently, in the 

phosphorylation of several targets of this protein, such as ACC and GLUT4, have 

been reported in the skeletal muscle in HFD-fed rats [167]. Similarly, in 

humans, it has been described a clear AMPK dysfunction in insulin resistant 

obese patients, reporting lower AMPK activity levels in the skeletal muscle and 

adipose tissue [168–170]. Taking into account the key role of this protein in the 

regulation of the metabolic processes that are disrupted in obesity and its 

related disorders, AMPK has been considered a clear therapeutic target in the 

treatment of these conditions, as evidenced by the beneficial actions of AICAR, 

metformin and berberine, among other AMPK activators, in insulin resistance 

amelioration [171,172].  
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The molecular mechanisms involved in obesity-associated insulin resistance 

are illustrated in Figure 9 [163].  

Figure 9. Signaling pathways 

involved in insulin resistance. Pro-

inflammatory cytokines stimulate 

WAT lipolysis, increasing FA release, 

which are accumulated in the liver 

and skeletal muscle. The increased 

DAG levels stimulate the activation of 

PKC, which inhibits the IRS1-

2/PI3K/Akt2 pathway in both liver 

and skeletal muscle. Consequently, 

insulin resistance induces a) the 

activation of hepatic GNG; b) the 

suppression of muscular GLUT4 

translocation; c) the inhibition of 

glycogen synthesis in liver and 

skeletal muscle and d) the activation 

of lipogenesis in both tissues [163]. 

βAR, β-adrenergic receptor; ChERBP, CH-

responsive element-binding protein; CM-

R, chylomicron remnants; CM-TG, 

chylomicron-triglycerides; FA-CoA, fatty-

acyl-CoA synthase; HL, hepatic lipase; 

LPA, lysophosphatidic acid; LPL, 

lipoprotein lipase; PA, phosphatidic acid; 

PC, pyruvate carboxylase; PDE, 

phosphodiesterase; PKA, protein kinase 

A. 
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3. PHYTOCHEMICALS: SECONDARY METABOLITES IN 

PLANTS 

Through evolutionary history, the limited mobility of plants to escape and avoid 

different stresses have forced them to develop several mechanisms in order to 

manage with the persistent external challenges in the environment, such as 

climate (humidity, cold, heat and day length), biotic factors (pathogens and 

herbivores), harvesting conditions (pesticides), phenologic factors 

(maturation) and nutrient availability. Therefore, in order to enhance their 

chances of survival, plants have evolved secondary metabolic pathways that 

involve the synthesis of a wide range of bioactive non-nutritive compounds, 

known as phytochemicals, with different structures and functions [173]. The 

chemodiversity of these secondary metabolites evidences the remarkable 

adaptability of plants in response to several environmental stimuli that put 

their growth in danger, such as nutrient scarcity, extreme temperatures and 

pathogen or herbivore attacks [174,175]. 

3.1. The role of phytochemicals in plants 

There are four main categories of secondary metabolites classified by their 

chemical structure, which have been involved in specific functions in response 

to different environmental cues. These compounds are: terpenes (e.g. 

carotenoids, sterols, glycosides and plant volatiles), phenolic compounds (e.g. 

flavonoids and non-flavonoids), nitrogen-containing compounds (e.g. alkaloids) 

and sulfur-containing compounds (e.g. glucosinolates) (Figure 10). 

Terpenes 

Terpenes comprise the largest class of phytochemicals, containing more than 

30,000 lipid-soluble compounds. They are classified according to the number of 
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5-carbon isoprene units that they contain and are characterized by several 

properties associated with plant’s survival [176]. It has been reported that 

terpenes are synthesized in response to pathogen or herbivore attacks due to 

their antimicrobial and antibiotic activities and also to their defensive role, 

acting as toxins and feeding deterrents [177]. In addition, volatile 

monoterpenes can also favor plants’ growth and development by attracting 

living organisms for pollination and seed dispersal, as well as carotenoids, 

which confer the colors yellow, orange and red to several fruits and vegetables 

[173,178]. 

 

Figure 10. Classification and structural diversity of phytochemicals 

Phenolic compounds 

Phenolic compounds, also known as polyphenols, are characterized by having 

one or more aromatic rings with hydroxyl groups attached, existing more than 

8,000 different structures [179]. These compounds are categorized principally 

into flavonoids and non-flavonoids. Flavonoids are mainly comprised by 
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flavanols, flavones, isoflavones, flavanones, flavonols and anthocyanidins, while 

non-flavonoids contain phenolic acids, stilbenes and lignans [180]. Polyphenols 

play a crucial role in several functions in the plant, such as growth, 

reproduction and metabolism, protective mechanisms against infections and 

predators and also contribute to the color of plants [181]. As an example, 

tannins, which belong to the phenolic acids class, act as a feeding repellent for 

herbivores by combining with salivary proteins and producing an astringent 

feeling [182]. Quercetin and kaempferol, two kinds of flavonols, have been 

described to be crucial in pollen tube formation and in stimulating pollen 

germination frequency [183]. Moreover, anthocyanins, which are flavonoids 

found as sugar conjugates in several fruits and flowers, are colored water-

soluble pigments that confer the red, purple and blue colors to fruits and 

vegetables, attracting pollinators and protecting them against excessive UV 

radiation [178,184].  

Indeed, the biosynthesis of these flavonoids is markedly influenced by several 

annual geophysical changes, such as temperature, light quality and day length, 

highly differing between latitudes [185,186]. As an example, Jaakola et al. 

reported a clear effect of solar radiation on flavonoid content, illustrated by a 

sharp increase of hydroxycinnamic acid, anthocyanins, catechins and quercetin 

in the upper leaves of the bilberry fruit, which are directly exposed to sunlight, 

in comparison with its shaded leaves and fruits [187]. The vital role of these 

group of polyphenols in the protection against increased light exposure was 

also reported by Carvalho et al., who observed that after exposing sweet potato 

leaves to a LD photoperiod (16 h of light/day), these plants exhibited a sharp 

upregulation of flavonoid synthesis-related genes and consequently, 

significantly higher anthocyanin, flavonols, catechins, hydroxybenzoic acid and 

hydroxycinnamic acid levels than those exposed to a SD photoperiod (8 h of 

light/day) [188]. Similarly, in a study performed with Pinus contorta seedlings, 

the exposure to a LD photoperiod (14-15.5 h of light/day) induced a vast 
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increase of anthocyanin levels (mainly cyanidin-3-glucoside) compared to those 

exposed to a shorter photoperiod [189].    

Nitrogen- and Sulphur-containing compounds 

Alkaloids, such as caffeine and nicotine, are the most described nitrogen-

containing compounds. They are a structurally diverse group over 12,000 

compounds mostly derived from non-protein amino acids, such as tyrosine, 

lysine, tryptophan and aspartic acid, and present in about 20% of plant species 

[190]. These compounds are characterized by exhibiting a strong defensive role 

in plants, acting as feeding deterrents and toxins to insects and animals [191].  

Glucosinolates are nitrogen- and sulfur- containing compounds that 

structurally differ in a variable side chain, which is derived from an amino acid 

[190]. It has been described that these compounds are highly sensitive to 

several biotic and abiotic stresses, displaying sharp variations in their 

concentration in response to extreme temperatures, drought, nutritional 

deficiencies and insects attacks [192]. Indeed, there is a complex and 

evolutionary system that converts glucosinolates into toxic compounds (e.g. 

nitriles and isothiocyanates) only in case of plant damage, acting as repellents 

[193]. 

3.2. The role of phytochemicals in mammals 

It has been largely described that the extensive variety of secondary 

metabolites found in plant-derived foods, such as fruits and vegetables, clearly 

define in which conditions they were harvested. Relevantly, these group of 

compounds have been studied and commercialized due to their bioactive 

properties in humans and mammals, being implicated in the prevention and 

treatment of several diseases, such as cancer [194], CVD [195] and obesity and 

its related metabolic complications [196,197]. Nevertheless, in evolutionary 
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terms, how these non-nutritive and exogenous compounds can be able to 

interact with endogenous biochemical pathways in heterotrophs have always 

been a mystery. 

3.2.1. The xenohormesis theory 

In 2003, Howitz et al. described that a group of small molecules extracted from 

plant-derived foods (resveratrol, butein and fisetin) induced a significant 

increase in Saccharomyces cerevisiae average lifespan. Focusing on resveratrol, 

a phenolic compound found in red wine, these authors reported that by 

activating SIRT1, these polyphenols inhibit the activity of the p53 tumor 

suppressor, promoting cell survival and suppressing apoptosis to allow cells to 

repair DNA damages [198]. Hence, after observing that phytochemicals 

produced by environmental stressed plants can interact with key proteins and 

promote vital processes involved in survival mechanisms not only in S. 

cerevisiae, but also in C. elegans and Drosophila melanogaster, these authors 

created the concept of xenohormesis [199]. The xenohormesis theory (from the 

Greek xenos, strange and hormesis, which defines that mild stress levels confers 

beneficial effects to the organism) postulates that the coevolution between 

plants and animals have promoted the development of a regulatory system of 

unpredictable variations in the environment, allowing the heterotrophs to 

recognize as signals the phytochemicals synthesized by plants [199]. Taking 

into account that each plant contains a distinctive phytochemical composition 

highly dependent on the environmental conditions, animals could use these 

chemical cues in order to be informed about the environmental status and 

consequently, favorably adapt their physiology and metabolism in order to 

increase their chances of survival [199–201]. Hence, these authors suggested 

that most of the beneficial effects of these compounds that are reported on 

health would not be associated with their antioxidant activity or responses to 

mild cellular damage, but rather with the direct interaction with several key 
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mammalian metabolic components, such as transcriptional factors, enzymes 

and receptors, which modulate the crucial functions in the organism [202–204]. 

3.2.2. How do phytochemicals interact with mammals? 

Despite the wide range of phytochemicals present in the plant kingdom, most of 

the studies have mainly focused in the relevance of phenolic compounds on 

health. These bioactive compounds have been reported to exert several 

beneficial effects on mammals’ health by interacting with key intermediates of 

vital processes, such as stress responses, inflammatory responses and energy 

utilization [205] (Figure 11).  

 

Figure 11. Modulation of key mammalian enzymes by phytochemicals present in plant-

derived foods [199]. ECGC, epigallocatechin gallate; Ahr, aryl hydrocarbon receptor; IL1β, interleukin 1 

beta; COX, cyclooxygenase; PKD, protein kinase D; PGC1α, peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha. 

Several epidemiological studies have associated the dietary intake of 

polyphenols with a lower risk of CVD, since they exert beneficial effects in the 

prevention and management of several CVD risk factors, such as insulin 

resistance, dyslipidemia, obesity and its associated inflammatory state, 

hypertension and atherosclerosis [206,207].  
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As an example, the consumption of several polyphenol-rich foods, such as 

coffee and green tea, which are rich in chlorogenic acids and catechins, 

respectively, and anthocyanin-rich fruits, such as berries, apples and pears, 

have been clearly associated with a lower risk of type 2 diabetes [208–211]. 

Regarding the mechanisms by which polyphenols could induce these beneficial 

effects, there have been identified several polyphenol targets in different tissue-

specific functions, ranging from intestinal absorption (inhibiting 

disaccharidases in order to reduce the absorption of simple sugars [212]) to 

hepatic and muscular glucose metabolism management (enhancing muscular 

glucose uptake through GLUT4 upregulation [213] and inhibiting hepatic GNG 

via AMPK activation [214]).  

In addition, it has been reported that flavonoids found in olive oil possess clear 

anti-inflammatory and antiatherogenic properties by improving high-density 

lipoprotein (HDL) function in reverse cholesterol transport and anti-

inflammatory processes and decreasing LDL circulating levels [215]. Moreover, 

several types of polyphenols, such as procyanidins, curcumin, resveratrol and 

quercetin, have been reported to directly interact with several intermediates of 

inflammatory pathways in vivo and in vitro [204]. For example, resveratrol can 

induce anti-inflammatory effects by inhibiting TNF-α-induced MCP1 secretion 

and gene transcription in adipocytes [216]. Furthermore, the anthocyanin 

cyanidin-3-O-β-glucoside, found in many kinds of berries, has been described to 

decrease macrophage infiltration in mice through the downregulation of the 

receptor of MCP1 in peripheral blood monocytes [217].  

The Nutrigenomics Research Group has been extensively focused in the study 

of the biological effects of proanthocyanidins (PA), a group of polyphenolic 

compounds synthesized in response to fungal infections, reporting antioxidant, 

anti-inflammatory, hypotensive and hypolipidemic properties [218–220]. 

Particularly, it has been reported that a grape seed proanthocyanidin extract 
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(GSPE) can exert a marked protective effect against diet-induced dyslipidemia, 

attenuating triglycerides and LDL cholesterol by interacting and inhibiting 

hepatic modulators of lipogenesis (SREBP1 and diacylglycerol O-

acyltransferase 2 (DGAT2)) and VLDL assembling [221]. Moreover, it was 

suggested that these hypolipidemic effects were also induced by PA’s 

interaction with key microRNAs (miR) in hepatic lipid regulation, such as miR-

33 and miR-122 [222,223]. In addition, several studies performed in this group 

have reported that the consumption of these polyphenols in rats fed a high-

palatable and energy dense cafeteria diet (CAF), attenuated the body weight, 

body pressure and circulating TAG levels [224] and stimulated mitochondrial 

functionality, oxidative capacity and fatty acid uptake in the skeletal muscle via 

AMPK activation [225].  

Relevantly, in the search of other mechanisms of action of polyphenols, our 

group described an interaction between PA and several components involved in 

the mammalian circadian timing system. Ribas et al. reported that grape seed 

PA could significantly modulate the biological rhythms in rats, maintaining 

elevated melatonin levels during the light phase and regulating the gene 

expression of Bmal1 in the hypothalamus [226]. In a similar study, this author 

described a clear modulation of Bmal1, Nampt and NAD levels in the liver by 

PA, evidencing that these polyphenols can regulate both central and peripheral 

circadian rhythms [227]. In accordance, other studies reported a stimulating 

effect of resveratrol, a non-flavonoid found in grapes, on SIRT1 [198,228], 

which in addition to be involved in anti-inflammatory and anti-aging effects, it 

is strongly related with the modulation of CLOCK, as it has been described in 

the first section. 
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3.3. Sweet cherry (Prunus avium L.) 

Being within the Rosaceae family and Prunus genus, sweet cherries are 

considered one of the most popular seasonal fresh fruits due to its unique taste, 

skin color, and nutritional value [229]. They are geographically distributed 

worldwide, with a higher prevalence in temperate zones and typically 

harvested between spring and summer (June to mid-July) [230,231]. 

This fruit is characterized by a higher concentration of simple sugars, such as 

fructose, sucrose and glucose, and organic acids, such as malic, citric and lactic 

acids, which confer its characteristic sweetness [232]. In addition, it is an 

important source of vitamins and minerals, such as vitamin C, potassium, 

magnesium, calcium and phosphorus and phenolic compounds, being rich in 

phenolic acids and flavonoids [233]. Specifically, as described in the database 

on polyphenol content in food Phenol-Explorer, the phenolic composition of this 

cherry variant is characterized by a high content of flavonoids (1.86 mg/g), 

such as anthocyanins (1.71 mg/g) and flavanols (0.15 mg/g), and phenolic acids 

(0.88 mg/g), such as 3-caffeoylquinic (0.45 mg/g) and 3-p-coumaroylquinic 

acids (0.38 mg/g). Cyanidin 3-O-rutinoside (1.43 mg/g) is the major 

anthocyanin found in this fruit, accounting for approximately 80-90% of the 

total anthocyanin content, followed by cyanidin 3-O-glucoside (0.19 mg/g). In 

addition, the main flavanols present in this fruit are epicatechin (0.078 mg/g), 

catechin (0.015 mg/g), and procyanidin dimers (0.038 mg/g) and trimers 

(0.019 mg/g) [234]. Regarding the macronutrient composition, this fruit 

contains 135 mg/g of carbohydrates, 5 mg/g of lipids, 8 mg/g of proteins, 15 

mg/g of dietary fiber and 837 mg/g of water [235]. This fruit is also 

characterized for being rich in melatonin, which has been described to protect 

plants from stress by acting as a reactive oxygen species (ROS) scavenger 

[236,237]. Relevantly, by monitoring melatonin synthesis in sweet cherries 

cultivars, it was described that melatonin displayed a dual peak, the first at 
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night and the second when the highest light intensity of the day was reported, 

buffering the stressed induced by heat and UV light [237]. 

As it has been aforementioned, not only the development but also the 

phytochemical content of this fruit is highly sensitive to environmental 

variations in several factors, such as light exposure, temperature and nutrient 

availability [238,239]. Different studies have evidenced that direct application 

of UV irradiation markedly induced a higher biosynthesis of flavonoids in this 

fruit as a defensive mechanism [240,241]. Indeed, it was reported that after 72 

hours of UV light irradiation, sweet cherries synthesized and accumulated a 

higher content of anthocyanins than those exposed to a white fluorescent light 

(two-fold increase) [241].  

The high polyphenolic content of sweet cherries and their associated 

antioxidant properties have been of great interest in nutrition and health areas. 

Indeed, several studies have reported that the consumption of this fruit can be 

associated with a lower risk of CVD, diabetes, cancer and other inflammatory 

diseases [242,243]. Wu et al. reported that the supplementation of purified 

sweet cherry anthocyanins in HFD-fed mice induced anti-obesity effects in a 

dose-dependent manner [244]. Specifically, 200 mg/kg of diet of sweet cherry 

anthocyanins induced an attenuation of serum TAG, total and LDL cholesterol, 

hepatic lipids and circulating IL6 levels [244]. In addition, in a study performed 

with 18 men and women with slightly increased CRP levels, it was reported that 

sweet cherry consumption for 28 days (280 g/day) decreased the circulating 

levels of several pro-inflammatory markers such as CRP, endothelin-1, 

epidermal-growth factor and IL18 [245]. 
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Most mammals adapt their physiology and metabolism to external changes in 

order to ensure a correct homeostatic balance by anticipating the 

environmental variations that occur during the daily 24 hours and the annual 

365 days. These cyclic physiological and metabolic adaptations are known as 

circadian (about a day) and circannual (about a year) rhythms.  

Throughout the day, environmental conditions markedly differ during the cyclic 

light and darkness periods. The different features of each specie, the adaptation 

to the ecosystems in which they live and the advantages that light or darkness 

confers them in order to forage for food, have led them to exhibit a robust 

physiological and biochemical behavior that adapts to the day length. 

Therefore, the different species have evolved a strong photoperiodic response 

that involves a complex system of metabolic genes and proteins which oscillate 

24 hours a day, enabling an enhanced homeostatic regulation of metabolism.  

Similarly, environmental settings exhibit significant annual fluctuations, 

especially in areas far from the equator. Seasonal changes in the length of the 

photoperiod are reported all through the year, as well as different 

climatological conditions and food availability, which force animals to adapt 

themselves to the continuous changing environment. These processes are 

regulated by several mechanisms, mainly hormonal, which ensure that all the 

biologic functions will be performed at the optimal time and conditions. 

Overall, animals and humans are highly adapted to the foreseeable changes that 

take place in a system mainly controlled by light. Nevertheless, these 

adaptations are not enough to guarantee their survival, since environment is 

full of unceasing unpredictable changes. Thus, each year is characterized by 

different rainfall intensities or temperatures, affecting every year’s food 

availability and consequently, changing the possibilities of accumulating body 

supplies or breeding. 
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The Xenohormesis theory postulates that the coevolution of animals and plants 

have led to develop a regulatory system of unpredictable changes in the 

environment, in which heterotroph animals can recognize as signals the 

phytochemicals synthesized by plants. Especially fruits, but also other 

comestible parts of plants, contain a wide range of variable phytochemicals, 

also known as secondary metabolites. This variability of phytochemicals allows 

the different plants to exhibit specific colors or tastes in order to ensure their 

reproduction. Moreover, its concentration is highly dependent on the 

maturation time and on the availability of nutrients, especially water. These 

secondary metabolites are also crucial in plant protection against pathogens, 

being synthesized in a specific concentration by stressed plants. Therefore, 

each fruit consumed by animals is characterized by different groups of 

phytochemicals that depend on the variety of fruit, the kind of pathogens that it 

has been exposed to, the availability of nutrients and water of the soil in which 

it has grown and its maturation time. Relevantly, animals have evolved the 

ability to identify these phytochemicals as signals that allow them to favorably 

adapt to unpredictable environmental changes. In fact, it has been shown that 

these phytochemicals can directly interact with several transcriptional factors, 

enzymes, microRNAs or other specific molecules, being able to control the 

metabolism of the organisms that consume them.  

Behind this evolutionary phenomenon, there is a complex biochemical base that 

can elucidate how these bioactive compounds can exert positive effects in the 

prevention of several human diseases. Our research group have been working 

in this area over the last years, having focused on the effects of a group of 

phytochemicals known as proanthocyanidins, which are polyphenolic 

compounds synthesized in response to fungal infections. We have described 

that by interacting with several mechanisms at the molecular level, these 

compounds can exert beneficial effects on health, reducing the systemic 

inflammation, preventing the dyslipidemia and ameliorating the insulin 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



     II. Hypothesis and objectives      
 

75 

resistance. Is it a coincidence or it has an ecological sense in the context of the 

adaptive responses toward unpredictable changes in the environment?     

The present PhD thesis is focused in this line of research, in which we 

hypothesize that the consumption of seasonal fruits out of their 

harvesting season induces marked changes in the regulation of 

physiology and metabolism, which can contribute to the appearance and 

exacerbation of obesity and/or related metabolic disorders, such as 

insulin resistance. In other words, the intake of seasonal fruit out of season 

will produce an illegitimate signaling between the astronomic season and the 

one indicated by the bioactive compounds present in the fruit, altering the 

mammals’ circannual rhythms and, consequently, triggering impaired 

physiological and metabolic responses. 

We chose the sweet cherry (Prunus avium L.) as it is a seasonal fruit typically 

consumed worldwide with an interesting composition of phytochemicals. It is 

consumed as a fresh fruit in spring, a long day season. We have administered it 

lyophilized, conserving all its components, to animals submitted to different 

photoperiods in order to mimic the different seasonal light schedules: a short 

day photoperiod (6 hours of light and 18 hours of darkness), which resembles 

autumn/winter , and long day photoperiods (18 hours of light and 6 hours of 

darkness), which resembles spring/summer seasons. 

In addition, we have characterized these seasonal variations in day length in 

normoweight and diet-induced obese animals in order to describe the 

molecular mechanisms involved in the metabolic adaptations to predictable 

changes, which is crucial to comprehend the effects of sweet cherry 

consumption in the different seasons. For this purpose we have included a 

normal day photoperiod (12 hours of light and 12 hours of darkness) as a 

control, which allowed us to compare the metabolic responses to long and short 

photoperiods with the standard conditions mainly used in preclinical studies 
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with animal models.  We mainly focused this study in the liver and the skeletal 

muscle metabolisms, two central organs in the metabolic control. 

Thus, the main objective of the present PhD thesis was to evaluate whether 

the consumption of seasonal fruits (sweet cherry) out of season could 

induce detrimental effects on physiology and metabolism of normoweight 

and cafeteria-fed obese Fischer 344 rats, analyzing a wide variety of 

parameters mainly related with glucose and lipid metabolisms in blood, 

liver and skeletal muscles. To achieve this purpose, the following goals were 

raised: 

1. To evaluate, in the photoperiod-sensitive rat strain Fischer 344, the 

impact of the chronic exposure to different photoperiods (L12, 12h 

light/day; L18, 18h light/day and L6, 6h light/day; partly resembling the 

seasonal variations in day length) on physiology and glucose and lipid 

metabolisms, as well as to elucidate the underlying mechanisms 

(Manuscript 1). 

2. To characterize the physiological, metabolic and molecular changes 

prompted by the intake of the obesogenic high-palatable and energy 

dense cafeteria diet in F344 rats chronically exposed to the different 

photoperiods (Manuscript 2). 

3. To determine, in rats exposed to short (L6) and long (L18) photoperiods, 

whether the consumption of sweet cherry out of its harvesting season 

could produce an illegitimate signalling and consequently a) induce 

detrimental effects on the metabolism of normoweight animals and b) 

enhance the deleterious effects produced by the CAF intake 

(Manuscript 3). 
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ABSTRACT 

Seasonal variations in day length trigger clear changes in the behavior, growth, 

food intake and reproductive status of photoperiod-sensitive animals, such as 

Fischer 344 rats. However, there is little information about the effects of 

seasonal fluctuations in day length on glucose and lipid metabolisms and their 

underlying mechanisms in this model. To gain knowledge on these issues, three 

groups of male Fischer 344 rats were fed with a standard diet and exposed to 

different photoperiods for 14 weeks: normal photoperiod (L12, 12 h light/day), 

long photoperiod (L18, 18 h light/day), and short photoperiod (L6, 6 h 

light/day). A multivariate analysis carried out with 239 biometric, serum, 

hepatic and skeletal muscle parameters revealed a clear separation among the 

three groups. Compared with L12 rats, L6 animals displayed a marked 

alteration of glucose homeostasis and fatty acid uptake and oxidation, which 

were evidenced by the following observations: 1) increased circulating levels of 

glucose and non-esterified fatty acids; 2) a sharp downregulation of the 

phosphorylated Akt2 levels, a downstream post-receptor target of insulin, in 

both the soleus and gastrocnemius muscles; 3) decreased expression in the 

soleus muscle of the glucose metabolism-related microRNA-194 and lower 

mRNA levels of the genes involved in glucose metabolism (Irs1, soleus, and 

Glut2, liver), β-oxidation (Had and Cpt1β, soleus) and fatty acid transport (Cd36, 

soleus and liver). L18 animals also displayed higher blood glucose levels than 

L12 rats and profound changes in other glucose and lipid metabolism-related 

parameters in the blood, liver and skeletal muscles. However, the mechanisms 

that account for the observed effects were less evident than those reported in 

L6 animals. In conclusion, exposure to different photoperiods strongly 

modulated glucose and lipid metabolisms in normoweight rats. These findings 

emphasize the relevance of circannual rhythms in metabolic homeostasis 

regulation and suggest that Fischer 344 rats are a promising animal model with
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which to study glucose- and lipid-related pathologies that are influenced by 

seasonal variations, such as obesity, cardiovascular disease and seasonal 

affective disorder. 

Key words: photoperiod, circannual rhythms, insulin sensitivity, glucose 

metabolism, lipid metabolism. 

1. INTRODUCTION 

It has generally been established that many mammals are season- or 

photoperiod-sensitive and are able to change their behavior, morphology and 

physiology to anticipate climate and food availability changes among the 

seasons [1,2]. Thus, food intake, growth, energy balance and reproduction have 

been observed to vary during the year in some species to ensure their survival 

[3]. This seasonal responsiveness can be regulated by two mechanisms: the first 

is promoted by environmental cues that indicate the time of year, such as the 

day length (photoperiod), in which melatonin plays a key role [4]; the second 

corresponds to the endogenous circannual rhythms, which are adjusted by 

environmental cues and can adapt to seasonal processes as a response to 

variations in the photoperiod or other external signals [5]. Despite the limited 

impact of seasonality because of the increased use of artificial lighting, heating 

and air conditioning systems, humans also display seasonal changes in different 

anthropometric, physiologic, metabolic and behavior parameters [6–9]. Thus, 

the body fat significantly increases during winter in latitudes far from the 

equator, where greater variations in temperature, climate and daylight hours 

are registered, and the levels of physical activity and energy expenditure are 

lower in the winter than in the summer [6,7]. Since fat accretion and decreased 

physical activity can increase the risk of insulin resistance and cardiovascular 

disease (CVD), the seasonal variations in these and other parameters can place 

the human health at more risk in winter than in summer [7]. This fact is 
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illustrated by the increased number of cardiac events observed in winter both 

north and south of the equator, by the additional 20,000 deaths per year caused 

by coronary and cerebrovascular events that were reported in England and 

Wales during this season, and by the strong negative correlation found between 

CVD mortality and the hours of sunshine [9]. However, since the seasonal 

variation of these risk factors that trigger a peak winter mortality is influenced 

by changes in other exogenous factors different than day length, such as 

temperature and lifestyle [6,7,9], the relevance of seasonal variations in day 

length on health is far from being established. In this sense, the use of animal 

models, which can be maintained under constant temperature and social input, 

have emerged as a useful strategy to shed more light on how exposure to 

different photoperiods impacts physiology and health. 

In the study of the seasonal effects, the most used animal models have been 

long-day breeding rodents, such as hamsters and voles, since they display quick 

responses to different photoperiods [10,11]. Nevertheless, one of the main 

drawbacks to using these models is the limited genetic information available in 

data repositories, in addition to the scarce molecular and biochemical tools to 

study these seasonal species. For this reason, in recent decades, Fischer 344 

rats have become an interesting animal model with which to evaluate the 

effects of photoperiod exposure since they display a marked physiological and 

reproductive response to seasonal variations in day length [12–19]. As an 

example, Heideman et al. showed that, after exposure to photoperiods of more 

than 13.5 hours, young Fischer 344 rats displayed higher lean and fat mass, 

food intake and an increase in testis weight and size compared to those rats 

exposed to a shorter photoperiod, which exhibited a regressive phenotype 

[15,16]. Nevertheless, to the best of our knowledge, the photoperiod effects on 

glucose and lipid metabolisms, the impairment of which is strongly related to 

the appearance of risk factors for CVD, including obesity, insulin resistance and 

dyslipidemia, have not yet been evaluated in this animal model. 
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In C57BL/6J mice, Tashiro and collaborators showed that the exposure to a 

short photoperiod for 3 weeks produced hyperglycemia, which was partly 

explained by the downregulation of the glucose transporter GLUT4 in the 

gastrocnemius muscle [20]. These authors also demonstrated that C57BL/6J 

mice held under a short photoperiod displayed increased sucrose intake, body 

weight and fat mass and a depressive state [21,22], partly resembling subjects 

suffering from seasonal affective disorder (SAD), a mood disorder in which 

people exhibit depressive symptoms, hyperphagia, carbohydrate cravings, 

increased body weight gain and fat accretion, especially in winter [23]. In 

humans, it has been shown that a standard oral glucose tolerance test triggers a 

lower and slower insulin response during spring than during autumn, 

suggesting seasonal differences in insulin secretion and/or the different blood 

sugar lowering effects of this hormone at different seasons of the year [24]. In 

obese male subjects, it has been observed that the circulating levels of 

cholesterol, triglycerides and the adipocytokine leptin, which play an important 

role in long-term regulation of body weight and energy homeostasis, 

significantly increase during winter [6]. 

