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Abstract

A solution for the automation of inventory taking and location of prod-
ucts in a store or warehouse is presented. Radio Frequency Identifica-
tion (RFID), an automatic identification technology, and mobile robotics
are combined in the design of an inventory robot. The navigation of the
robot is commanded by an algorithm that takes as input the progress of
new identifications. Such algorithm is essential for the robot to deliver
an accuracy higher than 99% and for an optimal inventory duration. An
interface for the interaction with the robot and a set of procedures for its
operation are implemented. The location of items is implemented using
two different approaches. The first approach applies clustering to streams
of identifications and assigns the known location of a reference item to
all the members of a cluster. The second approach applies Bayesian Re-
cursive Estimation after the computation of an identification model. A
methodology for the assessment is proposed and the data set generated
for the analysis shared openly. Inventory accuracy and location are as-
sessed in real scenarios. The proposed solution is demonstrated valuable
and ready for the market.
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Resum

Es presenta una solucié per a 1’automatizacié de ’inventari i la local-
itzaci6 dels productes de tendes i magatzems. Radio Frequecy Identi-
fication (RFID), una tecnologia d’identificacié automatica, i la robotica
mobil es combinen per dissenyar un robot per a inventaris. La navegacio
del robot esta comandada per un algoritme que escolta el progrés de les
noves identificacions. L’algoritme és essencial per tal que el robot obtin-
gui una exactitud superior al 99% 1 per tal que la duracié de I’inventari
sigui optima. S’implementen una interficie d’interaccid i el conjunt de
procediments necessaris per a operar amb el robot. La localitzaci6 dels
productes s’aborda de dues maneres. La primera consisteix en aplicar
clustering a les cadenes d’identificacions dels productes i després assignar
la localitzacio coneguda d’un producte de referencia a tots els membres
del cluster. El segon metode de localitzacié consisteix en aplicar Bayesian
Recursive Estimation després d’haver computat un model d’identificacio.
Es proposa una metodolgia per a I’avaluacié dels inventaris 1 el dataset
generat per a I’analisi és compartit obertament. L’exactitud dels inven-
taris i la localitzacié s’avaluen en escenaris reals. Es demostra que la
soluci6 proposada és de valor i esta llesta per entrar al mercat.

v
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Chapter 1

INTRODUCTION

1.1 Problem statement

The goal of this thesis is the development of a solution for the automa-
tion of inventory taking and the estimation of items location in stores and
warehouses. An accurate inventory count and a good estimation of the
items location open new opportunities to increase the operational effi-
ciency of the supply chain and to enhance the customer experience. The
solution proposed does not require either human intervention or the in-
stallation of any fixed infrastructure. In this sense, it is fully autonomous
and space-agnostic. The solution uses Radio Frequency Identification
(RFID), an automatic identification technology, combined with mobile
autonomous robotics. While both technologies are mature and exploited
separately in several applications, their combination for the automation
of stock-taking had not been explored at the start of this thesis. In this
sense, an algorithm that controls the navigation based on the progress of
RFID identifications is required to yield an accurate inventory count. Re-
garding items location, algorithms are implemented and assessed in a real
scenario. Figure 4.6 depicts the inventory and location robot designed and
implemented in an actual retail store.
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Figure 1.1: The robot taking inventory at an actual store.

1.2 Motivation

Commonly, inventory taking in a store or warehouse is performed manu-
ally by associates, which implies a great effort and unavoidable system-
atic errors. Humans performing repetitive, tedious and prolonged physical
tasks are in nature fallible and, as a consequence, inaccurate. Moreover,
such tasks cause injuries and dissatisfaction. As a consequence, brick and
mortar retailers have no means to know what they have in their stores
nor where they have it. This presents serious inconveniences for physi-
cal stores to converge with online commerce, which can offer immediate
information regarding the availability of products. In fact, the strategi-
cal move of brick and mortar retailing is to offer the conveniences of
e-commerce to their customers but inside the store. For instance, browse
online and later try on or pick the order in the store. For that matter,
the foremost challenge is ensuring that a customer’s order can actually be
served. Failing to do so directly translates into customer frustration and
a negative perception of the service. As a consequence, customers move
to electronic and omnichannel platforms. Besides, an inaccurate visibil-

2
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ity of goods within a supply chain hampers reaching optimal efficiency
levels in operations, with a consequent loss of value. For instance, the
reorder point of goods relies on estimated inventory levels. Therefore, an
inaccurate inventory estimation may trigger unnecessary orders or fail to
prevent stockouts. Furthermore, the inaccuracy is not only contributed by
a deviation in an items’ count but also by items’ misplacement. An item
that is not at the right location is in practice unavailable. Summing up,
the lack of means to effortlessly keep an accurate and updated inventory
record, including items’ locations, hinders reaching a critical efficiency in
supply chain operations to keep up with the pace of innovation.

1.3 Contribution

The topmost contribution of this thesis is a solution for inventory taking
at retail stores. The solution is demonstrated to yield the most accurate
to date stock count and location of items and enables updating the data
without human intervention as often as once a day, as opposed to the
current once a quarter or once a year.

At a lower level, an algorithm for the integration of the robot’s naviga-
tion and the RFID data stream is proposed. A navigation control that takes
as input the progress of RFID identifications is indispensable to maxi-
mize inventory accuracy. Additionally, a framework for a comparative
assessment of inventory figures is defined. In reality, given that there are
no accurate tools for inventory measurement more accurate than the pro-
posed solution, it is very difficult to establish the ground truth. Hence, a
procedure for accuracy evaluation is defined.

Regarding the robot’s operation, a simplified set of procedures have
been developed allowing its operation by unskilled users. Accordingly,
a human machine interface for seamless control and monitoring of the
robot has been designed. Both the operations and the interface have been
verified and validated by real users.

For the location of items, two algorithms have been explored. On one
hand, clustering has been applied to streams of identifications in order to
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group items by spatial proximity. Reference objects with known locations
determine the location of grouped items. In this case, item locations are
discrete since they are those of the reference objects. On the second hand,
Bayesian updating has been applied following a supervised measurement
of the detection model. In this case, computed locations are continuous
and reference objects are required only during the model measurement.

The dataset for the assessment of location algorithms is shared for re-
producibility and future improvements. A test setting was prepared with
the specific purpose of location assessment. It involved coding and plac-
ing RFID labels in 7000 books at the Pompeu Fabra University Library.
The dataset includes thousands of observations recorded during several
inventory rounds.

1.4 Organisation

This thesis is organised in seven chapters. Chapter 2 presents the con-
text of this work, including the origin and consequences of Inventory
Record Inaccuracy (IRI); the foundations of Radio Frequency Identifi-
cation (RFID) and its application to inventory taking and location; and an
overview of robotic technologies with a focus on solutions that combine
robotics and RFID. Chapter 3 introduces early attempts to the design of
the robot. It includes the initial conceptualisation of the idea and learnings
from preliminary experimentations. The focus is on two designs, one that
makes use of a humanoid robot, and another that leverages an old mobile
base. These were the seeds of the final solution, presented in Chapter 4,
where the design of the robot is explained, detailing its three main parts:
the identification subsystem; the robotic subsystem; and the human-robot
interface for operation. A study with real users is undertaken in order to
validate the design. Chapter 5 focuses on the assessment of the accuracy
of the proposed solution. A methodology is proposed, which includes the
computation of accuracy and the definition of specific figures of merit.
The actual experiments undertaken in real scenarios, University Library
and a retail store, are described and their assessment completed. The

4
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analysis includes the comparison of the robot’s performance with man-
ual inventorying. In Chapter 6 the algorithms to estimate the location of
items are addressed, including the description of the location dataset pre-
pared for the evaluation. Two location algorithms are described and their
accuracy analysed. To conclude, Chapter 7 presents the conclusions and
future work of this thesis.
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Chapter 2
BACKGROUND

2.1 Inventory record inaccuracy

Inventory, in its broadest meaning, is defined as a complete list of items.
In this sense, in a retail environment, this includes not only goods avail-
able for purchase by customers but also furniture and devices used for
store operations. However, inventory is sometimes referred to only as the
merchandise held in stock. Among several dictionaries and references,
inventory is found to cover different meanings. What is clear is that dis-
ciplines related to controlling and managing the raw materials and goods
in logistics use the term inventory: Inventory Control and Inventory Man-
agement. Hence, it is reasonable to deem inventory in its broadest mean-
ing if not explicitly stated otherwise. Algonside inventory, the word stock
is often found. Definitions and experts point that stock are items available
for sale or distribution. As opposed to the broadest meaning of inventory,
this does not include, for instance, assets. Nevertheless, in the literature
inventory and stock are often used interchangeably. Given the nature of
this work, inventory and stock are used equivalently under the definition

“The goods or merchandise kept on the premises of a shop or ware-
house and available for sale or distribution.” !

Thttps://en.oxforddictionaries.com/definition/stock

7
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Inventory is one of the main aspects involved in the performance of
supply chain logistics management. From an operational perspective, the
supplier, enterprise and customer relation is built upon two links. On one
hand, the inventory flow is concerned with the movement and storage of
finished and unfinished goods. On the other hand, the flow of information
provides visibility of the location and status of inventory and other re-
sources. And visibility is the main driver of supply chain planning, simi-
lar to a sense-think-act network. For instance, guaranteeing an item avail-
ability requires knowing its actual updated position (visibility of inven-
tory level) following its consumption, demand and replenishment. The
integration of logistical operations involves, among others, the objective
of inventory reduction. The specific objective is reducing and managing
inventory levels to the lowest possible without compromising the overall
supply chain performance. The reason is that keeping and managing un-
efficiently and un-effectively inventory translates into critical costs. For
instance, an excess of moving inventory implies unnecessary transporta-
tion and, once arrived to the destination warehouse, unnecessary storage
space. Several inventory policies exist with the aim of yielding a mini-
mum service level without incurring in an unnecessary waste of resources.
Most, if not all of them, rely on measured or estimated inventory levels to
answer questions such as when to order or how much to order [1]. Like in
every other system, uncertainties and flaws occur and inventory policies
and their implementation, known as Inventory Management, are designed
to counter them. For instance, while cycle stock are the amount of items
needed to fulfil the expected demand, safety stock are the amount of items
needed to fulfil deviations from the expected demand. Both are computed
to offer a given service level and both rely on an alleged actual stock,
since stock is updated incrementally [2].

An enterprise inventory exists in two different dimensions. On one
hand, the actual quantity of goods or materials on hand, referred to as
physical inventory. On the other hand, the amount of items or materials
listed as available in the system used for monitoring inventory levels. The
inventory monitored by a system is known as system inventory record,
perpetual inventory or recorded inventory. Noteworthy, the recorded in-
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ventory is an alleged list of items that usually, and in some cases notably,
differs from the physical inventory. Raman et al., in an investigation
of 370,000 SKUs at a leading retailer, found that 65% of the inventory
records were inaccurate with an average discrepancy of 3.5 items [3].
Kang and Gershwin found similar figures. The average inventory accu-
racy measured across several stores was 51%. Moreover, one out of four
SKUs differed from the physical stock by more than 5 items [4]. In both
cases, the use of information technology to support replenishment was
extensive. Kok and Shang report that 1.6% of items showed wrong in-
ventory records even after carrying out several improvement programs to
mitigate errors [5].

Inventory record inaccuracy (IRI) is defined as the discrepancy be-
tween the actual physical physical inventory and the recorded inventory
[6]. IRI is considered one of the main causes of uncertainty and perfor-
mance deterioration in the supply chain [4, 7, 8]. The consequences of
IRI on a supply chain that uses information exchange for planning are in-
terrelated. On one hand, unexpected stockouts may happen due to order
placement based on wrong inventory figures. Consequently, the service
level is affected, compromising the customer experience [9]. On the other
hand, an overall increase of inventory costs. For instance, overstocking
and order placement in excess due to short system inventory figures im-
ply an excess of inventory to be stored and transported [10]. And the final
consequence of a suboptimal supply chain is a loss of profit. Raman et
al. estimated a profit loss of 10% of the total profit due to IRI in a leading
retailer [3].

The main causes of IRI are four. First, shrinkage errors are those orig-
inated by lost and stolen items either by workers or customers. Shrinkage
is a consequence of an intentional activity that does not involve updating
the inventory record accordingly. Second, transaction errors are wrong
inventory record updates, or its absence. For instance, registering incor-
rectly new supplies or registering at checkout a wrong stock keeping unit
(SKU). In this sense, transaction errors are originated unintentionally by
workers’ activity. Third, misplacement includes the items that are not
available because they cannot be found. And fourth, supply errors are

9
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those caused by wrong supplier deliveries. For instance, receiveing a dif-
ferent amount, different type or even not serving an order and validating
it in the system on arrival. Although quantitative analysis for each of this
errors are not found in the literature, some exist. Raman et al. found that
16% of the items listed as available in the recorded inventory could not
be found [3], with a derived 25% of losses.

At an operational level, the direct measure to correct IRI are periodical
physical counts, known as inventory alignment. However, the implemen-
tation of physical counts is costly and, to date, they are not performed of-
ten enough to eliminate the discrepancies consistently. A complementary
strategy is preventing the causes of IRI and its inclusion in the forecasting
of resource planning. Nevertheless, although prevention can help, some
of its factors can not be controlled given the involvement of intentional
and unintentional actions. Perfect counterfeit measures and flawless op-
erations are simply not possible [11, 12]. Regarding modelling, including
IRI as a variable in the methodologies has been studied and it has been
shown that daily IRI variability makes it difficult to reach a satisfactory
performance [13]. In conclusion, IRI corrections are the most reliable
way of mitigating its impact in supply chain performance, and its peri-
odicity is critical [14, 15]. Figure 2.1 summarises the main causes and
consequences of IRI.

IRI corrections are usually performed manually by associates or ex-
ternal audit companies. They are undertaken either with the support of
barcode readers, RFID readers or without a supportive technology. In
most cases the purpose of inventory-taking is balancing accounts. For
this reason, it is only undertaken once or twice a year and called fiscal or
accounting inventory-taking. Contrarily, periodical stock-taking for the
correction of IRI is not a widespread method.

Sahin et al. examined the benefits of using barcode technology for
IRI correction. They found out that, even it helps, errors still occur
given it is a manual process. Consequently, the inventory information
discrepancies are not consistenly corrected [7]. A research field exists
called Behavioural Operation Management, which studies the implica-
tions of managerial decisions at approaching operational problems. How-

10
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Shrinkage errors
(Lost and stolen items) —>

On shelf availability

Out of stocks —> Service level

Transaction errors

(Checkout, ...) I RI
Misplacement . > Overstocking — > Inventory costs
Supply errors —

|

Correction

Figure 2.1: Summary of IRI’s main causes and consequences. Green coloured, the
contributions of the proposed inventory robot to the mitigation of IRI. At the same time,
it prevents one of the main sources of IRI and provides a means of a periodical and
reliable correction.

ever, few works exist assessing behavioural aspects of the workers in-
volved in the execution of supply chain tasks. Repetitive stock counting
has been shown to decrease associates attention and, in turn increase their
confidence on a resulting correct count [16]. More recently, cognitive
fatigue as a consequence of repeated transactions has been empirically
measured by using near-infrared spectroscopy [17]. From a psychological
perspective, Einhorn and Hogarth studied how experience carries an as-
sociated excess of confidence that is evinced by fallible judgements [18].
In conclusion, human activity is error prone, more notably when tasks
are repetitive and complex. And training does not suffice to avoid errors
happenings. Moreover, it has been studied that the nature of retail staffing
does not help in alleviating such errors. Due to retail seasonality part time
employee hiring is usual. Chuang and Oliva analysed the contribution of
part time employees in retail and concluded that they do not contribute to
an enhancement of the job quality, IRI and service level [12].

In summary, while the correction of IRI is of utmost importance for
the performance of the supply chain, manual alignments cannot grant tar-
get figures due to worker’s behavioural implications.

11
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2.2 Radio Frequency Identification

Radio Frequency Identification (RFID) is an automatic identification tech-
nology that enables the simultaneous unique identification of hundreds of
items without the need of a line-of-sight. In brief, a basic RFID system
consists of an interrogator (or reader) and a set of transponders (or tags).
The interrogator queries the environment by emitting a modulated signal
through an antenna. The signal excites nearby RFID transponders that,
in response, notify their unique identification number [19]. Transponders
can be either powered by an embedded battery, active tags, or by the same
signal emitted by the interrogator, passive tags. The latter imply shorter
detection ranges but a much cheaper cost per tag. Thus, passive RFID
tags are the ones to be used in applications that require labelling a mas-
sive amount of items. Barcodes have been the ubiquitous identification
technology in the last decades. However, RFID offers indisputable com-
parative advantages. The most notable is that, as opposed to barcodes,
RFID does not require a line-of-sight between the interrogator and the tag.
Moreover, its reach can be of several meters, depending on the type and
configuration. The RFID signal, similarly to the WiFi signal, propagates
in several directions and can traverse different types of materials, being
its reading reach up to tens of meters. The optical nature of barcodes does
not make the same possible. Barcode requires a direct line-of-sight and
a close, clear view of the label being read. A second advantge of RFID
over barcodes is its capacity of identifying simultaneously hundreds of
tags. Actual hardware [20] that complies with the actual protocol [21], if
configured properly, can identify up to 750 tags per second. Therefore,
RFID enables a bulk identification of items even if they are inside boxes
or pallets. Interestingly, given the former advantages, RFID readers do
not necessarily require of a person’s involvement for operation. There is
no more need for aligning a reader with a tag. Consequently, the reader
can be fixed to the ceiling or a wall and any labelled item within identified
automatically. No less important, RFID provides a unique identification
of each item while barcode yields an identification at a product type level.
This is the basis for bulk identifications, one does not need to worry about

12
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having identified previously a similar object given there is no coincidence
with other object’s identifiers. Moreover, a fine grained traceability is en-
abled and the door to a thorough product life-cycle management opens.
Let’s take the case of fresh products. Using barcode the identification in-
formation would be I am seeing a fruits yogurt of brand A. Using RFID,
the information would be I am in front of a fruits yogurt of brand A that
was produced day D1, in factory F and travelled in the refrigerated truck
T to arrive in the store on day D2. Its expiry date is day D3 and .... If
the proper technology throughout the supply chain were deployed, virtu-
ally any question regarding the specific product could be answered. Last
but not least, RFID tags are not only readable but also writable and can
contain a significant amount of information compared to barcodes. RFID
tags contain a memory chip that can be accessed and modified at any mo-
ment according to needs. For instance, an RFID tag can be used at the
same time for item identification and for counterfeiting. A specific field
in the memory is used for the product identifier along with a flag that is
deactivated once it has been purchased. Additional information could be
written in the RFID tag if needed, like the temperatures it has sensed in
key spots during its life-cycle. Furthermore, being writable, RFID tags
can be reused. In clothing retail it is common using hard tags, tags de-
signed for durability, that are removed from clothes at checkout, rewritten
and placed again in other clothes exposed to the public.

For all this reasons, RFID has been regulated and adopted as the item
identification technology by an increasing number of leading retailers that
seek to enhance inventory visibility and be more competitive in an omni-
channel environment. Figures reported by industry stakeholders point to
RFID as the adopted de-facto standard for inventory visibility. The state
of RFID adoption in 2016 by top 100 US apparel retailers was surveyed by
Auburn University RFID Lab [22]. It was found that, 35% of the retailers
were conducting a proof of concept (POC); 22% were conducting pilots;
39% were in a partial deployment; and 4% already completed full deploy-
ment. More interestingly, there was a 32% increase of new adopters from
2015 to 2016, following a 23% increase from 2014 to 2015. A more gen-
eral survey of 801 US small and large product manufacturers and retailers

13




“main” — 2018/9/19 — 1:01 — page 14 — #26

found that in 2014 only 22% were familiar with RFID. Most of them in
the apparel, footwear and related accessories industries. They reported
that, on average, 40% of items are manufactured with tags and 47% of
items received already have a tag [23]. Impinj, a leading tag manufac-
turer, reports having shipped 7.1 billion tags in 2017 [24].

2.2.1 Inventory taking

Following the adoption of RFID as an automatic identification technology
a degree of technification in stock-taking has been introduced. Associates
move with an RFID handheld interrogator and place it close enough (one
meter) to batches of items for their identification. A visual, auditory or
haptic cue is triggered when the RFID interrogator does not detect any
new items. In this way, the associate knows when to proceed to a next
batch of items. While this is a relevant step in stock-taking, it is still a
manual procedure, which involves negative consequences. Stock-taking
using RFID handheld interrogators is a repetitive and complex to plan task
susceptible to human error, specially in large environments. For instance,
it is usual that associates forget to scan an area or think they have already
scanned it. The fact of being a manual repetitive and complex task is the
cause of accuracies lower than expected.

Solutions for the automation of stock-taking on retail shop floors have
been developed in recent years. To the best of our knowledge, during the
development of this thesis, three commercial inventory robot made ap-
pearance. Two of them propose a solution similar to ours. StockBot [25]
and Tory [26] are designed to automate inventory by exploiting RFID.
The third solution is called Tally [27], which uses vision for shelf audit-
ing. However, by using vision it is not apparent the identification at an
item level. Unfortunately, there are no references in the literature regard-
ing their design, operation and performance.

