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Abstract

Vibroacoustic coupling
and transmission paths

Francesc Xavier Magrans Fontrodona

This dissertation deals with four topics. The first three are in the same environment,

the transmission paths. The fourth refers to the synthesis of subsystems and more

specifically to two subsystems linked by any number of elastic elements.

In the first topic it is proved that the solution of any linear mechanical system

can be expressed as a linear combination of signal transmission paths. This is done

in the framework of the Global Transfer Direct Transfer (GTDT) formulation for

vibroacoustic problems. Transmission paths are expressed as powers of the transfer

matrix. The key idea of the proof is to generalise the Neumann series of the transfer

matrix –which is convergent only if its spectral radius is smaller than one– into

a modified Neumann series that is convergent regardless of the eigenvalues of the

transfer matrix. The modification consists in choosing the appropriate combination

coefficients for the powers of the transfer matrix in the series. A recursive formula for

the computation of these factors is derived. The theoretical results are illustrated by

means of numerical examples. Finally, we show that the generalised Neumann series

can be understood as an acceleration of Jacobi iterative method.

For complex geometries, the definition of the subsystems is not a straightforward

task. We present as a second topic a subsystem identification method based on the

direct transfer matrix, which represents the first-order paths. The key ingredient is

a cluster analysis of the rows of the powers of the transfer matrix. These powers

represent high-order paths in the system.

Once subsystems are identified, the proposed approach also provides a quantifi-

cation of the degree of coupling between subsystems. This information is relevant to

decide whether a subsystem may be analysed independently of the rest or subsystems

or not. The two features (subsystem identification and quantification of the degree of

coupling) are illustrated by means of numerical examples: plates coupled by means

of springs and rooms connected by means of a cavity.

In the third work, Advanced Transfer Path Analysis (ATPA) is applied to a

cuboid-shaped box. The simplicity of this vibroacoustic system helps to make a
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detailed analysis of the ATPA method in a more controlled environment than in situ

measurements in trains, wind turbines or other mechanical systems with complex ge-

ometry, big dimensions and movement. At the same time, a numerical model (based

on finite elements) of the box is developed. The agreement between the experimental

measurements and the numerical results is good. The numerical model is used in or-

der to perform tests that cannot be accomplished in practise. The results are helpful

in order to verify hypotheses, provide recommendations for the testing procedures

and study some aspects of ATPA such as the reconstruction of operational signals

by means of direct transfer functions or to quantify and understand which are the

transmission mechanisms in the box.

The fourth topic introduces a method to synthesize the modal characteristics of

a system from the modal characteristics of its subsystems. The interest is focused on

those systems with elastic links between the parts which is the main feature of the

proposed method. An algebraic proof is provided for the case of arbitrary number of

connections. The solution is a system of equations with a reduced number of degrees

of freedom that correspond to the number of elastic links between the subsystems.

In addition the method is also interpreted from a physical point of view (equilibrium

of the interaction forces). An application to plates linked by means of springs shows

how the global eigenfrequencies and eigenmodes are properly computed by means of

the subsystems eigenfrequencies and eigenmodes.
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Chapter 1

Introduction

1.1 Motivation

This thesis has three parts exploring path theory and one part working on the sub-

system synthesis.

Path theory is a 37 years old subject that has already provided interesting results

as can be seen in (Guasch and Cortés, 2009; Thompson et al., 2018; Sapena et al.,

2012) and more broadly in appendix A.2 but, still, a lot of new knowledge can be

gained.

One aspect studied in this thesis is to find out to what extent paths are able to

give a complete description of a linear system. In other words, is it always possible

to express the solution of a linear system as a sum of paths?

Although it seems reasonable to assume that the paths are a complete solution,

there are mathematical arguments to suppose that this is not true. Solving this appar-

ent contradiction between intuition and mathematics has been one of the motivations

for writing this thesis.

It is clear that this motivation does not attempt to solve an specific practical

problem, but rather it is aimed at completing the frame that supports the theory of

transmission paths according to the definitions in Magrans (1981).

Another aspect of the paths, assessed in a second work of this thesis (Chapter 3),

is the possibility of defining and quantifying the subsystems and the intensity of the

coupling between them.

A subsystem has been defined in many ways. In general, the definitions highlight
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1. Introduction

a certain aspect that indicate that their behaviour is barely affected by the rest of

the system.

Efforts have also been made to define when a subsystem is weakly coupled and to

automatically identify possible subsystems.

This thesis explores the possibility of identifying subsystems and assessing the

degree of coupling using the path concept (Chapter 3).

The reason for this is that it seems logical that the systems formed by weakly

coupled subsystems have paths that mainly pass through the interior of the subsys-

tems. On the other hand the paths that connect these subsystems are likely to be

much weaker in number and magnitude than the internal paths.

The path theory has been widely studied at a theoretical level and has also been

applied experimentally in the industry under the name of ATPA (Advanced Transfer

Path Analysis). However, there are aspects of the theory that are difficult to prove

at an experimental level. Thus, the motivation of the third work concerning paths

is the interest of demonstrating some aspects using numerical methods (Chapter 4).

Just to highlight some of the problems of difficult demonstration at the experimental

level, it is worth mentioning; to show that the prediction of the contributions for the

less influential subsystems was correct. If we have 70 dB in the microphone and one

of the many subsystems contributes 69 dB to this level, another contributes 65 dB, a

third 55 dB and the others add up to 45 dB, we have to assume that if we eliminate

the first and second subsystems, the total level will fall to 55 dB. This shows that

although the third subsystem contributes almost nothing to the total level, it is of

fundamental importance to know to what extent we can reduce noise by modifying

only two subsystems. If the forecast of the third subsystem contribution is wrong it

will compromise the success of the modifications. Experimentally demonstrating that

, having a total noise of 70 dB, the third subsystem contributes with 55 dB without

altering the total system is very complex while numerically it is easily demonstrable.

Also check the influence on the connectivity of degrees of freedom normally not mea-

sured such as rotations it is easy numerically and very difficult from an experimental

point of view.

A fourth work is independent of the path problem but nevertheless some results

will be useful in future path models. The research presented in chapter 5 deals

with modal synthesis and complements the algebraic developments with physical

interpretation.

2



1.2. Objectives and layout of this thesis

The algebraic approach focuses on how to find the eigenvectors and eigenvalues of

a system made up by two subsystems given the eigenvectors and eigenvalues of each

subsystem.

The physical approach is focused on solving practical problems. Indeed, lots of

commercial products consist of a structure and attached auxiliary equipment. Exam-

ples are a compressor in a freezer, the brake compressor in a train wagon as well as

the frequency converter, HVAC equipment, electrical generators, gearbox etc. Other

cases are the transformer in wind turbines or its engines, fans, pumps etc. The at-

tachment of a mechanical subsystem is normally done using elastic supports that can

be assimilated to a spring.

Another frequent situation is found when machines are supported by a separate

structure. Examples are cooling towers on terraces, oil extraction and storage equip-

ment on oil sea platforms etc. Knowing the vibratory response of both, added sub-

system and supporting structure, we want be able to predict the vibratory response

of the whole set.

1.2 Objectives and layout of this thesis

This section briefly describes the objectives of this thesis. Concepts linked to the

transmission paths are assumed to be known. Some references are Magrans (1981);

Magrans et al. (2005); Magrans (1993); Aragonès et al. (2015); Zafeiropoulos et al.

(2013); Wang et al. (2017); Sapena et al. (2012).

1. The first objective developed in Chapter 2 is to prove that the solu-

tion of any linear system can be expressed as a linear combination of

signal transmission paths weighted with the appropriate coefficients.

This proves that the concept of the path and its mathematical definition allows

us to fully explain the behaviour of any linear system and in particular the vi-

broacoustic problems. As a direct consequence, the completeness of the method

of Transmission Paths is proven (Magrans et al., 2017)

This can be applied to the acceleration of the Jacobi’s method, i.e. its conver-

gence rate is improved.

2. The second goal of the thesis is to explore the possible identification

of subsystems by means of paths. The possibility to bound the error

3



1. Introduction

made when calculating the response of each subsystem as an isolated system

is considered. The results obtained show the extent to which eigenvectors are

independent of the presence of other subsystems .

A paper with the results of this research (Magrans et al., 2018) explains and

demonstrates how to find the subsystems and how to evaluate the coupling

force.

3. The third topic related to paths is a comparison of experimentation

and numerical simulation.

This comparison makes it possible to obtain results with the simulation that

are difficult to obtain at an experimental level.

First the suitability of the numerical model by comparing it with the experi-

mentation is verified.

In addition, the influence on the reconstructed signals of the modifications in

the excitation (i.e. perturbation on the application point, use of random forces,

consideration of a more realistic operational excitation)are also considered in

the analysis.

The validity of the measure should be checked for minor contributions whose

effect on the total signal can be neglected but which establish a lower limit

to the improvement that can be obtained by means of a system redesign and

modification that reduces the most important contributions.

A paper with the results of this research has been published in (Aragonès et al.,

2019)

4. In a fourth objective, equations are obtained that allow to find the

eigenvectors and eigenvalues of a system made up of two others cou-

pled by springs, when the eigenvectors and eigenvalues of both sub-

systems are known. To the best of my knowledge it is the first eigenvalue

and eigenvectors synthesis approach for elastic (rather than rigid) coupled sub-

systems based on eigenvalues and eigenvectors of the subsystems.

A paper with the results of this research has been published in (Magrans and

J.Poblet-Puig, 2018)
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1.2. Objectives and layout of this thesis

Chapters 2 to 4 deal with issues related to transmission paths. The concepts

needed to follow developments related to transmission paths are set out mainly in

Chapter 2 and in the appendix A.2.

Chapter 5 is not related to the previous three chapters and the necessary infor-

mation is self contained.

Finally, chapter 6 gives the conclusions of this thesis, related publications and

proposal of future work.

Independently of the content of the PhD dissertation, an explanation of the basic

ideas of the transmission paths is given in appendix A.2, providing, also, explanations

related to their usefulness and future work.
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Chapter 2

The solution of linear mechanical

systems in terms of path

superposition1

2.1 Introduction

Vibroacoustic problems are very often not easy to visualise and understand. More-

over, the availability of experimental measurements is limited by operational costs

and times. For these reasons the intuition of engineers/physicists/acousticians has

always played an important role during the design process. A key concept is the trans-

mission path of sound and vibrations. This has remained an intuitive idea rather than

a properly defined and well established concept.

The first attempts to quantify the contribution of subsystems, even if they never

spoke about paths, can be found in Koss and Alfredson (1974b) and later works

Bendat (1976b,a); Potter (1977); Alfredson (1977); Koss and Alfredson (1974a). They

were motivated by the need in the automotive industry to characterise how the noise

generated by the engine or in the moving parts of the vehicle were transmitted to

the cabin. This method is nowadays known as Operational Transfer Path Analysis

(OTPA), Lohrmann (2008); de Klerk and Ossipov (2010).

The first document concerning the paths in a vibroacoustic system is a technical

1Chapter based on the paper Magrans et al. (2017)
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2. The solution of linear mechanical systems in terms of paths

report Gillard (1980) from the company Keller. The title of the document “Method

of measurement for determining the transmission paths and the contributions of the

different excitation forces simultaneously applied to a linear mechanic system” high-

lights two aspects of it, identification of transmission paths and identification of force

contributions. This technical document was the result of the analysis that a group

of experts in the field of car Vibro–Acoustics made of a previous version of Magrans

(1981).

Paths and contributions are implicitly defined and quantified in Magrans (1981).

This method is known as Global Transfer Direct Transfer (GTDT) method in the

scientific publications or as Advanced Transfer Path Analysis (ATPA) in the industry,

where it has been widely used in many applications, such as railways, see for example

Sapena et al. (2012).The role of paths in more specific situations was analysed in

Guasch and Magrans (2004a), where the interest is focused in the characterisation

of the connectivity between system parts. Some academic tests can be also found

in Zafeiropoulos et al. (2013); Guasch et al. (2013). A comprehensive classification

of the methods and historical overview can be found in Van der Seijs et al. (2016).

Paths have also been defined and quantified in a Statistical Energy Analysis (SEA)

framework Luzzato and Ortola (1988); Craik (1990); Magrans (1993).

Other applications of the path concept can be found in the literature. An analysis

of the paths that contribute more to the system response by means of graph theory

is presented in Aragonès et al. (2015); Guasch and Aragonès (2011). Path analysis

was simplified considering forward paths only in Magrans (1993). A comparison of

path analysis with other methods was reported in Wilson (2014).

Some efforts have been employed to systematize methods based on the path con-

cepts to evaluate the final response that a modification will produce.

Guasch (2009), studies the effects of blocking some paths. More recently Wang

et al. (2017) have studied the prediction potential of the method specially linked at

FEM results. This has also been studied in Tan, Xu, and Sui (Tan et al.) dealing with

multiple points subsystems responses. In Jové and Guasch (2017) the same schema

is studied including the forces transmission through the paths.

Another recent application of the method has been developed in Jalali Mashayekhi

and Behdinan (2017) where the use of the Direct Transfer is made in the bond graphs

environment extending the use of the Direct Transfer to new sectors as the hydraulic

and electrical machines. Also new expressions to find the Direct Transfer are obtained
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2.1. Introduction

in Jalali Mashayekhi and Behdinan (2017) .

Under the framework of the EU funded Roll2Rail contract No. H2020 636032

D7.4 a study Malkoun, Sapena, Arcas, and Magrans (Malkoun et al.) has been made

to split the noise made by the train lane from the noise made by the wheels in a train.

The moving boogies of a train make that the noise in a microphone may be studied

knowing the transfer functions from the lane to a row of microphones. The change

of global transfer functions between different microphones will be equivalent to the

train movement.

Also Thompson et al. (2018) studies the results obtained by several methods to

asses several measurement-based methods for separating wheel and track contribu-

tions including the ATPA method.

In spite of the clear applicability of path analysis to practical situations, a theoret-

ical question remains open: a proof of completeness. In other words, the possibility

of fully describing the solution of a mechanical transfer problem by means of the

superposition of transmission paths. This theoretical question is addressed here, by

using concepts and tools of numerical linear algebra (see textbooks Demmel (1997);

Trefethen and Bau (1997) for background material).

It was clearly demonstrated in Magrans (1984, 1993) that a solution of a me-

chanical problem can be described by means of the Neumann series2 of the transfer

matrix T (the powers of T are a representation of paths of different order in the

mechanical system). The series has strict convergence conditions, which in practise

mean that the solution description through transmission paths and Neumann series3

is not always possible.

The issue of the completeness of the solution description has also been addressed in

Guasch and Cortés (2009); Bessac (1996); Aragonès et al. (2015); Finnveden (2011).

Guasch and Cortés (2009) relates the convergence of the series with the damping

of the systems because the energy of undamped systems permanently excited would

grow indefinitely. However, this does not explain the situations when, even with

damping, the series diverge. For this reason Aragonès et al. (2015) claims that other

conditions to ensure the convergence are required in addition to the existence of

damping. The drawback of the divergence of the solution expressed as a series also

appears if the problem is not strictly formulated in terms of the transfer matrix and

2In honour of Karl Gottfried Neumann (1832-1925)
3A Neumann series has the form

∑∞
k=0 T

k.
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2. The solution of linear mechanical systems in terms of paths

its powers. This can be seen in Bessac (1996) for the matrix of coupling loss factors

and in Finnveden (2011) for the coupling eigenvalues.

The goals and achievements of this research are as follows:

• To provide a definition of what a path is.

• To prove the possibility of expressing the solution of all linear problems in

terms of paths (especially applied to vibroacoustic). The proof is done in the

framework of the Direct and Global Transfer Matrix formulation of the problem.

The final result is a generalisation of the Neumann series.

• To derive a practical recursive methodology that allows the computation of the

solution based on the transfer matrix of the problem. The goal is also to provide

a closed-form expression of the solution as simple as possible.

• To illustrate this methodology with numerical examples.

• To explore the relationship between the proposed approach and Jacobi iterative

method for linear systems. The generalised Neumann series can be understood

as an acceleration (i.e. convergence speedup) of the Jacobi method.

The remainder of the chapter is organised as follows. Some key concepts such as

the notion of path and the transfer matrix are defined in Section 2.2. A precise and

explicit definition of path is given. The theoretical core of the research is presented

in Section 2.3. It includes the proof of the existence of an expression of the system

solution based on a linear combination of paths. A general methodology to compute

the combination factors in the generalised Neumann series is provided. Numerical ex-

amples that illustrate the theoretical results are shown in Section 2.4. The concluding

remarks of Section 2.5 close the chapter.

2.2 Definitions

2.2.1 Physical considerations on the ‘path’ concept

Various methods based on path analysis are useful to find engineering solutions in

vibroacoustic problems Van der Seijs et al. (2016). Nevertheless the ‘path’ concept

is often not defined in a rigorous way.
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2.2. Definitions

Our goal here is to provide this explicit definition of ‘path’. It will help later

in Section 2.3 in order to develop the core of this research. The definition must be

consistent with these three intuitive ideas:

1. A path is something different from a contribution. It must provide information

on how the system behaves, instead of being understood as a black box with

an input and an output. In techniques such as Transfer Path Analysis (TPA,

Gajdatsy et al. (2010)) the output is a product of multiple contributions that

arrive through different uncharacterised paths. This is not the case of ATPA

(GTDT) or OTPA, which are based on the path concept.

2. A path is not only defined by the topology of the problem. In addition, the

physical behaviour of the system must be considered. Clear examples of this are:

i) a beam, where the deflection of a point is linked not only with the deflection

of other points but also with the rotations Guasch and Magrans (2004a); or

ii) an SEA description of the sound transmission between two rooms, where

coupling loss factors due to forced or resonant transmissions must be considered

in the same single wall Hopkins (2012). For the case i) see the simple sketch

in Figure 2.1 where a supported beam is represented. Three different points

in the beam are considered (i = 1, 2, 3). Each of them is characterised by

its displacement xi. However, this is not enough in order to study the signal

transmission between 1 and 3 because an imposed displacement at 1 causes

a displacement at 3 even if the displacement at 2 is blocked. The signal can

pass from 1 to 3 not only through the displacement in 2 but also through the

rotation in 2. So, two different transmission paths must be considered in order

to properly characterise the mechanical system response. It is clearly shown in

the path diagram of Figure 2.1.

3. A path is the edge of a weighted graph including the physical characteristics of

the problem. The quantity that characterises the link between two nodes must

be related with the physics of the problem.

2.2.2 Definition of paths

Let N = {1, 2, . . . , n} be a set of n nodes. The nodes may represent single points

in a continuous system, a degree of freedom associated to that point, single masses

11



2. The solution of linear mechanical systems in terms of paths

Figure 2.1: Path representation of a simply supported beam. Four degrees of freedom
are considered: three displacements xi and one rotation α.

.

in a discrete system of masses and springs or disjoint parts of a continuous system.

Their intersection must be null. Let xi be a physical signal and bi an excitation, both

associated to node i.

The behaviour of the mechanical system is properly described by the following

linear system of equations:

Ax = b xi, bi, aij ∈ C (2.1)

A direct path between nodes i and j exists and is represented by coefficient pij if

the following conditions are satisfied:

1. pij 6= 0 links signals xi and xj caused by an excitation in node i while all other

nodes are blocked:

xj = pijxi ∀j 6= i, for xk = 0, ∀k 6= i, j, bi 6= 0 and bj = 0 (2.2)

The non-zero coefficient pij will be called direct transfer between nodes i and

j.

12



2.2. Definitions

2. It is possible to express the solution of the system as a superposition of paths

of arbitrary order.

A k-order path p
(k)
ij is as a chain of k direct paths that starts at node i and ends

at node j with j 6= i or j = i such that: p
(k)
ij = pirprs . . . pqj︸ ︷︷ ︸

k

.

That is, it must be possible to express every signal xj as

xj =
n∑
i=1

∞∑
all paths
k=1

γkp
(k)
ij xi (2.3)

where γk are combination factors that depend on the order of the path (see

Section 2.3 where γk are defined in Eq. (2.42)).

Several models used to describe the response of mechanical systems can fit in the

definition of the path concept presented here, see for example Magrans (1981); Bessac

(1996); Finnveden (2011); Jove and Guasch (2012).

2.2.3 The Global Transfer Direct Transfer (GTDT) frame

for paths

The basic concepts of the GTDT method Magrans (1981) are briefly reviewed here.

2.2.3.1 Problem statement

Consider the linear system of equations (2.1), where A is a (in general complex but

possibly real) invertible matrix of dimension n. Matrix A may be expressed as

A = D + L + U (2.4)

where D, L and U are the diagonal, strict lower and strict upper parts of matrix A.

By assuming that D is invertible, system (2.1) may be recast as

x = D−1b + Tx (2.5)

where

T = −D−1(L + U) (2.6)

is the transfer matrix. This matrix is the transpose of the Direct Transfer Matrix, TD

defined in Magrans (1981) with zeros in the diagonal. Note that T is not symmetrical
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2. The solution of linear mechanical systems in terms of paths

in general and that it takes into account the coupling between the unknowns: for

T = 0, the system is diagonal and the solution is simply x = D−1b.

The coefficients of the matrix T will be called Direct Transfers. TDij will be the

direct transfer from i to j. The diagonal elements of D−1 are the direct transfers from

i to i, TDii

From Eq. (2.5), the solution of system (2.1) may be expressed as

x = (I−T)−1D−1b (2.7)

Finally, we define the Global Transfer Matrix

TG = (I−T)−1D−1 (2.8)

Note that the definition of the Global Transfer Matrix in Magrans (1981) contains

a diagonal scaling matrix not included here. This allows a change between forces

and displacements as main variables. In an experimental research it is often more

advantageous to work with displacements because they can be measured more easily.

On the contrary, in the context of the present work it is more convenient to think in

terms of a force-displacement formulation. This diagonal scaling matrix implies that

the coefficients of TG have the physical meaning of receptance Frequency Response

Functions (FRF).

The expression 2.5 allows to calculate the signals as a sum of the effects of the

force and the contributions of the movements of the other nodes. This expression

is the basis for calculating the contributions on a subsystem coming from the other

subsystems in the ATPA.

Previously it is necessary to know the Direct transfers. The measurement or

calculus of the Global transfers allows, using 2.8 to compute the Direct transfers.

Direct Transfers are the quantification of the paths.

Finally 2.7 allows the calculus at the forces when the signals in the nodes are

known by a simple matrix inversion. The problem anyway is usually ill-conditioned.

This is the method used for the called TPA to identify the forces. Also when the

forces are identified the method allows to calculate the signals coming from each force

but going through all the paths.
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2.2. Definitions

2.2.3.2 Transfer matrices: physical meaning

Note that, under the assumptions of Eq. (2.2), equation j of the linear system (2.5)

is

xj = tjixi ∀j 6= i, for xk = 0, ∀k 6= i, j, bi 6= 0 and bj = 0 (2.9)

where tji are the entries of matrix T. This means that matrix T contains all the

information on the direct signal transmission from one node to another when all the

rest are blocked. This the first requirement in Section 2.2.2. The main goal of this

research is to prove that matrix T also satisfies the second requirement.

The formulation of the problem in terms of the transfer matrix is valid for the

modelling of mechanical systems by means of different techniques such as: i) Statis-

tical Energy Analysis Hopkins (2012), in which case the system matrix A is created

from the coupling loss factors that relate the subsystems and their damping coef-

ficient; ii) the Finite Element Method (FEM Ihlenburg (1998)), in which case the

system matrix A = K − ω2M, where K and M are the stiffness and mass matrices

(damping can also be considered); or iii) models or methods where T can be indi-

rectly obtained by means of experimental measurements in a laboratory as described

in Magrans (1981).

Matrix T contains information of the system connectivity and its successive powers

are a representation of the k-order paths. This can be deduced from the graph theory

and the properties of the powers of the adjacency matrix, see for example Biggs (1993).

The recursive substitution of Eq. (2.5) in itself leads to the following identity:

x = (I + T + T2 + ..+ Tk−1)D−1b + Tkx (2.10)

This makes evident the relationship between the Neumann series, the re-formulation

of the problem in terms of the transfer matrix and the solution of the original linear

problem. When the spectral radius (i.e. largest modulus of eigenvalues, see Ciarlet

et al. (1989); Demmel (1997); Trefethen and Bau (1997)) of T is less than one, the

limit for k tending to infinity of vector Tkx is zero and the solution of the problem is

the Neumann series. In other words, the solution of the problem is the simplest (all

combination coefficients equal one) linear combination of k-order paths. The order k

starts at zero and the series makes sense when k tends to infinity. This case is more

rigorously considered later in Section 2.3.1.
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2. The solution of linear mechanical systems in terms of paths

The coefficients of the Global Transfer Matrix TG, as defined in Eq. (2.8), express

the signal in node j exciting the node i when the rest of the nodes are not blocked.