All the aforementioned findings prompted us to hypothesize that chronic 

exposure to different photoperiods would produce changes related with 

glucose and lipid metabolisms in Fischer 344 rats. Therefore, the main aim of 

the present study was to determine the effects of a chronic exposition to 

different photoperiods on glucose, lipid and energy metabolisms in 

normoweight Fischer 344 rats. Our goal was accomplished by analyzing 

different biochemical parameters and key genes and proteins involved in these 

metabolisms and carrying out an 1H NMR metabolomic analysis of the blood, 

liver and skeletal muscle. 
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2. MATERIALS AND METHODS 

2.1. Animals 

The animals used were 8-week-old male Fischer 344 rats (Charles River 

Laboratories, Barcelona, Spain). After an adaptation period of 4 days, in which 

animals were housed in pairs at 22ºC under a light/dark cycle of 12 hours, they 

were submitted to three light schedules to emulate season’s day length: short 

day photoperiod (n=6, L6, 6 h light—from Zeitgeber times (ZTs) 0 to 6—and 18 

h darkness—from ZTs 6 to 24), normal day photoperiod (n=6, L12, 12 h light—

from ZTs 0 to 12—and 12 h darkness—from ZTs 12 to 24) and long day 

photoperiod (n=6, L18, 18 h light—from ZTs 0 to 18—and 6 h darkness—from 

ZTs 18 to 24). Rats in each photoperiod were fed ad libitum with a standard diet 

(2.90 kcal·g-1; Teklad Global 14% Protein Rodent Diet 2014, ENVIGO, Sant Feliu 

de Codines, Barcelona, Spain). Food intake and body weight data were recorded 

weekly. After 14 weeks, the animals were deprived of food for one hour and 

were sacrificed between ZTs 1 and 2 to minimize the possible circadian 

variations. The blood was collected, and the serum was obtained by 

centrifugation and stored at -80ºC until analysis. Liver, gastrocnemius and 

soleus muscle were rapidly removed after death, weighed, frozen in liquid 

nitrogen and stored at -80ºC until further analysis. The Animal Ethics 

Committee of the University Rovira i Virgili (Tarragona, Spain) approved all the 

procedures. 

2.2. Body composition analysis 

Lean and fat mass analyses were performed one week before the sacrifice using 

an EchoMRI-700™ device (Echo Medical Systems, L.L.C., Houston, USA). The 

measurements were performed in duplicate. Data are expressed in absolute (g) 

and relative values as a percentage of body weight (%). Lean/fat mass ratio was 

also calculated. 
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2.3. Serum analysis 

Enzymatic colorimetric assays were used for the analysis of glucose, total 

cholesterol and triglycerides (QCA, Amposta, Tarragona, Spain), phospholipids 

(Spinreact, St. Esteve de Bas, Girona, Spain) and non-esterified free fatty acids 

(NEFAs) (WAKO, Neuss, Germany). Serum insulin and glucagon levels were 

analyzed using a rat insulin ELISA kit (Millipore, Barcelona, Spain) and a rat 

glucagon ELISA kit (Cusabio Biotech, Wuhan, China), respectively. 

2.4. Total glycogen extraction and quantification 

In this method, 750 mg and 400 mg samples of liver and gastrocnemius muscle, 

respectively, were boiled for 20 minutes in a KOH 30% solution. Total glycogen 

was precipitated by adding saturated Na2SO4 and 95% ethanol and then 

centrifuged at 2560 x g for 15 min at 4ºC. Supernatants were boiled with 

hydrochloric acid for 2 hours to hydrolyze glycogen into glucose and 

neutralized with sodium chloride. Glucose levels were determined by an 

enzymatic colorimetric kit (QCA, Amposta, Tarragona, Spain). 

2.5. Total lipid content extraction and quantification  

Lipids were extracted from liver (100 mg) and gastrocnemius muscle (200 mg) 

using the methods described in [25] and [26], with the modifications described 

in [27]. The quantity of the lipids in both tissues was determined 

gravimetrically. Both the lipid and aqueous fractions obtained in this extraction 

were used to perform an NMR analysis for metabolite determination in both 

tissues. 

2.6. Alanine Aminotransferase (ALT) and Lactate Dehydrogenase (LDH) 

activity  

Fifty milligrams of liver and gastrocnemius muscle were homogenized in 500 

μL of ALT or LDH Assay buffer and centrifuged at 10000 x g for 15 minutes at 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



                                    Manuscript 1      
 

87 

4ºC. ALT and LDH activities were determined using an ALT Activity Assay Kit 

(Sigma, Madrid, Spain) and LDH Activity Assay Kit (Sigma, Madrid, Spain), 

respectively. 

2.7. Serum extraction and 1H NMR analysis for metabolite determination 

Serum metabolites were extracted with methanol:water (8:1). After 

centrifugation (1800 x g, 10 min at 4ºC), supernatants containing soluble 

metabolites were placed into new vials. Pellets resulting from the aqueous 

extraction were washed twice with methanol:water. Supernatants were dried 

in an N2 stream to remove water and stored at -80ºC.  

For 1H NMR analysis, the aqueous extracts obtained in the serum, liver and 

gastrocnemius muscle extractions were reconstituted in 700 µl of a solution 

containing 0.005% trisilylpropionic acid (TSP) (0.7381 mM) dissolved in D2O 

phosphate buffer (0.05 M). Lipophilic extracts were subsequently dissolved in 

700 µl of a solution containing 0.01% tetramethylsilane (TMS) dissolved in 

CD3Cl:CD3OD (2:1). Samples were vortexed, homogenized for 5 min and 

centrifuged (15 min at 14000 x g). Finally, the redissolved extractions were 

transferred into 5 mm NMR glass tubes.  

1H NMR measurements were performed following the procedure described by 

Vinaixa et al [28].  

2.8. NMR data analysis  

NMR data analysis was performed as previously described [28]. 

2.9. Gene expression analysis 

Liver, gastrocnemius and soleus muscle total RNA and microRNA were 

extracted using TriPure reagent (Roche Diagnostic, Sant Cugat del Vallès, 

Barcelona, Spain) according to the manufacturer’s protocol. To isolate both the 

total and micro RNA species, samples were incubated overnight with 100% 
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isopropanol at -20ºC. The cDNA was synthetized using MuLV reverse 

transcriptase (Applied Biosystems, Madrid, Spain) and subjected to 

quantitative PCR amplification using a LightCycler 480 II system with SYBR 

Green I Master Mix (Roche Diagnostic, Sant Cugat del Vallès, Barcelona, Spain). 

The reaction was performed according to the instructions provided by the 

manufacturer. The primers used for the different genes are described in 

Supplementary Table 1 and were obtained from Biomers.net (Ulm, Germany). 

The relative expression of each mRNA level was calculated as a percentage of 

the L12 group, using the -2∆∆Ct method with Ppia, β-actin, Hprt and Tfrc genes 

as endogenous controls. 

2.10. miR quantitative real-time PCR 

Soleus muscle miR-194, miR-133 and miR-486 levels were measured using 

TaqMan Advanced miRNA Assays (Applied Biosystems, Carlsbad, CA, USA). 

Then, 2.5 ng of RNA was used to synthetize the cDNA using a TaqMan 

Advanced miRNA cDNA Synthesis Kit (Applied Biosystems, Carlsbad, CA, USA), 

and it was subjected to quantitative PCR on the LightCycler 480 II system 

(Roche Diagnostic, Sant Cugat del Vallès, Barcelona, Spain) with SYBR Green 

PCR Master Mix (Applied Biosystems, Carlsbad, CA, USA). miR-191 was used as 

an endogenous miRNA. 

2.11. Western Blot analysis 

Total and phosphorylated (p) AMP-activated protein kinase (AMPK and (p)-

AMPK)  (62 kDa) and Akt serine/threonine kinase 2 (Akt2 and (p)-Akt2) (60 

kDa) protein levels in the liver, soleus and gastrocnemius muscle were 

measured by western blot analysis as previously described [29] with some 

modifications. Specifically, the membranes were incubated overnight with the 

two primary antibodies, mouse anti-Akt2 (L79B2) and rabbit anti-(p)-Akt2 

(Ser474) (Cell Signaling, Izasa SA, Barcelona, Spain), diluted 1/2500. Then, the 
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membranes were incubated with goat anti-mouse and goat anti-rabbit 

secondary antibodies (LI-COR, USA), diluted 1/10000. In the liver samples, β-

actin primary antibody was used as an endogenous control (42 kDa) (Abcam, 

England, UK). In the soleus and gastrocnemius muscles, α-tubulin was used as a 

loading control (52 kDa) (Cell Signaling Technology, Barcelona, Spain). 

2.12. Statistical analysis 

Data are expressed as the mean ± SEM. Grubbs’ test was used to detect outliers, 

which were discarded before subsequent analyses. Statistical analyses were 

performed using SPSS Statistics 22 (SPSS, Inc., Chicago, IL, USA). One-way 

ANOVA followed by Duncan’s post hoc test was used to determine significant 

differences among the three groups. Student’s t-test was used for single 

statistical comparisons. The level of statistical significance was set at bilateral 

5%.  

Principal component analysis (PCA) and partial least squares discriminant 

analysis (PLS-DA) were performed after data normalization and autoscaling 

using MetaboAnalyst 3.0 software [30]. 

3. RESULTS 

3.1. The exposure to different photoperiods altered the circulating levels 

of glucose and NEFAs 

No significant changes among groups were found in cumulative food intake, 

body weight gain and body composition. Animals exposed to the L6 

photoperiod showed residually lower liver weights (p=0.014, Student’s t test) 

than the L12 group, but no changes were observed in the muscle and testes 

weights (Table 1). The analysis of serum parameters revealed that L6 and L18 

animals exhibited significantly higher glucose circulating levels compared to 

the L12 animals (Table 1). Moreover, L6 rats also presented residually higher 
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circulating levels of NEFAS (p=0.031, Student’s t test) than L12 animals (Table 

1).  

Table 1. Biometric and serum parameters in rats fed a standard diet and exposed to 

three different light schedules for 14 weeks. 

 

 L6 L12 L18  

Cumulative food intake (g) 231 ± 3 230 ± 4 228 ± 5  

Biometric parameters     

Initial body weight (g) 180 ± 8 201 ± 4 195 ± 10  

Final body weight (g) 370 ± 11 381 ± 7 387 ± 13  

Body weight gain (g) 191 ± 8 180 ± 7 192 ± 8  

Liver (g) 11.86 ± 0.15 12.94 ± 0.30 12.73 ± 0.45  

Skeletal muscle (g) 2.08 ± 0.07 2.10 ± 0.04 2.12 ± 0.03  

Testes (g) 3.09 ± 0.06 3.02 ± 0.06 3.04 ± 0.04  

Fat mass (g) 45.06 ± 1.29 52.72 ± 3.65 55.64 ± 4.41  

Fat mass (%) 12.52 ± 0.34 13.93 ± 0.86 14.38 ± 0.75  

Lean mass (g) 296 ± 8 308 ± 6 310 ± 9  

Lean mass (%) 80.94 ± 1.04 81.48 ± 0.81 80.71 ± 0.67  

Lean/fat mass ratio 6.56 ± 0.22 5.98 ± 0.42 5.71 ± 0.37  

Serum parameters     

Glucose (mmol/L) 7.73 ± 0.19a 6.89 ± 0.09b 7.59 ± 0.19a P 

Insulin (ng/mL) 4.04 ± 0.66 5.41 ± 0.72 5.54 ± 0.73  

Glucagon (ng/mL) 2.66 ± 0.13 2.19 ± 0.29 2.86 ± 0.04  

Insulin:glucagon ratio 1.57 ± 0.32  2.69 ± 0.43 1.79 ± 0.24  

NEFAs (mmol/L) 0.72 ± 0.06 0.56 ± 0.03 0.62 ± 0.05  

Phospholipids (mmol/L) 3.08 ± 0.17 2.64 ± 0.15 2.83 ± 0.10  

Triglycerides (mmol/L) 1.60 ± 0.12 1.30 ± 0.12 1.39 ± 0.11  

Total cholesterol (mmol/L) 3.26 ± 0.19 2.69 ± 0.19 2.97 ± 0.09  

Male Fischer 344 rats were fed a standard diet and were exposed to three different 

photoperiods for 14 weeks. Data are expressed as the mean ± SEM (n=6). One-way ANOVA and 

Duncan’s post hoc tests were performed to compare the values between the groups and 
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significant differences were represented with different letters (a, b). P, photoperiod effect. The 

skeletal muscle weight represents the total weight of both soleus and gastrocnemius muscles. 

 

3.2. Rats held under different photoperiods displayed changes in the 

circulating levels of nitrogenate metabolites 

By analysis of the serum metabolomics, which were performed using NMR, we 

found 8 nitrogenate metabolites with significant changes among the groups. 

Creatine, histamine, isoleucine, threonine and tryptophan levels were higher in 

the L6-photoperiod exposed animals than both the L12 and L18 animals (Table 

2). This group exhibited higher histidine and tyrosine levels than the L18 group 

(Table 2).  

The L6 group displayed lower 3-hydroxybutyrate levels than the L18 group and 

higher acetate levels compared to both the L12 and L18 groups (Table 2). All 

other metabolites that did not reach statistical significance are shown in 

Supplementary Table 2. 

3.3. The chronic exposure to different photoperiods modified the glucose 

and glycogen liver content and the mRNA levels of key genes involved 

in hepatic glucose metabolism 

To elucidate which mechanisms can be involved in the altered circulating 

glucose levels observed in both L6 and L18 groups, we measured different 

glucose metabolism-related parameters in liver, which plays an essential role in 

glucose homeostasis and is highly regulated by circadian rhythms [31]. L18 

animals displayed residually lower levels of hepatic glucose than L6 rats 

(p=0.015, Student’s t test) (Figure 1A) and less hepatic glycogen content than 

the L12 rats (p=0.031, Student’s t test) (Figure 1B). The gene expression 

analyses carried out in the liver revealed that the L18-photoperiod exposed rats 

displayed a vast overexpression of glucokinase (Gk), a key glycolytic-related 

gene, compared to L6 rats. Moreover, L18 animals displayed lower mRNA levels 
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of the gluconeogenic gene phosphoenolpyruvate carboxykinase 1 (Pck1) than 

L12 rats and residually lower gene expression levels of fructose-1,6-

biphosphatase 1 (Fbp1) compared to L12 and L6 animals (p=0.05 and p=0.036, 

Student’s t test, respectively) (Figure 2B). L6 animals displayed decreased 

expression of the genes encoding the glucose transporter 2 (GLUT2) than the 

L12 animals (Figure 2B). All the metabolites obtained by NMR analysis are 

shown in Supplementary Table 3. 

To further explore the mechanisms involved in the photoperiodic regulation of 

glucose metabolism, the phosphorylated levels of Akt2 and AMPK, two proteins 

involved in glucose and insulin homeostasis [32,33], were determined in the 

liver of the three groups of rats. Nevertheless, no changes among the groups 

were reported in the hepatic levels of these key proteins (Figures 2C,E). 

3.4. The lipid content and expression of fatty acid transport-related genes 

changed in the liver of the photoperiod groups 

L18 rats displayed significantly greater levels of glycerophosphocholine and 

residually higher levels of diglycerides (p=0.016, Student’s t test) in this tissue 

than the L12 group (Figure 1C). These metabolic changes observed in L18 rats 

were accompanied by significant downregulation of the mRNA levels of the 

genes codifying the fatty acid transport protein 5 (Fatp5) and the fatty acid 

translocase, homologue of CD36 (Cd36) (Figure 2A) compared to that in the 

L12 rats. The Cd36 mRNA levels were also significantly lower in animals 

exposed to the L6 photoperiod than in the L12 group animals (70.6% lower) 

(Figure 2A). 
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Table 2. Representative serum metabolite concentrations analyzed by nuclear magnetic 

resonance in response to different photoperiod exposure in animals fed a standard diet 

for 14 weeks. 

 

Metabolite 
concentration (μmol/L) 

L6 L12 L18 
 

3-Hydroxybutyrate   15.82 ± 1.34a 20.97 ± 2.78ab 27.36 ± 0.99b P 

Acetate   45.36 ± 2.63a 38.75 ± 1.11b 36.84 ± 0.89b P 

Alanine   139.29 ± 3.63a 120.06 ± 5.99b 133.98 ± 2.67a P 

Creatine   81.95 ± 4.84a 65.54 ± 2.09b 58.55 ± 3.96b P 

Formate   8.25 ± 1.16a 6.99 ± 0.82a 1.65 ± 0.64b P 

Glutamine   140.65 ± 3.10 127.14 ± 6.28 130.03 ± 4.78  

Glycerophosphocholine   55.46 ± 0.88ab 50.97 ± 1.88a 58.43 ± 2.50b P 

Histamine   5.14 ± 0.50a 2.45 ± 0.33b 2.06 ± 0.35b P 

Histidine   18.86 ± 0.38a 17.14 ± 0.81a 14.18 ± 0.75b P 

Isoleucine   19.56 ± 1.12a 15.60 ± 0.70b 14.39 ± 0.73b P 

Lactate  1193 ± 55a 1357 ± 113ab 1624 ± 134b P 

Lysine   80.10 ± 0.64 87.41 ± 3.57 77.14 ± 4.90  

Oxypurinol   4.23 ± 0.79 2.06 ± 0.17 2.69 ± 0.62  

Pyruvate    18.97 ± 0.89a 15.41  ± 1.23b 12.32 ± 0.62c P 

Threonine   37.03 ± 2.22a 30.01 ± 2.25b 26.37 ± 2.18b P 

Tryptophan   27.62 ± 0.73a 24.50 ± 0.91b 23.19 ± 0.89b P 

Tyrosine   18.67 ± 0.55a 17.62 ± 0.58a 15.72 ± 0.50b P 

Male Fischer 344 rats were fed a standard diet and were exposed to three different 

photoperiods for 14 weeks. Data are expressed as the mean ± SEM (n=6). All the metabolites 

were obtained by performing a nuclear magnetic resonance (NMR) analysis. One-way ANOVA 

and Duncan’s post hoc tests were performed to compare the values between groups and 

significant differences were represented with different letters (a, b). P, photoperiod effect. 
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Figure 1. Hepatic glucose (A) and lipid-related metabolites (C), glycogen (B) and total lipid 

levels (D), alanine aminotransferase (ALT) (E) and lactate dehydrogenase (LDH) activity levels 

(F) in the liver of male Fischer 344 rats fed with a standard diet and exposed to three different 

photoperiods for 14 weeks. Data are represented as the mean ± SEM (n=6). Liver metabolites 

concentrations (expressed as µmol/g tissue) are shown in Supplementary Table 3. P, 

photoperiod effect (p<0.05, one-way ANOVA). ab Mean values with different letters are 
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significantly different among the groups (p<0.05, Duncan post hoc test). T_CHOL, total cholesterol; 

F_CHOL, free cholesterol; E_CHOL, esterified cholesterol; TG, triglycerides; DG, diglycerides; GPC, 

glycerophosphocholine; T_PHOS, total phospholipids. 
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Figure 2. The mRNA levels of lipid metabolism (A), glucose metabolism (B) and circadian 

rhythm-related genes (D) and the protein levels of pAkt2 (C) and pAMPK (E) in the liver of 

male Fischer 344 rats fed with a standard diet and exposed to three different photoperiods for 

14 weeks. Data are represented as the mean ± SEM (n=6). P, photoperiod effect (p<0.05, one-

way ANOVA). ab Mean values with different letters are significantly different among groups 

(p<0.05, Duncan post hoc test). Acc1, acetyl CoA carboxylase 1; Bmal1, brain and muscle Arnt-like 

protein-1; Cd36, fatty acid translocase, homologue of CD36; Cpt1α, carnitine palmitoyltransferase 1 alpha; 

Cry1, cryptochrome circadian clock 1; Dgat1, diacylglycerol acyltransferase 1; Fatp5, fatty acid transport 

protein 5; Fbp1, fructose-1,6-biphosphatase 1; G6pc, glucose-6-phosphatase, catalytic subunit; G6pdh, 

glucose-6-phosphate dehydrogenase; Glut2, glucose transporter 2; Gk, glucokinase; Gpat, glycerol-3-

phosphate acyltransferase; Hprt, hypoxanthine guanine phosphoribosyl transferase; Nampt, nicotinamide 

phosphoribosyltransferase; Nr1d1, nuclear receptor subfamily 1, group D, member 1; pAkt2, 

phosphorylated Akt serine/threonine kinase 2; pAMPK, phosphorylated AMP-activated protein kinase; 

Pck1, phosphoenolpyruvate carboxykinase 1; Per2, period circadian clock 2; Rorα, RAR-related orphan 

receptor A; Srebp1c, sterol regulatory element-binding protein 1c. 

3.5. The exposure to different day lengths altered the mRNA levels of fatty 

acid transport, β-oxidation and insulin signaling-related genes and 

the microRNA-194 expression in the soleus muscle 

To better characterize the effects of chronic exposure to different photoperiods 

related to the increase in the circulating levels of glucose and NEFAs, the mRNA 

levels of a subset of genes involved in fatty acid uptake, β-oxidation, glycolysis 

and insulin signaling were analyzed in both the soleus and gastrocnemius 

muscles of the L6, L12 and L18 rats. In the soleus muscle, animals exposed to 

both short and long photoperiods displayed a significant, sharp downregulation 

of the fatty acid transporter Cd36 mRNA levels (56.5% and 49.8% lower, 

respectively) compared to L12 rats (Figure 3C). Both groups also exhibited 

lower expression of the β-oxidation-related gene carnitine palmitoyltransferase 

1 beta (Cpt1β) but only L6 animals displayed significant lower hydroxyacyl-CoA 

dehydrogenase (Had) mRNA levels in comparison with L12 animals (Figure 

3C). The L18-photoperiod exposed rats showed lower mRNA levels of 

phosphofructokinase (Pfk), a gene involved in the glycolytic process, than the 
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L12 rats (Figure 3A). In addition, L6 rats presented lower mRNA levels of the 

insulin receptor substrate 1 (Irs1) (p=0.007, Student’s t test) (Figure 3A), a 

gene encoding a key protein involved in the insulin signaling pathway [33], and 

lower expression levels of the glucose metabolism-related microRNA-194 (miR-

194) [34] than the L12 rats (p=0.009, Student’s t test) (Figure 3B). No 

significant changes among groups were observed in the expression of these 

genes in the gastrocnemius muscle (Figures 4A,C).  

3.6. The NMR metabolomic analysis revealed an effect of the photoperiod 

on the levels of lipid and energy intermediates in the gastrocnemius 

muscle 

In the gastrocnemius muscle, succinate, adenosine monophosphate (AMP) and 

inosine monophosphate (IMP) levels were significantly higher in L6 rats 

compared to the other groups (Figure 5A), suggesting an altered energy 

metabolism caused by exposure to this photoperiod. This group also displayed 

lower levels of total cholesterol and diglycerides than the L18 group and, 

consequently, a lower amount of total lipids in this tissue (Figures 5B,C). No 

differences among groups were observed in the muscular glucose and glycogen 

levels (Figures 5A,D). All the metabolites obtained by the NMR analysis are 

shown in Supplementary Table 4. 

3.7. Photoperiod exposure slightly modulated Cori and Cahill cycles 

intermediates in liver, skeletal muscle and blood 

L6 animals displayed lower serum lactate levels than the L18 animals and 

higher circulating levels of pyruvate compared to both the L12 and L18 rats 

(Table 2). In addition, L6 animals showed higher hepatic pyruvate levels than 

L12 animals (p=0.042, Student’s t test) (Figure 1A). Both L6 and L18 animals 

exhibited greater circulating levels of alanine compared to L12 rats (Table 2). 
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L18 animals also displayed higher hepatic alanine levels than the rats held 

under the other photoperiods (Figure 1A).  

The changes in the levels of pyruvate, alanine and lactate observed among the 

groups prompted us to evaluate whether exposure to different photoperiods 

could alter the Cori and Cahill cycles by analyzing the enzymatic activity of ALT 

and LDH in the muscle and liver. Concerning the Cori cycle, the metabolic 

pathway in which lactate produced by anaerobic glycolysis in the muscles is 

released into the bloodstream, transported to the liver and converted to 

glucose, then returns to the muscles and is metabolized back to lactate [35], 

only a significant drop in the enzymatic activity of LDH, which catalyzes the 

conversion of lactate to pyruvate and back, was observed in the gastrocnemius 

muscle of L6 animals compared to L12 rats (p=0.010, Student’s t test) (Figure 

5F). Regarding the Cahill cycle, the pathway through which the muscles export 

pyruvate and amino groups as alanine to the liver, and receive glucose from the 

liver via the bloodstream [36], only a significant decrease in the ALT activity, 

which, in a reversible manner, converts L-glutamate and pyruvate into α-

ketoglutarate and L-alanine, was observed in the liver of the L6 animals 

compared to L12 rats (p=0.038, Student’s t test) (Figure 1E). However, no 

changes were observed either in the hepatic LDH (Figure 1F) or in the 

muscular ALT (Figure 5E) activities. Altogether, these findings would not 

support a photoperiod effect on the modulation of the Cahill and Cori cycles. 

3.8. The phosphorylated levels of Akt2 and AMPK were photoperiodically 

regulated in the skeletal muscles 

The profound changes triggered by the exposure to different photoperiods in 

the soleus mRNA levels of genes involved in fatty acid uptake, β-oxidation and 

insulin signaling as well as in the gastrocnemius AMP and IMP content, 

prompted us to analyze the phosphorylated levels of Akt2 and AMPK in both 

muscles to shed more light on the mechanisms that mediated the photoperiodic 
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effects on glucose and lipid metabolisms. In both soleus and gastrocnemius 

muscles, L6 photoperiod-exposed animals exhibited a sharp downregulation of 

the phosphorylated Akt2 levels (pAkt2) compared to L12 and L18 animals, and 

this decrease was greater in the soleus muscle (84.5% and 79.9% lower, 

respectively) than in the gastrocnemius muscle (53.6% and 60.3% lower, 

respectively) (Figures 3E and 4B). Moreover, L6 animals exhibited a vast 

upregulation of the phosphorylated levels of AMPK (pAMPK) compared to L12 

and L18 animals in the soleus (163.8% and 167.3% higher, respectively) and 

gastrocnemius muscle (115% and 57.4% greater, respectively) (Figures 3G 

and 4D). L6 rats also presented a lower total protein content in both the soleus 

and gastrocnemius muscles than the L12 and L18 animals (Figures 3D and 

4F). 

3.9. The exposure to the long day photoperiod altered the expression of 

circadian rhythm-related genes in the liver and skeletal muscles 

In addition to affecting seasonal rhythms, it is well known that the light-dark 

cycle is a key regulator of the daily rhythmicity, which is under the control of an 

internal circadian clock, which, in turn, plays a very important role in 

metabolism regulation [37,38]. Since the alteration of this body clock in both 

animals and humans exposed to disrupted light:dark cycles results in 

alterations in glucose and lipid metabolisms [39–41], we analyzed the hepatic 

and muscular mRNA levels of key clock genes to explore whether changes in the 

expression of these genes could partly explain the metabolic changes observed 

in rats held under different photoperiods. Animals exposed to the L18 

photoperiod displayed lower mRNA levels of the brain and muscle Arnt-like 

protein-1 (Bmal1) gene and higher gene expression levels of its product, period 

circadian clock 2 (Per2), in liver and in the soleus muscle (Figures 2D and 3F). 

Furthermore, this group also showed lower mRNA levels of the nuclear 

receptor subfamily 1 group D member 1 gene (Nr1d1), the repressor of Bmal1, 
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in all three tissues (Figures 2D, 3F and 4E) compared to its counterparts. 

Hepatic cryptochrome circadian clock 1 (Cry1) gene expression was also 

greater in L18-photoperiod exposed animals than in those exposed to the L12 

photoperiod (Figure 2D). 

 

Figure 3. The mRNA levels of glucose metabolism (A), lipid metabolism (C) and circadian 
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rhythm-related genes (F), microRNA expression levels (B), the total protein levels (D) and the 

protein levels of pAkt2 (E) and pAMPK (G) in the soleus muscle of male Fischer 344 rats fed 

with standard diet and exposed to three different photoperiods for 14 weeks. Data are 

represented as the mean ± SEM (n=6). P, photoperiod effect (p<0.05, one-way ANOVA). ab Mean 

values with different letters are significantly different among groups (p<0.05, Duncan post hoc 

test). Cpt1β, carnitine palmitoyltransferase 1 beta; Fatp1, fatty acid transport protein 1; Glut4, glucose 

transporter 4; Hk2, hexokinase 2; Had, hydroxyacyl-CoA dehydrogenase; Irs1, insulin receptor substrate 1; 

mPK, pyruvate kinase type M; Pfk, phosphofructokinase. The rest of the genes analyzed have already 

been described in Figure 2. 
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Figure 4. The mRNA levels of glucose metabolism (A), lipid metabolism (C) and circadian 

rhythm-related genes (E), the protein levels of pAkt2 (B) and pAMPK (D) and the total protein 

levels (F) in the gastrocnemius muscle of male Fischer 344 rats fed with a standard diet and 

exposed to three different photoperiods for 14 weeks. Data are represented as the mean ± SEM 

(n=6). P, photoperiod effect (p<0.05, one-way ANOVA). ab Mean values with different letters are 

significantly different among groups (p<0.05, Duncan post hoc test). The genes analyzed have 

been already described in Figures 2 and 3. 
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Figure 5. Glucose (A) and lipid-related metabolites (B), total lipid (C) and glycogen levels (D), 

alanine aminotransferase (ALT) (E) and lactate dehydrogenase (LDH) activity levels (F) in the 

gastrocnemius muscle of male Fischer 344 rats fed a standard diet and exposed to three 

different photoperiods for 14 weeks. Data are represented as the mean ± SEM (n=6). 

Gastrocnemius muscle metabolites concentrations (expressed as µmol/g tissue) are shown in 

the Supplementary Table 4. P, photoperiod effect (p<0.05, one-way ANOVA). ab Mean values 

with different letters are significantly different among groups (p<0.05, Duncan post hoc test). 