Few former works presented experimental solutions combining RFID
with robotics for stock-taking. Ehrenberg et al. [28] presented a mobile
platform equipped with an RFID reader that takes inventory and finds mis-
placed books at a library. The RFID technology used (HF) differs from
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the de facto standard (UHF), the one embraced by the industry. In [29], a
prototype of a robot that uses RFID to identify products in a mock-up of
a supermarket is presented. RFID data is fused with vision and placed in
a 3D model of the environment. Although the system is promising in the
demo scenario, further experimentation and a detailed analysis of inven-
tory figures are missing. In [30] RFID data captured with an early proto-
type of an inventory robot is exploited to create indoor enriched views of
a store. Yet, performance regarding the inventory is not in scope. Zhang
et al. [31] share experiments with a robotic inventory system on a mock
sales floor. Results are encouraging but the amount of items is not com-
parable to a real store. In a prior work [32], we presented in detail the
architecture of our autonomous inventory robot and an overview of accu-
racy results in a retail store.

Looking at solutions that propose a degree of technification at stock-
taking using RFID devices, Bertolini et al. [33] compare the performance
of RFID inventory counting to barcode counting using handheld devices
at a real store. They conclude that RFID inventory is generally more
reliable with accuracy figures ranging from 90.6% to 98.7% on a single
scan. In [34], the performance of overhead RFID antennas installed on
the ceiling of an actual retail store is compared to RFID handheld scans.
The average accuracy of the overhead antennas is 93.0%.

2.2.2 Inventory location

Location of RFID labels has been widely studied from different perspec-
tives in the last decade. Miesen et al. [35] classify the techniques upon the
type of hardware and the RFID features used for location. In the backscat-
ter domain and using commercial of-the-shelf devices (COTS), the case
treated in this work, there are three possible approaches: Received Signal
Strength (RSSI); Phase evaluation; and the combination of the former.

In [36], a detection model is bootstrapped and a particle filter applied
for the location of items. A similar approach is used to map UHF RFID
tags, computing a 3D sensor model that combines tag detection and RSSI
[37] [38]. The best accuracy reported using this techniques is 0.202 m,
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which is achieved applying several extensions to the original concept, for
instance filtering of ghost-detections. However, there is no insight of its
potential applicability to non-line-of-sight (NLOS) cases, where RSSI is
known be radically affected and the RSSI-based model used could be not
valid.

A Synthetic Aperture Radar (SAR) technique is proposed in [39]. A
set of measurements are taken by a moving antenna and a spatial probabil-
ity density computed, the holographic image, to assess the most likely tag
location. The holographic image is generated by updating each pixel with
the probability of a measure’s received phase being originated at the pixel.
The technique is similar to Angle-Of-Arrival (AOA) phase-based meth-
ods but with a probabilistic flavour. The main downward of this technique
is that it requires taking a number of consecutive measures at a minimum
of a fourth of the RFID wavelength. Otherwise, there is aliasing and the
location cannot be accurately computed. Such constraint is not assum-
able by a solution designed for inventorying thousands of objects, given
it would slow down unacceptably the task. Moreover, this technique is
tag-orientation dependant and the tag orientation cannot be controlled in
real scenarios.

Ma et al. [40] propose an algorithm that extends hyperbolic posi-
tioning based on phase measurements. It is similar to SAR in that the
diversity of measurements is achieved by a moving antenna. The solu-
tion of the intersection of hyperbolas, the alleged tag location, is found
by particle swarm optimization (PSO). The algorithm achieves a location
accuracy under 0.2 m and is robust to tag orientation and noisy measure-
ments. Authors point out that the technique may not be applicable to
complex environments due to phase measurement errors.

BackPos [41] is a technique that introduces location of tags by solving
the hyperbolic equation that relates the phase of the wave to the distance
travelled. A system of such equations is solved applying constrains that
take into account the directionality of detections. The mean accuracy
reported, using simultaneously 4 antennas, is 0.128 m. Unfortunately,
such technique relies on a LOS detection.

Although in practice, approaches that use non-COTS devices or spe-
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cific system settings are not adaptable to the robot scenario, they are of
interest and of potential inspiration.

Angle of activation (AoAct) technique [42] steers the interrogator
beam to sense detection and non-detection events and determine de di-
rection of the tag. It performs a triangulation of directions to determine
the location of the tag. A 0.7 m accuracy is reported in a multipath envi-
ronment. It requires a specific purpose antenna array and reader control.

In [43], the estimation of a tag’s position is computed by applying a
maximum likelihood estimation to a previously calibrated MIMO system
that encompasses several antennas. Position estimates are under 0.1 m
but, as aforementioned, the algorithm requires an initial calibration and a
distributed antenna configuration.

2.3 Autonomous mobile robotics

2.3.1 Robotics and RFID

RFID has been widely used as a support technology in robotics. In [44]
RFID is used on a robot to improve its global localization and reduce com-
putational demands. RFID tags are used as features of a space in addition
to its layout, which is captured by laser readings. [45] propose a localiza-
tion algorithm that relies only on memorized snapshots of the detections
of RFID tags deployed in the environment. A combination of RFID and
vision is used in [46]. The gross location of a robot is determined using
RFID, which identifies a whole area. After, vision is used to compute the
fine pose of the robot within that area. Beside self-localization, RFID has
been used for the identification and posterior manipulation of objects by
a humanoid robot [47]. A similar use is described in [48], a robot iden-
tifies and finds objects that include RFID labels. And, in collaborative
exploration, RFID tags can be used to mark already explored zones with
information for other agents to gain the knowledge [49].
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Chapter 3

PRELIMINARY ROBOT
DESIGNS

3.1 The proof of concept

The first experiment combining RFID and robotics used an RFID system
mounted on a structure and a wheeled humanoid robot. The structure in-
cluded a pair of handles in order for the robot to hold it with its articulated
hands. The RFID system was designed as an accessory for the existing
robot, thinking of a scenario in which the robot would be multi-tasking
and in any given moment could perform an inventory. The RFID system,
shown in Figure 3.1, included 6 antennas and 1 RFID reader connected
through 1 multiplexer.

Embedding 6 antennas allowed for the identification of items at heights
ranging from ground level up to human-reach height. Given the robot
was designed to work in spaces frequented by people, objects were not
expected to be placed higher than at arms reach. The connection with the
robot included a Power Over Ethernet (POE) link to feed the RFID system
and, at the same time, control and gather the generated RFID data. At this
stage, control involved starting the RFID system, asking periodically for
inventories and stopping the system. More interestingly, the RFID system
triggered a signal when it was not registering identifications from new ob-
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Antenna

Multiplexer

Reader

(b)

Figure 3.1: (a) Proof of concept of the mobile RFID system for inventory. Labelled
objects were inside the boxes on the shelves. (b) Detail of the RFID subsystem that the
humanoid robot is carrying.

jects. On the robot’s side, it was programmed to move forward one step
at a time on a predetermined path. The step could be set to variable dis-
tances. After every step the robot would not move again until the signal
informing of no new identifications was received. Such rudimentary form
of RFID-driven navigation for inventory is detailed by Algorithm 1.

Algorithm 1 Rudimentary RFID-driven navigation control

1: D < configured distance;

2: while inventory path not completed do
3 identify items;

4 if new items identified then

5: in place angular movement;

6 else

7 move D centimetres forward;

8

: inventory completed;
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3.1.1 Preliminary results

This early proof of concept was intended to analyse the feasibility of au-
tomating inventorying. A set of labelled objects were placed on shelves,
most of them inside boxes, and the robot moved in front of them to take
the inventory. The items used for the analysis belong to six categories:
apparel; books; perfumes in cardboard boxes (perfumes 1); perfumes
wrapped in metallic foil (perfumes 2); DVDs; and CDs. Three tests were
performed varying the navigation parameters and the results analysed.
Table 3.1 summarises the tests and results.

Table 3.1: Results of inventorying with the preliminary humanoid robot design.

Product type Number | Accuracy | Accuracy | Accuracy
of items | D=25cm | D=15cm | D=5cm

Apparel 40 97.5 100.0 100.0
Books 250 66.8 75.2 75.6
Perfumes 1 | 60 96.7 96.7 96.7
Perfumes 2 | 30 66.7 70.0 70.0
DVDs 50 - 100.0 100.0
CDs 200 - 100.0 100.0

Unsurprisingly, some types of items, namely those in higher densities
or conformed partly by metal or liquid, showed lower inventory accura-
cies. Particularly books, which where packed inside a box and made of
paper, which contains a considerable amount of water, and the perfumes
wrapped in metal foil (perfumes 2). There was an expected increase of
accuracy when reducing D from 25 c¢cm to 15 cm, but negligible from 15
cm to 5 cm. This early results already point to the need of developing an
adaptive navigation control.
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3.2 The preliminary prototype

A preliminary prototype was constructed reusing a mobile base provided
by a robotics partner!. The aim was to build a specific purpose mobile
system to take inventory autonomously in stores. As opposed to the proof
of concept, this would not need articulated limbs and complex humanoid
robotics and it should be as simple as possible to undertake inventory
taking. Not only its performance was to be analysed but also its eventual
market viability. At this stage, the simplest mobile base included motors
for navigation, a laser range finder for self-localization, an onboard PC
for algorithm computation and a battery with enough power to feed both
the RFID system and the base. Figure 3.2 shows the naked mobile base.

Figure 3.2: Naked mobile base used in the robot prototype.

With the base as a starting point, a structure to hold the RFID system
was designed. This time, thinking of the spatial efficiency of identifi-
cations, two blocks of 6 antennas were placed, one on each side of the
robot. In this manner, the robot could identify simultaneously items on
both sides of an aisle while moving forward. Antennas were placed from
ground level up to 2 meters to identify items up to arms reach. The result-
ing robot is shown in Figure 3.3. Note that the bottom aperture, the laser’s
window, constrained the laser’s field of view to under 180°. However, its
actual sensing angle range goes up to 270°.

The prototype had autonomous navigation capabilities. As opposed
to the proof of concept, the robot would not follow a pre-defined path
but could plan and self-locate on a pre-recorded map to reach a given

Thttps://www.pal-robotics.com
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Figure 3.3: Robot prototype in a store.

goal. The RFID-driven navigation control paradigm was updated to work
by interruptions to the navigation. At detecting a configured amount of
new items, the underlying navigation control was interrupted and resumed
when no new tags were detected. In this way, the fixed length step pro-
posed in the proof-of-concept was substituted by an adaptive step deter-
mined by new tags detection.

3.2.1 Learnings

The preliminary prototype was brought to real scenarios in order to vali-
date the feasibility of a robotic solution using RFID for inventorying. The
preliminary measured accuracies, between 95% and 99%, were encour-
aging although limitations and room for improvement arose. First and
most important, the robot’s environment observation capabilities. The
prototype mounted a laser range finder, one that can sense a 2D slice
of the environment. In this manner, it can sense the obstacles that ap-
pear at a fixed height (the laser’s height) but not obstacles at any other
height. Consequently, the risk of crashing into obstacles that do not ap-
pear at laser’s height was a challenge. Additionally, the laser field of view
is limited by the robot’s structure, which hampers its ability to perform
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self-localization using a map since it can only use a partial view of laser
scans.

A second important limitation was the lack of dampers, which hin-
dered the robot’s ability to navigate on irregular floors. Actually, the pro-
totype could not overcome small discontinuities such as a change of floor
type from tile to carpet. In some cases, it even got stuck due to impercep-
tible height differences between tiles, compromising the wheels grip by
the lack of a compensating force towards the floor.

An additional limitation was the robot’s speed, which slowed down
the inventory and limited its manoeuvrability, creating a perception of
clumsiness. Furthermore, an intuition from observing the prototype tak-
ing inventory was that the interruptions of the RFID-driven navigation
control were too discontinuous. The interruptions were triggered based
only on the last inventory observations, which could induce a high fre-
quency of transitions from stopping due to new identifications to resum-
ing navigation. Moreover, the robot was set to resume the navigation only
when no new tags were received, which makes the robot too conservative
thus slow at inventorying.

Lastly, there was room to improve the accuracy of the inventory, mainly
by improving the RFID-driven navigation control strategy.

All this learnings were taken into account in the minimum viable de-
sign of the inventory robot and enhancements were introduced accord-

ingly.
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Chapter 4
ROBOT DESIGN

In this chapter a minimum viable design of the inventory robot is pre-
sented, from conception to implementation. The solution is built upon a
set of requirements learned after experiencing with the preliminary pro-
totype in real scenarios and by collecting observations from potential end
users. The design proposed includes not only the hardware and applica-
tion logics but also a human-robot interface that encapsulates the essential
procedures for operation and monitoring. The ambition behind the inven-
tory robot design is proposing a solution for inventory taking that can be
deployed effortlessly in any retail store.

4.1 Requirements

The main purpose of the inventory robot is the automation of stock-taking
at shop floors. Regarding automation, the main requirement is being au-
tonomous and robust to changes in the working environment. On a store
floor, while architectural features do not change and can be used as a con-
sistent reference for navigation, periodical modifications of the furniture
happen, which modify the layout. In addition, unexpected obstacles such
as misplaced gear or persons are likely. Therefore, the navigation needs
a degree of adaptability to deal with a changing environment. In brief,
the robot cannot just follow a predefined path, as it would go on rails,
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since it is intended to work in changing environments. Regarding stock-
taking, the critical requirements are accuracy and time, which represent
a design tradeoff. The question is how to use RFID on an autonomous
mobile agent and guarantee accuracy in the shortest possible time. In this
regard, the interaction of the two subsystems, the RFID system and the au-
tonomous mobile agent, needs to be addressed. In brief, the robot should
stay longer where products are numerous, and can move ahead if there
are no items or those have already been counted. A third broad require-
ment is that the robot must be usable by persons without specific technical
skills. Even though the robot is autonomous after an initial configuration,
some procedures need to be assisted by persons. Moreover, without an
interface for interaction, the robot cannot be monitored, which is critical
for acceptance and integration into store operations. Accordingly, proce-
dures for robot operation are defined, and a user interface for control and
monitoring implemented. In this way, the robot should be manageable by
any person able to use a smart phone.

In summary, the inventory robot is designed to meet the following
requirements:

a Minimal inventory accuracy higher than 99%

b Inventory duration equal or less than current stock-taking proce-
dures (usually handheld RFID readers)

¢ Autonomous navigation in changing environments
d Ease of operation and servicing
e Ease of assembly and transportation

Location of items can be estimated if a diversity of identifications in
space is available. Given that the robot is designed to navigate the space
while taking inventory, such assumption is very likely. Accordingly, loca-
tion is not explicitly included as a design driver in this chapter. Nonethe-
less, the location of items is addressed thoroughly in Chapter 6 and the
former premise proved.
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The robot is built composed of three subsystems, which are closely
related to the requirements. First, the identification subsystem, which
is built using commercial off the shelf (COTS) RFID hardware manufac-
tured by Keonn Technologies!. Second, the robotic subsystem is extended
from a commercial hardware and tuned according to the requirements to
provide a safe and robust autonomous navigation. And third, a human-
robot interface enables the minimum set of operations conceived for con-
trol and monitor. Although subsystems and requirements are related, their
relation is not univocal. On the contrary, the requirements are met by ex-
ploiting subsystems collaboration. For instance, if the robotic subsystem
does not take into account the progress of identifications, the inventory ac-
curacy can be seriously compromised. Note that although RFID has the
capability of identifying simultaneously a number of objects, identifica-
tions in the presence of a considerable amount of items require more time.
For this reason, the navigation should take into account and use as input
the progress of new identifications. Table 4.1 summarizes the contribu-
tion of each subsystem to the requirements, which is further explained in
this section.

Table 4.1: Contribution of subsystems to requirements

Identification| Robotic Human-
subsystem subsystem | Robot
interface
Inventory accuracy X X
Inventory duration X X
Autonomous navigation X X
Operation and servicing X X X
Assembly and transportation | x X

Thttps://www.keonn.com/
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4.2 Robot hardware

This section gives an overview of the robot hardware, which consists of
two independent parts: the identification subsystem and the robotic sub-
system. The reason to treat them as two independent interconnected parts,
as opposed to a one-body device, is modularity. Modularity is an essen-
tial characteristic aiming at an ease of servicing and transport, two of the
design requirements. A “vehicle plus payload” model was used in the
design.

4.2.1 Identification subsystem

The identification subsystem uses radio frequency identification (RFID)
for the automatic identification of objects. The main components of a
typical RFID system are RFID readers and RFID antennas. The readers
include active RF electronics that excite antennas for the propagation of
the RFID signal. Generally, a reader is used in combination with mul-
tiple antennas distributed strategically in space to maximize the volume
covered by the RF signal.

The reader used is Keonn’s AdvanReader-150°. It is a self-contained
reader which encloses a single-board computer for control and external
systems interfacing. The reader allows the simultaneous connection of 4
antennas. The antennas chosen, given their form factor, high gain and ap-
propriate radiation pattern are Keonn’s Advantenna-p22°. The radiation
pattern determines the volume covered by an antenna’s signal.

The first premise regarding the design of the identification subsystem
is that it should be able to identify all the objects in scope. While the
robot’s mobility grants a complete coverage on the xy-plane, as long as
the navigation is well-planned, the identification subsystem construction
needs to address coverage also in height. Since the robot is intended for
stores where products are placed at most up to customer’s reach, the iden-
tification subsystem is designed to identify RFID tagged objects from the

Zhttps://www.keonn.com/rfid-components/readers/advanreader-150.html
3https://www.keonn.com/rfid-components/antennas/advantenna-p22.html
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ground level to 2.5 meters, which is achieved by placing several antennas
along the z axis.

The second premise is a high accuracy, which requires spatial redun-
dancy in the identification subsystem. This means that the antenna radia-
tion patterns should overlap, both simultaneously and as the robot moves
around the space. This is justified in prevention of two common effects in
RFID systems that compromise accuracy: blind spots and occlusions. On
one hand, blind spots happen where multipath reflections result in a can-
celled or very weak wave. On the other hand, occlusions happen when the
signal hits an RF reflector, which is equivalent to blocking the signal. It
is common that occlusions happen due to the presence of metallic objects
as well as due to RFID tags next to each other. Both effects are a threat
to accuracy, more notably in environments crowded with RFID tags. In
order to minimize these effects, the subsystem is designed with overlap-
ping radiation patterns. In practice, antennas are placed close enough for
an overlap of their radiation patterns. The resulting antenna configuration
consists of 6 antennas placed next to each other along the z axis up to
a height of 2.5 meters. Redundancy also occurs as the robot moves and
its antennas cover a volume previously covered from another position. In
this sense, the mobility of the robot also contributes to yield the required
accuracy.

The third premise is that in order to minimize inventory time, iden-
tifications need to be parallelized. Parallelism is achieved by installing
several RFID readers, each one in charge of a subset of antennas. In this
way, since the RFID protocol allows for simultaneous signal transmis-
sions, there can be simultaneous identifications. At the same time, the
subsystem includes two sets of antennas, each one covering the two op-
posite directions, perpendicular to the robot’s forward movement. In this
way, objects on both sides of an aisle can be identified at just one aisle
traversal. Otherwise, installing a subsystem that would cover a single
direction, the aisle should be traversed twice and the inventory duration
would be double. Note that on a shop floor, the usual layout consists of
corridors delimited by shelves on either side loaded with products.

To sum up, the identification subsystem consists of 12 RFID antennas
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distributed in two blocks of six antennas on opposite directions. Three
RFID readers control four antennas each. In this way, the usual 400 iden-
tifications per second that one reader can process is multiplied by three.
Figure 4.1 depicts a schematics of the identification subsystem and its
parts.

0
2

Figure 4.1: The identification subsystem consists of 12 antennas fed by 3 independent
RFID readers. The identifications are gathered by a central process through an Ethernet
link.

In what regards ease of operation, servicing, assembly and transporta-
tion, the identification subsystem structure takes them in consideration.
An important design decision is making the structure foldable, which
makes the robot more manageable for operation and transportation given
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its height. Additionally, electronics are embedded in the structure in an
accessible and modular way for the ease of servicing.

4.2.2 Robotic subsystem

The robotic subsystem is a customization of the commercial mobile base
RB-1 by Robotnik*. The mobile base is differential driven, it includes
two independent motor wheels that allow for a zero radians turning ra-
dius. This implies it can rotate in place, thus face any direction without
changing position, which is of utmost importance to manoeuvre in narrow
and intricate store layouts. The mobile base diameter is 50 cm, allowing
for navigation in aisles as narrow as 70 cm, the measure established inter-
nationally for wheelchair accessibility. Each motor wheel is attached to
a damper, which is essential in order to overcome floor irregularities and
discontinuities as well to deal with the momentum at accelerations and
brakes. Three omni-directional wheels act as casters for stability. Figure
4.2 shows schematics of the mobile base.

The robotic base includes a set of sensors for navigation and additional
essential hardware.

Sensors

First, a laser range finder, is necessary to feed the algorithms that com-
pute the map of the environment and the location of the robot on such map
during navigation. Although a three-dimensional laser would be very ap-
propriate, prices are prohibitive. Hence, a two-dimensional laser range
finder is chosen. The laser range finder model is chosen considering the
requirements of the algorithms for mapping and location. These are: a
high precision of measurements; a high update frequency; and a consid-
erable range and field of view. Additional considerations are suitable data
and power interfaces, an Ethernet link and an open-end cable respectively.
The model chosen is Hokuyo UST-10LX>, which is depicted in Figure 4.3

*http://www.robotnik.eu/mobile-robots/rb- 1-base/
Shttp://www.hokuyo-usa.com/products/scanning-laser-rangefinders/ust-10Ix
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Figure 4.2: RB-1 mobile base schematics. The robotic subsystem is a customization of
the commercial mobile base. Source: https://www.robotnik.es

with its main characteristics.