Consequently, the signal at node j includes the contributions of all the paths. TG is

more easily measurable in the laboratory than T, which must be indirectly measured

by means of laborious tests like the strip method Lebresne (1975).

Finally, matrix D−1 is the matrix of direct transfers from node i to node i: dii. It

accounts for the part of the signal in node i that does not come from the other nodes

but from the external applied forces.

Eq. (2.5) can be premultiplied by xtD leading to

xtDx = xtb + xtDTx (2.11)

This new expression can be interpreted in energetic terms. The left-hand-side repre-

sents the kinetic and potential energy of individual elements and xtb is the external

work. Consequently, the transfer matrix T plays the role of an interaction potential.

2.3 Solution based on paths superposition:

mathematical proof

The mathematical proof for the existence of a linear combination of paths that leads to

the solution of the problem is given here. The methodology is based on the framework

presented in Section 2.2, so, the proof is valid for a wide variety of models that satisfy

a very usual algebraic structure: linear system of equations reformulated in terms of

the transfer matrix.

In those cases the mathematical expression of path addition is Eq. (2.10). How-

ever, the convergence of the series cannot always be ensured. It depends on very

different factors related with the physical properties or the modelling technique, such

as the damping distribution in the mechanical system, how are the SEA subsystems

defined, which points are chosen in order to define a transfer matrix, etc. Divergence

is found if the spectral radius of the transfer matrix is not less than one, ρ(T) ≮ 1.

This situation, which in fact is the motivation of the discussion and the main goal of

the research, is analysed in Section 2.3.2.

The main question to be answered here, linked with the second aspect of the path

definition in Section 2.2.2, is if it is possible to express (I − T)−1 (and, hence, the

solution x) as a linear combination of powers of the transfer matrix T also in the
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2.3. Solution based on paths superposition: mathematical proof

case when the spectral radius of T is larger than one. This non-trivial case will be

analysed afterwards in Section 2.3.2.

2.3.1 Some useful well-known results

Theorem

Let B be a square matrix. The following conditions are equivalent (see for example

Theorem 1.5-1 in Ciarlet et al. (1989)):

1. lim
k→∞

Bk = 0

2. lim
k→∞

Bkv = 0 for any vector v

3. ρ(B) < 1, where ρ(·) is the spectral radius

Neumann series, spectral radius less than one

If T verifies the conditions above, then

(I−T)−1 =
∞∑
k=0

Tk (2.12)

To show this, we consider the partial sum S0,m =
m∑
k=0

Tk. Subscript m denotes the

upper limit of the summation, whereas subscript 0 indicates that it is the original

Neumann series. Then,

lim
m→∞

(I−T)S0,m = lim
m→∞

( m∑
k=0

Tk −
m∑
k=0

Tk+1

)
= I− lim

m→∞
Tm+1 = I (2.13)

Note that for ρ(T) < 1,

lim
m→∞

S0,m = (I−T)−1 (2.14)

2.3.2 Transfer matrices with spectral radius larger than one

The remainder of the section shows that Eq. (2.12) can be always generalised to deal

with transfer matrices T such that ρ(T) ≮ 1. In other words, the solution of a linear

system of equations representing a mechanical system can be expressed as a linear

combination of paths of different order as defined in Section 2.2.3.
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2. The solution of linear mechanical systems in terms of paths

2.3.2.1 One-parameter modification

Consider the sequence of matrices {P1,k} with

P1,0 = α1T
0 and P1,k = (1− α1)Tk−1 + α1T

k for k ≥ 1 (2.15)

where α1 is a free parameter to be determined later, and the modified partial sum

S1,m =
m∑
k=0

P1,k = α1T
0 + (1− α1)T0 + α1T

1 + · · ·+ (1− α1)Tm−1 + α1T
m

= S0,m−1 + α1T
m

(2.16)

Note that, for α1 = 1, one retrieves the Neumann series (2.12). The question here

is to know, for the case α1 6= 1, under what conditions does the partial sum (2.16)

converge to the inverse of (I−T):

lim
m→∞

(I−T)S1,m = lim
m→∞

(S1,m −TS1,m)

= lim
m→∞

(S0,m−1 + α1T
m −TS0,m−1 − α1T

m+1)

= I− lim
m→∞

(
(1− α1)Tm + α1T

m+1

) (2.17)

The equality (I−T)S0,m−1 = I−Tm is used for the last step. Eq. (2.17) shows that

S1,m converges to (I−T)−1 if and only if

lim
m→∞

(
(1− α1)Tm + α1T

m+1

)
= lim

m→∞
P1,m+1 = 0 (2.18)

This condition is less restrictive (and includes) the usual condition limm→∞Tm+1 = 0.

2.3.2.2 Two-parameter modification

The modification strategy of section 2.3.2.1 can be applied again. Consider the se-

quence of matrices {P2,k} with

P2,0 = α2P1,0 and P2,k = (1− α2)P1,k−1 + α2P1,k for k ≥ 1 (2.19)

and the modified partial sum

S2,m =
m∑
k=0

P2,k = S1,m−1 + α2P1,m (2.20)
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2.3. Solution based on paths superposition: mathematical proof

The question here is to know under what conditions does the partial sum (2.20)

converge to the inverse of (I−T):

lim
m→∞

(I−T)S2,m = lim
m→∞

(
S2,m −TS2,m

)
= I− lim

m→∞
P2,m+1 (2.21)

To obtain the second equality in Eq. (2.21), one takes into account the definition

of the partial sums S0,m, S1,m and S2,m. Eq. (2.21) shows that S2,m converges to

(I−T)−1 if and only if

lim
m→∞

P2,m+1 = lim
m→∞

(
(1− α2)P1,m + α2P1,m+1

)
= 0 (2.22)

This condition is less restrictive (and includes, for α2 = 1) the condition limm→∞P1,m+1 =

0 derived in section 2.3.2.1.

2.3.2.3 Multi-parameter modification

In fact, the modification strategy can be applied recursively. Consider the sequence

of matrices {Pj,k} with

Pj,0 = αjPj−1,0 and Pj,k = (1− αj)Pj,k−1 + αjPj−1,k for k ≥ 1 (2.23)

and the modified partial sum

Sj,m =
m∑
k=0

Pj,k = Sj−1,m−1 + αjPj−1,m (2.24)

The following limit is considered to show under what conditions does the partial sum

(2.24) converge to the inverse of (I−T):

lim
m→∞

(I−T)Sj,m = lim
m→∞

(
Sj,m −TSj,m

)
= I− lim

m→∞
Pj,m+1 (2.25)

Eq. (2.25) shows that Sj,m converges to (I−T)−1 if and only if

lim
m→∞

Pj,m+1 = lim
m→∞

(
(1− αj)Pj−1,m + αjPj−1m+1

)
= 0 (2.26)

For the reasons discussed next, this recursion is applied at most n times, where n

is the problem dimension.
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2. The solution of linear mechanical systems in terms of paths

2.3.2.4 Selection of parameters

Once the less restrictive convergence conditions of Eqs. (2.18), (2.22) and (2.26) are

available, an strategy to select the optimal values of the parameters α1, α2, . . . , αn is

required.

Consider the basis {ui}ni=1 of eigenvectors of matrix T, associated to eigenval-

ues {λi}ni=1 (over the complex field C, any matrix T either i) diagonalises or ii) is

arbitrarily close to one with distinct eigenvalues that does).

By expressing an arbitrary vector v (see condition 2 in theorem of section 3.1) in

this eigenvector basis, v = a1u1 + a2u2 + · · · anun, one gets

Tkv = a1λ
k
1u1 + a2λ

k
2u2 + · · · anλknun (2.27)

If |λi| < 1 for i = 1, . . . , n, then theorem in section 3.1 applies. Assume now

that eigenvalue λ1 violates this condition, |λ1| > 1, so the Neumann series does not

converge. Then, for the one-parameter modification of section 2.3.2.1,

P1,m+1v = a1

(
(1− α1) + α1λ1

)
λm1 u1 + · · · an

(
(1− α1) + α1λn

)
λmn un (2.28)

To cancel out the divergent term λm1 u1, the accompanying scalar should be zero:

(1− α1) + α1λ1 = 0 =⇒ α1 =
1

1− λ1

(2.29)

By applying the same argument recursively for each additional eigenvalue that vio-

lates the constraint, one gets

α1 =
1

1− λ1

; α2 =
1

1− λ2

; · · · ;αn =
1

1− λn
(2.30)

Remarks:

1. If |λi| < 1, the modification step with coefficient αi is not strictly necessary for

convergence, but it does accelerate the convergence. This can also be seen in

Appendix A.

2. In fact, αi = 1/(1 − λi) are the eigenvalues of (I − T)−1; it is not surprising

that incorporating this information into the iterative algorithm improves the

convergence.
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2.3. Solution based on paths superposition: mathematical proof

2.3.3 Analysis of different cases

2.3.3.1 Real transfer matrix

If the transfer matrix T is real, then its eigenvalues are either real or complex conju-

gate. Note that, in any case, matrices I−T and (I−T)−1 are real.

2.3.3.1.1 All eigenvalues real If {λi}ni=1 ∈ R, then {αi}ni=1 ∈ R, and the

weighted sum of powers of T indeed results in a real matrix (I−T)−1.

2.3.3.1.2 Some complex conjugate eigenvalues Assume now that matrix T

has one pair of complex conjugate eigenvalues, λ2 = λ1. Then the corresponding

factors are also complex conjugate, α2 = α1. The two-parameter modification of

section 2.3.2.2 results in

S2,m = S1,m−1 + α2P1,m = S0,m−2 + α1T
m−1 + α2

(
(1− α1)Tm−1 + α1T

m

)
=

m−2∑
k=0

Tk +
[
α1 + α2(1− α1)

]
Tm−1 + α2α1T

m

=
m−2∑
k=0

Tk + 2
1−<(λ1)

1− 2<(λ1) + |λ1|2
Tm−1 +

1

1− 2<(λ1) + |λ1|2
Tm

(2.31)

Note that, as expected, the weights are again real. The same argument applies if T

has more pairs of complex conjugate eigenvalues.

2.3.3.2 Complex transfer matrix

If the transfer matrix T is complex, all the relevant objects are also complex (i.e. the

eigenvalues λi, the parameters αi, the weights in the weighted sum of powers of T,

matrix I−T and its inverse...).

2.3.4 Recursive method

The modified partial sums of order j can be computed once the modified partial sums

of order j − 1 and the correction parameter αj are known. From the definition in

Eq. (2.16),

Sj−1,m =
m−1∑
k=0

Pj−1,k + Pj−1,m = Sj−1,m−1 + Pj−1,m (2.32)
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from where Pj−1,m can be obtained and substituted in the definition of Sj,m in

Eq. (2.24):

Sj,m = αjSj−1,m + (1− αj) Sj−1,m−1 (2.33)

2.3.5 Explicit expression

An explicit expression of the solution can be obtained now by means of the repeated

use of Eq. (2.33). It must be first particularised for j = 1,

S1,m = α1S0,m + (1− α1) S0,m−1 (2.34)

For j = 2 one gets

S2,m = α2S1,m + (1− α2) S1,m−1

= α1α2S0,m + [α1 (1− α2) + (1− α1)α2] S0,m−1 + (1− α1) (1− α2) S0,m−2

(2.35)

and, for j = 3

S3,m = β3,0S0,m + β3,1S0,m−1 + β3,2S0,m−2 + β3,3S0,m−3 (2.36)

where

β3,0 =α1α2α3

β3,1 =α1α2 (1− α3) + α1 (1− α2)α3 + (1− α1)α2α3

β3,2 =α1 (1− α2) (1− α3) + (1− α1)α2 (1− α3) + (1− α1) (1− α2)α3

β3,3 = (1− α1) (1− α2) (1− α3)

(2.37)

Inspecting the structure of Eqs. (2.35), (2.36) and (2.37) carefully, it is possible

to derive a generic expression for Sj,m and coefficients βj,i:

Sj,m =

j∑
i=0

βj,iS0,m−i (2.38)

with βj,i expressed, in multi-index notation, as

βj,i =

(j
i)∑

k=1

αωk(1−α)1−ωk (2.39)
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2.3. Solution based on paths superposition: mathematical proof

Eq. (2.39) has a conveniently compact expression thanks to the use of multi-index

notation. For instance, for coefficient β3,1 shown in Eq. (2.37),

β3,1 = α1
1α

1
2α

0
3 (1− α1)0 (1− α2)0 (1− α3)1

+ α1
1α

0
2α

1
3 (1− α1)0 (1− α2)1 (1− α3)0

+ α0
1α

1
2α

1
3 (1− α1)1 (1− α2)0 (1− α3)0

= αω1(1−α)1−ω1 +αω2(1−α)1−ω2 +αω3(1−α)1−ω3

(2.40)

with α = (α1, α2, α3) and ω1 = (1, 1, 0), ω2 = (1, 0, 1), ω3 = (0, 1, 1).

Finally, Eq. (2.38) can be reorganised in order to express the partial sum in terms

of the powers of the transfer matrix T. This is, in fact, the main goal of the research:

to show that the solution of the mechanical problem can be expressed as a linear

combination of transmission paths. Indeed,

Sj,m =

m−j∑
k=0

Tk +
m∑

k=m−j+1

γm−kT
k (2.41)

with

γp =

p∑
i=0

βj,i p = 0, . . . , j − 1 (2.42)

Note that the first m − j + 1 terms of Sj,m are those of the original Neumann

series, whereas the last j terms are weighted with the correction factors γ. These

modifications are the higher-order paths.

A possible physical interpretation of Eq. (2.41) is that the first sum (lower-order

paths) represents the action of the forces on the system, while the second sum (cor-

rected higher-order paths) represents the reaction of the system. The important

aspect here is that both response types have been expressed as addition of paths

within the system. The whole Eq. (2.41) represents the steady equilibrium state of

the mechanical system. At that point the external excitation and the movement of

the mechanical system are coordinated in such a way that the excitation does not

cause an increase of response.

If the spectral radius is larger than one, it leads to two infinites that compensate

each other. If the spectral radius is less than one, the second sum is not relevant

anymore. This agrees well with the fact that if the response is controlled by damping

(which in general leads to spectral radius less than one), the high-order paths can

be neglected because energy is lost in the passage through every path. In terms
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2. The solution of linear mechanical systems in terms of paths

of Eq. (2.41) this means that the correction (second sum) is not required to ensure

convergence.

If j = n terms of the series are modified (n is the problem dimension), the series

convergence is ensured,

lim
m→∞

Sn,m = (I−T)−1 (2.43)

This is because in the worst scenario all the matrix eigenvalues have a module larger

than one. In this critical situation n modified terms of the series need to be added in

order to treat the n eigenvalues. In practice, the inverse of (I − T ) is approximated

by the partial sum Sn,m for a finite value of m.

2.4 Numerical examples

The results of Section 2.3 are illustrated here by means of the simple system of

Figure 2.2. It is a one-dimensional mechanism composed of eight masses: m1 = 100

kg, m2 = 200 kg, m3 = 300 kg, m4 = 400 kg, m5 = 500 kg, m6 = 630 kg, m7 = 700

kg, m8 = 800 kg. They are linked by means of springs with stiffnesses: k1 = 109

N/m, k2 = 3 109 N/m, k3 = 1.1 109 N/m, k4 = 4 109 N/m, k5 = 109 N/m, k6 = 5 109

N/m, k7 = 109 N/m, k8 = 3 109 N/m and k9 = 4 109 N/m. The frequencies at

which matrix D is singular are listed in Table 2.1. They can be understood as the

vibration frequencies of each single mass when all the others are blocked. Table 2.1

also shows the coupled eigenfrequencies of the mechanical system (matrix A). The

dynamic stiffness matrix of the mechanical system is
m1ω2−(k1+k2+k5) k2 0 0

k2 m2ω2−(k2+k3) k3 0

0 k3 m3ω2−(k3+k8+k4) k4
0 0 k4 m4ω2−k4
k5 0 k8 0
0 0 0 0
0 0 0 0
0 0 0 0

. . .

. . .

0 k5 0 0
0 0 0 0
k8 0 0 0
0 0 0 0

m5ω2−(k5+k8+k6) k6 0 0

k6 m6ω2−(k6+k7) k7 0

0 k7 m7ω2−(k7+k9) k9
0 0 k9 m8ω2−k9

 (2.44)

The accuracy of the iterative procedure described in Section 2.3.5 is measured by

means of the error parameter

e =
||A−1

approxA− I||F
n

=
||Sj,m(I−T)− I||F

n
(2.45)

24



2.4. Numerical examples

Figure 2.2: Sketch of the discrete system with eight masses.

matrix 1 2 3 4 5 6 7 8
D 355.9 425.4 491.2 503.3 675.2 720.6 827 1125
A 61.91 167.5 369.9 489.5 542.9 743.4 953.3 1250

Table 2.1: Eigenfrequencies of matrices D and A (in Hz).

where || • ||F is the Frobenius norm.

The reduced dimension of this toy problem allows a detailed study of its spectral

properties. Their evolution with frequency f (with f a real number) is shown in

Figure 2.3 for the undamped case. A can always be inverted (rank equals n = 8)

except for the eigenfrequencies shown in Table 2.1. Matrix T is only singular if one

node is completely detached from the others.

Another relevant aspect is the number of eigenvalues of the matrix T with modulus

larger than one. In practice, it means that the spectral radius of matrix T is also larger

than one and the Neumann series does not converge. In this system, it happens for a

frequency range between 61.91 Hz and 1250 Hz. Figure 2.3 also provides information

on the number of conjugate pairs of eigenvalues, linked with the modification of

parameters of Section 2.3.3.1.2.

The results in Figure 2.4 illustrate how the solution of the mechanical problem

can be obtained by the modified series proposed in Section 2.3. This means that the

solution can be computed as a linear superposition of paths. The error measure e,

defined in Eq. (2.45), is shown for several series depending on the number of modified
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2. The solution of linear mechanical systems in terms of paths

Figure 2.3: Description of the spectral properties of matrix T: number of conju-
gate pairs of eigenvalues (top); number of eigenvalues with modulus larger than one
(bottom). Undamped case.

parameters (0, 4 or 8). The total length m+ 1 of the series is 13.

The first thing to be noted is a strong correlation between the convergence of the

series (small values of e) and the fact that the number of modified parameters is equal

to or larger than the number of eigenvalues with modulus larger than one. See for ex-

ample, the improvement obtained for the series with four modified parameters below

350 Hz and above 900 Hz. This is in agreement with the fact that in this frequency

range four eigenvalues of matrix T have modulus larger than one. When (all) eight

parameters are modified, the convergence is improved in the whole frequency range.

Note, however, that the error is large around the frequencies where D is singular.

For larger frequencies all the series converge as expected, even if no parameter is

modified. However, even modifying only some parameters largely reduces the error

at high frequencies where e has a very small value close to the numerical tolerance.
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The non-convergent frequencies are also improved.

Figure 2.4: Difference between the exact solution and the solution obtained with
the series. Influence of the number of modified parameters: 0 (unmodified Neumann
series), 4 and 8. The total length m+ 1 is 13. The system is undamped.

The same mechanical system but with a hysteretic damping of 4% in all the springs

is considered. Figure 2.5 shows the spectral characteristics of the damped transfer

matrix. Two important differences must be noted: i) the matrix is not singular at

any real frequencies; ii) the eigenvalues are not complex conjugate. The frequency

range where some eigenvalues have modulus larger than one is very similar to the

undamped case.

Figure 2.6 shows the influence of damping in the results. The general trend is

similar to the undamped case. However, the effect of the eigenfrequencies of the

matrices D and A is less important.

Figure 2.7 shows a comparison between the exact value of the global transfer
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2. The solution of linear mechanical systems in terms of paths

Figure 2.5: Description of the spectral properties of matrix T: number of conju-
gate pairs of eigenvalues (top); number of eigenvalues with modulus larger than one
(bottom). With an hysteretic damping of 4% in all the springs.

matrix TG and the approximation obtained with the unmodified Neumann series and

the Neumann series with all required correction parameters (n = 8). The coefficient

tG14 is shown. It represents the displacement of mass number 4 for an unity force at

mass 1. The exact value is obtained as detailed in Magrans (1981). The unmodified

Neumann series diverges in the frequency interval where the spectral radius of the

system matrix is larger than one. On the contrary, the modified Neumann series

performs a very good reconstruction of the exact value. The inaccuracies of the

modified series are mainly found at the frequencies where the matrix D is singular

and the system is undamped. The error peaks around the eigenfrequencies of the

mechanical system (matrix A singular) are smaller. Damping drastically reduces the

error peaks of both types.

The error measure of Eq. (2.45) is global. However it is interesting to note that
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Figure 2.6: Difference between the exact solution and the solution obtained with
the series. Influence of the number of modified parameters: 0 (unmodified Neumann
series), 4 and 8. The total length m+ 1 is 13. The system has hysteretic damping of
4% in all the springs.

for most of the cases with large error, it is caused by only a few entries of the matrix

TG while the approximation of the others remains good enough. See for example

Figure 2.8 where only the coefficients with significant error have been highlighted

with a grey square.

2.5 Conclusions

The main interest of this research is theoretical and focused on the possibility of fully

describing the solution of a mechanical problem by means of the superposition of

transmission paths. It is conceived in the field of mechanics but the results, could be

29
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(a)

(b)

Figure 2.7: Value of the entry t14 of the global transfer matrix TG. Comparison
between: exact computation; approximation obtained with the unmodified Neumann
series; and approximation obtained with the modified Neumann series including all
the required correction parameters (n = 8): (a) undamped mechanical system; (b)
mechanical system with hysteretic damping of 4% in all the springs.
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(a)

(b)

Figure 2.8: Representation of the 64 global transfer matrix TG coefficients with an
error larger than one (grey squares) in the comparison between the exact computation
and approximation obtained with the modified Neumann series. Reconstruction of
the matrix done for a frequency of 351.6 Hz: (a) Undamped mechanical system; (b)
The mechanical system has hysteretic damping of 4% in all the springs.
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2. The solution of linear mechanical systems in terms of paths

used in other fields of science because the framework of analysis is very general. It is

only required that the problem remains linear, formulated in terms of a linear system

of equations and where the path concept has some physical meaning.

In the current form, the final results cannot be taken as a calculation tool. Some

aspects such as the matrix powers and series are very useful for theoretical proofs but

may have some numerical drawbacks (i.e. rounding errors, large number of operations,

filling of matrices). For this reason, a way to apply the main theoretical conclusions

to the practical use in systems with a large number of unknowns is required. The

algorithms can only be directly applied for calculation in mechanical systems with

not many unknowns or in the low-frequency range. The applicability depends on the

specific physical problem and the modelling technique used (it is not the same if the

signals are the unknowns in every node of a FE mesh or just a few measurements in

key points of a structure to generate a direct or global transfer matrix).

The main achievements of the work are the formal definition of path and the

proof of completeness of the description of the system behaviour by means of paths.

The former establishes a framework where other modelling techniques can be identi-

fied; it is not only valid when working with transfer matrices. The latter leads to a

generalisation of the Neumann series that converges whatever the spectral radius of

the transfer matrix is. Moreover, a simplified recursive expression of the generalised

series is provided.

The theoretical findings presented here are important by themselves because it

was not clear that any solution of a mechanical system could be described by means

of paths. Moreover, they also open a door for improvement of simulation techniques

in mechanics.

2.A A link with iterative solvers: the

acceleration of the Jacobi method

The Jacobi method Ciarlet et al. (1989) for the iterative solution of linear systems of

equations is:

xk+1 = D−1b + D−1 (−L−U) xk (2.46)

It can be seen how its algebraic structure is the same as Eq. (2.5) and T plays the

role of iteration matrix. A parallelism between the developed theory in the frame of

the GTDT and the Jacobi method can be established.
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The approximation xk+1 at the k iteration in the Jacobi method can be obtained

directly from a Neumann series like in Eq. (2.10). So, the correction of the series

proposed in Section 2.3.2 can be applied in order to modify the Jacobi iteration

algorithm.