AMP, adenosine monophosphate; IMP, inosine monophosphate. The lipid-related metabolites 

analyzed have been already described in Figure 1.  

3.10. Multivariate analysis allowed the clear differentiation of animals 

exposed to different photoperiods 

First, all 239 parameters measured in this study were analyzed in a PLS-DA 

predictive model to obtain which were variables with more differences among 

the three groups (Figure 6A). The quality parameters associated with the 

model were acceptable. When the scores of 3 components were represented, 

the degree of fit of the model to the data (R2) was 0.99, and the result of the 

cross validation of the model (Q2) was 0.57, with >0.4 considered an acceptable 

value for a biological model [42]. Variables with a coefficient mean higher than 

50 were selected for PCA multivariate analysis (Figure 6B). 

A total of 17 variables were obtained and were used to set up a PCA analysis, in 

which 71% variance was explained when three components were represented. 

This analysis showed a clear clustering of the different animals depending on 

the photoperiod in which they were exposed (Figure 6C). 

Finally, all 17 normalized variables were included in the representation of a 

heat map, which showed a clear hierarchical clustering among the three groups 

and revealed which tissues were more affected by each photoperiod (Figure 

6D).  

Among the different parameters that showed higher importance in the 

separation of the three photoperiod groups, we could mainly observe genes 
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involved in circadian rhythm regulation (Nr1d1, Per2, Bmal1) and in fatty acid 

transport and oxidation (Cd36, Cpt1b) in both liver and skeletal muscles, as well 

as some circulating metabolites (pyruvate, histidine, formate, creatine) and key 

proteins (pAkt2 and pAMPK) related to glucose and lipid metabolisms and 

insulin signaling in the skeletal muscle (Figures 6B,D). 

 

Figure 6. In this study, 239 measured parameters were used to set up a PLS-DA-predictive 

model (A). Variables with a coefficient mean higher than 50 (B) were analyzed in a PCA 

multivariate analysis (C). The 17 normalized variables were also included in the representation 

of a Heat Map (D). 3Hxb, 3-hydroxybutyrate; Bmal1, brain and muscle Arnt-like protein-1; Cd36, fatty 

acid translocase; Cpt1β, carnitine palmitoyltransferase 1 beta; His, histidine; IMP, inosine monophosphate; 
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Nr1d1, nuclear receptor subfamily 1, group D, member 1; Per2, period circadian clock 2; Sn_GlyceroP, Sn-

glycerophosphocholine; Ga, gastrocnemius muscle; Li, liver; Se, serum; So, soleus muscle. 

4. DISCUSSION 

In the present study, we demonstrated that male F344 rats exhibited profound 

changes in parameters related with glucose, lipid and energy metabolisms in 

the serum, liver and skeletal muscle when chronically exposed to different 

photoperiods. Thus, the multivariate analysis carried out with the 239 

parameters analyzed in this study showed a clear clustering depending on the 

photoperiod in which the animals were exposed. Unexpectedly, among all these 

results, no significant changes were obtained in the parameters described as 

the most affected by exposure to different photoperiods, such as body weight 

gain, cumulative food intake and testes size [1,2,4]. This lack of changes in the 

aforementioned parameters could be explained by a possible refractoriness to 

short days in response to a chronic exposition to fewer hours of light. In this 

sense, Heideman et al. [15] and Shoemaker et al. [14] demonstrated that F344 

rats could become refractory to the chronic effects of short day photoperiods 

on body weight [14] and testicular parameters [14,15] after 8-10 weeks of 

exposure. This behavior could be interpreted as an adaptive mechanism to 

ensure survival and avoid reproductive suppression. Therefore, it is plausible 

to speculate that, in our study, 14 weeks of exposure to a certain photoperiod 

would have reversed the photoperiodic effect on these physiological 

parameters. Another possible reason could rely on the fact that, in the present 

study, rats were constantly exposed to the same photoperiod for 14 weeks. In 

nature, the photoperiodic time measurement system is responsive to the 

direction of the change in day length, in addition to the absolute day length 

[1,2]. Therefore, the constant day length exposure that occurred during the 

experiment could have also dampened the photoperiod effects on those 

parameters. Interestingly, the refractory response observed in rats exposed to 
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both long and short photoperiods in terms of biometric parameters was not 

observed in a considerable amount of serum parameters, such as glucose, 

NEFAs, pyruvate, lactate and different amino acids (alanine, isoleucine, 

threonine, histidine, tryptophan and tyrosine). Remarkably, five out of 

seventeen parameters that showed a highest contribution to clearly 

differentiate the three groups in the multivariate analysis were circulating 

parameters (histidine, pyruvate, 3-hydroxybutyrate, creatine and formate). 

These results were also accompanied by clear changes in key genes and 

proteins involved in both glucose and lipid homeostasis, such as pAkt2, pAMPK, 

Cd36 and Irs1 levels. Altogether, our findings would indicate that the 

refractoriness phenomenon observed in biometric parameters were not 

evident at metabolic and molecular level, suggesting a mismatch in the adaptive 

responses between biometric and biochemical parameters to this refractory 

phenomenon. 

In this sense, both groups of rats displayed higher circulating glucose levels 

compared to the L12 group. At first glance, the higher glycaemia observed in 

both L6 and L18 rats could be tentatively attributed to differences in the 

feeding state among groups at sacrifice, which could be triggered by a different 

feeding temporal distribution along light and darkness phases. In this regard, 

the food intake monitoring during the last 24 hours of the study would be 

useful to shed light on this issue. However, the lack of significant changes in the 

circulating levels of insulin and glucagon, which are markers of the post-

prandial and post-absorptive situations, respectively, as well as the similar 

insulin:glucagon ratio observed among groups, would strongly suggest that the 

L6, L12 and L18 animals were at very similar feeding state and that the 

differences in serum glucose levels were probably explained by other 

mechanisms. Interestingly, in the L6 animals, the rise of blood glucose levels 

was accompanied by a sharp downregulation of the pAkt2 in both the soleus 

and gastrocnemius muscles. This protein is considered a crucial mediator of 
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signal transduction processes, playing a key role in apoptosis, cell proliferation 

and metabolism regulation [43,44] and is highly expressed in insulin-

responsive tissues, such as the liver, skeletal muscle and adipose tissue [44,45]. 

After insulin secretion, Akt2 phosphorylation at the Ser474 residue promotes the 

redirection of GLUT4 vesicles from intracellular compartments to the plasma 

membrane in the skeletal muscle [32,46]. Considering that ∼80% of the 

postprandial glucose uptake occurs in the skeletal muscle [47], it is tempting to 

hypothesize that the downregulation of pAkt2 observed in both skeletal 

muscles of L6 rats could significantly contribute to the increase in the 

circulating glucose levels. Furthermore, the downregulation of the soleus mRNA 

levels of the gene encoding IRS1, a key protein involved in the activation of 

Akt2 [33]; the lower levels of miR-194 observed in this tissue, which was also 

reported in insulin-resistant rats and in prediabetic and diabetic humans [34]; 

and the decreased hepatic gene expression levels of Glut2, the main glucose 

transporter in the liver [48], could also account for the elevated serum glucose 

levels displayed by L6 rats. Altogether, these results strongly suggest an 

impairment of glucose homeostasis and insulin signaling in L6 animals, which 

was mainly demonstrated at the molecular level in the soleus muscle. Our 

findings partly agree with those obtained by Tashiro et al. [20], who showed 

that mice exposed to a short photoperiod over 3 weeks displayed decreased 

insulin sensitivity. However, these authors described a downregulation of Glut4 

mRNA and protein levels in the gastrocnemius muscle. This result contrasts 

with a lack of significant regulation of this gene in our study in both soleus and 

gastrocnemius muscles. Since the mRNA levels of Glut4 did not represent an 

accurate marker of glucose transport in the skeletal muscle [49], additional 

measurements focused on GLUT4 translocation could contribute to clarifying 

this issue. In addition, the downregulation of the hepatic gluconeogenic gene 

Pck1 observed in L6 rats would neither be in agreement with the 

hyperglycemia displayed by these animals, since in mice exposed to disrupted 
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daily light-dark cycles this metabolic feature was accompanied by an increase 

in the mRNA levels of Pck1 and G6pc in liver [39]. Further research focused on 

the hepatic quantification of PCK1 and/or G6PC proteins would be of value to 

elucidate whether there was an evident alteration of hepatic glucose 

homeostasis in the animals chronically exposed to the short photoperiod. As it 

has been fully studied, almost every tissue have molecular clocks that ensure a 

high robust homeostasis through the rhythmic expression of different 

metabolic factors [31]. In this regard, one limitation of this study is the fact that 

all the parameters were only analyzed at a single point. Nevertheless, 

Shavlakadze et al. have previously described that pAkt protein levels in liver 

and skeletal muscle did not have periodicity over 24h in ad libitum fed mice, 

differently to what was observed in 24h-fasted mice, which showed a clear 

rhythmicity [50]. These results, together with the fact that, in our study, the 

animals were only deprived of food for one hour, would suggest that the sharp 

downregulation of pAkt2 observed in both soleus and gastrocnemius of L6 

animals would not be explained by differences in daily rhythmicity among the 

three groups and would reinforce our hypothesis pointing towards a decreased 

insulin sensitivity in these rats. 

Another relevant result obtained in our study was that exposure to a short 

photoperiod produced a sharp upregulation of pAMPK in the soleus and 

gastrocnemius muscles compared to that in both the L12 and L18 groups. This 

finding could be explained, at least in part, by the elevated levels of AMP 

observed in the gastrocnemius muscle of L6 rats, since this nucleotide is a 

cellular stress indicator that acts as the main activator of AMPK [51]. In 

addition, the increase in the gastrocnemius concentration of IMP found in these 

animals could indirectly contribute to AMPK activation, since IMP can be 

converted into AMP and, therefore, may increase the AMP/ATP ratio and, 

consequently, the AMPK activity [52]. AMPK plays a crucial role in the 

maintenance of intracellular homeostasis in the skeletal muscle and it is 
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activated in energy-demanding conditions in order to produce some metabolic 

effects, such as the enhancement of glucose uptake through the stimulation of 

GLUT4 translocation in the skeletal muscle [53,54]. Although, at first glance, 

this result would not support our hypothesis and suggests an increased glucose 

uptake by the skeletal muscle in L6 animals, it is important to highlight that rats 

were sacrificed in postprandial conditions (after one hour of fasting). Thus, 

since the effects of the AMPK pathway on glucose metabolism are mainly 

produced when cells are metabolically starved, it is plausible to speculate that, 

in our study, the increased levels of pAMPK did not significantly contribute to 

enhancing the glucose uptake in the skeletal muscle. Some studies have 

demonstrated the presence of a cross-talk between Akt and the AMPK 

pathways, in which Akt can negatively regulate the AMPK activity [55–57]. 

Windgassen et al. demonstrated that Akt has a crucial role in protein synthesis 

activating mTOR through direct phosphorylation and inhibition of AMPK-

mediated phosphorylation of TSC2, a negative regulator of mTOR [55]. In 

addition, the important role of Akt2 in the regulation of the skeletal muscle 

mass and function has also been described, although its main function is related 

with insulin signaling [58]. These results make it plausible to suggest that 

exposure to a short photoperiod could induce the activation of the proteolytic 

process through AMPK activation in both soleus and gastrocnemius muscles. 

The lower protein content observed in both skeletal muscles and the higher 

circulating levels of several amino acids, including the non-essential amino acid 

alanine—involved in the muscular ammonia detoxification [59], would 

reinforce this idea. Otsuka and collaborators demonstrated that exposure to a 

short photoperiod for three weeks significantly increased the plasma levels of 

many free amino acids and the marker of muscle degradation 3-methylhistidine 

in C57BL/6J mice, which could also support our hypothesis [21]. However, our 

results do not point towards an activation of the Cahill cycle, and no changes 

were observed in the skeletal muscle weight among the groups. Therefore, 
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additional studies focused on the glutamine synthase/glutaminase system in 

the muscle and liver, as well as the analysis of mTOR protein or ubiquitin-

ligases levels, such as MuRF-1 and MAFbx, in the gastrocnemius muscle would 

be needed to shed more light on this issue [60]. The higher circulating levels of 

amino acids found in L6 animals compared with L12 and L18 animals could 

also be attributed to changes in amino acid bioavailability or in the use of this 

molecules as an energy source for the intestinal cells in response to different 

chronic day length exposure [61]. Another plausible hypothesis that could 

contribute to explain the increased pAMPK levels observed in the soleus and 

gastrocnemius muscles of L6 animals would be a higher levels of activity of 

these rats prior to the sacrifice. Nevertheless, if this were true, and taking into 

account that AMPK activates lipid catabolic pathways to increase energy 

production [62], the upregulation of pAMPK would probably have been 

accompanied by an upregulation of key genes involved in β-oxidation (Had, 

Cpt1β) as well as in those involved in glucose (Glut4) and fatty acid uptake 

(Cd36, Fatp1) in order to deal with a higher energy demanding state. On the 

contrary, these animals displayed a downregulation of the mRNA levels of the 

fatty acid transport-related genes Cd36 (liver and soleus muscle), which, in 

turn, could contribute to explain the higher circulating levels of non-esterified 

free fatty acids observed in L6 rats compared to L12. Jain and collaborators 

demonstrated that Akt2 is critically related to the stimulation of insulin-

mediated fatty acid transport [63]. In agreement with these findings, the sharp 

downregulation of the phosphorylated Akt2 levels in the soleus muscle of L6 

rats could also account for decreased fatty acid transport in the muscle, which, 

in turn, would produce a decrease in β-oxidation, as demonstrated by the lower 

mRNA levels of Had and Cpt1β. Additional research is needed to shed more light 

on the signaling pathways that could account for the aforementioned hepatic 

gene expression changes.  
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Although, in our study, the chronic exposure to 18 hours of light also produced 

clear changes in parameters related with glucose and lipid metabolisms when 

compared with the exposure to the 12 hours light/day photocycle, the 

molecular mechanisms involved in these effects were not as evident as those 

reported in response to the shortening of day length. Thus, the increased 

circulating levels of glucose observed in L18 animals compared to L12 rats 

cannot be explained by changes in the phosphorylated levels of Akt2 or AMPK 

in the liver or skeletal muscle. Since it has been described that the accumulation 

of hepatic lipids—mainly diglycerides—contributes to altered insulin signaling 

that could trigger a rise in circulating glucose levels [64], it is tempting to 

speculate that the increased glycerophosphocholine and diglycerides observed 

in L18 rats could account for this hyperglycemia. On the other hand, the 

decreased expression of the fatty acid transport-related genes Fatp5 (liver) and 

Cd36 (liver and soleus) and the downregulation of the soleus Cpt1β mRNA 

levels observed in L18 rats would indicate an alteration of the fatty acid 

metabolism. However, these molecular changes were not translated into 

changes in the circulating levels of NEFAs. This response could be tentatively 

explained by a lower release of these lipids by white adipose tissue—the major 

contributor of NEFAs to the bloodstream—or by an enhancement of fatty acid 

uptake by these fat depots or other tissues, which could be understood as a 

compensatory mechanism addressed to counteract the decreased uptake and 

utilization of these metabolites in the liver and skeletal muscle [65,66]. Another 

possible explanation relies on the fact that the gene expression data does not 

always match protein levels and, therefore, the quantification of the hepatic and 

muscular levels of these fatty acid metabolism-related proteins would be useful 

to clarify this issue.  

As it has been aforementioned, one of the physiological mechanisms involved in 

seasonal responsiveness is the synchronization of circannual rhythms to the 

astronomical season using the photoperiod [67]. In spite of the interest in 
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elucidating whether the clock genes can also act as circannual timers in 

addition to circadian timers, their complex behavior in different tissues and the 

influence of other environmental factors makes it difficult to fully understand 

how they work [68,69]. Moreover, it has been described that these clock-

related nuclear receptors are involved in the regulation of lipid and glucose 

metabolism in liver and skeletal muscle and that their dysregulation could 

produce significant variations in key genes belonging to glucose and lipid 

metabolic pathways, such as Gk and Cd36 [48,70], which were clearly affected 

by long photoperiod exposure in our study. In this sense, although we could 

only measure the circadian rhythm-related genes expression at a single point 

(ZT 1 to 2), we detected profound changes in Per2, Bmal1 and Nr1d1 in the liver 

and the soleus and gastrocnemius muscles of L18 animals. These results could 

contribute to explain the alterations in glucose and lipid metabolism observed 

in these rats and would suggest that L18 animals displayed a misalignment of 

the circadian rhythm in comparison with L12 and L6 groups. On the contrary, 

L6 animals showed a very similar behavior concerning the clock gene 

expression pattern than L12 rats, suggesting that the metabolic and 

biochemical changes observed between these two groups were mainly due to 

the chronic adaptation to different photoperiods. However, a more profound 

analysis carried out at different daily time points throughout a 24-h period 

would be needed to corroborate this hypothesis. 

5. CONCLUSION 

We reported that chronic exposure to short and long day lengths strongly 

modulates a wide range of parameters related to glucose, lipid and nitrogenate 

metabolism in the blood, liver and in both the soleus and gastrocnemius 

skeletal muscles of normoweight Fischer 344 rats. Furthermore, we have also 

partly elucidated the molecular mechanisms that would explain the elevated 

circulating levels of glucose and NEFAs observed in the animals exposed to the 
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short photoperiod, which were as follows: 1) a sharp downregulation of the 

phosphorylated Akt2 levels in both soleus and gastrocnemius muscles; and 2) 

decreased expression in the soleus muscle of the glucose metabolism-related 

microRNA-194 and lower mRNA levels of the genes involved in glucose 

metabolism (Irs1, soleus, and Glut2, liver), β-oxidation (Had and Cpt1β, soleus) 

and fatty acid transport (Cd36, soleus and liver). Although several studies have 

demonstrated the effects of circadian rhythm disruption on the development of 

insulin resistance [71–73], to the best of our knowledge, this is the first study 

that showed relevant changes in glucose and lipid metabolism produced by 

chronic exposition to different photoperiods in Fischer 344 rats. Despite 24-h 

kinetic analyses of locomotor activity, food intake and clock genes’ expression 

would have been of great value to strengthen our findings, this study highlight 

the importance of circannual rhythms in the metabolic homeostasis regulation. 

In addition, our results pave the way for the use of Fischer 344 rats as a 

preclinical model to study the effect of the photoperiod on different altered 

conditions or diseases that occur in humans and are related to lipid and glucose 

metabolisms, such as obesity, CVD and SAD, which are potentially sensitive to 

photoperiodic changes [6,9,23]. Further studies carried out with diet-induced 

obese rats are planned to elucidate whether the exposure to short and long 

photoperiods exacerbates these metabolic responses under a situation of 

altered homeostasis robustness.  
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SUPPLEMENTARY MATERIAL 

Supplementary Table 1. Nucleotide sequences of primers used for real time quantitative 

PCR. 

Gene 
Forward primer 
(5’ to 3’) 

Reverse primer 
(5’ to 3’) 

Tissue 

Acc1 TGCAGGTATCCCCACTCTTC TTCTGATTCCCTTCCCTCCT L 

β-actin TACAGCTTCACCACCACAGC TCTCCAGGGAGGAAGAGGAT L 

Bmal1 GTAGATCAGAGGGCGACGGCTA CTTGTCTGTAAAACTTGCCTGTGAC G, L, S 

Cd36 GTCCTGGCTGTGTTTGGA GCTCAAAGATGGCTCCATTG G, L, S 

Cpt1α GCTCGCACATTACAAGGACAT TGGACACCACATAGAGGCAG L 

Cpt1β GCAAACTGGACCGAGAAGAG CCTTGAAGAAGCGACCTTTG G, S 

Cry1 TGGAAGGTATGCGTGTCCTC TCCAGGAGAACCTCCTCACG G, L, S 

Dgat1 CAGACAGCGGTTTCAGCAAT AGGGGTCCTTCAGAAACAGAG L 

Fatp1 TGCTCAAGTTCTGCTCTGGA CATGCTGTAGGAATGGTGGC G, S 

Fatp5 CCTGCCAAGCTTCGTGCTAAT GCTCATGTGATAGGATGGCTGG L 

Fbp1 TGACCCTGCCATCAATGAGT ATGTCTTCATTCCCCGTCGT L 

G6pc ATTCCGGTGCTTGAATGTCG TGGAGGCTGGCATTGTAGAT L 

G6pdh ACCAGGCATTCAAAACGCAT CAGTCTCAGGGAAGTGTGGT L 

Gk CTGTGAAAGCGTGTCCACTC GCCCTCCTCTGATTCGATGA L 

Glut2 AGTCACACCAGCACATACGA TGGCTTTGATCCTTCCGAGT L 

Glut4 CCATTGCTTCTGGCTATCAC TCCGTTTCTCATCCTTCAGC G, S 

Gpat CAGCGTGATTGCTACCTGAA CTCTCCGTCCTGGTGAGAAG L 

Hk2 GAAGATGCTGCCCACTTACG GCCATGCATAACCTCCTGTG G, S 

Had ATCGTGAACCGTCTCTTGGT AGGACTGGGCTGAAATAAGG G, S 

Hprt TCCCAGCGTCGTGATTAGTGA CCTTCATGACATCTCGAGCAAG G, L, S 

Irs1 CTACACCCGAGACGAACACT TAACCTGCCAGACCTCCTTG G, S 

mPk AGCCTCCAGTCAATCCACAG GCATCCTTACACAGCACAGG G, S 

Nampt CTCTTCACAAGAGACTGCCG TTCATGGTCTTTCCCCCACG G, L, S 

Nr1d1 ACAGCTGACACCACCCAGATC CATGGGCATAGGTGAAGATTTCT G, L, S 

Per2 CGGACCTGGCTTCAGTTCAT AGGATCCAAGAACGGCACAG G, L, S 

Pck1 GCAAACCAGCAAGCACAATG CTCGAAGTGGAACCAAACCC L 

Pfk GTGGATGGTGGAGAGCACAT TCCGATGACACACAGATTGG G, S 

Ppia CCAAACACAAATGGTTCCCAGT ATTCCTGGACCCAAAACGCT G, L, S 

Rorα CCCGATGTCTTCAAATCCTTAGG TCAGTCAGATGCATAGAACACAAACTC G, L, S 
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Srebp1c CCCACCCCCTTACACACC GCCTGCGGTCTTCATTGT L 

Tfrc ATCATCAAGCAGCTGAGCCAG CTCGCCAGACTTTGCTGAATTT S 

The table shows the nucleotide sequences of primers used for PCR amplification. Primer pairs 

for PCR were designed using Primer3 software and the sequence information were obtained 

from Genbank. Acc1, acetyl CoA carboxylase 1; β-actin, actin beta; Bmal1, brain and muscle Arnt-like 

protein-1; Cd36, fatty acid translocase, homologue of CD36; Cpt1α, carnitine palmitoyltransferase 1 

alpha; Cpt1β, carnitine palmitoyltransferase 1 beta; Cry1, cryptochrome circadian clock 1; Dgat1, 

diacylglycerol acyltransferase 1; Fatp1, fatty acid transport protein 1; Fatp5, fatty acid transport protein 

5; Fbp1, fructose-1,6-biphosphatase 1; G6pc, glucose-6-phosphatase, catalytic subunit; G6pdh, glucose-6-

phosphate dehydrogenase; Gk, glucokinase; Glut2, glucose transporter 2; Glut4, glucose transporter 4; 

Gpat, glycerol-3-phosphate acyltransferase; Hk2, hexokinase 2; Had, hydroxyacyl-CoA dehydrogenase; 

Hprt, hypoxanthine guanine phosphoribosyl transferase; Irs1, insulin receptor substrate 1; mPK, 

pyruvate kinase type M; Nampt, nicotinamide phosphoribosyltransferase; Nr1d1, nuclear receptor 

subfamily 1, group D, member 1; Per2, period circadian clock 2; Pck1, phosphoenolpyruvate 

carboxykinase 1; Pfk, phosphofructokinase; Ppia, peptidylprolyl isomerase A; Rorα, RAR-related orphan 

receptor A; Srebp1c, sterol regulatory element-binding protein 1c; Tfrc, transferrin receptor. Gene 

expression levels were analyzed in gastrocnemius (G) and soleus (S) muscles and liver (L). 
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Supplementary Table 2. Serum metabolite concentrations analyzed by Nuclear Magnetic 

Resonance in response to different photoperiod exposure in animals fed a standard diet 

for 14 weeks. 

Metabolite concentration 
(μmol/L) 

L6 L12 L18 

2-Methylglutarate   1.97 ± 0.20 2.23 ± 0.08 2.40 ± 0.21 

Choline   4.90 ± 0.28 4.55 ± 0.17 4.77 ± 0.16 

Citrate   11.28 ± 1.18 9.40 ± 1.13 9.94 ± 0.82 

Creatine Phosphate   5.15 ± 0.13 5.35 ± 0.32 5.21 ± 0.68 

Cytosine   5.34 ± 0.40 4.55 ± 0.44 4.87 ± 0.46 

Leucine   32.82 ± 1.32 31.66 ± 1.27 31.52 ± 1.98 

Methionine   21.34 ± 0.74 19.66 ± 1.02 20.10 ± 0.88 

O-acetylcarnitine   3.48 ± 0.11 3.28 ± 0.24 3.18 ± 0.19 

Phenylalanine   10.20 ± 0.34 9.59 ± 0.25 9.61 ± 0.51 

Serine   34.79 ± 1.43 32.70 ± 1.73 32.16 ± 1.82 

Thymidine   3.92 ± 0.56 4.34 ± 0.37 4.26 ± 0.75 

Valine   36.17 ± 1.51 34.33 ± 1.11 33.02 ± 1.79 

Male Fischer 344 rats were fed a standard diet and were exposed to three different 

photoperiods for 14 weeks. Data are expressed as mean ± SEM (n=6). All the metabolites were 

obtained by performing a Nuclear Magnetic Resonance (NMR) analysis.  
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Supplementary Table 3. Liver metabolite concentrations analyzed by Nuclear Magnetic 

Resonance in response to different photoperiod exposure in animals fed a standard diet 

for 14 weeks. 

 L6 L12 L18  

Aqueous fraction 

(µmol/g tissue)    

 

2-Deoxyadenosine   0.05 ± 0 0.04 ± 0.01 0.05 ± 0  

3-Hydroxybutyrate   2.41 ± 0.23 2.66 ± 0.24 2.46 ± 0.31  

Acetate   0.23 ± 0.02 0.22 ± 0.02 0.23 ± 0.03  

Alanine 0.91 ± 0.01a 0.95 ± 0.04a 1.07 ± 0.04b P 

Allantoin   0.22 ± 0.02 0.22 ± 0.02 0.20 ± 0.02  

AMP   0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0  

β-Alanine  0.08 ± 0.01 0.07 ± 0.01 0.07 ± 0  

Betaine   2.93 ± 0.12 3.04 ± 0.30 3.17 ± 0.09  

Carnosine   0.07 ± 0.01 0.06 ± 0.01 0.08 ± 0  

Creatine   0.03 ± 0 0.03 ± 0 0.03 ± 0  

Creatinine   0.02 ± 0 0.02 ± 0 0.02 ± 0  

Cytidine   0.13 ± 0.01 0.12 ± 0.01 0.13 ± 0.01  

Dimethylamine   0.07 ± 0.01 0.06 ± 0.01 0.05 ± 0  

Formate   0.10 ± 0.01 0.08 ± 0.01 0.09 ± 0.01  

Glucose 7.83 ± 0.21 7.89 ± 0.48 7.15 ± 0.09  

Glutamate   0.14 ± 0.01 0.14 ± 0.02 0.16 ± 0.02  

Glutamine   0.50 ± 0.04 0.48 ± 0.06 0.47 ± 0.01  

Glycine  0.58 ± 0.01 0.57 ± 0.03 0.56 ± 0.01  

IMP   0.06 ± 0 0.05 ± 0 0.05 ± 0.01  

Inosine  0.66 ± 0.03 0.63 ± 0.03 0.69 ± 0.03  

Isoleucine   0.10 ± 0 0.10 ± 0.01 0.10 ± 0.01  

Lactate 1.00 ± 0.02 1.24 ± 0.10 1.35 ± 0.14  

Leucine   0.28 ± 0.01 0.30 ± 0.03 0.27 ± 0.02  

Mannose   0.25 ± 0.01 0.24 ± 0.02 0.22 ± 0.01  

Methionine   0.10 ± 0.01 0.09 ± 0.01 0.10 ± 0.01  

Niacinamide   0.38 ± 0.03 0.37 ± 0.03 0.37 ± 0.02  
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N,N-dimethylglycine   0.02 ± 0 0.02 ± 0 0.02 ± 0  

O-Phosphocholine   0.07 ± 0 0.08 ± 0.02 0.06 ± 0  

Oxypurinol   0.07 ± 0.01 0.07 ± 0.01 0.08 ± 0.01  

Phenylalanine   0.19 ± 0.01 0.19 ± 0.01 0.18 ± 0.01  

Pyruvate 0.16 ± 0.02 0.11 ± 0.01 0.15 ± 0.02  

Sarcosine   0.04 ± 0 0.04 ± 0 0.05 ± 0.01  

Succinate   0.06 ± 0.01 0.08 ± 0.01 0.08 ± 0.01  

Taurine   2.63 ± 0.13 2.57 ± 0.23 2.84 ± 0.20  

Trimethylamine   0.01 ± 0 0.01 ± 0 0.01 ± 0  

Tyrosine   0.09 ± 0 0.09 ± 0 0.09 ± 0  

UDP-Glucoronate   0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01  

Uracil   0.12 ± 0.02 0.12 ± 0.02 0.11 ± 0  

Uridine   0.61 ± 0.02 0.58 ± 0.03 0.62 ± 0.02  

Uroconate   0.19 ± 0.01 0.17 ± 0.02 0.18 ± 0.01  

Valine   0.17 ± 0.01 0.18 ± 0.01 0.17 ± 0.01  

Xanthine   0.09 ± 0.01 0.09 ± 0.01 0.10 ± 0.01  

Lipid fraction 

(µmol/g tissue) 
   

 

ARA+EPA   0.02 ± 0 0.02 ± 0 0.02 ± 0  

DHA   0.002 ± 0 0.003 ± 0 0.003 ± 0  

Diglycerides 1.24 ± 0.06 1.15 ± 0.04 1.34 ± 0.05  

Esterified cholesterol 0.61 ± 0.04 0.55 ± 0.06 0.62 ± 0.05  

Free cholesterol 2.78 ± 0.08 2.68 ± 0.07 2.85 ± 0.04  

Glycerophosphocholine 0.04 ± 0ab 0.04 ± 0a 0.05 ± 0b P 

Linoleic acid   0.02 ± 0 0.02 ± 0 0.02 ± 0  

Lysophosphatidylcholine   2.97 ± 0.08 3.25 ± 0.33 3.02 ± 0.20  

Monoglycerides   0.17 ± 0.01 0.17 ± 0.01 0.16 ± 0.01  

MUFA   0.03 ± 0 0.03 ± 0 0.03 ± 0  

Oleic acid   0.01 ± 0 0.01 ± 0 0.01 ± 0  

Omega-3   0.01 ± 0 0.01 ± 0 0.01 ± 0  

Phosphatidylcholine   11.23 ± 0.28 11.50 ± 0.27 12.01 ± 0.36  

Phosphoethanolamine   3.82 ± 0.08 3.55 ± 0.16 3.65 ± 0.14  
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Phosphoinositol   1.21 ± 0.05 1.19 ± 0.10 1.27 ± 0.06  

Plasmalogen   0.27 ± 0.01 0.24 ± 0.01 0.27 ± 0.01  

PUFA   0.07 ± 0 0.07 ± 0 0.07 ± 0  

Sphingomyelin   0.78 ± 0.02 0.74 ± 0.04 0.78 ± 0.02  

Total cholesterol 3.37 ± 0.11 3.21 ± 0.12 3.44 ± 0.04  

Total FA chain   482.15 ± 21.99 456.53 ± 23.86 505.93 ± 14.44  

Total phospholipids 13.10 ± 0.23 13.01 ± 0.82 13.72 ± 0.59  

Triglycerides 4.66 ± 0.36 4.21 ± 0.26 4.84 ± 0.18  

Male Fischer 344 rats were fed a standard diet and were exposed to three different 

photoperiods for 14 weeks. Data are expressed as mean ± SEM (n=6). All the metabolites were 

obtained by performing a Nuclear Magnetic Resonance (NMR) analysis. One-way ANOVA and 

Duncan’s post-hoc test were performed to compare the values between groups and significant 

differences were represented with different letters (a, b). P Photoperiod effect. 
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Supplementary Table 4. Gastrocnemius muscle metabolite concentrations analyzed by 

Nuclear Magnetic Resonance in response to different photoperiod exposure in animals 

fed a standard diet for 14 weeks. 