Scan direction

Detection angle 270°
Angular resolution  0.25°
Scan speed 25ms

Figure 4.3: Laser Hokuyo UST-10LX, the one installed in the robotic subsystem.
Source: http://www.hokuyo-usa.com/

The second essential sensors are colour and depth (RGB-D) cameras.
Depth information is used by the navigation for obstacle avoidance. The
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three-dimensional depth view of the robot vicinity serves the navigation
in understanding where obstacles are present and where the path is clear
for it to traverse. Given the intrinsic field of view (FOV) of one cam-
era does not suffice to cover all the potential collisions with the robot’s
body, two RGB-D cameras are combined. The robot mounts the two
depth cameras on the top of the identification subsystem. In this way,
the combined FOV is maximized and, at the same time, dead angles are
minimized. Additionally, the camera’s RGB information leverages the
detection of features on two-dimensional images. For instance, the de-
tection of QRs codes placed for the identification of zones. Furthermore,
camera views can be used for monitoring and teleoperation. Noteworthy,
camera’s streams allow supplementary applications of interest such as the
three-dimensional mapping of the environment or objects detection. The
camera model chosen is the Orbbec Astra Mini®, a small form-factor and
uncased camera that facilitates the integration on top of the identification
subsystem body. It uses structured light technology, this is the projec-
tion of known light patterns and posterior interpretation of the reflection’s
deformation. The camera is interfaced and powered by means of a USB
connector. Its main characteristics and a schematic are depicted in Figure
4.4.

The third sensor is the inertial measurement unit (IMU). It includes
gyroscopes and accelerometers to measure linear and angular accelera-
tions, which in turn are used to compute the robot’s odometry. The odom-
etry is an estimate of the robot’s changes of position and orientation. The
motor’s encoders report the rotation of the two wheels and are also used
for odometry computation. However, the rotation of the wheels does not
necessarily imply robot’s movements. For instance, wheel slipping, even
unnoticeably, is common. Therefore, an accurate odometry is computed
by fusing the motors encoders and IMU measurements. Still, the odom-
etry is not precise enough for the computation of the robot’s location by
itself due to an incremental error accumulation. For this reason, a location
algorithm is required. In brief, the robot’s location is computed by apply-
ing a periodical correction to the measured odometry. The IMU installed

®https://orbbec3d.com/astra-mini/
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Projector

IR Sensor

RGB Sensor

Range 0.6m to 5.0m
Field of view 73D x 60H x 49.5V

Figure 4.4: Orbbec Astra Mini, the RGB camera model installed in the robotic subsys-
tem. Source: https://orbbec3d.com/

in the robot is a Pixhawk Autopilot, used widely in drones and depicted
in Figure 4.5 next to its main characteristics.

Figure 4.5: Pixhawk Autopilot, the gyroscope/accelerometer installed in the robotic
subsystem. Source: https://pixhawk.org/

Hardware

Besides sensors, the mobile base includes other essential hardware.
Sensor data interfacing and fusion, actuators control, computation
of algorithms, servicing an interaction interface and management of re-
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sources at all levels are encapsulated in a computer embedded in the mo-
bile base. The collection of all robot’s logics are referred to as Brains,
given their coexistence and interactions translate to actual robot reason-
ing and decisions. Both the abstraction and the hardware are referred to
as Brains in this document.

Network connectivity is paramount for interacting with the robot. The
Brains incorporates a WiFi client in order to connect the robot to an infras-
tructure network when available. Reasonably, any device in the same net-
work could access the robot’s services. Alternatively, the Brains includes
a router that acts as an access point. In this manner, if an infrastructure
network is not available or accessible, the connection with the robot can
be established directly. Section 4.4 includes a detailed description of the
interaction and connectivity with the robot.

The last essential piece of hardware is the battery. It enables an unin-
terrupted operation of up to 10 hours and a complete recharge in roughly
2 hours.

An interesting feature of the robotic subsystem construction is its
modularity. It is composed of three independent modules: a structural
part, which includes the motor-wheels; a box that encloses most of the
electronics, but for the laser and the cameras, which are necessarily placed
outside; and the battery. The electronics box and the battery can be easily
removed and replaced from the structural part. Modularity is essential,
once a robot is deployed, for the ease of servicing in case of failures.

4.2.3 Interconnection

The mobile base and the identification subsystems are designed thinking
of a simple assembly and interconnection. The assembly of the two in-
dependent structures is achieved by just six screws. The interconnection
requires establishing a communication. Communication is granted by two
channels. First, an Ethernet link connects the Brains to the identification
subsystem. Second, two USBs connect the depth cameras, installed on
top of the identification subsystem, to the Brains. Last, the interconnec-
tion requires powering the identification subsystem, which is achieved by
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a power link from the battery.

All the connectors are accessible through a small door on the bottom
of the identification subsystem for an easy manual connection once the
two subsystems are assembled.

A schematic of the assembled robot is shown in Figure 4.6.

4.3 Robot logic subsystem

The robot logic subsystem, or Brains, is the collection of software pack-
ages that command the robot behaviour. The packages extend the Robot
Operating System (ROS) 7 framework. ROS is an open source framework
for robotics development that implements a sort of blackboard system.
Basically, ROS is organised around nodes, the actual entities that control,
drive or compute things; topics, published and subscribed by nodes for in-
formation sharing; and services, the means for active interaction between
nodes. ROS can be considered as the operating system of the Brains. On
one hand, some of the packages that command the robot are community
contributed and integrated or adapted to the specific robot characteristics.
These include hardware drivers and a part of the navigation algorithms.
On the other hand, the RFID-driven navigation control, a mission man-
ager and a task manager are original contributions. In this section, an
overview of the most relevant blocks and a detailed description of the
contributed ones is given.

4.3.1 Navigation

The autonomous navigation relies on a map of the environment for plan-
ning the paths to a set of inventory goals. Consequently, a recognition
round needs to be completed to create a map as a preparation for the
autonomous navigation. Overall, the navigation can be considered a two-
stage process. Recognition is a person-assisted procedure for the robot to
gain knowledge about the environment, which includes recording a map.

"http://ros.org
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Figure 4.6: Schematics of the robot design. On the left, a view of the assembled robot,
with the two RGB-D cameras on top of the RFID subsystem and a side cover removed
to show a group of three antennas beneath. The bottom part is the mobile base. Note the
laser’s 270°aperture and a front cover for a quick release of the battery. On the right, the
payload is folded, a feature that was included for the ease of transportation.

Inventory is the stage at which stock information is gathered by the robot
autonomously. The inventory stage can be triggered by an operator or
without assistance.
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The ROS navigation stack® is configured for the specific characteris-
tics of the robot in order to achieve a safe and autonomous navigation.

Recognition

Recognition aims at collecting information of the environment in two dif-
ferent aspects. The first, recording a layout view, a two-dimensional map
that can be used as a reference for the autonomous navigation. This is
achieved feeding the laser range finder observations to a Simultaneous
Localization and Mapping (SLAM) algorithm, which is implemented in
ROS and called gmapping. The output is a view of the layout as a slice at
the laser’s height and looks like the map shown in Figure 4.12b. The sec-
ond set of environmental data gathered during recognition are inventory
waypoints. A series of coordinates are recorded by the robot which repre-
sent the specific locations that the robot should visit during inventorying.

Recognition is a guided procedure, an operator commands the robot
using a control interface to move through an alleged inventory path, one
that resembles the route followed when a handheld inventory is taken.
The key idea is showing the robot all the locations that should be vis-
ited later at inventorying. As opposed to letting the robot just explore
the space, which is time consuming in large open spaces, in this manner
one can constrain the inventory target and, eventually, an inventory can
be completed more efficiently. A specific purpose ROS package, named
goal_profiler, is in charge of gathering inventory waypoints during the
recognition procedure.

Inventory

Inventory is the stage at which actual stock-taking happens in a com-
pletely autonomous way. For that, the robot uses the previously recorded
map and inventory waypoints. The autonomous navigation requires the
robot being aware of its own location on the map, which is achieved by

8http://wiki.ros.org/navigation
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applying Adaptive Monte Carlo Localization (AMCL) . Also, the nav-
igation requires a means of computing the shortest passable path from
the robot’s current pose (position and orientation) to the next inventory
waypoint. An implementation of the A* algorithm is used for global
path planning. Importantly, in order to plan a path to reach a given way-
point, an understanding of passable and non-passable areas is needed. For
that, a map that includes collision costs, called global_costmap, is initial-
ized from the recorded map and continuously updated with live sensors
data. In this way, any modifications to the environment are taken into
account during navigation. At a lower level, once a global path is com-
puted, proper commands need to be sent to the wheel motors to follow
the track. Valid combinations of velocities that conform collision-free lo-
cal trajectories are simulated by the local_planner and after transformed
into robot movements. Figure 4.7 depicts the architecture of the naviga-
tion, which is part of the ROS distribution and parametrised for the robot
specific characteristics.

At a higher level, inventory waypoints are managed by a specific pur-
pose package named goal_dispatcher. 1t passes inventory waypoints to
the navigation stack and monitors their progress. Remarkably, the nav-
igation is based on inventory waypoints rather than on a predetermined
path. When an inventory waypoint is passed to the navigation stack, the
shortest possible path to reach that waypoint is computed. If the waypoint
has become unreachable due to layout modifications, the waypoint is can-
celled and the next waypoint dispatched. Basically, inventorying based on
waypoint implies that the robot navigation can adapt to layout modifica-
tions. In this enterprise, monitoring the progress of waypoints is crucial to
prevent an inefficient robot behaviour. Monitoring aims at identifying ab-
normal situations in attempting to reach a dispatched waypoint. On one
hand, a timeout proportional to the distance and average robot speed is
applied. This is justified by the fact that in presence of unexpected obsta-
cles, the planned turnaround can become unacceptably long. On the other
hand, given that the robot freely plans the path to an inventory waypoint,
on its way it may pass by complementary waypoints. The monitoring
flags unintentionally reached inventory waypoints in order not to dispatch
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Figure 4.7: Architecture of ROS navigation stack, the logics used by the robot for autonomous navigation. Source:

http://wiki.ros.org
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them again.

Importantly, the behaviour of the navigation between inventory way-
points is determined by an event-driven control layer that takes as input
the progress of RFID identifications. Such control is essential to guaran-
tee accuracy and is detailed in Section 4.3.2.

A visualization of the navigation during an inventory is depicted in
Figure 4.8.

4.3.2 RFID-driven navigation control

One of the main contributions of this work is the interaction between the
behaviour of the navigation and RFID identifications. The premise is that
for an accurate and time-efficient inventory, the robot must take into ac-
count the objects in scope from a specific location. Exploring possible
extreme cases is illustrative. The first case would be that of a robot that
navigates at its maximum speed constantly while taking inventory. Al-
though the RFID protocol allows for simultaneous identifications, there is
still a limitation on the maximum number of RFID tags read per second.
Thus, in presence of a large amount of products, having time to read of all
them is unlikely if passing by without stopping. The second case would
be that of a robot that traverses aisles at a very slow pace to give enough
time for identifications. In this case, the inventory would be accurate but
not time-efficient.

Adjusting the robot behaviour to achieve an optimal compromise be-
tween accuracy and duration is inspired by RFID handheld readers. These
include visual, auditory or haptic cues for the operator to know when all
items at reach have been identified. The operator relies on such cues to
decide when to move on to identify a next batch of products. In this way,
the accuracy is not compromised and the operator does not waste un-
necessary time in areas already queried. The robot applies an equivalent
event-driven algorithm to command the navigation.

The RFID-driven navigation control algorithm takes as input the ag-
gregated stream of identifications from the readers. The readers work in
an asynchronous mode, putting in a queue the identification streams to
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Figure 4.8: Visualization of the robot during an inventory round on RViz, the robot visualization tool provided with ROS.
Several pieces of information are presented live and represent the robot’s knowledge of the environment. On one hand, the
occupation map and waypoints, represented by arrows, which are static data recorded during recognition. On the other hand,
live sensor data: in red laser scans; in light blue the collapsed camera view. Finally, robot computations: in yellow, the local
path; in blue, the global path from an actual robot pose to the next navigation goal; in purple, the navigation costmap, which
sets the costs for navigation based on sensor data.
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be processed by the algorithm. As elements in the queue are processed,
received product codes are added to a set used to track the history of iden-
tifications, the actual inventory. If the product code already exists in the
inventory it means that the product was previously identified, thus it is ig-
nored. If the product code does not exist in the inventory, it is considered
a new product identification and is included in a time window to compute
the throughput of new identifications, in items per second. As elements
in the queue keep being processed, the time window rolls and the rate of
new identifications updated.

The algorithm uses the rate of new identifications to trigger the tran-
sition between two states: Twist and Journey.

In Twist state, an interruption is sent to the underlying goal-based nav-
igation in order to stop the robot for the identification of all products in
scope. Instead of just remaining in place, the robot performs a periodical
angular movement, the rwist. The justification comes from the fact that
even small movements help in overcoming the negative effects of multi-
path RFID interference and blind spots. The contribution of twisting to
inventory accuracy is demonstrated in Chapter 5. In Journey state, the
underlying goal-based navigation proceeds normally.

Transitions are triggered based on upper and lower thresholds applied
to the rate of new identifications. Hence, state transitions happen in the
likes of a hysteresis cycle, which prevents fast transitions and the conse-
quent clutter in the robot’s navigation. A proper adjustment of thresholds
values is critical to achieve an efficient behaviour of the robot at invento-
rying, as is demonstrated in Chapter 5.

The RFID-driven navigation control is summarised in Algorithm 2.
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Algorithm 2 Navigation control algorithm

1: State + Twist

2 1+ 0

32 N«

4: procedure CONTROLNAVIGATION(S;)
5: N; + Sz \ 1

6: N+ N,UN

7: N+« {neN|(t —t,) <T}
8: R« |N|/T

9: if R > thywis then

10: State <+ Twist

11: else if R < thjourne, then

12: State < Journey

13: else

14: State < State

15: I%IUSZ

> thjourney < thtwiSt

I: inventory
N': new identifications
S;: identifications at instant &
N;: new identifications at instant ¢
T time window width
R: rate of new identifications [items/s]

4.3.3 Mission manager

The robot is designed to perform stock-taking following a divide and con-
quer strategy. The justification comes from two different use cases. The
first, a retail store that involves a large amount of square meters that can-
not be inventoried in a single inventory run. The second, running the robot
as a service, which implies inventorying alternatively different spaces.
The divide and conquer strategy allows for flexibility, scalability, reliabil-

ity and efficiency.

In terms of flexibility, it allows the possibility of inventorying a se-
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lected combination of zones under demand. Also, if a significant layout
change is detected in one of the zones, the recognition should be rerun
only at that specific zone. Regarding scalability, it is possible to add and
reconfigure zones as needed. In terms of efficiency, navigation in smaller
zones is less demanding in terms of computation and also quicker.

The divide and conquer strategy consists in dividing a store layout into
zones. Zones are organised sequentially, which means that the starting
point of one zone is the ending point of the previous one. In this way,
all the zones are linked. The zones starting and ending points are marked
with QR codes for their automatic identification by the robot. At the same
time, QR codes serve as visual cues for associates to identify the zones
and launch the recognition stage. Zones configuration and installation of
QR codes is a preparation step that can be completed by the final user.
Figure 4.9 shows an example of an actual 7,500 m? store divided into 22
zones that was inventoried by the robot.
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Figure 4.9: Store layout divided in 22 zones, following the divide and conquer strategy
implemented by the robot. The triangles are the cues of the QR codes locations. The
store area is 7,500 m?2.

The middleware that manages the operation with zones is called mis-
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sion manager. A mission is defined as a combination of zones to inven-
tory. Any combination is allowed as long as the robot is placed at the
selected starting zone. A mission always follows an ordered sequence of
zones, inventorying those that are selected and skipping those that are not.
Skipping a zone implies that the robot, instead of attempting to reach all
the inventory waypoints, moves directly to the zone’s end point. The mis-
sion manager implements the logic to initialize and monitor the progress
of the robot through zones. In brief, it serves maps and inventory way-
points at the appropriate moments for a mission to be completed.

4.3.4 Task manager

The task manager is the block that translates high-level user orders to
lower-level robot control commands. It provides the necessary level of
abstraction for a user-friendly interface. Task manager executes selected
task actions using the ROS actionlib stack ° and monitors their progress
in order to trigger consequent actions. Also, it keeps the state of the robot
to prevent the interference of tasks. For instance, while the robot is inven-
torying, it is not possible to trigger a second inventory. In brief, task man-
ager works as a simple finite state machine that launches the proper nodes
and triggers the proper actions at the proper moments for a high-level task
to be completed. Furthermore, it centralises relevant information from all
the robot nodes. On one hand, such information is used to take action
if needed. For instance, if the battery is too low, an ongoing inventory
mission is cancelled. On the other hand, the task manager passes infor-
mation to the interface for its presentation to the user, such as the status
and progress of a mission as can be seen in Fig. 4.13c.

“http://wiki.ros.org/actionlib
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Figure 4.10: The task manager takes high level task parameters from the Human-Robot
interface and translates them to robot orders by following the proper sequence of states
that trigger all the nodes needed during a mission. The status of the robot is monitored
by the task manager and implements event-based state transitions. The mission manager
connects the recognition and the inventory. Namely, it manages the sequence of zones
selected during an inventory mission. Mainly, it loads the map and goals of each zone at
the proper zone transitions.

4.4 Human-Robot interface

The Human-Robot interface (HRI) is a web-based interface supported by
any browser-enabled device. Actually, the accessory provided for inter-
action with the robot is a commercial mobile phone. The interface makes
use of the rosbridge procotol!® and additional specific RESTful services
for interaction.

The interface is served by the robot through two separate wireless
links: an infrastructure and an ad-hoc. The first allows the access to the
robot from any remote location as long as the robot is granted global con-
nectivity. When the former is not possible the robot can be connected
ad-hoc. In this way, the HRI is infrastructure-agnostic and accessibility is

1Ohttp://wiki.ros.org/rosbridge_suite
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guaranteed for operation in any situation. At the same time, if an infras-
tructure network is available, the robot can be accessed for monitoring
and teleoperation remotely.

The interface main menu provides access to five areas for interaction:

e Inventory and Recognition, which facilitate the two main proce-
dures for operation, described earlier in Section 4.3;

e Reports, which provides historical information of all the tasks com-
pleted by the robot;

e Guidelines, intended to aid the user at robot’s operation;

e Administration, which includes advanced configurations and oper-
ation procedures.

Figure 4.11 shows the interface’s home page and a description of sta-
tus icons and buttons.

4.4.1 Recognition and inventory

Recognition and inventory are the two main procedures for robot opera-
tion. They share common initial steps and both benefit from QR codes for
the automatic identification of zones. The use of QR codes is key for the
divide and conquer strategy at inventorying large spaces (Section 4.3). A
QR code is placed at the starting point of every zone. QR codes serve as
a cue both for the operator and the robot to identify zones. Thanks to the
QR codes an operator knows where the robot should be placed to start.
After, the robot gains knowledge of its initial position by automatically
detecting the QR code. Recognition and Inventory steps are listed next
and the corresponding interface views are referenced within brackets.

Recognition

1. Place the robot in front of a zone’s QR identifier.
2. Select Recognition in the Main Menu.
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Robot + Connect

Robot status: Connected 2
RFID status: Connected 3

Task: IDLE 4
Select one of the following tasks 1. Establishes a connection between
the device and the robot
Inventory 2. Robot logic subsystem status
- 3. RFID subsystem status
Recognition
5 4. Actual task in progress
Reports 5. Main menu
L 6. Wifi connection status
Guidelines
7. E-stop button status (pressed/depressed)
Administration 8. Battery level

Figure 4.11: Home page of the interface that enables the interaction with the robot.

~

. Adjust the robot’s position for the QR to be inside the red mark

(Fig. 6.4b).
Press Detect Zone (Fig. 6.4b).

. Verify that the detected zone coincides with the intended zone (Fig.

6.4b).
Verify that the emergency stop button is not pressed.
Press Start.

. Command the robot using the pad. The robot should be guided re-

sembling the path followed at manual stock-taking. The interface
shows an updated view of the recorded map and interest points con-
nected by line segments (Fig. 4.12b).

. Bring the robot in front of the next zone’s starting QR.
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10. Accept finishing or continue the recognition (Fig. 5.2c).

< Back Map > Next # Home Map X Cancel # Home Map X Cancel

Place AdvanRobot in front of the starting QR Mapped area: C3 Mapped area: C3
and click on "Detect Area"

Final mapping QR detected. Do you want
to finish and save the map?

Detect Area = Proper area detected: C3

A

P . . :ontin: B Save
) O K )
N O ] H
(@ (b) (c)

Figure 4.12: Interface views at running a recognition. (a) Automatic detection of the
QR that identifies a zone at its starting point. (b) During the recognition a control pad
allows commanding the robot. A view of the recorded map with interest points linked by
straight lines is updated continuously. In this way, the operator can consult the progress
of the recognition and oversights can be prevented. (c) Automatic detection of the QR
code that identifies the immediate consecutive zone, which marks the end of the current
zone. In this manner, transitions between zones are guaranteed. At this position the
recognition can be concluded or continued. In any case, a recognition is necessarily
finished in front of the QR that marks the start of the next zone.

Inventory

1. Place the robot in front of a zone’s QR identifier.

2. Select Inventory in the Main Menu.

3. Adjust the robot’s position for the QR to be inside the red mark
(Fig. 4.13a).

4. Press Detect Zone (Fig. 4.13a).

50




“main” — 2018/9/19 — 1:01 — page 51 — #63

5. Verify that the detected zone coincides with the intended zone (Fig.

4.13a).