The method is applied to the solution of linear systems with matrices of dimension

300 that have the second largest eigenvalue not close to one. So, the discussion can be

done by comparison of the standard Jacobi method with the proposed modification

with only one parameter. As an example, see the results in Figure 2.9. There is

a comparison between the conventional Jacobi method and its modification, taking

into account the dominant eigenvalue in a one-parameter correction. The solution

obtained with a direct solver is used as reference in order to compute the relative

error. We can see how the correction always accelerates the convergence. This is

more relevant when the dominant eigenvalue is close to one because in that case, the

convergence of the Jacobi method is very slow and it makes the practical applicability

of the solver very poor.

(a) (b)

Figure 2.9: Convergence of the Jacobi method compared with its one-parameter
modification. The dimension of the matrix is 300 and the two eigenvalues of largest
modulus are:(a) |λ1| = 0.89012 and |λ2| = 0.66415|; (b) |λ1| = 0.99129 and |λ2| =
0.78518.
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Chapter 3

A subsystem identification method

based on the path concept with

coupling strength estimation1

3.1 Introduction

The subdivision of a mechanical system into subsystems according to their vibroa-

coustic response is a task required in several modelling methods or in order to better

understand the behaviour of the mechanical system. A clear example is Statistical

Energy Analysis (SEA, Le Bot (2015); Lyon (1975)) that requires, as a prelimi-

nary step, the definition of subsystems which satisfy several physical properties (high

modal density, equipartition of energy between modes, equal probability of mode ex-

citation, weak coupling between subsystems Culla and Sestieri (2006); Lafont et al.

(2014, 2017)). Also from an experimental viewpoint it can be interesting to know

which parts of a large system (train coach, building, airplane) can be tested in the

laboratory isolated from the other parts and the results will still be meaningful. A

proper subsystem identification determines the quality in the estimation of modal pa-

rameters in the experimental or operational modal analysis Reynders and De Roeck

(2008), a review of techniques for parameter and system identification from measured

data can be found in Reynders (2012). Finally, the knowledge about subsystem plays

1Chapter based on the paper Magrans et al. (2018)
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3. A subsystem identification method based on the path concept

also an important role in the transfer path analysis and can determine which is the

more appropriate technique to apply as well as the quality of the solution de Sitter

et al. (2010); Gajdatsy et al. (2010); Oktav et al. (2017).

In this work we apply cluster analysis Magrans et al. (2016) in order to automat-

ically define the subsystems in a vibroacoustic problem. The core of the method is

based on the transfer matrices and their powers. This is representative of transmission

paths inside the system.

Another goal of the proposal is to quantify the coupling strength between subsys-

tems. To do this we define the coupling strength as the error committed if coupling

is disregarded and each subsystem is solved isolatedly from the rest of subsystems:

the larger the error, the larger the coupling strength. We do not attempt to give a

strict definition of “weak coupling”, because whether coupling between subsystems

may be disregarded or not depends on the type of analysis: a certain relative error

may be admissible for an industrial pre-project but not for the final design.

Some brief background concepts and the core idea of the method are explained

in Section 3.3. The theoretical aspects and approach are illustrated by the numerical

examples of Section 3.4. The concluding remarks of Section 3.5 close the chapter.

3.2 State of the art

As far as the identification of subsystems is concerned, several papers can be cited,

all of them outside the field of paths.

Automatic subsystem identification in statistical energy analysis. First one is

ref.Kassem et al. (2011). A vibro–acoustic local energy model is introduced based

on the observation of the homogeneous vibroacoustic behaviour of the energy model

throughout a given zone. Using this model an scalar valued centred quadratic mean

criterion is defined allowing to evaluate the error if using the sub–structured problem.

A second paper ref.Kovalevsky and Langley (2012). The paper proposal is to built a

matrix with the squared Green functions. This matrix is supposed to be by blocks

and with each block totally homogeneous in the ideal uncoupled case. From this

point, the eigenvectors of A are evaluated and their degree of coincidence with the

perfect uncoupled hypotheses is used to evaluate the subsystems.

Another, ref.Gagliardini et al. (2005),defines a transfer function from injected

energy in one degree of freedom to energy on another degree of freedom. Based on

36



3.3. Methodology

it and in a iterative way sets of similar points are selected changing the excitation

point in each step. After to obtain groups of degrees of freedom obtained by this

way two methods, first about the Entropy and the other on a called attraction force

are used to refine the groups. The paper extends to find also the coupling factors in

SEA. ref.Totaro and Guyader (2006) makes a detailed study about to characterize

a mechanical system with only the kinetic energy based in a supposed equipartition

of the energy with the strain energy. The conclusion is that both need to be used

because in curved parts the strain energy may be more important and the kinetic

energy can be more important in the free parts of the structure, corners, holes ,

etc. Then a matrix E (with N rows and M columns) composed by N energy transfer

functions and M frequency lines is considered and each row is projected on the the P

main eigenvectors of the cross correlation matrix coming from E. The components on

this base for each row will be P numbers. From this P numbers a cluster strategy is

used to find the subsystems and a called MIR value defining the similarity between

two subsystems is used to decide the validity of the obtained subsystems classification

. Finally in ref.Dı́az-Cereceda et al. (2015) the system it is subdivided in cells with

a size bigger than a semi wave length in the frequency being studied. Then each cell

become a sample valued for each mode by the energy in the cell, normalized with

the average energy in the system. A cluster analysis allows then choose the sets of

samples with a minimum distance to get the subsystems.

3.3 Methodology

Our approach to automatically identify the subsystems is based on a combination of

the powers of the transfer matrix T and a standard cluster analysis. Tk is a represen-

tation of the transmission paths inside the mechanical system. Detailed developments

can be found in Magrans et al. (2017); Magrans (1984, 1993); Van der Seijs et al.

(2016) and the main concepts required in this section are overviewed in Section 3.3.1.

The main idea of the identification method is exposed in Section 3.3.3.1. This is done

in a conceptual way that is sustained latter by the numerical examples of Section 3.4.

Section 3.3.3.2 explains the relation between this path-based method and other more

widely used criteria. Finally, an important aspect is addressed in Section 3.3.4: the

estimation of the coupling strength between subsystems.
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3. A subsystem identification method based on the path concept

3.3.1 Overview of path analysis

The basic concepts of the GTDT method Magrans (1981) are briefly reviewed in

Section 2.2.3

It has been proved in Magrans et al. (2017) that the inverse of the matrix (I−T)

can be expressed as the limit of a matrix series as

(I−T)−1 = lim
m→∞

(
m−n∑
k=0

Tk +
m∑

k=m−n+1

γm−kT
k

)
(3.1)

The series in Eq. (3.1) is unconditionally convergent, without any constraint on

the value of ||T||, if coefficients γm−k are properly chosen. For ||T|| ≥ 1, Eq. (3.1)

with the optimal choice of γm−k is convergent, whereas the standard Neumann series

with γm−k = 1 diverges. For ||T|| < 1, on the other hand, both series are convergent,

but the convergence is faster with the optimal γm−k. These aspects are discussed in

detail in Magrans et al. (2017).

Eq. (3.1) as well as expressions for the coefficients γm−k are the main results in

Magrans et al. (2017). They allow the generalisation of the path superposition idea

to any linear mechanical system (and not only to those with convergent Neumann

series). So, a theoretical procedure based on the path concept has now a solid basis.

In the present research, this idea is applied to the formulation of an algorithm for

automatic sub-structuring of mechanical systems.

3.3.2 Subsystems and transfer matrices

We define a subsystem as a set of nodes with similar path behaviour. The concept of

node is very general, see Magrans et al. (2017): it may refer to a point in a continuous

system, to a degree of freedom associated to that point, to a mass in a discrete system

of masses and springs, to a subdomain of a continuous system,... In a computational

model, for instance, “node” refers to the actual nodes of the finite element mesh,

whereas in the laboratory a “node” is a point of excitation or measurement.

The transfer matrix T describes the direct signal transmission between nodes (that

is, the first-order paths). How this matrix is obtained depends on the context: in a

computational model, for instance, T is computed from the system matrix A, or from

a few selected nodes, see Section 3.4.4, whereas in the laboratory T is determined

experimentally.

38



3.3. Methodology

The powers Tk of the transfer matrix represent the k-order paths. If a k-order

path remains inside a strongly connected zone, it is not attenuated: the entries in

Tk that relate nodes in the same subsystem are large. On the contrary, if a k-order

path passes through weakly connected subsystems it is attenuated, and the associated

entries in Tk are small.

3.3.3 Subsystem identification by means of cluster analysis

3.3.3.1 How it works?

Based on the above discussion about the information carried by Tk, our approach to

identify subsystems consists of three simple steps:

1. Obtain (i.e. compute or measure) the transfer matrix T.

Iterative loop

Set k = 2

2. Compute power Tk of the transfer matrix, Tk = Tk−1T.

3. Perform a cluster analysis of the rows of Tk.

Set k = k + 1 and go to step 2.

The iterative loop is stopped when the clustering process is stable, that is, when

the clusters of rows do not change as the power k increases. To attain a stable

clustering in fewer iterations, power k may jump s units at each iteration, Tk+s =

TkTs. In the numerical example of Section 3.4.1, for instance, we have taken s = 5.

The clustering algorithm is similar to the one described in Dı́az-Cereceda et al.

(2015), but with one important difference: the elements are simply the rows of Tk,

and there is no need to divide the problem domain into cells nor to compute energies

associated to those cells. The clustering process is hierarchical; this means that the

rows of Tk are grouped progressively into sets of rows according to their correlation

distance. As this distance increases, small sets of rows are grouped into larger sets.

This clustering process can be graphically depicted as a tree diagram or dendrogram,

see Figs. 3.7 and 3.19. The output of the algorithm is i) the optimal number of

clusters, corresponding to the widest range of correlation distance (i.e. the longest

branches in the dendrogram) and ii) the rows of Tk in each cluster. The clustering

algorithm is described in the three companion videos of Figure 3.1.
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3. A subsystem identification method based on the path concept

(a) (b) (c)

Figure 3.1: Screenshots of the three companion videos: (a) Relationship between
the powers of the transfer matrix and the high-order paths; (b) Explanation of the
dendrogram concept and the clustering process; (c) Illustration of the clustering al-
gorithm by means of an example.

3.3.3.2 Why it works?

A simple explanation. The analysis is restricted here to systems composed of

two subsystems. Consider first the case where these two subsystems are completely

uncoupled, Figure 3.2(a). The transfer matrix is

Figure 3.2: (a) Uncoupled subsystems; (b) Weakly coupled subsystems; (c) Strongly
coupled subsystems

T =

(
T1 0

0 T2

)
(3.2)

Note that the off-diagonal blocks in the transfer matrix (3.2) are zero because there

is no coupling between subsystems 1 and 2. The transfer matrices T1 and T2 are

typically sparse because not all nodes in subsystem 1 (or 2) are directly connected,

by means of a first-order path, to all nodes in subsystem 1 (or 2). The k power of

matrix T is

Tk =

(
Tk

1 0

0 Tk
2

)
(3.3)
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For k large enough, the block Tk
1 and Tk

2 ( k-order paths in subsystems 1 and 2) are

full matrices, so the sparsity pattern of matrix Tk is:

pattern
(
Tk
)

=



• • • •
• • • •
• • • •
• • • •

• • •
• • •
• • •


A cluster analysis of the rows of Tk readily detects that there are two different types

of rows, namely

( • • • • ) and ( • • • )

and identifies the two subsystems. Note that this approach also works if the system

nodes are not ordered (first nodes in subsystem 1, then nodes in subsystem 2). Indeed

for an arbitrary ordering the sparsity pattern of Tk is

pattern
(
Tk
)

=



• • • •
• • •

• • • •
• • • •
• • •
• • •

• • • •


and the two different types of rows are now

( • • • • ) and ( • • • )

Consider now the case of two weakly coupled subsystems, see Figure 3.2(b). The

transfer matrix is

T =

(
T1 εT12

εT21 T2

)
(3.4)

Where the factor 0 < ε < 1 in the off-diagonal blocks reflects the weak coupling.

Power 2 of matrix T is

T2 =

(
T2

1 + ε2T12T21 εT12,2

εT21,2 T2
2 + ε2T21T12

)
'

(
T2

1 εT12,2

εT21,2 T2
2

)
(3.5)
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where T12,2 = T1T12 + T12T2 and T21,2 = T21T1 + T2T21. Note that only the

leading term in the diagonal blocks is retained in the approximate expression of T2.

It is straightforward to show that power k is

Tk =

(
Tk

1 εT12,k

εT21,k Tk
2

)
(3.6)

with appropriate definitions of T12,k and T21,k. Eq. (3.6) shows that the weak coupling

between subsystems 1 and 2 is visible in k-order paths. For k large enough, all four

blocks in Tk are full matrices and the sparsity pattern of Tk is

pattern
(
Tk
)

=



• • • • ◦ ◦ ◦
• • • • ◦ ◦ ◦
• • • • ◦ ◦ ◦
• • • • ◦ ◦ ◦
◦ ◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ • • •


where the black dots • represent larger numerical values than the void dots ◦. A

cluster analysis of the rows of Tk detects the different types of rows, irrespective of

the node ordering. As the coupling between the two subsystems increases, the block

structure of Tk becomes less clear. In the limit case of two strongly coupled subsys-

tems, see Figure 3.2 (c), they are regarded as a monolithic system.

Local vs global eigenmodes. Different definitions of coupling may be found in

the literature Le Bot (2015); Ungar (1966). Some of them Fahy and Gardonio (2007)

are based on the nature of the eigenmodes: subsystems 1 and 2 are regarded as

weakly coupled if the vibration eigenmodes are localised in subsystems 1 or 2, see

Figure 3.3(b), whereas they are considered to be strongly coupled if vibration eigen-

modes are global, see Figure 3.3(c). We show here that our approach based on the

cluster analysis of the powers of T is consistent with this definition of coupling based

in eigenmodes. Consider the basis {vi}ni=1 of eigenvectors of the transfer matrix T,

associated to eigenvalues {λi}ni=1,

Tvi = λivi i = 1, . . . , n (3.7)

and the corresponding eigendecomposition

T = VΛV−1 (3.8)
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Figure 3.3: (a) Uncoupled subsystems modes; (b) Weakly coupled subsystems modes;
(c) Strongly coupled subsystems modes

where Λ is a diagonal matrix of eigenvalues and V is the matrix of eigenvectors:

Λ =


λ1

λ2

. . .

λn

; V =


| | . . . |
| | . . . |

v1 v2 . . . vn

| | . . . |

 (3.9)

From Eq. (3.8), the powers of matrix T can be expressed as

Tk =
(
VΛV−1

) (
VΛV−1

)
· · ·
(
VΛV−1

)
= VΛkV−1 (3.10)

Eq. (3.8) and Eq. (3.10) show that any block structure that matrix T or Tk may have

is associated to matrix V, because matrix Λ is diagonal. By taking into account that

the inverse of any (almost) block-diagonal matrix is another (almost) block-diagonal

matrix, one can conclude that:

• For two uncoupled subsystems, the pattern of V is

pattern (V) =



• • • •
• • • •
• • • •
• • • •

• • •
• • •
• • •

 (3.11)

so eigenvectors of T are fully local.
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• For two weakly coupled subsystems, the pattern of V is

pattern (V) =



• • • • ◦ ◦ ◦
• • • • ◦ ◦ ◦
• • • • ◦ ◦ ◦
• • • • ◦ ◦ ◦
◦ ◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ • • •

 (3.12)

so eigenvectors are localised, see Figure 3.3(b).

• For two strongly coupled subsystems, matrix V does not have a clear block

structure, so eigenvectors of T are global, see Figure 3.3(c).

Note that the above discussion is based on the eigenvectors of T, not on the

eigenmodes of the mechanical system. However, as discussed in Appendix A, these

two sets of vectors are closely related.

Contrast of the transfer matrix. Consider the transfer matrix for a system

composed of two subsystems

T =

(
T1 αT12

αT21 T2

)
(3.13)

with α = 0 for uncoupled subsystems 0 < α = ε < 1 for weakly coupled subsystems

and α ' 1 for strongly coupled subsystems. We assume that the blocks T1 and T2

are invertible and define the contrast of T as

contrast12 =
1

‖T−1
1 αT12‖

=
1

α‖T−1
1 T12‖

(3.14)

contrast21 =
1

‖T−1
2 αT21‖

=
1

α‖T−1
2 T21‖

(3.15)

The contrast provides a simple, scalar measure of the strength of the coupling

between subsystems: the greater the contrast, the weaker the coupling. Note that

the contrast of a matrix is invariant under scalar multiplication,

contrast(aT) = contrast(T) for any a 6= 0 (3.16)

so it provides an scale-independent measure of the block diagonal dominance of a

matrix. We examine now the contrast of matrix Tk. Eq. (3.10) can be recast as

Tk = VΛkV−1 =
n∑
i=1

λki viu
T
i ≈ λknvnu

T
n (3.17)
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3.3. Methodology

where λi and vi are respectively the eigenvalues and the eigenvectors of T, see

Eq. (3.9), and uTi are rows of the matrix V−1. Note that T may be approximated,

for k large enough, by the term associated to the dominant eigenvalue λn.

From Eqs. (3.16) and (3.17), it follows that

contrast
(
Tk
)
≈ contrast

(
λknvnu

T
n

)
= contrast

(
vnu

T
n

)
(3.18)

Equation (3.18) shows that irrespectively of the dominant eigenvalue λn, the contrast

of Tk tends to a limit when k growths. From a practical point of view, this means

that there is not need to fine-tune the value of k: any value large enough may be

used. Furthermore, even if Tk tends to ∞ when its norm is larger than one, the

contrast will not: the method is stable.

3.3.4 Estimation of the coupling strength

An important aspect is to quantify the degree of coupling between subsystems. In

other words, the correctness of the solution obtained if a subsystem is considered as

isolated from the other parts.

Several definitions of the weak coupling between subsystems exist, see for example

Le Bot (2015); Ungar (1966). Consider a mechanical system described as(
V1

V2

)
=

(
Y11 Y12

Y21 Y22

)(
F1

F2

)
(3.19)

where Y are the admittances, V the velocities and F the forces, and the admittance

integrals defined by integration of the whole frequency range

Ijk ≡
∫ ∞
−∞
|Yjk|2dω (3.20)

Ungar Ungar (1966) defines that two systems are weakly coupled if the transfer

admittance integrals are equal, I12 = I21, and their values are smaller than those of

the self-admittance integrals I11 and I22. Moreover, the transfer impedances and ad-

mittances Z12, Z21, Y12, Y21, must not affect the values of I11 and I22 significantly. That

definition is provided in terms of the energy and integrated in the frequency domain.

This is less restrictive that conditions that must be satisfied at each frequency.

An estimation of the coupling between subsystems can also be done through the

analysis of the largest eigenvalue of a coupling matrix Gagliardini and Guyader (2000).
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3. A subsystem identification method based on the path concept

The matrix representation of the mechanical system must be reorganised as proposed

in Maidanik (1976) which allows a separation of the coupling part. A similar block

matrix structure, combined with the path concept, is considered here in order to

define the coupling strength between subsystems. We consider a linear system of

equations partitioned in coupled blocks(
A11 A12

A21 A22

)(
x1

x2

)
=

(
b1

b2

)
(3.21)

where A11 and A22 are the dynamical matrices of two sets of degrees of freedom

and A12 and A21 their coupling matrices. Our purpose is to establish which is the

difference between the fully coupled solution and the solution of the uncoupled system(
A11 0

0 A22

)(
x

′
1

x
′
2

)
=

(
b1

b2

)
(3.22)

The linear system in (3.21) can be rewritten in terms of transfer matrices(
x1

x2

)
=

(
A11 0

0 A22

)−1(
b1

b2

)
−

(
0 A−1

11 A12

A−1
22 A21 0

)(
x1

x2

)
(3.23)

which is useful in order to relate the difference between the coupled solution in the

subsystem 1, x1 and the uncoupled solution x
′
1

x1 = x
′

1 −A−1
11 A12x2 (3.24)

If the force is applied on subsystem 1 and there is no local resonance on subsystem

2, ‖x1‖ > ‖x2‖ and then

‖x1 − x
′
1‖

‖x1‖
≤ ‖A−1

11 A12‖ =
1

contrast12

(3.25)

It is clear from Eq. (3.25) that the contrast of matrix A is a measure of the coupling

between subsystems 1 and 2: the greater the contrast, the more accurate the isolated

solution.

3.4 Numerical examples and analysis

The ideas exposed in Section 3.3 are illustrated by means of mechanical and acoustic

problems solved in the frequency domain (steady harmonic).
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3.4. Numerical examples and analysis

3.4.1 Example 1: Two plates connected by means of five

(soft) springs

The first example consists of two plates of different size and linked through five

springs, see Figure 3.4. The geometric and mechanical properties of the plates are

listed in Table 3.1 and the stiffness of the springs and their positions are summarized

in Table 3.2 (‘x’ and ‘y’ coordinate axes shown in Figure 3.7). The results are shown

for an excitation frequency of 100 Hz. The system matrix A is obtained with finite

differences, using a regular grid (spacing 0.1 m) in both plates.

Figure 3.4: Two plates and five springs as described in Table 3.2. Computation at
100 Hz.

Material ρv (kg/m3) ν E (Pa) Lx (m) Ly (m) h (m)
Concrete 2000 0.2 2 · 1010 2 2 0.03
Concrete 2000 0.2 2 · 1010 1 2 0.03

Table 3.1: Geometric and mechanical properties of the two plates (ρv is the volumetric
density, ν is the Poisson’s ratio, E is the Young modulus, Lx, Ly the plate dimensions
and h the plate thickness).

Figure 3.5 shows the sparsity pattern of the transfer matrix of the system T. Note

that a natural nodal ordering is used (first the nodes in the bottom plate, then the

nodes in the top plate). This facilitates the interpretation of results, but, as discussed

in Section 3.3.3.2, is not required by the clustering algorithm.

Figure 3.6 shows power k = 21 of the transfer matrix that clearly presents a block

structure. The coefficients of the diagonal blocks are representative of paths that start
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3. A subsystem identification method based on the path concept

Spring K (N/m) x (m) y (m)
1 2 · 105 0.3 0.4
2 2 · 105 0.6 0.1
3 2 · 105 0.2 0.4
4 2 · 105 0.5 0.5
5 2 · 105 0.1 0.1

Table 3.2: Stiffness K and position of each spring that connects the plates.

and end at the same plate. On the contrary, the coefficients in the out-of-diagonal or

coupling blocks represent paths that begin and end in different plates. In this case

the nodal ordering helps to see the block structure.

Figure 3.7 illustrates the clustering process. The dendrogram identifies two clus-

ters of nodes, coloured in red and blue, that correspond to the two plates. Note

that the lower part of the dendrogram is barely visible, because the correlation dis-

tance between nodes in the same plate is much smaller than the correlation distance

between the two plates.

We have checked that the vibration fields in plate 1 subject to random forces are

virtually identical for the coupled and uncoupled cases. This is a consequence of the

large contrast of 1.1 · 103.

We can conclude that the method allows us to identify the subsystems in agree-

ment with the concept that a subsystem is a set of nodes with similar behaviour.

3.4.2 Example 2: Four plates connected by springs

The second example consists of four plates of equal size (1 m × 2 m) and linked by

means of springs, see Figure 3.8.

The positions of the springs in the plates are the same as in Section 3.4.1 and

the spring properties are given in Table 3.4. The springs linking plates 2 and 3 are

more flexible than the ones linking plates 1 and 2 and plates 3 and 4. With this

configuration we expect to find two subsystems composed of two plates each.

Material ρv (kg/m3) ν E (Pa) Lx (m) Ly (m) h (m)
Concrete 2000 0.2 2 · 1010 1 2 0.03

Table 3.3: Mechanical properties of the four plates linked by means of springs.
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3.4. Numerical examples and analysis

Figure 3.5: Sparsity pattern of the transfer matrix of the example with two plates
and five springs as described in Table 3.2.

Figure 3.6: Block structure of matrix T21. The colour represents the normalised
entries in the dB scale, 10 log10

(∣∣t21
ij

∣∣ /max(
∣∣t21
ij

∣∣)).
Plates Spring K (N/m) x (m) y (m)
1− 2 1− 5 2 · 1010 As in example 1 As in example 1
2− 3 6− 10 2 · 105 As in example 1 As in example 1
3− 4 11− 15 2 · 1010 As in example 1 As in example 1

Table 3.4: Properties of the five springs that link contiguous plates.

Figure 3.9 shows the transfer matrix T of the four plates. Figure 3.10(a) shows
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3. A subsystem identification method based on the path concept

Figure 3.7: Top: Dendrogram obtained with T21. Bottom: Dendrogram nodes as-
signed to the plates.

Figure 3.8: Four plates connected by springs as described in Table 3.4. Computation
at 100 Hz.