 L6 L12 L18  

Aqueous fraction 

(µmol/g tissue)    

 

3-Hydroxybutyrate   0.13 ± 0.01 0.13 ± 0.03 0.14 ±0.02  

3-Hydroxyisobutyrate   0.03 ± 0 0.02 ± 0 0.02 ± 0  

3-Methyl-2-oxovalerate   0.02 ± 0 0.01 ± 0 0.02 ± 0  

Acetate   0.02 ± 0 0.02 ± 0 0.02 ± 0  

ADP   0.43 ± 0.09 0.36 ± 0.07 0.35 ± 0.07  

Alanine 1.66 ± 0.29 1.13 ± 0.17 1.24 ± 0.05  

AMP 0.08 ± 0a 0.06 ± 0.01b 0.07 ± 0.01ab P 

Anserine   4.01 ± 0.56 2.76 ± 0.35 2.91 ± 0.12  

β-Alanine  0.14 ± 0.02 0.10 ± 0.02 0.12 ± 0.01  

Carnitine   0.58 ± 0.08 0.43 ± 0.07 0.49 ± 0.02  

Carnosine   0.23 ± 0.02 0.23 ± 0.01 0.23 ± 0.01  

Choline   0.04 ± 0 0.03 ± 0 0.03 ± 0  

Creatine   14.50 ± 1.85 10.91 ± 1.35 12.27 ± 0.41  

CreatinePhosphate   0.85 ± 0.09 0.68 ± 0.13 0.97 ± 0.19  

Creatinine   0.21 ± 0.03 0.16 ± 0.02 0.17 ± 0.01  

Dimethylglycine   0.04 ± 0.01 0.03 ± 0 0.04 ± 0  

Dimethylsulfone   0.04 ± 0.01 0.03 ± 0 0.04 ± 0  

Fucose   0.15 ± 0.02 0.10 ± 0.01 0.13 ± 0.02  

Fumarate   0.06 ± 0.01 0.06 ± 0.01 0.07 ± 0.01  

Glucose 1.72 ± 0.28 1.36 ± 0.19 1.49 ± 0.08  

Glutamate   0.36 ± 0.06 0.33 ± 0.04 0.37 ± 0.03  

Glutamine   1.44 ± 0.20 1.07 ± 0.16 1.29 ± 0.08  

Glutathione   0.13 ± 0.03 0.09 ± 0.01 0.08 ± 0.01  

Glycerol   0.32 ± 0.06 0.22 ± 0.03 0.23 ± 0.01  

Glycine   1.23 ± 0.18 0.83 ± 0.09 0.89 ± 0.06  

IMP 0.88 ± 0.09a 0.51 ± 0.08b 0.64 ± 0.07b P 
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Inosine+ NAD   0.27 ± 0.05 0.21 ± 0.03 0.27 ± 0.02  

Isoleucine   0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0  

Lactate 20.67 ± 3.72 14.57 ± 2.14 16.53 ± 1.31  

Leucine   0.11 ± 0.02 0.08 ± 0.01 0.09 ± 0.01  

Lysine   0.12 ± 0.01 0.10 ± 0.01 0.10 ± 0  

Methylhistidine   0.07 ± 0.01 0.06 ± 0 0.06 ± 0.01  

NAD+   0.08 ± 0.01 0.07 ± 0.01 0.06 ± 0  

Niacinamide   0.17 ± 0.02 0.14 ± 0.02 0.16 ± 0.01  

O-Acetylcarnitine   0.19 ± 0.02 0.14 ± 0.01 0.16 ± 0.01  

Panthothenate   0.01 ± 0 0.01 ± 0 0.01 ± 0  

Phenylalanine   0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0  

Proline   0.29 ± 0.04 0.23 ± 0.04 0.28 ± 0.02  

Pyruvate 0.16 ± 0.03 0.13 ± 0.02 0.12 ± 0.01  

Succinate 0.20 ± 0.03a 0.10 ± 0b 0.11 ± 0.01b P 

Taurine   6.37 ± 0.79 5.06 ± 0.61 6.12 ± 0.41  

Tyrosine   0.09 ± 0.01 0.07 ± 0.01 0.07 ± 0  

Valine   0.10 ± 0.02 0.08 ± 0.01 0.09 ± 0.01  

Xanthine   0.05 ± 0.01 0.05 ± 0 0.05 ± 0  

Lipid fraction  

(µmol/g tissue) 
   

 

ARA+EPA   0.02 ± 0 0.01 ± 0 0.01 ± 0  

DHA   0.01 ± 0 0.01 ± 0 0.01 ± 0  

Diglycerides 3.82 ± 0.56 5.67 ± 0.92 5.22 ± 0.66  

Esterified cholesterol 0.17 ± 0.02 0.20 ± 0.02 0.21 ± 0.02  

Free cholesterol 0.84 ± 0.07 0.96 ± 0.04 1.00 ± 0.06  

Linoleic acid   0.03 ± 0 0.03 ± 0 0.03 ± 0  

Monoglycerides   0.07 ± 0.01 0.05 ± 0.01 0.06 ±0.01  

MUFA   0.04 ± 0 0.04 ± 0 0.04 ± 0  

Oleic acid   0.01 ± 0 0.02 ± 0 0.02 ± 0  

Omega-3   0.02 ± 0 0.01 ± 0 0.02 ± 0  

Phosphatidylcholine   4.22 ± 0.36 4.78 ± 0.14 4.94 ± 0.35  

Phosphoethanolamine   1.97 ± 0.23 2.22 ± 0.10 2.42 ± 0.22  
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Phosphoinositol   0.40 ± 0.04 0.45 ± 0.02 0.48 ± 0.03  

Plasmalogen   0.63 ± 0.11 0.75 ± 0.02 0.85 ± 0.11  

PUFA   0.11 ± 0.01 0.10 ± 0.01 0.10 ± 0.01  

Sphingomyelin   0.11 ± 0.01 0.13 ± 0 0.13 ± 0.01  

Total cholesterol 0.94 ± 0.07a 1.06 ± 0.02ab 1.13 ± 0.04b P 

Total FA chain   123.45 ± 12.73 167.15 ± 16.91 162.07 ± 14.78  

Triglycerides 3.82 ± 0.56 5.67 ± 0.92 5.22 ± 0.66  

Male Fischer 344 rats were fed a standard diet and were exposed to three different 

photoperiods for 14 weeks. Data are expressed as mean ± SEM (n=6). All the metabolites were 

obtained by performing a Nuclear Magnetic Resonance (NMR) analysis. One-way ANOVA and 

Duncan’s post-hoc test were performed to compare the values between groups and significant 

differences were represented with different letters (a, b). P Photoperiod effect. 
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ABSTRACT 

We previously demonstrated that chronic exposure to different photoperiods 

induced marked variations in several glucose and lipid metabolism-related 

parameters in normoweight Fischer 344 (F344) rats. Here, we examined the 

effects of the combination of an obesogenic cafeteria diet (CAF) and the chronic 

exposure to three different day lengths (L12, 12 h light/day; L18, 18 h light/day 

and L6, 6 h light/day) in this rat strain. Although no changes were observed 

during the first 4 weeks of adaptation to the different photoperiods in which 

animals were fed a standard diet, the addition of the CAF for the subsequent 7 

weeks triggered profound physiologic and metabolic alterations in a 

photoperiod-dependent manner. Compared with L12 rats, both L6 and L18 

animals displayed lower body weight gain and cumulative food intake in 

addition to decreased energy expenditure and locomotor activity. These 

changes were accompanied by differences in food preferences and by a sharp 

upregulation of the orexigenic genes Npy and Ghsr in the hypothalamus, which 

could be understood as a homeostatic mechanism for increasing food 

consumption to restore body weight control. L18 rats also exhibited higher 

glycemia than the L6 group, which could be partly attributed to the decreased 

pAkt2 levels in the soleus muscle and the downregulation of Irs1 mRNA levels 

in the gastrocnemius muscle. Furthermore, L6 animals displayed lower whole-

body lipid utilization than the L18 group, which could be related to the lower 

lipid intake and to the decreased mRNA levels of the fatty acid transporter gene 

Fatp1 observed in the soleus muscle. Although further research is needed to 

elucidate the pathophysiologic relevance of these findings, our study could 

contribute to emphasize the impact of the consumption of highly palatable and 

energy dense foods regularly consumed by humans on the physiological and 

metabolic adaptations that occur in response to seasonal variations of day 
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length, especially in diseases associated with changes in food intake and 

preference such as obesity and seasonal affective disorder. 

Key words: photoperiod, circannual rhythms, cafeteria diet, metabolic 

syndrome, feeding behavior, glucose homeostasis. 

1. INTRODUCTION 

Seasonal variations in environmental factors provide crucial information to 

animals, allowing them to adapt their organism through changes in many 

physiological and behavioral parameters [1,2]. Despite human isolation from 

environmental annual changes as a consequence of the appearance of heat and 

air-conditioning systems and artificial light in developed economies [3], several 

studies have proven that human patterns of birth, death or disease are season-

dependent [4]. In addition, body fat mass accretion and circulating cholesterol, 

triglycerides, leptin, glucose and insulin levels can be significantly increased in 

winter, accounting for higher rates of cardiac events in this season [3,5–8]. For 

example, in a study performed on 1,202 Japanese male workers, Kamezaki and 

collaborators reported higher systolic and diastolic blood pressure and 

increased fasting blood glucose levels in winter than in summer, concluding 

marked seasonal variation in the prevalence of metabolic syndrome (MetS) [9], 

which is defined as a cluster of interconnected risk factors—obesity, insulin 

resistance, dyslipidemia and hypertension—that increase the risk of 

cardiovascular disease (CVD) [10,11]. These authors also described that the 

higher MetS incidence observed during winter was associated with a moderate 

increase in insulin resistance [12].  

Among the different environmental conditions that vary throughout the year, 

some, such as temperature and food availability, are considered low predictive 

factors since they do not display specific timing or magnitude [13]. However, 

seasonal variations in day length are the main environmental cue that offers a 
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highly predictive signal of the correct time of year [13]. Due to the possibility of 

constantly controlling the photoperiod, laboratory animals have emerged as a 

valuable model to gain knowledge on how humans respond to seasonal 

variations in day length. The F344 rat strain is a clear example of an animal 

model that has become relevant in the study of circannual rhythms [14–18]. 

Our group recently described that normoweight F344 rats exposed to different 

photoperiods for 14 weeks displayed profound metabolic changes, highlighting 

the importance that the seasonal changes in day length can have on health and 

suggesting these rats as a promising animal model with which to study glucose- 

and lipid-related pathologies that are influenced by seasonal variations, such as 

obesity, MetS and CVD [19]. These effects were more evident in rats held under 

a short day (SD) photoperiod (6 h of light), which showed an insulin resistance-

like phenotype, as evidenced by increased circulating glucose levels, a vast 

downregulation of the muscular downstream postreceptor target of insulin Akt 

serine/threonine kinase 2 (Akt2), and decreased gene expression of the hepatic 

glucose transporter Glut2 and the muscular insulin receptor substrate 1 (Irs1) 

[19]. Our results partly agree with those reported by Tashiro et al., which 

revealed that C57BL/6J mice exposed to SD conditions (8 h of light) for 3 weeks 

displayed higher circulating glucose levels, which were explained by the 

reduced glucose transporter 4 (GLUT4) protein levels in the gastrocnemius 

muscle [20]. These authors also demonstrated that this animal model exhibited 

increased body weight, fat mass accretion and sucrose intake and a depression-

like behavior, partly mirroring the seasonal affective disorder (SAD) that occurs 

in humans mainly in winter [21,22]. 

There is little information regarding the effects of chronic exposure to different 

photoperiods under obesogenic conditions. In male obese Zucker rats, which 

display genetic obesity and type 2 diabetes due to deficiencies in leptin 

receptor, Larkin et al. described that exposure to a long day (LD) photoperiod 

(14 h of light) for 9 weeks increased the insulin circulating levels, lean body 
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mass and energy efficiency compared with exposure to an SD photoperiod (10 

h of light). In addition, obese Zucker rats exhibited a more pronounced 

response to photoperiod exposure than their lean counterparts [23]. 

Nevertheless, highly caloric palatable diet-induced obese models are more 

representative of the etiology of obesity and MetS in modern societies [24], 

since genetics contributes to a lesser extent to the development of obesity and 

its comorbidities than sedentary lifestyles combined with excess energy intake 

[25]. In this sense, Togo and collaborators reported that F344 rats held under 

LD conditions (16 h of light) and fed a high-fat diet (HFD) for 3 weeks displayed 

increased body weight, epididymal adipose tissue and leptin levels compared 

with animals exposed to an SD (8 h of light) [26]. In another experiment 

performed under the same photoperiodic conditions, it was demonstrated that 

photoperiod regulated feeding behavior, which was evidenced by a higher 

preference for a low-fat, high-carbohydrate diet than for the HFD in LD F344 

rats, an effect that was not observed in SD animals [26]. In contrast, Ross et al. 

described that the photoperiodic regulation of different parameters, such as the 

stimulation of fat mass in LD photoperiods, was dampened after HFD feeding, 

whereas lean mass and other photoperiod-responsive parameters were 

unaffected by HFD exposure [27]. 

Among the high caloric diets, the CAF, which contains a variety of highly 

palatable and energy dense foods prevalent in Western society, has become a 

more useful choice than a HFD to resemble metabolic and eating behavioral 

processes underlying diet-induced human obesity and MetS [28–30]. 

Nevertheless, the effects of the combination of a CAF with different photoperiod 

exposures on physiology and metabolic homeostasis in F344 rats have not yet 

been examined. In the present study, we hypothesized that physiologic- and 

metabolic-related parameters of CAF-fed obese F344 rats would be influenced 

by chronic exposure to different day lengths. Therefore, the aim of the present 

work was to study the photoperiodic changes in a variety of physiological and 
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metabolic outputs of F344 rats fed a CAF. 

2. MATERIALS AND METHODS 

2.1. Animals 

Thirty 8-week-old male F344 rats (Charles River Laboratories, Barcelona, 

Spain) were housed in pairs in cages at 22ºC and submitted to three different 

light schedules for 11 weeks to mimic seasonal day lengths: SD photoperiod 

(n=10, L6, 6 h light—from Zeitgeber times (ZTs) 0 to 6—and 18 h darkness—

from ZTs 6 to 24), normal day (ND) photoperiod (n=10, L12, 12 h light—from 

ZTs 0 to 12—and 12 h darkness—from ZTs 12 to 24) and LD photoperiod 

(n=10, L18, 18 h light—from ZTs 0 to 18—and 6 h darkness—from ZTs 18 to 

24). The three groups were subjected to a 4-week adaptation period in which 

animals were fed a standard diet (STD) ad libitum (2.90 kcal·g-1; Teklad Global 

14% Protein Rodent Diet 2014, ENVIGO, Sant Feliu de Codines, Barcelona, 

Spain). After this period, rats were switched to a CAF for 7 weeks. The CAF 

contained bacon, biscuit with pâté and biscuit with cheese, carrots, muffins and 

milk with sugar (22 g/L). Its caloric distribution was 58.1% carbohydrate, 

31.9% lipid and 10.0% protein, as previously described [31]. During the entire 

study, rats had free access to food and water, and body weight and food intake 

data were recorded once a week. After 11 weeks, animals were sacrificed by 

decapitation at ZT1, being deprived of food for 1 hour. Blood was collected, and 

serum was obtained by centrifugation and stored at -80ºC until analysis. The 

liver, hypothalamus and soleus and gastrocnemius muscles were rapidly 

weighed, frozen in liquid nitrogen and stored at -80ºC for further analysis. The 

Animal Ethics Committee of the University Rovira i Virgili (Tarragona, Spain) 

approved all procedures. 
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2.2. Body composition analysis 

Lean and fat measurements (in grams and percentage of body weight) were 

performed 1 week before sacrifice using an EchoMRI-700™ device (Echo 

Medical Systems, L.L.C., Houston, TX, USA).  

2.3. Indirect calorimetry 

Indirect calorimetry analyses were performed 2 weeks before sacrifice using 

the OxyletPro™ System (PANLAB, Cornellà, Spain). After receiving treatment at 

ZT0, rats were transferred to an acrylic box (Oxylet LE 1305 Physiocage, 

PANLAB) with free access to water and food. After an acclimation period of 3 

hours, oxygen consumption (VO2) and carbon dioxide production (VCO2) were 

measured every 9 minutes by an O2 and CO2 analyzer (Oxylet LE 405 gas 

analyzer, PANLAB) at a constant flow rate of 600 ml/min (Oxylet LE 400 air 

supplier, PANLAB). At each measure, the program Metabolism 2.1.02 (PANLAB, 

Cornellà, Spain) calculated the respiratory quotient (RQ) as the VCO2/VO2 ratio 

and energy expenditure (EE) as VO2 × 1.44 × [3.815 + (1.232 × RQ)] 

(kcal/day/kg0.75) according to the Weir formula [32]. Fat and carbohydrate 

oxidation rates were calculated using the VCO2 and the VO2 measures applying 

the Frayn stoichiometric equations [33], which define fat oxidation rates as 

1.67 x VO2 – 1.67 x VCO2 – 1.92 n (g•min-1) and carbohydrate oxidation rates as 

4.55 x VCO2 – 3.21 x VO2 – 2.87 n (g•min-1). A nitrogen excretion rate (n) of 135 

μg•kg-1•min-1 was assumed [34]. Finally, the fat and carbohydrate oxidation 

energy (in kJ•min-1) was obtained by using the Atwater general conversion 

factor. The fat and carbohydrate rates were multiplied by 37 and 16, 

respectively [35]. 

2.4. Serum analysis 

Glucose, total cholesterol and triglycerides (QCA, Barcelona, Spain), 

phospholipids (Spinreact, Girona, Spain) and nonesterified free fatty acids 
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(NEFAs) (WAKO, Neuss, Germany) were analyzed by enzymatic colorimetric 

assays. Serum insulin and glucagon levels were analyzed using a rat insulin 

ELISA kit (Millipore, Barcelona, Spain) and a rat glucagon ELISA kit (Cusabio 

Biotech, Wuhan, China), respectively. 

2.5. Serum extraction and 1H nuclear magnetic resonance (NMR) analysis 

of metabolite analysis 

Serum metabolites were extracted as previously described [19]. 1H-NMR 

analysis was performed following the procedure described by Vinaixa et al [36].  

2.6. Gene expression analysis 

Total RNA extraction, cDNA synthesis and real-time quantitative PCR in the 

hypothalamus, liver and gastrocnemius and soleus muscles were performed as 

previously detailed [19]. The primers used for the different genes are 

described in Supplementary Table 1 and were obtained from Biomers.net (Ulm, 

Germany). The relative expression of each mRNA level was calculated as a 

percentage of the L12 group using the -2∆∆Ct method [37] with β-actin, Ppia, 

Hprt and Tfrc genes as references. 

2.7. Western Blot analysis 

Total and phosphorylated (p) AMP-activated protein kinase (AMPK and (p)-

AMPK) and Akt2 and (p)-Akt2 protein levels in the liver and soleus and 

gastrocnemius muscles were measured by Western blot analysis as previously 

described [19].  

2.8. Statistical analysis 

Data are expressed as the mean ± standard error of the mean (SEM) (n=8-10). 

The effect of photoperiod on the evolution of body weight gain, cumulative 

caloric intake and the cumulative intake of carbohydrate, lipids and proteins 

was analyzed by repeated measures (RM) analysis of variance (ANOVA) with 
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time as a within-subject factor and photoperiod as a between-subject factor. 

When the interaction between time and photoperiod (Pxt) was statistically 

significant, one-way ANOVA followed by Duncan’s post hoc test was used to 

determine significant differences among the three groups in each point. One-

way ANOVA and Duncan’s post hoc test were also used to determine the 

photoperiod effects on biometric, serum and metabolic parameters, fiber intake 

and specific food items of the CAF. Student’s t test was also used for single 

statistical comparisons. Grubbs’ test was used to detect outliers, which were 

discarded before subsequent analyses. All statistical tests were performed with 

the statistical software SPSS Statistics 22 (SPSS, Inc., Chicago, IL, USA). The level 

of statistical significance was set at bilateral 5%. 

Principal component analysis (PCA) and partial least squares discriminant 

analysis (PLS-DA) were performed after data normalization and autoscaling 

using MetaboAnalyst 3.0 software [38]. 

3. RESULTS 

3.1. Exposure to both short and long photoperiods combined with CAF 

feeding altered food intake-related parameters and body weight 

Exposure to different photoperiods during the 4-week adaptation period did 

not produce significant changes in body weight gain, cumulative food intake or 

macronutrient consumption among groups (Figures 1A-E). However, the shift 

to the CAF combined with exposure to different day lengths for 7 additional 

weeks triggered a photoperiod-dependent response in all parameters related 

with food intake (p<0.05, photoperiod x time interaction, RM ANOVA) (Figures 

1B-E). Thus, L6 rats displayed significantly lower cumulative energy intake 

than L12 animals from week 9 onwards (Figure 1B), an effect that could be 

mainly explained by the decreased cumulative intake of carbohydrate, lipid and 

protein from the ninth week (Figures 1C,D,E). The animals chronically exposed 
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to the long photoperiod and fed the CAF for 7 weeks also showed significantly 

lower cumulative food intake than L12 rats at the end of the study (Figure 1B). 

Nevertheless, this effect was mainly attributed to the decreased cumulative 

carbohydrate intake observed from week 9 onwards (Figure 1C), since no 

significant differences in lipid consumption were found (Figure 1D), and lower 

cumulative protein intake in L18 rats compared with L12 animals was only 

observed at the end of the study (Figure 1E). Moreover, both L6 and L18 rats 

displayed a significant decrease in cumulative fiber intake than L12 rats (Table 

1). A detailed analysis of the consumption of the different food items included 

in the CAF diet revealed that L6 rats ate significantly less muffins and biscuits 

with cheese and pâté than L12 animals, whereas L18 rats consumed less chow 

than L12 animals and less carrots and more bacon than the L6 and L12 groups 

(Table 1). Both L6 and L18 animals consumed numerically lower amounts of 

milk with sugar—the food item that was consumed more by the rats—than L12 

animals and, although the difference was not statistically significant, it 

contributed to the observed significant decrease in the cumulative 

carbohydrate intake (Table 1). 

These changes in food intake-related parameters were not associated with an 

overall photoperiod effect on body weight gain (Figure 1A). Nevertheless, L18 

animals displayed residually lower body weight gain compared with the L12 

group at weeks 6, 7, 9, 10 and 11 (p<0.05, Student’s t test) and the same pattern 

was observed in L6 compared to L12 rats at weeks 6, 7, 8 and 9 (p<0.05, 

Student’s t test). In addition, at the end of the study, both L6 and L18 groups 

displayed lower body weight compared with L12 animals (p=0.055 and 

p=0.042, respectively, Student’s t test) (Table 2). 
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Figure 1. Body weight gain (A), cumulative caloric intake (B), CH intake (C), lipid intake (D), 

protein intake (E) and hypothalamic mRNA levels of genes related to food intake control (F) in 

male F344 rats exposed to three different photoperiods for 11 weeks and fed a cafeteria diet for 

the last 7 weeks. The end of the 4-week adaptation period is represented by a vertical dotted 

line. Data are expressed as the mean ± SEM (n=8-10). P, photoperiod effect; t, time effect; Pxt, 

photoperiod x time interaction effect (p<0.05, RM ANOVA). $ p<0.05 L12 versus L18 and L6 

0

250

500

750

1000

1250

1500

1750

2000

0 1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

ve
 c

al
o

ri
c 

in
ta

ke
 (

kc
al

)

Time (w)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

B
o

d
y 

w
ei

gh
t 

ga
in

 (
g)

Time (w)

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

ve
 C

H
 in

ta
ke

 (
g)

Time (w)

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

ve
 li

p
id

 in
ta

ke
 (

g)

Time (w)

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

ve
 p

ro
te

in
 in

ta
ke

 (
g)

Time (w)

A) B)

C) D)

E) F)

RM ANOVA: t RM ANOVA: t, Pxt

RM ANOVA: t, Pxt RM ANOVA: P, t, Pxt

RM ANOVA: t, Pxt 

$

$

$

$

$

ǂ

ǂ

ǂ

ǂ

*

*

*

0

25

50

75

100

125

150

175

200

225

250

Pomc Cart Npy Ghsr ObRb

m
R

N
A

 le
ve

ls
 (

%
)

P P

L6

L18

L12 a
a a a

b b

L6

L18

L12

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



                                    Manuscript 2      
 

141 

groups; Δ p<0.05 L12 versus L18 group; ǂ p<0.05 L12 versus L6 group; * p<0.05 L6 versus L12 

and L18 groups; ab Mean values with unlike letters were significantly different among groups 

(one-way ANOVA and Duncan’s post hoc test). CH, carbohydrate; Cart, cocaine and 

amphetamine-regulated transcript; Ghsr, ghrelin receptor; Npy, neuropeptide Y; ObRb, long-

form leptin receptor; Pomc, proopiomelanocortin. 

3.2. Hypothalamic mRNA levels of genes related with food intake control 

were vastly regulated by chronic exposure to both L6 and L18 

photoperiods 

To shed light on the described photoperiod effects on caloric intake, we 

analyzed the mRNA levels of different genes related with the regulation of food 

intake in the hypothalamus of diet-induced obese rats. Intriguingly, we noted a 

sharp upregulation of the orexigenic neuropeptide Y (Npy) gene in both L6 and 

L18 groups compared with those exposed to the L12 photoperiod (81.2% and 

78.3% higher, respectively), whereas no changes in the anorexigenic 

neuropeptides proopiomelanocortin (Pomc) and cocaine and amphetamine-

regulated transcript (Cart) were observed (Figure 1F). In addition, the ghrelin 

receptor (Ghsr) mRNA levels were significantly increased in L6 and L18 animals 

compared to the L12 group (92% and 94.2% higher, respectively) (Figure 1F). 

No changes in the leptin receptor (ObRb) gene in response to different 

photoperiod exposures were noted (Figure 1F). 

3.3. CAF-fed obese rats exposed to different photoperiods displayed 

significant differences in body composition 

Compared to L12 animals, both L18 and L6 groups displayed lower absolute 

lean mass (Table 2). L18 animals also showed decreased skeletal muscle 

weight, significantly lower relative lean mass and, consequently, a lesser 

lean/fat mass ratio than their L12 counterparts (p<0.05, Student’s t test) 

(Table 2).  
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Table 1. Cumulative intake of different cafeteria diet food items and fiber at the end of 

the 7-week dietary study. 

Cumulative intake L6 L12 L18  

Chow (g) 31.5 ± 3.5 42.7 ± 5.6 29.5 ± 2.0   

Cheese and pâté biscuits (g) 50.4 ± 2.8  62.0 ± 4.4 55.4 ± 2.5  

Bacon (g) 21.7 ± 2.6a 23.7 ± 2.7a 34.1 ± 2.4b P 

Carrots (g) 48.3 ± 4.7a 53.3 ± 1.1a 35.0 ± 2.9b P 

Muffins (g) 38.2 ± 4.5a 49.3 ± 1.1b 50.7 ± 1.5b P 

Milk with sugar (ml) 399 ± 7 446 ± 34 371 ± 33  

Fiber (g) 4.33 ± 0.14a 5.31 ± 0.22b 4.14 ± 0.16a P 

Male Fischer 344 rats were exposed to three different photoperiods for 11 weeks and fed a 

cafeteria diet for the last 7 weeks. Data are expressed as the mean ± SEM (n=10). One-way 

ANOVA and Duncan’s post hoc tests were performed to compare differences between groups. 

Significant differences are represented by different letters (a, b). P, photoperiod effect. 