6. Select the zones for the current inventory mission. Unselected zones
will be transitioned (Fig. 4.13b).
7. Verify that the emergency stop button is not pressed.

x>

Press Start. The robot starts taking inventories autonomously.

9. The interface informs about the progress of the ongoing inventory
mission (Fig. 4.13c).

< Back Inventory > Next

Place AdvanRobot in front of the starting QR

Detect Area = Proper area detected: C2

(a)

< Back Inventory 3 Next
Select area (only subsequent areas are
available for selection)

c3

[ b1

O b2

D3

< ©) [m}

# Home Inventory X Cancel

Mission

Areas: C2-C3-D3
Duration: 00:00:51
Status: In progress

Current area

Status: Inventorying
Duration: 00:00:09
Progress: 1%

Tags: 1431

New tags per second: 209

)
© Q)

(c)

Figure 4.13: Interface views at running an inventory. (a) Automatic detection of the
QR that identifies a zone at its starting point. (b) Selection of zones to be inventoried.
Unselected zones are transitioned as opposed to inventoried. (c) Inventory progress
view. It is divided in two blocks. Mission shows global information. It lists the zones
configured in the current mission (C2-C3), total duration and status. The second block,
Current area, shows information about the ongoing inventory, which corresponds to a

single zone.
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4.4.2 Reports

Reports consists of two views of information of interest to the final user.
The first view, a log of tasks undertaken by the robot along with relevant
information fields, which can be opted in or out (Fig. 4.14b). The second
view, the status and visualization of recorded maps (Fig. 4.14c). This
is important to know if the recognition has been accomplished in all the
zones and whether it needs to be rerun after significant layout modifica-
tions, which is automatically informed.

Robot status: Connected Settings| List of maps
RFID status: Connected
Task: IDLE Zone: A1
Settings Map date: Not available
Select one of the following tasks
¥IStart ¥ ¥ITask || Task Zone: A2
Inventory Mission time ~ Section status iapdate:lictavaliable
Tags
Zone: B1
Map DurationRemapping Map date: Not available
Rows per page;5 v
Reports p 9 Zone: B2
Map date: Thu Jul 21 2016 14:46:37 GMT+0200 (
N i Remapping: Recommended
Tasks history Starttime v Section Task
. o Zone: C1
Maps information Map date: Tue Jan 31 2017 18:00:52 GMT+0100 (.
31/1/2017,18 C1 map Remapping: NA
Guidelines
Zone: C2
Py . 2 N bl
Administration 31/1/2017,17 C1 map Map date: Not available
Zone: C3
Map date: Not available
5 s B g B G
(a) (b) (©)

Figure 4.14: Interface views under the Reports menu. (a) Reports is divided in two sub-
menus: Tasks history and Maps information. (b) Tasks history allows the consultation
of every task undertaken by the robot. (c) Maps information lists configured zones and
whether the recognition has been completed (Map date). As well, it suggests rerunning
the recognition when significant layout changes are detected (Remapping).

4.4.3 Administration

The Administration area includes a set of low-level controls and features,
which are restricted to operators with advanced knowledge and privileges.
The Administration toolkit consists of the following:
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e Manual inventory An operator can run a non-autonomous inven-
tory during which the robot is commanded from the interface. The
control view is analogous to Teleoperation (Fig. 4.15b). Initial
steps are equivalent to those of the Inventory procedure, requiring a
QR code for the identification of the zone.

e Teleoperation It allows viewing the live camera stream and con-
trolling remotely the robot.

e Halt Switches off the Brain.

e Reboot Reboots the Brain.

e Inventory scheduler Provides a means to configure the robot on a
weekly schedule of zones. Scheduling zones is useful in large stores
where inventories cannot be completed in a single battery load or
working shift

e Operation parameters Low level configuration parameters.

e WiFi Configuration for the connection to a WiFi network.

e Show diagnoses Runs a diagnostics tool that checks the status of
hardware for first-level troubleshooting 4.15c.

4.5 Robot design validation

The robot design was validated by 11 untrained users that were asked to
complete, first, the assembly of the robot parts and, after, recognition and
inventory procedures. In order to accomplish the tasks, participants were
supplied with the robot’s manual and given no additional explanations.
Upon completion, participants were asked to fill in a questionnaire for
the assessment of the experience. Among participants, there were actual
potential customers that undertook demos with the robot.

Table 4.2 summarises the responses to the questionnaire related to the
assembly. While assembly and disassembly are tasks that can be thought
to be performed infrequently, this might not be the case always. Thinking
of the robot as a service, as opposed to a resident device, its mobility from
store to store is critical. Despite the tasks involve only the connection
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Figure 4.15: (a) Robot’s control interface Administration menu. (b) Teleoperation al-
lows the remote commanding of the robot and shows a live stream of the camera as
reference. (c) Diagnostics view is intended for troubleshooting. It lists the status of all
relevant hardware parts.

of four cables and fixing six screws, it is still not deemed as extremely
simple. The main reason, pointed repeatedly in the additional comments,
is the weight of the parts, most noticeably the identification subsystem,
which needs to be lifted. In this regard, next design iterations should
consider making the parts lighter for a better manageability.

Statistics of the responses related to the operation of the robot, which
includes inventory and recognition procedures, are shown in Table 4.3.
One must note that such procedures involve using the robot’s interface.
Overall, responses are satisfactory. Given that participants were simply
given a manual, the conclusion is that both procedures are simple and
clear enough. The focus for improvement is on the interface, which is
deemed as helpful but, as additional comments stress out, it could include
more guidance. This was expected since the interface was developed as
a minimum viable solution for operation and can be enriched with visual
and textual clues and its design enhanced. Given the robot is meant to
be operated by unskilled users, this point should be addressed in next
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Table 4.2: Results of the questionnaire for the validation of robot assembly. The state-
ments were valued between 1 (totally disagree) and 5 (totally agree).

Statement Answer Answer

average standard
deviation

It’s simple to assemble/disassemble | 3.3 1.0

I's easy to learn to assem- | 4.1 0.7

ble/disassemble

The effort to assemble/disassemble | 3.7 0.9

is acceptable

The time to complete the task is ac- | 3.9 0.9

ceptable

iterations.

Table 4.3: Results of the questionnaire for the validation of robot operation. The state-
ments were valued between 1 (totally disagree) and 5 (totally agree).

Statement Answer Answer

average standard
deviation

It’s simple to use 4.0 0.9

It’s easy to learn to use 4.2 0.8

The interface is intuitive and guides | 3.2 0.8

you through the process

The time to complete the task is ac- | 4.1 0.7

ceptable

Contrastingly, operation procedures are considered simpler than as-
sembly and disassembly. This is a good point since operation procedures
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are expected to be run more frequently.
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Chapter 5
INVENTORY

The automation of inventory taking is one of the ultimate goals of this
work. The assessment of inventory accuracy and its duration is addressed
thoroughly, focusing on the robot’s navigation behaviour adjustment for
the optimisation of results. An important contribution is the definition
of a methodology for the assessment, given the lack of previous works
addressing this topic. This includes insight into the computation of a
baseline and the definition of specific measures. Also, the verification of
the robot as a device for automatic inventory and the setup of a verifica-
tion environment are addressed. Ultimately, experimentation at a number
of retail stores and a thorough comparison with the procedure of taking
inventories with RFID handhelds is presented.

5.1 Methodology

5.1.1 Accuracy computation

The computation of inventory accuracy presents a notable challenge. Fun-
damentally, the lack of a reliable baseline for the assessment given that
usual inventory records and counting methods are less accurate than the
robot inventory to be evaluated. Furthermore, one must note that the tar-
geted environments involve tens or hundreds of thousands of items where
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manual counting requires a prohibitive amount of work.

Generally, libraries and stores keep a record of available items by up-
dating the count as they are consumed and replenished. This is com-
monly known as a perpetual inventory. Unfortunately, perpetual inven-
tories diverge significantly from reality due to wrongly recorded transac-
tions, theft and misplacement.

In addition, periodic corrections are applied following manual audits.
Such audits are indispensable and known as fiscal inventorying, given en-
terprises should include accurately assets in their balances for tax report-
ing. To some extent, manual counts are undertaken assisted by automatic
identification technologies such as barcodes or RFID. In any case, such
procedures are not frequent and involve the action of persons with conse-
quent unintended errors.

Hence, perpetual inventories, corrected or not, are not a reliable pic-
ture of what there actually is in a store, although they can be used as a
support.

While the ideal baseline for the assessment of robot inventories would
be a manual count, its closest realistic expression is taking inventories
with a handheld RFID device. Interestingly, this is the most widespread
way of taking RFID inventories nowadays, and so a reasonable reference
to consider and challenge.

Therefore, two sources of inventory information are considered: per-
petual inventory records; and RFID handheld inventories. Additionally, a
database of product references is essential in order to filter out products
not in a mission’s scope. In explanation, at inventorying a selected zone,
products from neighbouring areas are usually identified. Given that the
robot’s reading reach is significantly longer than a handheld, the robot is
able to gather more product codes from distant zones. Hence, if those are
not filtered out, the accuracy figure would be distorted in favour of the
robot.

Three main inventory sets are considered in the computation of base-
line and accuracy in this work. The inventories enclose data of different
nature. On one hand, inventories taken with RFID devices provide uni-
versal unique item identifiers, expressed by the Electronic Product Code
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(EPC). On the other hand, the perpetual inventory data generally con-
sists of product type identifiers, Stock Keeping Units (SKU), which are
not unique universally. An EPC encloses the item’s corresponding SKU
code, which makes the comparison of the two different inventory types
possible.

o P, = {(sk;ul, tskuy), ..., (skuo, ﬁskuo)} represents the set of
items listed in a perpetual inventory, expressed as pairs of prod-
uct reference code (SKU) and quantity. The perpetual inventory
includes the items within n zones;

o R, = {epcl, . ech} represents the set of items identified at an
1th round of robot inventorying an arbitrary zone z. By decoding
the EPCs, it can be equivalently expressed as
R., = {(skul, tskuy), ..., (skuyy, ﬁskuM)}

e H,, = {epcl, e epcv} represents the set of items identified at an
1th round of manual RFID handheld inventorying an arbitrary zone
z. By decoding the EPCs, it can be equivalently expressed as
H.; = {(skuy, iskwy), ..., (skun, fskuy) }

A complementary data set used in the computation of baseline and
accuracy is the set of product types within a specific zone where the inven-
tory is taken, expressed as Z = {71, ..., Z,, }, being Z, = {sk;ul, . skuL}
the set of product types within zone z. This is the data needed to group
inventory data by zones and enables filtering out the items detected that
do not belong to the zone in scope.

Figure 5.1 depicts the information sets considered and their overlaps,
which are the focus for accuracy computation.

The availability of data varies depending on the scenario. Accord-
ingly, the baseline, thus accuracy, will rely upon varying combinations
of data. Next, three possible accuracy figures are introduced: raw accu-
racy; targeted accuracy; and verified accuracy. In all of them the baseline
is a fusion of all the information available, including multiple handheld
and robot inventory rounds in the same batch. Table 5.1 summarises the
accuracy measures and the required sets of data for their computation.

59




“main” — 2018/9/19 — 1:01 — page 60 — #72

Z1 Z>

(P1 { _ Pﬂ
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P4 P3 J
Z4 é 23

Figure 5.1: Data subsets considered at accuracy computation. Four zones are depicted,
expressed by their corresponding product types: Z1, Zs, Z3 and Z4. The inventoried
zone in this case is Z5. The set of handheld detections is H>, the set of robot detections
is R9 and the perpetual inventory is P». Usually, both the robot and the handheld identify
items that belong to zones adjacent to the zone in scope. In the case of the robot, this is
usually more significant.

Onwards, for notation simplicity, it is assumed that inventories are
taken for an arbitrary zth zone although not explicitly expressed.

Raw accuracy

Raw accuracy is the measure used when only handheld and robot counts
are available. Raw accuracy relies on the premise that, if the area covered
by both devices is the same, everything that is identified by the hand-
held should then also be identified by the robot. In this case, the baseline
is the aggregation of one to multiple handheld and robot inventory mea-
surements during a period where the stock is known to remain unchanged.
Equation 5.1 describes the computation of the raw baseline using N hand-
held measurements and M robot measurements. Equation 5.2 describes
the robot raw accuracy for an ;, robot round.
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Rzi H 21 Z | P 1.n
Raw accuracy X X
Filtered accuracy | x X X
Verified accuracy | x X X | X

Table 5.1: Summary of accuracy measures and the data sets required to compute them.

N M
Braw = JH: U JRi (5.1)
=1 =1
’R’L N Braw‘
Accraw Rz =
( ) ‘Braw’

(5.2)
| Braw| = Cardinality of B,y

Given the robot identification reach exceeds considerably that of the
handheld, the equivalent measure to assess handheld accuracy is under-
rated. For this reason, it is discarded as a representative measure. Given
the raw accuracy is not useful for accuracy comparison, it is not consid-
ered onwards in this thesis.

Filtered accuracy

The filtered accuracy is the measure used when information about prod-
uct types in scope is available. Products identified that do not belong to
the inventory target zone are filtered out. This allows for a fair compar-
ison between the robot and handheld accuracy, given identifications are
confined to the zone in scope.

Equation 5.3 describes the filtered baseline computation.

N M
Bfiltered = (U Hz U U Rz) C Zn = Br‘aw C Zn (53)
=1 =1
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In order to achieve a baseline that is faithful to the actual items count,
handheld and robot inventory iterations, N and M, have to be increased
until a residual baseline increment is reached.

Equation 5.4 describes the accuracy computation for an 4;, round of
an inventory [ taken either by the robot or the handheld.

|Iz N Bfiltered|

Accritered (IZ) | Bfittered|
iltere

(5.4)
[i < {Hl, Rl}

Importantly, neither the filtered nor the raw accuracy take into account
items in scope not identified by any means. It is an insightful comparative
measure, although it could become misleading if the quality of inventories
is low from all sources at the same time. Interestingly, if just one of the
inventory sets is erratic, the filtered accuracy will disclose it.

Verified accuracy

The verified accuracy extends the aforementioned measures by using the
perpetual inventory record as a complementary reference. Albeit the per-
petual inventory record itself could be used directly as the baseline, given
it is known to diverge from reality, it is not considered as is. Instead,
a thorough procedure that takes into account all the inventory data sets
available is followed aiming at measuring the most accurate baseline pos-
sible.

Essentially, the procedure consists in analysing the discrepancies be-
tween the filtered baseline and the perpetual inventory. Products that show
inconsistent item counts between the two records are searched for manu-
ally to confirm whether the discrepancy is due to a wrong baseline count
or due to a wrong perpetual inventory count. After the manual counting,
the actual count is used to correct the baseline and the perpetual inven-
tory. In the end, both records converge to a faithful count of items, what
we call the verified baseline.
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The procedure starts by computing a set of alleged false negative de-
tections M by subtracting the positive detections in all rounds, namely
Byittered, to the items listed in the perpetual inventory F..

]/\ZEPZ\Bfiltered PZ:Pl--TLCZn
(5.5)
P, \ Bfiltered = {Sku € PZ|$ku §é Bfiltered}

M is an estimation of the items missed by the robot and the handheld.
Note that RFID never outputs false positive detections, which means that
every item identified is indisputably present. On the contrary, items listed
in the perpetual inventory are not necessarily in scope.

Next, items contained in ]\//7 are manually searched for. If an item is
found, it is removed from the shelf and its identification with an RFID
handheld is attempted. This is done to discard a malfunctioning RFID
label. Occasionally, RFID labels are damaged or wrongly coded. Items
that can be identified with an alternative RFID device are added to the set
M, which contains the actual missed items after verification.

M = {m; € M | m; is found and detectable} (5.6)

To conclude, the verified baseline is computed as the union of true
positive detections, or filtered baseline, and actual misses.

Bverified = Bfiltered UM (57)

Finally, the verified accuracy can be computed as described in Equa-
tion 5.8.

|Iz N Bverified|

Accvem'fied (Iz) = |B |
verified

(5.8)
[i < {Hl, Rl}
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Figure 5.2: Visualisation of the different baselines - delimited with a dashed red line
- used in accuracy computation. The use of one or other baseline measure depends on
data availability. (a) Raw baseline (B,.q.,). (b) Filtered baseline (B;itereq). (¢) Verified
baseline (Byerified)-

5.1.2 Definitions

The definition of specific measures is motivated by the fact that no former
works have addressed a similar topic. To the best of my knowledge, no
measures have been previously defined for the comparative evaluation of
inventorying in different environments and using diverse methods. A first
group of measures are related to the characteristics of a layout, which
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influence the performance at inventorying: aisles length; intricacy; and
items density. A second group express the actual performance: effective
speed; and effective read rate.

Aisles length

We call aisles length, L,;g.s, the total length of aisles encompassed in a
given layout, in meters.

Laisles = Zgz [m] (59)

In contrast with the area, the aisles length gives an idea of the extent
of the inventory task, since it gives the actual distance a robot or person
should eventually travel to identify all the items.

Noteworthy, although the robot is able to identify items across shelves,
in the presence of specific materials, such as metals or liquids, the RFID
signal can be blocked. Therefore, rather than relying on its reading reach
for planning the navigation, the robot, equivalently to a manual inventory,
is configured to visit all the traversable aisles. In this manner, unpre-
dictable signal blockages are minimized and the accuracy is not compro-
mised.

Intricacy

The speed of a robot navigating a space depends on its proximity to obsta-
cles and the type and amount of turns involved. When obstacles are close
by, the cruise speed is reduced for caution and at turns the robot speed is
adapted. Therefore, a complete navigation in wide and straight aisles is
faster than in narrow aisles with many turns. Consequently, the duration
of inventories will be dependent on the characteristics of the layout.

Intricacy is computed as the aisles distance that correspond to each
unit of area, expressed in Equation 5.10.

Intricacy = % [m/m?] (5.10)
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Figure 5.3: Within the same area, layout (b) includes more aisles length than layout (a).
Therefore, the degree of intricacy in layout (b) is higher than in layout (a). Note that a
complete navigation of layout (b) involves three turns in narrower aisles in contrast with
the two turns and wider aisles in layout (a).

Intricacy can be thought of as the distance that should be travelled
to scan a square meter. Indeed, it gives an idea of the intricacy of the
layout, since the more meters within a square meter, the more turns ex-
pected. Further, it is a comparative measure of the width of the aisles
when shelves at the compared layouts are similar in size. Figure 5.3 is
a graphical representation of two simple layouts with different levels of
intricacy.

Items density

At stocktaking, a high amount of items per unit of area can be a notable
challenge. A usual consequence of a significant amount of references in a
confined space is their placement in a very packed manner, which means
RFID labels can be occluded or interfere with each other. In addition, the
more items the RFID signal has to traverse, the more it is weakened. Items
density is the amount of items per area unit, expressed in items/msy. It
is computed from the baseline measure at use and expressed in Equation
5.11.

66




“main” — 2018/9/19 — 1:01 — page 67 — #79

1Bl
A

Titems [items/ma]

(5.11)
B e {Bfiltereda Bverified}
| B| = Cardinality of B

Additionally, the items lineal density, the amount of items per aisles
length unit, is described by Equation 5.12.

|B]

Laisles

Nitems [items/m]

(5.12)
B e {Bfiltered7 Bverified}
| B| = Cardinality of B

Combining Equations 5.11 and 5.12, Intricacy can be expressed in
terms of items density and items lineal density as

Intricacy = Titems [m/m?] (5.13)

items

Effective speed

A robot that navigates in a cluttered and dynamic environment periodi-
cally faces situations in which it needs to reroute and walk around. For
instance, due to unexpected obstacles or narrow thus impassable aisles.
On the contrary, a person can easily manoeuvre in such situations. As
a result, robot travelled distances are generally longer than the optimal
path, the total aisles length, while a person’s journey is equivalent.

The effective speed is computed disregarding the excess of distance
travelled and focuses on the aisles length. In this manner, the effective

67




“main” — 2018/9/19 — 1:01 — page 68 — #80

speed expresses the actual time to inventory a meter of the layout. Fur-
thermore, an inventory round that does not deliver the maximum accuracy
has to be penalised thus a correction factor 7 is applied. The reason is that
if the accuracy of the round is not 100%, the time taken by the inventory
should have been longer. Additionally, for the measure to be compara-
ble across different inventory rounds, it needs to be normalised. Equation
5.18 reveals the computation of the effective speed.

L
Vesf = Xy -n(Ace) [m/s] (5.14)

The normalization factor 7 is defined as a function of the accuracy.
Looking at a typical plot of accuracy over time (Figure 5.4) one can see
that the contribution of time to accuracy is not linear. The typical be-
haviour is an irregular growth of the accuracy during the initial time pe-
riod and a final very slow growth towards the 99% and higher accuracies.
Indeed, the final slow growth is contributed by the difficult identifications,
which are the critical to achieve an accuracy higher than 99%.

The evolution of accuracy over time resembles a logarithmic growth.
Let ¢1¢ be the duration of an inventory that delivers a 100% accuracy and
Acc the accuracy. The contribution of time to the growth of accuracy can
be approximated as a logarithmic function

t
Acc(t) ~ logy (7 — +1) (5.15)

From equation 5.15 an expression of time is extended

N | (5.16)
t100

The function used as the correction factor in the computation of the

effective speed extends from equation 5.16. Intuitively, it expresses the

duration taken by an inventory compared to the duration needed for a

perfect accuracy. The function meets the requirements of the correction

factor. A slow initial growth and a steeper growth towards the perfect
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Figure 5.4: The evolution of accuracy over time in a real-world scenario. A fast growth
is followed by a slow growth. Around time 2000 s the discovery of a new crowded
area restarts the typical growth sequence. Effort does not contribute linearly to accuracy.
Note the two quasi-flat regions, where a prolonged time period is needed to gain a small
share of accuracy. The explanation is that easy identifications happen in bulks while
difficult ones need a continued effort.

accuracy. In this way, low accuracies are strongly penalised while an ac-
curacy close to 100% gets a much smaller penalisation. A 100% accuracy
gets no penalisation at all.