Tk, with k = 28. A 4 × 4 block structure can be clearly seen. Moreover the colour

plot allows the visual identification of two mechanical subsystems (plates 1–2 and

plates 3–4). Two different degrees of coupling exist. On the one hand a clearly weak

coupling between subsystems. This is caused by the flexible springs that link plates

2 and 3. On the other hand we can see that inside each subsystem there is a much

stronger coupling between the two plates. This causes the cluster analysis to define

two subsystems instead of four. The two subsystems are also clearly visible in matrix

V of eigenvectors of the direct transfer matrix T, see Figure 3.10(b).
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3.4. Numerical examples and analysis

Figure 3.11 shows the dendrogram of the cluster analysis. It is clear regarding the

length of the branches that it suggests the definition of only two subsystems instead

of four.

A comparison of the solutions obtained by solving the whole problem (four plates)

or an isolated subsystem (two plates) is made. A measure of the difference is

e =
||uiso − uall||
||uall||

(3.26)

where ||•|| is the Euclidean norm, uiso is the vector of nodal displacements in the

isolated solution and uall is the vector of nodal displacements in the coupled solution.

If the subsystem formed by plates 1 and 2 is analysed isolatedly, a very low error

of e = 8.7 · 10−7 with respect to the coupled solution is obtained. This is related to

the very high contrast of 147.

If the subsystems identified by the cluster analysis are not respected and plate 1

is analysed isolatedly, a large error of e = 0.6 is committed. This is explained by the

low contrast of 0.21.

Figure 3.9: Sparsity pattern of the transfer matrix. Four plates connected by springs
as described in Table 3.4.

Figure 3.12 shows the evolution of the contrast of Tk with respect to power k.

Note that the contrast between plates 2 and 3, linked by soft springs, is much larger

than the contrast between plates 1 and 2 or plates 3 and 4, linked by much stiffer

springs. Figure 3.12 also shows that the contrasts stabilise as k increases, to values

that can be accurately estimated from the dominant eigenvectors, see Eq. (3.18).
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3. A subsystem identification method based on the path concept

(a) (b)

Figure 3.10: (a) Block structure of matrix T28. The colour represents the normalised
entries in the dB scale; (b) matrix V of eigenvectors of the direct transfer matrix.

Figure 3.11: Left: Dendrogram obtained with T28. Right: Dendrogram nodes as-
signed to the plates

3.4.3 Two acoustically coupled rooms

The clustering method is applied to a two-dimensional acoustic problem: two rect-

angular rooms connected through a one-dimensional hole, see Figure 3.13. The room

sizes are 20 u×23 u and 25 u×23 u (u is a unit length). Two different situations are

considered. In the first one, the hole length is 5 u, and the acoustic wavelength (ratio
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3.4. Numerical examples and analysis

Figure 3.12: Evolution of contrast of matrix Tk with power k (solid lines) vs value
estimated according to Eq. (3.18) (dashed lines).

between the speed of sound and frequency, λac = c/f) satisfies λac = 1.26×5 u. This

is the case of hole size which is similar to the acoustic wavelength. In the second one,

the hole length is 1 u, and the acoustic wavelength satisfies λac = 76.3× 1 u. This is

the case of hole size very different to the acoustic wavelength. The system matrix A

is obtained by discretising the Helmholtz equation by means of finite volume-based

technique.

The degree of coupling between the two rooms is controlled by the ratio of the

wavelength to the hole size. Two different cases are shown here with ratios 1.26 and

76.3 respectively. Weak coupling is only expected in the second case due to the large

difference between the acoustic wavelength and the hole width.

The outputs of the clustering process for the case the small ratio are shown in

Figs. 3.14 and 3.15. In that case, the hole size is very similar to the acoustic wave-

length. As expected, the dendrogram in Figure 3.15 identifies only one system. The

interaction between both rooms is very important due to the large width of the hole

with respect to the wavelength.

If the rooms are analysed isolatedly, the error computed according to Eq. (3.26)

is 208% for the left room and 191% for the right room, with contrasts 4.8 · 10−2

and 2.8 · 10−2 respectively. It is clear that considering both rooms as independent

subsystems is not a valid option.

Figs. 3.16 and 3.17 show the outputs of the clustering process for the large ratio of
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3. A subsystem identification method based on the path concept

Figure 3.13: Sketch of the two rectangular rooms connected by means of a hole. The
room sizes are 20 u× 23 u and 25 u× 23 u (u is a unit length). Two different holes
have been considered: 1 u and 5 u in length.

Figure 3.14: Block structure of matrix T343. The colour represents the normalised
entries in the dB scale. Wavelength to hole size ratio: 1.26.

wavelength to hole size: 76.3. Now, both rooms are identified as almost independent

subsystems. This can be concluded by the aspect of the dendrogram and is corrob-

orated by the error measure. In that case, Eq. (3.26) provides values of 9% for the

left room and 11% for the right one, which were expected due to the smaller value of
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3.4. Numerical examples and analysis

Figure 3.15: Top: Dendrogram . Wavelength to hole size ratio: 1.26; Bottom: Iden-
tified groups of nodes assigned to the room.

Figure 3.16: Block structure of matrix T343. The colour represents the normalised
entries in the dB scale. Wavelength to hole size ratio: 76.3.

the contrasts (0.27 for both).

55



3. A subsystem identification method based on the path concept

Figure 3.17: Top: Dendrogram. Wavelength to hole size ratio: 76.3; Bottom: Identi-
fied groups of nodes assigned to the room.

3.4.4 Degrees of freedom selection: problem size reduction

In the previous examples, the transfer matrix is directly obtained from the dynamical

matrix of the system. The dynamical matrix was generated by means of numerical

techniques. The number of unknowns is quite large because the discretisation of a

mechanical or acoustic system must be done according to physical criteria. Enough

nodes must be considered in order to properly describe the displacement or acoustic

waves. Consequently, the transfer matrix T is a large matrix.

This has two important implications. On the one hand, when applying the pro-

posed substructuring method, the cluster analysis has to deal with a large amount

of data. This makes the process slow. On the other hand, a large power k of matrix

T must be considered. Tk is representative of the k-order paths. First-order paths

in the numerical techniques are very short, because they link contiguous nodes. The

clustering method requires paths that explore all the problem geometry; hence, a

large value of k is required.

What it is proposed here is to consider a more elaborated (post-processed) trans-

fer matrix. This accounts only for some strategically chosen nodes on the system.

They can be uniformly distributed all around the geometry or intuitively chosen as it

would be done in a laboratory experiment where it is needed to choose a reduced num-
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ber of measuring points (this is often limited by the number of available measuring

channels).

The coefficients of the transfer matrix T are now computed by means of the

solution of several problems as

tij =
sj
si

(3.27)

where sj is the signal at node j when a unit excitation is applied at node i and the

signal of all the nodes r 6= i, j is blocked. Note that for each coefficient tij a problem

has to be solved. The whole procedure is detailed in Magrans (1984, 1993).

This transfer matrix with less degrees of freedom it is a full matrix with direct

connectivity between all the selected nodes. This drastically reduces the power k of

matrix T required to represent paths that cover the whole geometry.

To illustrate this approach, the problem with four plates of Section 3.4.2 is revis-

ited here. The only difference is that now all the springs have the same stiffness of

2 · 107 N/m. The discretisation of the four plates leads to a system with 684 degrees

of freedom. This is later reduced to 48 degrees of freedom, 12 points per plate.

The clusters can be clearly identified from matrix T itself, with no need of com-

puting powers. This is shown in Figs. 3.18 and 3.19, which show that each plate is

identified as one subsystem. These smaller transfer matrices are the ones typically

obtained in a laboratory or in situ measurement.

Figure 3.18: Block structure of matrix T. The colour represents the normalised
entries in the dB scale, 10 log10 (|aij| /max(|aij|)).
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3. A subsystem identification method based on the path concept

Figure 3.19: Left: Dendrogram obtained with T1. Right: Grouping of the 12 ran-
domly selected nodes on each of the four plates (one subsystem per plate in this
example).

3.5 Conclusions

The main conclusions of the research are as follows:

1. A methodology for the automatic identification of subsystems has been pro-

posed. It is based on the cluster analysis applied to powers of the transfer

matrix. It is shown, through numerical examples, how the method works and

is able to identify subsystems on its own without additional information or

guidelines.

2. The subsystems are more clearly identified when higher powers of the transfer

matrix are considered. This agrees with the explanations of Section 3.3.3.2.

3. If the transfer matrix represents all the degrees of freedom in a numerical dis-

cretisation of the system, the power required in order to properly identify the

subsystems can be quite high. This can be linked with the representation of

paths. They must be large enough in order to cover all the domain. On the

contrary, if the transfer matrix is manipulated in order to directly represent

long paths, as described in Section 3.4.4, a lower powers is required. This sec-
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ond option makes the method more efficient for the characterisation of large

systems.

4. An important parameter in order to explain the good behaviour of the proposed

technique is the contrast of the matrix. It is also used as an estimator of the

coupling strength between subsystems.

5. A fast method to estimate the contrast of Tk is proposed. It is based on the

dominant eigenvalue of the transfer matrix T and the associated eigenvector(s).

3.A Eigenvectors of T vs. vibration eigenmodes

Consider a mechanical system with stiffness matrix K and mass matrix M. The

eigenmodes Φi and eigenfrequencies ωi verify

KΦi = ω2
iMΦi i = 1 . . . n (3.28)

If this mechanical system is subject to an harmonic excitation of frequency ωexc and

phasor f , the phasor u of displacements is the solution of

A (ωexc) u = f (3.29)

with

A (ωexc) = K− ω2M (3.30)

We are interested in exploring the relation between the eigenmodes Φi and the eigen-

vectors vi of the transfer matrix T(ωexc) associated to the linear system (3.29). We

start by assuming that the mass matrix is diagonal (i.e. all system mass concentrated

at nodes) and that all diagonal entries of M and K are equal:

M = m0I (3.31)

K = k0I + L + U (3.32)

This result in the system matrix

A (ωexc) =
(
k0 − ω2

excm0

)
I + L + U (3.33)

and the transfer matrix

T (ωexc) = − 1

k0 − ω2
excm0

(L + U) (3.34)
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Under these conditions, the vibration eigenmodes Φi are equal to the eigenvectors

of T (ωexc) for any excitation frequency ωexc 6= ω0 =
√

k0
m0

. Indeed, by combining

equations (3.28), (3.31), (3.32) and (3.34), one obtains

T (ωexc) Φi = − 1

k0 − ω2
excm0

(L + U) Φi = − 1

k0 − ω2
excm0

(K− k0I) Φi

=
ω2

0 − ω2
i

ω2
0 − ω2

exc

Φi = λi (ωexc) Φi

(3.35)

Eq. (3.35) also shows that, contrary to the eigenvectors vi ≡ Φi, the eigenvalues λi

do depend on the excitation frequency.

Without the simplifying assumptions Eq. (3.31) and Eq. (3.32), the vibration

eigenmodes are not equivalent to the eigenvectors of T. However, there is still a

qualitative relation. Weakly coupled subsystems results in small off-diagonal blocks

in the stiffness matrix K that lead to local vibration eigenmodes; they also result

in small off-diagonal blocks in the system matrix A(ωexc) and in the transfer matrix

T(ωexc) that lead to local eigenvectors.

An example can be seen in the Figure 3.20. Some eigenvectors of T are compared

with the corresponding eigenmodes of a room 12 m wide and 14 m long.

60



3.A. Eigenvectors of T vs. vibration eigenmodes

Figure 3.20: Comparison of some eigenvectors of T with the corresponding eigen-
modes of a room 12 m wide for 15 m long.
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Chapter 4

Experimental and numerical study

of Advanced Transfer Path

Analysis applied to a box

prototype 1

4.1 Introduction

A major concern when dealing with vibroacoustic systems is to understand how the

vibration and noise are transmitted and distributed. A common way to acquire this

knowledge is through the path concept. In a network of interconnected nodes we

understand that it exists a path between the node i and the node j simply if they

are connected. In a vibroacoustic system the nodes are control points, and signals

(vibrations or acoustic pressure) are used in order to identify and study the paths. It

is not the same a path from i to j as a contribution from i to j. The contribution is

the amount of signal that arrives at j due to an excitation on i. But this signal can

be transmitted through any path from i to j (regardless of the existence of a direct

path between i and j). So, the contributions are descriptions of the inputs and the

outputs while paths are a description of the system topology. One formal definition

of ‘path’ can be found in Magrans (1981). More recently, it was shown in Magrans

1Chapter based on the paper Aragonès et al. (2019)
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et al. (2017) that the solution of a mechanical problem can be expressed in terms of

paths. This can be used at both numerical modelling and experimental levels. An

application example is to characterise the transmission of vibration and noise from

the engine to the passengers cavity or other parts of a car. It is usually generated

at the wheels, engine, exhaust and travels through the chassis, axes and insulating

layers to the passenger compartment.

The final goal is always to characterise the response of each subsystem (measured

in terms of the acceleration of a vibrating element or the acoustic pressure in a zone

of interest) caused by a specific excitation. A large amount of experimental methods

have been developed during the past decades Van der Seijs et al. (2016). We can

distinguish, in a quite general classification: Transfer Path Analysis TPA (Hambric

et al. (2016)) and Advanced TPA (ATPA) Magrans et al. (2005); Guasch et al. (2013),

see for both Gillard (1980) and Magrans (1981) or also Force contribution analysis

Zafeiropoulos et al. (2013)) and OTPA method,Bendat (1976b) and de Klerk and

Ossipov (2010). The main difference between the methods grouped under the name

TPA and the name ATPA is that traditional TPA characterises only the source con-

tributions from the inputs to some receivers. It is done by combining operational

signals (measured while the equipment is working) with transfer functions (frequency

response functions, FRF) measured on the empty passive structure where the equip-

ment is installed. For example, the transfer functions can be measured on a car body

prior to the engine installation. This body is uncoupled from the engine and passive

in the sense that it only acts as transmitter of vibrations that are generated else-

where. ATPA, as the in-situ TPA procedure, does not require any disassembly of the

structure. It characterises furthermore the topology of the mechanical system and

thus, the paths and their contribution to any receiver. TPA measures global transfer

functions between subsystems while ATPA measures the direct transfer functions.

Direct transfer functions provide a more useful information on the system behaviour.

Another feature of ATPA is that, contrary to TPA, the measurement of the exci-

tation force is not required which is indeed an advantage. Both ATPA and TPA

are adequate if one can act on the exciting forces to control and reduce them. This

means that a redesign of the vibroacoustic system acts on the exciting force in order

to improve the response in terms of noise emission or vibration levels. However only

with ATPA it is possible to quantify the contributions of a passive system (like the

interior panels of a train coach or of a vehicle ) and with this information decide
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which part of this system needs to be modified in order to reduce the noise measured

in the receiver position (the redesign acts on the system itself).

If the studied system is understood as a black box with n inputs and m outputs

interconnected through the box, TPA and ATPA can predict which is the contribution

of each input to each output. This means that both methods are able to decompose

the output signal into contributions coming from every input signal. However, TPA

is unable to describe how the input and outputs are connected. ATPA is able to

characterise, in addition, how the input and output signals are connected inside the

black box, discover which is the intrinsic structure of the mechanical system, which

and how are the paths. For this reason when a detailed analysis of the mechanical

system is needed, the use of ATPA is helpful.

4.1.1 Goals of the research

This work deals with the application of the ATPA method to a simple laboratory

prototype. This is a cuboid-shaped box with an air cavity inside. A major control

on the laboratory measurements is possible due to the simplicity of the prototype.

This allows a more detailed analysis. It also opens some unusual options for the

analysis of the method that are not possible in more complex mechanical systems

such as a car or a train coach. Experimental methods in vibroacoustic have several

common limitations in practice such as: difficulty in the access to the desired control

points, limit in the number of sensors to be used, large time required to make the

installation of the measurement setup, difficulty in the repetition of tests (i.e. time

to measure in a building, car or train is often limited), etc. Most of these drawbacks

are non-existent in the box prototype because it is available at the lab, sensors can

therefore be placed without problems (the box is lightweight and it can be handled

and moved without external machinery).

Other issues such as difficult measurement of the rotation degrees of freedom,

finite size of the exciter heads, uncoupling air-structure, measurement of the real

contributions, can be solved only by using numerical models.

A numerical model of the box has been developed. The degree of uncertainty of the

experiment is more controlled than usual. Consequently a better agreement between

the numerical model and the experimental data can be obtained. Once calibrated, the

numerical model will allow for a faster execution of virtual experiments, the possibility

of doing parametric analyses or a more visual representation of the results. In other
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words, to analyse and gain understanding of aspects that are very difficult to visualise

and control in the laboratory or in situ test such as: automatic identification of the

subsystems, optimisation of the sensor position inside each subsystem, combination of

more than one sensor per subsystem, study the influence of the excitation type (point

force, rain-on-the roof, acoustic wave, etc.) and the spectrum of the excitation.

The application of the ATPA method in a vibroacoustic mechanical system as

well as the comparison with a numerical model have not been reported before.

4.1.2 Contributions of the research

In addition to the application of ATPA to a vibroacoustic problem as the box with

cavity inside, the main contributions of the research and results shown here are:

1. To be able to compute any transmission path with ATPA and show that it

properly characterises the paths with small contributions (not only the main

contributors). This is important because after a redesign oriented to suppress

the most contributing paths, these other still remain and are the ones that

define the response of the modified system.

2. To verify that two methods of estimation of the direct transfer functions pro-

vide equivalent results. One of the methods is used in laboratory and in situ

measurements and the other is based on the definition of direct transfer.

3. Numerically prove that the error in the reconstruction of a signal by means of

the direct transfer functions can be estimated by the direct field (displacement

or pressure field when all the control points are blocked).

4. Study the influence of the excitation type in order to reconstruct operational

signals.

4.1.3 Precedents of ATPA

The theoretical bases of the ATPA method were presented in Magrans (1981). The

framework of the global and direct transfer matrices as well as their relationship

were defined. Later some applications were done, based on theoretical models and

experimental measurements of simple systems. The method presented in Magrans
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(1981) and also referred to as Global Transfer Direct Transfer (GTDT) was consid-

ered in Guasch (2009) to theoretically study a mechanical system made of masses and

springs. Later in Guasch et al. (2013), GTDT was similarly applied to a real mechan-

ical device composed of a mass on four springs. The agreement between computed

and measured transmissibilities was good. There are other techniques that share with

GTDT the determination of direct transmissibilities with an artificial excitation and

posterior use of them to simulate the operational response of the system, see for ex-

ample Roozen and Leclere (2013). The establishment of GTDT as an experimental

method for the analysis of mechanical systems was done in Magrans et al. (2005),

where the specification of the experimental procedure and main steps were explained.

The name given to the measurement procedure based on GTDT was ATPA. It was

included in the review of TPA methods Van der Seijs et al. (2016) where some of the

similitudes and differences with the other available techniques can be seen.

The laboratory setup and the numerical model are described in Sections 4.1.5

and 4.1.6 respectively. The results are shown in Section 4.2 before the conclusions of

Section 4.3.

4.1.4 Application of ATPA in this study

The theoretical base of ATPA, the GTDT, has been explained in Section 2.2.3 and

with more extension in chapter A. In this study the method will be applied to a set of

accelerations on the box and to the noise in a microphone. Two types of relationships

will be used first of all for the calculation of the TD the expression already shown

in 2.8. Secondly, for the reconstruction of pressure the formula given in 2.5 will be

particularized for the present case as

pT =
N∑
i=1

xiTiT + peT (4.1)

where pT is a signal in the target (i.e. pressure in a microphone placed inside the

passenger’s compartment of a car), xi is the measured signal in subsystem i (i.e.

acceleration of a vibrating panel), TiT are the direct transfers between subsystem i

and the target and N is the number of subsystems in which the mechanical system

has been divided. peT is the direct field of the signal that arrives at T due to an

external excitation when all the N nodes are blocked.
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Plate
Thickness
h [m]

Top 8× 10−3

Front 1× 10−2

Back 1× 10−2

Left 1× 10−2

Right 8× 10−3

Table 4.1: Box plate thicknesses

4.1.5 Description of the experimental setup

The prototype of the cuboid-shaped box is shown in Figure 4.1. It is made of

methacrylate with dimensions Lx = 0.534 m, Ly = 0.426 m and Lz = 0.586 m.

In general, it is designed in order to be complex enough to test the ATPA method

but also as simple as possible to allow a proper numerical modelling with as few

uncertainties as possible. For example, in order to satisfy the first goal, the three

box dimensions and also the face thickness (see Table 4.1) are different, to try to

decouple as much as possible the vibration and resonances of the rectangular faces.

And in order to reduce the uncertainties, all the junctions at the edges are made as

homogeneous as possible. The two methacrylate plates are glued to each other at

each edge. The bottom part is made of multiple thin steel plates separated by layers

of rubber damping material.The solid steel layers provide the stiffness and the mass

while the rubber between them ensures large damping. Consequently, its vibration

can be neglected when compared with the vibration of the other faces. It also includes

several latches that are used to detach and fix the methacrylate part (the box needs

to be accessible in order to place the microphones inside).

Twenty control points are considered. Four of them are placed at the centre of

each quarter in the five vibrating faces. The notation and position of them is shown

in Figure 4.2. An accelerometer is placed at each of these points. At the same time,

the excitation is applied also there by means of a hammer impact (in general) or a

fixed shaker (only in the calibration phase discussed in Section 4.A.2).

On the one hand, some of the measured data can be unreliable below 100 Hz.

The reasons are several: the foam supports of the rectangular plate as commented

above(modify the low frequency modes); the cases where the excitation is done by

means of the shaker (it is difficult to induce vibrations when rigid-body motion modes

are present); the existence of background noise and vibrations at very low frequencies.
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Figure 4.1: Experimental setup including the box, twenty accelerometers (four per
face) and three microphones inside.
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Figure 4.2: Sketch with the distribution of the accelerometers.

On the other hand, the material of the hammer impact zone and the impact velocity

limit the validity of experimental data to frequencies below 2000 Hz. So, in order to

avoid the use of unreliable data we preferred to keep in the safe side and limit the

frequency range of the study from 100 Hz to 2000 Hz.

4.1.6 Description of the numerical model

A virtual setup for the experimental mechanical system described in Section 4.1.5 is

developed. It is based on the finite element method (FEM) by means of the software
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Code-Aster EDF (2017).

The box is modelled by means of triangular shell elements that use DKT for-

mulation Batoz et al. (1980) to describe the bending behaviour. The nodes in the

lower contour of the box are blocked (null displacements and rotations). The ma-

terial behaviour is linear elastic with hysteretic damping. Perpendicular point and

surface forces can be applied on each face. The coupled vibroacoustic problem in the

frequency domain is considered. Only the air cavity inside the box is included in the

model. The effect of the radiation losses and the air surrounding the box is neglected

which is a common assumption in the modelling of this type of vibroacoustic systems.

Code-Aster EDF (2017) is used to solve a single problem (i.e. compute displace-

ment and pressure field due to a point force in a list of given frequencies). However,

in order to reproduce all the process of the ATPA method, a script system is re-

quired due to the large number of simulations involved. As it will be detailed below

in Section 4.2, point forces need to be applied at each control point and boundary

conditions modified sometimes at every simulation. For this reason a systematised

procedure is required.

The size of structural elements has been determined by means of a convergence

test and set to 2× 10−2 m. The size of acoustical elements has been set to obtain at

least 34 elements per wavelength in every 100 Hz frequency band. This is a balance

between accuracy and computational costs. The use of variable finite element size in

the acoustic part of the problem requires to refine the mesh at several frequencies.

This is done as a task inside the frequency loop of the script system. The simulation

is split in user-defined frequency-bands and the remeshing is done for each of these

steps. In addition, the value of the frequency-dependent parameters is updated.

The mechanical properties considered in the FEM model for the methacrylate

are shown in Table 4.2. The procedure that leads to these values is described in

Appendix 4.A.

Material ρv (kg/m3) ν E (Pa) η
methacrylate 1153.2 0.45 4.3 · 109 0.07 + 1

ω

Table 4.2: Mechanical properties of the methacrylate (ρv is the volumetric density,
ν is the Poisson’s ratio, E is the Young modulus and η is the hysteretic damping
coefficient).
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4.2 Results

The most meaningful results obtained by means of the box analysis are reported here.