3.4. Chronic exposure to different photoperiods modified circulating 

serum glucose levels and some serum metabolites analyzed by NMR 

The analysis of serum showed that L18 photoperiod-exposed animals exhibited 

higher circulating glucose levels compared to the L6 group (p=0.013, Student’s t 

test), whereas no difference in either circulating insulin or glucagon levels was 

observed between groups (Table 2). In addition, only 5 circulating metabolites 

obtained by NMR analysis were significantly different between the photoperiod 

groups. Glutamate, glycine and taurine were higher in L12 animals than the L6 

and L18 groups (Supplementary Table 2). Moreover, L18 animals displayed 

higher circulating levels of proline compared to the L6 group and lower choline 

levels than their counterparts (Supplementary Table 2). This group also 

exhibited residually lower levels of 3-hydroxybutyrate (p=0.05 versus L12 rats, 

Student’s t test) and lactate (p=0.052 and p=0.048, compared to L6 and L12 

animals, respectively, Student’s t test) (Supplementary Table 2). 
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Table 2. Biometric and serum parameters in F344 rats exposed to three different 

photoperiods for 11 weeks and fed a cafeteria diet for the last 7 weeks. 

 L6 L12 L18  

Biometric parameters     

Initial body weight (g) 210 ± 4 221 ± 4 215 ± 4  

Final body weight (g) 407 ± 12 441 ± 11 411 ± 8  

Liver (g) 14.2 ± 0.5 14.8 ± 0.4 14.7 ± 0.4  

Skeletal muscle (g) 2.11 ± 0.05 2.23 ± 0.04 2.09 ± 0.03  

Testes (g) 3.00 ± 0.04 3.03 ± 0.07 2.92 ± 0.02  

Fat mass (g) 85.8 ± 3.3 84.4 ± 4.2 89.5 ± 3.8  

Fat mass (%) 21.5 ± 0.8 19.5 ± 0.9 22.0 ± 0.6  

Lean mass (g) 294 ± 8a 317 ± 6b 292 ± 5a P 

Lean mass (%) 73.7 ± 0.8ab 75.0 ± 0.8b 72.1 ± 0.5a P 

Lean/fat mass ratio 3.48 ± 0.18 3.92 ± 0.25 3.30 ± 0.12  

Serum parameters     

Glucose (mmol/L) 9.11 ± 0.27 9.73 ± 0.52 10.15 ± 0.26  

Insulin (ng/mL) 5.82 ± 0.24 6.52 ± 0.82 6.59 ± 0.47  

Glucagon (ng/mL) 2.53 ± 0.12 2.64 ± 0.06 2.63 ± 0.10  

Insulin:glucagon ratio 2.21 ± 0.13 2.53 ± 0.34 2.51 ± 0.21   

NEFAs (mmol/L) 1.52 ± 0.24 1.37 ± 0.13 1.57 ± 0.18  

Phospholipids (mmol/L) 3.87 ± 0.33 3.78 ± 0.22 4.18 ± 0.24  

Triglycerides (mmol/L) 5.30 ± 0.58 5.18 ± 0.39 5.28 ± 0.32  

Total cholesterol (mmol/L) 3.30 ± 0.41 3.33 ± 0.40 3.85 ± 0.41  

Male Fischer 344 rats were exposed to three different photoperiods for 11 weeks and fed a 

cafeteria diet for the last 7 weeks. Data are expressed as the mean ± SEM (n=10). One-way 

ANOVA and Duncan’s post hoc tests were performed to compare differences between groups. 

Significant differences are represented by different letters (a, b). P, photoperiod effect. The 

skeletal muscle weight represents the total weight of both the soleus and gastrocnemius 

muscles. 
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3.5. Exposure to different day lengths significantly modulated whole-

body substrate oxidation, EE and locomotor activity 

L6 animals displayed a significant increase in the RQ compared with their L12 

and L18 counterparts (Figure 2A). Consequently, this group exhibited a 

residual increase in carbohydrate oxidation rates compared to L18 rats 

(p=0.027, Student’s t test) (Figure 2B) and a significant decrease in the fat 

oxidation levels compared with the L12 and L18 groups (29.8% and 21.5% 

lower, respectively) (Figure 2C). Thus, these findings revealed that exposure to 

a short photoperiod highly boosted the use of carbohydrate instead of lipids as 

an energy source. Both L6 and L18 animals showed lower EE and locomotor 

activity than L12 rats (Figures 2D,E).  

 

Figure 2. Respiratory quotient (RQ) (A), carbohydrate (CH) oxidation (B), fat oxidation (C), 

energy expenditure (EE) (D) and locomotor activity (E) in male F344 rats exposed to three 
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different photoperiods for 11 weeks and fed a cafeteria diet for the last 7 weeks. Data are 

expressed as the mean ± SEM (n=10). P, photoperiod effect. ab Mean values with unlike letters 

were significantly different among groups (one-way ANOVA and Duncan’s post hoc test). 

3.6. Skeletal muscle fatty acid uptake- and β-oxidation-related genes 

were modulated by exposure to different day length schedules 

To elucidate the mechanisms involved in the photoperiodic modulation of 

whole-body substrate oxidation, we analyzed different lipid metabolism-related 

parameters in the skeletal muscle of CAF-fed obese rats. L6 photoperiod-

exposed animals exhibited significant downregulation of the fatty acid 

transport protein 1 (Fatp1) mRNA levels compared to the L12 and L18 groups 

in the soleus muscle (30.3% and 32.6% lower, respectively) (Figure 3A). The 

expression of this gene showed very similar behavior in the gastrocnemius 

muscle (33.9% and 36.6% lower in L6 animals compared with L12 and L18 

rats, respectively), although the differences were not statistically significant 

(p=0.053 versus L18 rats, Student’s t test) (Figure 4A). Moreover, L6 animals 

exhibited a clear trend towards decreased expression of the β-oxidation-related 

gene, hydroxyacyl-CoA dehydrogenase (Had), in the gastrocnemius muscle 

compared with the L18 group (p=0.056, Student’s t test) (Figure 4A) and 

numerically lower carnitine palmitoyltransferase 1 beta (Cpt1β) gene 

expression in the soleus muscle compared with L12 animals (p=0.068, 

Student’s t test) (Figure 3A). No differences in the phosphorylated levels of 

AMPK were found in either the soleus or gastrocnemius muscle among groups 

(Figures 3C and 4C). 

3.7. Exposure to different day lengths altered the phosphorylated levels of 

Akt2 and other glucose metabolism-related genes in both the soleus 

and gastrocnemius muscles 

To better understand the higher glycemia observed in L18 photoperiod-

exposed animals, some parameters related with glucose homeostasis were 
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analyzed in the skeletal muscle, which is considered the main contributor of 

postprandial glucose uptake in the organism [39]. L18 animals exhibited a 

sharp downregulation of the pAkt2 protein levels in the soleus muscle 

compared with the L6 group (49.2% lower) (Figure 3D). Furthermore, residual 

downregulation of the Irs1 mRNA levels was observed in the gastrocnemius 

muscle of L18 animals compared to L6 rats (p=0.030, Student’s t test) (Figure 

4B). Intriguingly, in the soleus muscle, L18 animals displayed higher Irs1 mRNA 

levels compared with L12 rats, and L6 animals exhibited a downregulation of 

Glut4 (p<0.05, Student’s t test) (Figure 3B). 

 

Figure 3. The mRNA expression of genes involved in lipid (A) and glucose (B) metabolism and 

pAMPK (C) and pAkt2 (D) protein levels in the soleus muscle of male F344 rats exposed to 

three different photoperiods for 11 weeks and fed a cafeteria diet for the last 7 weeks. Data are 
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expressed as the mean ± SEM (n=8). P, photoperiod effect. ab Mean values with unlike letters 

were significantly different among groups (one-way ANOVA and Duncan’s post hoc test). Cd36, 

fatty acid translocase, homologue of CD36; Cpt1β, carnitine palmitoyltransferase 1 beta; Fatp1, 

fatty acid transport protein 1; Glut4, glucose transporter 4; Had, hydroxyacyl-CoA 

dehydrogenase; Irs1, insulin receptor substrate 1; pAkt2, phosphorylated Akt serine/threonine 

kinase 2; pAMPK, phosphorylated AMP-activated protein kinase. 

  

 

Figure 4. The mRNA expression of genes involved in lipid (A) and glucose (B) metabolism and 

pAMPK (C) and pAkt2 (D) protein levels in the gastrocnemius muscle of male F344 rats 

exposed to three different photoperiods for 11 weeks and fed a cafeteria diet for the last 7 

weeks. Data are expressed as the mean ± SEM (n=8). P, photoperiod effect. ab Mean values with 

unlike letters were significantly different among groups (one-way ANOVA and Duncan’s post 

hoc test). The genes and proteins analyzed have already been described in Figure 3. 
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3.8. Chronic exposure to different photoperiods induced pronounced 

changes in key genes involved in glucose and lipid homeostasis in the 

liver 

In contrast to what was observed in the skeletal muscle, L18 photoperiod-

exposed animals displayed a significant drop in the gene expression of several 

fatty acid uptake- and β-oxidation-related genes in the liver. Compared with the 

L6 and L12 groups, L18 animals exhibited residually lower fatty acid transport 

protein 5 (Fatp5) mRNA levels (p=0.025 and p=0.041, respectively, Student’s t 

test) and a significant reduction in carnitine palmitoyltransferase 1 alpha 

(Cpt1α) gene expression (31.7% and 35.3% lower, respectively) (Figure 5A). 

This group also displayed lower fatty acid translocase, homolog of CD36 (Cd36) 

and Had mRNA levels than the L6 group (p=0.045 and p=0.027, respectively, 

Student’s t test) (Figure 5A). The analysis of glucose metabolism-related genes 

revealed a residual increase in the glucose transporter 2 (Glut2) mRNA levels in 

L18 animals compared to those exposed to the L6 photoperiod (p=0.032, 

Student’s t test) (Figure 5B). No significant changes in either pAMPK or pAkt2 

protein expression were observed among groups (Figures 5C,D).  

3.9. Hepatic and muscular core clock genes were significantly modulated 

by chronic exposure to different photoperiods 

A very similar expression pattern of genes related to circadian rhythms was 

observed in the liver and the soleus and gastrocnemius muscles among the 

three photoperiod-exposed groups. L18 animals displayed lower brain and 

muscle Arnt-like protein 1 (Bmal1) mRNA levels in the soleus muscle and the 

liver than the L6 group (Figures 6A,C) and exhibited an upregulation of the 

period circadian clock 2 (Per2) mRNA levels in both the soleus and 

gastrocnemius muscles and the liver compared to L6 and L12 photoperiod-

exposed animals (Figures 6A,B,C). Similarly, cryptochrome circadian clock 1 

(Cry1) gene expression levels were greater in L18 animals than in L6 and L12 
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rats, but these changes were only significant in the liver (p=0.039 and p=0.031, 

respectively, Student’s t test) (Figure 6C). Finally, the gene that encodes the 

Bmal1 transcription inhibitor nuclear receptor subfamily 1 group D member 1 

(NR1D1) protein was sharply downregulated in the three analyzed tissues of 

L18 animals compared to the L12 group and to a greater extent compared with 

L6 animals (Figures 6A,B,C). 

 

Figure 5. The mRNA expression of genes involved in lipid (A) and glucose (B) metabolism and 

pAMPK (C) and pAkt2 (D) protein levels in the liver of male F344 rats exposed to three 

different photoperiods for 11 weeks and fed a cafeteria diet for the last 7 weeks. Data are 

expressed as the mean ± SEM (n=8). P, photoperiod effect. ab Mean values with unlike letters 

were significantly different among groups (one-way ANOVA and Duncan’s post hoc test). Cpt1α, 

carnitine palmitoyltransferase 1 alpha; Fatp5, fatty acid transport protein 5; Glut2, glucose 
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transporter 2. The rest of the genes and proteins analyzed have already been described in 

Figure 3. 

3.10. The multivariate analysis revealed a marked clustering among the 

different photoperiod-exposed CAF groups 

The 112 biometric, biochemical, physiological and molecular parameters 

evaluated in the present study were used to set up a PLS-DA predictive model 

to detect marked clustering among the photoperiod groups (Figure 7A). After 

representing the three components’ scores, the quality parameters associated 

with this model were satisfactory. In this sense, the degree of fit of the model to 

the data, which is represented by R2, was 0.98. Furthermore, the cross-

validation of this model (Q2) was 0.59; with a threshold of >0.4, this biological 

model is considered acceptable [40]. Taking into account the good quality of 

this predictive model, we selected those variables with a coefficient mean 

higher than 30 to set up a PCA (Figure 7B). 

After representing the 28 selected variables that exhibited a higher relevance in 

the separation of the three groups in the PCA, the 56.8% variance was 

explained. As shown in Figure 7C, clear clustering revealed a strong differential 

response of each group towards chronic exposure to different photoperiods. 

Among these variables, we mainly observed circadian rhythm-related genes 

(Bmal1, Per2, Cry1, Rorα and Nr1d1) in the three analyzed tissues, hypothalamic 

orexigenic genes (Npy and Ghsr), glucose metabolism-related parameters 

(pAkt2 protein and Glut4 and Irs1 gene expression) in the skeletal muscle and 

physiologic parameters measured by indirect calorimetry analysis (RQ, EE and 

fat oxidation). 
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Figure 6. The mRNA expression of circadian core-clock genes in the soleus (A) and 

gastrocnemius (B) muscles and the liver (C) in male F344 rats exposed to three different 

photoperiods for 11 weeks and fed a cafeteria diet for the last 7 weeks. Data are expressed as 

the mean ± SEM (n=8). P, photoperiod effect. abc Mean values with unlike letters were 

significantly different among groups (one-way ANOVA and Duncan’s post hoc test). Bmal1, 
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brain and muscle Arnt-like protein-1; Cry1, cryptochrome circadian clock 1; Nampt, 

nicotinamide phosphoribosyltransferase; Nr1d1, nuclear receptor subfamily 1, group D, 

member 1; Per2, period circadian clock 2; Rorα, RAR-related orphan receptor alpha. 

 

Figure 7. The 112 analyzed parameters were used to set up a PLS-DA predictive model (A). The 

28 variables with a coefficient mean higher than 30 (B) were analyzed by PCA (C). 3Hxb, 3-

hydroxybutyrate; Bmal1, brain and muscle Arnt-like protein-1; Cry1, cryptochrome circadian 

clock 1; EE, energy expenditure; Fat_ox, fat oxidation; Fatp1, fatty acid transport protein 1; Ga, 

gastrocnemius muscle; Ghsr, ghrelin receptor; Glut4, glucose transporter 4; Hp, hypothalamus; 

Irs1, insulin receptor substrate 1; Leu, leucine; Li, liver; Npy, neuropeptide Y; Nr1d1, nuclear 

receptor subfamily 1, group D, member 1; pAkt2, phosphorylated Akt serine/threonine kinase 

2; Per2, period circadian clock 2; Pro, proline; Rorα, RAR-related orphan receptor alpha; RQ, 

respiratory quotient; Se, serum; So, soleus muscle. 
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4. DISCUSSION 

In the present study, we demonstrated that chronic exposure to 3 different 

photoperiods (L6, L12 and L18) combined with the intake of the obesogenic 

diet CAF induced profound changes in a wide range of physiological and 

metabolic parameters in F344 rats. Briefly, we demonstrated: 1) decreased 

final body weight, cumulative caloric intake and EE and increased hypothalamic 

mRNA levels of the orexigenic genes Npy and Ghsr in both L6 and L18 animals; 

2) significant changes in the preferences for different food items included in the 

CAF among the three photoperiod groups; 3) decreased EE and locomotor 

activity in both L6 and L18 rats; 4) higher circulating glucose levels in L18 

animals compared with L6 rats, which were accompanied by a downregulation 

of the phosphorylated levels of Akt2 in the soleus muscle and lower Irs1 mRNA 

levels in the gastrocnemius muscle; and 5) reduced whole-body lipid utilization 

in L6 animals, which was supported by the downregulation of fatty acid 

transporters and β-oxidation-related genes in both skeletal muscles. In 

addition, the multivariate analysis carried out with 112 parameters, including 

biometric- and food intake-related parameters as well as biochemical and 

molecular variables in the blood, liver, skeletal muscles and hypothalamus, 

revealed a clear clustering among the three photoperiod groups, reinforcing the 

relevance of changes in seasonal day length in physiology and metabolism in 

the obese state. 

Numerous studies have already shown a marked photoperiod effect on several 

physiologic, behavioral and reproductive parameters in healthy Fischer 344 

rats exposed to different day length schedules [14–18]. In this sense, our group 

previously reported that, under normoweight conditions, chronic exposure to 

different photoperiods induced relevant changes in a variety of glucose and 

lipid metabolism-related parameters in this model [19]. However, in terms of 

biometric and reproductive parameters, normoweight F344 rats held under an 
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SD photoperiod exhibited a significant photorefractory response after 14 

weeks, not displaying the widely described short photoperiod-like regressive 

phenotype in body weight, body composition and testes size [14,17] compared 

to animals exposed to an LD photoperiod [19]. In the present study, 

surprisingly, an adaptation period of 4 weeks to the different photoperiods did 

not manifest into changes in body weight or food intake in F344 rats fed an 

STD, which clearly differs from other studies in which marked variations in 

cumulative food intake (15 days) and body weight gain (20 days) were rapidly 

reported after exposure to different day lengths [17]. However, the inclusion of 

the CAF for the subsequent 7 weeks provoked slight but significant decreases of 

body weight gain and final body weight in both L6 and L18 animals, which 

could be mostly attributed to the decreased cumulative energy intake displayed 

by both groups of rats over the course of the CAF intervention. Intriguingly, this 

lower caloric intake was accompanied by a sharp upregulation of the 

hypothalamic expression of the gene encoding the orexigenic neuropeptide 

NPY, which is one of the main enhancers of appetite [41], and by increased 

mRNA levels of the receptor of ghrelin, a gastric orexigenic hormone that acts 

through the activation of NPY neurons [42]. One possible explanation for these 

contradictory results could be a differential feeding state among groups at 

sacrifice, which could markedly regulate leptin and ghrelin systems [43]. 

However, the lack of variation in the circulating insulin and glucagon levels 

among groups strongly suggests that all animals were sacrificed under a very 

similar feeding status and, therefore, it seems very unlikely that differences in 

this parameter could account for the observed findings. Body weight is mainly 

determined by the balance between EE and energy intake [41]. Thus, at first 

glance, the lower energy intake observed in both L6 and L18 rats could be 

understood as an adaptive response to fit with the decreased EE observed in 

these groups in an attempt to maintain an optimal weight. Nevertheless, these 

decreases in both caloric intake and EE were translated into a progressive loss 
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of weight gain, suggesting an impairment of the mechanisms involved in body 

weight control in animals held under the SD and LD photoperiods. In this 

context, it is plausible to hypothesize that the activation of the orexigenic 

pathways could be a compensatory mechanism used to promote food intake in 

an attempt to counteract the lower body weight increase and, therefore, to 

recover the energy balance in L6 and L18 rats. One limitation of the obtained 

data is the fact that they only represent the endpoint of the study. Additional 

studies in which the animals are sacrificed at a later time point would be of 

great value to shed more light on this issue. 

In addition to changes in energy intake, photoperiod clearly altered food 

preferences and macronutrient intake. Thus, the higher preference for some 

fat-rich solid food items included in the CAF (bacon and muffins) observed in 

L18 animals compared with L6 rats may explain the higher lipid consumption 

of animals exposed to a long-duration day than those held under the SD 

photoperiod, despite the fact that both groups attained a very similar overall 

caloric intake. Furthermore, the increased consumption of bacon reported in 

L18 rats compared with L12 animals and the similar muffin intake reported in 

both groups over the course of the study may account for the lack of significant 

differences in cumulative lipid intake between ND and LD photoperiod-exposed 

animals. The increased fat intake and higher preference for fat-rich foodstuffs 

observed in L18 rats compared with L6 animals is not consistent with the 

results obtained by Togo and collaborators, which reported that F344 rats 

exposed to a long photoperiod (16 h of light/day) during 3 weeks displayed a 

significant preference for a low-fat, high-carbohydrate diet than for a high-fat, 

low-carbohydrate diet, although no differences in protein and fat intake were 

reported compared to animals exposed to a short photoperiod (8 h of light 

/day) [26]. One possible explanation for these discrepancies could rely on the 

different experimental designs in terms of study length and/or diet 

compositions. Further analyses related with the hedonic regulation of food 
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intake, such as hippocampal expression of genes and proteins involved in 

dopaminergic pathways (dopamine receptor D5 (DRD5) and dopamine 

transporter (DAT)) [44] and more specific tests concerning feeding behavior, 

such as the two-bottle preference test [45], would be of high relevance to gain 

further insight into the relevance of photoperiod exposure on lipid and 

carbohydrate preferences in CAF-fed rats. 

The lower cumulative protein intake observed in both L6 and L18 animals 

could explain, at least in part, the decrease in absolute lean mass observed in 

both groups [46]. Since quantitative magnetic resonance analysis of lean mass 

provides a precise measurement of muscle mass [47] and L18 animals showed 

lower skeletal muscle weight than L12 rats, it seems clear that chronic 

exposure to the LD photoperiod slowed down muscle mass accretion. Although 

skeletal muscle accounts for ≃80% of the postprandial circulating glucose 

uptake [39], this finding was not translated into significant changes in the 

circulating levels of glucose between animals held under ND and LD 

photoperiods. Nevertheless, we reported a significant increase in blood glucose 

of L18 animals compared with L6 rats, which could be partly explained by the 

significant downregulation of the phosphorylated levels of the downstream 

postreceptor target of insulin Akt2 [48] and lower expression of the insulin 

signaling-related gene Irs1—involved in the activation of Akt2 [49]—observed 

in the soleus and gastrocnemius muscle, respectively, of the group exposed to 

the long-duration day. Although we recently reported that chronic exposure to 

18 hours of light induced an increase in circulating glucose levels compared 

with L12 photoperiod-exposed normoweight F344 rats, these results are not in 

agreement with the idea that short-duration days are more associated with 

impairments in glucose metabolism and insulin signaling than long 

photoperiods, as was previously described by our group in F344 rats [19] and 

by Tashiro et al. in C57BL/6J mice [20]. However, in the present study, the lack 

of significant changes in Irs1 and Glut4 gene expression in the soleus muscle 
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between L18 and L6 animals and the increased mRNA levels of the hepatic 

glucose transporter Glut2 in the L18 group do not fully support the hypothesis 

of a lower insulin sensitivity phenotype in LD-exposed CAF-fed animals. Taking 

into account that gene expression data do not always match the protein levels, 

further analyses concerning GLUT4 translocation and the levels of other 

proteins involved in glucose and insulin signaling pathways are needed. 

Nevertheless, to the best of our knowledge, this is the first study to report a 

clear interaction between an obesogenic diet and day length seasonal variations 

in the regulation of glucose homeostasis, although the mechanisms involved in 

these diet-dependent photoperiod effects deserve further research.  

We previously reported that normoweight L6 photoperiod-exposed animals 

displayed increased circulating NEFAs levels, which were accompanied by a 

downregulation of the mRNA levels of the gene encoding the fatty acid 

transporter CD36 in the soleus muscle and liver and by decreased expression of 

the β-oxidation-related genes, Cpt1β and Had, in the soleus muscle [19]. In the 

present study, exposure to the L6 photoperiod combined with CAF intervention 

also produced profound changes in lipid metabolism, as illustrated by the 

reduced whole-body fat oxidation rates in L6 animals compared with L12 and 

L18 rats. The lower lipid substrate utilization observed in this group could be 

mainly attributed to its significantly lower lipid intake, decreased mRNA levels 

of the fatty acid transporter gene, Fatp1, observed in both the soleus and 

gastrocnemius muscles, and the clear trend towards lower mRNA levels of the 

β-oxidation-related genes, Cpt1β and Had, observed in the soleus and 

gastrocnemius muscle, respectively. However, in contrast to what was observed 

in normoweight rats, the molecular changes related with fatty acid metabolism 

observed in the skeletal muscles of L6 CAF-fed animals were not translated into 

elevated circulating NEFAs. One possible explanation for these results could be 

the enhancement of fatty acid transport and β-oxidation pathways observed in 

the liver, which is illustrated by the upregulation of Cd36, Fatp5, Cpt1α and Had 
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mRNA levels observed in L6 animals compared to L18 rats. This liver-specific 

response could be explained as a compensatory action addressed to increase 

the hepatic fatty acid supply to maintain fatty acid homeostasis and, therefore, 

to avoid the rise of blood NEFAs. Nevertheless, further analyses of genes and 

proteins involved in fatty acid metabolism in the liver and peripheral tissues 

that significantly contribute to fatty acid uptake and β-oxidation, such as white 

adipose tissue [50], would be useful to corroborate this hypothesis. 

We previously described that chronic exposure to different photoperiods in 

normoweight rats modulated the circadian core-clock transcriptional 

machinery, inducing profound changes in the gene expression levels of the 

major circadian clock transcriptional activator Bmal1 [51], its product, Per2, 

and its inhibitor, Nr1d1, in the liver and both the soleus and gastrocnemius 

muscles in L18 animals [19]. Taking into account that several studies have 

proven that these genes are markedly implicated in the regulation of feeding 

behavior [41] and different metabolic pathways, such as gluconeogenesis or 

fatty acid β-oxidation [52], we speculate that the circadian rhythm-related gene 

expression changes observed in normoweight L18 rats could account, at least in 

part, to the physiologic and metabolic changes observed in this group, despite 

the limitation of only performing a single-point measurement of each gene 

(ZT1-2) [19]. In the present study, CAF-fed rats chronically exposed to different 

day lengths displayed a very similar gene expression pattern of core-clock 

genes than those reported in our previous study [19], suggesting that the CAF 

did not alter the circadian transcriptional machinery regulation. Remarkably, 

despite the fact that the hepatic and muscular gene expression profiles of 

circadian rhythm-related genes were very similar, we observed a very different 

response in genes related to fatty acid uptake and oxidation between the liver 

and skeletal muscles. Thus, although the marked variations in the mRNA levels 

of Nr1d1 and Per2 in the liver and skeletal muscles may partly explain the 

differences in physiologic and metabolic parameters observed among the 
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different photoperiod groups, the abovementioned results would make it 

difficult to establish the relevance of these gene expression changes on the 

observed effects. Therefore, further analyses performed at different time points 

throughout a 24-hour period are needed to shed more light on this issue. 

5. CONCLUSION 

In conclusion, we demonstrated that the consumption of a CAF triggered 

marked variations in outputs related with body weight regulation, feeding 

behavior and metabolism in F344 rats chronically exposed to different 

photoperiods. Relevantly, we observed a very similar behavior concerning 

caloric intake and biometric parameters in obese rats exposed to both short 

and long photoperiods, describing a decrease in body weight gain, lean mass, 

energy intake and EE compared with animals exposed to 12 hours of light. 

These changes were accompanied by a significant increase in the hypothalamic 

expression of the orexigenic genes Npy and Ghsr, in both groups of animals, 

which could be interpreted as a mechanism for increasing food intake to 

restore body weight homeostasis. Nevertheless, these common outputs 

between L6 and L18 animals were associated with different metabolic 

adaptations, as was illustrated by 1) the higher circulating glucose levels 

observed in animals held under the long photoperiod than L6 rats, which would 

be partly attributed to decreased pAkt2 protein levels and Irs1 mRNA levels in 

the soleus and gastrocnemius muscles, respectively; and 2) the lower whole-

body fat utilization in L6 animals, an effect that could be partly associated with 

decreased fat intake and the downregulation of fatty acid uptake- and β-

oxidation-related genes in skeletal muscles. Since a seasonal cycle of food 

consumption in humans has been described [53,54], our study could contribute 

to highlight the relevance of the intake of highly palatable and energy dense 

foods prevalent in Western societies in the physiological and metabolic 

adaptations that occur in response to seasonal variations of day length, 
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especially in diseases associated with changes in food intake frequency and 

preference, such as obesity [41] and SAD [53]. The impact of these findings on 

human physiology and health deserves further research.  
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SUPPLEMENTARY MATERIAL 

Supplementary table 1. Nucleotide sequences of primers used for real time 

quantitative PCR. 