At

n(Acc) = — = 24«d) _ 1 (5.17)
t100

To sum up, the effective speed represents the actual speed at yielding a
100% accuracy and, combining equations 5.18 and 5.17, can be expressed
as

L

Vess = 77 (24A) _ 1) [m/s] (5.18)

Effective read speed

The effective read speed measures the throughput of new identifications.
That is, the new identifications per time unit that are actually registered
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during an inventory, expressed in items/s. It depends on the navigation
duration and the density of items. However, it is an insightful comparative
measure of a device’s actual reading capacity in a given environment. It is
not to be confused with the read rate, which is usually defined as the num-
ber of identifications, not necessarily new, that can processed in a given
time period by an RFID reader. Equation 5.19 describes the computation
of the effective read speed for an inventory /;.

I; :
TSepf = % [items/s]

(5.19)
I € {R;, H;}
|I;| = Cardinality of /;

5.2 Verification and optimisation

The verification and optimisation of the robot as an automated inventory
solution focuses primarily on the delivered accuracy. In this sense, the
contribution of the RFID-driven navigation control is analysed and proved
essential for an inventory with optimised accuracy and duration.

The autonomous navigation of the robot is not explicitly treated given
it is not a novel contribution. However, the successful integration, con-
figuration and parametrisation of algorithms are implicitly proved by the
fact that inventories were completed without major incidents, after some
initial iterations and adjustments. The validation of both interaction and
operation procedures at inventorying are addressed in Chapter 4.

The simulation of the robot logic was set up in Gazebo!, a robot simu-
lation tool. Gazebo offers a complete toolbox for the simulation of robots
in realistic scenarios. However, the simulation of RFID systems is not
realistic. The reason is that the propagation of radio waves strongly de-
pends on the specific characteristics of the environment and includes the

Thttp://gazebosim.org/
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materials’ electrical properties. Moreover, the simulation of radio wave
propagation requires a complete finite element model. All in all, the si-
multaneous simulation of a high number of radio waves - the robot should
operate in environments with thousands of tags - is in practice not possi-
ble. For all this, the simulation of RFID propagation was done with a
simplified probabilistic model. Consequently, the simulation was not re-
alistic in what regards RFID identification. Nevertheless, it was insightful
in terms of navigation logic. The packages for a basic simulation of the
inventory robot have been made available to the community?.

5.2.1 Verification setting

The verification of any device requires an appropriate test bed, one where
testing can be undertaken in conditions under control and reproduced as
needed. In the robot case, the setting was expected to comply with a num-
ber of specific conditions that made the verification realistic and challeng-
ing at the same time. Pursued conditions were the following:

Real environment

Significant density of items

Items challenging for RFID identification
Perpetual inventory available

In this sense, the most appropriate accessible test bed was found to
be the Pompeu Fabra University Library. It is an actual real environment
with items placed in a packed manner. Books are known to be challeng-
ing for RFID identification due to the high amount of water in paper’s
composition, which absorbs radio waves. Plus, the Library Management
System (LMS) keeps a record of available items. Altogether, the Univer-
sity Library was the perfect candidate but for one detail. The books were
not originally RFID labelled. Therefore, RFID labels had to be coded and
placed in books.

Zhttps://github.com/UbiCALab/advanrobot
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A representative aisle was chosen and 3,054 books labelled, including
not only those in the aisle but also in neighbouring aisles, which results
in a higher item density. The labels were placed on the last pages of the
books. Compared to placing them on the spine, this is more challenging
given the robot antennas are perpendicular to books pages when travers-
ing an aisle. Generally, identification is easier when a tag and querying
antenna are on parallel planes.

Figure 5.5 shows the robot in action at the verification setting and the
characteristics are summarised in Table 5.3.

Figure 5.5: The robot at the verification setting, the University Library. Side covers
removed so six RFID antennas are visible on one side.

Merchandise Books
Number of items 3,115
Typical aisle width  [m] 1.05
A [m?] 12.0
Citems litems/m?] | 260
Laisles [m] 5.0
Intricacy [m/m?] 0.42

Table 5.2: Characteristics of the verification setting.
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Books coding

The assignment of a unique item identifier to each of the books was ad-
dressed before the coding. An open coding Tag Data Standard® defines
the structure of the Electronic Product Code (EPC), which supports di-
verse coding schemes. Among them, the most appropriate for the case
in scope is the Serialised Global Trade Item Number (SGTIN), which is
constructed from the combination of a product identifier (GTIN) and a
unique serial number.

A GTIN is usually prefixed by a country code. In the case of books the
GTIN is formed by prefixing the International Standard Bookd Number
(ISBN) code with 978, the books country’ identifier. The last digit is the
Cyclic Redundancy Check (CRC).

The unique serial number is taken from a book’s unique identifier that
the library uses internally within their LMS. It is a 10 digit code that
identifies uniquely a book and is printed on a label on its cover.

Following a standardised coding scheme implies that any RFID sys-
tem can retrieve the information embedded in a product’s EPC. Specifi-
cally, the coding scheme applied was an SGTIN-96, which uses 96 bits.
Figure 5.6 depicts the coding scheme as defined in the standard. Note
that the GTIN is the combination of the fields GSI Company Prefix and
Indicator/Item Reference.

The coding procedure was undertaken using an RFID encoding sta-
tion* that consists of a barcode reader and an RFID tag encoder. The
station was configured to generate the SGTIN code after reading a books
barcode unique identifier and consulting the library database to retrieve
the corresponding ISBN. At the same time, it checked whether a book be-
longed to the current library shelf. In this manner, misplaced books were
uncovered.

Out of the initial 3,054 books coded, 122 were reported anomalous
by the coding system. This accounts for a 4% of wrongly placed or er-
roneously informed references in the system. Of these, 2% were found

3https://www.gs1.org/standards/epc-rfid
“https://www.keonn.com/systems/tag-encoding/rfid-tag-encoding-systems.html
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Scheme SGTIN-96

Logical EPC Header Filter Partition GS1 Indicator Serial
Segment Company (**) / Item

Prefix (*) Reference
Logical 8 3 3 20-40 24-4 38
Segment
Bit Count
Coding EPC Header Filter GTIN Serial
Segment
URI portion F Cc.I s
Coding 8 3 47 38
Segment
Bit Count
Bit Position | bssbsa...bss barbecbas bsabgs...bss bazbse...bo
Coding 00110000 Integer Partition Table 14-2 Integer
Method

Figure 5.6: SGTIN-96 coding scheme, the one used to code books in the library setting.
Source: https://www.gs1.org/

to belong to different library facilities, misplaced not within the library
building. In reality, such books are considered lost and unavailable, since
they are actually not findable. This is of high significance to understand
the value of an automated inventory and location solution, which prevents
such situations.

5.2.2 Verification

The verification focuses on analysing the delivered accuracy under vary-
ing RFID-driven navigation control settings. The verification goal is twofold.
First, proving that the robot can actually output inventories with an accu-
racy higher than 99%. And second, demonstrating that a navigation con-
trol based on the progress of identifications significantly improves both
accuracy and efficiency.

For that, the robot is set up for inventorying in the verification test bed
under three representative configurations for comparison. The compari-
son aims at assessing the contribution of RFID-driven interruptions and
the fact that the robot twists in place when it stops due to new identifica-
tions.
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’ Configuration H th journey \ thrwist \ Twisting

A _ Z _
B 0 1 False
C 0 1 True

Table 5.3: Configurations of the RFID-driven navigation control verification tests.

In configuration A, there are no RFID-driven navigation interruptions,
which means that the robot traverses the verification aisle at cruise speed
without stopping. Configuration B includes interruptions by setting thresh-
olds to the most conservative combination possible. This implies stopping
when just 1 new identification per second is registered and resuming the
navigation only when identifications fall down to none. In configuration
B, the interruptions do not trigger twisting in place but just stopping. And
configuration C extends the former by including the twisting after an in-
terruption.

The robot was configured to traverse the target aisle back and forth
two times under each configuration. Altogether, each test consisted of
four aisle passes. The inventory at each pass is the addition of items iden-
tified during the current and former passes. In this way, the contribution
of traversing an aisle repeated times was assessed as well. Table 5.3 sum-
marises the configurations.

On site, the verified baseline was computed with the support of an
RFID handheld reader and the list of alleged books retrieved from the
LMS. Handheld inventories consisted of four passes. Seven handheld
inventories were used in the verified baseline computation. The same as
with the robot.

Figure 5.7 and Table 5.4 show the verified accuracy values at each
pass for the different configurations. The accuracy at each pass is the
accumulation of former passes. Seven tests were completed under each
configuration and the mean and deviation of results is assessed. The pri-
mary conclusion is that an accuracy higher than 99.0% can be achieved
only if the navigation is adjusted following RFID identifications. As well,
the contribution of twisting to the accuracy is revealed essential to reach
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Figure 5.7: RFID-Driven navigation control verification tests results. Three different
configurations were tested, which are summarised in Table 5.3. Each configuration in-
volves four aisle passes. Each pass contributes to the accuracy in a cumulative way,
new identifications are added to former passes. Seven tests were completed under each
configuration and the mean (symbol) and span (lines) of the accuracy are assessed. The
dotted horizontal line at 99% marks the minimum acceptable accuracy.

the required accuracy consistently. A further observation is that, whether
in a single pass the accuracy is slightly higher than 99.0%, after a second
pass it can reach up to 99.5%.

Among the assessed configurations, configuration C and two passes
is selected as the optimal since it yields the maximum accuracy measure-
ments. The contribution of a third and fourth pass are negligible.

A subsequent analysis is comparing the performance of the robot un-
der this configuration to the handheld. Table 5.5 shows accuracy and
duration results for comparison. Unsurprisingly, the robot and the hand-
held show similar figures in accuracy. It is important noting that handheld
inventories were taken very thoroughly aiming at a relevant contribution

76




“main” — 2018/9/19 — 1:01 — page 77 — #89

’ Configuration \ Pass \ mean(Acc)[%] \ max(Acc)[%] \ min(Acc)[%] ‘

1 86.2 94.4 74.9
A 2 96.4 97.9 95.2
3 97.2 98.1 96.3
4 97.7 98.2 97.4
1 97.3 97.7 97.1
B 2 98.9 99.1 98.8
3 99.1 99.3 98.8
4 99.1 99.3 99.0
1 99.2 99.4 98.8
C 2 99.6 99.7 99.5
3 99.6 99.8 99.6
4 99.7 99.8 99.6

Table 5.4: RFID-Driven navigation control verification tests results. Three different
configurations are shown, which are summarised in Table 5.3. Each pass contributes
to the accuracy in a cumulative way, new identifications are added to former passes.
Accuracy Acc refers to the verified accuracy.
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to the baseline. In this sense, handheld inventories can be considered of
a very high quality. On the contrary, equivalent inventory durations were
not expected before the optimisation of the navigation control. Nonethe-
less, it can be anticipated that robot and handheld can undertake compa-
rable inventories in what regards accuracy and duration.

| | Robot | Handheld |

mean(Acc) [%] | 99.6 99.3
max(Acc) [%] | 99.7 99.7
[%0

[

min(Acc) %] | 99.5 99.0
mean(AT) [s] | 601 598

Table 5.5: Robot (Configuration C, 2 passes) and handheld (4 passes) figures of ac-
curacy and duration measured during the verification tests. Accuracy Acc refers to the
verified accuracy.

5.2.3 Optimisation

Following verification, a set of tests are conducted with the ultimate goal
of finding the pair of navigation thresholds that optimise inventory du-
ration. Resuming the navigation only when no new identifications at all
are received, although intuitively appropriate, may be too restrictive in
terms of inventory duration. Increasing pairs of values are assigned to the
pair of thresholds that determine the behaviour of the RFID-driven navi-
gation starting from the most restrictive, or thorough, which is (thyist =
L, thjourney = 0). Note that such pair implies stopping and twisting after
1 or more new identifications and resuming the journey only when no new
identifications are registered. The pairs of values are iteratively doubled
until the accuracy falls below an acceptable level. Under each configura-
tion, the robot was configured to complete 4 consecutive aisle traversals.
An optimisation test includes the items accumulated during the 4 passes.
Each test was performed 7 times and their mean and span assessed. For
comparison, the verified baseline and subsequently accuracy were com-
puted. Figure 5.8 shows the results for the pairs of thresholds analysed.
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Figure 5.8: RFID-Driven navigation control optimisation results. The optimisation fo-
cus is in the comprise between inventory accuracy and duration. Each pair of thresholds
involves four aisle passes, marked by four consecutive symbols. Each pass contributes to
the accuracy in a cumulative way, new identifications are added to former passes. Seven
tests were completed under each configuration and the mean (symbol) and span (lines)
of the accuracy are assessed. The dotted horizontal line at 99% marks the minimum
acceptable accuracy. The dotted vertical line at 600 s marks the baseline duration, the
best measured during verification tests, (thiyist = 1, thjourney = 0).
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The foremost conclusion from optimisation tests is that inventory du-
ration can be significantly reduced without compromising the accuracy by
adjusting the navigation thresholds. The pair (thiyist = 2, thjourney = 1)
delivers the same accuracy as the pair (thwist = 1, thjourney = 0) in 30%
less time. Both in a second pass. More interestingly, inventory duration
can be more than halved if few fractions of accuracy can be dismissed. In
two passes, the pair (thyyist = 16, thjourney = 8) yields a 99.3% accuracy
in just 235s which is 60% faster than the initial thresholds.

Considering the thresholds that optimise the performance of the robot,
Table 5.6 lists side by side figures of merit for both the robot and hand-
held at its best pass for comparison. It is worth noting that, even the
robot travels twice as much distance as the handheld, its effective speed
is nearly three times faster. Also, the robot’s reading capacity, expressed
by the effective read speed, is 2.5 times higher. In this terms, one robot is
equivalent to 2.5 effective people. In other words, the efficiency of people
is 40% lower than the robot’s. This is an expected figure since the robot
includes three RFID readers and twelve antennas while a single handheld
includes just one reader and one antenna. In conclusion, the robot as an
automatic identification device does not only imply the automation of in-
ventory taking but also enhancing the efficiency.

| | Robot | Handheld

Accvmﬁed [%] 99.3 99.3
AT [s] 235 598
Laisles [m] 11.0 5.0

v [m/s] 0.047 | 0.008
Veff [m/s] 0.021 | 0.008
TSeff [items/s] | 13.2 5.2

Table 5.6: Figures of merit of the optimal robot configuration and the handheld in the
library. The optimal robot configuration is the one with (thiwist = 16, thjourney = 8)
and two passes.

To sum up, verification and optimisation tests disclosed a number of
significant facts. Firstly, that the robot navigation should necessarily be
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commanded by the progress of RFID identifications. Otherwise, the re-
quired accuracy figure is not achieved. Secondly, that a proper adjustment
of the RFID-driven navigation thresholds is paramount for an efficient
inventory taking. Importantly, optimal thresholds are expected to vary
across environments with different characteristics. Hence, their initial ad-
justment given a specific target should be addressed. Lastly, that the robot
is superior to a manually driven handheld as an automatic identification
device.

5.3 Validation

The validation of the robot as an actual solution for the automation of in-
ventories consisted of several experimentation periods at major retailers.
In some other cases, the experimentation extended for longer periods, as
part of a pilot. Either cases implied limitations stemmed from interfering
in a real scenario. For instance, we were suggested to perform experi-
ments at the hours of the day with less customers visits, or during closing
hours. This presented notorious time constraints. As a consequence, in
some cases, experiments could not be iterated or always completed con-
sistently. Another usual limitation was not being provided with a perpet-
ual inventory or product type references, mainly due to restricted access
to retailers networks. Therefore, experimentation was adapted in each
case to retailers particularities.

In most of the retailers the measured accuracy was higher than 99%.
Nevertheless, in some cases it was not. In that cases, a thorough investi-
gation of the items missed by the robot was conducted. The usual find-
ing was a significant discrepancy between inventory figures reported by
retailers and the actual physical stock. The justification included three
variables. First and foremost, that the information retailers keep in their
inventory systems is not accurate. Second, that it is not clear to retailers
which sort of information they keep in their systems. For instance, which
counts correspond to the shop floor and which to the back store. Third,
that retailers are not knowledgeable of the internal procedures that affect
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stock positions, for instance, products moved between locations and not
subsequently reassigned to new locations. All in all, discrepancies arisen
from the robot inventories served as reference for the investigation and
clearance of inconsistencies. This was of significant importance since
it disclosed a new application of the robot: the audit of other inventory
systems.

Table 5.7 summarises the most significant experimental actions un-
dertaken at actual retailers.

The thorough analysis of validation experimentations focuses on a
specific retailer and period. The selected validation tests involve the un-
supervised operation of the robot and the handhelds by actual store asso-
ciates for an extended period of time. In this manner results are conse-
quence of real store operations. Importantly, handheld inventories were
already part of weekly associates tasks, which implies accumulated expe-
rience thus an expected quality. On the contrary, training was provided
for the robot’s operation. Hence, the robot’s performance is benchmarked
against the state-of-the-art stocktaking procedure.

Three zones within the store were selected following the retailer’s ex-
perienced challenges and interest in inventorying them accurately and pe-
riodically. Table 5.8 shows the characteristics of the selected zones. The
merchandise involved in the three zones are garments generally shaped in
many combinations of models, colours and sizes that are not easy to dis-
cern from each other by the naked eye. For instance, women’s underwear
involve both a cup and a torso sizes and a great variety of models and
colours are offered. Jeans involve as well two sizes, length and waist, and
many different pants shapes not easy to distinguish at a glance. In these
cases, few units of each product reference can be kept as garments be-
come quickly densely packed and to occupy space. Because this, they are
generally the products with a higher incidence of stock outs. Therefore,
there is a critical need of inventory accuracy in those items.

Few initial considerations regarding validation are worth taking into
account. The main pitfall is the absence of a perpetual inventory record
due to confidentiality. However, product reference information was granted.
Also, there were no inventory iterations on the same day, not even on con-
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Retailer | Date Weeks | Results
15 Apr 1 First on site testigg with the prototype.
A A.ccuracy. >99% in two zones. .

15 Aug 9 First on site testing with the early design.
Accuracy >99% in three zones.
Complete store inventory:

, 75007 in 24 hours

16 Aug 12 Robot operation unassisted by associates.
Accuracy >99% in several zones.
B 15 Mar 1 Accuracy >99% in one zone
Complete store inventory.

15 Jun 5 Due to a significant inaccuracy in
handheld and perpetual inventories,
the robot accuracy was meaningless.

C "15 May 3 Accuracy >99% in several zones.
Complete store inventory:

18 Aug 1 4000 m? in 6 hours
Accuracy >99%.

D '15Dec | 1 | Accuracy >99% in one zone.

16 Jan 1 Gathering a dataset for location.

18 TBD 8 Location assessment.

E 16 Apr 3 Accura.cy >99% ‘in a mock-up store.
Operational training.

18 Jul 8 Unassisted operation in production.

, Accuracy >99%.

H 17 Feb 4 Robot operated by retailer’s personnel.

, Accuracy >99%.

I 17 Mar ! Robot operated by retailer’s personnel.

, Accuracy >99%.

I 17 Jun ! Robot operated by retailer’s personnel.
L '18Feb | 8 | Unassisted operation in production.
M 18 Sep \ 8 \ Unassisted operation in production.

Table 5.7: Main robot field experimentation periods at retailers.
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| Zone A | Zone B | Zone C |

Merchandise Jeans Men’s Women’s
dresses under-
wear
Number of items 2,300 6,000 16,500
Typical aisle width  [m] 0.95 0.80 0.65
A [m?] 140 262 232
Citems [items/m?] | 16 21 71
Listes [m] 72 160 149
Intricacy [m/m?] 0.51 0.57 0.64

Table 5.8: Characteristics of the store sections where experimental tests were conducted.

secutive days. As a result, the computed baseline was the filtered baseline
(Eq. 5.3), consisting of a single robot and a single handheld inventory
passes. One must note that the resulting filtered accuracy measure is a
good device-to-device comparison indicator. However, it is not necessar-
ily accurate in what regards physical stock. Furthermore, handheld data
provided by the retailer did not include timestamps and the duration could
not be computed individually for each handheld pass. Alternatively, an
average duration of handheld scans was informed by the retailer.

During the validation period the robot completed a total of 32 inven-
tory rounds. Out of those, 14 coincided with a handheld inventory on the
same day and zone, becoming the ones valid for assessment. Although
expected coincidences were higher, inventories were completely managed
by store associates and deviated from schedule due to live changes in re-
sources allocation and priorities. In any case, coinciding data sets are
representative.

Figure 5.9 encloses a set of sub-figures that display all the relevant
data for the comparative analysis of inventories. The first row of sub-
figures displays the layout characteristics. The second and the third row
display measured and computed inventory figures, including the filtered
accuracy. Each sub-figure displays zone-wise measures for both the hand-
held and the robot. In the robot case, the measures are shown in average

84




“main” — 2018/9/19 — 1:01 — page 85 — #97

and range of values. Otherwise, the handheld measures that involve the
duration are just shown in average, given this was the data obtained from
the retailer.