They are organised in four different sections. Section 4.2.1 mainly shows the efficiency

of the ATPA method for characterising all the transmission paths and how the same

direct transfers are obtained by means of different procedures. Section 4.2.2 analyses

the influence of the imprecisions in the application of point forces, which is one of

the key aspects of ATPA. Another very important aspect, the use of direct transfers

in order to characterise the operational state, is studied in Section 4.2.3. Finally, the

transmission between opposite faces illustrates some other features of the method in

Section 4.2.4.

In all the results shown here a variable number of sensors per face have been

considered (one, two, three or four). This leads to very similar results in all the

cases, which means that for the box, each face behaves like a subsystem and one

accelerometer is enough. It is well known that in structures composed of rectangular

plates (for example: L-shaped, T-shaped, X-shaped junctions, see Dı́az-Cereceda

et al. (2015)) each rectangular part acts as a subsystem and the junction makes it

difficult to spread the vibration energy in the excited plate to the other plates. At the

low frequency range the modes of vibration tend to exhibit much larger displacements

in one part than in the others (it is like local resonances). At high frequencies, the

vibration is more or less uniform (especially if several frequencies are averaged) and

we can distinguish different energy levels in every rectangular plate. So, for this

type of structures the behaviour is quite binary: vibrate or not. In this situation

ATPA needs information of one control point of the subsystem in order to properly

characterise the response and the topology.

This can be different in more complex mechanical systems where the definition

of subsystems is not so clear. In that situation the use of a more dense network of

control points can be mandatory. All these is related with the proper identification

of the subsystems. But in any case, the direct transfer function between two points

is not depending on the number of sensors considered. T is an intrinsic property of

the system. The figures show here the case of four sensors per face, which is almost

equivalent to the others. Only the result in Figure 4.7 are included to illustrate the

unvariability of transfer functions due to the addition of other control points.
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4.2.1 Computation of the direct transfer matrix T

The direct transfer matrix T is usually computed as a post-process of the global

transfer matrix TG as described in 2.8. The reason is that the coefficients of TG can

be directly obtained as measurement output while it is difficult and time-consuming to

perform a direct measurement of the T coefficients. Moreover, imposing the boundary

conditions would imply a modification of the system. So, it is not clear that in most

of the cases this procedure could be done.

To deal with a numerical model helps in order to overcome these difficulties be-

cause it is easier and faster to handle the boundary conditions and virtually perform

repetitive experiments. Blocking all the subsystems except two is more easily done

in a computational model than in a laboratory experiment.

Two procedures to compute T are considered:

1. ‘Mimics the experiment (labelled ‘from GT’)’: Excitation of the box at points

i = 1, 2, . . . , N . Each excitation applied to a node i provides a row of the matrix

TG and the coefficient TG
iT . The direct transfer matrix can be obtained from

2.8. Afterwards, N simulations per frequency are required in order to generate

the linear system of equations (4.1).

2. ‘Apply the definition of T (labelled ‘from definition’)’: Excitation of the box

at points i with all the other nodes j 6= i blocked. With this simulation type,

the coefficients TiT are obtained. This situation is difficult to consider in the

laboratory because it requires time to block all the paths except the one that

is studied (from the excitation point i to the target T ). Most probably, this

procedure cannot be done experimentally because the original system would be

altered.

Figure 4.3 shows two representative computations of a direct transfer matrix coef-

ficient: Figure 4.3(a) for the transmission from an excited point to one of the micros

inside the cavity and Figure 4.3(b) for points placed on the box structure. In both

cases (‘from GT’ and ‘from definition’ ) the values of T obtained by means of the

numerical model are almost equivalent in the whole frequency range. This is the case

for all the direct transfer functions to the microphones and between accelerometers

as it can be seen in Figure 4.3(a).

However, some difference has sporadically been found as it can be seen in Fig-

ure 4.3(b) around 300 Hz. The very few times that this is observed, coincides with the
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peaks of the curves. They are associated at some of the system resonances. Numeri-

cal models can suffer from small eigenfrequency shifts and it is know that numerical

error can be larger around the eigenfrequencies. Also matrices can be ill-conditioned

which help in the propagation of possible numerical errors. Both methods to compute

T use a system with different spectra (due to the modified boundary conditions). So,

it is logical to expect some small difference, especially for poorly damped systems.

In any case, the agreement between curves that have been found is in general very

accurate.

The experimental curve is obtained from the laboratory measurements and the

‘from GT’ procedure.This is the only of the two procedures to determine the direct

transfer functions presented in Section 4.2.1 whose application in a real laboratory

experiment does not entail very important difficulties and efforts. Otherwise a large

amount of different experiments are required if the option ‘from definition’ is consid-

ered . Moreover, the difficulties to impose and modify the boundary conditions are

important. The agreement with the computed values is correct.
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Figure 4.3: Direct transfer functions (modulus): (a) from the accelerometer ACC1 to
the microphone MIC1, pressure divided by acceleration; (b) from the accelerometer
ACC1 to another accelerometer of the box (ACC9). Comparison of experiment re-
sults (third curve: ‘from experiment’) with the two methods of obtaining the direct
transfers by means of the numerical model (first and second curves).

A similar comment applies for all the 400 structure-to-structure paths (20 sensors
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on the box acting as transmitter and receivers at the same time) and the 60 structure-

to-air paths (20 sensors on the box acting as transmitter and 3 microphones acting

as receivers). This is especially relevant because it means that the ATPA method

properly characterises not only the dominant paths but also the ones associated with

a smaller T. Potential redesigns or modifications in order to suppress the dominant

transmission paths require the proper characterisation of these less important paths

in order to properly predict the new behaviour of the system.

4.2.2 Influence of the error in the position of the hammer

impact in the T computation

As explained above in Section 4.2.1, ATPA requires the excitation of the mechanical

system by means of a hammer impact. Moreover, this has to be done multiple times

in order to compute the direct transfer matrix T (N times, the same as the number

of control points). This manual repetitive action is not free of errors and can hinder

the reproducibility of the experiment.

The effect of the influence of the precision in the position of the hammer impact

on the T computation is checked here by comparing two different scenarios. On the

one hand, T is computed by applying the point force at the nominal position (where

the sensor or measure point is placed). On the other hand T is computed by applying

the point force around this nominal position, approximately, at a distance between

2.5 cm and 4.5 cm. This can be quite representative of deviations in the impacted

point in mechanical systems where it is difficult to access and hit with the hammer

(i.e. inside a windmill blade).

In the experimental measurement, the hammer impact is not applied at the nom-

inal position. It can be done if adapted acceleration sensors are used (i.e. the ac-

celerometer can be placed on the other side of the plate or it is protected in such a

way that is possible to hit directly over the sensor).

An illustrative result is shown in Figure 4.4 for the direct transfer between the

accelerometer ACC1 and the microphone MIC1. This figure shows three curves:

experimental direct transfer, numerical direct transfer with the point force applied at

the nominal position where the sensor is placed and numerical direct transfer with

the point force applied close to the position where the sensor is placed. The relation

between the curves is quite random, depending on the frequency. This illustrates the

importance of the excitation type.
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Figure 4.4: Direct transfer function from the accelerometer ACC1 to the microphone
MIC1 (pressure to acceleration ratio |p/a|). Comparison of experimental results with
the T values obtained by means of the numerical model with a point force applied
close to the accelerometer (as it is done with the hammer impact of the experiment)
or in the exact point (nominal position).

More important than the comparison with the experiment is the relation between

the two numerical simulations, which shows the influence of the precision in the

application of the point force. To do so, the separation between frequency response

curves is measured as

e =

∑
i (ψFEM1(fi)− ψFEM2(fi))

2∑
i (ψexp(fi))

2 (4.2)

with ψFEM1 the FEM simulation with the point force applied to the exact point,

ψFEM2 the FEM simulation with the point force applied close to the exact point,

fi the central frequency of the third octave band and the sum is done in all the

third octave frequency bands between 125 Hz and 1000 Hz, both included. ψFEM1

and ψFEM2 are the result of the frequency average of the signal in the third octave

frequency band (i.e. they are the mean response in the band). It is important to note

that the outputs are now not averaged in space or excitation cases (only one force

position and only one reception point). The results are shown in Figure 4.5. In each

plot two sets of data are shown. One of them represents the difference considering

the third octave bands in the range 160 Hz to 630 Hz. The other considers also the

third octave bands equal or below 1000 Hz. It can be seen that while the difference
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is not very large at the lower frequencies (for most of the paths), it becomes more

important at high frequencies. Again it must be taken into account that we are

dealing with a linear output and that these differences become less important from

the engineering point of view when dealing with outputs expressed in dB scale. There

exist a difference between the results in Figure 4.5(a) and Figure 4.5(b). We have no

clear explanation for this and we can also speculate with an small deviation in the

micro position. This affects more at high frequencies where the acoustic wavelength

becomes shorter and point outputs (non-averaged) can suffer from larger deviations.
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Figure 4.5: Difference between direct transfer functions when the point force is applied
at the nominal position or with an excentricity between 2.5 cm and 4.5 cm. Each
curve represents a frequency range where the difference in third octave bands is
averaged. All the curves are FEM simulations. Each point in the plot represents the
transmission from an accelerometer to a microphone: (a) to MIC1; (b) to MIC2.

4.2.3 Signal reconstruction using the direct transfer matrix

The main output of the ATPA method is the T matrix. It concentrates the informa-

tion about the transmission paths and can be used to quantify the flow of signal (in

the form of vibrations or acoustic pressure) through them. In some sense, the matrix

T is a representation of the mechanical system.

However, an excitation type (here the hammer impact) needs to be chosen in

order to compute T. The value of T is independent of the excitation type. The big

question is how the two terms on the right-hand-side of Eq. (4.1) are balanced. On
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the one hand, if the signal in the target is properly reconstructed with the sum of

contributions through the direct transfers (
∑N

i=1 xiTiT ), this means that the choice of

control points is adequate and the system characterisation is excitation-independent.

The operational response can be approximated by means of the information con-

densed in the direct transfer functions. On the other hand, if the second term (peT )

is important, it means that the signal arriving at the target without passing through

the control points (direct field) is relevant and the reconstruction cannot be done

by only considering the contributions from the direct transfers. In that situation,

a redefinition of the control points is recommended. The new configuration should

be able to block the direct field (peT = 0). In general, an increase in the density of

control points (i.e. putting more sensors on a plate) leads to a decrease of the direct

field contribution (peT → 0). Of course, this must be understood as a limit situation

because it is difficult to completely block a system for all the frequencies by simply

adding control points. The determination of the direct field is more complicated and

it would make more tedious the whole process. In general, it is much better if the

direct field is small with respect to the paths contribution and consequently it can be

neglected.

The purpose of ATPA method is to determine T with a group of excitations

that satisfy: i) It is comfortable to apply them to the mechanical system in an

instrumented experiment or in situ measure; ii) Excite all (or as many as possible)

the behaviour types of the mechanical system and generate energy in all the zones

(at least in one of the excitations); iii) Avoid problems of matrix inversion due to

the similarity between all the considered excitations which leads to a poor linear

independence of the linear systems to solve. Afterwards, the T matrix information

is used to predict the real behaviour of the system.

We will refer as ‘operational’ output as the signal measured or computed when

the mechanical system is excited with the real actions (not a test in the laboratory).

In that situation the excitation can be almost random or at least different from the

hammer impacts. For the case of the methacrylate box an operational state could be

generated by means of a loudspeaker moving around the box. For the case of a train

wagon, the operational states are the induced vibrations when the train is moving.

We will talk also about ‘Reconstructed’ outputs. This will refer to the response of

the system that is computed by means of T and the operational signal of the control

points. An expression similar to Eq. (4.1) is considered. The direct field peT has been
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in most of the cases neglected. The target output can differ from the pressure in a

position. This is specified in every shown simulation.

Figure 4.6(a) shows two curves with the absolute value of the pressure in micro-

phone 1 when the point force is applied at ACC1. One of them (‘Operational’) is the

signal directly measured. The other one (‘Reconstructed’), is the reconstruction of

the pressure in microphone 1 by means of the accelerations in all the control points. T

is computed with hammer impacts in the nominal position (the operational behaviour

is caused also by the same point force applied at ACC1).

Both pressure curves are exactly the same. This is because the same excitation

type is considered in order to compute T and generate the operational state. The

same coincidence between curves is observed with the point force applied at any of

the control points.
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Figure 4.6: Signal at microphone MIC1 (absolute value of pressure |p|) when a point
force is exciting at the position of the accelerometer ACC1. All the curves are FEM
simulations. Comparison between operational and reconstructed signals. The two
curves are overlapped because the reconstruction is exact. Both the point force
considered in the operational state and the point force used to compute the T are
placed at: (a) nominal position of the accelerometer; (b) close to accelerometer.

Figure 4.6(b) is exactly the same as Figure 4.6(a) with the difference that the point

forces are not applied at the nominal position where the accelerometer is placed but

in the surroundings. The agreement between operational and reconstructed signals

is again almost exact.
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Some differences can be found if the point force used to generate an operational

state of the mechanical system is applied at a position that differs from the ones used

to compute the T matrix. Figure 4.8 shows this effect.
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Figure 4.7: Signal at microphone MIC1 (absolute value of pressure |p|) when a point
force is exciting at the position of the accelerometer ACC1. Comparison between
operational and reconstructed signals (point force close to accelerometer). All the
curves are FEM simulations. Influence of the different number of used sensors per
face. Each plot contains three overlapped curves because the reconstruction is exact
and the result is not dependent on the number of sensors per face used. Operational
signal on both plots is overlapped with the reconstructed signal taking into account:

(a) 1 and 4 accelerometers per face; (b) 2 and 3 accelerometers per face.

As mentioned before, four accelerometers per face are considered in all the box

results shown here. However, the simulations have also been done with only one,

two (side by side and symmetrical with respect to the rectangular face diagonal) and

three accelerometers per face. The positions in Figure 4.2 are considered and some of

the accelerometers are removed. Figure 4.7 shows the same signal reconstruction of

Figure 4.6(b) but using a different number of accelerometers per face. As expected,

the results are exactly the same. The transfer function between the accelerometer 1

and the microphone 1 is not modified by adding other accelerometers.

The box has also been excited by means of 88 randomly distributed point forces

normal to the face with also random modulus and sign (close to rain-on-the-roof

excitation in the sense that point forces are distributed all around the plate but with
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Figure 4.8: Signal at microphone MIC1 (absolute value of pressure |p|) when a point
force is exciting at the position of accelerometer ACC1. All the curves are FEM
simulations. Comparison between operational and reconstructed signals. The point
force excitation is placed close to point ACC1 but T matrix has been computed by
means of point forces exciting exactly at points ACCi.

coherent excitation) and a uniform pressure applied at the front face. The results are

shown in Figure 4.9(a) and Figure 4.9(b) respectively. It can be seen that in both

cases the differences between operational and reconstructed curves are larger than

before but they still have a similar trend and modal distribution. This separation of

the curves is due to the different excitation type considered when computing the T

and when simulating the operational status.

Figure 4.9(b) contains also a third curve. Its goal is to illustrate the effect of the

direct field peT in Eq. (4.1). peT is computed here as the vibration and pressure fields

obtained due to the excitation of the mechanical system by means of the operational

action but considering the boundary conditions used in the ‘from definition’ procedure

to compute T. Here it is the uniform pressure applied at the front face with all

the control points blocked. For this reason peT is known as the direct field (signal

that arrived when all the control points are blocked, the signal cannot go through

alternative paths). We see that the addition of peT to the reconstructed field exactly

complements the reconstructed curve in order to fit the ‘operational’ simulation. This

is important and shows that the relationship (4.1) is exact. peT is usually neglected

in the experimental procedures. Among other reasons, because it is very difficult
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to measure (all control points should be blocked) and because if control points are

properly chosen and enough sensors used, peT tends to be small. This numerical

simulation shows also that the inherent errors of the ATPA method by neglecting the

direct field can be estimated a priori by means of peT .
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Figure 4.9: Signal reconstruction at microphone number 1 (MIC1, absolute value of
pressure |p|): (a) 88 point forces are randomly distributed all over the front face; (b)
the front face is excited with a uniform unitary pressure. All the curves are FEM
simulations.

It is shown how the hypothesis of excitation-independence for the direct transfer

functions is not completely true and sometimes the direct field is relevant. However,

the global trend of the signal is properly reconstructed in spite of the differences at

specific frequencies.

4.2.4 Vibration transmission between opposite faces of the

box

A particular transmission path is analysed in this section: the vibration transmission

between opposite (front and back) faces. This is relevant because there is no direct

transmission path between the faces. Moreover, the paths are not only through the

structure but also across the air cavity. For these reasons, to properly characterise

the transmission caused by a chain of first-order paths is a good challenge in order

to test the ATPA method and understand the vibroacoustic response of the box.
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A first aspect to be considered is the importance of the cavity paths versus the

structural ones. Figure 4.10 compares two direct transfers with and without air

cavity. In both cases, the values of the function at a specific frequency and the

general trend of the curve is very similar. This indicates that the cavity has no

important effect on this transmission path and that the coupling air-to-structure is

weak. The curve corresponding to the case with cavity shows some more oscillations.

This is caused by the increase of modes on the system due to the presence of the

cavity. Moreover, the modal density of the cavity is larger than those of the box faces

after 500 Hz approximately. At very low frequencies the cavity can produce a more

efficient transmission.
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Figure 4.10: Comparison of the direct transfer between opposite faces of the box with
and without air cavity inside: (a) T1,9; (b) T1,10.

In all the previous results the control points are characterised by the acceleration

in the direction normal to the plate (this is chosen among the six degrees of freedom

per node in the shell finite element) . This is a common option because normal

acceleration is measured in a natural way, the vibration is mostly caused by bending

and the interaction with the cavity is due to normal displacement. However, the

ATPA method deals with degrees of freedom in general and allows dealing with more

than one variable per control point. See for example Guasch and Magrans (2004a)

where it is shown how rotations and displacements are relevant for the transmission

path analysis of a beam. Figure 4.11 shows the comparison for the usual case where
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only the normal acceleration is considered at each control point and the case where

also two rotations are considered. The rotations are the ones with rotation vector

in the plane of the plate (i.e. in the control points in the plate with constant X

coordinate and acceleration measured in the X direction, the rotations with vectors

in the Y and Z directions are considered). These degrees of freedom are chosen as

a more detailed an alternative description of the bending response of the plates in

the framework of an ATPA analysis. The differences between the two curves are not

large and the general trend is the same. This suggests that for the analysis of this

box, taking into account the normal acceleration is enough.
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Figure 4.11: Direct transfer function between two accelerometers computed by means
of the FEM: T1,9. Comparison between the case when only the normal displacement
at each accelerometer (1 DOF: one degree of freedom per control point) is considered
or also two rotations are taken into account (3 DOF: three degrees of freedom per
control point).

It should be noted that experimental measurement of rotations is not straightfor-

ward. On the contrary they can be obtained without difficulties from the numerical

model which shows again on of the advantages of virtual experiments.

A good option for determining the importance of a transmission path is to compare

its direct and global transfer functions. Even if the low-frequency ATPA method
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works with modulus and phase (complex numbers) and individual paths can cancel

each other, the comparison of the absolute value of direct and global transfer functions

can be a good indicator. A small difference between global and direct transfers

means that most of the transmission is done through the path. Figure 4.12 shows

this comparison for three different transmissions: between opposite faces, between

adjacent faces and between sensors placed at the same face. It is clear how the

largest difference between frequency response curves is found for the case of opposite

faces. This transmission is not done by means of a direct path from face to face,

which does not exist, but through indirect paths.

(a) (b)

(c)

Figure 4.12: Comparison between the global transfer (GT) and the direct transfer
(DT): (a) T1,3 and TG

1,3, points located at the same face; (b) T1,5 and TG
1,5, points

located at adjacent faces; (c) T1,9 and TG
1,9, points located at opposite faces. All

the curves are FEM simulations.

ATPA can be used to discover the topology of a system and determine how the sig-

nal is transmitted. To do so, all the direct transmission functions are required. They

provide information on the direct connection between control points. Figure 4.13 is

an example on how by means of the direct transfer matrix the topology of the box
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can be recovered. It is based on the outputs of the FEM model for the box without

air cavity inside at a frequency of 62.5 Hz. Figure 4.13(b) is a physical interpretation

of the signals, taking into account the geometry of the box and the positions of the

accelerometers. The box is unfolded in order to draw it in a single plane with the most

important paths in nodes 1 and 4. Figure 4.13(a) is a graph map with only the most

important transmission paths for all the box. The nodes represent the accelerometers

and the arrows the connections. Both figures are just a graphical representation of

the direct transfer values of the matrix T shown in Figure 4.13(c). There the colours

indicate the absolute value of the coefficient.

All the coefficients in the matrix T are ordered (considering their absolute value).

In that case, all the paths between nodes i and j with |Tij| which are less than 20% of

the maximum coefficient are neglected. The assumption of this ‘neglecting criterion’

helps in order to clear all the non-meaningful paths and keep only those that are useful

in order to characterise the system response. It is also important in order to draw a

plot that can be more easily understood. Figure 4.13(a) shows a graph map of the

most important connections between nodes. In red, the four stronger connections of

node 1 are highlighted. The same is done in blue for the three stronger connections of

node 4. When identifying these connections in the box geometry (see Figure 4.13(b)

), it makes sense. In both cases these connections are the path to the closest nodes.

This representation can be different at higher frequencies.

This shows how the outputs provided by ATPA can be represented in a graphic

way. The plots help in order to understand the the physical behaviour of the system

which is always very important in order to propose an improved design or identify

noise and vibration problems.

4.3 Conclusions

The main conclusions that can be drawn in view of the results obtained and the

experience with the laboratory prototype and the numerical model are as follows:

1. A consistent comparison between the laboratory measurement of a box with air

cavity inside and a numerical model of the same box is shown. This validates

somehow both the numerical simulations and the reliability of the experimental

measurement. To neglect the radiation losses (effect of the air outside) is a

reasonable hypothesis if the interest is focused on the box and air cavity inside.
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(a)

(b) (c)

Figure 4.13: Graphical representation of the box topology through the direct transfer
functions obtained by means of ATPA. Results obtained with the FEM model not
considering the air cavity at a frequency of 62.5 Hz: (b) Sketch of the unfolded box
where the main transmission paths are highlighted; (a) Graph of the most meaningful
connectivities between control points; (c) Colour plot of the direct transfer matrix T.

The combination of a multiphysics FEM software (Code Aster EDF (2017) with

Gmsh Geuzaine and Remacle (2009)) with an automatic pre and post-processing

set of scripts is a valid option to reproduce the ATPA procedures.
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2. The numerical results show that ATPA procedure is exact if no experimental

imprecisions exist. This can be seen with the coincidence of direct transfer

functions computed by means of two different procedures in Section 4.2.1 or

the exact reconstruction of the signal for the case of most simple operational

excitation shown in Section 4.2.3.

3. ATPA method properly characterises all the transmission paths, not only the

dominant ones.

4. The mechanical connectivity of the system can be defined by means of direct

transfer functions. This is frequency-dependent and can be influenced by a

proper definition of the measured degrees of freedom and points at the beginning

of the process. By taking into account the frequencies that are below the first

eigenfrequency, the physical structure of the system is identified.

5. Imprecision in the position where point force is applied has no effect on the

outputs at low frequencies but it can be important at mid and high frequencies.

6. The difference between operational and reconstructed signals can be computed

a priori. It is the solution of the system excited with operational force and all

the control points / degrees of freedom blocked.

7. The type of operational excitation causes some differences in the signal recon-

struction. However, they are not very large and can be estimated a priori. The

difference is the solution of the problem with the control degrees of freedom

blocked and the operational excitation.

4.A Calibration of the model and parameter

tuning

Two different experimental setups are considered in order to callibrate the model.

On the one hand the monitoring of the vibration response of a rectangular plate,

see Figure 4.14(a). This is used in order to characterise the material properties of

the methacrylate. On the other hand, the cuboid-shaped box which is also made of

methacrylate with air cavity. This is the mechanical system where ATPA has been

applied.
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Figure 4.14: Rectangular plate: (a) Photo of the instrumented plate; (b) Distribution
of the excitation and sensor points in the plate.

Point x [m] y [m]
E1 0.170 0.305
E2 0.180 0.210
E3 0.335 0.150
S2 0.370 0.040
S3 0.070 0.070
S4 0.230 0.220
S5 0.355 0.280

Table 4.3: Position of the excitation points Ei and the sensors Si (i = 2, . . . , 5) in the
plate model.