Gene Forward primer 
(5’ to 3’) 

Reverse primer 
(5’ to 3’) 

Tissue 

β-actin TACAGCTTCACCACCACAGC TCTCCAGGGAGGAAGAGGAT L 

Bmal1 GTAGATCAGAGGGCGACGGCTA CTTGTCTGTAAAACTTGCCTGTGAC G, L, S 

Cart AGAAGAAGTACGGCCAAGTCC CACACAGCTTCCCGATCC H 

Cd36 GTCCTGGCTGTGTTTGGA GCTCAAAGATGGCTCCATTG L, S 

Cpt1α GCTCGCACATTACAAGGACAT TGGACACCACATAGAGGCAG L 

Cpt1β GCAAACTGGACCGAGAAGAG CCTTGAAGAAGCGACCTTTG G, S 

Cry1 TGGAAGGTATGCGTGTCCTC TCCAGGAGAACCTCCTCACG G, L, S 

Fatp1 TGCTCAAGTTCTGCTCTGGA CATGCTGTAGGAATGGTGGC G, S 

Fatp5 CCTGCCAAGCTTCGTGCTAAT GCTCATGTGATAGGATGGCTGG L 

Ghsr TCAGCCAGTACTGCAACCTG GGAGAGATGGGATGTGCTGT H 

Glut2 AGTCACACCAGCACATACGA TGGCTTTGATCCTTCCGAGT L 

Glut4 CCATTGCTTCTGGCTATCAC TCCGTTTCTCATCCTTCAGC G, S 

Had ATCGTGAACCGTCTCTTGGT AGGACTGGGCTGAAATAAGG G, L, S 

Hprt TCCCAGCGTCGTGATTAGTGA CCTTCATGACATCTCGAGCAAG G, L, S 

Irs1 CTACACCCGAGACGAACACT TAACCTGCCAGACCTCCTTG G, L, S 

Nampt CTCTTCACAAGAGACTGCCG TTCATGGTCTTTCCCCCACG G, L, S 

Npy TGGACTGACCCTCGCTCTAT GTGTCTCAGGGCTGGATCTC H 

Nr1d1 ACAGCTGACACCACCCAGATC CATGGGCATAGGTGAAGATTTCT G, L, S 

ObRb AGCCAAACAAAAGCACCATT TCCTGAGCCATCCAGTCTCT H 

Per2 CGGACCTGGCTTCAGTTCAT AGGATCCAAGAACGGCACAG G, L, S 

Pomc CCTGTGAAGGTGTACCCCAATGTC CACGTTCTTGATGATGGCGTTC H 

Ppia CCAAACACAAATGGTTCCCAGT ATTCCTGGACCCAAAACGCT G, S 

Rorα CCCGATGTCTTCAAATCCTTAGG TCAGTCAGATGCATAGAACACAAACTC G, L, S 

Tfrc ATCATCAAGCAGCTGAGCCAG CTCGCCAGACTTTGCTGAATTT S 

The table shows the nucleotide sequences of primers used for PCR amplification. Primer 

pairs for PCR were designed using Primer3 software and the sequence information were 

obtained from Genbank. β-actin, actin beta; Bmal1, brain and muscle Arnt-like protein-1; 
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Cart, cocaine and amphetamine-regulated transcript; Cd36, fatty acid translocase, 

homologue of CD36; Cpt1α, carnitine palmitoyltransferase 1 alpha; Cpt1β, carnitine 

palmitoyltransferase 1 beta; Cry1, cryptochrome circadian clock 1; Fatp1, fatty acid 

transport protein 1; Fatp5, fatty acid transport protein 5; Ghsr, ghrelin receptor; Glut2, 

glucose transporter 2; Glut4, glucose transporter 4; Had, hydroxyacyl-CoA dehydrogenase; 

Hprt, hypoxanthine guanine phosphoribosyl transferase; Irs1, insulin receptor substrate 1; 

Nampt, nicotinamide phosphoribosyltransferase; Npy, neuropeptide Y; Nr1d1, nuclear 

receptor subfamily 1, group D, member 1; ObRb, long-form leptin receptor; Per2, period 

circadian clock 2; Pomc, proopiomelanocortin; Ppia, peptidylprolyl isomerase A; Rorα, RAR-

related orphan receptor A; Tfrc, transferrin receptor. Gene expression levels were analyzed 

in the hypothalamus (H), liver (L) and the gastrocnemius (G) and soleus (S) muscles. 
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Supplementary table 2. Concentration of representative serum metabolites analyzed by 

Nuclear Magnetic Resonance in diet-induced obese rats exposed to three different 

photoperiods for 11 weeks and fed a cafeteria diet for the last 7 weeks. 

Metabolite concentration 
(μmol/L) 

L6 L12 L18 
 

3-Hydroxybutyrate   61.7 ± 5.8 65.4 ± 4.7 53.2 ± 3.2  

Acetate   64.3 ± 2.5 67.8 ± 3.1 67.6 ± 3.2  

Alanine   166.6 ± 8.8 170.5 ± 5.6 177.5 ± 7.8  

Creatine   103.2 ± 5.7 116.6 ± 4.4 109.5 ± 6.7  

Choline 6.3 ± 0.3 a 5.9 ± 0.1 a 5.4 ± 0.1 b P 

Formate   23.9 ± 1.1 25.0 ± 0.5 25.1 ± 1.3  

Glutamine   171.4 ± 4.6 177.2 ± 4.5 176.1 ± 5.7  

Glutamate 39.2 ± 1.3 a 44.7 ± 2.2 b 39.4 ± 1.5 a P 

Glycerophosphocholine   34.9 ± 5.2 37.0 ± 5.5 27.8 ± 2.9  

Glycine 64.4 ± 2.7 a 71.3 ± 1.1 b 65.3 ± 1.8 a P 

Histidine   22.5 ± 0.7 23.4 ± 0.8 22.2 ± 0.9  

Isoleucine   34.8 ± 1.9 32.3 ± 0.9 36.5 ± 3.1  

Lactate  1259 ± 77 1314 ± 107 1048 ± 63  

Leucine 31.6 ± 1.8 27.9 ± 0.6 32.7 ± 2.9  

Lysine   124.8 ± 4.8 119.6 ± 3.9 127.1 ± 8.7  

Phenylalanine 29.2 ± 0.7 31.1 ± 0.8 29.0 ± 0.7  

Proline 52.6 ± 3.3 a 55.3 ± 2.5 ab 62.2 ± 1.9 b P 

Pyruvate    22.9 ± 0.9 26.4 ± 2.2 23.2 ± 1.8  

Serine 85.5 ± 2.2 85.5 ± 3.0 85.4 ± 3.1  

Taurine 353 ± 10 a 391 ± 17 b 340 ± 10 a P 

Threonine   52.8 ± 2.9 52.3 ± 2.7 52.6 ± 3.9  

Tryptophan   44.1 ± 1.5 45.0 ± 1.3 43.5 ± 1.8  

Tyrosine   33.1 ± 0.8 34.1 ± 1.3 30.6 ± 1.2  

Valine 49.0 ± 2.2 46.7 ± 1.9 51.1 ± 4.3  

Male Fischer 344 rats were exposed to three different photoperiods for 11 weeks and fed a 

cafeteria diet for the last 7 weeks. Data are expressed as the mean ± SEM (n=10). All the 

metabolites were obtained by performing a nuclear magnetic resonance (NMR) analysis. One-
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way ANOVA and Duncan’s post hoc tests were performed to compare the values between 

groups and significant differences were represented with different letters (a, b). P, photoperiod 

effect.
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ABSTRACT 

The xenohormesis theory postulates that animals, through the consumption of 

chemical cues, mainly polyphenols, synthetized by plants, are able to favorably 

adapt to changing environmental conditions. We hypothesized that the intake 

of fruits with a seasonally distinctive phenotype (in terms of bioactive 

compounds) produced a metabolic response that depends on mammals’ 

circannual rhythms and that fruit intake out of season can lead to a disruption 

in characteristic seasonal metabolism. Fischer 344 rats were chronically 

exposed to short (L6, 6h light/day) and long (L18, 18h light/day) photoperiods 

in order to simulate autumn and spring seasons, respectively, and were fed 

either a standard diet (STD) or an obesogenic cafeteria diet (CAF) and orally 

treated with either vehicle or 100 mg.kg-1.day-1 of lyophilized sweet cherry 

(Prunus avium L.), a fruit consumed during long-day seasons. Cherry 

consumption exerted a marked photoperiod-dependent effect, inducing more 

changes when it was consumed out of season, which was apparent in the 

following observations: 1) in L6 STD-fed rats, a downregulation of the 

phosphorylated (p) levels of the downstream postreceptor target of insulin 

Akt2 in the soleus muscle and an enhancement of fatty acid transport and β-

oxidation-related pathways, which was evidenced by increased Had gene 

expression (soleus) and pAMPK levels (soleus and gastrocnemius); 2) an 

increase in whole-body fat oxidation and circulating levels of glucose and 

insulin in L6-CAF-fed obese rats. Although the pathophysiological significance 

of these results requires further research, our findings could contribute to 

highlighting the importance of the consumption of seasonal fruits to maintain 

optimal health. 

Key words. Seasonal fruits, circannual rhythms, cherry consumption, 

polyphenols, metabolic homeostasis, xenohormesis theory.  
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1. INTRODUCTION 

Obesity has become a global epidemic as more than 1.9 billion adults were 

overweight and of these, over 650 million were obese in 2016 [1]. Taking into 

account that the main factor contributing to the development of obesity and its 

related disorders is an imbalance between food intake and energy expenditure 

[2,3], national policies have been focused on recommending healthy habits, 

such as the adherence to lower caloric diets, higher fruit and vegetable intake 

and increased physical activity. However, this strategy has shown a limited 

effectiveness, since the incidence and prevalence of obesity are still increasing 

every year. Thus, there is an urgent need to find new factors that can contribute 

to the development of obesity and related pathologies in order to improve 

lifestyle-based strategies to successfully counteract this worldwide epidemic.  

It is widely accepted that mammals are capable of changing their physiology, 

behavior and metabolism as an adaptive mechanism to address seasonal 

variations in environmental factors that can compromise their food availability 

and survival, such as day length and climate [4,5]. In humans, especially those 

living in latitudes far from the equator, this seasonal responsiveness is 

illustrated by higher fat mass accretion and fasting circulating levels of 

cholesterol, triglycerides, glucose, insulin and leptin during winter and by 

increased energy expenditure and physical activity during summer [6–8]. The 

seasonal variations in these parameters seem to have a more negative impact 

on human health during the cold dark part of the year, since a clear negative 

correlation was found between cardiovascular disease mortality and day length 

[8]. Nevertheless, despite the evidence, the impact of factors other than day 

length, such as physical activity and temperature together with the augmented 

use of heating and artificial lighting systems [6,7], makes it difficult to 

determine the importance of seasonal day length variations on human health. 

To minimize these limitations and to more accurately elucidate how day length 
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affects physiology and metabolism, the use of animal models held under 

constant and controlled temperature conditions and social input has gained 

interest over recent decades. Thus, in C57BL/6J mice, the exposure to a short 

photoperiod (8:16 h light:darkness) for 3 weeks induced depression-like 

behavior accompanied by an increase in sucrose intake, body weight, fat mass 

and hyperglycemia [9,10], which represent the main symptoms of seasonal 

affective disorder (SAD), a mood disorder with a high incidence in winter [11]. 

Using the photosensitive Fischer 344 rat strain [12–15], we recently 

demonstrated the relevance of circannual rhythms in the regulation of lipid and 

glucose metabolism, suggesting that this model could be a useful tool to study 

glucose- and lipid-related pathologies that are influenced by seasonal variation, 

such as obesity, cardiovascular disease and SAD. Thus, by carrying out a 

multivariate analysis including 239 biometric, serum, hepatic and skeletal 

muscle parameters, we showed a clear clustering that was dependent on the 

photoperiod to which the animals were exposed. Furthermore, we 

demonstrated that the exposure to a short photoperiod (6:18 h light:darkness) 

for 14 weeks induced a marked increase in circulating glucose and free fatty 

acid levels that was accompanied by changes in key glucose, insulin and lipid 

metabolism-related proteins and genes in the skeletal muscles and liver [16]. 

In addition to animals and humans, plants exhibit a high sensitivity toward 

seasonal changes in the environment and produce some chemical signals, 

known as phytochemicals, whose composition and levels can be influenced by 

different environmental factors, such as the temperature, light quality, stress 

and day length [17]. An extensive variety of these signals, such as polyphenols, 

can be found in fruits and vegetables in our diet, and these signals are 

characterized by their antioxidant [18–21] and anti-inflammatory [19,22] 

properties, among others. Moreover, it has been shown that these bioactive 

compounds can directly interact with specific enzymes or receptors from 

signaling pathways in the organism that consumes them [23,24]. Based on 
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these concepts, Howitz and Sinclair developed a theory called xenohormesis 

(from xeno, stranger and hormesis, the term for the protective response 

provided by mild biological stress) [25]. This theory postulates that 

heterotrophic organisms acquired the ability to recognize stress signaling 

compounds synthetized by other species, being informed about the status of the 

environment or food availability. Therefore, these signals allow them to adapt 

to these conditions in a beneficial way, leading to a higher chance of survival 

[25–27]. 

Currently, life’s globalization guarantees the commercialization of fruits and 

vegetables from across the world, which makes possible the consumption of 

seasonal fruits throughout the year. Here, we hypothesize that the intake of 

fruits with a seasonal distinctive phenotype (in terms of bioactive compounds) 

produces a metabolic response that depends on mammals’ circannual rhythms. 

Therefore, fruit consumption out of its harvesting season could trigger 

erroneous signaling, leading to a disruption in characteristic seasonal 

metabolism, which could contribute to the development of obesity and related 

disorders. 

To shed light on this issue, we conducted a proof-of-concept study in which 

Fischer 344 rats were exposed to short and long photoperiods in order to 

mimic autumn and spring light schedules, respectively, and were treated with 

lyophilized sweet cherry (Prunus avium L.), a fruit typically consumed during 

spring. The main aim of the study was to evaluate whether cherry consumption 

out of season could induce erroneous signaling, which could consequently a) 

negatively affect the metabolism of normoweight rats and b) enhance the 

detrimental effects caused by the obesogenic cafeteria diet. 
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2. MATERIALS AND METHODS  

2.1. Fruit preparation and characterization  

Royal Dawn sweet cherries (Prunus avium L.) were cultivated in Argentina and 

acquired in Mercabarna (Barcelona, Spain). After discarding the pits, cherries 

were frozen in liquid nitrogen, crushed and lyophilized by using a Telstar 

LyoQuest lyophilizer (Thermo Fisher Scientific, Barcelona, Spain) at -55ºC. 

Then, cherries were crushed again in order to ensure their easy dilution in 

water, aliquoted and protected from light and humidity. The phenolic 

composition of this cherry variant is characterized by a high content of 

flavonoids (1.86 mg/g), such as anthocyanins (1.71 mg/g) and flavanols (0.15 

mg/g), and phenolic acids (0.88 mg/g), such as 3-caffeoylquinic (0.45 mg/g) 

and 3-p-coumaroylquinic acids (0.38 mg/g). Cyanidin 3-O-rutinoside (1.43 

mg/g) is the main anthocyanin present in this fruit, accounting for 

approximately 80-90% of the total anthocyanin content, followed by cyanidin 

3-O-glucoside (0.19 mg/g). In addition, the main flavanols present in this fruit 

are epicatechin (0.078 mg/g), catechin (0.015 mg/g), and procyanidin dimers 

(0.038 mg/g) and trimers (0.019 mg/g) [28]. This fruit contains 135 mg/g of 

carbohydrate, 5 mg/g of lipids, 8 mg/g of proteins, 15 mg/g of dietary fiber and 

837 mg/g of water [29]. 

2.2. Experimental design  

The Animal Ethics Committee of the University Rovira i Virgili (Tarragona, 

Spain) approved all of the procedures. Experiment one. Twenty-four 8-week-

old male Fischer 344 (F344) rats (Charles River Laboratories, Barcelona, Spain) 

were housed in pairs in cages at 22ºC and exposed to 2 different photoperiods 

to mimic the day length of different seasons: the autumn season (short day 

photoperiod, L6, 6 h light and 18 h darkness) and the spring season (long day 

photoperiod, L18, 18 h light and 6 h darkness). Both groups (n=12 per group) 
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were subjected to a 4-week adaptation period during which they were fed ad 

libitum with a STD (2.90 kcal·g-1; Teklad Global 14% Protein Rodent Diet 2014, 

ENVIGO, Sant Feliu de Codines, Barcelona, Spain). After this period, rats of each 

photoperiod were divided into 2 groups (n=6 per group) according to the 

treatment received over 10 weeks: vehicle (VE) or lyophilized cherry (CH) at a 

dose of 100 mg per kg of body weight (diluted in water). The vehicle group was 

supplemented with the same volume of a sugar mixture solution 

(glucose:fructose 1:1, 20 mg per kg of body weight) in order to administer the 

same amount of sugars as those given to the cherry-supplemented rats. Both 

treatments were administered orally using a 1-ml syringe in a volume of 0.3-0.4 

ml. Considering the rat’s average weight as 350 g and that 100 g of fresh 

cherries approximately yields 33 g of lyophilized fruit, the dose of lyophilized 

cherry used in this study was equivalent to a daily consumption of 4.26 g of 

fresh cherry without pits per day for a 60-kg human [30]. Body weight and food 

intake were recorded weekly, and after 10 weeks, animals were sacrificed by 

decapitation at Zeitgeber time (ZT) 1, after being deprived of food for 1 h. 

Experiment two. Forty 8-week-old male F344 rats were housed in the same 

conditions described in the first experiment. After a 4-week adaptation period 

during which the animals were fed a STD, rats were switched to a CAF and 

distributed into 2 different groups according to the treatment received (VE or 

CH) for 7 weeks, which is a period of time that allows the development of 

obesity and metabolic syndrome (MetS)-related alterations in CAF-fed rats [31]. 

The cafeteria diet contained bacon, biscuit with pâté and biscuit with cheese, 

carrots, muffins and milk with sugar (220 g/L), and its caloric distribution was 

58.1% carbohydrate, 31.9% lipid and 10.0% protein. Sacrifice was performed 

as described above. In both experiments, blood was collected, and serum was 

obtained by centrifugation and stored at -80ºC until analysis. The liver and the 

soleus and gastrocnemius muscles were rapidly weighed, frozen in liquid 

nitrogen and stored at -80ºC until further analysis. 
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2.3. Body composition analysis  

Lean and fat mass measurements were performed without anesthesia 1 week 

before sacrifice using an EchoMRI-700™ device (Echo Medical Systems, L.L.C., 

Houston, USA). Data are expressed in absolute (g) and relative values as a 

percentage of body weight (%). The lean/fat mass ratio was also calculated. 

2.4. Indirect calorimetry  

Indirect calorimetry analyses were performed 2 weeks before sacrifice in the 

CAF-fed rats study using an Oxylet ProTM System (PANLAB, Cornellà, Spain). 

After receiving the treatment at ZT0, rats were transferred to an acrylic box 

(Oxylet LE 1305 Physiocage, PANLAB, Cornellà, Spain) with free access to water 

and food. After an acclimation period of 3 h (from ZT0 to ZT3), the indirect 

calorimetry analyses were performed for 21 h (from ZT3 to ZT24). The 

respiratory quotient (RQ), energy expenditure (EE) and oxidation levels of 

carbohydrate and lipids were calculated as previously defined [32]. 

2.5. Serum analysis 

Circulating levels of glucose, total cholesterol, triglycerides (QCA, Barcelona, 

Spain), phospholipids (Spinreact, Girona, Spain) and nonesterified free fatty 

acids (NEFAs) (WAKO, Neuss, Germany) were analyzed by enzymatic 

colorimetric assays. Serum insulin and glucagon levels were analyzed using a 

rat insulin ELISA kit (Millipore, Barcelona, Spain) and a rat glucagon ELISA kit 

(Cusabio Biotech, Wuhan, China), respectively. 

2.6. Gene expression analysis. 

Total RNA extraction from the liver and gastrocnemius and soleus muscles, 

cDNA synthesis and real-time quantitative-PCR were performed as previously 

described [16]. The primers used to amplify the different genes are described in 

Supplementary Table 1 and were obtained from Biomers.net (Ulm, Germany). 
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The relative expression levels of each mRNA were calculated as a percentage of 

the nontreated L6 group, using the -2∆∆Ct method with the β-actin, Ppia, Hprt 

and Tfrc genes as reference genes. 

2.7. Western blot analysis 

Total and phosphorylated (p) AMP-activated protein kinase (AMPK and (p)-

AMPK) and Akt serine/threonine kinase 2 (Akt2 and (p)-Akt2) protein levels in 

the liver and the soleus and gastrocnemius muscles were measured in both 

experiments by western blot analysis as previously described [16].  

2.8. Statistical analysis  

Data are expressed as the mean ± SEM (n=6 and n=10 in experiments one and 

two, respectively). Grubbs’ test was used to detect outliers, which were 

discarded for subsequent analyses. Fruit (F), photoperiod (P) and fruit x 

photoperiod interaction (FxP) effects within groups were determined by 

performing two-way ANOVA (2 x 2 factorial designs: fruit (VE or CH) x 

photoperiod (L6 or L18)). When the interaction between fruit and photoperiod 

was statistically significant according to two-way ANOVA, Student’s t test was 

performed to compute pairwise comparisons between groups (i.e., the 

photoperiod effect within fruit groups and the fruit effect within the L6 and L18 

groups). Student’s t test was also used for single statistical comparisons. All the 

statistical tests were performed with the statistical software SPSS Statistics 22 

(SPSS Inc., Chicago, IL, USA). The level of significance was set at bilateral 5%.  
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3. RESULTS 

3.1. The exposure to different photoperiods altered the body composition 

and serum parameters in STD-fed animals 

Regardless of the treatment received, L18 photoperiod-exposed rats displayed 

higher absolute (grams) and relative (%) fat mass and a lower lean/fat mass 

ratio than those exposed to the short photoperiod (P effect, p<0.05, two-way 

ANOVA) (Table 1). Overall, circulating levels of glucose, NEFAs and 

triglycerides were significantly higher and insulin levels were significantly 

lower in L6 rats compared to L18 animals (P effect, p<0.05, two-way ANOVA), 

although these photoperiod effects were numerically more evident between the 

cherry-supplemented groups (Table 1). 

3.2. Gene and protein expression analyses revealed clear photoperiodic 

effects on glucose and lipid metabolisms and circadian rhythm 

regulation in the skeletal muscles and liver of normoweight rats 

Both groups of STD-fed rats exposed to the short photoperiod displayed a 

significant downregulation of Irs1 mRNA levels in the soleus muscle (P effect, 

p=0.031, two-way ANOVA), and this effect was more evident in the non-

supplemented animals (32.3% lower in STD-VE-L6 than in STD-VE-L18 

animals) (Figure 1B). 

Regardless of the treatment received, L6 animals displayed a vast 

downregulation of the levels of phosphorylated Akt2 in both the soleus and 

gastrocnemius skeletal muscles in comparison with L18 animals (P effect, 

p<0.001, two-way ANOVA) (Figure 1D and 2D).  

Similar to what was observed for the pAkt2 levels, a clear photoperiod effect 

was discerned on the phosphorylated AMPK levels, which were significantly 

increased in both skeletal muscles of L6-photoperiod exposed animals (P effect, 

p<0.001, two-way ANOVA) (Figures 1E and 2E). 
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The chronic exposure to the long day photoperiod significantly downregulated 

the hepatic expression of the genes encoding the fatty acid transport protein 5 

(FATP5) and two key enzymes involved in β-oxidation, carnitine 

palmitoyltransferase 1 alpha (CPT1α) and HAD (P effect, p<0.05, two-way 

ANOVA) (Figure 3A). 

The expression analyses of circadian rhythm-related genes revealed that, 

regardless of the treatment received, the normoweight rats exposed to the long 

photoperiod displayed higher period circadian clock 2 (Per2) and lower nuclear 

receptor subfamily 1 group D member 1 gene (Nr1d1) mRNA levels than both 

L6 groups in the soleus and gastrocnemius muscles as well as in the liver (P 

effect, p<0.05, two-way ANOVA) (Figures 1C, 2C, 3B). 

3.3. Cherry consumption scarcely affected biometric and serum 

parameters in normoweight rats 

No changes were observed in cumulative food intake, body weight gain, tissue 

weights and body composition after the administration of lyophilized cherry 

either in the STD-CH-L6 or STD-CH-L18 groups (Table 1). Both cherry-

supplemented groups displayed lower serum cholesterol levels than their 

respective nontreated counterparts (F effect, p=0.043, two-way ANOVA) (Table 

1). Only glucagon levels were differently modulated depending on which 

photoperiod cherry was consumed (FxP effect, p=0.035, two-way ANOVA), 

being slightly increased in STD-CH-L6 animals and decreased in STD-CH-L18 

rats compared to the STD-VE-L6 and STD-VE-L18 groups, respectively, 

although these pairwise comparisons did not reach statistical significance 

(Table 1).  
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Table 1. Food intake, biometric and serum parameters in normoweight rats exposed to 

two different photoperiods for 14 weeks and supplemented with vehicle or lyophilized 

cherry for the last 10 weeks. 

 STD-VE-L6 STD-CH-L6 STD-VE-L18 STD-CH-L18 2wA 

CFI (kcal) 541 ± 9 534 ± 13 540 ± 12 527 ± 12  

Feed efficiency ratio 15.54 ± 0.74 16.79 ± 1.09 16.62 ± 1.05 15.96 ± 1.16  

Biometric parameters      

Initial body weight (g) 286 ± 8 287 ± 8 297 ± 14 304 ± 4  

Final body weight (g) 370 ± 11 377 ± 14 387 ± 13 388 ± 5  

Body weight gain (g) 84 ± 5 90 ± 7 89 ± 4 84 ± 5  

Liver (g) 11.86 ± 0.15 12.66 ± 0.57 12.73 ± 0.45 12.83 ± 0.26  

Skeletal muscle (g) 2.08 ± 0.07 2.04 ± 0.12 2.12 ± 0.03 2.13 ± 0.03  

Testes (g) 3.09 ± 0.06 3.08 ± 0.05 3.04 ± 0.04 3.16 ± 0.10  

Fat mass (g) 45.06 ± 1.29 50.41 ± 2.82 55.64 ± 4.41 58.38 ± 3.11 P 

Fat mass (%) 12.52 ± 0.34 13.43 ± 0.57 14.38 ± 0.75 15.17 ± 0.70 P 

Lean mass (g) 296 ± 8 299 ± 12 310 ± 9 307 ± 5  

Lean mass (%) 80.94 ± 1.04 79.69 ± 0.62 80.71 ± 0.67 79.95 ± 0.76  

Lean/fat mass ratio 6.56 ± 0.22 5.99 ± 0.29 5.71 ± 0.37 5.33 ± 0.32 P 

Serum parameters      

Glucose (mmol/L) 7.73 ± 0.19 8.08 ± 0.15 7.59 ± 0.19 7.42 ± 0.19 P 

Insulin (ng/mL) 4.04 ± 0.66 4.03 ± 0.79 5.54 ± 0.73 6.15 ± 0.96 P 

Glucagon (ng/mL) 2.66 ± 0.13 2.87 ± 0.05 2.86 ± 0.04 2.04 ± 0.40 FxP 

Insulin:glucagon ratio 1.57 ± 0.32  1.54 ± 0.30 1.79 ± 0.24 4.01 ± 1.29  

NEFAs (mmol/L) 0.72 ± 0.06 0.72 ± 0.08 0.62 ± 0.05 0.49 ± 0.04 P 

Phospholipids (mmol/L) 3.08 ± 0.17 2.80 ± 0.15 2.83 ± 0.10 2.71 ± 0.09  

Triglycerides (mmol/L) 1.60 ± 0.12 1.58 ± 0.13 1.39 ± 0.11 1.18 ± 0.09 P 

TChol (mmol/L) 3.26 ± 0.19 2.90 ± 0.13 2.97 ± 0.09 2.73 ± 0.12 F 

Standard diet-fed male Fischer 344 rats were exposed to two different photoperiods for 14 

weeks and supplemented with vehicle or lyophilized cherry for the last 10 weeks. Data are 

expressed as mean ± SEM (n=6). Two-way ANOVA analysis (2 × 2 factorial designs: fruit (VE or 

CH) × photoperiod effect (L6 or L18) was used to evaluate differences among groups. F, fruit 

effect; P, photoperiod effect; FxP, interaction fruit x photoperiod effect. The skeletal muscle 
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weight represents the total weight of both soleus and gastrocnemius muscles. CFI, cumulative 

food intake; Tchol, total cholesterol. 

 

Figure 1. The mRNA levels of lipid metabolism (A), glucose metabolism (B) and circadian 

rhythm-related genes (C), and pAkt2 (D) and pAMPK protein levels (E) in the soleus muscle of 

standard diet-fed male Fischer 344 rats exposed to two different photoperiods for 14 weeks 
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and supplemented with vehicle or lyophilized cherry for the last 10 weeks. Data are 

represented as the mean ± SEM (n=6). F, fruit effect; P, photoperiod effect; FxP, fruit x 

photoperiod interaction effect (two-way ANOVA analysis, p<0.05). * The effect of cherry 

consumption within photoperiod groups (Student’s t test, p<0.05); $ The effect of photoperiod 

within vehicle groups (Student’s t test, p<0.05). Bmal1, brain and muscle Arnt-like protein-1; Cd36, 

fatty acid translocase, homologue of CD36; Cpt1β, carnitine palmitoyltransferase 1 beta; Cry1, 

cryptochrome circadian clock 1; Fatp1, fatty acid transport protein 1; Glut4, glucose transporter 4; Had, 

hydroxyacyl-CoA dehydrogenase; Irs1, insulin receptor substrate 1; Nampt, nicotinamide 

phosphoribosyltransferase; Nr1d1, nuclear receptor subfamily 1, group D, member 1; pAkt2, 

phosphorylated Akt serine/threonine kinase 2; pAMPK, phosphorylated AMP-activated protein kinase; 

Per2, period circadian clock 2; Rorα, RAR-related orphan receptor A. 

3.4. Cherry supplementation modulated the expression of genes involved 

in fatty acid transport and β-oxidation in the soleus muscle of 

normoweight rats 

In the soleus muscle of both the STD-CH-L6 and STD-CH-L18 groups, cherry 

consumption produced a significant increase in the mRNA levels of the fatty 

acid transporter-related gene Cd36 and β-oxidation-related gene Cpt1β (Figure 

1A). Interestingly, in this tissue, the effects of this fruit on lipid metabolism-

related genes were enhanced when it was consumed out of its season. Thus, the 

expression of the key gene involved in β-oxidation, Had, showed a different 

pattern of expression depending on the photoperiod in which cherry was 

consumed (FxP effect, p=0.022, two-way ANOVA), being only significantly 

upregulated when this fruit was given to the L6-photoperiod-exposed rats 

(p=0.026, Student’s t test) (Figure 1A). A very similar pattern was observed for 

the fatty acid transport protein 1 (Fatp1) gene expression levels, although the 

differences were not statistically significant (FxP effect, p=0.066, two-way 

ANOVA) (Figure 1A).  

Cherry supplementation produced minimal effects on the expression of lipid 

metabolism-related genes in the gastrocnemius muscle, only increasing the 

mRNA levels of Had in both the STD-CH-L6 and STD-CH-L18 groups (F effect, 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



     III. Results       

184 

p=0.024, two-way ANOVA), although this effect was much more pronounced in 

the STD-CH-L18 animals (50.4% higher than the STD-VE-L18 rats) (Figure 2A). 

 

Figure 2. The mRNA levels of lipid metabolism (A), glucose metabolism (B) and circadian 

rhythm-related genes (C), and pAkt2 (D) and pAMPK protein levels (E) in the gastrocnemius 
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muscle of standard diet-fed male Fischer 344 rats exposed to two different photoperiods for 14 

weeks and supplemented with vehicle or lyophilized cherry for the last 10 weeks. Data are 

represented as the mean ± SEM (n=6). F, fruit effect; P, photoperiod effect; FxP, fruit x 

photoperiod interaction effect (two-way ANOVA analysis, p<0.05). * The effect of cherry 

consumption within photoperiod groups (Student’s t test, p<0.05); $ The effect of photoperiod 

within vehicle groups (Student’s t test, p<0.05). The genes and proteins analyzed have already 

been described in Figure 1. 