Looking at the layouts characteristics, it is worth noting that from
zone A to zone C items density and intricacy show a growing trend. The
growth in intricacy is reasonably due to aisles becoming narrower. In fact,
in zone C the typical aisle width is below 0.70m, the robot’s nominal navi-
gation width. Although negative consequences can be expected, namely a
slower navigation and a critical increase of the risk of getting stuck, this is
preferred over missing aisles. In the end, the main goal is demonstrating
the accuracy of the robot at inventorying cluttered spaces. Given items
density and intricacy are the two main indicators of a layout’s complexity
regarding inventorying, from zone A to zone C the challenge to inventory
is considered increasing.

Figure 5.9g serves as a starting point for the comparative analysis of
the accuracy. The primary observation is that the robot delivers a filtered
accuracy higher than 99.0% - marked in the figure with the dashed red
line - in all the cases as opposed to the handheld, that fails at achieving
the required accuracy. Furthermore, the robot’s accuracy range through-
out all the iterations is [99.4%, 100%)], which demonstrates a high robot
precision. On the contrary, the handheld barely reaches the required ac-
curacy and is very imprecise. On one hand, low handheld accuracies can
be explained by the fact that the robot as an automatic identification tool
is superior. On the other hand, the handheld imprecision is likely due
to associates oversights, which are common at doing any repetitive and
cumbersome task. In fact, the lowest bounds in handheld accuracy are
likely due to unintentionally skipping a part of the zone. In the same
sense, the robot is not error free and incurs failures. However, in the
robot’s case, oversights are very unlikely if not impossible. Robot errors
are of different nature, yet most of them traceable and some recoverable.
In this regard, Figure 5.9 does not include unsuccessful and self-reported
inventory attempts by the robot. A last interesting trend is the decreasing
handheld accuracy from zone A to zone C. The most likely reason is the
increase in layout complexity.
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Regarding duration, the time it takes the robot to complete a zone
is comparable to that of a handheld (Fig. 5.9d), which complies with
the initial requirement. Noteworthy, at the simplest zone (zone A), an
associate with a handheld completes the inventory quicker than the robot.
This reveals that associates are more efficient in uncomplicated zones.
On the contrary, at inventorying zones of higher complexity, the robot is
quicker. The former is better expressed by the effective speed (Fig.5.9h),
which is normalized to the accuracy. In zone A the associates’ effective
speed is higher than the robot’s, while the trend is inverted in subsequent
zones. While the robot’s travelled distance is higher in all the zones, the
combination of duration and accuracy correction make its effective speed
surpass that of the associate with a handheld. Interestingly, the effective
speed trend is correlated to the Intricacy (Fig. 5.9d), which confirms the
fact that the more complex a zone, the more efficient becomes the robot
compared to doing the task manually.

Figure 5.9e shows that the robot travelled distance increases with in-
tricacy while the handheld’s distance remains proportional to the aisles
length. This can be explained by a person’s enhanced maneuverability.
First, a person can traverse narrower aisles. Second, a person can over-
come or put aside unexpected obstacles, for instance a fallen garment on
the floor. In the same situations the robot needs to seek and follow an
alternative path, which implies doing a walk around, and consequently
increasing its journey. Thus, a person is more efficient regarding distance
travelled. Besides, the robot is consistently faster since it walks more
meters than the handheld in equivalent times (Figure 5.9f). A confirmed
trend is that intricacy is correlated to the robot’s speed (Figures 5.9c and
5.9f). More interestingly, the person’s speed seems to be correlated to the
items density. The latter would confirm the superior power of the robot
as an RFID system compared to a single handheld. The robot is able to
simultaneously identify more items. Hence, it deals with higher densities
comparatively faster.

Figures of merit are shown in Figures 5.9h and 5.9i. Looking at the
effective speed, a person is faster at completing the simplest section due
to its better spatial efficiency. The trend is inverted at facing an increase of
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aisles length. The decrease of effective speed for the robot is correlated
to the intricacy while the handheld is affected by the increase in aisles
length (zone B) and density (zone C). The effective read rate is computed
as the amount of identified items per time unit and gives an idea of the
identification capacity. The robot effective read rate is correlated to the
density, which implies that the robot can assume the increasing density
without compromising its pace. On the contrary, the number of identified
items by the handheld decreases with density, expressed by the accuracy
(Fig. 5.9¢g), and so does the effective read rate.
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Figure 5.9: Summary of validation measures. On the first row, zone characteristics:
(a) density of items, (b) aisles length and (c) intricacy. On the second row, inventory
measures: (d) inventory duration, (e) inventory distance and (f) inventory speed. On the
third row, figures of merit: (g) filtered accuracy, (h) effective speed and (i) read speed.

Plots are actually a graphical display of tabular data.
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Chapter 6

LOCATION OF ITEMS

The knowledge of the location of items is an essential part of inventory
visibility, which aims at answering not only the which but also the where
of products for an efficient supply chain and satisfactory service to cus-
tomers. Basically, if an item’s count appears positive in the inventory
record but its location is not the expected and cannot be found, the item
is in effect unavailable. The consequence is an unanticipated discrepancy
between the inventory system count and reality. In other words, the lack of
knowledge regarding items’ locations contributes to the inventory record
inaccuracy, which degrades the efficiency of operations. Moreover, the
location of items unlocks complementary applications. For instance, the
guidance of customers and associates to searched products, an efficient
planning of product picking in the preparation of online orders sourced
from the stores, or analysing the impact of a product placement in the
sales. For all this, the computation of the location of RFID labelled prod-
ucts is addressed.

The computation of location is approached using probabilistic meth-
ods. Albeit theoretically possible, a computation based on the physical
characterisation of the RFID detections is unlikely. Foremost, it would
require the characterisation of every specific environment given the prop-
agation of radio waves is strongly dependant on the characteristics of a
setting. In this sense, every single object would have to be modelled,
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which is not an assumable task. Additionally, the computation would
involve a finite element model for solving Maxwell’s equations, which
implies a huge computational cost. Contrarily, probabilistic methods that
do not rely on the characterisation of the environment are proposed.

Two different approaches are proposed and analysed for the compu-
tation of location. The first approach relies on permanent reference tags
with known locations. The basic idea is assigning locations based on the
similarity of detections to the reference tags ones. The second approach
tackles the location of items using a measured detection model. It relies
on temporary reference tags, which are used to learn a robot’s detection
model in a supervised fashion. After, locations are computed by applying
Bayesian updating.

In order to assess the performance of location approaches a data set
is essential. With that purpose, a data set was prepared, which is de-
scribed in detail and shared openly with the community. To the best of
my knowledge, it is the first open data set available for the assessment of
RFID location algorithms.

6.1 RFID location dataset

The creation of a dataset for the assessment of RFID location algorithms
is an important contribution of this thesis. The dataset includes thousands
of identifications, distributed in space, of items with known locations and
all the usual parameters informed by a commercial RFID system. The
dataset can be used to apply any location algorithm intended for mobile
RFID systems and assess its accuracy. To the best of our knowledge, to
this thesis publication date no open dataset with a similar purpose was
published. The data set is available at Zenodo' named “RFID location
dataset” [50].

The creation of the dataset involved two main steps. In the first place,
the preparation of the setting, which extends the University Library test
bed introduced in Chapter 5. The initial RFID labelled books were com-

Thttps://zenodo.org/
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plemented with new ones. As a result, the setting encompasses 7,000
RFID labelled books distributed arbitrarily on shelves. An exception is
the aisle initially labelled, which presents a higher density of books. Fig-
ure 6.1 shows the layout of the Pompeu Fabra University Library where
the RFID location dataset was gathered.

e 19.09 m:

14.87 m

%A All shelves coded
One shelf coded

Figure 6.1: University Library layout where the RFID location dataset was gathered.

The library layout consists of aisles delimited by shelf racks. Each
rack is organised in a number of rows and columns and their intersection
is named a block. A block measures are 0.90x0.32x m. Figure 6.10 shows
a shelf rack divided in blocks. The ground truth of the books locations was
computed, rather than directly measured, by extending the locations of the
first book in each block. These were indeed measured and noted down by
hand along with the location of the last book in the block. Benefiting
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from the fact that books are allegedly sorted by their descriptor, books are
assigned a location by cumulatively adding the average book spine width
to the known location of the first book. The block is finished when the
last book in the block is found. The computed location ground truth is
valid as long as the Library does not modify the organisation of books in
shelves.

Subsequently, the robot was configured to complete four autonomous
inventory rounds. A manual-guided inventory was also recorded, with
the aim of gathering detections at unusual poses during autonomous in-
ventory. Note that each book is identified from a number of robot poses
during an inventory round. This means that for each book there are a
number observations distributed in space.

It is worth noting that the configuration of the RFID system was not
the same in all the inventory rounds recorded. Three inventory rounds
were run under RFID session S1 and the other two under session S2.
Justification comes from the fact that, in general, under session S2 less
detections, thus less spatial diversity, are registered given RFID tags are
quieted for longer time after their detection. Consequently, algorithms
that exploit the spatial diversity of detections for location are likely to be
penalised. On the other hand, more detections are registered under session
S1 and, at the same time, more interferences occur, which can compro-
mise inventory accuracy. In conclusion, while session S2 contributes to a
higher accuracy in inventory, session S1 can contribute to higher accuracy
in location. Providing data sets under both sessions grants the possibility
of conducting a complete analysis. In this chapter the focus is on location
and so the configuration used is session S1. In Chapter 5 the focus is on
inventory and so the configuration used is S2.

The location dataset can be classified in two types of data. One, the
data of static nature, which includes all the data that does not vary across
inventory rounds. The second, dynamic data, the actual identifications
and robot poses, which are specific to an inventory round.
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Table 6.1: The location dataset consists of five inventory rounds under different con-
figurations. Configurations using session S1 yield a higher number of identifications
per book than configurations using session S2. This implies a higher diversity of robot
positions, which is assumed to contribute positively to location algorithms.

Average
Type Session | identifications

per book

inv_1 | Auto S1 29.1

inv_2 | Auto S2 4.8

inv_3 | Auto S2 5.0

inv_4 | Auto S1 34.8

inv_5 | Manual | S1 25.8

Static data

Static data includes the context of the dataset, a common spatial refer-
ence for spatial data. With this purpose, a 2D map of the environment is
used. The 2D map is the one used by the robot for navigation, introduced
in Chapter 4. The 2D map consists of two files: a bitmap that contains
cell occupation information; and a description file that details the map’s
origin and resolution. Both books and the robot poses during the inven-
tory are referenced to the 2D map. Additionally, a 3D occupancy map is
provided separately. The 3D map can be exploited to delimit the possible
locations of books since an object is necessarily an occupied cell in the
search space. The 2D and 3D maps share a common origin. Static data
also includes the transforms between the robot’s origin, which determines
the robot poses, and the antenna’s coordinates. Using transforms one can
compute the location of the antenna’s at informed robot poses.

Static data also includes the baseline of books locations, which are
referenced to the aforementioned map and computed as described earlier.
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Dynamic data

Dynamic data consists of robot poses and identifications, which are spe-
cific to inventory rounds. Robot poses and identifications originate from
two different computation sources which are time synchronised by means
of the Network Time Protocol (NTP). Thus, both sources of data are re-
lated by a synchronised epoch. This is of utmost important to assign
identifications the corresponding location of the antenna at the moment
it was received. In this manner, the spatial source of each identification
can be determined to contribute to algorithms that exploit the diversity of
identifications in space.

Robot poses are referenced to the 2D map’s origin and include the
position and orientation of the robot during an inventory round. Identifi-
cations include all the usual parameters reported by an RFID reader and
the descriptor of antenna that originated the identification. A commercial
RFID reader usually reports RSSI, RF phase, RF frequency, a timestamp
and an RF port identifier. The latter univocally determines the antenna
that originated the identification.

All the robot poses during the navigation are provided, even not show-
ing any associated identifications. Robot poses without identifications can
be exploited by algorithms that make use of negative identifications to
complement positive identifications.

Table 6.2 lists the features provided corresponding to each subset type.

6.2 Clustering identification streams

The first approach explored for the location of RFID labelled objects re-
lies on the use of reference tags. The basic idea is placing objects in
known locations and assigning those locations to other objects identified
with similar characteristics. Intuitively, location with reference tags is a
clustering problem.

The identification of an object (EPC) is defined by the different identi-
fication instances during an inventory round, which are distributed in time
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Table 6.2: List of data included in the location dataset

| Dynamic |
Robot Timestamp epoch 1510944342382526
Position cartesian (-2.73,4.81,0)
poses Orientation quaternion | (0, 0, -0.31, 1)
Timestamp epoch 1510944342382526
Antenna ID id reader-02.2
Identifications | RSSI dBm -78
RF Phase degrees 149
RF Frequency | Hz 867341
| Static |
Book Book ID id 1005144591
locations Position cartesian (6.40, -0.60, 0.64)
Parent frame id base-link
Fixed Child frame id antenna-link
transforms | Translation cartesian (0.15,0.17, 0.03)
Rotation quaternion | (0.7, 0, 0, 0.7)
| 2Dmap | Occupancy grid | bitmap | Figure 4.8 |
| 3Dmap | Occupancy grid | octomap | Figure B.1 (Annex) |

and space given the extended reading reach of the robot. Figure shows the
set of identification instances for a given object. Hence, the detection of
an object, represented by its Electronic Product Code (EPC) or unique
identifier, can be expressed by a stream of identification instances

6.1

IDeye = {ido, idy, ..., id,}

An identification instance id; represents the detection of the object
at an ith time instant, thus pose in space, and is determined by a set of
features
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id; = {epc;, ts;, ant;, pose;, RSSI;, phase;, freq;}

ant; ={n|ne{l,...N}}
o0se; = {position;, orientation;
p {r o ) (6.2)
position; = {x;, y;, 2}
orientation; = {x;, y;, z;, w; }
RSSI; € [-85, ..., —30]

phase; € [0, 7]

being epc; the electronic product code of the item; ¢s; the timestamp;
ant; the antenna that originated the identification; pose; the pose of the
antenna at the moment of the identification; rssi; the received strength
of the signal; phase; the phase of the received signal; and freq; the fre-
quency of the signal carrier. These parameters represent two types of
features: those that are related to the spatial characteristics of the identi-
fication; and those that represent the physical characteristics of the elec-
tromagnetic propagation of the signal or the RFID system identification
parameters.

In order to assess the similarity of two streams of instances, an appro-
priate similarity or distance measure needs to be defined. One could think
of using all the features of each instance, which implies a multidimen-
sional and multivariate measure. Instead, the proposed measure aims at a
simplification. The focus of the similarity is on the spatial variables and
assumes that RF propagation features are secondary. The hypothesis is
that a similarity measure based only on the spatial characteristics suffices
to group the streams of instances into clusters. A further simplification
relies on the fact that at a specific time all the instances have the same
spatial characteristics. Hence, instead of computing a similarity based
on the pose, just the timestamp is used for assessment, which transforms
the multivariate and multidimensional initial problem to a univariate one.
However, the timestamp alone represents a robot pose but not the specific
antenna pose. For that, the simplified identification instance includes the
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identifying antenna ant; along with the timestamp t¢s; and epc;.

@E = {epc;, ts;, ant;} (6.3)

Now, the representation of a stream of identifications for a given ob-
ject can be reformulated.

[/Depc: {Z?d\(),l/d\l,,l/d;} (64)

For convenience, the original identification stream can be reformu-
lated by grouping identifications from a common antenna in sub-streams.
Given each antenna sub-stream corresponds to a unique pair of EPC and
antenna, their enclosed identifications carry epc; and ant; implicitly. Then,
an antenna sub-stream can be expressed as a sequence of timestamps.

—~ ant; —~ —
ID,,. ={idy,..,idp} = {tso,...,tsp} (6.5)

A complementary expression of the former is obtained by binning
timestamps. An empirical fact is that objects close to each other are not
necessarily identified at the very same second but within a common time
window. Hence, the similarity between streams can be better assessed
using time bins of a given resolution. Each time bin encloses zero to
many detections. For convenience, the final formulation is expressed by
the cardinality of time bins or, which is the same, the amount of detections
registered within.

— ant;

]/bepc = {|t802T| DIRREY) }tS(P—l)T:PT}}

(6.6)
TfS(kq)T:kT} = Cardinality of the k£, time bin

T = Time bin width

Now, the identification stream can be expressed as the concatenation
of antenna sub-streams, following always the same antenna order. To
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do so, the binned timestamp information is transformed into an ordered
sequence of bins. The temporal dimension is discarded and the identi-
fication stream becomes an ordered sequence of cardinals. Antenna in-
formation is not discarded, it is implicit given the sequence order is the
same among different identification streams, thus the underlying time di-
mension and antenna are represented by the position of the bin in the
sequence.

—~ant1 —>anty —~anty

IDepe = ID,,, |ID,,. ||.-[IID,,. (6.7)

epc epc

ID.ye = {|bing|, ..., |binp| , ... |biny |, ..., |binpey|} (68

The formulation expressed by equation 6.8 is the actual one used for
the computation of the similarity between streams. In fact, the aggre-
gation of all the antennas represented by such formulation. One must
note that bins from different antennas are independent even the underly-
ing time window coincides. This is due to the fact that different antennas
involve different poses relative to the identified object. Consequently, two
identifications that happen at the same time but from different antennas
do not contribute positively to similarity. In conclusion, an identification
stream is expressed as the number of detections partitioned in time, for
each robot antenna separately.

The graphical representation of identification streams are shown in
Appendix A for two selected blocks of books and two different anten-
nas. Each plot shows the identifications of a single antenna. Each line
represents the identification stream of a single book. The similarity in
the time domain between streams within the same block, and from the
same antenna, can be recognized. It is apparent a jitter or offset between
some of the streams within the same block, which is the intuition for bin-
ning instances. It is also apparent the feasibility of clustering if a proper
similarity coefficient is defined.
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6.2.1 Similarity coefficients

A set of similarity coefficients are considered for the quantification of
similarity between identification streams. On one hand, the Battacharya
coefficient, a known measure which approximates the overlap between
statistical samples. On the other hand, a set of coefficients are defined for
the specific purpose of clustering RFID identifications. Afterwards, the
coefficients are transformed to distances and used to populate the distance
matrix required for clustering. Similarity coefficients can be deemed a
sort of identification streams correlation.

For conVQience, onwards, the pair of simplified identification streams

—

I/l\)epd and I/Z\)epcg is expressed as follows

I/Z\)epcl =R= {T()a "'JTQ}
(6.9)

]/l\)epd =5= {80, ceey SQ}

Battacharyya coefficient

The first coefficient analysed is the Bhattacharyya coefficient (BC) [51].
It is a measure of overlap between two statistical samples, widely used
in statistics to assess the separability of classes. Basically, it partitions a
series domain and integrates overlapping occurrences.

Q
BC(R,S) =Y _\/ris; (6.10)
=0

Note that in case there are no overlapping samples, the battacharya
coefficient is zero, according to a null similarity. Note as well that the bat-
tacharya coefficient is dependent on the resolution of the partition. This is
convenient in our application since identifications of near objects do not
exactly happen at the same instants. However, the Battacharya coefficient
is not a normalised measure.
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Sample match coefficient

The sample match coefficient (SMC) measures the percentage of coinci-
dence between identification streams bin-wise.

Q

1
SMC(R,S) = 5 >
=0

min(ri, Si)

(6.11)
max(r;, s;)

SMC is null when no overlap occurs, it is 1 in case of a perfect match,
and it is dependent on the bin width. As opposed to the Battacharyya
coefficient this is a normalized measure.

Bin match coefficient

The bin match coefficient (BMC) considers bins either occupied or empty.
The cardinality of each bin is ignored. It measures the percentage of
coincidence in a binary way.

1

Q
ES D DI ER U N CRE)

1=0

BMC(R,S) =

BMC is null when no overlap occurs and it is dependent on the bin
width. A perfect match can be measured even the identification streams
are not strictly equal. This measures aims at stressing out identifications
within a time window as key events as opposed to quantifiable events. In
case the cardinality of all bins is one, SMC is equal to BMC. As opposed
to the Battacharyya coefficient this is a normalized measure.

Weighted intra-bin coincidences SMC

The weighted sample match coefficient (wSMC) extends SMC by apply-
ing a weighting factor w; to each bin. The factor aims at giving a stronger
relevance to those bins that expose a higher number of coincidences even
not showing a perfect match. For instance, a bin coincidence with the
likes of g = 1 and sy = 1 is penalised (SMC=1, wSMC=0.5) while a
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coincidence with the likes of v = 7 and sy = 10 is favoured (SMC=0.7,
wSMC=0.6).

~ min(r, s;)
YT + min(ry, s;) 6.13)
SMC(R, S) EQj min(ri, ;) (6.14)
v max (7, SZ) ’

=0

wSMC is null when no overlap occurs and it is dependent on the bin
width. A perfect match is only measured when identification streams are
strictly equal and include an infinite number of occurrences. It is a nor-
malized measure.

Weighted length of coincidences coefficients

The former coefficients SMC, BMC and wSMC can be adjusted by ap-
plying a factor that considers the length of coincidences. It aims at giv-
ing more relevance to pairs that involve a higher number of coinciding
bins. For instance, a pair with the likes of {ro = 1,r; = 1,r, = 1}
and {sg = 1,87 = 1,8, = 1} is favoured over a pair with the likes of
{ro = 1} and {so = 1}. This is due to the fact that the first pair involves
three coinciding bins while the second pair involves only one.

Q
W( ’ ) _ Zz’: [TZ Z 1] {Sl Z 1] (615)
1+Zi:0 [ri > 1] [s; > 1]
WSMC(R,S) = W(R,S) - SMC(R, S) (6.16)
WBMC(R,S) =W(R,S)- BMC(R,5) (6.17)
WwSMC(R,S) = W(R,S) - wSMC(R, S) (6.18)
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Coefficients discussion

An illustrative example supports the discussion regarding coefficients.
Figure 6.2 depicts four representative identification streams, each bin show-
ing the amount of identifications within it.