The rectangular plate, with dimensions 0.515 m × 0.405 m and 8.1 mm thick, is

excited by means of a hammer impact at the positions Ei in Figure 4.14(b). In every

of the realisation of the experiment, with the point force in a different position Ei, this

input signal (the force measured at the point Ei) is denoted by S1. Four accelerome-

ters where the signal Si (i = 2, . . . , 5) is measured are distributed judiciously (trying

to avoid nodal lines, corners or accelerometers placed close to each other) over the

plate. The positions of excited and control points are listed in Table 4.3. The plate

is supported at the four corners on a very soft foam. Since the stiffness and the mass

of the foams is small, the plate is supposed to be tested in free-free conditions. An

experimental modal analysis of the plate was done in order to verify this hypothesis.

It revealed that the agreement was correct except for the first two modes. For them,

the stiffness of the foam had some influence in the response of the plate.
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The calibration of the numerical model is done in three stages. First of all, the

rectangular plate is used in order to find proper numerical values for the material

parameters. It is reasonable to suppose that the methacrylate is a homogeneous and

isotropic material. The density is thus obtained from the weight of the plate, see Ta-

ble 4.2. The thickness of the plate is approximately constant and the measurements

done by means of a calliper were in the range ±0.1 mm. The details on the deter-

mination of the other material parameters are described in Section 4.A.1. Second,

the vibration transmission through the corner in an L-shaped junction is measured

and compared with the FEM simulation with correct agreement. It was concluded

that these glued junctions could be properly modelled as homogeneous junctions.

Finally a successful comparison of the box model and the measurements is shown in

Section 4.A.2.

4.A.1 Material characterization: elasticity modulus and

damping

Since the material is supposed to be linearly elastic and the density is known, the

required material parameters are the elasticity modulus E, the Poisson’s ratio ν and

the hysteretic damping η. E and ν are supposed to be frequency-independent and

ν is taken from the literature Bhushan and Burton (2005); Wei et al. (2005). It is

reasonable since ν does not show a large variation range for this type of material.

Once ν is fixed, the strategy is first to determine E and afterwards adjust a frequency-

dependent damping law.

E is chosen in order to fit the first eigenfrequencies in the frequency range with

modal behaviour (approximately 100− 600 Hz). These eigenfrequencies are obtained

from an experimental modal analysis of the plate and can also be identified as the

peaks in the experimental curve of Figure 4.15. Both eigenfrequency values are very

similar and these reference values are listed in Table 4.4. As commented before, only

the two lowest eigenfrequencies are affected by the stiffness of the foam used to sustain

the plate.

The experimental curve in Figure 4.15 shows the averaged output

ψ(f) =
1

3

3∑
j=1

∣∣∣∣ 1

Fj(f)

∣∣∣∣ 1

4

4∑
i=1

|ai(f)| (4.3)
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Mode 1 2 3 4 5 6 7
Eigenfrequency (Hz) 55 61 106 118 137 178 222
Mode 8 9 10 11 12 13 14
Eigenfrequency (Hz) 232 286 320 348 362 394 423

Table 4.4: Eigenfrequencies of the rectangular plate obtained with the experimental
modal analysis

where the sum on i is done on all the four sensors of the plate, the sum on j is done

on the three impacted positions, ai and Fj are the phasors of the acceleration and

the force registered in the hammer respectively. ψ can be understood as an spatially

averaged accelerance. The other curves in Figure 4.15 are the results of the equivalent

numerical experiments with different values of E.

The value of E can differ depending on the methacrylate type. Based on several

values published in the literature Bhushan and Burton (2005); Wei et al. (2005) a

variation range is defined and several discrete values of E between 3.0 GPa and 6.0

GPa are considered in order to feed the numerical model and plot curves like the

ones in Figure 4.15. Each curve has a different peak pattern. It can be seen how the

value of E = 4.3 GPa fits better the position of the peaks when compared with the

experimental measurement. An eigenvalue problem has also been solved in order to

verify that the undamped eigenfrequencies are in the same positions as the peaks.
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Figure 4.15: Frequency response function (averaged accelerance ψ) for different values
of the elasticity modulus. The damping is constant η = 0.07.

Table 4.5 shows the arithmetic average of the relative error (considering absolute
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Elasticity modulus Mean Standard deviation
3.00 GPa 17.71% 4.15%
4.00 GPa 5.02% 4.77%
4.30 GPa 3.04% 4.18%
4.60 GPa 4.07% 3.42%
5.00 GPa 7.69% 2.47%
6.00 GPa 16.59% 4.97%

Table 4.5: Mean relative error of the first 14 eigenfrequencies depending on the value
of E. The results of the experimental modal analysis are taken as a reference.

value in order to avoid sign compensations) between the numerical and experimental

eigenfrequencies. The value E = 4.3 GPa minimises these differences.

The damping law η(f) is chosen in order to minimise the difference in the low

frequency peak values (around the eigenfrequencies in the modal response zone) and

also to properly reproduce the trend at high frequencies. Figure 4.16 shows some

of the damping laws with the form η = a + ωb, where a and b are constants to fit.

A minimisation of the difference between the computed and experimental curve in

the whole frequency range (not only at the eigenfrequencies) leads to the following

expression of the damping

η = 0.07 +
1

ω
(4.4)

4.A.2 Box model validation

Once the material parameters of the methacrylate are calibrated by means of the

rectangular plate experiment, the response provided by the numerical model of the

box is compared with measured data. The problem is vibroacoustic, including the

cavity inside the box. The air parameters for the numerical model are taken from the

literature: sound velocity in air c = 345.23 m/s and air density ρa = 1.18 kg/m3.

A shaker is installed in the position of accelerometer ACC6, see Figure 4.2. This

allows a better control of the position where the excitation is applied. The shaker is

fixed to the face and the uncertainty of human manipulation of the hammer impact

is suppressed. The output defined in Eq. (4.3) is considered for comparison. ψ

is computed at every plate taking into account the four accelerometers, with the

difference that only one force position is considered (where the shaker is placed).

Figure 4.17 shows the parameter ψ for the top plate. The agreement is very good in
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Figure 4.16: Frequency response function (accelerance) between two arbitrary points
According to the notation η = a+ ωb: (a = 0.07, b = −1), (a = 0.001, b = −1/2) and
(a = 0.04, b = −1/2).

Plate e
Top 14.12%

Front 18.82%
Back 8.40%
Left 8.89%

Right 6.21%

Table 4.6: Difference between the experimental measurement and the simulation in
each face of the plate according to Eq. (4.2).

both the shape of the curve and also the magnitude. We have not absolute certainty

for the experimental measurements below 100 Hz. The reasons are several as exposed

above: difficulty in the proper excitation of rigid-body motion modes and interference

with the background noise/vibration. Similar results are obtained for the other faces

of the box. A global measure of the error is shown in Table 4.6 where the difference

between frequency response curves is measured by means of Eq. (4.2).

Figure 4.18 shows the comparison for the averaged square pressure at the micro-

phones placed inside the cavity. The measure of the difference between experimental
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Figure 4.17: Comparison between the experiment and the numerical simulation. ψexp

and ψFEM curves at the top plate due to the action of the shaker in the position
ACC6.

and numerical curves is 7.25%. The agreement is deemed sufficient .
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Figure 4.18: Absolute value of the averaged square pressure divided by the point force
|p/F | at the micros inside the cavity due to the action of the shaker in the position
ACC6. Comparison between the experiment and the numerical simulation.

The global agreement between the numerical results and the experimental mea-

surements is good both in terms of vibration and acoustic pressure. Moreover, the

usual outputs of interest and regulation parameters are presented in dB . This means
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that the relevance of these differences from the engineering point of view is of less im-

portance . It is also true that the chosen parameters are somehow spatially averaged

(few positions are considered). When outputs in a specific position are regarded, the

differences are expected to be a bit larger due to the spatial shift of the pressure and

vibration waves.
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Chapter 5

Eigenvalue and eigenmode

synthesis in elastically coupled

subsystems1

5.1 Introduction

Many products consist of an active device; e.g. engines, compressor units, frequency

converters, etc. and a structure which is defined to meet a functionality target. Such

structures may be for example trains, cars, refrigerators, etc. and the corresponding

active devices which supply energy to the entire system are frequently categorized as

auxiliary equipment.

Other type of products which may be partitioned in a similar way are all kind

of machines installed on top of a supporting structure, as typically encountered in

industrial facilities.

The assembly of the two aforementioned elements, typically through elastic joints

(see Figure 5.1), may generate noise and/or vibration complications due to the dy-

namic coupling between them. For instance, let an engine, whose dynamics are

known, having no resonances at its fundamental excitation frequency. The engine is

installed by means of elastic supports on a structure also not having resonances at

excitation frequency. Then, the question that arises is whether the engine-structure

1Chapter based on the paper Magrans and J.Poblet-Puig (2018)
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assembly will resonate. A resonance of the assembly at the excitation frequency would

be critical since it may cause noise issues as well as ill-functioning of the product.

Now, consider that the modal frequencies and mode shapes of each subsystem are

known when the subsystems are subject to an infinite impedance condition through

the elastic joints at their interface, c.f. Figure 5.2. Then, the problem to be solved is

determining the assembled system modal frequencies.

The problem of devising the behavior of a system from which one knows that

of its two composing subsystems has been widely studied. The fields in which this

problem has been addressed are widespread. As a matter of example one can cite in

the field of electrical networks a method developed in ref. Kron (1963), the method is

known as the Kron method. It was immediately applied to dynamics in Simpson and

Tabarrok (1968), Simpson (1973) and has been further developed recently in Weng

et al. (2009), Cui et al. (2016), Kaveh and Fazli (2011), Lui (2000). One can also

cite methods in the field of physics of composite systems such as those applied to sets

of phonons Dobrzynski and Puszkarski (1989) or to composite materials Sylla et al.

(1989). Eventually, one may refer to methods in the field of dynamics, for which a

non-exhaustive review of methods may be found in de Klerk et al. (2008).

The latter reference exposes an historic review of methods from which it summa-

rizes the problem in just three equations and, subsequently, it examines the different

approaches for its solution in the physical space, the modal space or the frequency

space. The first equation is the dynamic equation for each of the subsystems sub-

jected to external forces as well as coupling reaction forces. The second equation

defines a linear dependency between coupling interface coordinates, usually trough a

boolean matrix. Finally, the third equation defines the relation between the forces

that each subsystem exerts on the other. Notice that the second equation assumes

that the coupling interfaces are rigid or, generically, holonomic2.

From this historical review one can note that the substructuring problem with

elastic joints is not of frequent study. Yet, references Liu and Ewins (2000), Cup-

pens et al. (2001),Allen et al. (2010) have studied the problem with elastic couplings

2A coupling interface is holonomic if one or more functions relating the degrees of freedom
of the coupling interface exist f(x1, x2.., xn) = 0. Consider a structure is split in two parts and
the coupling interface coinciding degrees of freedom are labelled x1F y x2F , then the continuity
condition is simply x1F − x2F = 0. Conversely, if the coupling interface degrees of freedom are
non-coincident, e.g. they are linked by an elastic joint as in the example problem, it can only be
said that k(x1F − x2F ) = f being f a force of unknown magnitude, so that the problem constraints
are no longer holonomic.
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through modal or FRF based methods. The first of these two references confirms the

fact that the vast majority of analysis methods for substructures coupling consider

the interface being of rigid coupling kind.

The present work addresses the synthesis of eigenmodes as an algebraic problem.

It is based on solving the eigenvalues of a block matrix having one or more anti-

diagonal elements in antisymmetric positions, from the knowledge of each matrix

block’s eigenvalues and eigenvectors and of the antidiagonal elements.

The solution to this algebraic problem is achieved through a Divide and Con-

quer approach. One of the basic articles of such solution method is that of Cuppen

(Cuppen, 1980), which studies the synthesis of eigensolutions of a tridiagonal matrix

through a first order perturbation approach. Also, an article by Arbenz, ref. (Arbenz

et al., 1988), extends the method to modifications of higher order.

The references in the former paragraph solve a very similar problem to that posed

in the present work, given that a tridiagonal matrix may be regarded as a block

matrix having two antisymmetric elements in its anti-diagonal. However, opposite

to the Divide and Conquer method, the method proposed here does not modify the

matrix blocks in order to achieve the solution.

This chapter is divided into three parts. The first part demonstrates the equiva-

lence between the dynamic and the algebraic problems and the solution to the eigen-

values’ algebraic problem is described for one, two and multiple coupling terms (sec-

tion 5.2 and section 5.3). In the second part (section 5.4) the algebraic solution is

applied to the physical problem (section 5.4.1) and the physical interpretation of the

solution is discussed (section 5.4.2). This physical interpretation substantiates the

computation of the eigenvectors in subsection 5.4.3.

Thence, the first part gives a formal solution to the algebraic problem which is ap-

plicable to any linear system, regardless of its physical interpretation, and the second

part provides a physical meaning to the eigenvalue solution and to the computation

of the eigenmodes.

The third part (section 5.5) presents two examples, one on a simple system shows

the basic mechanics of the method and a second example shows the performance of

the method on a system with many degrees of freedom and multiple connections.
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5.2 Equivalence of the physical and algebraic

problems

In the present work an algorithm which computes the eigenfrequencies and eigenvec-

tors of a system consisting of two parts is developed from the eigenfrequencies and

eigenvectors of each of the two parts and the characteristics of the elastic elements

which join them.

The proposed problem is equivalent to obtaining the eigenvalues and eigenvectors

of a block matrix in which the two composing blocks are connected at m degrees of

freedom, hence having non-zero valued anti-diagonal elements.

Let a mechanical system consisting of two subsystems such as shown in Figure 5.1

Figure 5.1: Subsystems 1 and 2 with one or more coupling spring

Let A1 and A2 be the dynamic matrices of the two subsystems in isolation as

depicted in Figure 5.2, i.e. including fixed boundary conditions at the coupling in-

terface.

Then

A1 = K1 − ω2M1

A2 = K2 − ω2M2

(5.1)

Where the mass matrices M are diagonal matrices and K are the stiffness matrices.

Let k be the stiffness of the coupling spring.

The assembled system dynamic matrix A may be described as:
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5.2. Equivalence of the physical and algebraic problems

Figure 5.2: The total system is split into subsystems 1 and 2 as shown in the figure.
This decomposition allows the blocks that define the subsystems not to vary by
forming the total system.

A =

(
K1 0

0 K2

)
− ω2

(
M1 0

0 M2

)
+



0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 k . . . 0

0 . . . k 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0


(5.2)

Be it P and Q labels corresponding to the degrees of freedom linked by the elastic

element, P in subsystem 1 and Q in subsystem 2. The system eigenmodes and

eigenfrequencies correspond to the eigenvalues and eigenvectors of the matrix
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H =

(
M−1

1 K1 0

0 M−1
2 K2

)
+



0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 k
mP

. . . 0

0 . . . k
mQ

0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0


(5.3)

In this equation mP is the diagonal coefficient of matrix M1 corresponding to the

degree of freedom labelled as P and, likewise, mQ is the diagonal coefficient of matrix

M2 corresponding to the degree of freedom labelled as Q.

According to Eq. (5.3), matrix H, from which the eigensolutions are seeked, is of

the kind:

H = B + C (5.4)

Where B is a block matrix, as it is explicit in Eq. (5.5), and C is a matrix with

non-zero values in, at least, two antisymmetric positions in the two antisymmetric

blocks, Eq. (5.6).

B ≡

(
B1 0

0 B2

)
(5.5)

C ≡



0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 cPQ . . . 0

0 . . . cQP 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0


(5.6)

The equivalent algebraic problem involves the calculation the eigenvalues and

eigenvectors of matrix H from those of B1, B2 and from the coefficients of matrix C.

5.3 Method

Under the framework of the problem raised in the introduction, the solution for the

union of two diagonal blocks in H will be obtained here for the cases: A single
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5.3. Method

connecting element (section 5.3.1), two connecting elements (section 5.3.2) and m

connecting elements (section 5.3.3).

5.3.1 Single connection. Synthesis of eigenvalues

Let

H = B + C (5.7)

where the matrix C and the eigensolutions for B are known, the eigenvalues of H are

sought. C may be expressed as:

C = e
P
c
PQ

eT
Q

+ e
Q
c
QP

eTP (5.8)

where e
P

is a basis vector unity valued at the degree of freedom labelled P and zero

valued elsewhere. The same holds for e
Q

.

If B is diagonalizable (over the complex field C, any matrix either is diagonalizable

or is arbitrarily close to a matrix with distinct eigenvalues that does), it may be

formulated as:

B = VBDBV−1
B (5.9)

with DB a diagonal matrix containing the eigenvalues of the isolated subsystems and

VB the corresponding matrix of eigenvectors. Matrix VB has, naturally, the same

block structure as B.

Consequently, H is reformulated as:

H = VB(DB + V−1
B CVB)V−1

B = VBH
′
V−1
B (5.10)

where

H
′
= DB + V−1

B CVB (5.11)

Equation (5.10) demonstrates that H and H
′
are similar matrices, ergo they certainly

have identical eigenvalues and eigenvectors.

Let

u
P

= V−1
B e

P
vT

P
= eT

P
VB (5.12)

where u
P

is the column vector corresponding to degree of freedom P in matrix V−1
B

and vT
P

is the row vector corresponding to degree of freedom P in matrix VB. Anal-

ogous formulation holds for Q.
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Substituting C by Eq. (5.8) in equation Eq. (5.11)

H
′
= DB + c

PQ
u

P
vT

Q
+ c

QP
u

Q
vT

P
(5.13)

if x is an eigenvector of H
′

with associated eigenvalue λH it holds that:(
DB + c

PQ
u

P
vT

Q
+ c

QP
u

Q
vT

P

)
x = λHx (5.14)

The inverse of (λHI − DB)−1 exists provided that the eigenvalues of the coupled

system do not coincide with those of the subsystems. For very weak coupling, the

system eigenvalues will be very close to the eigenvalues of the isolated blocks, but

they will not be strictly equal unless the blocks were fully decoupled. Therefore, in

general, the inverse of (λHI − DB)−1 must exist. Hence, equation (5.14) may be

rearranged as follows

x = (λHI−DB)−1(c
PQ

u
P
vT

Q
x + c

QP
u

Q
vT

P
x) (5.15)

Then, taking the scalar product of Eq. (5.15) with vTQ and, separately, with vT
P

, and

given that vT
P

only has non zero valued components in subsystem 1 and vT
Q

only has

non zero valued components in subsystem 2, one obtains:

vT
Q
x = c

QP
vT

Q
(λAI−DB)−1u

Q
vT

P
x (5.16)

vT
P
x = c

PQ
vT

P
(λHI−DB)−1u

P
vT

Q
x (5.17)

Substituting Eq. (5.17) in Eq. (5.16) results in

vT
Q
x = c

QP
c
PQ

vT
Q

(λHI−DB)−1u
Q
vT

P
(λHI−DB)−1u

P
vT

Q
x (5.18)

Assuming that vT
Q
x 6= 0, equation (5.18) proves that the eigenvalues of H, λH ,

must satisfy:

1 = c
PQ
c
QP

n1∑
i=1

vT
P,i
u

i,P

λH − λB1,i

n2∑
j=1

vT
Q,j
u

j,Q

λH − λB2,j

(5.19)

Thus, as a conclusion to this section, it can be asserted that there exists a function

Γ(λ) = 1− c
PQ
c
QP

n1∑
i=1

vT
P,i
u

i,P

λ− λB1,i

n2∑
j=1

vT
Q,j
u

j,Q

λ− λB2,j

(5.20)

whose zeroes correspond to the eigenvalues of matrix H.
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5.3.2 Two connections. Synthesis of eigenvalues

Let H and B be the same matrices as in section 5.3.1, but now assuming that C

has two connection elements, one connecting P1 with Q1 and another connecting P2

with Q2. The degrees of freedom labelled P always correspond to block 1, and those

labelled Q belong to block 2.

Under these assumptions, matrix C may be reformulated as:

C = c
Q1P1

e
Q1

eT
P1

+c
P1Q1

e
P1

eT
Q1

+ c
Q2P2

e
Q2

eT
P2

+ c
Q2P2

e
P2

eT
Q2

Similarly to section 5.3.1 derivations, one may define:

u
Ps

= V−1
B e

Ps
vT

Ps
= eT

Ps
VB (5.21)

for s = 1, 2, and analogous definitions for Q.

If x is an eigenvector of H with associated eigenvalue λH it holds that(
DB + c

Q1P1
u

Q1
vT

P1
+ c

P1Q1
u

P1
vT

Q1
+ c

Q2P2
u

Q2
vT

P2
+ c

P2Q2
u

P2
vT

Q2

)
x = λHx (5.22)

and taking scalar product with vT
P1

and vT
P2

yields(
vT

P1
x

vT
P2

x

)
=

(
c
P1Q1

vT
P1

(λHI−DB)−1u
P1

c
P2Q2

vT
P1

(λHI−DB)−1u
P2

c
P1Q1

vT
P2

(λHI−DB)−1u
P1

c
P2Q2

vT
P2

(λH −DBI)−1u
P2

)(
vT

Q1
x

vT
Q2

x

)
(5.23)

Likewise, it is straightforward to prove that(
vT

Q1
x

vT
Q2

x

)
=

(
c
Q1P1

vT
Q1

(λHI−DB)−1u
Q1

c
Q2P2

vT
Q1

(λHI−DB)−1u
Q2

c
Q1P1

vT
Q2

(λAI−DB)−1u
Q1

c
Q2P2

vT
Q2

(λHI−DB)−1u
Q2

)(
vT

P1
x

vT
P2

x

)
(5.24)

Let the matrices in (5.23) and (5.24) be named E and F. Substituting the vector

to the left of (5.24) in (5.23) one obtains(
vT

P1
x

vT
P2

x

)
= EF

(
vT

P1
x

vT
P2

x

)
⇒ (I− EF)

(
vT

P1
x

vT
P2

x

)
= 0 (5.25)

So that the non-trivial solution to (5.25), i.e. x not being a null vector, is:

det(I− EF) = 0 (5.26)

This equation is equivalent to the one obtained for one degree of freedom in Eq. (5.20).

Equation (5.26) is a function of λ, whose zeroes are the eigenvalues λH of matrix

H.

103



5. Modal synthesis in elastically coupled subsystems

5.3.3 Arbitrary number of connections. Synthesis of

eigenvalues

Following section (5.3.2), the general solution may be readily formulated.

Let

E =



vT
P1

Su
P1

vT
P1

Su
P2

vT
P1

Su
Pm

vT
P2

Su
P1

vT
P2

Su
P2

vT
P1

Su
Pm

...
...

...

vT
Pm

Su
P1

vT
Pm

Su
P2

vT
P1

Su
Pm




c
P1Q1

c
P2Q2

. . .

c
PmQm

 (5.27)

F =



vT
Q1

Su
Q1

vT
Q1

Su
Q2

vT
Q1

Su
Qm

vT
Q2

Su
Q1

vT
Q2

Su
Q2

vT
Q1

Su
Qm

...
...

...

vT
Qm

Su
Q1

vT
Qm

Su
Q2

vT
Q1

Su
Qm




c
Q1P1

c
Q2P2

. . .

c
QmPm

 (5.28)

where S = (λI−DB)−1.

The eigenvalues of H, for any given number of connections between the two blocks,

are the zeroes of Γ(λ) = det (I− EF).

That is

Γ(λH) = 0 (5.29)

Notice that the order of matrix (I− EF) is m, i.e. the number of connected

degrees of freedom per subsystem, which is typically a much lower figure than the

total number of degrees of freedom of the coupled system.

5.4 Application of the algebraic solution to the

physical problem, physical meaning and

eigenmodes

In the following, the formulation obtained in the algebraic problem in Section 5.3 is

applied to a mechanical system consisting of two subsystems, the physical meaning

of the equations is interpreted and the equations defining the system eigenmodes are

derived.
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5.4.1 Application to dynamics of mechanical systems

In order to apply the formulation in Eq. (5.29) to a mechanical problem one may

interpret the elements in matrices E and F in accordance with the eigenvalues and

eigenmodes of the mechanical subsystems in isolation.

To this effect, the inverse of the eigenmodes matrix must be known in order to

get the upi terms in Eq. (5.21).

Consider a mechanical system represented by the matrix A and consisting of

two undamped subsystems 1 and 2 connected by m elastic elements. Suppose that

subsystem 1 has n1 degrees of freedom and subsystem 2 has n2 degrees of freedom.

Recall that the connection points are labelled Pi in subsystem 1 and Qi in sub-

system 2, and that the subscripts indicate the elastic elements, i.e. element i joins

points Pi and Qi.

Let c
PiQi

be the stiffness between Pi and Qi divided by the mass in Pi.