3.5. Chronic cherry intake out of season profoundly altered 

phosphorylated Akt2 and AMPK levels in both the soleus and 

gastrocnemius muscles of normoweight rats  

Despite the fact that, overall, cherry intake did not significantly modulate pAkt2 

levels, a pairwise comparison carried out between the L6 groups revealed a 

clear decrease in the active form of this protein in the soleus muscle in the STD-

CH-L6 animals compared with their nontreated counterparts (67.3% lower, 

p=0.029, Student’s t test) (Figure 1D). In addition, cherry consumption also 

decreased pAkt2 protein levels in the gastrocnemius muscle of both L6 and L18 

groups (F effect, p=0.030, two-way ANOVA) (Figure 2D). 

Relevantly, a marked interaction effect was reported in pAMPK levels in both 

the soleus (FxP effect, p=0.026, two-way ANOVA) and gastrocnemius (FxP 

effect, p=0.008, two-way ANOVA) muscles. Thus, STD-CH-L6 animals exhibited 

a sharp increase in pAMPK levels compared to those treated with vehicle in 

both the soleus and gastrocnemius muscles (73.5% and 41.3% higher, 

respectively), whereas these effects were not observed in any of the skeletal 

muscles when the animals subjected to the long photoperiod were chronically 

supplemented with this fruit (Figure 1E and 2E). 
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Figure 3. The mRNA levels of lipid and glucose metabolism (A), and circadian rhythm-related 

genes (B), and pAkt2 (C) and pAMPK protein levels (D) in the liver of standard diet-fed male 

Fischer 344 rats exposed to two different photoperiods for 14 weeks and supplemented with 

vehicle or lyophilized cherry for the last 10 weeks. Data are represented as the mean ± SEM 

(n=6). F, fruit effect; P, photoperiod effect (two-way ANOVA analysis, p<0.05). Cpt1α, carnitine 
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palmitoyltransferase 1 alpha; Fatp5, fatty acid transport protein 5; Glut2, glucose transporter 2. The rest 

of the genes and proteins analyzed have already been described in Figure 1. 

3.6. Cherry consumption slightly modulated the expression of circadian 

rhythm-related genes in normoweight rats exposed to the short 

photoperiod 

Cherry intake out of its season was able to modulate the expression of different 

circadian rhythm-related genes in the liver and skeletal muscles. Specifically, 

STD-CH-L6 rats exhibited higher Nr1d1 mRNA levels in the gastrocnemius 

muscle than their nontreated controls (p=0.014, Student’s t test), an effect that 

was not observed in L18 animals (FxP effect, p=0.021, two-way ANOVA) 

(Figure 2C). In addition, although both groups supplemented with cherry 

displayed a significant decrease in the hepatic expression of the genes encoding 

PER2 (F effect, p=0.007, two-way ANOVA) and cryptochrome circadian clock 1 

(CRY1) (F effect, p=0.001, two-way ANOVA), this overall effect was mainly 

attributed to the decrease in the mRNA levels of these genes in STD-CH-L6 

animals (43.1% and 36.9% lower, respectively, compared with the STD-VE-L6 

rats) (Figure 3B). 

3.7. CAF feeding induced obesity and other MetS-like alterations in male 

Fischer 344 rats 

Although the experiments performed with STD-fed and CAF-fed animals were 

carried out independently and had different lengths, the numerical 

comparisons between the data included in Table 1 and Table 2 revealed that 

rats that were fed a CAF showed an evident increase in cumulative energy 

intake, body weight gain and fat mass as well as in circulating levels of glucose, 

insulin, triglycerides, total cholesterol, phospholipids and NEFAs. Therefore, 

these results strongly suggest that, as expected [32,33], CAF-fed rats developed 

obesity and other MetS-like alterations, such as hyperglycemia and 

dyslipidemia. 
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Table 2. Food intake, biometric and serum parameters in diet-induced obese rats 

exposed to two different photoperiods for 11 weeks and supplemented with vehicle or 

lyophilized cherry for the last 7 weeks.  

 CAF-VE-L6 CAF-CH-L6 CAF-VE-L18 CAF-CH-L18 2wA 

CFI (kcal) 1299 ± 48  1198 ± 30 1384 ± 39 1215 ± 58 F 

Feed efficiency ratio 9.06 ± 0.52 10.10 ± 0.65 8.25 ± 0.45 10.18 ± 0.61 F 

Biometric parameters      

Initial body weight (g) 290 ± 7 285 ± 5 298 ± 5 302 ± 7  

Final body weight (g) 407 ± 12 404 ± 10 411 ± 8 423 ± 7  

Body weight gain (g) 117 ± 7 120 ± 6 113 ± 5 121 ± 3  

Liver (g) 14.21 ± 0.54 13.83 ± 0.45 14.71 ± 0.35 15.10 ± 0.45  

Skeletal muscle (g) 2.11 ± 0.05 2.07 ± 0.04 2.09 ± 0.03 2.08 ± 0.04  

Testes (g) 3.00 ± 0.04 2.98 ± 0.04 2.92 ± 0.02 3.04 ± 0.02* FxP 

Fat mass (g) 85.84 ± 3.27 88.29 ±5.31 89.51 ± 3.80 89.68 ± 3.91  

Fat mass (%) 21.53 ± 0.79 21.82 ± 1.04 22.03 ± 0.63 21.70 ± 0.66  

Lean mass (g) 294 ± 8 296 ± 4 292 ± 5 299 ± 5  

Lean mass (%) 73.68 ± 0.76 72.50 ± 1.18 72.07 ± 0.54 72.50 ± 0.62  

Lean/fat mass ratio 3.48 ± 0.18 3.46 ± 0.25 3.30 ± 0.12 3.37 ± 0.12  

Serum parameters      

Glucose (mmol/L) 9.11 ± 0.27 11.23 ± 0.86* 10.15 ± 0.26$ 10.02 ± 0.51 FxP 

Insulin (ng/mL) 5.82 ± 0.24 7.31 ± 0.59 6.59 ± 0.47 7.42 ± 0.49 F 

Glucagon (ng/mL) 2.53 ± 0.12 2.74 ± 0.09 2.63 ± 0.10 2.56 ± 0.07  

Insulin:glucagon ratio 2.21 ± 0.13 2.71 ± 0.23 2.51 ± 0.21  2.94 ± 0.25 F 

NEFAs (mmol/L) 1.52 ± 0.24 1.92 ± 0.27 1.57 ± 0.18 1.56 ± 0.16  

Phospholipids (mmol/L) 3.87 ± 0.33 4.22 ± 0.42 4.18 ± 0.24 4.03 ± 0.11  

Triglycerides (mmol/L) 5.30 ± 0.58 5.76 ± 0.66 5.28 ± 0.32 5.35 ± 0.14  

TChol (mmol/L) 3.30 ± 0.41 4.10 ± 0.64 3.85 ± 0.41 3.81 ± 0.31  

Cafeteria diet-fed male Fischer 344 rats were exposed to two different photoperiods for 11 

weeks and supplemented with vehicle or lyophilized cherry for the last 7 weeks. Data are 

expressed as mean ± SEM (n=10). Two-way ANOVA analysis (2 × 2 factorial designs: fruit (VE 

or CH) × photoperiod effect (L6 or L18) was used to evaluate differences among groups. F, fruit 

effect; FxP, interaction fruit x photoperiod effect. * The effect of cherry consumption within 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



                                    Manuscript 3      
 

189 

photoperiod groups (Student’s t test, p<0.05); $ the effect of photoperiod within vehicle groups 

(Student’s t test, p<0.05). The skeletal muscle weight represents the total weight of both soleus 

and gastrocnemius muscles. CFI, cumulative food intake; Tchol, total cholesterol. 

3.8. CAF consumption dampened the photoperiod effects on biometric 

and serum parameters observed in standard diet-fed rats 

Unlike what was observed in normoweight rats, the exposure to different 

photoperiods produced slight alterations in biometric and serum parameters in 

diet-induced obese rats. Thus, only the circulating glucose levels were 

significantly higher in the CAF-VE-L18 animals in comparison with the CAF-VE-

L6 rats (p=0.013, Student’s t test) (Table 2).  

3.9. The exposure to different day lengths altered the whole-body 

substrate utilization and modulated different lipid metabolism-

related genes in the skeletal muscles and liver of diet-induced obese 

rats 

Overall, L18 CAF-fed animals displayed significantly lower RQ than L6 obese 

rats (P effect, p=0.030, two-way ANOVA), and this effect was much more 

evident when the comparison was carried out between the noncherry-

supplemented groups (Figure 4A). Consequently, the CAF-VE-L18 rats showed 

increased lipid utilization (p=0.028, Student’s t test) (Figure 4B) and decreased 

carbohydrate oxidation (p=0.027, Student’s t test) (Figure 4C) compared with 

their L6 nontreated counterparts. 

The enhancement of fat oxidation observed in CAF-VE-L18 animals was 

accompanied by a significant upregulation of the fatty acid transporter gene 

Fatp1 in the soleus muscle (p=0.006, Student’s t test) (Figure 5A) and higher 

mRNA levels of the Fatp1, Cpt1β and Had genes in the gastrocnemius muscle (P 

effect, p<0.05, two-way ANOVA) (Figure 6A). Intriguingly, hepatic Cd36, Fatp5, 

Cpt1α and Had mRNA levels were significantly decreased in L18-photoperiod 
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exposed animals in comparison with their L6 counterparts (P effect, p<0.05, 

two-way ANOVA) (Figure 7A). 

 

Figure 4. Respiratory quotient (RQ) (A), fat oxidation (B), carbohydrate (CH) oxidation (C) and 

energy expenditure (EE) (D) of cafeteria diet-fed male Fischer 344 rats exposed to two different 

photoperiods for 11 weeks and supplemented with vehicle or lyophilized cherry for the last 7 

weeks. Data are expressed as the mean ± SEM (n=10). P, photoperiod effect; FxP, fruit x 

photoperiod interaction effect (two-way ANOVA analysis, p<0.05). * The effect of cherry 

consumption within photoperiod groups (Student’s t test, p<0.05); $ The effect of photoperiod 

within vehicle groups (Student’s t test, p<0.05). 
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3.10. The expression of glucose metabolism and circadian rhythm-related 

genes and the phosphorylated levels of Akt2 were photoperiodically 

regulated in the skeletal muscles and liver of obese rats 

Both groups of CAF-fed rats exposed to the L18 photoperiod displayed a slight, 

but significant, increase in Glut4 and Glut2 mRNA levels in both muscles and the 

liver, respectively (P effect, p<0.05, two-way ANOVA), and exhibited lower 

hepatic Irs1 mRNA levels (P effect, p=0.037, two-way ANOVA) than their L6 

counterparts (Figures 5B, 6B and 7B). CAF-VE-L18 animals also showed a 

residual decrease in Irs1 gene expression levels in the gastrocnemius muscle 

when compared with the CAF-VE-L6 group (p=0.029, Student’s t test) (Figure 

6B). In addition, the protein expression analysis revealed an overall significant 

downregulation of pAkt2 levels in the soleus muscle of CAF rats exposed to the 

L18 photoperiod (P effect, p=0.002, two-way ANOVA) (Figure 5D). 

Diet-induced obese rats also exhibited a strong photoperiod effect in the mRNA 

levels of the analyzed circadian rhythm-related genes in the liver and both 

skeletal muscles. In these tissues, Per2 and Cry1 mRNA levels were significantly 

greater in CAF rats exposed to the L18 photoperiod (P effect, p<0.05, two-way 

ANOVA), whereas in these groups, Nr1d1 gene expression was lower in 

comparison with their L6 counterparts (P effect, p<0.001, two-way ANOVA) 

(Figures 5C, 6C and 7C). In addition, Bmal1 mRNA levels decreased in both the 

soleus muscle and liver of L18 CAF-fed animals, whereas the expression of the 

Rorα gene increased in the soleus muscles and decreased in the liver in these 

groups of rats (P effect, p<0.05, two-way ANOVA) (Figures 5C and 7C). 
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Figure 5. The mRNA levels of lipid metabolism (A), glucose metabolism (B) and circadian 

rhythm-related genes (C), and pAkt2 (D) and pAMPK protein levels (E) in the soleus muscle of 

cafeteria diet-fed male Fischer 344 rats exposed to two different photoperiods for 11 weeks 

and supplemented with vehicle or lyophilized cherry for the last 7 weeks. Data are expressed as 

the mean ± SEM (n=10). P, photoperiod effect; FxP, fruit x photoperiod interaction effect (two-

0

50

100

150

200

250

300

350

400

p
A

M
P

K
/T

u
b

u
lin

 le
ve

ls
 (

%
)

0

20

40

60

80

100

120

p
A

kt
2

/T
u

b
u

lin
 l

e
ve

ls
 (

%
)

D) E)

B)A)

2w A 2w A

C)

2w A

pAkt2

Tubulin

P

pAMPK

Tubulin

FxP

0

25

50

75

100

125

150

175

Cd36 Fatp1 Cpt1β Had

m
R

N
A

 le
ve

ls
 (

%
)

0

25

50

75

100

125

150

Irs1 Glut4

m
R

N
A

 le
ve

ls
 (

%
)

FxP P

0

25

50

75

100

125

150

175

Bmal1 Per2 Cry1 Nampt Rorα Nr1d1

m
R

N
A

 le
ve

ls
 (

%
)

P P P P P

*

$

CAF-VE-L6

CAF-CH-L6

CAF-VE-L18

CAF-CH-L18

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



                                    Manuscript 3      
 

193 

way ANOVA analysis, p<0.05). * The effect of cherry consumption within photoperiod groups 

(Student’s t test, p<0.05); $ The effect of photoperiod within vehicle groups (Student’s t test, 

p<0.05). The genes and proteins analyzed have already been described in Figure 1. 

3.11. Cherry consumption out of season significantly raised the circulating 

levels of glucose and insulin in CAF-fed obese rats 

Both CAF-CH-L6 and CAF-CH-L18 groups exhibited a significantly lower 

cumulative food intake and an increase in the feed efficiency ratio (F effect, 

p<0.05, two-way ANOVA), although these changes were not translated into 

lower final body weight or body weight gain (Table 2). Relevantly, a clear 

interaction effect was reported for the circulating glucose levels (FxP effect, 

p=0.045, two-way ANOVA), which were significantly higher only in the CAF-CH-

L6 group in comparison with their nontreated counterparts (p=0.041, Student’s 

t test) (Table 2). In addition, although an overall fruit effect was obtained for 

the circulating insulin levels (F effect, p=0.019, two-way ANOVA), the reported 

increase was mainly observed in the CAF-CH-L6 rats (25.5% higher than the 

CAF-VE-L6 group) (Table 2). 

3.12. Cherry supplementation enhanced lipid oxidation and pAMPK 

expression in obese rats exposed to the short photoperiod 

CAF-CH-L6 animals exhibited residually lower RQ than those in the CAF-VE-L6 

group (p=0.030, Student’s t test) (Figure 4A), shifting towards a significantly 

higher lipid oxidation rate (p=0.015, Student’s t test) (Figure 4B) and 

decreased carbohydrate utilization (p=0.047, Student’s t test) (Figure 4C). 

These results suggest that, in diet-induced obese animals, cherry intake out of 

its season resembled the whole-body energy catabolism behavior observed in 

L18 photoperiod-exposed rats. 

Two-way ANOVA revealed a clear interaction effect between fruit and 

photoperiod in the pAMPK levels of the soleus muscle (FxP effect, p=0.034, two-
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way ANOVA). Relevantly, the active form levels of this protein were higher only 

when cherry was consumed out of its season (172.3% higher in CAF-CH-L6 

than in CAF-VE-L6 animals, p=0.056, Student’s t test) (Figure 5E).  

 

Figure 6. The mRNA levels of lipid metabolism (A), glucose metabolism (B) and circadian 

rhythm-related genes (C), and pAkt2 (D) and pAMPK protein levels (E) in the gastrocnemius 
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muscle of cafeteria diet-fed male Fischer 344 rats exposed to two different photoperiods for 11 

weeks and supplemented with vehicle or lyophilized cherry for the last 7 weeks. Data are 

expressed as the mean ± SEM (n=10). F, fruit effect; P, photoperiod effect (two-way ANOVA 

analysis, p<0.05). The genes and proteins analyzed have already been described in Figure 1. 

3.13. Cherry consumption out of season decreased Glut4 mRNA levels in 

the gastrocnemius muscle of obese rats 

Cherry consumption produced scarce changes in lipid metabolism-related 

genes in the skeletal muscle, only decreasing the Fatp1 mRNA levels in the 

soleus muscle of CAF-CH-L18 animals in comparison with their nontreated 

controls (p=0.006, Student’s t test) (Figure 5A).  

A clear cherry consumption effect was reported for Glut4 mRNA levels in the 

gastrocnemius muscle (F effect, p=0.018, two-way ANOVA), although this effect 

was mainly attributed to the downregulation of this gene in the CAF-CH-L6 

group compared to the non-treated L6 group (30.8% lower) (Figure 6B). 

4. DISCUSSION 

In the present study, we reported that the consumption of cherry produced 

differential physiological and metabolic responses in both normoweight and 

diet-induced obese F344 rats, depending on the photoperiod to which the 

animals were chronically exposed. Relevantly, in agreement with our 

hypothesis, these effects were more accentuated and to some extent, more 

deleterious, when cherry was consumed out of its harvesting season (in the 

animals that were exposed to the short photoperiod). Thus, in STD-fed 

normoweight rats, cherry consumption out of season induced a) a more 

pronounced increase in the mRNA levels of fatty acid transport- and β-

oxidation-related genes in the soleus muscle compared to those observed in 

STD-CH-L18 animals; b) a sharp upregulation of the energetic sensor pAMPK 

[34] in both the soleus and gastrocnemius muscles; and c) a decrease in the 
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downstream postreceptor target of insulin, pAkt2 [35], in the soleus muscle. 

Under obesogenic conditions in L6 but not in L18 rats, the intake of cherry 

produced a) a significant increase in circulating glucose and insulin levels 

accompanied by a decrease in Glut4 mRNA levels in the gastrocnemius muscle; 

b) an enhancement of whole-body lipid utilization; and c) an increase in the 

pAMPK protein levels in the soleus muscle.  

Sweet cherries are rich in anthocyanins, a family of flavonoids, which are well-

known antioxidants present in a wide variety of fruits such as berries and 

grapes [36,37] that can ameliorate risk factors for cardiovascular disease, such 

as dyslipidemia [38], glucose intolerance and obesity [39,40]. In this study, 

normoweight rats supplemented with cherry displayed decreased circulating 

cholesterol levels regardless of the photoperiod to which they were subjected. 

These results were in agreement with Graf and collaborators, who reported a 

significant decrease in serum cholesterol concentrations after 10 weeks of an 

anthocyanin-rich juice treatment in F344 rats [41]. Some proposed 

mechanisms to explain this cholesterol-lowering effect of anthocyanins could 

be the increase in cholesterol reverse transport, the inhibition of cholesterol 

absorption and its elimination through bile acids [42]. Further analyses focused 

on key proteins and genes involved in these pathways would be of value to 

elucidate the molecular mechanisms by which cherry induced this effect. In 

addition, in CAF-induced obese rats, cherry consumption significantly lowered 

the cumulative caloric intake in both the L18 and L6 groups, although this effect 

was not translated into changes in body weight gain. This finding is coincident 

with those obtained by Han and collaborators, which showed that 

supplementation with anthocyanin-rich purple potato flakes for 28 days in 

F344 rats fed a cholesterol-rich diet tended to decrease food intake, although 

no changes in body weight gain were reported [43]. In our study, this lack of 

body weight-lowering effects may be due to the increased feed efficiency 

observed in both photoperiod-exposed groups that were supplemented with 
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cherry, which would indicate that the intake of this fruit induced a higher 

efficiency of energy intake conversion into body weight gain [44]. Additional 

analysis would be needed to elucidate the mechanisms responsible for this 

effect, such as a lower activation of thermogenesis in the brown adipose tissue 

[45].  
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Figure 7. The mRNA levels of lipid metabolism (A), glucose metabolism (B) and circadian 

rhythm-related genes (C), and pAkt2 (D) and pAMPK protein levels (E) in the liver of cafeteria 

diet-fed male Fischer 344 rats exposed to two different photoperiods for 11 weeks and 

supplemented with vehicle or lyophilized cherry for the last 7 weeks. Data are expressed as the 

mean ± SEM (n=10). P, photoperiod effect (two-way ANOVA analysis, p<0.05). The genes and 

proteins analyzed have already been described in Figures 1 and 3. 

Interestingly, chronic cherry intake produced profound changes in fatty acid 

metabolism, whole-body substrate utilization and glucose homeostasis, which 

in some cases, were highly influenced by the circannual endogenous 

metabolism in both STD-fed and CAF-fed rats. We previously showed that 

chronic exposure to 6 h of light was characterized by a marked alteration in 

fatty acid metabolism in normoweight F344 rats [16]. This seasonal adaptive 

response was evidenced by higher serum levels of NEFAs and lower soleus 

mRNA levels of the genes involved in β-oxidation (Had and Cpt1β) and fatty 

acid transport (Cd36) in the soleus muscle and liver when compared with 

animals exposed to 12 h of light [16]. In the present study, at first glance, the 

exposure to a long photoperiod seemed to exacerbate the negative impact on 

lipid catabolism formerly observed in L6 animals because both STD-VE-L18 and 

STD-CH-L18 rats displayed a significant decrease in the fatty oxidation 

enhancer p-AMPK [46] in both skeletal muscles and a hepatic downregulation 

of the genes encoding HAD, CPT1β and the fatty acid transporter FATP5. 

However, these STD-fed L18 rats showed significantly lower blood NEFAs 

levels than those exposed to the short photoperiod, which could be tentatively 

attributed to a lower lipolytic activity in fat depots or/and to a higher fatty acid 

uptake in white adipose tissues or skeletal muscles [32]. If this were true, it 

could be understood as an adaptive mechanism addressed to counteract the 

detrimental effects observed in muscular and hepatic lipid-related molecular 

pathways in order to maintain their metabolic homeostasis. Additional research 

is needed to clarify this issue. Remarkably, cherry consumption triggered 
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relevant changes in lipid catabolism of normoweight rats exposed to both short 

and long photoperiods. Thus, the significant increase in Cd36 and Cpt1β mRNA 

levels in the soleus muscle of STD-CH-L6 and STD-CH-L18 rats would suggest 

an enhancement of fatty acid uptake and β-oxidation in these animals in 

response to cherry consumption. These lipid catabolic effects observed at the 

molecular level in response to cherry intake have not been previously 

described and could be tentatively attributed to its polyphenol content since 

different authors have shown very similar effects in animals supplemented with 

other polyphenols, such as grape seed procyanidins [47]. Interestingly, only 

cherry-supplemented normoweight rats exposed to the short photoperiod 

displayed a significant upregulation of Had gene expression in the soleus 

muscle and a sharp increase in the skeletal muscle levels of phosphorylated 

AMPK. Taking into account that the activation of AMPK can mediate the 

upregulation of the β-oxidation-related genes Had and Cpt1β through the 

activation of PPARα [34,48], we suggest that cherry consumption out of season 

would enhance the use of fat as an energy substrate in the STD-fed animals 

through the activation of AMPK. These results would strongly suggest that 

some molecular effects triggered by this fruit were highly influenced by 

seasonal endogenous metabolism, at least in lipid catabolism-related pathways. 

In agreement with this hypothesis, in the present study, we also observed that 

cherry-treated CAF-fed rats exposed to the short photoperiod displayed a 

significant decrease in the RQ and consequently, showed increased lipid 

utilization, which could be driven by the upregulation of the pAMPK levels in 

the soleus muscle. Remarkably, in these animals, the intake of cherry out of 

season resembled the long photoperiod phenotype in terms of whole-body 

substrate utilization, which in our study, was characterized by increased lipid 

oxidation that could be partly explained by a significant overexpression of the 

genes encoding key enzymes involved in fatty acid transport (FATP1) and β-

oxidation (CPT1β and HAD) in skeletal muscles, when compared with their L6-
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exposed counterparts. Since this lipid catabolic enhancement effect was not 

observed when this fruit was consumed by CAF-CH-L18 animals, our findings 

reinforce the idea that this physiological change triggered by the bioactive 

compounds present in fruits can be highly dependent on the mammal’s 

seasonality, even in the obese state. Nevertheless, no differences in the 

circulating NEFAs levels were observed either in STD-CH-L6 or in CAF-CH-L6 

animals. Additional studies focused on key lipid metabolism-related proteins 

and genes in white adipose tissue, which is considered the main contributor of 

NEFAs to the bloodstream [49], would be necessary to clarify this issue.  

We previously demonstrated that, in normoweight F344 rats, the exposure to 

different photoperiods profoundly affected glucose metabolism and insulin 

signaling [16]. Thus, compared with L12 animals, L6 rats displayed a marked 

increase in circulating glucose levels that was accompanied by a 

downregulation of pAkt2 protein levels in the soleus and gastrocnemius 

muscles and by decreased mRNA levels of the genes encoding IRS1 and GLUT2 

in the soleus and liver, respectively [16]. In line with our findings and other in 

vivo evidence [9,10] pointing towards an insulin resistance-like phenotype in 

animals exposed to short day lengths, in the present study, the chronic 

exposure to 6 h of light was also characterized by a marked alteration in 

glucose homeostasis, which was evidenced by increased circulating levels of 

glucose, decreased pAkt2 protein levels in both the soleus and gastrocnemius 

and lower soleus Irs1 mRNA levels in STD-fed animals compared with their L18 

counterparts. Intriguingly, as opposed to what was observed in normoweight 

rats, CAF-fed animals held under the short photoperiod and supplemented with 

the vehicle showed a decrease in blood glucose levels compared with their 

nontreated L18 counterparts. This change was accompanied by an upregulation 

of the soleus pAkt2 protein levels and by an overexpression of the 

gastrocnemius Irs1 gene, which would suggest an enhancement of the insulin-

dependent glucose uptake in these rats [35]. Nevertheless, the slight 
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downregulation of the hepatic and muscular Glut2 and Glut4 mRNA levels, 

respectively, observed in CAF-VE-L6 rats would not be in agreement with this 

hypothesis and would point toward a decreased glucose uptake in the liver and 

skeletal muscle. However, since mRNA levels do not always parallel protein 

data, additional measurements focused on the analysis of the protein levels of 

these key glucose transporters would be useful to clarify this issue. Altogether, 

these results indicate that seasonal glucose metabolism can be modified by 

obesity and/or by the consumption of the obesogenic CAF diet, which includes 

highly palatable and energy-dense foods consumed by humans [50]. Whether 

this differential seasonal glucose metabolism response induced by diet and/or 

the obese status can also occur in humans deserves further research.  

Interestingly, chronic cherry intake exerted profound changes in glucose 

metabolism and insulin signaling in both normoweight and CAF-fed obese rats. 

Thus, the decrease in the levels of the phosphorylated downstream 

postreceptor target of insulin Akt2 [35] observed in the gastrocnemius muscle 

in both the STD-CH-L6 and STD-CH-L18 groups would suggest that cherry 

supplementation induced a lower muscular glucose uptake in animals exposed 

to both L18 and L6 photoperiods. However, Yan et al. reported a significant 

increase in the Akt mRNA levels and a higher pAkt/Akt protein ratio in the 

skeletal muscle of db/db mice supplemented with a mulberry anthocyanin 

extract for 7 weeks [51]. This discrepancy between both studies could be 

attributed to differences in the animal model used and/or in the photoperiod to 

which animals were exposed, since Yan and collaborators’ animal models were 

subjected to a 12 h light/dark schedule [51]. Interestingly, cherry-

supplemented STD-fed animals exposed to the short photoperiod displayed a 

significant decrease in pAkt2 levels in the soleus muscle, an effect that was not 

observed in the normoweight rats chronically exposed to a long day length that 

received the fruit. These findings also contribute to strengthening the idea that 

the effects produced by cherry depend on the rats’ seasonal metabolism. 
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Despite the fact that insulin-induced activation of Akt2 in the skeletal muscle 

stimulates glucose uptake via GLUT4 translocation from intracellular vesicles to 

the plasma membrane [15], no differences either in circulating glucose or 

insulin levels were observed among STD-fed groups supplemented with cherry. 

This lack of physiological effects observed in STD-CH-L6 animals could be 

explained, at least in part, by the phenotypic flexibility that characterizes an 

optimal metabolic health and allows the normoweight rats to buffer external 

challenges through the modulation of a wide range of metabolic processes and 

molecular mechanisms in order to maintain their homeostatic robustness [52]. 

It has been suggested that most chronic metabolic diseases are triggered by an 

impairment of phenotypic flexibility [52]. In agreement with this hypothesis, in 

our second experiment, cherry supplementation out of season indeed caused a 

significant increase in glycemia and insulinemia in CAF-CH-L6 rats, which 

developed obesity and MetS-like alterations. Relevantly, these animals only 

exhibited slight molecular changes related to the insulin-dependent glucose 

uptake pathway, such as the downregulation of Glut4 mRNA levels in the 

gastrocnemius muscle, suggesting a lower capability to address external 

challenges (i.e., cherry intake) through the activation of this key molecular 

pathway, which resulted in an impairment of glucose homeostasis.  

We previously described marked changes in circadian rhythm-related genes in 

the liver and skeletal muscles of normoweight rats chronically exposed to 

different photoperiods [16]. At the same line, in the present study, a clear 

photoperiod effect was observed in the hepatic and muscular expression 

patterns of several circadian rhythm genes in both STD- and CAF-fed rats. Some 

studies have shown that polyphenols [53,54] and exogenous melatonin [55], 

which are present in considerable amounts in cherry [28,56], can highly 

modulate biological rhythms, affecting the circadian regulation in target tissues. 

In the present study, we observed that cherry consumption out of season was 

able to modulate the mRNA levels of different circadian rhythm-related genes, 
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such as Nr1d1 in the gastrocnemius muscle and Per2 and Cry1 in the liver of 

STD-fed rats. This photoperiod-dependent response could be tentatively 

attributed to an interaction between the effects produced by these bioactive 

compounds and the animal’s seasonal adaptive response. Despite the limitation 

of these single-point (ZT 1-2) measurements, these results would suggest that, 

in normoweight animals, the physiological and molecular changes triggered by 

chronic cherry intake out of season could be partly driven by modulation of the 

expression of genes encoding clock-related nuclear receptors that play a 

relevant role in lipid and glucose metabolism regulation [57,58]. In contrast, 

cafeteria feeding dampened the modulatory effects of cherry consumption on 

circadian rhythms in L6 animals, suggesting that the cherry effects observed in 

these rats would not be attributed to changes in these key modulators of 

metabolism.  