Table 6.3 summarises the similarity coefficients of the example. For
convenience, the self-similarity of an item with itself is computed as well.
Looking at self-similarities, the BC reveals a strong dependence on the
intra-bin coincidences, while the amount of coinciding bins is apparently
residual. Note that the higher BC self-similarity is for epc3, which coin-
cides only in two bins but in a high number (8) of intra-bin samples. Con-
trarily, BMC puts the focus in the number of coinciding bins. Note that
the self-similarity is 1 in all the cases and the similarity between items is
higher the higher the number of coincidences. SMC extends BMC by in-
cluding intra-bin coincidences in the computation. While self-similarities
are 1, equal to BMC, the similarity between epcl and epc2 is no longer
one given their bins carry a different number of intra-bin samples. The
SMC between epcl and epcd is the same as its BMC given they carry
the same amount of intra-bin samples. Next, the wSMC takes in con-
sideration not only the intra-bin coincidence, but the amount of intra-bin
coincidences. Focusing on self-similarities, while epcl moves from an
SMC =1toawSMC = 0.50 given there is only one coinciding sample
in each bin, epc3, which encompasses a higher number samples, moves
from an SMC = 1toawSMC = 0.68. However, the self-similarity
of epcl and epc4 is the same wSMC = (.5 even epcd includes a higher
number of coinciding bins. For this reason, a weight to the length of
coincidences is included in WwSMC. The self-similarities are now a
WwSMC = 0.40 for epcl and a WwSMC' = 0.45 for epcd, due to the
higher number of coinciding bins in epc4. The other measures that ap-
ply a weight to the length of coincidences, W BMC and W SMC' show
equivalent trends.
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Figure 6.2: Representative binned identification streams that support the similarity co-
efficients discussion. The identifications’ count in each bin is depicted for four items.

Distances

Clustering requires a measure of distance between samples, the identifica-
tion streams. The distance between two samples is complementary to the
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similarity coefficient. On one hand, the Battacharya coefficient is trans-
formed to a distance applying a normalization. The normalization factor
is the maximum BC measured across all pairs of identification streams
under assessment.

BO(R, S)
maX(BC(I/Dem ) I/Depcj ))

On the other hand, similarity coefficients that are already normalized
are transformed to distances following equation 6.20, which is shown for
a generic match coefficient, expressed as XMC, and applies to all the
other coefficients proposed.

dpc(R,S) =1 —

(6.19)

dxmc(R,S) =1 — XMC(R, S)

XMC e {BMC,SMC,wSMC,WBMC,WSMC,WwSMC'}
(6.20)

6.2.2 Clustering

The clustering algorithm chosen is hierarchical clustering [52]. The main
reason is the flexibility that hierarchical clustering offers in space parti-
tioning. The output of hierarchical clustering is not just a set of clusters
but the hierarchical proximity of samples. Its graphical representation is
called a dendrogram, a tree-like structure in which the distance between
samples or groups of samples is expressed by the length of the branches
that connect them. By cutting the branches at a chosen level, clusters are
formed. Figure 6.3 shows an example of a dendrogram that is cut at a
given height, marked with a red dashed line.

In the library, one could choose to create clusters of blocks, shelves
or book topics indistinctly by cutting the dendrogram at higher or lower
heights. In a retail store or warehouse, it could be used to generate views

Zhttps://stat.ethz.ch/R-manual/R-devel/library/datasets/html/US Arrests.html
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Figure 6.3: Dendogram of a subset of Violent Crime Rates by US State dataset’. The
vertical axis shows the distance between samples grouped by the dendogram branches.
The red dashed line marks the height at which the dendogram is cut to form 4 clusters,

shown in different colours.

of products grouped at different granularities. In this sense, the choice of
the clustering algorithm is mandated by its potential applications.

The clustering algorithm implementation used is hclust, included in
[R]? statistical computing software. The strategy is agglomerative: each
sample starts as a one-member cluster and is recursively merged with near
clusters, creating the hierarchy bottom-up. The distance between clusters

3https://www.r-project.org/
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at each stage is measured based on the agglomeration method selected.
The agglomeration methods available are detailed in Table 6.4.

Table 6.4: Agglomerative hierarchical clustering methods. A and B represent two clus-
ters, D(A, B) the distance between them, and d(a, b) the distance between two members
of a cluster.

| Method | D(A, B)
Single min{d(a,b)} a€A,beB
Complete max{d(a,b)} a€A,beB

Median (WPGMC) | median{d(a,b)} a€ A,be B
Average (UPGMA) m Y>> d(a,b) a€A,be B

Centroid (UPGMC) | [|ca — cB]|? c4 = centroid of A
McQuitty (WPGMA) | Any“
Ward D |Lﬂﬁé| lca — egl|*  ca = centroid of A

“McQuitty refers to an update formula implementation that can use any distance
measure [53].

6.2.3 Clustering evaluation

Clustering is assessed using a complete inventory round of the location
dataset that includes 7,000, 256 book blocks and an average of 33 identi-
fications per book. One must note that eight antennas are involved, four
on each side of the robot. As introduced in Equations 6.7 and 6.8, a sin-
gle identification stream merges the information from all the antennas.
Antenna information remains implicit, hence it is taken into account at
measuring similarities and computing the clustering.

The evaluation analyses combinations of three parameters: similarity
coefficient, bin width and clustering method. Evaluation is approached in
three steps. Initially, results of clustering only 5 blocks, or classes, are
assessed. Each book block encompasses 31 books in average. The goal
is figuring out the combination of parameters that suits best for clustering
the books in the library. Subsequently, the combination of parameters that
show a higher performance are applied to a subset that includes 50 blocks.
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Table 6.5: Parameters and values that are combined for clustering evaluation.

BC

BMC

SMC
Distances wSMC
WBMC
WSMC
WwSMC
.. 0.5,1,3,5,9
Bin widths [s] 12.15.18.21

Clustering methods | Table 6.4

At this step, the goal is validating whether the clustering performance
keeps up with an increased number of samples. To conclude, clustering
is applied to the complete library dataset, which encloses 225 blocks and
7,000 books.

The values of the parameters that are combined for the assessment of
clustering are listed in Table 6.5.

Evaluation measures

The measures used for assessment are general accuracy measures used
in classification: Precision (P); Recall (R); and F1 score (F1). They are
computed after the amount of samples correctly included in a cluster, or
true positives (TP); the amount of samples incorrectly included in a clus-
ter, or false positives (FP); the amount of samples correctly left out of a
cluster, or true negatives (TN); and the amount of samples incorrectly left
out of a cluster, or false negatives (FN).

TP

P=—"__ 6.21
TP+ FP ©.21)
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Table 6.6: Example of clustering two classes, A and B, and the corresponding confusion

matrix.
Cluster A Cluster B
ay | Ao bl 1)2 bg b4
asg | a4 bs | as | ae

Same cluster | Different clusters
Same class TP=13 FN=12
Different classes | FP=12 TN=17
TP
= —— 6.22
I TP+ FN ( )
P-R
Fl1=2- 6.23
P+ R ( )

In the particular case of clustering, TP, FP, TN, and FN are computed
considering pairs of samples. An illustrative example with two clusters,
Figure 6.6, is used for explanation. Cluster A encloses {a, as, as, a4},
which implies (3) pairs correctly formed. Cluster B encloses {bs, b3, bs, b5},
which implies (g) correct pairs, and (;) correct pairs due to {as, ag}.
The aggregation of correct pairs gives TP. On the other hand, the total
amount of incorrectly formed pairs in Cluster A are the combinations
of {ay,as,as,as} and by. Analogous in Cluster B, the combinations of
{b2, b3, b4,bs5} and {as,as} are the incorrect pairs. The aggregation of
incorrect pairs gives the total FP of the clustering. Extending the calcula-
tions, the final confusion matrix is computed (Table 6.6), which provides
the sources of accuracy measures P, R and F1. The example has P = 0.52,
R =0.52and F'1 = 0.52.

In addition, Purity, a clustering-specific measure, is used. The share of
the predominating class in each cluster is computed and averaged among
all clusters. From the example (Table 6.6), in Cluster A the predominating

4

class is a; and its purity is ©. Cluster B has a purity of %, given the
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~V N Y N\~

(a) (b)

Figure 6.4: Schematics of an aisle perspective composed by two shelf racks divided in
book blocks. Highlighted, (a) Subset A blocks and (b) Subset B blocks. Subset B is
more challenging than Subset A for clustering because of the proximity of blocks.

predominating class is b; and the total number of samples in the cluster is

six. The overall Purity is the average of the former: % : (% + %) = 0.73.

Subset A and Subset B (5 blocks)

In order to do an initial assessment of the different configurations, two
subsets of books blocks (classes) are selected. Subset A includes five
blocks located close to each other. This is considered an easy case for
clustering. In this manner, the coarse separability of blocks is assessed.
Subset B includes five adjacent blocks, this is in the same shelf rack and
next to each other. In this manner, the separability of blocks under the
most challenging configuration is assessed. Figure 6.4 shows schematics
of the distribution on the library shelves of blocks in Subset A and Subset
B.

Appendix A includes graphs of the identification streams of Subset A
and Subset B for each book and two robot antennas. The graphical repre-
sentation of identification streams supports the intuition and challenge of
separability.

Results of clustering Subset A using the measures and methods pro-
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posed are shown in Figure 6.5. A number of preliminary conclusions
can be drawn. First and foremost, that clustering methods centroid,
complete, median and single are futile. These methods are discarded in
forthcoming analysis. One can observe that the best method is ward.D2
for clustering Subset A. There is no similarity measure that outperforms
the others. All the similarity measures at a bin width of 1 second provide
a perfect clustering. This was unexpected since it contradicts the initial
hypothesis that binning identifications could help. In practice, the time
resolution of identifications is 1 second thus binning at 1 second is equiv-
alent to not binning. The perfect clustering of Subset A is depicted in
the form of a dendogram in Figure 6.6. The main conclusion from apply-
ing clustering to Subset A is that RFID identifications can be grouped by
using a similarity that relies only in time coincidences. The initial hypoth-
esis that identification streams can be compared looking at identifications
timestamps is demonstrated.

Results of clustering Subset B are shown in Figure 6.7. The main
conclusions drawn from Subset A apply as well to Subset B: cluster-
ing method ward.D2 outperforms the other methods and the optimal bin
width is 1 second. However, in this case the best result is not a perfect
clustering. The maximum F1-score is 0.91 and the maximum Purity is
0.95. The dendogram resulting of clustering Subset B (Figure 6.8) shows
that 4 out of 74 books are assigned to a wrong block. Although the re-
sult of clustering Subset B is not perfect, given that blocks are adjacent to
each other, it is considered a good result. The separability of blocks using
a similarity that relies on time coincidences is still valid.

Subset 50 (50 blocks)

After proving the feasibility of clustering five books blocks, the next goal
is assessing the scalability of the method. For that, the number of blocks,
thus books, is increased. The same experiments are conducted on 50 ran-
domly chosen blocks, Subset 50, which accounts for 1250 books. Given
the high number of books, no dendograms and identification streams are
depicted in the subsequent analysis.
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Figure 6.5: Results of clustering subset A book blocks (classes).
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Figure 6.6: Dendogram of Subset A under the best configuration, which is achieved by
all the similarity coefficients, many bin widths and method ward.D2. The colours on
the dendogram depict the 5 resulting clusters after cutting the tree. Below, the samples
assigned to each cluster are coloured and named after their actual book block, their actual
class. The dendogram shows a perfect clustering for Subset A.
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Figure 6.7: Results of clustering subset B book blocks (classes).

Results of clustering Subset 50 using the measures and methods pro-
posed are shown in Figure 6.9. The increase in number of blocks in-
volves an overall decrease of clustering performance. The best figures are
Purity = 0.82 and F'1 — score = 0.75, achieved with ward.D2 method,
BMC similarity coefficient and a bin width of 12 seconds. This result
reveals that the method does not scale up in number of samples.

For a better understanding, the analysis is extended by reconsidering
the block membership. Now, books that belong to an adjacent block to
the block assigned by the clustering are counted as correctly classified.
Subset B blocks, depicted in Figure 6.4 are an example of such condition.
A block membership is extended to consider as members books placed
I-block-away along the shelf: right; left; up; or down. Figure 6.10 shows
the results of extending the block membership. Following the relaxed
membership condition, the best figures become Purity = 0.91 and F'1 —
score = 0.80. There is a clear increase of performance, meaning that
a significant share of clustering error is due to a 1-block-away mistake.
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Figure 6.8: Dendogram of Subset B under the best configuration: similarity coefficient
WWSMC; method ward.D2; and bin width 1 second. The colours on the dendogram
depict the 5 resulting clusters after cutting the tree. Below, the samples assigned to each
cluster are coloured and named after their actual book block, their actual class. There
are 4 samples that do not coincide with the majority within the class (colour mismatch).
Anyway, the dendogram shows a good clustering, 70 out of 74 samples are assigned to
the correct class, for Subset B.
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Figure 6.9: Results of clustering Subset 50 book blocks (classes).

Again, the best method is ward. D2, at a bin width of 9 seconds and SMC
similarity.

An additional relaxation of the evaluation condition is considering
books that belong to adjacent blocks across the shelf rack as members
of any of the adjacent blocks. These are mirrored blocks, the ones on the
other side of the same shelf rack. Same shelf rack, same block position,
but facing opposite directions. This is, reachable from neighbouring cor-
ridors. Actually, adding this condition to the former, the 1-block-away 2D
relaxation is extended from blocks in a 2-D plane to blocks in the three
directions (1-block-away 3D). In the case of the library this may be of
significant importance because there is no actual separation between the
books in the two different sides of a shelf rack. This means that identifi-
cations are likely to happen simultaneously for both blocks, given books
are adjacent. Figure 6.10 depicts the results. In this case, the best per-
formance is given by the average method, offering a Purity = 0.97
and F'1 — score = 0.96 with WBMC similarity and a bin width of 15
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Figure 6.10: Results of clustering Subset 50 book blocks (classes) considering sam-
ples assigned to a block contiguous, along the shelf, to their actual block as correctly
classified.
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Figure 6.11: Results of clustering Subset 50 book blocks (classes) considering sam-
ples assigned to a block contiguous, along the shelf, to their actual block as correctly
classified.

seconds. Methods ward.D2 and average show similar figures but the
average method provides a higher recall thus a higher F'1 — score. In
conclusion, although the clustering is penalised after an increase in num-
ber of books and blocks, the relaxation of the membership condition to
a 1-block-away 2D in the three directions (1-block-away 3D) offers very
good results. In the case of the library this means clustering identifications
within a volume as the one depicted in Figure 6.11, which is considered
sufficient to detect significantly misplaced items.

Note that the library encompasses several shelf racks distributed on a
large surface. Hence, books that are placed racks away from their theoret-
ical position can be consistently detected. However, books that are placed
a block away within the same rack from their expected location cannot be
spotted with this method.

Subset All (256 blocks)

Finally, clustering is applied all RFID labelled books in the library in or-
der to confirm the former findings. The complete set of books encompass
256 blocks and nearly 7,000 books. The evaluation of clustering considers
the 1-block-away 3D membership. Results show that while the clustering
performance is slightly affected by the increase in the number of books, it
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Figure 6.12: Results of clustering subset 50 book blocks (classes) considering samples
assigned to a block contiguous, along or across the shelf,, to their actual block as correctly
classified.

offers good results: Purity = 0.95 and F'1 — score = 0.93. The best per-
formance is given by the average method, SMC similarity coefficient and
a bin width of 9 seconds. Figure 6.13 shows the results, which confirm
that the average method outperforms ward. D2 and mcquitty at applying
the 1-block-away 3D membership extension.

6.2.4 Discussion

Clustering streams of identifications as a location approach unlocks two
different applications. The first relies on the use of reference objects.
The locations are assigned, after clustering, as that of the reference object
within the group. Hence, locations are discrete and assigned by proximity
or similarity to the known reference object location. A possible downward
of such solution in a real scenario is the lack of control on the placement
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max F1 | max Purity | Method | Similarity | Bin width | Blocks | Y cmPership
extension
Subset A | 1.0 1.0 ward.D2 | All* Many* 5 -
WBMC
Subset B | 0.91 0.95 ward.D2 | WSMC 1000 5 -
WwSMC
Subset 50 | 0.75 0.82 ward.D2 | BMC 12000 50 -
Subset 50 | 0.80 0.91 ward.D2 | SMC 9000 50 I-block-away 2D
Subset 50 | 0.96 0.97 average | WBMC 15000 50 I-block-away 3D
Subset All | 0.53 0.68 ward.D2 | WSMC 6000 256 -
Subset All | 0.66 0.81 ward.D2 | WBMC 12000 256 1-block-away 2D
Subset All | 0.93 0.95 average | SMC 9000 256 1-block-away 3D
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Figure 6.13: Results of clustering all the books in the library, considering samples as-
signed to a block contiguous, along or across the shelf, to their actual block as correctly
classified.

of reference objects. Thinking of a library, it is difficult guaranteeing
that a given reference book stays in the location where it was originally
placed. Any time, a person could withdraw the book for consultation and
leave it back in a different location. Given the amount of interactions that
happen in a library, this risk is high. One should note that for a reference
object to be valid, in the case of the library it should necessarily be a
book. It cannot be an RFID label attached to a shelf since the detection
characteristics would not match that of the books and the clustering may
fail. Hence, if the target scenario for location cannot guarantee a fixed
location of the reference objects, it may not be feasible. In that cases, the
second possible application of clustering can be considered.

The second location application to clustering can be considered a
pseudo-location solution. Not having reference objects, one cannot in-
fer the location of the resulting clusters. However, one could still detect
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misplaced objects by distinguishing the type of object in each cluster. The
objects in a cluster that do not belong to the majority type are potentially
misplaced. Noteworthy, RFID coding standards contemplate storing the
type of object within the Electronic Product Code (EPC). Thus, the type
of each object in a cluster can be determined. Getting back to the library
case, the books within a computed cluster allegedly belong to a block of
books, which should have, if properly ordered, consecutive signatures.
Moreover, books in a block belong to a same category of books, for in-
stance Machine Learning. Consequently, any signature or category in a
given cluster that does not match the majority, is potentially misplaced. In
practice, such check may not be direct, in the particular case of the library
is not. Anyway, the EPC stores the book unique identifier, a barcode that
can be used to query the library database for the book’s signature and cat-
egory. This pseudo-location approach can be valid as well in retail stores.
For instance, clothes are usually placed in a store grouped by type of gar-
ment, brand and/or size. Such product features can be used to discern
whether an object in a cluster belongs to the family determined by the
majority. For instance, a piece of underwear found among suits is likely
to be misplaced.

6.3 Recursive Bayesian estimation

The second approach to the location of items is recursive Bayesian Es-
timation [54], or Bayes filter. In brief, it is the recursive application of
Bayes rule to determine the most likely location of an item given a se-
quence of observations. Let L., = {ls,,...,l,} be the state vector,
the collection of all possible locations of an arbitrary item epc, where
la = (%4, Ya, 24) is a three-dimensional position around the robot. Let
ID.,. = {idy,...,idy} be the sequence of identifications of item epc
and R,opot = {71,...,7%} the corresponding robot poses, where r; =
(x:,yi,6;). The sequences of identifications and robot poses carry im-
plicitly the timestamp, which is used to match them.

Following Bayes rule and assuming that an identification is indepen-
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dent of the former, the recursive update formula can be expressed as fol-
lows.

p(lalidig, rie) =n - plide|re, (o) '?(la|id1;k;1,7”1:k71)1 (6.24)

Vv
posterior measurement likelihood prior

The posterior probability of an arbitrary location [, given a sequence
of measurements and robot poses is proportional to the likelihood of the
measurement and the prior knowledge about that location, computed from
previous observations. The factor 77 normalises the probability among all
other possible locations within the vector of states Ly,

The measurement likelihood expresses the probability of an identifi-
cation given a robot position and a possible item location. In order to
compute the likelihood, an identification model is required. In nature, it is
environment-dependant. In practice, it is not feasible mapping each pair
of robot positions and item locations. Furthermore, such model would
be tightly bound to the environment’s configuration, which implies not
being applicable to a similar space. For this reasons, the likelihood is
transformed to rely on the relative position between the antenna and the
item location. It is expressed as

p(idk|re, la) — p(idi|dant, (Tk, la)) (6.25)

where dos, (7, [o) 1s the relative position at a kth identification.

6.3.1 Identification model

The identification model provides the information needed to compute the
likelihood of an identification. In this case, each identification is consid-
ered as id; = {ant;, rssi;}, which implies taking into account only the
antenna ant; and the received signal strength rssi; from the information
reported by the reader, expressed in Equation 6.2. Evidence from prior
works [55, 36, 37, 38] that approach location with success using only
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rsst is the justification to discard other RFID parameters. The identifica-
tion model is computed antenna-wise. This is due to the fact that in the
library, books are placed at discrete heights, resulting the detection pattern
of each antenna notably different along the z axis. Hence, the likelihood
can be reformulated as

p(id|rk, lo) = p(rssig|dant, , anty) (6.26)

and the identification model M is the collection of rssi probability
density functions at all relative antenna positions. Each relative position
has its own 7ss: probability density function, which is used to compute
the likelihood of a measurement at that position.