Let Φi i = 1...n1 be an eigenmode of subsystem 1 and Ψj j = 1...n2 an eigen-

mode of subsystem 2, let also λ1,i an eigenvalue of subsystem 1, λ2,j an eigenvalue of

subsystem 2 and λA,s an eigenvalue of the coupled system A.

A discrete (or discretized) mechanical system may be described through analogous

equations to those in Eq. (5.1).

If M is a positive-definite diagonal matrix with coefficients mi and K is a symmet-

ric matrix, the corresponding eigenmodes are orthogonal with respect to the scalar

product defined by matrix M. If the eigenmodes are normalised to have unity Eu-

clidean norm it follows that

ΦT
i MΦj = µiδij (5.30)

where µi are the so called modal masses.

From Eq. (5.30) it can be inferred that the inverse of the eigenmodes matrix is just

the transposed eigenmodes matrix right-scaled by the mass matrix and left-scaled by

the inverse modal mass matrix. If Π = diag(µ1, µ2 . . . , µn1), then

Φ−1 = Π−1ΦTM (5.31)

Same formulation holds for Ψ, the eigenmodes matrix of subsystem 2.

The Pi, Pj terms of the elements in matrix E in subsection (5.3.3) read:

vT
Ps

(DB − λI)−1u
Pl

(5.32)
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where

u
Pl

= V−1
B e

Pl
and vT

Ps
= eT

Ps
VB (5.33)

In consequence, for subsystem 1

vT
Ps

=
(
φ1(Ps),φ2(Ps) . . . ,φn1(Ps)

)
and u

Pl
=


φ1(Pl)

ml

µ1

φ2(Pl)
ml

µ2

. . .

φn1(Pl)
ml

µn1

 (5.34)

Finally, the Pi, Pj term of matrix E in Eq. (5.32) is reformulated as

mj

n1∑
s=1

φs(Pi)φs(Pj)

λs − λ
1

µs
(5.35)

Other than the term mj, Eq. (5.35) is a system receptance function or, in other words,

the Green’s function relating the forces applied at Pi and the displacement produced

at Pj.

The connection terms in matrix C are

cPj ,Qj
=
k(Pj, Qj)

mj

(5.36)

where k(Pj, Qj) is the stiffness of the element connecting Pj and Qj, and mj is mass

in subsystem 1 connected to the jth elastic element.

Given that in the final solution the Pi, Pj coefficient in matrix E multiplies with

c(Pj, Qj) (c.f. Eq. (5.27)), the elements of E will eventually be the Pi, Qj receptance

functions.

At this point, it is worth noting that from an experimental point of view it is easier

to measure a receptance function than it is to compute it out of a (experimental)

modal analysis which, in turn, would be of limited precision with respect to the

measured receptance due to having a finite number of modes.

In order to obtain the coupled system eigenvalues λ, let

G1 =


n1∑
i=1

φi(P1)φi(P1)
µi(λi−λ)

. . .
n1∑
i=1

φi(P1)φi(Pm)
µi(λi−λ)

...
...

...
n1∑
i=1

φi(Pm)φi(P1)
µi(λi−λ)

. . .
n1∑
i=1

φi(Pm)φi(Pm)
µi(λi−λ)

 (5.37)
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Kc =


kP1Q1 . . . 0

...
...

...

0 . . . kPmQm

 (5.38)

and G2 an equivalent expression to that of G1.

The system eigenvalues λ are the zeroes of the I−EF determinant, with E = G1Kc

, F = G2Kc and being I an identity matrix of order m.

det (I− EF) = 0 (5.39)

5.4.2 Physical meaning of the solution

As discussed above, the elements of G1 and G2 are frequency response functions

relating force to displacement. Element ij in G1 is the displacement in Pj due to a

unit force with frequency f =
√
λ

2π
applied at Pi.

Now, let G = (I− EF), the elements γ of matrix G are

γij =
∑
l

g1(PiPl)k(PlQl)g2(QlQj)k(QjPj) (5.40)

γii = 1−
∑
l

g1(PiPl)k(PlQl)g2(QlQi)k(QiPi) (5.41)

Figs. 5.3 and 5.4 show how a force applied at P1 in subsystem 1 is transmitted

into P1 itself through the springs which couple subsystems 1 and 2.

Figure 5.3 shows the displacements produced at points P1 to P4 by the force

applied at P1. These displacements are simply g(P1, P1) for P1, g(P1, P2) for P2,

g(P1, P3) for P3 and g(P1, P4) for P4. Each of these displacements produce a force at

points Q1 to Q4 in subsystem 2, these being g(P1, Pi)kPi,Qi
for i = 1, 2, 3, 4.

In Figure 5.4 it is shown how the forces on points Q1 to Q4 produce a total dis-

placement in Q1 equal to
∑4

i=1 g(P1, Pi)kPi,Qi
g′(Qi, Q1). Finally, the coupled system

reaction force on P1 is
∑4

i=1 g(P1, Pi)kPi,Qi
g′(Qi, Q1)kQi,P1 .

Thus, the matrix element γi,i is the reaction force over Pi as a result of a unit

force applied at the same point Pi. Therefore, the resonance condition in Eq. (5.39)

means that if a point unit force is applied only at Pi, the reaction force at Pi is unity,

and zero elsewhere.

This means that the forces acting on P1 are self equilibrated at some of the fre-

quencies without the need of external loading. It is, indeed, the resonance condition.
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Figure 5.3: A force in P1 produces forces on the Q points

Figure 5.4: The forces in the Q points produces a reaction force on P1

Formally, including forces in Eq. (5.39) it holds that

det(G) = 0⇔ ∃f | Gf = 0⇐⇒ Rf = f being R 6= I and f 6= 0 (5.42)

where R = I−G.

For any given λ and f it holds that Rf = f
′
. Under the hypothesis that a force

f is applied to the connection points of one of the subsystems, such force may be
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decomposed into two parts: the reaction force of the other subsystem, i.e. Rf , and

the external forces. Thereof, f = Rf + fExterior. Solving Rf = f implies finding a

set of forces that may exist without the need of any external loading. These forces

correspond to the reaction Rf at the couplings in absence of external forces, thus, at

resonance. In consequence, Eq. (5.39) is a resonance condition.

The conclusion is therefore that the function derived here from algebraic consid-

erations is a resonance condition from a physical point of view, which states that the

coupling forces at resonance are the result of the action of same forces through the

connections.

5.4.3 Eigenmodes calculation

Given that the resonance condition requires Rf = f , it can be ascertained that matrix

R (λA), whose eigenvalues λA are zeroes of det G, has at least one eigenvector with

eigenvalue equal to 1. Name this eigenvector fA.

The components of fA over subsystem 1 are the coupling forces that apply on

subsystem 1 at system resonance with eigenvalue λA.

Considering that G is of order m, i.e. the number of connections, which is a very

small dimension as compared to the number of degrees of freedom of the subsystems

specifically in the present target problem, the calculation of its eigenvectors will be

very simple in terms of computation burden.

Once obtained the eigenvector fA with associated eigenvalue 1, one must just apply

the force vector fA to the matrix of subsystem 1 in order to obtain the corresponding

displacement that the applied forces produce. The computed displacements are those

of the system eigenmode with eigenvalue λA over subsystem 1.

Proceeding in the same way on subsystem 2, displacements for the corresponding

eigenmode are found.

5.5 Examples

In this section two examples are considered. The first example is a simple system so to

explicitly illustrate the method steps towards the final solution. Also, the resemblance

of this example to that in reference Simpson (1973) is exploited so to briefly remark

the differences between both methods with regards to the subsystems selection.
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The second example is a system with many degrees of freedom, having 5 connec-

tions between two composing subsystems, so to illustrate the method performance in

a much more complex problem.

5.5.1 Simple discrete system

The first example is a discrete system involving three masses and four springs, whose

values are defined without magnitude units for brevity.

Figure 5.5: Simple discrete system example. k and m are stiffness and masses values.

This is a very similar problem to the one exposed in Simpson (1973) as an appli-

cation example of Kron’s method.

In order to apply Kron’s method, or any other method applicable to rigid con-

nexions, the system must be split by dividing the masses elements. See for example

Figure 5.6.

Figure 5.6: Subsystems division in order to apply Kron’s method Simpson (1973).

Notice that masses are split in Kron’s method in order to make the connections

holonomic. This is optimal to subdivide an structure, but it is virtually of no use for

an auxiliary equipment.

The method proposed here decomposes the problem into two smaller problems

with the coupling interface set at the springs (see Figure 5.7).
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Figure 5.7: Top (above black line): Problem to solve. Middle: Subsystem 1. Bottom:
Subsystem 2

The subsystems’ mass matrices are:

M1 =

(
2 0

0 2

)
; M2 =

(
5
)

(5.43)

and the subsystems’ stiffness matrices:

K1 =

(
3 −1

−1 2

)
; K2 =

(
3
)

(5.44)

The eigenmodes of subsystems 1 and 2 are

Φ1 =

(
−0.5257 −0.8507

−0.8507 0.5257

)
; Φ2 =

(
1
)

(5.45)

and their corresponding eigenvalues

Λ1 =

(
0.6910 0

0 1.8090

)
; Λ2 =

(
0.6000

)
(5.46)

The coupled system stiffness and mass matrices are:

K =

 3 −1 0

−1 2 −1

0 −1 3

 ; M =

 2 0 0

0 2 0

0 0 5

 (5.47)
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Since the mass matrix is positive definite and diagonal the generalized eigenvalues

problem may be converted to an standard eigenvalues problem.Thence we have to find

the eigenvalues and eigenvectors of:

M−1K =

 1.5 −0.5 0

−0.5 1 0.5

0 0.2 0.6

 (5.48)

Eq. (5.48) may be decomposed as

M−1K =

 1.5 −0.5 0

−0.5 1 0

0 0 0.6

+

 0 0 0

0 0 0.5

0 0.2 0

 (5.49)

Now, identifying the decomposition terms as

H =

 1.5 −0.5 0

−0.5 1 0.5

0 0.2 0.6

 ; B =

 1.5 −0.5 0

−0.5 1 0

0 0 0.6

 ; C =

 0 0 0

0 0 0.5

0 0.2 0


(5.50)

it is clear that this decomposition corresponds with the proposed problem approach,

where the H matrix eigenvectors and eigenvalues correspond to the eigenmodes and

eigenfrequencies of the full system, the B matrix contains the decoupled subsystem

matrices and C is the coupling matrix.

Notice that the coefficients in matrix C, c
PQ

= 0.5 and c
QP

= 0.2, are normalised

by the contiguous masses.

Then, following the notation used in the derivations in Section 5.3.1

VB =

 −0.5257 −0.8507 0

−0.8507 0.5257 0

0 0 1

 ; DB =

 0.6910 0 0

0 1.8090 0

0 0 0.6

 (5.51)

u =

 −0.8507

0.5257

0

 ; w =

 0

0

1

 ; vT = wT ; yT = uT (5.52)
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the solution are the zeroes of:

1 =(0.5)(0.2)
(

0 0 1
) 

1
λ−0.6910

0 0

0 1
λ−1.8

0

0 0 1
λ−0.6


 0

0

1


(
−0.8507 0.5257 0

)
1

λ−0.6910
0 0

0 1
λ−1.8

0

0 0 1
λ−0.6


 −0.8507

0.5257

0


(5.53)

that is, the zeroes of:

1 = 0.1
1

λ− 0.6

(
0.85072

λ− 0.6910
+

0.52572

λ− 1.8

)
(5.54)

In Figure 5.8 it can be observed that the zeroes of Eq. (5.54) coincide with the

Figure 5.8: The total system eigenvalues calculated using standard methods (black
squares) correspond to the zeroes of the Γ(λ) function. The eigenvalues of the sub-
systems (black circles) are also represented.

eigenvalues of the system, namely 0.3614, 0.9060 and 1.8327. In this figure black
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5. Modal synthesis in elastically coupled subsystems

circles represent subsystem eigenvalues and black squares represent coupled system

eigenvalues.

Given the significant frequency shift of the eigenvalues for coupled system vs. that

of the decoupled subsystems, the interest in knowing the resonant frequencies of the

coupled system is justified, since the excitation frequency may then coincided with a

resonant frequency of the coupled system.

5.5.2 Two plates connected by five springs

The following example illustrates the performance of the method on a continuous

system which is discretised, giving a mesh of 13x23 degrees of freedom.

The feature of having several degrees of freedom connected trough springs is also

introduced in this example having 5 connections.

The model involves two plates with dimensions: 1.3 m length, 2.3 m width and

20 cm thickness and material properties as indicated in Table 5.1.

Figure 5.9: Example of continuous system with several non-holonomic coupling con-
nections. Two plates connected through 5 springs.

In Figure 5.10, the continuous line is Γ(λ) as defined in Eq. (5.39), computed over

a λ sweep from 0 to 4 with 1E−3 incremental step. In a real case the zone to explore

will be defined by the nature of the problem, engine RPM, fan characteristics, etc.

As it is known already, its zero value crossings correspond to the modal frequencies
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Material ρv (kg/m3) ν E (Pa) Lx (m) Ly (m) h (m)
Concrete 2000 0.2 2 · 1010 2.3 1.3 0.2
Concrete 2000 0.2 2 · 1010 2.3 1.3 0.2

Table 5.1: Geometric and mechanical properties of the two plates (ρv is the volumetric
density, ν is the Poisson’s ratio, E is the Young modulus, Lx, Ly the plate dimensions
and h the plate thickness).

Spring K ( N
m

) x (m) y (m)
1 2 · 105 0.3 0.4
2 2 · 105 0.6 0.1
3 2 · 105 0.2 0.4
4 2 · 105 0.5 0.5
5 2 · 105 0.1 0.1

Table 5.2: Stiffness K and position of each spring that connects the plates.

of the system, ∗ symbols indicate these zero crossings, which are the eigenvalues of

the system.

The accuracy of the obtained result is analysed in Figure 5.11, which shows on

top the eigenvalues computed through Γ(λ) (abscissa axis) versus the eigenvalues of

the system directly compute with standard eigenvalue solver (ordinate axis). The

scatter of resulting points is then least squares approximated by a straight line with

equation y = 0.99999x + 0.00066, meaning that the correlation of the method results

to those of a standard eigensolver is 0.99998, which is regarded as an optimal result.

Figure 5.12 shows the relative error in the eigenmodes. Such relative error is

computed in vector form as the difference between the eigenvectors computed through

the gamma function and the eigenvectors obtained with standard solver, each of them

normalised by the norm of the (standardly computed) eigenvector. In all cases the

error is below 1E − 9.

5.6 Conclusions

For two coupled subsystems, a function Γ(λ) whose zeroes correspond to the eigenfre-

quencies of the coupled system has been derived, in which Γ(λ) is the determinant of

a matrix of order equal to the number of subsystem connections, typically a smaller
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Figure 5.10: —–Γ (λ) function whose zeros are the system eigenvalues, ∗ Eigenvalues
of the system calculated using standard numerical methods

number than the subsystems’ number of degrees of freedom.

Function Γ(λ) depends on the eigenvalues and eigenvectors of each of the two

subsystems as well as on the elastic constants of the springs which connect them.

Yet, in the solution procedure of the proposed method, the subsystem eigenvalues and

eigenvectors get combined into receptance functions. Therefore, for an experimental

application of the method, it is not needed to know the subsystems’ eigenmodes and

eigenfrequencies. Knowing the receptances between the coupling degrees of freedom

suffices.

Furthermore, it has been demonstrated the procedure for obtaining the corre-

sponding eigenvectors based on the matrix whose determinant generates Γ(λ).

Finally, the method has been applied to two examples, a discrete system with one

single connection and a continuous system with 5 connections. In both examples the

proposed method shows fully satisfactory performance.
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5.6. Conclusions

Figure 5.11: Linear correlation between the system eigenvalues and the Γ(λ) zeros.
Top curve: Linear approximation. Bottom curve: Differences between the linear
approximation and the value calculated with this paper method (fitting residue).
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Figure 5.12: Relative error on the obtained eigenvectors vs. system ones
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Chapter 6

Conclusions

6.1 Contributions

The contributions of this thesis are as follows:

• The formal definition of Path (Chapter 2).

• Proof of the completeness of the description of the system behaviour by means

of paths (Chapter 2).

• A methodology for the automatic identification of subsystems . It is based

on the cluster analysis applied to powers of the transfer matrix. It is shown,

through numerical examples, how the method works and is able to identify

subsystems on its own without additional information or guidelines (Chapter

3).

• An important parameter in order to explain the good behaviour of the proposed

technique is the contrast of the matrix. It is also used as an estimator of the

coupling strength between subsystems (Chapter 3).

• A consistent comparison between the laboratory measurement of a box with air

cavity inside and a numerical model of the same box is shown. This validates

somehow both the numerical simulations and the reliability of the experimental

measurement. To neglect the radiation losses (effect of the air outside) is a

reasonable hypothesis if the interest is focused on the box and air cavity inside.
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The combination of a multiphysics FEM software (Code Aster EDF (2017)

with Gmsh Geuzaine and Remacle (2009)) with an automatic pre and post-

processing set of scripts is a valid option to reproduce the ATPA procedures

(Chapter 4).

• ATPA method properly characterises all the transmission paths, not only the

dominant ones (Chapter 4).

• The mechanical connectivity of the system can be defined by means of direct

transfer functions. This is frequency-dependent and can be influenced by a

proper definition of the measured degrees of freedom and points at the beginning

of the process. By taking into account the frequencies that are below the first

eigenfrequency, the physical structure of the system is identified.(Chapter 4)

• To the best of my knowledge it is the first eigenvalue and eigenvectors synthesis

approach for elastic(rather than rigid) coupled subsystems based on eigenvalues

and eigenvectors of the subsystems (Chapter 5).

6.2 Publications derived from the thesis

Here a list of the publications, including papers and conferences

Articles in indexed journals

1. Magrans, F., J. Poblet-Puig, and A. Rodŕıguez-Ferran (2017). The solution of

linear mechanical systems in terms of path superposition. Mech. Syst. Signal

Proc. 85, 111–125.

2. Magrans, F. X., J. Poblet-Puig, and A. Rodŕıguez-Ferran (2018). A subsys-

tem identification method based on the path concept with coupling strength

estimation. Mech. Syst. Signal. Proc. 100, 588–604.

3. Aragonès, À., J. Poblet-Puig, K. Arcas, P. V. Rodŕıguez, F. X. Magrans,

and A. Rodŕıguez-Ferran (2019). Experimental and numerical study of ad-

vanced transfer path analysis applied to a box prototype. Mech. Syst. Signal.

Proc. 114, 448–466.
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4. Magrans, F. X. and J. Poblet-Puig (2018). Eigenvalue and eigenmode synthesis

in elastically coupled subsystems. J. Sound Vib. 432, 405 – 419.

Conferences

1. Magrans, F., J. Poblet-Puig, and A. Rodŕıguez-Ferran (2016, Aug). Sub-

structuring of mechanical systems based on the path concept. In Interna-

tional Congress and Exposition on Noise Control Engineering, pp. 2485–2494.

Deutsche Gesellschaft fr Akustik e.V. (DEGA).

2. Magrans, F. X., K. Arcas, P. Vicens Rodŕıguez, J. Poblet-Puig, and A. Rodŕıguez

Ferran (2017). Experimental numerical correlation of subsystem contribu-

tions in the advanced transfer path analysis framework. In 24th International

Congress on Sound and Vibration, pp. 1–8.

6.3 Future work

The following are some topics that might, perhaps, be of interest as fields of study of

vibroacoustic problems from the point of view of path theory.

• Forwarded problems. In many problems the propagation is important in one

direction only. In a building, for example, the noise is considered to go from

the emitter to a wall, from the wall to the ceiling, from the wall to a wall

in the upper room, always propagating in the same direction as it approaches

the receiver so that,in that situations, if TDij is not zero, TDij is zero or can be

neglected. When this happens, the T matrix can be arranged so that the upper

triangle is zero or negligible. In this case the maximum power of the matrix that

can be other than zero is its dimension, i.e. Tn+1 = 0, being n the dimension

of the matrix. This can be understood because loops cannot be formed. Not

forming loops should be equivalent to not having resonances and in effect, as

the finite Neumann series will be convergent and the complementary series will

be unnecessary according to the idea that there will be no resonances. Studying

what happens when feedback is minimal can be interesting.

• Physical interpretation: The complementary term of the Neumman series is

consistent with the interpretation of the system’s response to the excitation it
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receives. It contains the system’s eigenvalues that depend on the characteristics

of the system and are applied to the terms that have the highest power of the

matrix TD that indicate that they are the paths in stationary state. Further

physical interpretation of the complementary term of the Neumann series can

provide useful information for the applications of the method.

• Energy consequences: We have seen the relationship of the direct transfer ma-

trix with the interaction potentials. It is also clear that the lower powers of the

series represent the direct field and the first reflections. An interesting step is

to study the energetic interpretation of this form of expressing the solution, in-

cluding the SEA by adding the usual hypotheses, uncorrelated excitation, weak

coupling or not, etc.

• Numerical methods: Application of TD to numerical methods. If global trans-

fers are known for an open enclosure over n+2 points, degrees of freedom or

subsystems, in which there is a sender and a receiver, say n+1 and n+2, the

Direct Transfer from n+1 to n+2 is in turn the Global Transfer from n+1 to

n+2 when the other points are blocked. If the blocked points form a closed or

semi-closed contour (with one or more openings remaining), this is the solution

for the closed enclosure found using the solution for the free field. Developing

this concept and applying it to real cases can be interesting.

• Paths/Waves relationships:According to the Huygens principle Huygens (1962)

in its wave interpretation of light a wave propagates because each point of the

wave front radiates a new spherical wave. Fresnel and Fraunhofer developed

this idea by adding the necessary hypotheses to justify it quantitatively. The

interpretation of the solution of any linear system by means of paths coincides

exactly with the hypothesis of Huygens.

In reference to the Figure 6.1 the central bronze-coloured sphere would be the

source whose direct transfer is other than zero only for the stencil represented as a

bronze-coloured 3D cross. The paths of order 1 contained in the T matrix connect

the source to the small red spheres that will be the first wavefront. The T2 matrix

contains all the second order paths, including the ones that reach the little green

balls. This defines the second wavefront represented in the Figure 6.1 as a green

surface. The T3 matrix contains all the third order paths, including those that are
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Figure 6.1: For a source placed in the center. Red -Half of an ”spherical” wavefront
for the first order paths. Green-Half of an ”spherical” wavefront for the farthest
second order paths. Blue- Third order paths ”spherical” wavefront growing from a
point in the second order paths wavefront. This will happen in all wavefront

born on the points of the order wave front 2 and are directed to the outside. These

will form the spherical radiation from each point of the green wavefront according to

the Huygens hypothesis.

123





Appendix A

Taking a walk through the paths

A.1 History, background and some comments

A.1.1 The problem in its origins

In vibroacoustic a transmission path is a very intuitive idea that for a long time has

remained a non cognitive understanding.

In the late 70’s of the past century there was a need to understand precisely what a

“path” actually means. This was caused by the fast development of the vibroacoustic

modelling and design, especially in the automotive industry were the silence was

becoming a label of quality and determinant aspect to increase the sales.

Solving noise and vibration problems in a car, was of major importance in order

to know which were the noise and vibration transmission ”paths”.

Most of the automotive vibroacoustical laboratories in the 60’s had two main

problems to be solved. The first problem was the quantification of the contribution

to the total noise of each vibrating part of the passengers cabin. Lets call this problem,

problem A.

In those years, the method used to solve problem A was the called “Strip method”.

In this method the noisy object was totally covered with insulating blankets in order

to attain a very reduced noise. Then the surfaces were uncovered one by one and

their contributions obtained from direct measurement.

With this method two problems appear. The first one is that when wrapping the

noise radiating object with insulating blankets a heavy mass is being loaded on the
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structure and it is possible that his dynamical properties changed.

The second problem is the long time needed to cover all surfaces with the necessary

complex blankets.

A representation of this method can be observed in the Figure A.1. On the lower

car the floor blanket on the backward seats has been removed and the contribution

of that part of the floor can be measured.

Figure A.1: Problem A, Strip method used in a car interior

In the Figure A.2 a real application of the strip method (problem A) on an engine

can be seen.

Figure A.2: Problem A, Strip method used in an engine Lebresne (1975)

The contributions obtained may be seen in the Figure A.3. At the upper part of

these figure appear the contributions of each part of the engine to the total noise in

a microphone placed in the engine test room.

126
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Figure A.3: Problem A, Contributions from the top to down. Normal engine, un-
treated motor without fan, gear cover, oil pan, clutch housing and the last one engine
totally encapsulated, Lebresne (1975)

The “strip” method has been applied to engines, cars or even to trains , and it is

still being applied nowadays.