5. CONCLUSION 

In conclusion, we demonstrated that cherry consumption exerted a marked 

photoperiod-dependent effect, inducing more pronounced changes when it was 

consumed out of season in both normoweight and diet-induced obese F344 

rats. Nevertheless, the physiological and metabolic responses significantly 

differed depending on the obese status and/or dietary pattern. Thus, in STD-fed 

rats exposed to the short photoperiod, cherry intake exacerbated the activation 

of fatty acid transport and β-oxidation-related pathways observed in the L18 

animals supplemented with this fruit, which was evidenced by an upregulation 

of Had mRNA levels (soleus) and p-AMPK (soleus and gastrocnemius), and 

decreased the levels of the key activator of insulin-stimulated glucose uptake 

pAkt2 (soleus). Nevertheless, these molecular changes were not translated into 

changes in blood markers of glucose and lipid metabolism, which could be 

tentatively attributed to the phenotypic flexibility associated with the 

normoweight status. In contrast, in CAF-fed obese rats, cherry consumption 
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triggered detrimental changes related to glucose metabolism in L6 but not in 

L18 rats, as evidenced by increased glycemia and insulinemia. In addition, these 

rats also showed enhanced whole-body lipid utilization, resembling the 

substrate oxidation pattern observed in the animals exposed to 18 h of light. 

Although the pathophysiological significance of these results requires further 

investigation and keeping in mind that the modern lifestyle attenuates the 

impact of seasonal variations in day length on human health, these results could 

contribute to highlighting the importance of the consumption of proximal and 

seasonal fruits in order to maintain optimal health and/or to design nutritional 

strategies addressed to ameliorate obesity and its related disorders. 
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SUPPLEMENTARY MATERIAL 

Supplementary table 1. Nucleotide sequences of primers used for real time quantitative 

PCR. 

Gene Forward primer 
(5’ to 3’) 

Reverse primer 
(5’ to 3’) 

Tissue 

β-actin TACAGCTTCACCACCACAGC TCTCCAGGGAGGAAGAGGAT L 

Bmal1 GTAGATCAGAGGGCGACGGCTA CTTGTCTGTAAAACTTGCCTGTGAC G, L, S 

Cd36 GTCCTGGCTGTGTTTGGA GCTCAAAGATGGCTCCATTG G, L, S 

Cpt1α GCTCGCACATTACAAGGACAT TGGACACCACATAGAGGCAG L 

Cpt1β GCAAACTGGACCGAGAAGAG CCTTGAAGAAGCGACCTTTG G, S 

Cry1 TGGAAGGTATGCGTGTCCTC TCCAGGAGAACCTCCTCACG G, L, S 

Fatp1 TGCTCAAGTTCTGCTCTGGA CATGCTGTAGGAATGGTGGC G, S 

Fatp5 CCTGCCAAGCTTCGTGCTAAT GCTCATGTGATAGGATGGCTGG L 

Glut2 AGTCACACCAGCACATACGA TGGCTTTGATCCTTCCGAGT L 

Glut4 CCATTGCTTCTGGCTATCAC TCCGTTTCTCATCCTTCAGC G, S 

Had ATCGTGAACCGTCTCTTGGT AGGACTGGGCTGAAATAAGG G, L, S 

Hprt TCCCAGCGTCGTGATTAGTGA CCTTCATGACATCTCGAGCAAG G, L, S 

Irs1 CTACACCCGAGACGAACACT TAACCTGCCAGACCTCCTTG G, L, S 

Nampt CTCTTCACAAGAGACTGCCG TTCATGGTCTTTCCCCCACG G, L, S 

Nr1d1 ACAGCTGACACCACCCAGATC CATGGGCATAGGTGAAGATTTCT G, L, S 

Per2 CGGACCTGGCTTCAGTTCAT AGGATCCAAGAACGGCACAG G, L, S 

Ppia CCAAACACAAATGGTTCCCAGT ATTCCTGGACCCAAAACGCT G, S 

Rorα CCCGATGTCTTCAAATCCTTAGG TCAGTCAGATGCATAGAACACAAACTC G, L, S 

Tfrc ATCATCAAGCAGCTGAGCCAG CTCGCCAGACTTTGCTGAATTT S 

The table shows the nucleotide sequences of primers used for PCR amplification. Primer 

pairs for PCR were designed using Primer3 software and the sequence information were 

obtained from Genbank. β-actin, actin beta; Bmal1, brain and muscle Arnt-like protein-1; 

Cd36, fatty acid translocase, homologue of CD36; Cpt1α, carnitine palmitoyltransferase 1 

alpha; Cpt1β, carnitine palmitoyltransferase 1 beta; Cry1, cryptochrome circadian clock 1; 

Fatp1, fatty acid transport protein 1; Fatp5, fatty acid transport protein 5; Glut2, glucose 

transporter 2; Glut4, glucose transporter 4; Had, hydroxyacyl-CoA dehydrogenase; Hprt, 

hypoxanthine guanine phosphoribosyl transferase; Irs1, insulin receptor substrate 1; Nampt, 
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nicotinamide phosphoribosyltransferase; Nr1d1, nuclear receptor subfamily 1, group D, 

member 1; Per2, period circadian clock 2; Ppia, peptidylprolyl isomerase A; Rorα, RAR-

related orphan receptor A; Tfrc, transferrin receptor. Gene expression levels were analyzed 

in the liver (L) and the gastrocnemius (G) and soleus (S) muscles. 
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Throughout evolutionary history, animals and plants have developed several 

strategies in order to adapt to the continuous variations in the environment, 

improving the probabilities to enlarge their lifespan.  

Almost all kind of animal species have developed a complex regulatory 

mechanism in which physiology, behavior, metabolism and other body functions 

are integrated and synchronized in order to anticipate the external changes that 

take place over the 24 hours of the day. Mainly modulated by the light and dark 

phases, the persistent daily fluctuations of all these functions are known as 

circadian rhythms [1–4]. Moreover, evolution has permitted not only the 

anticipation of daily predictable changes but also the ability to predict annual 

variations and favorably adapt the physiology and reproduction towards them 

[5–8]. Although the mechanisms involved in these circannual rhythms are not 

fully elucidated, robust responses to seasonal variations in day length have been 

reported in several species, including humans [9–12]. 

By following different evolutionary strategies, plants have been able to inhabit 

the vast majority of the terrestrial surface. To achieve it, they have developed a 

secondary metabolism in which they synthesize non-nutritive and bioactive 

compounds, known as phytochemicals, which exert numerous functions in order 

to ensure plants’ survival, such as protective roles against abiotic conditions, 

pathogens or herbivore attacks and reproductive functions by attracting 

pollinators and ensuring seed dispersal [13,14].  

The coexistence between plants and animals has also favored the coevolutionary 

development of regulatory mechanisms in which these phytochemicals can be 

recognized as signals by heterotrophs that consume them, informing about the 

environmental conditions and allowing animals to favorably adapt their body 

functions. These mechanisms were proposed by Howitz and collaborators and 

postulated in the xenohormesis theory [15–17]. Indeed, during last decades, 

phytochemicals have been emerged as useful bioactive compounds in the 
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prevention and amelioration of several diseases with a high prevalence in our 

society, such as cardiovascular disease [18,19], insulin resistance [20,21] and 

other obesity-related pathologies [22,23].   

Currently, world’s globalization ensures the commercialization of all kind of 

plant-derived foods, such as fruits and vegetables, allowing people to consume 

products from other hemispheres throughout the year. Taking into account that 

each fruit contains a distinctive composition of phytochemicals informing about 

the environmental status in which they were harvested, the main aim of the 

present thesis was to determine whether fruit consumption out of season could 

prompt an illegitimate signaling, leading to physiological and metabolic 

detrimental effects that could contribute to the development and exacerbation of 

obesity and/or metabolic disorders, such as dyslipidemia and insulin resistance. 

Among different fruits, we chose the sweet cherry (Prunus avium L.) as it is a 

seasonal fruit typically consumed worldwide in the LD season spring and that 

has an interesting composition of phytochemicals. 

To achieve this aim, we firstly studied the physiological and metabolic 

adaptations to the chronic exposure to a short (L6, 6 h of light/day, simulating 

winter) and a long (L18, 18 h of light/day, simulating summer) photoperiod in 

comparison with a normal photoperiod (L12, 12 h of light/day) in normoweight 

F344 rats (Manuscript 1), which was crucial to further understand the effects of 

sweet cherry consumption in the different seasons. Previous studies in this rat 

strain have evidenced a differential physiological adaptation in response to 

different photoperiod exposure, in which LD photoperiods induced a stimulatory 

response in terms of food intake, body weight and reproductive parameters in 

comparison with SD photoperiods, which induced a regressive phenotype [24–

26]. Nevertheless, the metabolic adjustments promoted by day length variations 

have not been previously described. In our study, after 14 weeks of photoperiod 

exposure, rats displayed a markedly differential phenotype in terms of 
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physiology and metabolism, as it was illustrated by the clear clustering of the 

three analyzed groups obtained in a multivariate analysis carried out with 239 

parameters. Relevantly, the lack of effects that we reported in cumulative food 

intake, body weight and testis size was interpreted as a refractory response to 

SD photoperiods, which is considered a physiological phenomenon induced by 

the endogenous circannual rhythms in order to anticipate seasonal changes [27]. 

However, this trend was not observed in the circulating levels of several 

parameters involved in glucose and lipid metabolism. Concretely, we reported 

that the exposure to the L6 photoperiod induced an increase of the circulating 

glucose levels in comparison with the L12 photoperiod. This higher glycemia was 

mainly attributed to the sharp downregulation of the phosphorylated levels of 

the post-receptor target of insulin Akt2 in the soleus and gastrocnemius muscles. 

The decreased levels of this key protein in the regulation of glucose, lipid and 

protein metabolism in postprandial conditions [28,29] were accompanied by a 

downregulation of the mRNA levels of its activator Irs1 in the soleus muscle [30], 

the main hepatic glucose transporter Glut2 [31] and a muscular microRNA that 

has been reported to be decreased in diabetic rodents and humans, miR-194 

[32]. Hence, in accordance with previous results in C57BL/6J mice, in which the 

exposure to a short photoperiod induced higher glycemia due to a lower 

muscular glucose uptake via GLUT4 [33], we suggested that the chronic exposure 

to the L6 photoperiod induced a lower insulin sensitive phenotype in 

normoweight F344 rats when compared with the rats held under the L12 

photoperiod. 

In addition, FA metabolism was also affected by the chronic exposure to different 

photoperiods. This finding was evidenced by the increased circulating NEFAs in 

L6 animals, which were tentatively attributed to the decreased FA transport, as 

was strongly suggested by the downregulation of the genes encoding the FA 

transporter CD36 in the liver and the soleus muscle and the lower mRNA levels 

of the β-oxidation-related genes Had and Cpt1β in the soleus muscle. Taking into 
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consideration that Akt2 can modulate the insulin-mediated translocation of FA 

transporters and consequently, FA uptake and oxidation [34], we suggested that 

these effects could also be a consequence of the lower insulin sensitivity reported 

in L6 rats. Intriguingly, despite the fact that several studies have reported that 

AMPK, the key energy sensor [35,36], is reduced in insulin resistance states [37], 

in this study we observed a sharp upregulation of the phosphorylated and active 

form of this protein in animals exposed to the L6 photoperiod. It has been 

described that AMPK is directly involved in muscular glucose uptake through the 

stimulation of GLUT4 translocation [38], which would not be in agreement with 

the higher glycemia levels reported in L6 animals. Nevertheless, taking into 

account that AMPK effects on glucose metabolism are produced in energy-

demanding conditions such as starving [39], and that our animals were sacrificed 

in post-prandial conditions (1 h of fasting), we suggested that the increased 

levels of AMPK did not relevantly contribute to enhance glucose uptake in the 

skeletal muscle. In addition, this protein has been reported to inhibit protein 

synthesis and stimulate protein degradation by inhibiting mTORC1 via TSC2 

phosphorylation [40] and activating FOXO3, which increases the expression of 

the E3 ligases MAFbx and MuRF1[41]. Hence, the higher amount of some 

circulating amino acids (alanine, glutamine, isoleucine, threonine and 

tryptophan) and the lower protein content in both soleus and gastrocnemius 

muscles reported in L6 animals, prompted us to hypothesize that the higher 

pAMPK levels could account for a higher protein degradation in the skeletal 

muscle. Similarly, other authors have previously described that the exposure to 

a SD photoperiod induced a higher degradation of muscle proteins in mice [42]. 

In this study, we also reported a higher glycemia in animals chronically exposed 

to the L18 photoperiod compared to the L12 group, although the molecular 

mechanisms involved in these effects were not as evident as those reported in L6 

animals, since no changes in Akt2 and AMPK protein levels were observed. 

Nevertheless, these animals displayed higher levels of DAG and 
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glycerophosphocholine in the liver. Taking into account that the accumulation of 

DAG in the liver can induce a pro-inflammatory response that impairs insulin 

signaling [43,44], we hypothesized that the increased DAG and 

glycerophosphocholine levels could account for the hyperglycemia reported in 

L18 rats. Moreover, these animals also displayed significant molecular changes 

in the regulation of FA metabolism, displaying lower gene expression of FA 

transporters either in the liver (Cd36 and Fatp5) and the soleus muscle (Cd36), 

as well as decreased Cpt1β mRNA levels in the soleus muscle than L12 animals. 

Nevertheless, these molecular alterations were not translated into variations in 

blood NEFAs levels, which could be tentatively explained by a lower release of 

FA by the white adipose tissue or a higher FA uptake by other tissues so as to 

compensate the decreased uptake of this metabolites in the liver and the skeletal 

muscle [45,46]. 

In last decades, it has been elucidated that circannual and circadian rhythms are 

interconnected by a complex regulatory system in which day length acts as the 

main environmental modulator [7,47]. In addition, peripheral core-clock genes 

daily fluctuations have been directly associated with the modulation of several 

vital metabolic processes in the liver and skeletal muscle, such as lipogenesis de 

novo, insulin signaling, glucose uptake and glycolysis, through the modulation of 

key genes and proteins, such as FASN, Akt, Glut4 and Hk, respectively [48–50]. 

Relevantly, after analyzing the peripheral clock genes in the liver and both soleus 

and gastrocnemius muscles, we reported clear variations in Bmal1, Per2 and 

Nr1d1 mRNA levels in all three tissues in L18 animals, whereas L6 and L12 

animals did not exhibit any differences. Hence, we suggested that these 

variations could have also accounted to the metabolic responses observed in L18 

rats. 

Altogether, these results highlight the impact of the chronic exposure to both 

short and long photoperiods on glucose and lipid metabolism, especially in the 
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L6 photoperiod, which, in our study, induced a marked disruption of insulin 

sensitivity. Moreover, these innovative findings pave the way for the use of the 

rat strain F344 in the study of several diseases that can be associated with 

impairments of glucose and lipid metabolism and that show rising peaks of 

prevalence in winter, such as obesity, SAD and CVD [22,51–53]. 

Once we characterized the physiological and metabolic adaptations to the 

exposure to different photoperiods in normoweight conditions, we wanted to 

determine whether these effects were also observed in diet-induced obese rats 

(Manuscript 2). Hence, we carried out a study using F344 rats submitted to the 

same photoperiods described in the first study for 11 weeks. After 4 weeks of 

adaptation to each photoperiod, in which the animals were fed ad libitum with a 

STD, the rats were switched to a CAF for the last 7 weeks. CAF is characterized 

for containing several high-palatable and energy dense foods, such as cheese, 

bacon, muffins and milk with sugar, which are highly present in Western diets 

and which have been reported to induce obesity, insulin resistance and 

dyslipidemia [54,55].   

As previously observed in our first study, the combination of different day length 

exposure and the CAF intervention induced a clear differential phenotype in the 

three analyzed groups, as was illustrated by a clear clustering in the multivariate 

analysis that we performed with 112 parameters. Interestingly, in contrast to 

what was observed in other studies [25,26], no differences were reported in 

biometric parameters among the three groups during the first 4 weeks of the 

study, in which animals were fed a STD diet. However, the inclusion of an 

obesogenic diet induced several changes in terms of physiology and metabolism. 

CAF intervention induced a loss of body weight and body weight gain in both L6 

and L18 groups when compared to L12 animals, which was mainly explained by 

a lower cumulative caloric intake. When we analyzed the hypothalamic 

expression of genes related with food intake regulation, we observed a sharp 
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upregulation of the orexigenic genes Npy and the ghrelin receptor Ghsr in both 

L6 and L18 animals. Taking into account that body weight is controlled by the 

balance between EE and food intake [56], we initially speculated that the 

decreased caloric intake reported in both L6 and L18 animals could be an 

adaptive response to deal with the lower EE observed in both groups in an 

attempt to maintain an optimal body weight. Nevertheless, the fact that the 

decrease of EE and caloric intake was accompanied by lower body weight 

suggested an impairment of body weight regulatory mechanisms. Thus, we 

hypothesized that the upregulation of hypothalamic orexigenic genes could be a 

compensatory action in order to increase food intake and maintain an optimal 

body weight and energy balance in both groups. In addition, the exposure to 

different day lengths induced significant changes in food preferences and 

macronutrient consumption. In a previous study, Togo et al. reported a 

significant photoperiod-dependent food preference, in which rats exposed to an 

LD photoperiod displayed a higher preference to a LFD than a HFD, whereas SD 

rats did not display any preference [57]. In contrast, we observed that L18 

animals displayed a higher preference for fat-rich solid food than those exposed 

to the L6 photoperiod, as evidenced by the increased intake of bacon and muffins 

in the L18 group. 

Furthermore, we reported a clear differential modulation of glucose and lipid 

metabolism between L6 and L18 rats in response to the intake of the CAF. Thus, 

the consumption of the CAF promoted a differential substrate utilization in a 

photoperiod-dependent manner, displaying L18 animals increased lipid 

oxidation rates and lower carbohydrate oxidation levels than L6 rats. The 

increased rates of whole-body lipid utilization observed in the animals held 

under the L18 could be partly explained by the higher lipid intake and by the 

upregulation of the mRNA levels of the genes encoding the FA transporter FATP1 

and the β-oxidation related enzymes CPT1Β and HAD in the skeletal muscle, 

which would enhance the FA supply and utilization in this tissue. Relevantly, in 
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contrast to what was observed in the first study, we also described a significant 

higher glycemia in L18 animals than in L6 rats, which could be mainly attributed 

to the decreased mRNA levels of the insulin signaling-related gene Irs1 in the 

gastrocnemius muscle and the downregulation of the pAkt2 levels in the soleus 

muscle.  

Previous studies have described that the intake of high caloric diets (e.g. HFD) 

can alter the regulation of circadian clocks in peripheral tissues [58]. 

Nevertheless, despite the fact that we just carried out a single measurement of 

the gene expression of the mammalian circadian core-clock components, we 

described a very similar expression pattern than those obtained in normoweight 

rats. Thus, although we cannot directly compare both studies because they were 

performed at different times, we suggested that the CAF did not dampen the 

mammalian circadian rhythm modulators. 

Overall, we demonstrated that the consumption of a high-palatable CAF affects 

several parameters related with body weight, feeding behavior and glucose and 

lipid metabolism in a photoperiod-dependent manner. Moreover, in obesogenic 

conditions, we did not observe a more deleterious phenotype regarding glucose 

and lipid metabolism induced by the L6 photoperiod in comparison with the L18 

photoperiod, as we previously described in normoweight F344 rats. Relevantly, 

these results could contribute to highlight the impact of the consumption of high-

palatable and energy dense foods in the adaptations to seasonal day length 

variations, especially in those diseases that can be prompted by alterations in 

feeding behavior, such as SAD [53] and obesity [56].  

Obesity is considered the global epidemic of the twenty-first century and it is 

estimated to affect the 58% of world’s adult population by 2030 [59]. Although 

it is widely evidenced that the main etiology of obesity and its related disorders 

is an imbalance between caloric intake and energy expenditure [60], the 

preventive and therapeutic strategies in order to avoid their increasing 
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prevalence are not resulting effective. Thus, there is a pressing necessity to find 

new causes that can account for the development of obesity and related 

metabolic diseases.  

In this sense, once we have described the physiological and metabolic 

adaptations in response to the chronic exposure to different day lengths under 

normoweight and obese conditions, we wanted to study whether fruit 

consumption out of its harvesting season could alter this metabolic adaptations 

contributing to the development of obesity and/or metabolic disorders, such as 

dyslipidemia or insulin resistance in animals fed a STD and to enhance the 

detrimental effects caused by the obesogenic CAF, which would be in line with 

our hypothesis that fruit intake out of season can lead to a disruption in 

characteristic seasonal physiology and metabolism  (Manuscript 3). 

For this purpose, we carried out a proof-of-concept study divided in two different 

experiments regarding the dietary intervention that was given to the animals. As 

was aforementioned, we selected sweet cherry due to its popularity as a 

spring/summer fresh fruit and its rich-phytochemical content [61,62]. This fruit 

is characterized by containing high levels of anthocyanins, which are synthesized 

due to its protective role in the plant and which have been reported to exert 

several beneficial effects on health, by decreasing the risk of CVD or insulin 

resistance in animals and humans [63–66]. 

In both studies animals were exposed to the most representative seasonal day 

length schedules (L6, simulating winter and L18, simulating summer), and were 

divided into two groups depending on the treatment received: a vehicle (20 mg 

of glucose:fructose 1:1 mixture per kg of body weight), or lyophilized sweet 

cherry (100 mg per kg of body weight, which represents a daily intake of 4.26 g 

of fresh cherry without pits for a 60-kg human) [67]. 

In STD-fed F344 rats, after 10 weeks of treatment, cherry consumption induced 

similar effects in lipid metabolism-related parameters in both L6 and L18 
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animals, such as decreased circulating cholesterol levels and an upregulation of 

genes involved in FA uptake (Cd36) and β-oxidation (Cpt1β) in the skeletal 

muscle. However, cherry consumption induced more changes when it was 

consumed out of season, exhibiting L6 animals that received this fruit, but not 

L18-treated rats, an enhancement of FA transport and β-oxidation-related 

pathways, which was evidenced by increased Had gene expression in the soleus 

muscle and by elevated levels of the FA oxidation enhancer pAMPK in both soleus 

and gastrocnemius muscles, when compared to the non-treated L6 animals. 

Thus, we suggested that cherry consumption out of season enhanced lipid 

utilization as an energy substrate through activating AMPK. Moreover, 

concerning glucose metabolism, we reported a global lower Akt2 activation in 

the skeletal muscle only when cherry was consumed out of season. Taking into 

account the key role of AMPK and Akt2 in glucose and lipid metabolism 

regulation, these results reinforce our hypothesis of a marked interaction 

between fruit intake out of season and seasonal characteristic metabolism. 

Relevantly, all these molecular alterations were not associated with changes in 

the blood levels of glucose or insulin. Considering the healthy status of STD-fed 

rats, we suggested that the lack of alterations in these parameters could be 

explained by the robust phenotypic flexibility associated with optimal health, 

which is capable of neutralizing external factors in order to maintain metabolic 

homeostasis [70].  

Previous studies performed in the Nutrigenomics Research Group described a 

clear modulation of circadian clocks by the intake of polyphenols [71,72]. In 

addition, cherry is rich in anthocyanins and also contains high concentrations of 

melatonin [73], a hormone that is directly associated with the modulation of 

circadian and seasonal rhythms [74]. In the present study, only cherry 

consumption out of season induced significant changes in the mRNA levels of 

mammalian circadian clock components, such as Nr1d1 in the gastrocnemius 

muscle and Per2 and Cry1 in the liver of normoweight animals, which would 
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emphasize the hypothesized interaction between seasonal fruit intake and body 

rhythms.  

In CAF-fed rats, after 7 weeks of dietary intervention, cherry consumption out of 

season induced an increase of whole-body lipid utilization, which was mainly 

attributed to the upregulated pAMPK levels in the soleus muscle in comparison 

with L6 non-treated animals. Interestingly, we reported that when L6 animals 

were treated with cherry, they resembled the phenotype induced by the chronic 

exposure to the L18 photoperiod, which was characterized by an enhanced lipid 

utilization. This effect could be partly explained by the overexpression of genes 

involved in FA uptake (Fatp1) and β-oxidation (Cpt1β and Had) in the skeletal 

muscles. Moreover, cherry consumption out of season exacerbated the 

deleterious effects induced by the CAF, triggering in L6 animals that received this 

fruit, but not in L18-treated rats, hyperglycemia and hyperinsulinemia. 

Differently to what was described in normoweight animals, diet-induced obese 

rats exhibited slight molecular variations regarding insulin-mediated glucose 

uptake, such as decreased mRNA levels of the glucose transporter Glut4 in the 

gastrocnemius muscle, indicating a lower capability to buffer external challenges 

through the activation of this key molecular pathway, which led to an 

impairment of glucose homeostasis. Moreover, in this experiment, the CAF 

intervention induced the loss of cherry modulation of the circadian clock 

machinery in peripheral tissues, not observing any difference among groups. 

Altogether, although the consumption of sweet cherry out of season did not 

contribute to a higher fat mass accretion, and consequently, to the appearance 

and exacerbation of an obese phenotype in STD- and CAF-fed F344 rats, 

respectively, we demonstrated that the consumption of sweet cherry promotes 

strong photoperiod-dependent responses, causing more pronounced and, to 

some extent, more deleterious effects concerning glucose metabolism and 

insulin signaling, when it is consumed out of season in F344 rats. Hence, although 
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more studies are necessary to determine the pathophysiological relevance of 

these results, this study could contribute to evidence the importance of seasonal 

and proximal fruit consumption in order to preserve an optimal health and/or to 

design nutritional strategies addressed to ameliorate metabolic disorders.  
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The main conclusions of the present thesis are: 

 

1. The chronic exposure to the L6 photoperiod, which simulates winter-like 

day length, promotes a lower insulin sensitive phenotype in normoweight 

F344 rats, which was evidenced by hyperglycemia, decreased 

phosphorylated levels of the downstream post-receptor target of insulin 

Akt2 in both the soleus and gastrocnemius muscles and a downregulation of 

genes involved in insulin signaling and glucose metabolism (Irs1, soleus, and 

Glut2, liver). 

2. L6 photoperiod exposure in normoweight F344 rats increases the 

circulating NEFAs levels, an effect that could be partly explained by the 

downregulation of key genes associated with muscular and hepatic fatty acid 

uptake (Cd36, soleus and liver) and β-oxidation (Had and Cpt1β, soleus). 

3. In normoweight rats, the chronic exposure to the L18 photoperiod, which 

simulates summer-like day length, induces hyperglycemia and decreases the 

expression of genes involved in hepatic and muscular lipid utilization, which 

could be partly attributed to the hepatic accumulation of diacylglycerol and 

to the expression changes of key circadian clock genes. 

4. The intake of the high-palatable CAF decreases cumulative caloric intake in 

both L6 and L18 animals and induces significant changes in feeding behavior 

in a photoperiod-dependent manner, inducing a higher preference for fat-

rich food in the L18 photoperiod than in the L6 photoperiod. 

5. The combination of the CAF intervention and the chronic exposure to 

different day lengths promotes a differential photoperiod-dependent 

substrate utilization, evidenced by the higher whole-body fat utilization and 

lower carbohydrate oxidation levels in L18 animals compared with L6 rats. 

UNIVERSITAT ROVIRA I VIRGILI 
PHYSIOLOGICAL AND METABOLIC ADAPTATIONS TO DIFFERENT PHOTOPERIODS: EFFECTS OF OBESITY AND 
SEASONAL FRUIT CONSUMPTION 
Roger Mariné Casadó 
 



     V. Conclusions       

234 

6. The consumption of sweet cherry, which is a seasonal fruit harvested in 

spring and summer, out of season induces an enhancement of fatty acid 

transport and β-oxidation-related genes in normoweight rats and triggers 

whole-body fat utilization as an energy substrate in CAF-fed F344 rats. 

7. In normoweight conditions, the intake of cherry out of season decreases 

insulin-mediated activation of Akt2, which is not apparently translated into 

negative effects on health. 

8. Cherry consumption out of season enhances the detrimental effects caused 

by the intake of the CAF, inducing hyperglycemia and hyperinsulinemia and 

decreasing muscular Glut4 gene expression in F344 rats. 
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  Through evolutionary history, the coexistence of animals and plants have led to 

the development of an adaptive phenomenon that has been recently explained by 

the xenohormesis theory. This theory postulates that the phytochemicals 

synthesized by stressed plants could be recognized as signals by the heterotrophs 

that consume them, being informed about the external conditions in which plants 

were harvested and allowing them to favorably adapt to unpredictable changes in 

the environment. Thus, each plant contains a distinctive phytochemical 

composition informing about the environmental status. In this framework, the 

main aim of the present thesis was to evaluate whether fruit consumption out of 

season would induce an erroneous signaling, leading to detrimental effects on 

physiology and metabolism of normoweight and cafeteria-fed obese Fischer 344 

rats, by analyzing glucose and lipid metabolism-related parameters in blood, liver 

and skeletal muscle. To achieve this objective, we firstly characterized the 

physiological and metabolic adaptations to the chronic exposure to different 

photoperiods, which resembled seasonal variations in day length, in normoweight 

and obesogenic conditions. Once characterized, we evaluated the effects of the 

consumption of sweet cherry, a popular anthocyanin-rich fruit harvested in 

spring/summer, in short and long photoperiods resembling winter and summer, 

respectively. Firstly, we reported that the chronic exposure to different 

photoperiods induces several variations in physiological and metabolic 

parameters in normoweight and diet-induced obese rats, mainly affecting glucose 

and lipid metabolism and insulin signaling. Secondly, we revealed that cherry 

intake induces marked photoperiod-dependent effects, promoting more 

pronounced and, to some extent, more negative effects concerning glucose 

metabolism and insulin signaling in normoweight and diet-induced obese F344 

rats when it was consumed out of season. These findings could contribute to 

highlighting the importance of the consumption of seasonal fruits to maintain an 

optimal health. 
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