M = { frssi(rssi|dant,) Vant;} (6.27)

The identification model is learned in a supervised fashion. A subset
of the location dataset is used as training data. Specifically, 4 books from
each of the six shelves heights are selected, a total of 24 books. Note that,
in reality, these are reference items whose locations should be measured
in purpose to learn the identification model in a real case. In this sense,
the fewer the better. As a consequence, training data is expected to be
incomplete.

The relative positions of the identifications at training are conditioned
by the robot navigation. In most cases, at inventorying, the robot follows
a path that does not covers all the possible relative locations between the
antennas and the reference objects. Logically, the sparsity of data is more
notable the fewer the reference objects and the shorter the training path.
In a real scenario, such limitation is implicit as a result of the structural
distribution of the layout and a limited time for training. As an example,
let’s take the case of an apparel retail store with 12 reference objects at
representative locations. The robot is commanded manually with the aim
of collecting the training set. However, the robot can only navigate where
there are no obstacles, which hampers the objective of registering identi-
fications at all relative object to robot locations. Virtually, it is impossible
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to place enough reference items or follow a path that can cover all rela-
tive locations. One could reason that by placing just one reference object
surrounded by free space that should be possible. Yet, identifications are
conditioned by the environment where objects are placed. Essentially,
the identifications of books placed in shelves next to other books or piled
clothes are not the same as if they would be isolated. For this reason, the
training data is necessarily collected at the target scenario.

The detection model is computed by partitioning the space and fitting
a probability distribution to the samples in each of the resulting bins. In
practice, the identification model consists of a 3D grid. Each voxel en-
closes two parameters, the mean and standard deviation of the estimated
probability distribution. A third property is implicit: the number of sam-
ples. Due to the sparsity of data, bins containing no samples cannot be
considered to represent a null probability. Furthermore, there are bins that
do not contain enough samples to estimate a probability distribution. Con-
sequently, at computing the detection model, the probability of a number
of bins needs to be inferred. For that, an imputation algorithm is proposed.

Estimation of the rss: density function

Prior works have applied Bayesian methods to the location of items as-
suming a Gaussian distribution of the received signal strength [55, 36, 37,
38]. We presume a Gaussian distribution can be measured in ideal con-
ditions, mainly for line-of-sight identifications. However, this is not the
case in the library. Moreover, prior works encompass less than 100 items
while the library encloses 7,000. In the library case, the interference be-
tween books is expected to distort significantly identifications compared
to a controlled environment. For all this, the complete dataset collected at
the University Library is analysed in order to determine the signal strength
distribution. The Cullen and Frey plot provides a simple means to analyse
the distribution of a set of samples. It is based on kurtosis and skewness,
which are properties of the shape of a probability distribution. Kurtosis
measures the distribution’s tails shape and skewness measures a distribu-
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tion’s asymmetry. The Cullen and Frey plot provides a visual comparison
of kurtosis and skewness with those of known parametric distributions.

First, the distribution is analysed for all the identifications within an
inventory round (¢nv_5 from Table 6.1). The sum of normal distributions,
if the random variables are independent, is a normal distribution. Figure
6.14 shows that the rss: distribution is not near to the Gaussian distribu-
tion. The rsst distribution falls close to the dashed line that marks the
gamma distribution. Apparently, the rss: density function is not Gaus-
sian.

Cullen and Frey graph
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o A uniform
® exponential
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Figure 6.14: Cullen and Frey graph of the samples of inventory round inv_5. The plot
shows that the probability distribution of the identifications is not close to a Gaussian.

Next, the distribution is analysed for each voxel individually. The
aim is understanding if the the distribution is the same for all the relative
antenna-item locations. Only voxels enclosing more than 20 samples are
considered to discard voxels not statistically representative. Figure 6.15
shows the density of voxel distributions falling on the different regions of
the Cullen and Frey graph. The Gaussian distribution region of the graph
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encloses only 15% of voxels. The remaining are spread across the rest of
the regions. In conclusion, the rssi density function cannot be generally
considered Gaussian for the library dataset. Apparently, the density func-
tion depends on the relative antenna-item location. This is unsurprising
since measures are taken at a real world scenario as opposed to a con-
trolled environment, where a Gaussian distribution is more likely to be
measured. In any case, given a majority of the bins show a Gaussian dis-
tribution, this is used for the computation of locations. Yet, location is
computed as well using a Uniform distribution. Essentially, using a Uni-
form distribution that spans from the global minimum rss: to the global
maximum 7sst, the rssi is implicitly ignored. The reason for that is the
apparent impossibility to characterise a density function that applies to all
the voxels.

1 Theoretical distributions
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+ logistic

O beta

lognormal
gamma
(Welbull s close to gamma and lognormal)
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density
0.15
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Figure 6.15: Cullen and Frey graph of the samples of inventory round inv_5 for each
relative antenna-item location. The plot show the density of points falling on each re-
gion. There is not a distribution that characterises univocally the different antenna-item
locations.
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Imputation of missing data

The imputation of missing data aims at filling the model at relative antenna-
item locations where not enough data is available for a statistically signif-
icant measure. This problem was tackled by Vorst et al. [55] following
a K-nearest neighbours approach, which is extended in this thesis. The
main idea is constraining the K-nearest neighbours to a maximum dis-
tance D,,,, from the voxel whose rssi mean and standard deviation has
to be determined. In this sense, if within the maximum distance there
are K or more identifications, the mean and standard deviations of the
rssi are assigned to the voxel in scope. Otherwise, the voxel is consid-
ered empty. The reason for that is avoiding the imputation with far away
identifications of voxels that have been explicitly observed empty.

The space is strategically partitioned forming an octree (a 3-dimensional
tree), which implicitly means that each node has eight siblings. The im-
putation algorithm, Algorithm 3, first checks the amount of identifications
in the leaf node. If they are equal or greater than K, the leaf is assigned
these identifications rss? mean and standard deviation. Otherwise, the
node’s siblings identifications are taken in consideration. Again, if these
do not encompass enough identifications, the algorithm moves to the par-
ent node and checks again the amount of identifications at that level. The
operation is repeated, moving up the tree until K identifications are found
or until the maximum distance D,,,,, from the node is reached. The values
of K and D,,,, are determined empirically.

128




“main” — 2018/9/19 — 1:01 — page 129 — #141

Algorithm 3 Imputation algorithm

1: for leaf in tree do

2: node < leaf

3: identi fications < ()

4: while length(samples) < K do

5: if d(node,leaf) < D4, then

6: identifications < getIdentifications(node)
7: node < parent(node)

8: else

9: identi fications < ()

10: break

K: minimum number of samples
D q0: maximum expansion distance

In order to illustrate the imputation, Figure 6.16 depicts identifica-
tions and corresponding models for the training set, which consists of 24
books, 4 books at each shelf height. The training set is limited and, in
consequence, the sparsity of identifications significant. For visualisation
purposes a single antenna (L1) and a single relative height (-11 cm) are
shown. Hence, the models shown are a slice of the complete identifica-
tion model. The parameters chosen and combined are: K = (1,5, 10)
samples; and D,,,, = (60,120, 180) cm. On one hand, a group of com-
puted models show an expected over-imputation. For instance the pair
D, = 180 and K = 1. This is due to a very relaxed condition for con-
sidering a set of samples statistically significant (' = 1). On the other
hand, there are computed models that suffer from under-imputation. For
instance D,,,, = 60 and K = 10. In this case due to a limited extent in
the distance (D, = 60) for gathering a considerable number of sam-
ples (K = 10). Nevertheless, there are models that apparently fit the
samples. For instance (Do, = 180, K = 10), (Dper = 180, K = 5)
and (D,,., = 120, K = 5). The performance of the resulting models is
analysed experimentally by computing the locations of the books in the
dataset.
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Figure 6.16: Identification models computed with the combination of K = {1,5,10}
and Dy,q, = {60,120, 180} for a single antenna and height. The black crosses mark
identifications, which can overlap. The coloured dots represent the rss¢ mean of the
computed identification model. The models depicted grid resolution is 30 cm. A 2-D

slice (one height) of the complete 3-D model is shown for visualization purposes.

6.3.2 Experimentation

The assessment of the Bayesian location approach is undertaken using the
library dataset. The stages for applying the location algorithm are three:

130




“main” — 2018/9/19 — 1:01 — page 131 — #143

running a training round; computing the model; and computing locations.

Training round

The model is computed from a training set that includes 24 books, 4 books
per shelf height. The training set corresponds to a manual inventory round
taken with the aim of capturing a high number of different relative antenna
to tag poses. Consequently, the robot was guided to do several turns and
passes. An important consideration is that, generally, the training set will
not consist of a high number of references. This is due to the fact that
in a real scenario, reference objects need to be placed and located man-
ually. Therefore, the less reference objects, the most convenient. Yet,
they have to be representative of the complete set of objects. In conclu-
sion, the training round aims at capturing a high number of identifications
from several antenna to tag relative positions using a reduced number of
reference objects.

Model computation

Observations from the training round are used to compute a set of detec-
tion models under different configurations. In this manner, the optimal
combination of parameters N,,,, and D,,,, can be determined empiri-
cally. The parameters analysed are combinations of: N, = (1,5,10)
samples; and D,,,, = (60,120, 180) cm. Additionally, given there is no
conclusive evidence regarding the probability distribution of the samples,
the model is considered in two flavours: Gaussian and Uniform distribu-
tion of samples. The model variables, mean and standard deviation, do
not vary but it does the computation of the observations likelihood.

Location computation

Locations are computed using observations from a usual autonomous in-
ventory round, ignoring the detections of books that belong to the training
set. The inventory round is faithful to the navigation behaviour deter-
mined in Chapter 5 for inventory, it is not modified for location purposes.
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A random subset of 1000 tags is selected for the analysis of computed
locations.

Results

The results of applying Bayesian Recursive Estimation to the location of
items are shown in Figure 6.17 for the case considering the RSSI proba-
bility distribution of the model as uniform. Given an identification, and its
corresponding RSSI, the likelihood of the observation is the same for each
position of the model. Results evince the relevance of computing prop-
erly the model. Best results are yield by the combinations (D, = 120,
Noin = 5) and (D02 = 180, Nypire = 10). Such combinations of param-
eters are coherent with the imputation initial hypothesis. Samples need to
be gathered from upper positions in the tree (non-restrictive D,,,.), for a
statistically significant model.

A likelihood modelled with Gaussian probability distribution is anal-
ysed as well, for comparison. Figure 6.18 shows the results, which are in
general worse than the uniform distribution results. Surprisingly, there are
combination of parameters that fail completely at location. This confirms
the conclusion of the probability distributions analysis. The RSSI is not
Gaussian, at least in the library scenario. Forcing the likelihood as Gaus-
sian misleads the updates of the Bayesian estimation. On the other hand,
a Uniform distribution outputs better results. Considering the RSSI to be
distributed uniformly is equivalent to wiping it out from the computation
and keeping only the part of the model that is purely spatial. The latter
makes sense since in a real scenario, RSSI is very affected by the con-
figuration of the surrounding space. In conclusion, in this case the RSSI
cannot be modelled, thus it does not provide information for updating the
estimation. Table 6.7 presents comparative numeric results, focusing on
the combinations of parameters that yield best results, both for the Gaus-
sian and Uniform cases.

An additional analysis of results focuses on the contribution of iden-
tification instances (per object) to the location algorithm. The question to
answer is: Do more identification instances (samples) contribute to a bet-
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Figure 6.17: Histograms of the 3-D location euclidean error for the different combina-
tions of model parameters considering a Uniform RSSI probability distribution. The grid
is composed of: horizontally D,,,, = (60, 120, 180); and vertically N, = (1,5, 10)
samples. The red dashed line marks the error mean and the blue line depicts the cumula-
tive histogram. The lowest error is given by the combinations (D4, = 120, N = 5)
and (Dynaz = 180, Npin = 10).

ter location of the given object? This is analysed for two reasons. First,
the more samples, the longer algorithm computation. Second, given a
high number of samples, some could be far identifications, thus noise for
the algorithm. Figure 6.19 depicts the relation between the 3-dimensional
euclidean error and the number of samples. Each point represents a single
object and the loess regression is computed. The euclidean error shows an
initial decreasing trend with a minimum at 10 samples per object. After, it
increases with the increase in number of samples. This can be explained
by the fact that the higher the number of identifications, the higher diver-
sity of robot positions that originated them. Figure 6.20 evinces that the
more samples, the higher standard deviation of robot positions. Hence,
the error increases with the increase of positions originating the identifi-
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Figure 6.18: Histograms of the 3-D location euclidean error for the different combi-
nations of model parameters considering a Gaussian RSSI probability distribution. The
grid is composed of: horizontally D,,,.. = (60,120,180); and vertically Ny,q, =
(1,5,10) samples. The red dashed line marks the error mean and the blue line depicts
the cumulative histogram. The lowest error is given by the combinations (D4, = 120,
Npin = 5) and (Dpae = 180, Npin, = 10).

cation of an object. The most plausible explanation is that while a subset
of close identifications, those high in RSSI, contribute positively to loca-
tion, far identifications penalise it. In order to confirm such hypothesis,
the location algorithm is run taking into account only the 10 and 25 high-
est RSSI samples. Table 6.7 shows the results. The error is considerably
reduced by using only the 10 highest RSSI samples. The most notable
reduction in the location error is at the highest spectrum of error. The
95% quartile of the euclidean error is reduced from 1.72 cm to 1.32 cm
by limiting the identification instances to the 10 samples with a highest
RSSI. And the benefit of limiting the amount of samples is not only a bet-
ter performance of the location algorithm but also a shorter computation
time.
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Figure 6.19: Relation between the euclidean error of the location and the number of
identification instances for each object detected. One point of the plot represents one
object. In blue, the loess regression of the samples. There is a minimum around 10
instances per object. The plot shown corresponds to model parameters (D4, = 180,
Npin = 10) and a uniform RSSI distribution.

6.3.3 Conclusion

Bayesian Recursive Estimation is proved a valuable method for RFID
location. A proper model computation is of utmost importance and it
requires imputation given the amount of training data is likely to be scarce
in real scenarios. Importantly, the probability distribution of the RSSI
needs to be carefully analysed. While in controlled environments it can
be measured a Gaussian distribution, this is not the case in the library.
Additionally, the best locations have been measured by taking only the 10
highest RSSI identifications of each book. The best computed locations
show a mean error of 0.68cm and a 95% quartile at 1.32cm.

136




“main” — 2018/9/19 — 1:01 — page 137 — #149

180

Robot position standard deviaton
0k

0 50 100 150
Mumber of instances

Figure 6.20: Relation between the aggregated standard deviation of robot positions that
originate detection instances and number of instances for each object detected. One point
of the plot represents one object. The higher the number of instances, the more diversity
in robot positions. The plot shown corresponds to model parameters (D, = 180,
Npin = 10) and a uniform RSSI distribution.
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Chapter 7

CONCLUSIONS AND
FUTURE WORK

7.1 Conclusions

A solution for the automation of inventory and location of items that
combines Radio Frequency Identification (RFID) and mobile robotics has
been proposed and validated in real environments. The navigation of the
robot is necessarily commanded by the progress of RFID identifications
in order to deliver an accuracy higher than 99.5%. An algorithm that takes
as input the progress of RFID identifications and commands the robot to
stop and twist in place and resume the navigation has been implemented.
Results show that adjusting the algorithm parameters is critical for the
robot efficiency in terms of not only inventory accuracy but duration of as
well. In this sense, the robot is demonstrated to be more accurate, precise
and faster than a person with a handheld RFID reader, the state-of-the-art
solution used for inventorying. In order to assess the comparative per-
formance of the robot and a handheld, a methodology, which includes
specific measures has been proposed. To this thesis date, a similar analy-
sis had not been approached thoroughly. The assessment required as well
of a controlled environment were to undertake tests. With this purpose, an
evaluation environment was set up in the Pompeu Fabra Library, enclos-
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ing 7,000 RFID labelled books. Validation tests were performed as well at
an actual retail store. Robot inventory results were compared to handheld
inventories taken by associates. Results showed that the robot is more ac-
curate, more precise and faster approaching the complex zones. However,
the person was faster and showed equivalent accuracy and precision fig-
ures in the simplest zone. The robot paths are longer due to rerouting in
front of unexpected obstacles, while a person can simply jump over them.
On the other hand, a person’s capacity to plan efficiently an inventory
does not scale with complexity, which makes the robot better at longer
inventories.

Location of items has been analysed following two different approaches.
The first proposed approach is clustering identifications and assigning to
each cluster the location of a known reference RFID labelled product. For
that, a set of measures that quantify the distance between two streams of
identifications, those of two different objects, have been proposed. The
only parameters used in the computation of distance are the time of the
identification and the antenna. Hierarchical clustering has been applied to
subsets comprising from 5 blocks to all the products in scope in the Pom-
peu Fabra Library test environment. Results show that clustering using
the proposed measures is feasible for a small amount of samples but does
not scale up to all the samples. However, if the condition for a book to be
considered correctly assigned to a cluster is relaxed to neighbour classes,
the results of clustering are satisfactory using all the books in scope. With
the former condition, all the books in the library can be clustered with
F1=0.92 and Purity=0.95.

The second proposed location approach uses Recursive Bayesian es-
timation. In this case, the items location obtained refers to a map with
known cartesian 3D coordinates. A detection model is computed in super-
vised manner placing 20 reference books in the test environment. Given
the amount of reference objects is limited, it requires work hours placing
and computing the location of the references, an algorithm for the impu-
tation of missing data is proposed. The algorithm consists in combining
the sparse data recorded to compute a model that is informed within an
antenna’s reading reach. Recursive Bayesian estimation has been com-
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puted using different models obtained from the combination of imputa-
tion parameters. The best location result obtained shows a 3-D euclidean
mean error of 0.68 cm and a 95-quartile of 1.32 cm. The dataset recorded
and used in the computation and assessment of the location algorithm is
shared openly with the community.

At the end of this work, the robot has been demonstrated valuable to
retailers and is market-ready.

7.2 Future work

Future work identified involves the complete automation of robot opera-
tion. For that, an unassisted exploration of the environment will be pur-
sued, which would save the need of running a manual recognition before
inventorying. The main challenge regarding exploration is completeness
and efficiency, given exploration algorithms do not scale well in large en-
vironments.

Regarding location, the algorithms proposed will be validated in real
retail stores and warehouses. While results obtained are promising, the
algorithms have to be validated in environments with characteristics dif-
ferent than those of the Pompeu Fabra Library. The clustering approach
can be extended by designing a specific clustering method with the pur-
pose of location. Bayesian estimation can be improved by preprocessing
identifications and keeping only those that contribute positively to loca-
tion accuracy.

A complementary application of the robot, given it carries two RGBD
cameras for obstacle avoidance, is 3D mapping. The RGDB cameras
observations can be used to feed a SLAM algorithm that, in combina-
tion with other sensors information, creates a 3D coloured map of the
environment. With that, a synthetic view of a store or warehouse that
includes architectonic features and product information can be created.
Possible applications of the synthetic view are offering customers an en-
riched shopping experience or the virtual monitoring and management of
the store facilities and products.
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Appendix A

IDENTIFICATION STREAMS
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Figure A.1: Left bottom antenna identification streams of books in Subset A. Each line
represents the identification instances of a single book. Blocks are grouped by colour.

146




“main” — 2018/9/19 — 1:01 — page 147 — #159
Block ¢ A1 ¢ A2 ¢ A3 ¢ A4 o« A5
81 s =
EE 0. .:u °
3 ] . .
X A 3
81 -
m 7 - :o
e 400 800 1200
At

Figure A.2: Right middle antenna identification streams of books in Subset A. Each line
represents the identification instances of a single book. Blocks are grouped by colour.
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A.2 Subset B

Block ¢ B1 « B2 ¢« B3 ¢ B4 ¢ B5

- oo e L _J
- (X I J L __J
- L ] L _J
- L ] L ]
- ® enome a» o
- L ]
- 0G0 0mD ® L __J
B om oo -eee
- *0 L X1 13 L2 ]
- o cumeses e o °
- - .
- « °
- ®we o oo -
- o ameo -
- mme -
- o o -
- o o -
- ° °
- we coemme o -
- - °
- - ame -
- ° esooe °
- oamm o -
- ° on °
- oo ° °
- ° -
- ® o -
- ° ®ammoe -
- - e -
c A - °
o A ° - o -
= =1 -
© - o mooe -e
O A ocsmee 00 o
= A [ L XX J L J
E=g ®consem 00 ¢ @ o
C 4 o @ o o
O oo o oemeo se oo
O A oo cumepus o®  oames
- ossme o oo
< 4 s oo oemme
O mem o ® o
o wmesce ome
m ) oo
- oo -
- oo .
- -
- anee °
- ) °
- -
- °
- °
- oo
4 e ° o o -
- -
- e
- e
- L X X J o ® o0
- L L ] 000 o
- L BN J ae» oo { X J o
- asemeamse oo L ]
- -ane oo L X J ( 1 J
- «e e o L_J © 00000
- L J o L
- oap oem o L L ___J
- 00 @ane ¢ L ]
- {_J eNe -
- L] o0 e [ ] L 1L J
- o & L X J oo
- L J
- o L
- ° oan L
- [ X XJ o e d
T T T T T
0 200 400 600 800
At [g]

Figure A.3: Left bottom antenna identification streams of books in Subset B. Each line
represents the identification instances of a single book. Blocks are grouped by colour.
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Figure A.4: Right middle antenna identification streams of books in Subset B. Each line
represents the identification instances of a single book. Blocks are grouped by colour.
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Appendix B
3D MAP

Figure B.1: View of a 3D occupancy map recorded by the robot. Colour is used as a
height scale. Blue is ground level.
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