The second problem, problem B, consisted on determining the noise produced by

each force that was acting on a mechanical system. It was important to identify which

was the contribution to the noise in the passenger cabin coming from each support

of the engine, the exhaust pipe or other mechanical elements.

In order to solve this problem, the method used was to uncouple the engine from

the car body and then to attach the supports one by one.

Even if both problems A, B look similar they have deep differences.

In problem B it is desired to know how much noise makes each one of the forces

applied by the motor on the car structure, but it is not attempted to know through
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which elements the noise/vibration passes through. It is simply accepted that the

noise may have passed through any possible component. It may be that when the

excitation arrives to the gear-shift lever a certain frequency becomes amplified by a

resonance but, as the aim is not to modify the structure this is not important.

Problem A, even looking similar, is very different. It pretends to know the con-

tribution to the total noise of the vibration of one panel, but this noise needs to be

able to be added to the noises coming from the other panels. In this case the path it

is important.

The noise of the door vibration can be tested by exciting it through a hammer

impact or any other method, but this vibration produces the vibration of the rest

of the panels, the measured noise will not be already additive because it does not

correspond to the door noise only. Exciting all panels and adding the previously

measured noises we will take into account each panel several times.

It is necessary then to know the path through which the perturbation goes across.

The pictures in Figure A.4 show this idea.

Figure A.4: If the whole surface is divided in a set of sub-surfaces, to have an additive
noise the noise made only by the excited surface needs to be measured. Uper: Non
additive noise. Bottom: Additive noise

In the 70’s several papers were published Koss and Alfredson (1974b),Potter

(1977),Bendat (1976b),Bendat (1976a), describing a method to obtain the contri-
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butions of the displacements or accelerations of each part of a mechanical system, on

the pressure in a microphone. A set of nodes were active emitters and one of them

was a passive receiver. The objective was not to find the paths but to separate the

contributions of different parts.

The method used in the above-mentioned articles is the same that now is called

OTPA (Operational Transfer Path Analysis) but had the addendum of implementing

the partial coherence approach to identify the different sources.

It was applied in several problems, for example in Koss and Alfredson (1974a),Alfredson

(1977).

Later, in Magrans (1981), the concept of path and its quantification were defined.

This does not preclude a more formal definition in the article Magrans et al. (2017)

published as a result of this thesis.

The transfer function normally understood as a relationship between the accel-

eration at one point and the force applied on another point was regularly used to

characterize structures.

In some way this transfer functions represent the sensitivity in one point due to

the excitation in another. The excitation that arrives to the second point has travelled

through all paths and can only identify the contributions but not the paths, for this

reason it was named Global Transfer.

In the paper Magrans (1981) a new type of transfer function (using the force or

not) was defined. This so called Direct Transfer function characterizes the paths.

The Direct Transfer is very difficult to obtain experimentally but it can be obtained

from the Global transfer, which is easily measurable, through the equations obtained

in the paper.

As a conclusion, a method to find the paths, from a theoretical and experimental

point of view, based on the equations that relate Global Transfers (the measurable

ones) and Direct Transfers (the paths) with no use of the forces, was obtained.

The same paper explained how to find the so-called external signal, directly related

to the force, using the Global Transfer or through the Direct Transfer. In any case,

the characterization of the paths, as clearly stated in the paper, were the Direct

Transfers.

As this appendix is about the paths history the next step has to be to explain

why the paper Magrans (1981) was the source of the two methods more used in the

industry nowadays, the TPA and the ATPA methods.
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One main-actor of the vibroacoustic research in the automotive industry in the

80s in the last century was the Keller company based in Zurich. For this reason, the

methods exposed in the Magrans (1981) paper were discussed in that company. The

technical document with the conclusions was Gillard (1980). Note that the title of the

document “Method of measurement for determining the transmission paths and

the contributions of the different excitation forces simultaneously applied to a linear

mechanical system” highlights two aspects of it, identification of transmission paths

and identification of force contributions. This study, Gillard (1980), as a conclusion

gave preference to the forces transmission method nowadays called TPA (Classical

Transfer Path Analysis).

This TPA method in reality is not related with the paths but with the contribu-

tions of different forces applied on the structure and it is nothing but an inversion of

the dynamical model and it was the one adopted by the car industry in preference.

A path method should be independent of the Forces as it describes the topology

of the mechanical system.

The path method based on Direct Transfer function, has been developed all along

30 years by the private company ICR S.L. based in Barcelona and demonstrated his

ability to identify and to quantify the paths.

In the academic world this method is called GTDT and in the industrial one is

called ATPA (Advanced Transfer Path Analysis)

The method has been applied in railways to find the parts of the noise coming

from the vibration of each panel and from the leaks to several microphones. Also,

it is being used to know the vibration that arrives through the structural links to

the final noise in the microphone and to know which part of the noise gets to the

microphone after passing through a link and then through some selected panels.

After this exposition of the history of the transmission paths, let’s look at some

basic concepts.

A.1.2 Some basic ideas, paths, connectivity, higher order

paths

Now some general concepts about paths will be explained in a simple way.

Specially the ideas of connectivity and flow will be given and related to the physical

parameters.
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Even if a path is a very intuitive idea, some times it is easy to confuse paths with

contributions. A contribution may be thought as a certain signal that goes from one

node to other but through all possible paths.

Special importance vis a vis of this thesis will be given to the examples in order

to explain the higher order paths.

To make it a bit more amusing than just about a black box imagine that in

Figure A.5 the paths connecting the villages need to be identified and that the only

possible access points are the villages (input/output).

Figure A.5: Hidden paths problem

The dense woods and even the clouds do not allow to see the paths even flying

above the land.

A method to know if two villages are connected without having to pass by another

village (directly connected)would be to prevent from any input/output of people in all

villages but two of them. Introduce, then, people (signal) in a non-blocked one. If this

village is connected to the other not blocked village a certain part of the introduced

people will appear in the connected village, if the path does not exist no new people

will appear in the other non-blocked village.

Unfortunately, it is not allowed to block input/output in villages and it is only

possible to see how all villages change the population when people are introduced into

a village. The problem is that from village A people can reach village B through a road

that passes through village C or through village C and D or any other combination.

So this type of test does not show the villages connected via a direct path. With
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this test we can only know the contribution from the village A to all other villages

regardless of the used paths.

Figure A.6: Hidden paths problem

In Figure A.6 we can see the actual paths that are aimed to be found.

A closer example to the problems of the type encountered in the car industry can

be seen in Figure A.7.

In Figure A.7 there is a force applied to the wheel, for example the dynamical

forces produced by the irregular surface of the road.

This force has a certain frequency spectrum but let’s imagine that the interior

noise has a peak at 80 Hz that was not-existent in the input force. The question

is who produces this peak. We can make an exploration of the responses of the

elements in the chain of paths, the semi-axe, the damper, the spring, the gear lever,

etc., trying to discover the responsible the 80 Hz amplification. Some times that can

be a successful strategy but when an element in the chain is excited we can “ear”

also the response of other elements in the chain on the excited element preventing to

conclude who is the real responsible.

The path analysis will allow to know the response of the subsystems and of any

set of subsystems isolated from the rest.

If the 80 Hz are a consequence of a local resonance of the semi-axe it will be seen

in the paths as if it is a resonance of the damper.

The analysis of the paths will describe the response of any subset of subsystems

and then allow to know where the problem is.
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Figure A.7: Sketch of the vibroacoustic transmission in a car. Dynamical force on
the wheel generates sound in the passengers cabin. Who is amplifying the 80 Hz?

Let us begin to introduce numbers into these path concepts. Consider, as an

example of mechanical system, a chair .

In the upper left of Figure A.8 the mechanical system can be seen. On the right

the chair representation is transformed in a flat figure in order to show that the 3D is

not an important characteristic. On the left of the middle row the nodes, arbitrarily

choosen, are numbered. On the right figure of this intermediate row this figure is

transformed into a graph.

In the lower row of the same Figure A.8 the graph is described through the adjoin

matrix Λ. Rows and columns are the nodes, the coefficients are 1 if the row and

column of this coefficient are connected and 0 if they are not connected. Therefore is

a connectivity matrix with only zeros and ones.

Connectivity in this example is purely geometric, says only if two nodes are joined

from a geometrical point of view.

In this example the nodes 1 and 2 are not connected if only the vibrations are

taken in consideration, if the acoustic phenomena are included in the problem both

nodes are joined through the air.

As a conclusion, the physical phenomena being studied can change the connectiv-
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ity of the graph.

In addition to the connectivity there is another objective when defining a path.

A number has to be associated to the path to inform about how the signals in one

node influences the signal in the other through this path. That means that a path

has to inform about the connectivity of the couples of nodes through the physical

signals present in the problem and, furthermore through an associated number that

explains which part of the signal in P2 comes from P1, being P2 and P1 two nodes

of the problem.

If the adjoin matrix is called Ξ and a coefficient is called ξij, the coefficients ik of

the product of the adjoin matrix by herself will be ξij∗ξjk with the repeated coefficient

convention.

If the coefficients of Ξ represent the connectivity of the couples of nodes, the

coefficients of Ξ2 will represent the connectivity of all the couples of nodes through

the paths of second order.

For the same reason the power k of the matrix Ξ will represent the connectivity

of all couples of nodes through the paths of order k.

If the adjoin matrix Ξ represents the connectivity of the nodes of a maze, where

the nodes are the intersections of the straights parts, it will be possible to know if it is

possible to arrive to the node j from the node i making powers of the adjoin matrix.

If it is possible to arrive to j coming from i, there should be some power k where the

coefficient ij will become different from zero. Let say this happens at k = n, this will

mean that there exists n paths of order k that link i with j.

In Figure A.9 it can be seen the adjoin matrix raised to the powers 1 to 4 . Each

element counts the number of nth order paths that links each couple of nodes. For

example, element ξ67 in the upper row of the right hand matrix (power 2) has a value

of 2 showing that there are two paths of second order joining the nodes 6 and 7.

This paths are represented in the Figure A.10 and they are the paths going from

6 to 7 through 3 and through 4.

A.1.3 Paths in linear systems

Some definitions and the concepts called Global Transfer and Direct Transfer in

agreement with Magrans (1981) will now be given .
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Figure A.8: A mechanical system example and his final geometrical adjoin matrix

We will call Global transfer between the subsystem i and the subsystem j to the

ratio of the signal in j and the signal in i when an external excitation is applied to i

and no external excitations are applied to the rest of the points.

TGij ≡
sj
si

fi 6= 0 fj = 0∀j 6= i (A.1)

If, as an example, the subsystems are degrees of freedom in a mechanical system

and the signals are displacements, each row i of the global transfer matrix corresponds

to the deformed shape of the system normalized to the displacement in i, when a force

is applied to i.

From the point of view of paths it is “global” in the sense that the excitation in

i has arrived to j through all possible paths between i and j.
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A. Taking a walk through the paths

Figure A.9: Chair adjoin matrix raised to powers 1 to 4. a) power 1, b) power 2, c)
power 3, d) power 4

We can think of exciting with a hammer in a point i on the body of a car, for

example. The noise in a microphone placed at j has arrived through all paths that

links the point i with the point j, in other words the noise in j is a consequence of

the vibration of all points of the body of the car that had as origin the impact in i.

We will call Direct Transfer from i to j, being j 6= i to the ratio between the signal

in j and the signal in i,
sj
si

, when i has been excited with an external force and the

other points,except the point j, are blocked.

TDij ≡
sj
si

fi 6= 0 fj = 0 sk = 0 ∀k 6= i, j (A.2)

From a paths point of view, that is the signal that arrives from i to j when all

other paths are blocked, then it is by definition the path that links i with j.

Take into account that , assuming the system to be linear, the image of zero is

zero and then the contribution of all blocked points to the signal in j is zero.

Some additional definitions are still necessary. First one is direct transfer from i

to i.
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Figure A.10: Graph representation of the paths on the chair. Colour lines shows the
second order paths from 6 to 7

The Direct Transfer from i to i will be the part of the signal in i that does not

come from the movement in the other points.

TDii ≡
si
sei

(A.3)

being si the signal in i when fi 6= 0 sj = 0 ∀j 6= i

and sei the signal in i when fi 6= 0 and fj = 0 ∀j 6= i

The signal at point labelled i coming from an external excitation applied to i will

be called “external signal” and noted as sei

In the paths sense TDij is the part of the total signal in i that is produced by the

response in the rest of the points to the force applied to i. That is, the feedback on i

of the signal transmitted through all paths of the system.

Lets say, if the rest of the points in the chosen set were blocked the signal in i

coming from an external excitation applied to i, that normally should be sei , would

then be TDij s
e
i .

The quantity defined as Global Transfer function is the only that can be measured

easily in a structure.

In a mechanical system, for example, we can excite the degree of freedom corre-

sponding to the normal displacement with a hammer or with an electromechanical
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shaker applied to i and measure the relationship between the response of the vibra-

tion amplitude of the degree of freedom i and all other degrees of freedom j. These

relationships are the Global transfer functions.

The presence of background noise causes the measurement to be in the sense of

the optimal statistic approximation, cross spectra, coherence etc.

On the other side the Direct transfer function quantifies the transmission path

by blocking the paths that are not direct between i and j. However, this measure is

complicated, as it has been shown in the strip method.

The relationship between the measurable Global Transfer TG and the searched

Direct Transfer is done by Eq. (A.4) and by Eq. (A.5)

TGij =
n∑

k=1k 6=i

TGikT
D
kj (A.4)

and

1 =
n∑
k=1

TGikT
D
ki (A.5)

In the context of the above definitions, if in a system we choose a set (pk), the

external signal in the subsystems may be defined into two different ways that match

with the explained a priori concepts.

First way to recover the external signals, or its equivalent forces, is to know the

signal on the system and to use the A.7.

si = TGkis
e
k (A.6)

or in his matrix form

s = TGse ⇔ s = TGBf (A.7)

Where B is a diagonal matrix relating force with signal at every point.

Eq. (A.7) is the solution of the problem B and it is simply an inversion method.

Measuring TG between all points using or not forces, the signals in the chosen

points can be used to recover the forces or their effects se, through matrix inversion,
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when the system is excited by its own excitation sources,engine , fan or any other

source of force.

This method is the so called TPA, it does not provide information on the trans-

mission paths but only about contributions.

The second way to obtain the external signals is to split si using the TD

si = TDii s
e
i +

n∑
j=1
j 6=i

sjT
D
ji (A.8)

or also in matrix form


s1

s2

...

sn

 =


TD11 ... 0 0

0 TD22 ... 0

... ... ... ...

0 0 ... TDnn



se1

se2

...

sen

+


0 TD21 ... TDn1

TD12 0 ... TDn2

... ... ... ...

TD1n TD2n ... 0



s1

s2

...

sn

 (A.9)

Eq. (A.9) will let us know the contributions of the subsystems, the paths linking

them and the exterior signal. To do it we need to measure TG and to calculate TD.

This is the method called ATPA.

A.1.4 Example

To better understand the differences between TG and TD we will apply the concepts

to a 2D acoustic room with rigid walls.

In any acoustical space the Helmholtz equation should be fulfilled at any frequency.

∆pω +
ω2

c2
pω = δω (r− r0) (A.10)

∀P on the walls

(
∂pω
∂n̄

)
P

= 0 (A.11)

Let a rectangular 2D box of 1mx1m. In this example we will make a 8x8 grid,

being the central point of each cell an element of our set of points to study the Direct

Transfer.
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Using the modal expansion, in a rectangular 2D room with rigid walls the pressure

that a delta source placed in (xC , yC) produces in (xD, yD) is:

pω(xD, yD) =
M∑
m=0

N∑
n=0

Ψmn(xC , yC)Ψmn(xD, yD)

Λmn

(
ω2

mn
− ω2

) (A.12)

where Λmn is a normalization constant and

Ψmn(x, y) = cos(mπ
x

Lx
) cos(nπ

y

Ly
) m=0, 1, . . . , 8 and n=0, 1, . . . , 8 (A.13)

ωm,n = πc

√(
m

Lx

)2

+

(
n

Ly

)2

(A.14)

being Ψmn(x, y) the eigenmode m,n and ωm,n the eigenvalue angular velocity .

The modal expansion truncated at N , M means that the source has dimensions

Lx/M and Ly/N . The truncation matches in our case to the grid size and then

M = 8, N = 8.

In agreement with the definition of TG the global transfer from point C to point

D has to be:

TGCD =

M∑
m=0

N∑
n=0

Ψmn(xC ,yC)Ψmn(xD,yD)

Λmn(ω2
mn
−ω2)

M∑
m=0

N∑
n=0

Ψ2
mn

(xC ,yC)

Λmn(ω2
mn
−ω2)

(A.15)

and the TG, which may be observed in in Figure A.11, is a full matrix and his

rows are the pressures when the force is applied on the element of this row.

The TD matrix calculated by means of Eq. (A.4) can be seen in Figure A.12

The TD matrix is a sparse matrix that gives the connectivity of the degrees of

freedom.

in Figure A.13 and Figure A.14 the meaning of the TG matrix rows can be seen.

As told before, TG rows are the pressures in all grid’s points when a delta source

acts on an element of the row.

The TD matrix expresses the connectivity of the elements of the analysed grid and

that connectivity can be seen in first order as a typical first order stencil in Finite

differences or in Finite elements. It can be seen in Figure A.15 and Figure A.16

As told before the Global transfers are the deformed shapes of the system under

an excitation unity and the Direct Transfers are the connectivities between the grid
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Figure A.11: k = 2π
λ
, h = 1

8
, logaritmic representation of the modulus of the coeficients

of the Global transfer matrix when kh = 1.2

points but, also by definition that Direct transfers multiplied by the pressures on each

point and added is the pressure in the destination point, this case the pressure in 1

or in 28.

Multiplying each value in Figure A.14 cell by cell with the same cells in Figure A.15

we find the value of the pressure in cell 28 when an unitary strength monopole source

is acting on cell 1. That is the meaning of the expression Eq. (A.9) which is is

equivalent to the numeric methods but taking a full stencil filling all calculus space.

It can be seen that the more important values are the ones normally used in the

stencils but some other values exist that can give significant contributions.

A.2 A glimpse of the path travelled

Apart from the most recent articles already described in chapter 2, a list, sorted by

concepts and holding only some selected references, is given hereunder.

• Introductory papers
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Figure A.12: k = 2π
λ
, h = 1

8
,logaritmic representation of the modulus of the coeficients

of the Direct transfer matrix when kh = 1.2

1. Low and Mid-High frequency Advanced Transmission Path Analysis ,

ICSV 2005, Magrans et al. (2005). It is a first simple and intuitive in-

troduction to the paths method.

2. Path Analysis. Magrans (2009). NAG DAGA 2009 conference in Rotter-

dam; Explains the history and the reasons to develop TPA and ATPA ,

this last one also called in Academic environment GTDT (Global Transfer,

Direct Transfer), basic explanations on the meaning of both techniques are

given.

3. General framework for transfer path analysis:History, theory and classifi-

cation of techniques,ref.Van der Seijs et al. (2016); It is a resume of the

methods using the word paths in vibroacoustic. Has to be evaluated with

care as mixes true Path methods as the OTPA and the GTDT with the

called classical TPA that is any more that a model inversion method.

• Theory and historical remarks

1. Method of Measuring Transmission Paths; The original paper published
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Figure A.13: Global transfer matrix when kh = 1.2, source of pressure in 29

in the JSV Magrans (1981) ; States the basic theory, mathematics and

physical interpretation.

2. Rapporto Technico N. 80.21 Settembre 1980 metodo,; Discussion of the

previous paper in the Keller Company in Italian translated from the French

original report.

3. The solution of linear mechanical systems in terms of path superposition

Magrans et al. (2017); Even if published a lot later it is a basic element

in the coherence of the path interpretation. Show how the solution of

all linear system may be expressed as a sum of paths of all order with

independence of the norm of the matrix of the problem. Is the first article

of this thesis

• Problems solved in path framework

1. Direct Transference applied to the study of room acoustics Magrans (1984);

Application to a synthesis problem going from the local behaviour between

two walls to the total behaviour of the room.
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Figure A.14: Global transfer matrix when kh = 1.2,source of pressure in 1

2. Definition and calculation of Transmission Paths within a S.E.A. frame-

work Magrans (1993); Extension of the Paths definition to the Statistical

Energy Analysis.Explicit graph of the problem.

3. The Global Transfer Direct Transfer Method applied to a finite simply

supported elastic beam Guasch and Magrans (2004a); A study of the con-

nectivity of a beam using the Direct Transfer Function.

4. The role of the Direct Transfer Matrix as a connectivity matrix and ap-

plication to the Helmholtz equation in 2D. Relation to numerical methods

and free field radiation example; Direct Transfer matrix used to evaluate

the connectivity in acoustics and use of the DTF to calculate the radiation

of a circle Magrans and Guasch (2005)

5. A compact formulation for conditioned spectral density function analysis

by mean of the LDLH matrix factorization Guasch and Magrans (2004b);

• Research on useful concepts in path framework.

1. A comparison of two in-situ transfer path analysis methods Zafeiropoulos

et al. (2013); Experimental comparison between ATPA and iTPA to see

144



A.2. A glimpse of the path travelled

Figure A.15: Direct transfer matrix row 28, Direct transfer from all other points to
28 kh = 1.2

their applicability to car industry in collaboration with Bentley Motors

Ltd.

2. Graph theory applied to noise and vibration control in statistical energy

analysis models Guasch and Cortés (2009); The Path ideas were always

based in the graphs concepts as can be seen in Fig. 4 of the Magrans

(1993). This paper makes it formal applying the previous knowledge on

paths to this specific case and studying the possibility of found an ap-

proximate solution based on to obtain the paths with more important

contributions. In this way to solve a linear system is equivalent to make

a few multiplications and additions. Several papers and even a Thesis has

been published on the same way.

3. A subsystem identification method based on the path concept with cou-

pling strength estimation Magrans et al. (2018); In the theory as in the

experimentation to know what a subsystem is and his coupling force is

basic. This paper helps in the concepts and in the methods based in the

DTF matrix powers. This is the second paper developed and published in
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Figure A.16: Direct transfer matrix row 1, Direct transfer from all others points to
the point 1 ,kh = 1.2

the frame of this Thesis.

4. Analytical transmissibility based transfer path analysis for multi-energy-

domain systems using bond graphs Jalali Mashayekhi and Behdinan (2017);

This work enlarges the field of application of the GTDT to unexpected

fields as the hydraulic and electrical machines. The used tool are the

Bond Graphs

5. Response prediction techniques and case studies of a path blocking sys-

tem based on Global transmissibility Direct transmissibility method Wang

et al. (2017); Evaluation of the effect in the Global Transfers of some Direct

Transfers for a selected set of cases. Very important to have a systematic

method to modify the topology of an structure.

6. Response Prediction of a mechanical system with virtual boundary con-

ditions based on the blocked transfer function methodTan, Xu, and Sui

(Tan et al.); Extension of the DTF concept to sets of nodes to define a

called BTF, Blocked Transfer Function.

7. Direct responses and Force transmissibility in the characterization of cou-
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pled structures Jové and Guasch (2017); In the same line that the previous

paper but adding the Forces coupling and transmission.

8. Vehicle and rail noise separation method proposal based on transfer path

analysis techniques; A dynamic GTDT method to identify the noise radi-

ated by the rail and the noise radiated by the wheels Malkoun, Sapena,

Arcas, and Magrans (Malkoun et al.)

9. Vehicle and rail noise separation method proposal based on Transfer path

analysis techniques Thompson et al. (2018). Experimental application of

the GTDT method on railways problem where several sources acts simul-

taneously and changes their transfer values along the time with the aim

of to split the noise coming from the rail or from the wheels. Practical

comparison with several other methods.

147





Bibliography

Alfredson, R. (1977). The partial coherence technique for source identification on a
diesel engine. Journal of Sound and Vibration 55 (4), 487–494.

Allen, M. S., R. L. Mayes, and E. J. Bergman (2010). Experimental modal substruc-
turing to couple and uncouple substructures with flexible fixtures and multi-point
connections. Journal of Sound and Vibration 329 (23), 4891–4906.

Aragonès, A., L. Maxit, and O. Guasch (2015). A graph theory approach to identify
resonant and non-resonant transmission paths in statistical modal energy distribu-
tion analysis. Journal of Sound and Vibration 350, 91–110.

Aragonès, A., J. Poblet-Puig, K. Arcas, P. Rodŕıguez, F. X. Magrans, and
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